Introduction Weak mixing Strong mixing Examples An application to maximal injectivity

Mixing masas in group factors

Paul Jolissaint, Université de Neuchâtel

Copenhagen, February 2010

Introduction

J. Dixmier (1954) introduced 3 classes of maximal abelian *-subalgebras (masas) A in a type II₁ factor M in terms of the *normaliser* of A in M

$$\mathcal{N}(A) := \{u \in U(M) : uAu^* = A\}$$
:

- (i) A is regular if N(A) generates M (nowadays, such a masa is called a Cartan masa);
- (ii) A is semi-regular if $\mathcal{N}(A)''$ is a proper subfactor of M;
- (iii) A is singular if $\mathcal{N}(A) = U(A)$.

He gave examples of all three classes coming from pairs of groups H < G where H is an infinite abelian group: if for each $g \in G \setminus H$, the set $\{hgh^{-1} : h \in H\}$ is infinite, then L(H) is a masa in L(G), and extra conditions on the pair H < G ensure that one of the 3 properties above is satisfied.

Focus on the class of singular masas.

What about existence of singular masas in general II_1 factors?

Theorem 1 (S. Popa, 1983) Let N be a separable type II_1 factor (i.e. N has separable predual) and let M be a subfactor of N such that $M' \cap N = \mathbb{C}1$. Then there is a singular masa A in N contained in M.

In general, it is rather hard to check that $\mathcal{N}(A) = U(A)$.

G. Robertson, A. Sinclair and R. Smith, 2003 found an apparently stronger condition: If $A \subset M$ is an abelian von Neumann algebra such that

(*)
$$\|\mathbb{E}_A - \mathbb{E}_{uAu^*}\|_{\infty,2} \ge \|u - \mathbb{E}_A(u)\|_2 \quad \forall u \in U(M)$$

イロン イヨン イヨン ・

then A is a singular masa in M. (Notation: $\|\Phi\|_{\infty,2} = \sup_{\|x\| \le 1} \|\Phi(x)\|_2$.) **Geometric examples.** (RSS, 2003) Let G be a cocompact lattice in a semisimple Lie group.

Then G is the fundamental group $\pi(\mathcal{M})$ of a suitable compact manifold \mathcal{M} . If $T^r \subset \mathcal{M}$ is a flat *r*-torus, then its fundamental group $H = \mathbb{Z}^r$ embeds into G and:

Theorem 2 The pair of von Neumann algebras $L(H) \subset L(G)$ satisfies (*), hence L(H) is a singular masa in L(G).

イロン 不同 とくほと 不良 とう

A (not necessarily abelian) von Neumann subalgebra $A \subset M$ that satisfies (*) is called *strongly singular*.

Theorem 3 (A. Sinclair, R. Smith, S. White and A. Wiggins, 2007) Let A be a masa in a separable type II_1 factor. Then TFAE:

- (1) A is singular in M;
- (2) A is strongly singular in M;
- (3) A has the WAHP: for every finite set $F \subset M$, and every $\varepsilon > 0$, there is a unitary operator $u \in A$ such that

$$\|\mathbb{E}_A(xuy) - \mathbb{E}_A(x)u\mathbb{E}_A(y)\|_2 < \varepsilon \quad \forall x, y \in F.$$

イロン 不同 とくほと 不良 とう

N.B. This is false for non-abelian subalgebras!

Weak mixing

Let $\alpha : \Gamma \to \operatorname{Aut}(M, \tau)$ be an action; it is called *weakly mixing* if, for every finite set $F \subset M$ and every $\varepsilon > 0$, one can find $g \in \Gamma$ such that

$$|\tau(a\alpha_g(b)) - \tau(a)\tau(b)| < \varepsilon \quad \forall a, b \in F.$$

The action is called *strongly mixing* if, for all $a, b \in M$, one has

$$\lim_{g\to\infty}|\tau(a\alpha_g(b)-\tau(a)\tau(b)|=0.$$

Relative versions:

(1) (S. Popa, 2005) If 1 ∈ B ⊂ M and if Γ acts on M so that α_g(B) = B for every g, then α is called *weakly mixing relative* to B if, for every finite subset F ⊂ M ⊖ B(= {x : E_B(x) = 0}) and for every ε > 0, one can find g ∈ Γ such that

$$\|\mathbb{E}_B(x\alpha_g(y))\|_2 < \varepsilon \quad \forall x, y \in F.$$

(2) Under the same general conditions, the action α is called *strongly mixing relative to* B if, for all $x, y \in M$, one has

$$\lim_{g\to\infty} \|\mathbb{E}_B(x\alpha_g(y))\|_2 = 0.$$

Consider then a triple $1 \in N_0 \subset N_1 \subset M$ and the action of $U(N_0)$ on M by conjugation $(\sigma_v(x) = vxv^*)$.

