UFFE HAAGERUPS THIRD TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

1. CROSSED PRODUCTS

If $\mathcal{A} \subseteq B(H)$ is a von Neumann algebra and G is a discrete group and $\alpha : G \to \operatorname{Aut}(\mathcal{A})$ is a action of G on \mathcal{A} , let

 $(\pi(a)\xi)(g) = \alpha_a^{-1}(a)\xi(g), \qquad \forall \xi \in l^2(G, H), a \in \mathcal{A}$ (1.1)and $(\lambda(g)\xi)(h) = \xi(h^{-1}g), \qquad \forall \xi \in l^2(G,H), q \in G$ (1.2)Define $\mathcal{M} := \mathcal{A} \rtimes G := (\pi(\mathcal{A}) \cup \lambda(G))''$ (1.3)then $\lambda(g)\pi(a)\lambda(g)^* = \pi(\alpha_q(a))$ (1.4)and if we identify a with $\pi(a) \in \mathcal{M}$, we get (1.5) $\mathcal{M} := (\mathcal{A} \cup \lambda(G))''$ and $\lambda(g)a\lambda(g)* = \alpha_q(a).$ (1.6)

2. GROUP MEASURE SPACE CONSTRUCTION

As a special case take $\mathcal{A} = L^{\infty}(X, \mu)$ where X is a standard Borel space and μ is a σ -finite measure, and let $\alpha_g(f) = f(\sigma_g^{-1}x)$ for an action $\sigma : g \to \operatorname{Aut}(X, [\mu])$, the Borel transformations of X preserving the measure class.

Definition 1. σ is an ergodic action iff for every G-invariant Borelset $B \subseteq X$ either $\mu(B) = 0$ or $\mu(X \setminus B) = 0$.

Definition 2. σ is free if for μ -almost all $x \in X$ $g \to gx$ is a 1-to-1-map from G to X.

Theorem 3 (Murray + von Neumann, ≈ 1940). If σ is free and ergodic then $\mathcal{M} = L^{\infty}(X, \mu) \rtimes_{\alpha} G$ is a factor and $\mathcal{A} = L^{\infty}(X, \mu)$ is a MASA (maximal abelian selfadjoint subalgebra) in \mathcal{M} .

Theorem 4 (Murray + von Neumann, ≈ 1940). Assume a free and ergodic action

- \mathcal{M} is a I_{∞} -factor iff Ω is infinite but countable
- M is a II₁-factor iff Ω is uncountable and there exist a G-invariant finite measure ν ∈ [μ]
- \mathcal{M} is a II_{∞} -factor iff Ω is uncountable and there exists a G-invariant σ -finite, but not finite measure $\nu \in [\mu]$

Date: 27/01/2010.

• \mathcal{M} is a III-factor iff Ω is uncountable and there does not exist a G-invariant σ -finite measure $\nu \in [\mu]$

From now on we look at the II_1 -factor case only.

Let (X, μ) be a uncountable standard Borel space with a probability measure, and let $\sigma : G \to \operatorname{Aut}(X, \mu)$ be a Borel transformation of X which leaves μ invariant. Now define $\mathcal{M} = L^{\infty}(X, \mu) \rtimes_{\sigma} G$. Then $\mathcal{A} = L^{\infty}(X, \mu)$ is a Cartan MASA in \mathcal{M} , where Cartan means that for $N(\mathcal{A}) = \{u \in U(\mathcal{M}) | u\mathcal{A}a^* = \mathcal{A}\}$ holds $N(\mathcal{A})'' = \mathcal{M}$.

Theorem 5 (Voiculescu ≈ 1995). For $2 \leq n < \infty$, $L(\mathbb{F}_n)$ has no Cartan MASA. Hence $L(\mathbb{F}_n)$ cannot be obtained by the group measure space construction.

3. Equivalence relation

Assume $(\mathcal{A}_1 \subseteq \mathcal{M}_1)$ and $(\mathcal{A}_2 \subseteq \mathcal{M}_2)$ both obtained be group meausure space construction from $(X_i, \mu_i, \Gamma_i, \sigma_i)$ where the actions are free and ergodic.

We write $(\mathcal{A}_1 \subseteq \mathcal{M}_1) \cong (\mathcal{A}_2 \subseteq \mathcal{M}_2)$ iff there exists a von Neumann algebra isomorphism $\theta : \mathcal{M}_1 \to \mathcal{M}_2$ with $\theta \mathcal{A}_1 = \mathcal{A}_2$.

