
UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON

NEUMANN ALGEBRAS AND GROUP ACTIONS

1. Von Neumann Algebras

De�nition 1. Let H be a Hilbert space (usually �nite dimensional and separable),
and let B(H) be the *-algebra of bounded operators on H. M ⊆ B(H) is a von
Neumann Algebra i�

• M is a *-subalgebra of B(H)
• 1 ∈M
• M is SO-closed

Theorem 2 (von Neumann, 1929). M ⊆ B(H) is a von Neumann algebra i�
M =M∗ andM =M′′.

De�nition 3. The center of M is denoted by Z(M) and de�ned as Z(M) =
M∩M′.
M is a factor i� Z(M) = C · 1.

Type of factorM Model / characterization
In, n ∈ N Mn(C)
I∞ B(H), dim(H) =∞
II1 dim(M) =∞, ∃ tracial state τ :M→ C∀a, b ∈M : τ(ab) = τ(ba)
II∞ M∼= N⊗̄B(H), dim(H) =∞, N II1 − factor
III Everything else

If H is a separable Hilbert space andM⊆ B(H) a von Neumann algebra, then

(1.1) M =
∫ ⊕

Ω

M(ω)dω

where eachM(ω) is a factor. This is the desintegration ofM in factors.

2. Projections in a von Neumann algebra

De�nition 4. IfM is a von Neumann algebra, we set

(2.1) P (M) = {p ∈M|p = p∗ = p2}
the set of projections inM.

Theorem 5.

(2.2) M = span(P (M))
‖·‖

De�nition 6. For p, q ∈ P (M) we say p ∼ q i� ∃u ∈M : p = u∗u, q = uu∗.

De�nition 7. M is �nite i� (p ∈ P (M) : p ∼ 1⇒ p = 1).
M is properly in�nite i� ∃p, q ∈ P (M) : p ⊥ q, p ∼ q ∼ 1 In a von Neumann

algebra (but not in a general C*-algebra), this is the same as ∃p, q ∈ P (M) : p ⊥
q, p+ q = 1, p ∼ q ∼ 1.
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Type In and type II1 factors are �nite, type I∞, type II∞ and type III factors
are properly in�nite.

3. Traces

A II1-factorM has a unique trace state τ :

• τ is normal
• τ is faithful ((a ≥ 0, τ(a) = 0)⇒ a = 0)
• ∀p, q ∈ P (M) : p ∼ q ⇔ τ(p) = τ(q)
• τ(P (M)) = [0, 1]

A I∞-factor or II∞ factorMhas a normal faithful semi�nite trace τ de�ned on
M+ (Semi�nite means that the set {a ∈M|τ(a ∗ a) <∞} is SO-dense inM.)

• τ is unique up to multiplication by λ ∈]0,∞[
• ∀a ∈M : τ(a∗a) = τ(aa∗)
• IfM is a type II∞-factor, τ(P (M)) = [0,∞]

4. group von Neumann Algebras

De�nition 8. If G is a discrete group (usually countable).Then we de�ne L(G) as
the von Neumann algebra generated by the left regular representation of G. For this
de�ne λ : G→ B(l2(G)) as ∀f ∈ l2(G)∀x, y ∈ G : (λ(x)f)(y) = f(x−1y). Set

(4.1) L(G) = span{λ(x)|x ∈ G}
SO

and

(4.2) C∗r (G) = span{λ(x)|x ∈ G}
‖·‖
.

Observe C∗r (G) ⊆ L(G).

L(G) is a �nite von Neumann algebra.

De�nition 9. A group G is an ICC-group i� ∀g ∈ G, g 6= e : {hgh−1|h ∈ H} is
in�nite.

Theorem 10. Let G 6= {e} then TFAE

• G is an ICC-group
• L(G) is a factor
• L(G) is a II1-factor

5. Injectivity and hyperfiniteness of von Neumann algebras

De�nition 11. M ⊆ B(H) is injective i� ∃p ∈ P (B(H)), ‖p‖ = 1 of B(H) onto
M.

