UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

1. VON NEUMANN ALGEBRAS

Definition 1. Let H be a Hilbert space (usually finite dimensional and separable), and let B(H) be the *-algebra of bounded operators on H. $\mathcal{M} \subseteq B(H)$ is a von Neumann Algebra iff

- \mathcal{M} is a *-subalgebra of B(H)
- $1 \in \mathcal{M}$
- \mathcal{M} is SO-closed

Theorem 2 (von Neumann, 1929). $\mathcal{M} \subseteq B(H)$ is a von Neumann algebra iff $\mathcal{M} = \mathcal{M}^*$ and $\mathcal{M} = \mathcal{M}''$.

Definition 3. The center of \mathcal{M} is denoted by $Z(\mathcal{M})$ and defined as $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$.

 \mathcal{M} is a factor iff $Z(\mathcal{M}) = \mathbb{C} \cdot 1$.

Type of factor ${\cal M}$	Model / characterization
$I_n, n \in \mathbb{N}$	$M_n(\mathbb{C})$
I_{∞}	$B(H), \dim(H) = \infty$
II_1	$\dim(\mathcal{M}) = \infty, \exists \text{ tracial state } \tau : \mathcal{M} \to \mathbb{C} \forall a, b \in \mathcal{M} : \tau(ab) = \tau(ba)$
II_{∞}	$\mathcal{M} \cong \mathcal{N} \bar{\otimes} B(H), \dim(H) = \infty, \mathcal{N} II_1 - \text{factor}$
III	Everything else

If H is a separable Hilbert space and $\mathcal{M} \subseteq B(H)$ a von Neumann algebra, then

(1.1)
$$\mathcal{M} = \int_{\Omega}^{\oplus} \mathcal{M}(\omega) d\omega$$

where each $\mathcal{M}(\omega)$ is a factor. This is the desintegration of \mathcal{M} in factors.

2. PROJECTIONS IN A VON NEUMANN ALGEBRA

Definition 4. If \mathcal{M} is a von Neumann algebra, we set

(2.1)
$$P(\mathcal{M}) = \{ p \in \mathcal{M} | p = p^* = p^2 \}$$

the set of projections in \mathcal{M} .

Theorem 5.

(2.2)
$$\mathcal{M} = \overline{span(P(\mathcal{M}))}^{\|\cdot\|}$$

Definition 6. For $p, q \in P(\mathcal{M})$ we say $p \sim q$ iff $\exists u \in \mathcal{M} : p = u^*u, q = uu^*$.

Definition 7. \mathcal{M} is finite iff $(p \in P(\mathcal{M}) : p \sim 1 \Rightarrow p = 1)$.

 \mathcal{M} is properly infinite iff $\exists p, q \in P(\mathcal{M}) : p \perp q, p \sim q \sim 1$ In a von Neumann algebra (but not in a general C*-algebra), this is the same as $\exists p, q \in P(\mathcal{M}) : p \perp q, p+q=1, p \sim q \sim 1$.

Date: 25/01/2010.

Type I_n and type II_1 factors are finite, type I_{∞} , type II_{∞} and type III factors are properly infinite.

3. TRACES

A II_1 -factor \mathcal{M} has a unique trace state τ :

- τ is normal
- τ is faithful $((a \ge 0, \tau(a) = 0) \Rightarrow a = 0)$
- $\forall p, q \in P(\mathcal{M}) : p \sim q \Leftrightarrow \tau(p) = \tau(q)$
- $\tau(P(\mathcal{M})) = [0,1]$

A I_{∞} -factor or II_{∞} factor \mathcal{M} has a normal faithful semifinite trace τ defined on \mathcal{M}^+ (Semifinite means that the set $\{a \in \mathcal{M} | \tau(a * a) < \infty\}$ is SO-dense in \mathcal{M} .)

- τ is unique up to multiplication by $\lambda \in]0,\infty[$
- $\forall a \in \mathcal{M} : \tau(a^*a) = \tau(aa^*)$
- If \mathcal{M} is a type II_{∞} -factor, $\tau(P(\mathcal{M})) = [0, \infty]$

4. GROUP VON NEUMANN ALGEBRAS

Definition 8. If G is a discrete group (usually countable). Then we define L(G) as the von Neumann algebra generated by the left regular representation of G. For this define $\lambda: G \to B(l^2(G))$ as $\forall f \in l^2(G) \forall x, y \in G : (\lambda(x)f)(y) = f(x^{-1}y)$. Set

(4.1)
$$L(G) = \overline{span\{\lambda(x)|x \in G\}}^{SO}$$

and

(4.2)
$$C_r^*(G) = \overline{span\{\lambda(x)|x \in G\}}^{\|\cdot\|}$$

Observe $C_r^*(G) \subseteq L(G)$.

