UFFE HAAGERUPS FOURTH TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

1. Semi-direct product of groups

Definition 1. Let H, K be two groups and $\sigma : K \to Aut(H)$ an action, then we define $H \rtimes_{\sigma} K$ as the set $H \times K$ equipped with the multiplication $(h_1, k_1)(h_2, k_2) = (h_1 \sigma_{k_1}(h_2), k_1 k_2)$ where we embed $H \hookrightarrow H \rtimes_{\sigma} K$ by the map $h \to (h, e_k)$ and define the quotine map $H \rtimes_{\sigma} K \to K$ by $(h, k) \to k$, this gives the sequence:

$$(1.1) 0 \to H \to H \rtimes_{\sigma} K \to K \to 0$$

Theorem 2 (Popa, PNAS 2004). Let σ be the standard action of $SL(2,\mathbb{Z})$ as automorphisms on \mathbb{Z}^2 and let $\Gamma \subseteq SL(2,\mathbb{Z})$ any subgroup of finite index, then $L(\mathbb{Z}^2 \rtimes_{\sigma} \Gamma)$ is a II₁-factor with trivial fundamental group. In particular $L(\mathbb{Z}^2 \rtimes_{\sigma} SL(2,\mathbb{Z}))$ has trivial fundamental group.

Remark 3. $\mathbb{F}_2 \hookrightarrow SL(2,\mathbb{Z})$ with index 12 by the embedding

(1.2)
$$a \to \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad b \to \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Remark 4. For $3 \leq n < \infty$ consider the group homomorphism $\phi : \mathbb{F}_2 \to \mathbb{Z}_{n-1} = \mathbb{Z}/(n-1)\mathbb{Z}$ given by $\phi(a) = [1]$, $\phi[b] = [0]$ then $\phi(\mathbb{F}_2) = \mathbb{Z}_{n-1}$ and $H = \ker(\phi) \subseteq \mathbb{F}_n$ as a subgroup of index $|\mathbb{Z}_{n-1}| = n-1$ which gives $H \cong \mathbb{F}_n$.

Hence $\mathbb{F}_n \hookrightarrow \mathbb{F}_2 \hookrightarrow SL(2,\mathbb{Z})$ so $F_n \hookrightarrow SL(2,\mathbb{Z})$ with index 12(n-1).

Recall 5. If $\Lambda \subseteq \Gamma$ of finite index then $C(\Lambda) - 1 = [\Gamma : \Lambda](C(\Gamma) - 1)$ and if $\Lambda = \mathbb{F}_n$ and $\Gamma = SL(2,\mathbb{Z})$ then $\mathbb{F}_n \hookrightarrow SL(2,\mathbb{Z})$ with finite index of 12(n-1) because $C(\mathbb{F}_n) - 1 = n - 1$ and $C(SL(2,\mathbb{Z})) - 1 = \frac{1}{12}$.

2. TRANSLATION OF THEOREM 2 TO ERGODIC THEORY

If H is a locally compact abelian group and \hat{H} is its dual group, and $\mathcal{F} : L^2(H) \to L^2(\hat{H})$ is its Fourier-Plancerel transform then $L(H) = \mathcal{F}^* L^{\infty}(\hat{H})\mathcal{F}$ and $L^{\infty}(\hat{H})$ is realized as multiplication operator on $l^2(\hat{H})$ and $L(H) \cong L^{\infty}(\hat{H})$.

If $H = \mathbb{Z}^2$ then $\hat{H} = \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ and $L(\mathbb{Z}^2) \cong L^{\infty}(\mathbb{T}^2)$ where (m, n) corresponds to the function on \mathbb{T}^2 given by $f(x, y) = \exp(i2\pi(mx + ny))$ for $(x, y) \in \mathbb{T}^2$.

If $\Gamma \subseteq SL(2,\mathbb{Z})$ as subgroup with finite index then $L(\mathbb{Z}^2 \rtimes_{\sigma} \Gamma) = L(\mathbb{Z}^2) \rtimes_{\tilde{\sigma}} \Gamma$ where the left hand side is semi direct product and the right hand side is crossed product and $\tilde{\sigma}$ is the natural extension of $\sigma: G \to \operatorname{Aut}(\mathbb{Z}^2)$ to $\tilde{\sigma}: G \to \operatorname{Aut}(L(\mathbb{Z}^2))$ where $\tilde{\sigma}_g(\exp(i2\pi(mx+ny)) = \exp(i2\pi(kx-ly))$ where $(k,l) = \sigma_g(m,n) = g \cdot (m,n)$ and $\tilde{\sigma}_g(f)(x,y) = f(g^T \cdot (x,y))$ for $f \in L^{\infty}(\mathbb{T}^2) = L^{\infty}(\mathbb{T}^2, \mu_{\mathbb{T}^2})$ where $\mu_{\mathbb{T}^2}$ is the Haarmeasure on \mathbb{T}^2 .