Definition 6. (Γ_1, σ_1) is orbit equivalent *(OE)* to (Γ_2, σ_2) if there exist nullsets $N_1 \subseteq X_i$ and a Borel isomorphism $\chi : X_1 \setminus N_1 \to A_2 \setminus N_2$ mapping σ_1 -orbits onto σ_2 -orbits.

Theorem 7 (Singer 1955). $(\mathcal{A}_1 \subseteq \mathcal{M}_1) \cong (\mathcal{A}_2 \subseteq \mathcal{M}_2)$ iff (Γ_1, σ_1) is OE to (Γ_2, σ_2) .

Definition 8. Let $\alpha : \Gamma \to Aut(X, \mu)$ and $x, y \in X$ then $x \sim_{\alpha} y$ iff x and y are in the same Γ -orbit, that is $y = \alpha_{\gamma}(x)$ for some $\gamma \in \Gamma$.

Theorem 9 (Dye, 1959). Any two ergodic actions of \mathbb{Z} on (X, μ) are OE.

Theorem 10 (Ornstein + Weiss). If Γ_1, Γ_2 are amendable groups acting ergodicly on (X_i, μ_i) then the actions are OE.

Theorem 11 (Connes + Weiss). If Γ has property T then it has at least two non-OE ergodic actions on (X_i, μ_i) .

Theorem 12 (Furmann, 1988). If Γ has an action on (X, μ) which is OE to the standard action of $SL(2,\mathbb{Z})$ on $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ for $n \geq 3$ then $\Gamma \cong SL(n,\mathbb{Z})$.

Definition 13. Let $Y \subseteq X$ be Borel spaces and α a free and ergodic action of G on these. We define the equivalence relation R_{α} by $x \sim_{\alpha} y$ if x, y are in the same G-orbit, and $R_{\alpha} \subseteq X \times X$ by $R_{\alpha} = \{(x, y) | x \sim_{a} lphay\}$ and $R_{\alpha|Y} = R_{\alpha} \cap Y \times Y$.

Observation 14. If G is free and ergodic acting on (X, μ) , and $Y, Z \subseteq X$ are Borel, with $\mu(Y) = \mu(Z) > 0$ then $R_{\alpha|Y} \sim_{OE} R_{\alpha|Z}$.

Corollary 15. Let $\mathcal{A} \subseteq \mathcal{M}$ come from (X, μ, G, α) with α free and ergodic. Let $p, q \in P(\mathcal{A})$ such that $\tau(p) = \tau(q)$ then $(p\mathcal{A} \subseteq p\mathcal{M}p) \cong (q\mathcal{A} \subseteq q\mathcal{M}q)$.

4. FUNDAMENTAL GROUP OP THE EQUIVALENCE RELATION

Definition 16. Let $\mathcal{A} \subseteq \mathcal{M}$ and let $t \in [0, 1]$, choose $pt \in P(\mathcal{A})$ such that $\tau(p) = t$. Define $(\mathcal{A}_t \subseteq \mathcal{M}_t)$ by the isomorphism class of $(p_t \mathcal{A} \subseteq p_t \mathcal{M} p_t)$. For t > 0 arbitrary define $(\mathcal{A}_t \subseteq \mathcal{M}_t)$ as the isomorphism class of $(A \otimes D_n(\mathbb{C}))_{t/n} \subseteq (\mathcal{M} \otimes M_n(\mathbb{C}))_{t/n}$ where $D_n \subseteq M_n$ are the diagonal matrices and $n \geq t$.

It has to be proven that the isomorphism class is independent of n.

UFFE HAAGERUPS THIRD TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

Definition 17. Put

- $\mathcal{F}(R_{\alpha}) = \mathcal{F}(\mathcal{A} \subset \mathcal{M})$ (4.1)
- $= \{t > 0 | (\mathcal{A}_t \subseteq \mathcal{M}_t) \cong (\mathcal{A} \subseteq \mathcal{M}) \}$ (4.2)

(4.3)
$$= grp\{\tau(p)|p \in P(\mathcal{A}), (p\mathcal{A} \subseteq p\mathcal{M}p) \cong (\mathcal{A} \subseteq \mathcal{M})\}$$

(4.4)
$$= \{\frac{\tau(p)}{\tau(q)} | p, q \in P(A), (p\mathcal{A} \subseteq p\mathcal{M}p) \cong (q\mathcal{A} \subseteq q\mathcal{M}q) \}$$

Theorem 18 (Gabriau, 2000 + 2002). Assume that G acts free and ergodis on (X, μ) . If either

- one of the L^2 -Betti numbers $\beta_k^{(2)}$ for $k\in\mathbb{N}$ is non-zero og
- the cost C(G) of G is greater than 1

then $\mathcal{F}(R_{\alpha}) = \{1\}.$

5. Cost of an equivalence relation

Let R_{α} be an equivalnece relation comming frim a free and ergodic action of G or such an equivalence relation cut down to a Borel set.