Definition Say that N_0 is *weakly mixing* in M relative to N_1 if, for every finite set $F \subset M \ominus N_1$ and every $\varepsilon > 0$, one can find $v \in U(N_0)$ such that

$$\|\mathbb{E}_{N_0}(xvy)\|_2(=\|\mathbb{E}_{N_0}(x\sigma_v(y))\|_2)<\varepsilon\quad\forall x,y\in F.$$

If $N_0 = N_1$, we say that N_0 is *weakly mixing* in M. If moreover $N_0 = A$ is a masa, then this is equivalent to singularity, by Theorem 3.

Inspired by strong singularity:

Proposition 4 Let $N_0 \subset N_1 \subset M$ be a triple as above. If N_0 is weakly mixing in M relative to N_1 , then one has for every $u \in U(M)$:

$$\|\mathbb{E}_{N_0} - \mathbb{E}_{uN_0u^*}\|_{\infty,2} \ge \|u - \mathbb{E}_{N_1}(u)\|_2.$$

In particular, $\mathcal{N}_{M}(N_{0})'' \subset N_{1}$.

イロト イヨト イヨト イヨト

æ

In the case of group algebras, one has a complete characterisation of weak mixing in terms of the groups:

Theorem 5 Let $G_0 < G_1 < G$ be groups and let $N_0 = L(G_0) \subset N_1 = L(G_1) \subset M$ be the corresponding von Neumann algebras. Then N_0 is weakly mixing in M relative to N_1 iff for every finite subset $C \subset G \setminus G_1$, there exists $\gamma \in G_0$ such that $g\gamma h \notin G_0$ for all $g, h \in C$.

The latter condition on the triple $G_0 < G_1 < G$ is called *condition* (SS) (it generalizes the case where $G_0 = G_1$ is abelian studied by J. and Y. Stalder, 2008).

(日) (四) (三) (三) (三)

Strong mixing

Starting point: Let F be Thompson's group presented by

$$\mathcal{F} = \langle x_0, x_1, \dots | x_i^{-1} x_n x_i = x_{n+1}, n \ge 1, 0 \le i < n \rangle$$

and set $G_0 = \langle x_0 \rangle$. Then

Proposition 6 (J, 2005) The pair $G_0 < F$ satisfies the following condition:

(ST) For every finite set $C \subset F \setminus G_0$, there exists a finite set $E \subset G_0$ such that

$$g\gamma h\notin G_0 \quad \forall g,h\in C,\forall\gamma\in G_0\setminus E.$$

(日) (四) (三) (三) (三)

In particular, $L(G_0)$ is a singular MASA in L(F).

Consider again a triple $G_0 < G_1 < G$ and let us say that it satisfies *condition (ST)* if, for every finite subset $C \subset G \setminus G_1$, there exists a finite set $E \subset G_0$ such that $g\gamma h \notin G_0$ for all $g, h \in C$ and every $\gamma \in G_0 \setminus E$.

Definition We say that N_0 is strongly mixing in M relative to N_1 if

$$\lim_{n\to\infty}\|\mathbb{E}_{N_0}(xu_ny)\|_2=0$$

for all $x, y \in M \ominus N_1$ and all sequences $(u_n) \subset U(N_0)$ which converges to 0 for the weak operator topology. If $N_0 = N_1$, we say that N_0 is strongly mixing in M.

Proposition 4 can be improved in the strong mixing case:

Proposition 7 Let $N_0 \subset N_1 \subset M$ be a triple as above. If N_0 is strongly mixing in M relative to N_1 , then for every diffuse unital von Neumann subalgebra B of M, one has for every $u \in U(M)$:

$$\|\mathbb{E}_B - \mathbb{E}_{uBu^*}\|_{\infty,2} \geq \|u - \mathbb{E}_{N_1}(u)\|_2.$$

In particular, $\mathcal{N}_M(B)'' \subset N_1$.

As for weak mixing, we have a complete characterization in the case of group algebras:

Theorem 8 Let $G_0 < G_1 < G$ be groups and let $N_0 = L(G_0) \subset N_1 = L(G_1) \subset M = L(G)$ be the corresponding triple. TFAE:

- (1) the action of G_0 by conjugation on M is strongly mixing relative to N_1 ;
- (2) the triple $G_0 < G_1 < G$ satisfies condition (ST);
- (3) N_0 is strongly mixing relative to N_1 in M;
- (4) for every $v \in G \setminus G_1$, the diagram

$$\begin{array}{cccc}
v N_0 v^* & \subset & M \\
\cup & & \cup \\
v N_0 v^* \cap N_0 & \subset & N_0
\end{array}$$

is a commuting square and dim $(vN_0v^* \cap N_0) \leq \infty$.