Hence theorem 2 is equivalent to:

Theorem 6. Let Γ be a finite index subgroup of $SL(2,\mathbb{Z})$ and let α be the natural action of $SL(2,\mathbb{Z})$ on $(\mathbb{T}^2, \mu_{\mathbb{T}^2})$. Then

Date: 27/01/2010.

- (Γ, α) acts freely and ergodicly on $(\mathbb{T}^2, \mu_{\mathbb{T}^2})$
- The corresponding crossed product $\mathcal{M} = L^{\infty}(\mathbb{T}^2, \mu_{\mathbb{T}^2}) \rtimes_{\alpha} \Gamma$ is a II₁-factor with trivial fundamental group.

Remark 7. $\mathcal{A} = L^{\infty}(\mathbb{T}^2) \subseteq \mathcal{M}$ is a Cartan MASA and $\mathcal{F}(\mathcal{A} \subseteq \mathcal{M}) = \{1\}$ because $C(\Gamma) = 1 + \frac{1}{12}[SL(2,\mathbb{Z}):\Gamma] > 1.$

Definition 8. Let G be a discrete countable group and denote by $P_1(G)$ the set of positive definite functions ϕ on G with $\phi(e) = 1$.

Recall 9. G has property H iff there exists a sequence $(\phi_n) \subseteq P_1(G) \cap C_0(G)$ such that $\phi_n(g) \to 1$ for all $g \in G$.

Recall 10. G has property T iff whenever $(\phi_n) \subseteq P_1(G)$ with $\phi_n(g) \to 1$ for all $g \in G$ then $\|\phi_n - 1\|_{\infty} \to 0$.

Definition 11. A subgroup $H \subseteq G$ has relative property T if whenever $(\phi_n) \subseteq P_1(G)$ such that $\phi_n(g) \to 1$ for all $g \in G$ then $\sup_{h \in H} \|\phi_n(h) - 1\| \to 0$.

Example 12 (Kazhdan). $\mathbb{Z}^2 \subseteq \mathbb{Z}^2 \rtimes_{\sigma} SL(2,\mathbb{Z})$ has relative property T and more generally $\mathbb{Z}^2 \subseteq \mathbb{Z}^2 \rtimes_{\sigma} \Gamma$ has relative property T for every finite subgroup $\Gamma \subseteq SL(2,\mathbb{Z})$.

Definition 13. G is rigid iff G has property T and G is weakly rigid if 4G4 contains an infinite normal subgroup H such that $H \subseteq G$ has relative property T.

Example 14. • $SL(n,\mathbb{Z})$, $n \ge 3$ is rigid

- $\mathbb{Z}^2 \rtimes_{\sigma} SL(2,\mathbb{Z})$ is weakly rigid, but not rigid
- $SL(2,\mathbb{Z})$ has property H and hence it is not weakly rigid

Theorem 15 (Popa, PNAS 2004). Assume $G = H \rtimes_{\sigma} K$ is a semidirecte product such that

- \bullet H is abelian
- The corresponding action $\hat{\sigma}: K \to Aut(\hat{H})$ is free and ergodic on $(\hat{H}, \mu_{\hat{H}})$
- The inclusion $H \subseteq H \rtimes_{\sigma} K$ has relative property T
- K has property H
- C(K) > 1 (or one of the l^2 -Betti-numbers $\beta_k^{(2)}(K)$ is nonzero)

Then $\mathcal{F}(L(G)) = \{1\}.$

Lemma 16. This theorem implies theorem 2.

of lemma. Put $H = \mathbb{Z}^2$, $K = \Gamma \subseteq SL(2,\mathbb{Z})$ with finite index and σ as in theorem 2. Then the conditions of theorem 15 are fulfilled:

- $H = \mathbb{Z}^2$ is abelian
- The freeness and ergodicity of the action can easily be shown
- $\mathbb{Z}^2 \subseteq \mathbb{Z}^2 \rtimes_{\sigma} \Gamma$ has relative property T
- $\Gamma \subseteq SL(2,\mathbb{Z})$ has property h as this is preserved by taking subgroups