L(G) is a finite von Neumann algebra.

Definition 9. A group G is an ICC-group iff $\forall g \in G, g \neq e : \{hgh^{-1} | h \in H\}$ is infinite.

Theorem 10. Let $G \neq \{e\}$ then TFAE

- G is an ICC-group
- L(G) is a factor
- L(G) is a II₁-factor

5. INJECTIVITY AND HYPERFINITENESS OF VON NEUMANN ALGEBRAS

Definition 11. $\mathcal{M} \subseteq B(H)$ is injective iff $\exists p \in P(B(H)), ||p|| = 1$ of B(H) onto \mathcal{M} .

Definition 12. \mathcal{M} is hyperfinite (or AFD) on a separable Hilbert space iff $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ where $\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \ldots$ are finite dimensional von Neumann algebras.

Theorem 13 (Connes, 1976). If H separable, and $\mathcal{M} \subseteq B(H)$. Then \mathcal{M} is injective iff \mathcal{M} is hyperfinite.

Theorem 14 (Murray + von Neumann, 1940). There is up to isomorphism only one hyperfinite factor of type II_1 on a separable Hilbert space.

6. Amendable groups

Definition 15. A discrete group G is amendable if $\exists \mu : \mathcal{P}(G) \to [0,1]$ finite additive measure with $\mu(G) = 1$ such that $\forall A \subseteq G \forall x \in G : \mu(xA) = \mu(A)$.

Observation 16. G is amendable iff \exists state $m : l^{\infty}(G) \to \mathbb{C}$ such that $\forall f \in l^{\infty}(G) \forall x \in G : m(xf) = m(f)$ where $\forall x, y \in G : (xf)(y) = f(x^{-1}y)$.

Theorem 17 (Sakai, Connes). If G is a discrete countable group TFAE

- G amendable
- L(G) is injective
- L(G) is hyperfinite

where the equivalence of the first two statements is old, and does not require countability.

Remark 18. G amendable iff $C_r^*(G)$ nuclear.

Corollary 19. If G is a amendable, countable ICC-group then $L(G) \cong \mathcal{R}$ the unique hyperfinite II₁-factor.

Definition 20. A group G is solvable iff $\exists G_1 \lhd G_2 \lhd \cdots \lhd G_n = G$ such that G_{k+1}/G_k is abelian.

Definition 21.

(6.1) $\mathbb{F}_n = \text{ group generated by } \{g_1, \dots, g_n | \text{ no relations } \}$

(6.2)
$$SL(n,\mathbb{Z}) = \{g \in M_n(\mathbb{Z}) | \det(g) = 1\}$$

(6.3)
$$PSL(n,\mathbb{Z}) = \begin{cases} SL(n,\mathbb{Z}) & n \text{ odd} \\ SL(n,\mathbb{Z})/\{\pm 1\} & n \text{ even} \end{cases}$$

(6.4)
$$S_n = \{ \text{ permutations of } \{1, \dots, n\} \}$$

$$(6.5) S_{\infty} = \bigcup_{n=1}^{\infty} S_n$$

Group	Amendable
finite groups	yes
abelian groups	yes
solvable groups	yes
inductive limits of amendable groups	yes
S_{∞}	yes
$\mathbb{F}_n, 2 \le n \le \infty$	no
$SL(n,\mathbb{Z}), 2 \le n$	no
$PSL(n,\mathbb{Z}), 2 \le n$	no

Remark 22. $PSL(n, \mathbb{Z})$ is an ICC-group.

Remark 23. $L(\mathbb{F}_n) \ncong L(S_\infty) \cong \mathcal{R}$ for $2 \le n \le \infty$ as $L(\mathbb{F}_n)$ is not injective, but \mathbb{F}_n, S_∞ are ICC-groups, so $L(\mathbb{F}_n)$ is a II₁-factor not hyperfinite.