Examples

Example 1 Let $1 \in N_0 \subset N_1$ and Q be arbitrary finite von Neumann algebras with separable preduals. Then N_0 is strongly mixing in the free product algebra $M = N_1 * Q$.

Example 2 Let *H* be a *malnormal* subgroup of *G*, i.e. for every $g \in G \setminus H$, $gHg^{-1} \cap H = \{e\}$. Then H < G satisfy condition (ST). Furthermore, if *H* is torsion free, then H < G satisfies (ST) iff *H* is malnormal in *G*.

Example 3 Let $G = HNN(\Gamma, H, K, \phi)$ be an HNN-extention where H, K are subgroups of Γ and $\phi : H \to K$ is an isomorphism. Denote by t the stable letter such that $t^{-1}ht = \phi(h)$ for all $h \in H$ and by G_0 the subgroup generated by t. (G is generated by Γ and by t and it just has to satisfy relations of Γ and $t^{-1}ht = \phi(h)$.)

For every positive integer j, the domain of ϕ^j , denoted by $\text{Dom}(\phi^j)$, is defined by $\text{Dom}(\phi) = H$ for j = 1 and, by induction, $\text{Dom}(\phi^j) = \phi^{-1}(\text{Dom}(\phi^{j-1}) \cap K) \subset H$ for $j \ge 2$.

イロン イヨン イヨン イヨン

Theorem 9 (J, Y. Stalder, 2008) Suppose that for all $j \in \mathbb{N}^*$, the homomorphism ϕ^j has no non trivial fixed point, that is, for all $h \in H$, $\phi^j(h) = h$ implies h = 1. Then the following hold:

- 1. the group G is ICC;
- 2. the pair $G_0 < G$ satisfies condition (ST);
- 3. the algebra L(G) is a type II_1 factor, in which $L(G_0)$ is a strongly mixing masa.

Example 4 Condition (SS) is strictly weaker than condition (ST): Fix a subgroup Γ of the multiplicative group \mathbb{Q}^{\times} and set: $G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & f_1 & 0 \\ 0 & 0 & f_2 \end{pmatrix} : f_j \in \Gamma, \ x, y \in \mathbb{Q} \right\}$, and let $G_0 = G_1 = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & f_1 & 0 \\ 0 & 0 & f_2 \end{pmatrix} : f_j \in \Gamma \right\}$. Then the pair $G_0 < G$ satisfies condition (SS) but not (ST).

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

An application to maximal injectivity

It turns out that some strongly mixing masas are also maximal injective, as will be seen below.

Let \mathbb{F}_n be the free group on $n \ge 2$ generators a_1, \ldots, a_n and let H be the cyclic group generated by a_1 . Then it is easy to see that the pair $H < \mathbb{F}_n$ satisfies condition (ST). Moreover:

Theorem 10 (S. Popa, 1983) The mass A = L(H) is maximal injective in $L(\mathbb{F}_n)$.

イロン 不同 とくほど 不同 とう

More recently: let \mathcal{A} be the *radial* masa in $L(\mathbb{F}_n)$, *i.e.* the abelian von Neumann algebra generated by $\sum_{i=1}^{n} (a_i + a_i^{-1})$. Then Radulescu proved in 1991 that \mathcal{A} is a singular masa in $L(\mathbb{F}_n)$, and, in 2008, J. Cameron, J. Fang, M. Ravichandran and S. White proved the following result (along the same general lines as Popa's proof).

Theorem 11 (CFRW, 2008) *The radial masa* A *is maximal injective in* $L(\mathbb{F}_n)$.

In fact, they also proved that if A is a singular masa in M that satisfies the so-called *asymptotic orthogonality property* (cf below), then A is maximal injective in M.

Popa's proof of Theorem 10 is divided into two parts (following A. Sinclair's and R. Smith's book, 2008):

Let $A \subset N \subset M := L(\mathbb{F}_n)$ be an intermediate von Neumann subalgebra. Then:

- (1) There is a partition of the unity $(e_k)_{k\geq 0}$ in the center of N such that $Ne_0 = Ae_0$, and, for every $k \geq 1$, Ne_k is a type II_1 factor such that $(N' \cap A^{\omega})e_k$ has a non-zero atomic part.
- (2) For every $k \ge 1$ such that $e_k \ne 0$, Ne_k is a full factor.

