UFFE HAAGERUPS SECOND TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

Let G be a discrete group and $\lambda:G\to B(l^2(G))$ its left regular representation. Then

(0.1)
$$L(G) = \lambda(G)'' = \overline{\operatorname{span}\{\lambda(g)|g \in G\}}^{SO}$$

and

(0.2)
$$C_r^*(G) = \overline{\operatorname{span}\{\lambda(g)|g \in G\}}^{\|\cdot\|}$$

and $C^*(G)$ is the full / universal C*-algebra of G.

 $(l^1(G), \star)$ and $\pi: G \to B(H)$ unitary and $\tilde{\pi}: l^1(G) \to B(H)$, where

(0.3)
$$\tilde{\pi}(f) = \sum_{g \in G} f(g)\pi(g)$$

Then $C^*(G)$ is the completion of $l^1(G)$ in the norm $||f||_u = \sup\{||\tilde{\pi}(f)||, \pi \text{ unitary representation of } G\}$, and there exists a canonical surjection from $C^*(G)$ onto $C^*_r(G)$, i.e. $C^*_r(G)$ is a quotient of $C^*(G)$.

Theorem 1. If G is a discrete group TFAE

- \bullet G amendable
- L(G) injective
- $C_r^*(G)$ nuclear C*-algebra
- $C^*(G)$ nuclear C^* -algebra
- The canonical surjection $C^*(G) \to C^*_r(G)$ is an isomorphism
- There exists a net (φ_α) of positiv definite functions from G to C such that supp(φ_α) is finite and lim_α φ_α(g) = 1 for alle g ∈ G.

Definition 2. A function $\phi : G \to \mathbb{C}$ is positive definite if $\forall n \in \mathbb{N} \forall g_1, \ldots, g_n \in G : (\phi(g_i^{-1}g_j)_{i,j}) \in M_n(\mathbb{C})^+$ that is $\forall c_1, \ldots, c_n \in \mathbb{C} : \sum_{i,j=1}^n c_i \bar{c}_j \phi(g_i^{-1}g_j) \ge 0.$

Observation 3. There is a 1-1-correspondence between states on $C^*(G)$ and positive definite functions ϕ with $\phi(e) = 1$.

Theorem 4 (Haagerup, 1979). If $2 \le n < \infty$ and $x \to |x|$ is the wordlength of $x \in \mathbb{F}_n$, then $x \to \exp(-\lambda |x|)$ is a positive definite functions for all $\lambda > 0$.

Corollary 5. There exists positive definite functions $\phi_m : \mathbb{F}_m \to \mathbb{C}$ such that $\phi_n(e) = 1, \phi_n \in C_0(\mathbb{F}_m)$ and $\phi_n(g) \to 1$ for all $g \in G$.

Bevis. Use $\phi_n(x) = \exp(-\frac{|x|}{n})$.

Date: 26/01/2010.

1. PROPERTY H AND PROPERTY T

Definition 6 (Connes). *G* has property *H* (Haagerup property) iff there exists a sequence $(\phi_n), \phi_n : G \to \mathbb{C}$, positive definite, $\phi_n(e) = 1, \phi_n \in C_0(G)$ and $\phi_n(g) \to 1$ for all $g \in G$.

Amenability implies property H, but the converse is false and the free groups are counterexamples.

Definition 7. G has Kazhdan's property T if the trivial representation $\tau : G \to \{1\} \in M_1(\mathbb{C})$ is an isolated point in the spectrum of $C^*(G)$. Let $\tilde{\tau} : C^*(G) \to M_1(\mathbb{C}) = \mathbb{C}$ be a multiplicative functional, then $kernel(\tilde{\tau})$ is a maximal ideal in $C^*(G)$, and $kernel(\tilde{\tau})$ is an isolated point in the hull/kernel topology on the primitive ideals of $C^*(G)$.

Proposition 8. G has property T iff for all nets (ϕ_{α}) of positive definite functions on G such that $\phi_{\alpha}(e) = 1$ and $\phi_{\alpha}(g) \to 1$ for all $g \in G$ you have that $\|\phi_{\alpha} - 1\|_{\infty} \to 0$.

Observation 9. G has both property H and T iff G is finite.

2. EXACT GROUPS

Definition 10 (Kirchberg). A C^{*}-algebra A is exact if for all pairs of C^{*}-algebras $J \triangleleft B$, where J is a closed two-sided ideal of B,

$$(2.1) 0 \to A \otimes_{\min} J \to A \otimes_{\min} B \to A \otimes_{\min} B/J \to 0$$

is an exat sequence.

Definition 11 (Kirchberg + S. Wasserman). G is called exact if $C_r^*(G)$ is an exact C^* -algebra.