7. The fundamental group of II_1 -factors

Recall 24. Let \mathcal{M} be a II_1 -factor, then

- \mathcal{M} has unique trace state τ
- $p, q \in P(\mathcal{M}) : p \sim q \Leftrightarrow \tau(p) = \tau(q)$
- $\forall t \in [0,1] \exists p_t \in P(\mathcal{M}) : t = \tau(p_t)$

Observation 25. $p, q \in P(\mathcal{M}) : p \sim q \Rightarrow p\mathcal{M}p \cong q\mathcal{M}q$ as von Neumann algebras on pH and qH and these are II₁-factors too.

Definition 26. If $t \in [0,1]$ put $\mathcal{M}_t = p_t \mathcal{M} p_t$ which is welldefined up to isomorphism.

For general $t \in]0, \infty[$ define $\mathcal{M}_t = M_n(\mathcal{M})_{t/n}$ where $n \in \mathbb{N}, n \geq 2$. (Have to check that \mathcal{M}_t doesn't depend on n up to isomorphism.

Proposition 27.

(7.1)
$$(\mathcal{M}_s)_t = \mathcal{M}_{st} \qquad \forall s, t > 0$$

and

(7.2)
$$\mathcal{M}_n = M_n(\mathcal{M}) = \mathcal{M} \otimes M_n(\mathbb{C}) \quad \forall n \in \mathbb{N}$$

Definition 28. The fundamental group of \mathcal{M} is the set

(7.3)
$$\mathcal{F}(\mathcal{M}) = \{t \in]0, \infty[|\mathcal{M}_t \cong \mathcal{M}\}\}$$

Remark 29. $\mathcal{F}(\mathcal{M})$ is a multiplicative subgroup of $(], \infty[, \cdot)$ and

(7.4)
$$\mathcal{F}(\mathcal{M}) \cap [0,1] = \{\tau(p) | p \in P(\mathcal{M}) : p\mathcal{M}p \cong \mathcal{M}\}$$

and $\mathcal{F}(\mathcal{M})$ is the multiplicative group generated by $\{\tau(p)|p \in P(\mathcal{M}) : p\mathcal{M}p \cong \mathcal{M}\}$ and

(7.5)
$$\mathcal{F}(\mathcal{M}) = \{ \frac{\tau(p)}{\tau(q)} | p, q \in P(\mathcal{M}) : p\mathcal{M}p \cong q\mathcal{M}q \}$$

Observation 30. $M_n(\mathcal{M}) \cong \mathcal{M}$ iff $n \in \mathcal{F}(\mathcal{M})$ and $(\forall n \in \mathbb{N} : M_n(\mathcal{M}) \cong \mathcal{M})$ iff $\mathbb{Q}^+ \subseteq \mathcal{F}(\mathcal{M})$.

Example 31 (Murray + von Neumann ≈ 1940). If \mathcal{R} is the hyperfinite II₁-factor, $\mathcal{F}(\mathcal{R}) =]0, \infty[$.

Theorem 32 (Connes ≈ 1975). If G has Kazhdan's property T (e.g. $G \cong PSL(n, \mathbb{Z}), n \geq 3$) then $\mathcal{F}(L(G))$ is countable, in particular $\mathcal{F}(L(G)) \subsetneq]0, \infty[$.

Theorem 33 (Radulescu + Dykema \approx 1994). $\mathcal{F}(L(\mathbb{F}_{\infty})) =]0, \infty[$

Problem 34. Compute $\mathcal{F}(L(\mathbb{F}_n))$ for $2 \leq n < \infty$.

Using free probability one can prove [Radulescu + Dykema] that $L(\mathbb{F}_n) \cong L(\mathbb{F}_2)_{t_n}$ where $t_n = \frac{1}{\sqrt{n-1}}$. From this follows that $\mathcal{F}(L(\mathbb{F}_n)) = \mathcal{F}(L(\mathbb{F}_2))$ for $2 \leq n < \infty$.

Theorem 35 (Radulescu + Dykema). Either

- $\mathcal{F}(L(\mathbb{F}_2)) = \{1\}$ in which case $L(\mathbb{F}_2), L(\mathbb{F}_3), \ldots, L(\mathbb{F}_\infty)$ are all nonisomorphic II_1 -factors or
- *F*(L(𝔽₂)) =]0,∞[in which case L(𝔽₂), L(𝔽₃),..., L(𝔽_∞) are all isomorphic *II*₁-factors or

8. INTERPOLATED FREE GROUP FACTORS

Definition 36. For $t \in]1, \infty[$ define $L(\mathfrak{V}_t) = L([F_2)_{\frac{1}{\sqrt{t-1}}}]$.

