UFFE HAAGERUPS FOURTH TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

1. Semi-direct product of groups

Definition 1. Let H, K be two groups and $\sigma: K \rightarrow A u t(H)$ an action, then we define $H \rtimes_{\sigma} K$ as the set $H \times K$ equipped with the multiplication $\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=$ $\left(h_{1} \sigma_{k_{1}}\left(h_{2}\right), k_{1} k_{2}\right)$ where we embed $H \hookrightarrow H \rtimes_{\sigma} K$ by the map $h \rightarrow\left(h, e_{k}\right)$ and define the quotine map $H \rtimes_{\sigma} K \rightarrow K$ by $(h, k) \rightarrow k$, this gives the sequence:

$$
\begin{equation*}
0 \rightarrow H \rightarrow H \rtimes_{\sigma} K \rightarrow K \rightarrow 0 \tag{1.1}
\end{equation*}
$$

Theorem 2 (Popa, PNAS 2004). Let σ be the standard action of $S L(2, \mathbb{Z})$ as automorphisms on \mathbb{Z}^{2} and let $\Gamma \subseteq S L(2, \mathbb{Z})$ any subgroup of finite index, then $L\left(\mathbb{Z}^{2} \rtimes_{\sigma} \Gamma\right)$ is a $I I_{1}$-factor with trivial fundamental group. In particular $L\left(\mathbb{Z}^{2} \rtimes_{\sigma}\right.$ $S L(2, \mathbb{Z}))$ has trivial fundamental group.
Remark 3. $\mathbb{F}_{2} \hookrightarrow S L(2, \mathbb{Z})$ with index 12 by the embedding

$$
a \rightarrow\left(\begin{array}{ll}
1 & 0 \tag{1.2}\\
2 & 1
\end{array}\right), \quad b \rightarrow\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

Remark 4. For $3 \leq n<\infty$ consider the group homomorphism $\phi: \mathbb{F}_{2} \rightarrow \mathbb{Z}_{n-1}=$ $\mathbb{Z} /(n-1) \mathbb{Z}$ given by $\phi(a)=[1]$, $\phi[b]=[0]$ then $\phi\left(\mathbb{F}_{2}\right)=\mathbb{Z}_{n-1}$ and $H=\operatorname{ker}(\phi) \subseteq \mathbb{F}_{n}$ as a subgroup of index $\left|\mathbb{Z}_{n-1}\right|=n-1$ which gives $H \cong \mathbb{F}_{n}$.

Hence $\mathbb{F}_{n} \hookrightarrow \mathbb{F}_{2} \hookrightarrow S L(2, \mathbb{Z})$ so $F_{n} \hookrightarrow S L(2, \mathbb{Z})$ with index $12(n-1)$.
Recall 5. If $\Lambda \subseteq \Gamma$ of finite index then $C(\Lambda)-1=[\Gamma: \Lambda](C(\Gamma)-1)$ and if $\Lambda=\mathbb{F}_{n}$ and $\Gamma=S L(2, \mathbb{Z})$ then $\mathbb{F}_{n} \hookrightarrow S L(2, \mathbb{Z})$ with finite index of $12(n-1)$ because $C\left(\mathbb{F}_{n}\right)-1=n-1$ and $C(S L(2, \mathbb{Z}))-1=\frac{1}{12}$.

2. Translation of theorem 2 to ergodic theory

If H is a locally compact abelian group and \hat{H} is its dual group, and $\mathcal{F}: L^{2}(H) \rightarrow$ $L^{2}(\hat{H})$ is its Fourier-Plancerel transform then $L(H)=\mathcal{F}^{*} L^{\infty}(\hat{H}) \mathcal{F}$ and $L^{\infty}(\hat{H})$ is realized as multiplication operator on $l^{2}(\hat{H})$ and $L(H) \cong L^{\infty}(\hat{H})$.

