UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

1. Von Neumann Algebras

Definition 1. Let H be a Hilbert space (usually finite dimensional and separable), and let $B(H)$ be the *-algebra of bounded operators on $H . \mathcal{M} \subseteq B(H)$ is a von Neumann Algebra iff

- \mathcal{M} is a^{*}-subalgebra of $B(H)$
- $1 \in \mathcal{M}$
- \mathcal{M} is $S O$-closed

Theorem 2 (von Neumann, 1929). $\mathcal{M} \subseteq B(H)$ is a von Neumann algebra iff $\mathcal{M}=\mathcal{M}^{*}$ and $\mathcal{M}=\mathcal{M}^{\prime \prime}$.
Definition 3. The center of \mathcal{M} is denoted by $Z(\mathcal{M})$ and defined as $Z(\mathcal{M})=$ $\mathcal{M} \cap \mathcal{M}^{\prime}$.
\mathcal{M} is a factor iff $Z(\mathcal{M})=\mathbb{C} \cdot 1$.

Type of factor \mathcal{M}	Model/characterization
$I_{n}, \quad n \in \mathbb{N}$	$M_{n}(\mathbb{C})$
I_{∞}	$B(H), \quad \operatorname{dim}(H)=\infty$
$I I_{1}$	$\operatorname{dim}(\mathcal{M})=\infty, \quad \exists \operatorname{tracial~state} \tau: \mathcal{M} \rightarrow \mathbb{C} \forall a, b \in \mathcal{M}: \tau(a b)=\tau(b a)$
$I I_{\infty}$	$\mathcal{M} \cong \mathcal{N} \bar{\otimes} B(H), \quad \operatorname{dim}(H)=\infty, \quad \mathcal{N} \quad I I_{1}$ - factor
$I I I$	Everything else

If H is a separable Hilbert space and $\mathcal{M} \subseteq B(H)$ a von Neumann algebra, then

$$
\begin{equation*}
\mathcal{M}=\int_{\Omega}^{\oplus} \mathcal{M}(\omega) d \omega \tag{1.1}
\end{equation*}
$$

where each $\mathcal{M}(\omega)$ is a factor. This is the desintegration of \mathcal{M} in factors.

2. Projections in a von Neumann algebra

Definition 4. If \mathcal{M} is a von Neumann algebra, we set

$$
\begin{equation*}
P(\mathcal{M})=\left\{p \in \mathcal{M} \mid p=p^{*}=p^{2}\right\} \tag{2.1}
\end{equation*}
$$

the set of projections in \mathcal{M}.
Theorem 5.

$$
\begin{equation*}
\mathcal{M}=\overline{\operatorname{span}(P(\mathcal{M}))}\|\cdot\| \tag{2.2}
\end{equation*}
$$

Definition 6. For $p, q \in P(\mathcal{M})$ we say $p \sim q$ iff $\exists u \in \mathcal{M}: p=u^{*} u, q=u u^{*}$.
Definition 7. \mathcal{M} is finite iff $(p \in P(\mathcal{M}): p \sim 1 \Rightarrow p=1)$.
\mathcal{M} is properly infinite iff $\exists p, q \in P(\mathcal{M}): p \perp q, p \sim q \sim 1$ In a von Neumann algebra (but not in a general C^{*}-algebra), this is the same as $\exists p, q \in P(\mathcal{M}): p \perp$ $q, p+q=1, p \sim q \sim 1$.

[^0]Type I_{n} and type $I I_{1}$ factors are finite, type I_{∞}, type $I I_{\infty}$ and type $I I I$ factors are properly infinite.

3. Traces

A $I I_{1}$-factor \mathcal{M} has a unique trace state τ :

- τ is normal
- τ is faithful $((a \geq 0, \tau(a)=0) \Rightarrow a=0)$
- $\forall p, q \in P(\mathcal{M}): p \sim q \Leftrightarrow \tau(p)=\tau(q)$
- $\tau(P(\mathcal{M}))=[0,1]$

A I_{∞}-factor or $I I_{\infty}$ factor \mathcal{M} has a normal faithful semifinite trace τ defined on \mathcal{M}^{+}(Semifinite means that the set $\{a \in \mathcal{M} \mid \tau(a * a)<\infty\}$ is SO-dense in \mathcal{M}.)