Remark 12. \mathbb{F}_n is exact (i.e. $C_r^*(\mathbb{F}_n)$ is exact) for $n \geq 2$, but $C^*(\mathbb{F}_n)$ is not exact.

Definition 13. A function $\chi : X \times X \to \mathbb{C}$ is of positive type if $(\chi(x_i, x_j)_{i,j}) \in M_n(\mathbb{C})^+$ for all $n \in \mathbb{N}, x_1, \ldots, x_n \in X$.

Theorem 14 (Ozawa, 2000). *G* is exact iff there exists a net χ_{α} of functions $\chi_{\alpha}: G \times G \to \mathbb{C}$ of positive type such that $\chi_{\alpha}(x, x) = 1$ for all $x \in G$ and

(2.2)
$$F_{\alpha} = \{y^{-1}x | (x,y) \in supp(\chi_{\alpha})\}$$

is finite for all α and $\chi_{\alpha}(x, y) \rightarrow 1$ for all $x, y \in G$.

Amenability implies exactness.

Group	Amenable	Property H	Property T	Exact
finite	\mathbf{yes}	\mathbf{yes}	yes	yes
inf. amendable	\mathbf{yes}	\mathbf{yes}	no	yes
$\mathbb{F}_n n \ge 2$	no	\mathbf{yes}	no	yes
$SL(2,\mathbb{Z})$	no	\mathbf{yes}	no	yes
$SL(n,\mathbb{Z})$ $n \ge 3$	no	no	yes	yes
$SL(2,\mathbb{Z}) \times SL(3,\mathbb{Z})$	no	no	no	yes

Unknown if property H implies exact, but the converse is false.

Theorem 15 (Connes + Kirchberg, 1991). Every discrete subgroup of a connected locally compact group is exact.

UFFE HAAGERUPS SECOND TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

$$(2.3) SL(n,\mathbb{Z}) \hookrightarrow SL(n,\mathbb{R})$$

and $SL(n, \mathbb{R})$ is a connected Lie group.

(2.4)
$$\mathbb{F}_2 \hookrightarrow SL(2,\mathbb{Z}) \hookrightarrow SL(n,\mathbb{Z})$$

for instance is \mathbb{F}_2 generated by

(2.5)
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$

in $SL(2,\mathbb{Z})$.

3. GROMOV'S UNIFORM EMBEDABILITY IN A HILBERT SPACE

If G is a finite group and $S \subseteq G$ is a set of generators of G, such that $S = S^{-1}$ and we for all $g \in G$ define

(3.1)
$$l(g) = \min\{k | g = s_1 S_2 \dots s_k, s_i \in S\}$$

and $d(x,y) = l(y^{-1}x)$ is an invariant metric on G.

Definition 16. G is uniformly embedable in a Hilbert space iff there exists ϕ : $G \to H$, where H is a Hilbert space and functions $f, g : [0, \infty[\to [0, \infty[$ such that $f(t) \to_{t\to\infty} \infty$ and $g(t) \to_{t\to\infty} \infty$ and $f(d(k,h)) \leq ||\phi(g) - \phi(h)|| \leq g(d(k,h))$ for all $k, h \in G$.

Theorem 17 (Ozawa). G exact implies that G is embedable in a Hilbert space.

Theorem 18 (Gomov). There exists a finitly generated group G which is not embedable in a Hilbert space, and hence not exact.

Observation 19. Amenability, property H, property G and exactness of a group G can all be characterized in terms of L(G).

- G amenable iff L(G) injective
- G property H iff L(G) has property H
- G property T iff L(G) has propert T

Definition 20 (Connes + Choda $\approx 1982/1983$). If \mathcal{M} is a II_1 -factor then \mathcal{M} has property H iff there exists a net (T_α) of completely positive maps $T_\alpha : \mathcal{M} \to \mathcal{M}$ such that $T_\alpha(1) \leq 1, \tau \circ T_\alpha \leq \tau$, and the extension \tilde{T}_α of T_α to $L^2(\mathcal{M}, \tau)$ is compact ($T_\alpha \in K(L^2(\mathcal{M}, \tau))$) and $||T_\alpha(x) - x||_2 \to 0$ for all $x \in \mathcal{M}$ ($||x||_2 = \tau(x^*x)^{1/2}$).

Definition 21 (Connes + Jones, 1985). If \mathcal{M} is a II_1 -factor and K is a \mathcal{M} - \mathcal{M} -bimodule and (S_n) a sequence of unit vectors in K then (S_n) is almost central iff $||xS_n - S_nx|| \to 0$ for all $x \in \mathcal{M}$, and (S_n) is almost tracial iff $|| < \cdot S_n, S_n > -\tau || \to 0$ and $|| < S_n \cdot, S_n > -\tau || \to 0$.