De�nition 12. M is hyper�nite (or AFD) on a separable Hilbert space i� M =
∪∞n=1Mn whereM1 ⊆M2 ⊆ . . . are �nite dimensional von Neumann algebras.

Theorem 13 (Connes, 1976). If H separable, andM⊆ B(H). ThenM is injective
i�M is hyper�nite.

Theorem 14 (Murray + von Neumann, 1940). There is up to isomorphism only
one hyper�nite factor of type II1 on a separable Hilbert space.
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6. Amendable groups

De�nition 15. A discrete group G is amendable if ∃µ : P(G) → [0, 1] �nite
additive measure with µ(G) = 1 such that ∀A ⊆ G∀x ∈ G : µ(xA) = µ(A).

Observation 16. G is amendable i� ∃ state m : l∞(G) → C such that ∀f ∈
l∞(G)∀x ∈ G : m(xf) = m(f) where ∀x, y ∈ G : (xf)(y) = f(x−1y).

Theorem 17 (Sakai, Connes). If G is a discrete countable group TFAE

• G amendable
• L(G) is injective
• L(G) is hyper�nite

where the equivalence of the �rst two statements is old, and does not require count-
ability.

Remark 18. G amendable i� C∗r (G) nuclear.

Corollary 19. If G is a amendable, countable ICC-group then L(G) ∼= R the
unique hyper�nite II1-factor.

De�nition 20. A group G is solvable i� ∃G1 C G2 C · · · C Gn = G such that
Gk+1/Gk is abelian.

De�nition 21.

(6.1) Fn = group generated by {g1, . . . , gn| no relations }

(6.2) SL(n,Z) = {g ∈Mn(Z)|det(g) = 1}

(6.3) PSL(n,Z) =
{

SL(n,Z) n odd
SL(n,Z)/{±1} n even

(6.4) Sn = { permutations of {1, . . . , n}}

(6.5) S∞ =
∞⋃
n=1

Sn

Group Amendable
�nite groups yes
abelian groups yes
solvable groups yes
inductive limits of amendable groups yes
S∞ yes
Fn, 2 ≤ n ≤ ∞ no
SL(n,Z), 2 ≤ n no
PSL(n,Z), 2 ≤ n no

Remark 22. PSL(n,Z) is an ICC-group.

Remark 23. L(Fn) � L(S∞) ∼= R for 2 ≤ n ≤ ∞ as L(Fn) is not injective, but
Fn, S∞ are ICC-groups, so L(Fn) is a II1-factor not hyper�nite.



4UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

7. The fundamental group of II1-factors

Recall 24. LetM be a II1-factor, then

• M has unique trace state τ
• p, q ∈ P (M) : p ∼ q ⇔ τ(p) = τ(q)
• ∀t ∈ [0, 1]∃pt ∈ P (M) : t = τ(pt)

Observation 25. p, q ∈ P (M) : p ∼ q ⇒ pMp ∼= qMq as von Neumann algebras
on pH and qH and these are II1-factors too.

De�nition 26. If t ∈]0, 1] put Mt = ptMpt which is wellde�ned up to isomor-
phism.

For general t ∈]0,∞[ de�ne Mt = Mn(M)t/n where n ∈ N, n ≥ 2. (Have to
check thatMt doesn't depend on n up to isomorphism.

Proposition 27.

(7.1) (Ms)t =Mst ∀s, t > 0

and

(7.2) Mn = Mn(M) =M⊗Mn(C) ∀n ∈ N

De�nition 28. The fundamental group ofM is the set

(7.3) F(M) = {t ∈]0,∞[|Mt
∼=M}

Remark 29. F(M) is a multiplicative subgroup of (],∞[, ·) and

(7.4) F(M) ∩ [0, 1] = {τ(p)|p ∈ P (M) : pMp ∼=M}
and F(M) is the multiplicative group generated by {τ(p)|p ∈ P (M) : pMp ∼=M}
and

(7.5) F(M) = {τ(p)
τ(q)
|p, q ∈ P (M) : pMp ∼= qMq}

Observation 30. Mn(M) ∼= M i� n ∈ F(M) and (∀n ∈ N : Mn(M) ∼= M) i�
Q+ ⊆ F(M).