- τ is unique up to multiplication by $\lambda \in] 0, \infty[$
- $\forall a \in \mathcal{M}: \tau\left(a^{*} a\right)=\tau\left(a a^{*}\right)$
- If \mathcal{M} is a type $I I_{\infty}$-factor, $\tau(P(\mathcal{M}))=[0, \infty]$

4. group von Neumann Algebras

Definition 8. If G is a discrete group (usually countable). Then we define $L(G)$ as the von Neumann algebra generated by the left regular representation of G. For this define $\lambda: G \rightarrow B\left(l^{2}(G)\right)$ as $\forall f \in l^{2}(G) \forall x, y \in G:(\lambda(x) f)(y)=f\left(x^{-1} y\right)$. Set

$$
\begin{equation*}
L(G)=\overline{\operatorname{span}\{\lambda(x) \mid x \in G\}}^{S O} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{r}^{*}(G)=\overline{\operatorname{span}\{\lambda(x) \mid x \in G\}} .\|\cdot\| \tag{4.2}
\end{equation*}
$$

Observe $C_{r}^{*}(G) \subseteq L(G)$.
$L(G)$ is a finite von Neumann algebra.
Definition 9. A group G is an ICC-group iff $\forall g \in G, g \neq e:\left\{h g h^{-1} \mid h \in H\right\}$ is infinite.

Theorem 10. Let $G \neq\{e\}$ then TFAE

- G is an ICC-group
- $L(G)$ is a factor
- $L(G)$ is a $I I_{1}$-factor

5. Injectivity and hyperfiniteness of von Neumann algebras

Definition 11. $\mathcal{M} \subseteq B(H)$ is injective iff $\exists p \in P(B(H)),\|p\|=1$ of $B(H)$ onto \mathcal{M}.

Definition 12. \mathcal{M} is hyperfinite (or AFD) on a separable Hilbert space iff $\mathcal{M}=$ $\cup_{n=1}^{\infty} \mathcal{M}_{n}$ where $\mathcal{M}_{1} \subseteq \mathcal{M}_{2} \subseteq \ldots$ are finite dimensional von Neumann algebras

Theorem 13 (Connes, 1976). If H separable, and $\mathcal{M} \subseteq B(H)$. Then \mathcal{M} is injective iff \mathcal{M} is hyperfinite.

Theorem 14 (Murray + von Neumann, 1940). There is up to isomorphism only one hyperfinite factor of type $I I_{1}$ on a separable Hilbert space.

6. Amendable groups

Definition 15. A discrete group G is amendable if $\exists \mu: \mathcal{P}(G) \rightarrow[0,1]$ finite additive measure with $\mu(G)=1$ such that $\forall A \subseteq G \forall x \in G: \mu(x A)=\mu(A)$.

Observation 16. G is amendable iff \exists state $m: l^{\infty}(G) \rightarrow \mathbb{C}$ such that $\forall f \in$ $l^{\infty}(G) \forall x \in G: m(x f)=m(f)$ where $\forall x, y \in G:(x f)(y)=f\left(x^{-1} y\right)$.

Theorem 17 (Sakai, Connes). If G is a discrete countable group TFAE

- G amendable
- $L(G)$ is injective
- $L(G)$ is hyperfinite
where the equivalence of the first two statements is old, and does not require countability.

Remark 18. G amendable iff $C_{r}^{*}(G)$ nuclear.
Corollary 19. If G is a amendable, countable ICC-group then $L(G) \cong \mathcal{R}$ the unique hyperfinite $I I_{1}$-factor.
Definition 20. A group G is solvable iff $\exists G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{n}=G$ such that G_{k+1} / G_{k} is abelian.