• $C(\Gamma) > 1$

Hence $\mathcal{F}(L(\mathbb{Z}^2 \rtimes_{\sigma} \Gamma)) = \{1\}.$

Proposition 17 (Popa, 2006). If \mathcal{N} is a II₁-factor and $B \subseteq \mathcal{N}$ is a sub-von Neumann algebra, then $B \subseteq \mathcal{N}$ has relative property T iff for all $\epsilon > 0$ there exists a finite subset $F \subseteq \mathcal{N}$ and a $\delta > 0$ such that for all $\phi : \mathcal{N} \to \mathcal{N}$ completely positive with $\phi(1) \leq 1$ and $\tau \circ \phi \leq \tau$ (e.g. $\|\phi(x)\|_2 \leq \|x\|_2$) one has that for all $\|\phi(x) - x\|_2 < \delta$ implies $\sup_{b \in B, \|b\|_2 \leq 1} \|\phi(b) - b\|_2 \leq \epsilon$ for all $x \in F$. **Proposition 18** (Equivalent formulation). $B \subset \mathcal{N}$ has relative property T iff whenever $(\phi_n) : \mathcal{N} \to \mathcal{N}$ completely positive maps such that $\phi_n(1) \leq 1, \tau \circ \phi_n \leq \tau$ and $\|\phi(x) - x\|_2 0$ for all $x \in \mathcal{N}$ then $\sup_{b \in B, \|b\|_2 \leq 1} \|\phi_n(b) - b\| \to 0$.

Remark 19. ϕ_n extends uniquely to $\tilde{\phi}_n \in B(L^2(\mathcal{N}))$ to the last statement can be rewritten to $\|\tilde{\phi}_n - Id\|_{L^2(B)} \to 0$.

Proposition 20 (Popa). If $H \subseteq G$ is a subgroup of an ICC-group G then $L(H) \subseteq L(G)$ has relative property T iff $H \subseteq G$ has relative property T.

Proposition 21 (Popa). If $B \subseteq \mathcal{N}$ has relative property T then $pBp \subseteq p\mathcal{N}p$ has relative property T for all $p \in P(B) \setminus \{0\}$.

3. Relative property H for von Neumann Algebras

Let $B \subseteq \mathcal{N}$ be a sub-von Neumann algebra of a II_1 -factor \mathcal{N} .

3.1. Jones' basic construction. $L^2(B, \tau | B) \subseteq L^2(\mathcal{N}, \tau)$ where $\tau = \tau_{\mathcal{N}}$. Let e_B be the orthogonal projection on $L^2(B)$. Then $B \subseteq \mathcal{N} \subseteq \langle \mathcal{N}, e_B \rangle$ where $\langle \mathcal{N}, e_B \rangle = (N \cup \{e_B\})'' \subseteq B(L^2(\mathcal{N}))$.

Define $J : L^2(\mathcal{N}) \to L^2(\mathcal{N})$ as the extension of $x \to x^*$ to $L^2(\mathcal{N})$. Then $\langle \mathcal{N}, e_B \rangle' = JBJ = \{R_b | b \in B\}$ where $R_b : x \to xb, \quad x \in L^2(\mathcal{N}).$

Now $\langle \mathcal{N}, e_B \rangle = \langle \mathcal{N}, e_B \rangle'' = (JBJ)'$ and $B \subseteq \mathcal{N}$ is a finite von Neumann algebra, hnece JBJ is finite and hence $\langle \mathcal{N}, e_B \rangle$ is a semifinite von Neumann algebra and e_B is a finite projection in $\langle \mathcal{N}, e_B \rangle$.

If $\phi : \mathcal{N} \to \mathcal{N}$ is completely positive and $\phi(1) \leq 1$ and $\tau \circ \phi \leq \tau$ then ϕ extends to $\tilde{\phi} : L^2(\mathcal{N}) \to L^2(\mathcal{N})$ moreover if ϕ is a *B*-bimodule map i.e. $\phi(b_1 x b_2) = b_1 \phi(x) b_2$ for all $x \in \mathcal{N}, b_1, b_2 \in B$ then $\tilde{\phi} \in (JBJ)' = \langle \mathcal{N}, e_B \rangle$.

Definition 22. $J(\langle \mathcal{N}, e_B \rangle)$ is a normclosed two-sided ideal generated by the finite projections in $\langle \mathcal{N}, e_B \rangle$.