If $H=\mathbb{Z}^{2}$ then $\hat{H}=\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and $L\left(\mathbb{Z}^{2}\right) \cong L^{\infty}\left(\mathbb{T}^{2}\right)$ where (m, n) corresponds to the function on \mathbb{T}^{2} given by $f(x, y)=\exp \left(i 2 \pi(m x+n y)\right.$ for $(x, y) \in \mathbb{T}^{2}$.

If $\Gamma \subseteq S L(2, \mathbb{Z})$ as subgroup with finite index then $L\left(\mathbb{Z}^{2} \rtimes_{\sigma} \Gamma\right)=L\left(\mathbb{Z}^{2}\right) \rtimes_{\tilde{\sigma}} \Gamma$ where the left hand side is semi direct product and the right hand side is crossed product and $\tilde{\sigma}$ is the natural extension of $\sigma: G \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{2}\right)$ to $\tilde{\sigma}: G \rightarrow \operatorname{Aut}\left(L\left(\mathbb{Z}^{2}\right)\right)$ where $\tilde{\sigma}_{g}\left(\exp (i 2 \pi(m x+n y))=\exp (i 2 \pi(k x-l y))\right.$ where $(k, l)=\sigma_{g}(m, n)=g \cdot(m, n)$ and $\tilde{\sigma}_{g}(f)(x, y)=f\left(g^{T} \cdot(x, y)\right)$ for $f \in L^{\infty}\left(\mathbb{T}^{2}\right)=L^{\infty}\left(\mathbb{T}^{2}, \mu_{\mathbb{T}^{2}}\right)$ where $\mu_{\mathbb{T}^{2}}$ is the Haarmeasure on \mathbb{T}^{2}.

Hence theorem 2 is equivalent to:
Theorem 6. Let Γ be a finite index subgroup of $S L(2, \mathbb{Z})$ and let α be the natural action of $S L(2, \mathbb{Z})$ on $\left(\mathbb{T}^{2}, \mu_{\mathbb{T}^{2}}\right)$. Then

Date: 27/01/2010.

DFFE HAAGERUPS FOURTH TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

- ($\Gamma, \alpha)$ acts freely and ergodicly on $\left(\mathbb{T}^{2}, \mu_{\mathbb{T}^{2}}\right)$
- The corresponding crossed product $\mathcal{M}=L^{\infty}\left(\mathbb{T}^{2}, \mu_{\mathbb{T}^{2}}\right) \rtimes_{\alpha} \Gamma$ is a $I I_{1}$-factor with trivial fundamental group.
Remark 7. $\mathcal{A}=L^{\infty}\left(\mathbb{T}^{2}\right) \subseteq \mathcal{M}$ is a Cartan MASA and $\mathcal{F}(\mathcal{A} \subseteq \mathcal{M})=\{1\}$ because $C(\Gamma)=1+\frac{1}{12}[S L(2, \mathbb{Z}): \Gamma]>1$.
Definition 8. Let G be a discrete countable group and denote by $P_{1}(G)$ the set of positive definite functions ϕ on G with $\phi(e)=1$.
Recall 9. G has property H iff there exists a sequence $\left(\phi_{n}\right) \subseteq P_{1}(G) \cap C_{0}(G)$ such that $\phi_{n}(g) \rightarrow 1$ for all $g \in G$.
Recall 10. G has property T iff whenever $\left(\phi_{n}\right) \subseteq P_{1}(G)$ with $\phi_{n}(g) \rightarrow 1$ for all $g \in G$ then $\left\|\phi_{n}-1\right\|_{\infty} \rightarrow 0$.
Definition 11. A subgroup $H \subseteq G$ has relative property T if whenever $\left(\phi_{n}\right) \subseteq$ $P_{1}(G)$ such that $\phi_{n}(g) \rightarrow 1$ for all $g \in G$ then $\sup _{h \in H}\left\|\phi_{n}(h)-1\right\| \rightarrow 0$.
Example 12 (Kazhdan). $\mathbb{Z}^{2} \subseteq \mathbb{Z}^{2} \rtimes_{\sigma} S L(2, \mathbb{Z})$ has relative property T and more generally $\mathbb{Z}^{2} \subseteq \mathbb{Z}^{2} \rtimes_{\sigma} \Gamma$ has relative property T for every finite subgroup $\Gamma \subseteq$ $S L(2, \mathbb{Z})$.

