
UFFE HAAGERUPS SECOND TALK AT MASTERCLASS ON

VON NEUMANN ALGEBRAS AND GROUP ACTIONS

Let G be a discrete group and λ : G→ B(l2(G)) its left regular representation.
Then

(0.1) L(G) = λ(G)′′ = span{λ(g)|g ∈ G}
SO

and

(0.2) C∗r (G) = span{λ(g)|g ∈ G}
‖·‖

and C∗(G) is the full / universal C*-algebra of G.
(l1(G), ?) and π : G→ B(H) unitary and π̃ : l1(G)→ B(H), where

(0.3) π̃(f) =
∑
g∈G

f(g)π(g).

Then C∗(G) is the completion of l1(G) in the norm ‖f‖u = sup{‖π̃(f)‖, π unitary representation of G},
and there exists a canonical surjection from C∗(G) onto C∗r (G), i.e. C∗r (G) is a quo-
tient of C∗(G).

Theorem 1. If G is a discrete group TFAE

• G amendable
• L(G) injective
• C∗r (G) nuclear C*-algebra
• C∗(G) nuclear C*-algebra
• The canonical surjection C∗(G)→ C∗r (G) is an isomorphism
• There exists a net (φα) of positiv de�nite functions from G to C such that
supp(φα) is �nite and limα φα(g) = 1 for alle g ∈ G.

De�nition 2. A function φ : G → C is positive de�nite if ∀n ∈ N∀g1, . . . , gn ∈
G : (φ(g−1

i gj)i,j) ∈Mn(C)+ that is ∀c1, . . . cn ∈ C :
∑n
i,j=1 cic̄jφ(g−1

i gj) ≥ 0.

Observation 3. There is a 1-1-corespondence between states on C∗(G) and positive
de�nite functions φ with φ(e) = 1.

Theorem 4 (Haagerup, 1979). If 2 ≤ n < ∞ and x → |x| is the wordlength of
x ∈ Fn, then x→ exp(−λ|x|) is a positive de�nite functions for all λ > 0.

Corollary 5. There exists positive de�nite functions φm : Fm → C such that
φn(e) = 1, φn ∈ C0(Fm) and φn(g)→ 1 for all g ∈ G.

Bevis. Use φn(x) = exp(− |x|n ). �
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1. Property H and property T

De�nition 6 (Connes). G has property H (Haagerup property) i� there exists a
sequence (φn), φn : G→ C, positive de�nite, φn(e) = 1, φn ∈ C0(G) and φn(g)→ 1
for all g ∈ G.

Amenability implies property H, but the converse is false and the free groups are
counterexamples.

De�nition 7. G has Kazhdan's property T if the trivial representation τ : G →
{1} ∈ M1(C) is an isolated point in the spectrum of C∗(G). Let τ̃ : C∗(G) →
M1(C) = C be a multiplicative functional, then kernel(τ̃) is a maximal ideal in
C∗(G), and kernel(τ̃) is an isolated point in the hull/kernel topology on the primitive
ideals of C∗(G).

Proposition 8. G has property T i� for all nets (φα) of positive de�nite functions
on G such that φα(e) = 1 and φα(g)→ 1 for all g ∈ G you have that ‖φα−1‖∞ → 0.

Observation 9. G has both property H and T i� G is �nite.

2. Exact groups

De�nition 10 (Kirchberg). A C*-algebra A is exact if for all pairs of C*-algebras
J CB, where J is a closed two-sided ideal of B,

(2.1) 0→ A⊗min J → A⊗min B → A⊗min B/J → 0

is an exat sequence.

De�nition 11 (Kirchberg + S. Wasserman). G is called exact if C∗r (G) is an exact
C*-algebra.

Remark 12. Fn is exact (i.e. C∗r (Fn) is exact) for n ≥ 2, but C∗(Fn) is not exact.

De�nition 13. A function χ : X ×X → C is of positive type if (χ(xi, xj)i,j) ∈
Mn(C)+ for all n ∈ N, x1, . . . xn ∈ X.

Theorem 14 (Ozawa, 2000). G is exact i� there exists a net χα of functions
χα : G×G→ C of positive type such that χα(x, x) = 1 for all x ∈ G and

(2.2) Fα = {y−1x|(x, y) ∈ supp(χα)}

is �nite for all α and χα(x, y)→ 1 for all x, y ∈ G.

Amenability implies exactness.
Group Amenable Property H Property T Exact
�nite yes yes yes yes
inf. amendable yes yes no yes
Fn n ≥ 2 no yes no yes
SL(2,Z) no yes no yes
SL(n,Z) n ≥ 3 no no yes yes
SL(2,Z)× SL(3,Z) no no no yes
Unknown if property H implies exact, but the converse is false.

Theorem 15 (Connes + Kirchberg, 1991). Every discrete subgroup of a connected
locally compact group is exact.
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(2.3) SL(n,Z) ↪→ SL(n,R)

and SL(n,R) is a connected Lie group.

(2.4) F2 ↪→ SL(2,Z) ↪→ SL(n,Z)

for instance is F2 generated by

(2.5)

(
1 2
0 1

)
,

(
2 0
1 1

)
in SL(2,Z).

3. Gromov's uniform embedability in a Hilbert space

If G is a �nite group and S ⊆ G is a set of generators of G, such that S = S−1

and we for all g ∈ G de�ne

(3.1) l(g) = min{k|g = s1S2 . . . sk, si ∈ S}

and d(x, y) = l(y−1x) is an invariant metric on G.