Example 31 (Murray + von Neumann ≈ 1940). If R is the hyper�nite II1-factor,
F(R) =]0,∞[.

Theorem 32 (Connes≈ 1975). If G has Kazhdan's property T (e.g. G ∼= PSL(n,Z), n ≥
3) then F(L(G)) is countable, in particular F(L(G)) (]0,∞[.

Theorem 33 (Radulescu + Dykema ≈ 1994). F(L(F∞)) =]0,∞[

Problem 34. Compute F(L(Fn)) for 2 ≤ n <∞.

Using free probability one can prove [Radulescu + Dykema] that L(Fn) ∼=
L(F2)tn where tn = 1√

n−1
. From this follows that F(L(Fn)) = F(L(F2)) for

2 ≤ n <∞.

Theorem 35 (Radulescu + Dykema). Either

• F(L(F2)) = {1} in which case L(F2), L(F3), . . . , L(F∞) are all nonisomor-
phic II1-factors or

• F(L(F2)) =]0,∞[ in which case L(F2), L(F3), . . . , L(F∞) are all isomorphic
II1-factors or
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8. Interpolated free group factors

De�nition 36. For t ∈]1,∞[ de�ne L(ft) = L([F2) 1√
t−1

.

Remark 37. L(F 7
6
∼= L(PSL(2,Z)) ∼= L(Z2 ? Z3) hence F(L(PSL(2,Z)) =

F(L(F2)).

Theorem 38 (Sorin + Popa, 2004-2006). There exists a II1-factorM on a sepa-
rable Hilbert space such that F(M) = {1}. (e.g.M = L(Z2 o SL(2,Z)))

Theorem 39 (Popa, Popa + Adrian + Petersen). For all countable subgroups
Γ ⊆]0,∞[ there exists a II1-factorM such that {(M) = Γ.

Theorem 40 (Popa + Vaes, 2008). There exists a II1-factorM such that F(M) (
]0,∞[ but F(M) is not countable.

9. The "Group measure space"construction

De�nition 41. Let A ⊆ B(H) be a von Neumann algebra and G be a discrete
group and α : G→ Aut(A) be an action of G on A (a group homomorphism).

Then the crossed productM = AoαG acts on l2(G,H) andM = {π(A)∪λ(G)}′′
where π : A → B(l2(G,H)) is given by

(9.1) (π(a)ξ)(g) = α−1
g (a)ξ(g) ξ ∈ l2(G,H), g ∈ G

where

(9.2) l2(G,H) ∼=
⊕
g∈G

H

and λ : G→ B(l2(G,H)) is given by

(9.3) (λ(g)ξ)(h) = ξ(g−1h) ξ ∈ l2(G,H), g, h ∈ G.

(π, λ) is a ??? representation of (A, G, α):

(9.4) λ(g)π(a)λ(g)−1 = π(αg(a)) a ∈ A, g ∈ G.
and A ∼= π(A) ⊆ Aoα G and Ao−αG is generated by A and λ(g) for g ∈ G and

(9.5) λ(g)aλ(g)−1 = αg(a).

10. Special case

If H is a seperable Hilbert space and A is abelian then A ∼= L∞(Ω, µ) for some
standard Borel space Ω and σ-�nite measure µ.

Note that L∞(Ω, µ) ∼= L∞(Ω, ν) when ν ∈ [µ] that is when µ and ν have the
same null sets (ν � µ and µ� ν).

Given a group homomorphism σ : G→ Iso(Ω, [µ]), that is a [µ]-preserving Borel
isomorphism of Ω), one can associate an action α : G→ Aut(L∞(Ω, µ)) by

(10.1) α(f)(ω) = f(σ−1ω) f ∈ L∞(Ω, µ).

ThenM = L∞(Ω) oα G is called the von Neumann algebra obtained from the
"Group measure space-construction.