Definition 19. A graphing of R_{α} is a countable family $\Phi = (\phi_i)_{i \in I}$ of partial Borel isomorphisms $\phi_i : A_i \to B_i$ where $A_i, B_i \subseteq X$ are Borel sets, satisfying that for $\phi(x) \sim_{\alpha} x$ for all $x \in A_j$ and that R_{α} is generated by $\{\phi_i(x) \sim_{\alpha} x | i \in I, x \in A_i\}$.

Remark 20. Under these conditions do ϕ_i preserve measures in particular $\mu(A_i) =$ $\mu(B_i)$ for all $i \in I$.

Definition 21. The cost of a graphing Φ of R_{α} is defined as

(5.1)
$$C(\Phi) = \sum_{i \in I} \mu(A_i)$$

and the cost of the equivalence relation R_{α} is defined as

(5.2)
$$C(R_{\alpha}) = \inf C(\Phi)$$

where the infimum is taken over all graphings of R_{α} . We define by

(5.3)
$$C(\Gamma) = \inf C(R_{\alpha})$$

the cost of a group, where the infimum is taken over all free actions of Γ and Γ is said to have fixed price if the cost is equal for all free actions α .

Theorem 22 (Gabriau). The cost of a group is obtained by a relation (hence it is a minimum).

Example 23 (Gabriau, 2000).

- For $2 \leq n \leq \infty$ we have $C(\mathbb{F}_n) = n$ and \mathbb{F}_n has fixed prize.
- C(SL(2,Z)) = ¹³/₁₂ and it has fixed prize.
 C(PSL(2,Z)) = ⁷/₆ and it has fixed prize.
- If $\Lambda \subseteq \Gamma$ is a subgroup of finite index $[\Gamma : \Lambda] = |\Gamma/\Lambda| < \infty$ then $C(\Lambda) =$ $1 + [\Gamma : \Lambda](C(\Gamma) - 1)$. If Γ has fixed prize so has Λ .
- If $\Gamma = \Gamma_1 \star \Gamma_2$ (free product) and Γ_1, Γ_2 have fixed prize then $C(\Gamma) =$ $C(\Gamma_1) + C(\Gamma_2)$ and fixed prize.
- If $|\Gamma| < \infty$ then $C(\Gamma) = 1 \frac{1}{\Gamma}$

UFFE HAAGERUPS THIRD TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

- If $|\Gamma| = \infty$ then $C(\Gamma) \ge 1$
- If Γ is infinite amendable then $C(\Gamma) = 1$

Remark 24. The cost of the free groups above can be obtained from them beeing subrgoups of finite index in \mathbb{F}_2 , which again is a subgroup of finite index in $SL(2,\mathbb{Z})$ respective $PSL(2,\mathbb{Z})$.

Theorem 25 (Gabriau, 2000). For $Y \subseteq X$ Borel, $\mu(Y) > 0$ there holds $C(R_{\alpha|Y}) - 1 = \frac{1}{\mu(Y)}(C(R_{\alpha}) - 1)$.

Theorem 26 (Gabriau). If Γ acts freely and ergodicly on (X, μ) and $C(\Gamma) > 1$ then $\mathcal{F}(R_{\alpha}) = \mathcal{F}(\mathcal{A} \subseteq \mathcal{M}) = \{1\}.$

Proof. Let $\alpha : \Gamma \to \operatorname{Aut}(X, \mu)$ be a free ergodic action. Then $1 < C(\Gamma) \leq C(R_{\alpha})$. Now let $t \in]0, 1[$ and choose $Y \subseteq X$ Borel set such that $\mu(Y) = t$ hence

(5.4)
$$C(R_{\alpha|Y}) = 1 + \frac{1}{\mu(Y)}(C(R_{\alpha}) - 1) > C(R_{\alpha}).$$

But OE actions have the same cost hence $R_{\alpha|Y} \approx R_{\alpha}$ and a result of [Singer, 1955] gives us $(p\mathcal{A} \subseteq p\mathcal{M}p) \ncong (\mathcal{A} \subseteq \mathcal{M})$ when $p \in P(\mathcal{A})$ with $\tau(p) = t$.

As this holds for all $t \in [0,1[$ we have $\mathcal{F}(R_{\alpha}) \cap [0,1[=\emptyset \text{ and hence (as } \mathcal{F} \text{ is a group)} we have <math>\mathcal{F}(R_{\alpha}) = \{1\}.$