De�nition 16. G is uniformly embedable in a Hilbert space i� there exists φ :
G → H, where H is a Hilbert space and functions f, g : [0,∞[→ [0,∞[ such that
f(t) →t→∞ ∞ and g(t) →t→∞ ∞ and f(d(k, h)) ≤ ‖φ(g)− φ(h)‖ ≤ g(d(k, h)) for
all k, h ∈ G.

Theorem 17 (Ozawa). G exact implies that G is embedable in a Hilbert space.

Theorem 18 (Gomov). There exists a �nitly generated group G which is not em-
bedable in a Hilbert space, and hence not exact.

Observation 19. Amenability, property H, property G and exactness of a group
G can all be characterized in terms of L(G).

• G amenable i� L(G) injective
• G property H i� L(G) has property H
• G property T i� L(G) has propert T

De�nition 20 (Connes + Choda ≈ 1982/1983). IfM is a II1-factor thenM has
property H i� there exists a net (Tα) of completely positive maps Tα : M → M
such that Tα(1) ≤ 1, τ ◦Tα ≤ τ , and the extension T̃α of Tα to L2(M, τ) is compact
( Tα ∈ K(L2(M, τ)) ) and ‖Tα(x)− x‖2 → 0 for all x ∈M (‖x‖2 = τ(x∗x)1/2).

De�nition 21 (Connes + Jones, 1985). If M is a II1-factor and K is a M-M-
bimodule and (Sn) a sequence of unit vectors in K then (Sn) is almost central i�
‖xSn − Snx‖ → 0 for all x ∈ M, and (Sn) is almost tracial i� ‖ < ·Sn, Sn >
−τ‖ → 0 and ‖ < Sn·, Sn > −τ‖ → 0.
M has property T i� every normal Hilbert M-M-bimodule K which admits an

almost central and almost tracial sequence (Sn) of unitvectors contains a central
unit vector S (i.e. xS = Sx for all x ∈M).

Ozawa introduced in 2008 weak exactnes of von Neumann algebras and proved
G exact i� L(G) weak exact.
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4. The Thompson groups F and T

De�nition 22. The group F is the group of order preserving homeomorphisms
of [0, 1] which are piecewise linear and slopes are in 2Z and breakpoints are in
Z[ 12 ] = { k2n |k ∈ Z, n ∈ N} the dyadic numbers.

The group T is the same on T ∼= R/Z, where g ∈ T i� g = τa ◦ h for h ∈ F and
τa is the translation by a ∈ Z[ 12 ].

Theorem 23.

(4.1) F =< A,B|[AB−1, A−1BA] = [AB−1, A2BA−2] = 1 >

and T has a similar representation with three generators and six relations.

F is not simple, as for the commutator subroup F ′ = [F, F ], we have F/F ′ ∼= Z2

and F ′ is simple and not �nitely generated.
T is simple, and was the �rst example of an in�nitely presented simple group.

Problem 24. Is F amenable?

Recent attempts of A. Akhmedov from february 2009 concluding NO with a gap
in the proof and E.T. Shavgulidez from march 2009 concluding YES with a gap in
the proof.

5. The classes of groups EA, AG and NF

De�nition 25. The class EA of elementary amenable groups is the smalles class
of groups

• containing all �nite groups
• containing all abelian groups
• closed under taking subgroups, quotients and extensions
• closed with respect to inductive limits

De�nition 26. The class AG is the class of all amenable groups.

De�nition 27. The class NF is the class of all groups not containing a copy of
F2.

(5.1) EA ( AG ( NF

Where strictness of the �rst inequality is due to Grigorshuk in 1988 and strictness
of the second inequality is due to Olshanski and Sapir in 2002.

It is known that F /∈ EA but F ∈ NF , so F ∈ NF\EA so either F ∈ AG\EA
or F ∈ NF\AG but which one is not known.

Property F T
amenable ? no (as F2 ↪→ T )
exact ? ?
property H yes yes [Farley, 2003]
property T no no [Farley, 2003]
G has property H i� G has Gromov's aT-amenability, at this implies that it

satis�es the Baum-Connes conjecture with coe�cients.

De�nition 28. A II1-factor M is a McDu�-factor i� M ∼=M⊗R, where R is
the hyper�nite II1-factor.
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R is a McDu�-factor.

De�nition 29. A sequence (xn) ∈ M is a central sequence if sup ‖xn‖ < ∞ and
‖axn − xna‖2 → 0 for all a ∈M and it is nontrivial if ‖xn − τ(xn)1‖2 9 0.

L(Fn) are not McDu�-factors, as they have no nontrivial central sequences.

Theorem 30 (Jolissaint, 1998). L(F ) and L(F ′) are McDu�-factors.

Theorem 31 (Jolissaint, 2006). L(F ′) is asymptotically abelian, i.e. there exists a
sequence (αn) ⊆ Aut(L(F ′)) such that ‖αn(x)y−yαn(x)‖2 → 0 for all x, y ∈ L(F ′).

Theorem 32 (Haagerup + Picioroga, to appear J.O.T.). For n ∈ N, n ≥ 4
(5.2)
F =< g0, . . . , gn|gi−1gigi+1 = gigi+1gi−1gi, 1 ≤ i ≤ n− 1, gigj = gjgi, |i− j| ≥ 2 >

Theorem 33 (Haagerup + Picioroga). C∗(F ) and C∗r (F ) are not residually �nite,
i.e. they do not embed in

∏∞
k=1Mnk

(C) = (
⊕
Mnk

(C))l∞ .

Remark 34. C∗(F2) is residually �nite [Choi] and C∗r (F2) is not residually �nite,
because it is simple.