イロン イヨン イヨン イヨン

Part (1) holds in more general situations:

Theorem 12 (J, 2010) Let M be a separable type II_1 factor and let $1 \in A \subset M$ be a strongly mixing abelian von Neumann subalgebra of M. If N is a von Neumann subalgebra of Mwhich contains A, then there exists a partition of the unity $(e_k)_{k\geq 0}$ in the center of N such that $Ne_0 = Ae_0$ and, for every $k \geq 1$, Ne_k is a type II_1 factor such that the von Neumann algebra $(N' \cap A^{\omega})e_k$ has a non-zero atomic part.

In particular, this result holds true for the hyperfinite factor since there are amenable ICC groups G that contain abelian groups H so that the pair H < G satisfies condition (ST).

イロン 不同 とくほと 不良 とう

Concerning part (2), if there is some k > 0 such that Ne_k has property Γ , then

- ▶ the relative commutant $(Ne_k)' \cap (Ne_k)^{\omega}$ is diffuse;
- therefore, by Theorem 12, it contains (N' ∩ A^ω)e_k properly; thus choose 0 ≠ x ∈ (Ne_k)' ∩ (Ne_k)^ω such that ℝ_{A^ω}(x) = 0.
- Key lemma (Consequence of asymptotic orthogonality property):
 For any unitary w ∈ Ne_k, E_A(w) = 0, one has wx ⊥ xw in L²((Ne_k)^ω).
- Hence

$$2\|x\|_2^2 = \|wx\|_2^2 + \|xw\|_2^2 = \|wx - xw\|_2^2 = 0$$

(日) (四) (三) (三) (三)

leads to a contradiction.

The asymptotic orthogonality property is a typical consequence of freeness, and it holds under more general hypotheses:

Let G be an ICC countable group and let H be an abelian subgroup of G. Put $A = L(H) \subset M = L(G)$.

Consider the following condition on the pair H < G: There exists a sequence $(W_m)_{m\geq 1}$ of subsets of $G \setminus H$ such that (H1) $W_m \subset W_{m+1}$ for every $m \geq 1$ and $\bigcup_m W_m = G \setminus H$; (H2) there exists an integer $m_0 > 0$ such that, for every $m > m_0$, one can find elements $h_{1,m}, \ldots, h_{n_m,m} \in H$ such that $n_m \to \infty$ when $m \to \infty$ and

$$h_{i,m}W_mh_{i,m}^{-1}\cap h_{j,m}W_mh_{j,m}^{-1}=\emptyset \quad \forall i\neq j ;$$

(H3) if V_m denotes the complementary set of $W_m \cup W_m^{-1}$ in $G \setminus H$, then for all $g_1, g_2 \in G \setminus H$, there exists a positive integer $m_1 = m_1(g_1, g_2)$ such that $g_1 V_m \cap V_m g_2 = \emptyset$ for every $m > m_1$. **Lemma** (Asymptotic orthogonality condition) If the pair H < G satisfies conditions (H1) to (H3), then for any $x_1, x_2 \in A' \cap M^{\omega}$ and $y_1, y_2 \in M$ such that $\mathbb{E}_{A^{\omega}}(x_j) = \mathbb{E}_A(y_j) = 0$ for j = 1, 2, one has

 $y_1x_1 \perp x_2y_2$

イロン イヨン イヨン イヨン

3

in $L^2(M^{\omega})$.

Due to the fact that the pairs of groups below satisfy condition (ST) by [J, Y. Stalder, 2008], the following pairs of groups H < G provide pairs such that L(H) is a maximal injective masa in L(G) and part (2) above is also true:

- G = H₁ ∗_Z H₂ is an amalgamated product and H = H₁, where H₁ is a finitely generated, infinite abelian group, Z ≠ H₂ is finite, H₂ is finitely generated and G is ICC.
- G = K * L is a free product such that |K| ≥ 2 and L contains an element β of order at least 3. Let α be some non-trivial element of K and set H = ⟨αβ⟩.

(日) (四) (三) (三) (三)

Open questions

• Let G be a non-elementary, torsion free, hyperbolic group and let H < G be a maximal abelian subgroup of G. It is known that H is malnormal in G, *i.e.* $gHg^{-1} \cap H = \{e\}$ for every $g \in G \setminus H$, hence the pair H < G satisfies condition (ST). In particular, L(H) is a strongly mixing masa in L(G). It is also known that G is an ICC group.

Does L(H) satisfy the asymptotic orthogonality property in L(G) ?

M * Q ?

Assume that A ⊂ M is strongly mixing and satisfies the asymptotic orthogonality property, and let Q be a diffuse finite von Neumann algebra. Then (J., Y.S. 2008) A is strongly mixing in the free product M ∗ Q. Does A satisfy also the asymptotic orthogonality property in

Paul Jolissaint, Université de Neuchâtel Mixing masas in group factors