Remark 37. $L(\mathbb{F}_{\frac{7}{6}} \cong L(PSL(2,\mathbb{Z})) \cong L(\mathbb{Z}_2 \star \mathbb{Z}_3)$ hence $\mathcal{F}(L(PSL(2,\mathbb{Z})) = \mathcal{F}(L(\mathbb{F}_2))$.

Theorem 38 (Sorin + Popa, 2004-2006). There exists a II_1 -factor \mathcal{M} on a separable Hilbert space such that $\mathcal{F}(\mathcal{M}) = \{1\}$. (e.g. $\mathcal{M} = L(\mathbb{Z}_2 \rtimes SL(2,\mathbb{Z})))$

Theorem 39 (Popa, Popa + Adrian + Petersen). For all countable subgroups $\Gamma \subseteq]0, \infty[$ there exists a II_1 -factor \mathcal{M} such that $\{(\mathcal{M}) = \Gamma.$

Theorem 40 (Popa + Vaes, 2008). There exists a II_1 -factor \mathcal{M} such that $\mathcal{F}(\mathcal{M}) \subsetneq]0, \infty[$ but $\mathcal{F}(\mathcal{M})$ is not countable.

9. The "Group measure space" construction

Definition 41. Let $\mathcal{A} \subseteq B(H)$ be a von Neumann algebra and G be a discrete group and $\alpha : G \to Aut(\mathcal{A})$ be an action of G on \mathcal{A} (a group homomorphism).

Then the crossed product $\mathcal{M} = \mathcal{A} \rtimes_{\alpha} G$ acts on $l^2(G, H)$ and $M = \{\pi(\mathcal{A}) \cup \lambda(G)\}''$ where $\pi : \mathcal{A} \to B(l^2(G, H))$ is given by

(9.1)
$$(\pi(a)\xi)(g) = \alpha_g^{-1}(a)\xi(g) \qquad \xi \in l^2(G,H), g \in G$$

where

$$(9.2) label{eq:loss} l^2(G,H) \cong \bigoplus_{a \in G} H$$

and $\lambda: G \to B(l^2(G, H))$ is given by

(9.3)
$$(\lambda(g)\xi)(h) = \xi(g^{-1}h) \qquad \xi \in l^2(G,H), g, h \in G.$$

 (π, λ) is a ??? representation of (\mathcal{A}, G, α) :

(9.4)
$$\lambda(g)\pi(a)\lambda(g)^{-1} = \pi(\alpha_g(a)) \qquad a \in \mathcal{A}, g \in G.$$

and $\mathcal{A} \cong \pi(\mathcal{A}) \subseteq \mathcal{A} \rtimes_{\alpha} G$ and $\mathcal{A} \rtimes -\alpha G$ is generated by \mathcal{A} and $\lambda(g)$ for $g \in G$ and (9.5) $\lambda(g)a\lambda(g)^{-1} = \alpha_g(a).$

10. Special case

If *H* is a seperable Hilbert space and \mathcal{A} is abelian then $\mathcal{A} \cong L^{\infty}(\Omega, \mu)$ for some standard Borel space Ω and σ -finite measure μ .

Note that $L^{\infty}(\Omega, \mu) \cong L^{\infty}(\Omega, \nu)$ when $\nu \in [\mu]$ that is when μ and ν have the same null sets $(\nu \ll \mu \text{ and } \mu \ll \nu)$.

Given a group homomorphism $\sigma: G \to \operatorname{Iso}(\Omega, [\mu])$, that is a $[\mu]$ -preserving Borel isomorphism of Ω), one can associate an action $\alpha: G \to \operatorname{Aut}(L^{\infty}(\Omega, \mu))$ by

(10.1)
$$\alpha(f)(\omega) = f(\sigma^{-1}\omega) \qquad f \in L^{\infty}(\Omega, \mu).$$

Then $\mathcal{M} = L^{\infty}(\Omega) \rtimes_{\alpha} G$ is called the von Neumann algebra obtained from the "Group measure space-construction.