Definition 13. G is rigid iff G has property T and G is weakly rigid if $4 G 4$ contains an infinite normal subgroup H such that $H \subseteq G$ has relative property T.
Example 14. - $S L(n, \mathbb{Z}), \quad n \geq 3$ is rigid

- $\mathbb{Z}^{2} \rtimes_{\sigma} S L(2, \mathbb{Z})$ is weakly rigid, but not rigid
- $S L(2, \mathbb{Z})$ has property H and hence it is not weakly rigid

Theorem 15 (Popa, PNAS 2004). Assume $G=H \rtimes_{\sigma} K$ is a semidirecte product such that

- H is abelian
- The corresponding action $\hat{\sigma}: K \rightarrow A u t(\hat{H})$ is free and ergodic on $\left(\hat{H}, \mu_{\hat{H}}\right)$
- The inclusion $H \subseteq H \rtimes_{\sigma} K$ has relative property T
- K has property H
- $C(K)>1$ (or one of the l^{2}-Betti-numbers $\beta_{k}^{(2)}(K)$ is nonzero)

Then $\mathcal{F}(L(G))=\{1\}$.
Lemma 16. This theorem implies theorem 2.
of lemma. Put $H=\mathbb{Z}^{2}, K=\Gamma \subseteq S L(2, \mathbb{Z})$ with finite index and σ as in theorem 2. Then the conditions of theorem 15 are fulfilled:

- $H=\mathbb{Z}^{2}$ is abelian
- The freeness and ergodicity of the action can easily be shown
- $\mathbb{Z}^{2} \subseteq \mathbb{Z}^{2} \rtimes_{\sigma} \Gamma$ has relative property T
- $\Gamma \subseteq S L(2, \mathbb{Z})$ has property h as this is preserved by taking subgroups
- $C(\Gamma)>1$

Hence $\mathcal{F}\left(L\left(\mathbb{Z}^{2} \rtimes_{\sigma} \Gamma\right)\right)=\{1\}$.
Proposition 17 (Popa, 2006). If \mathcal{N} is a $I I_{1}$-factor and $B \subseteq \mathcal{N}$ is a sub-von Neumann algebra, then $B \subseteq \mathcal{N}$ has relative property T iff for all $\epsilon>0$ there exists a finite subset $F \subseteq \mathcal{N}$ and $a \delta>0$ such that for all $\phi: \mathcal{N} \rightarrow \mathcal{N}$ completely positive with $\phi(1) \leq 1$ and $\tau \circ \phi \leq \tau$ (e.g. $\|\phi(x)\|_{2} \leq\|x\|_{2}$) one has that for all $\|\phi(x)-x\|_{2}<\delta$ implies $\sup _{b \in B,\|b\|_{2} \leq 1}\|\phi(b)-b\|_{2} \leq \epsilon$ for all $x \in F$.

Proposition 18 (Equivalent formulation). $B \subset \mathcal{N}$ has relative property T iff whenever $\left(\phi_{n}\right): \mathcal{N} \rightarrow \mathcal{N}$ completely positive maps such that $\phi_{n}(1) \leq 1, \tau \circ \phi_{n} \leq \tau$ and $\|\phi(x)-x\|_{2} 0$ for all $x \in \mathcal{N}$ then $\sup _{b \in B,\|b\|_{2} \leq 1}\left\|\phi_{n}(b)-b\right\| \rightarrow 0$.