 $J_0(\langle \mathcal{N}, e_B \rangle)$ is a normclosed two-sided ideal in $\langle \mathcal{N}, e_B \rangle$ generated by e_B .

Theorem 23 (Popa, 2006). Let $B \subseteq \mathcal{N}$, TFAE

- There exists a sequence $(\phi_n) : \mathcal{N} \to \mathcal{N}$ completely bounded B-bimodule maps with $\phi_n(1) \leq 1, \ \tau \circ \phi_n \leq \tau$ and $\tilde{\phi}_n \in J(\langle \mathcal{N}, e_B \rangle)$ such that $\|\phi_n(x) - x\|_2 \to 0$ for all $x \in \mathcal{N}$.
- The same with J replaced with J_0 .

Definition 24. If the two equivalent conditions in theorem 23 are fullfilled then $B \subseteq \mathcal{N}$ has relative property H. (\mathcal{N} has property H relative to B.)

Proposition 25 (Popa, 2006). If $G = H \rtimes K$ is an ICC-group then $L(H) \subseteq L(H \rtimes K)$ has relative property H iff K has property H.

Proposition 26 (Popa, 2006). If $B \subseteq \mathcal{N}$ has relative property H then $pBp \subseteq p\mathcal{N}p$ has relative property H for all $p \in P(B) \setminus \{0\}$.

Definition 27. If \mathcal{N} is a II_1 -factor and $\mathcal{A} \subseteq \mathcal{N}$ is a Cartan MASA then \mathcal{A} has propert HTs (s for strong) iff $\mathcal{A} \subseteq \mathcal{N}$ has relative property T.

Theorem 28 (Popa, 2006). Let \mathcal{N} be a II_1 -factor and A, B two Cartan MASA. If both A and B have property HTs then there exists a unitary $u \in \mathcal{N}$ such that $uAu^* = B$.

of theorem 15. $\mathcal{N} = L(H \rtimes_{\sigma} K) = L(H) \rtimes K = L^{\infty}(\hat{H}) \rtimes K$ and K acts freely and ergodicly on $L^{\infty}(\hat{H}, \mu_{\hat{H}})$, so \mathcal{N} is a II_1 -factor and $\mathcal{A} = L^{\infty}(\hat{H})$ is a Cartan MASA in \mathcal{N} .

By assumption K has property H hence $L(H) \subseteq L(H \rtimes K)$ has relative property H and hence $\mathcal{A} \subseteq \mathcal{N}$ has relative property H.

By assumption $H \subseteq h \rtimes K$ has relative property T hence $L(H) \subseteq L(H \rtimes K)$ has relative property T.

Altogether \mathcal{A} has property HTs and hence is a Cartan MASA.

We know that $\mathcal{F}(A \subseteq \mathcal{N}) = \{1\}$ by assumption and Gaboriaus theorem. Now assume $\mathcal{F}(\mathcal{N}) \subsetneq \{1\}$ as \mathcal{F} is a group there exists a $t \in]0, 1[\cap \mathcal{F}(\mathcal{N}).$

For this t choose $p \in P(A)$ with $\tau(p) = t$. Then $p\mathcal{N}p \cong \mathcal{N}$ by definition of $\mathcal{F}(\mathcal{N})$, so choose $\theta : p\mathcal{N}p \to \mathcal{N}$ as von Neumann algebra isomorphism.

Because $\mathcal{A} \subseteq \mathcal{N}$ is a Cartan MASA with property HTs we have that $p\mathcal{A} = p\mathcal{A}p \subseteq p\mathcal{N}p$ is a Cartan MASA with property HTs.

Put $B = \theta(pAp)$ a unital subalgebra of \mathcal{N} , then $(pAp \subseteq p\mathcal{N}p) \cong_{\theta} (B \subseteq \mathcal{N})$, hence B is a Cartan MASA in \mathcal{N} .

But then $B = u\mathcal{A}u^*$ for some unitary $u \in \mathcal{N}$, hence $(\mathcal{A} \subseteq \mathcal{N}) \cong (B \subseteq \mathcal{N}) \cong (p\mathcal{A}p \subseteq p\mathcal{N}p)$ and hence $t = \tau(p) \in \mathcal{F}(\mathcal{A} \subseteq \mathcal{N}) = \{1\}$ which is a contradiction, and hence $\mathcal{F}(\mathcal{A} \subseteq \mathcal{N}) = \{1\}$. \Box