Definition 21.

$$
\begin{equation*}
\mathbb{F}_{n}=\text { group generated by }\left\{g_{1}, \ldots, g_{n} \mid \text { no relations }\right\} \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
S L(n, \mathbb{Z})=\left\{g \in M_{n}(\mathbb{Z}) \mid \operatorname{det}(g)=1\right\} \tag{6.2}
\end{equation*}
$$

$$
P S L(n, \mathbb{Z})=\left\{\begin{align*}
S L(n, \mathbb{Z}) & n \text { odd } \tag{6.3}\\
S L(n, \mathbb{Z}) /\{ \pm 1\} & n \text { even }
\end{align*}\right.
$$

$$
\begin{equation*}
S_{n}=\{\text { permutations of }\{1, \ldots, n\}\} \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
S_{\infty}=\bigcup_{n=1}^{\infty} S_{n} \tag{6.5}
\end{equation*}
$$

Group	Amendable
finite groups	yes
abelian groups	yes
solvable groups	yes
inductive limits of amendable groups	yes
$S_{\infty} \quad$ yes	
$\mathbb{F}_{n}, \quad 2 \leq n \leq \infty$	no
$S L(n, \mathbb{Z}), \quad 2 \leq n$	no
$\operatorname{PSL}(n, \mathbb{Z}), \quad 2 \leq n$	no

Remark 22. $P S L(n, \mathbb{Z})$ is an ICC-group.
Remark 23. $L\left(\mathbb{F}_{n}\right) \not \equiv L\left(S_{\infty}\right) \cong \mathcal{R}$ for $2 \leq n \leq \infty$ as $L\left(\mathbb{F}_{n}\right)$ is not injective, but $\mathbb{F}_{n}, S_{\infty}$ are ICC-groups, so $L\left(\mathbb{F}_{n}\right)$ is a $I I_{1}$-factor not hyperfinite.
dffe HAAGERUPS FIRst TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

7. The fundamental group of $I I_{1}$-Factors

Recall 24. Let \mathcal{M} be a $I I_{1}$-factor, then

- \mathcal{M} has unique trace state τ
- $p, q \in P(\mathcal{M}): p \sim q \Leftrightarrow \tau(p)=\tau(q)$
- $\forall t \in[0,1] \exists p_{t} \in P(\mathcal{M}): t=\tau\left(p_{t}\right)$

Observation 25. $p, q \in P(\mathcal{M}): p \sim q \Rightarrow p \mathcal{M} p \cong q \mathcal{M} q$ as von Neumann algebras on $p H$ and $q H$ and these are $I I_{1}$-factors too.
Definition 26. If $t \in] 0,1]$ put $\mathcal{M}_{t}=p_{t} \mathcal{M} p_{t}$ which is welldefined up to isomorphism.

For general $t \in] 0, \infty\left[\right.$ define $\mathcal{M}_{t}=M_{n}(\mathcal{M})_{t / n}$ where $n \in \mathbb{N}, n \geq 2$. (Have to check that \mathcal{M}_{t} doesn't depend on n up to isomorphism.

Proposition 27.

$$
\begin{equation*}
\left(\mathcal{M}_{s}\right)_{t}=\mathcal{M}_{s t} \quad \forall s, t>0 \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M}_{n}=M_{n}(\mathcal{M})=\mathcal{M} \otimes M_{n}(\mathbb{C}) \quad \forall n \in \mathbb{N} \tag{7.2}
\end{equation*}
$$

Definition 28. The fundamental group of \mathcal{M} is the set

$$
\begin{equation*}
\mathcal{F}(\mathcal{M})=\{t \in] 0, \infty\left[\mid \mathcal{M}_{t} \cong \mathcal{M}\right\} \tag{7.3}
\end{equation*}
$$