Remark 19. ϕ_{n} extends uniquely to $\tilde{\phi}_{n} \in B\left(L^{2}(\mathcal{N})\right)$ to the last statement can be rewritten to $\left\|\tilde{\phi}_{n}-I d\right\|_{L^{2}(B)} \rightarrow 0$.

Proposition 20 (Popa). If $H \subseteq G$ is a subgroup of an ICC-group G then $L(H) \subseteq$ $L(G)$ has relative property T iff $H \subseteq G$ has relative property T.

Proposition 21 (Popa). If $B \subseteq \mathcal{N}$ has relative property T then $p B p \subseteq p \mathcal{N} p$ has relative property T for all $p \in P(B) \backslash\{0\}$.

3. Relative property H for von Neumann algebras

Let $B \subseteq \mathcal{N}$ be a sub-von Neumann algebra of a $I I_{1}$-factor \mathcal{N}.
3.1. Jones' basic construction. $L^{2}(B, \tau \mid B) \subseteq L^{2}(\mathcal{N}, \tau)$ where $\tau=\tau_{\mathcal{N}}$.

Let e_{B} be the orthogonal projection on $L^{2}(B)$.
Then $B \subseteq \mathcal{N} \subseteq<\mathcal{N}, e_{B}>$ where $<\mathcal{N}, e_{B}>=\left(N \cup\left\{e_{B}\right\}\right)^{\prime \prime} \subseteq B\left(L^{2}(\mathcal{N})\right)$.
Define $J: L^{2}(\mathcal{N}) \rightarrow L^{2}(\mathcal{N})$ as the extension of $x \rightarrow x^{*}$ to $L^{2}(\mathcal{N})$. Then $<\mathcal{N}, e_{B}>^{\prime}=J B J=\left\{R_{b} \mid b \in B\right\}$ where $R_{b}: x \rightarrow x b, \quad x \in L^{2}(\mathcal{N})$.

Now $<\mathcal{N}, e_{B}>=<\mathcal{N}, e_{B}>^{\prime \prime}=(J B J)^{\prime}$ and $B \subseteq \mathcal{N}$ is a finite von Neumann algebra, hnece $J B J$ is finite and hence $<\mathcal{N}, e_{B}>$ is a semifinite von Neumann algebra and e_{B} is a finite projection in $<\mathcal{N}, e_{B}>$.

If $\phi: \mathcal{N} \rightarrow \mathcal{N}$ is completely positive and $\phi(1) \leq 1$ and $\tau \circ \phi \leq \tau$ then ϕ extends to $\tilde{\phi}: L^{2}(\mathcal{N}) \rightarrow L^{2}(\mathcal{N})$ moreover if ϕ is a B-bimodule map i.e. $\phi\left(b_{1} x b_{2}\right)=b_{1} \phi(x) b_{2}$ for all $x \in \mathcal{N}, b_{1}, b_{2} \in B$ then $\tilde{\phi} \in(J B J)^{\prime}=<\mathcal{N}, e_{B}>$.
Definition 22. $J\left(<\mathcal{N}, e_{B}>\right)$ is a normclosed two-sided ideal generated by the finite projections in $<\mathcal{N}, e_{B}>$.
$J_{0}\left(<\mathcal{N}, e_{B}>\right)$ is a normclosed two-sided ideal in $<\mathcal{N}, e_{B}>$ generated by e_{B}.
Theorem 23 (Popa, 2006). Let $B \subseteq \mathcal{N}, T F A E$

- There exists a sequence $\left(\phi_{n}\right): \mathcal{N} \rightarrow \mathcal{N}$ completely bounded B-bimodule maps with $\phi_{n}(1) \leq 1, \tau \circ \phi_{n} \leq \tau$ and $\tilde{\phi}_{n} \in J\left(<\mathcal{N}, e_{B}>\right)$ such that $\left\|\phi_{n}(x)-x\right\|_{2} \rightarrow 0$ for all $x \in \mathcal{N}$.
- The same with J replaced with J_{0}.