 \mathcal{M} has property T iff every normal Hilbert \mathcal{M} - \mathcal{M} -bimodule K which admits an almost central and almost tracial sequence (S_n) of unitvectors contains a central unit vector S (i.e. xS = Sx for all $x \in \mathcal{M}$).

Ozawa introduced in 2008 weak exactnes of von Neumann algebras and proved G exact iff L(G) weak exact.

4. The Thompson groups F and T

Definition 22. The group F is the group of order preserving homeomorphisms of [0,1] which are piecewise linear and slopes are in $2^{\mathbb{Z}}$ and breakpoints are in $\mathbb{Z}[\frac{1}{2}] = \{\frac{k}{2^n} | k \in \mathbb{Z}, n \in \mathbb{N}\}$ the dyadic numbers.

The group T is the same on $\mathbb{T} \cong \mathbb{R}/\mathbb{Z}$, where $g \in T$ iff $g = \tau_a \circ h$ for $h \in F$ and τ_a is the translation by $a \in \mathbb{Z}[\frac{1}{2}]$.

Theorem 23.

(4.1)
$$F = \langle A, B | [AB^{-1}, A^{-1}BA] = [AB^{-1}, A^2BA^{-2}] = 1 \rangle$$

and T has a similar representation with three generators and six relations.

F is not simple, as for the commutator subroup F' = [F, F], we have $F/F' \cong \mathbb{Z}^2$ and F' is simple and not finitely generated.

T is simple, and was the first example of an infinitely presented simple group.

Problem 24. Is F amenable?

Recent attempts of A. Akhmedov from february 2009 concluding NO with a gap in the proof and E.T. Shavgulidez from march 2009 concluding YES with a gap in the proof.

5. The classes of groups EA, AG and NF

Definition 25. The class EA of elementary amenable groups is the smalles class of groups

- containing all finite groups
- containing all abelian groups
- closed under taking subgroups, quotients and extensions
- closed with respect to inductive limits

Definition 26. The class AG is the class of all amenable groups.

Definition 27. The class NF is the class of all groups not containing a copy of \mathbb{F}_2 .

$$(5.1) EA \subsetneq AG \subsetneq NF$$

Where strictness of the first inequality is due to Grigorshuk in 1988 and strictness of the second inequality is due to Olshanski and Sapir in 2002.

It is known that $F \notin EA$ but $F \in NF$, so $F \in NF \setminus EA$ so either $F \in AG \setminus EA$ or $F \in NF \setminus AG$ but which one is not known.

Property	F	T
amenable	?	no (as $\mathbb{F}_2 \hookrightarrow T$)
exact	?	?
property H	\mathbf{yes}	yes [Farley, 2003]
property T	no	no [Farley, 2003]

 \overline{G} has property H iff \overline{G} has Gromov's aT-amenability, at this implies that it satisfies the Baum-Connes conjecture with coefficients.

Definition 28. A II₁-factor \mathcal{M} is a McDuff-factor iff $\mathcal{M} \cong \mathcal{M} \otimes \mathcal{R}$, where \mathcal{R} is the hyperfinite II₁-factor.

 \mathcal{R} is a McDuff-factor.

Definition 29. A sequence $(x_n) \in \mathcal{M}$ is a central sequence if $\sup ||x_n|| < \infty$ and $||ax_n - x_na||_2 \to 0$ for all $a \in \mathcal{M}$ and it is nontrivial if $||x_n - \tau(x_n)1||_2 \not\rightarrow 0$.

 $L(\mathbb{F}_n)$ are not McDuff-factors, as they have no nontrivial central sequences.

Theorem 30 (Jolissaint, 1998). L(F) and L(F') are McDuff-factors.

Theorem 31 (Jolissaint, 2006). L(F') is asymptotically abelian, i.e. there exists a sequence $(\alpha_n) \subseteq Aut(L(F'))$ such that $\|\alpha_n(x)y - y\alpha_n(x)\|_2 \to 0$ for all $x, y \in L(F')$.

Theorem 32 (Haagerup + Picioroga, to appear J.O.T.). For $n \in \mathbb{N}, n \geq 4$ (5.2)

 $F = \langle g_0, \dots, g_n | g_{i-1}g_ig_{i+1} = g_ig_{i+1}g_{i-1}g_i, 1 \le i \le n-1, g_ig_j = g_jg_i, |i-j| \ge 2 \rangle$

Theorem 33 (Haagerup + Picioroga). $C^*(F)$ and $C^*_r(F)$ are not residually finite, *i.e. they do not embed in* $\prod_{k=1}^{\infty} M_{n_k}(\mathbb{C}) = (\bigoplus M_{n_k}(\mathbb{C}))_{l^{\infty}}$.

Remark 34. $C^*(\mathbb{F}_2)$ is residually finite [Choi] and $C^*_r(\mathbb{F}_2)$ is not residually finite, because it is simple.