Remark 29. $\mathcal{F}(\mathcal{M})$ is a multiplicative subgroup of (]$, \infty[, \cdot)$ and

$$
\begin{equation*}
\mathcal{F}(\mathcal{M}) \cap[0,1]=\{\tau(p) \mid p \in P(\mathcal{M}): p \mathcal{M} p \cong \mathcal{M}\} \tag{7.4}
\end{equation*}
$$

and $\mathcal{F}(\mathcal{M})$ is the multiplicative group generated by $\{\tau(p) \mid p \in P(\mathcal{M}): p \mathcal{M} p \cong \mathcal{M}\}$ and

$$
\begin{equation*}
\mathcal{F}(\mathcal{M})=\left\{\left.\frac{\tau(p)}{\tau(q)} \right\rvert\, p, q \in P(\mathcal{M}): p \mathcal{M} p \cong q \mathcal{M} q\right\} \tag{7.5}
\end{equation*}
$$

Observation 30. $M_{n}(\mathcal{M}) \cong \mathcal{M}$ iff $n \in \mathcal{F}(\mathcal{M})$ and $\left(\forall n \in \mathbb{N}: M_{n}(\mathcal{M}) \cong \mathcal{M}\right)$ iff $\mathbb{Q}^{+} \subseteq \mathcal{F}(\mathcal{M})$.

Example 31 (Murray + von Neumann ≈ 1940). If \mathcal{R} is the hyperfinite $I I_{1}$-factor, $\mathcal{F}(\mathcal{R})=] 0, \infty[$.
Theorem 32 (Connes ≈ 1975). If G has Kazhdan's property T (e.g. $G \cong P S L(n, \mathbb{Z}), n \geq$ 3) then $\mathcal{F}(L(G))$ is countable, in particular $\mathcal{F}(L(G)) \subsetneq] 0, \infty[$.

Theorem 33 (Radulescu + Dykema \approx 1994). $\left.\mathcal{F}\left(L\left(\mathbb{F}_{\infty}\right)\right)=\right] 0, \infty[$
Problem 34. Compute $\mathcal{F}\left(L\left(\mathbb{F}_{n}\right)\right.$) for $2 \leq n<\infty$.
Using free probability one can prove [Radulescu + Dykema] that $L\left(\mathbb{F}_{n}\right) \cong$ $L\left(\mathbb{F}_{2}\right)_{t_{n}}$ where $t_{n}=\frac{1}{\sqrt{n-1}}$. From this follows that $\mathcal{F}\left(L\left(\mathbb{F}_{n}\right)\right)=\mathcal{F}\left(L\left(\mathbb{F}_{2}\right)\right)$ for $2 \leq n<\infty$.

Theorem 35 (Radulescu + Dykema). Either

- $\mathcal{F}\left(L\left(\mathbb{F}_{2}\right)\right)=\{1\}$ in which case $L\left(\mathbb{F}_{2}\right), L\left(\mathbb{F}_{3}\right), \ldots, L\left(\mathbb{F}_{\infty}\right)$ are all nonisomorphic $I I_{1}$-factors or
- $\left.\mathcal{F}\left(L\left(\mathbb{F}_{2}\right)\right)=\right] 0, \infty\left[\right.$ in which case $L\left(\mathbb{F}_{2}\right), L\left(\mathbb{F}_{3}\right), \ldots, L\left(\mathbb{F}_{\infty}\right)$ are all isomorphic II I_{1}-factors or

8. Interpolated free group factors

Definition 36. For $t \in] 1, \infty\left[\right.$ define $L\left(\mho_{t}\right)=L\left(\left[F_{2}\right)_{\frac{1}{\sqrt{t-1}}}\right.$.
Remark 37. $L\left(\mathbb{F}_{\frac{7}{6}} \cong L(\operatorname{PSL}(2, \mathbb{Z})) \cong L\left(\mathbb{Z}_{2} \star \mathbb{Z}_{3}\right)\right.$ hence $\mathcal{F}(L(\operatorname{PSL}(2, \mathbb{Z}))=$ $\mathcal{F}\left(L\left(\mathbb{F}_{2}\right)\right)$.