Definition 24. If the two equivalent conditions in theorem 23 are fullfilled then $B \subseteq \mathcal{N}$ has relative property H. (\mathcal{N} has property H relative to B.)

Proposition 25 (Popa, 2006). If $G=H \rtimes K$ is an ICC-group then $L(H) \subseteq$ $L(H \rtimes K)$ has relative property H iff K has property H.

Proposition 26 (Popa, 2006). If $B \subseteq \mathcal{N}$ has relative property H then $p B p \subseteq p \mathcal{N} p$ has relative property H for all $p \in P(B) \backslash\{0\}$.

Definition 27. If \mathcal{N} is a $I I_{1}$-factor and $\mathcal{A} \subseteq \mathcal{N}$ is a Cartan MASA then \mathcal{A} has propert HTs (s for strong) iff $\mathcal{A} \subseteq \mathcal{N}$ has relative property T.

Theorem 28 (Popa, 2006). Let \mathcal{N} be a $I I_{1}$-factor and A, B two Cartan MASA. If both A and B have property HTs then there exists a unitary $u \in \mathcal{N}$ such that $u A u^{*}=B$.
of theorem 15. $\mathcal{N}=L\left(H \rtimes_{\sigma} K\right)=L(H) \rtimes K=L^{\infty}(\hat{H}) \rtimes K$ and K acts freely and ergodicly on $L^{\infty}\left(\hat{H}, \mu_{\hat{H}}\right)$, so \mathcal{N} is a $I I_{1}$-factor and $\mathcal{A}=L^{\infty}(\hat{H})$ is a Cartan MASA in \mathcal{N}.

By assumption K has property H hence $L(H) \subseteq L(H \rtimes K)$ has relative property H and hence $\mathcal{A} \subseteq \mathcal{N}$ has relative property H .

By assumption $H \subseteq h \rtimes K$ has relative property T hence $L(H) \subseteq L(H \rtimes K)$ has relative property T .

Altogether \mathcal{A} has property HTs and hence is a Cartan MASA.
We know that $\mathcal{F}(A \subseteq \mathcal{N})=\{1\}$ by assumpition and Gaboriaus theorem. Now assume $\mathcal{F}(\mathcal{N}) \subsetneq\{1\}$ as \mathcal{F} is a group there exists a $t \in] 0,1[\cap \mathcal{F}(\mathcal{N})$.

For this t choose $p \in P(A)$ with $\tau(p)=t$. Then $p \mathcal{N} p \cong \mathcal{N}$ by definition of $\mathcal{F}(\mathcal{N})$, so choose $\theta: p \mathcal{N} p \rightarrow \mathcal{N}$ as von Neumann algebra isomorphism.

Because $\mathcal{A} \subseteq \mathcal{N}$ is a Cartan MASA with property HTs we have that $p \mathcal{A}=p \mathcal{A} p \subseteq$ $p \mathcal{N} p$ is a Cartan MASA with property HTs.

Put $B=\theta(p \mathcal{A} p)$ a unital subalgebra of \mathcal{N}, then $(p \mathcal{A} p \subseteq p \mathcal{N} p) \cong_{\theta}(B \subseteq \mathcal{N})$, hence B is a Cartan MASA in \mathcal{N}.

But then $B=u \mathcal{A} u^{*}$ for some unitary $u \in \mathcal{N}$, hence $(\mathcal{A} \subseteq \mathcal{N}) \cong(B \subseteq \mathcal{N}) \cong$ $(p \mathcal{A} p \subseteq p \mathcal{N} p)$ and hence $t=\tau(p) \in \mathcal{F}(\mathcal{A} \subseteq \mathcal{N})=\{1\}$ which is a contradiction, and hence $\mathcal{F}(\mathcal{A} \subseteq \mathcal{N})=\{1\}$.