Theorem 38 (Sorin + Popa, 2004-2006). There exists a $I I_{1}$-factor \mathcal{M} on a separable Hilbert space such that $\mathcal{F}(\mathcal{M})=\{1\}$. (e.g. $\mathcal{M}=L\left(\mathbb{Z}_{2} \rtimes S L(2, \mathbb{Z})\right)$)

Theorem 39 (Popa, Popa + Adrian + Petersen). For all countable subgroups $\Gamma \subseteq] 0, \infty\left[\right.$ there exists a $I I_{1}$-factor \mathcal{M} such that $\{(\mathcal{M})=\Gamma$.

Theorem 40 (Popa + Vaes, 2008). There exists a $I I_{1}$-factor \mathcal{M} such that $\mathcal{F}(\mathcal{M}) \subsetneq$ $] 0, \infty[$ but $\mathcal{F}(\mathcal{M})$ is not countable.

9. The "Group measure space"construction

Definition 41. Let $\mathcal{A} \subseteq B(H)$ be a von Neumann algebra and G be a discrete group and $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{A})$ be an action of G on \mathcal{A} (a group homomorphism).

Then the crossed product $\mathcal{M}=\mathcal{A} \rtimes_{\alpha} G$ acts on $l^{2}(G, H)$ and $M=\{\pi(\mathcal{A}) \cup \lambda(G)\}^{\prime \prime}$ where $\pi: \mathcal{A} \rightarrow B\left(l^{2}(G, H)\right)$ is given by

$$
\begin{equation*}
(\pi(a) \xi)(g)=\alpha_{g}^{-1}(a) \xi(g) \quad \xi \in l^{2}(G, H), g \in G \tag{9.1}
\end{equation*}
$$

where

$$
\begin{equation*}
l^{2}(G, H) \cong \bigoplus_{g \in G} H \tag{9.2}
\end{equation*}
$$

and $\lambda: G \rightarrow B\left(l^{2}(G, H)\right)$ is given by

$$
\begin{equation*}
(\lambda(g) \xi)(h)=\xi\left(g^{-1} h\right) \quad \xi \in l^{2}(G, H), g, h \in G \tag{9.3}
\end{equation*}
$$

(π, λ) is a ??? representation of (\mathcal{A}, G, α) :

$$
\begin{equation*}
\lambda(g) \pi(a) \lambda(g)^{-1}=\pi\left(\alpha_{g}(a)\right) \quad a \in \mathcal{A}, g \in G \tag{9.4}
\end{equation*}
$$

and $\mathcal{A} \cong \pi(\mathcal{A}) \subseteq \mathcal{A} \rtimes_{\alpha} G$ and $\mathcal{A} \rtimes-\alpha G$ is generated by \mathcal{A} and $\lambda(g)$ for $g \in G$ and

$$
\begin{equation*}
\lambda(g) a \lambda(g)^{-1}=\alpha_{g}(a) \tag{9.5}
\end{equation*}
$$

10. Special case

If H is a seperable Hilbert space and \mathcal{A} is abelian then $\mathcal{A} \cong L^{\infty}(\Omega, \mu)$ for some standard Borel space Ω and σ-finite measure μ.

Note that $L^{\infty}(\Omega, \mu) \cong L^{\infty}(\Omega, \nu)$ when $\nu \in[\mu]$ that is when μ and ν have the same null sets $(\nu \ll \mu$ and $\mu \ll \nu)$.

Given a group homomorphism $\sigma: G \rightarrow \operatorname{Iso}(\Omega,[\mu])$, that is a $[\mu]$-preserving Borel isomorphism of Ω), one can associate an action $\alpha: G \rightarrow \operatorname{Aut}\left(L^{\infty}(\Omega, \mu)\right)$ by

$$
\begin{equation*}
\alpha(f)(\omega)=f\left(\sigma^{-1} \omega\right) \quad f \in L^{\infty}(\Omega, \mu) \tag{10.1}
\end{equation*}
$$

Then $\mathcal{M}=L^{\infty}(\Omega) \rtimes_{\alpha} G$ is called the von Neumann algebra obtained from the "Group measure space-construction.

[^0]: Date: 25/01/2010.

