UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON
NEUMANN ALGEBRAS AND GROUP ACTIONS

1. VoN NEUMANN ALGEBRAS

Definition 1. Let H be a Hilbert space (usually finite dimensional and separable),
and let B(H) be the *-algebra of bounded operators on H. M C B(H) is a von
Neumann Algebra iff

o M is a *-subalgebra of B(H)

e leM

o M is SO-closed

Theorem 2 (von Neumann, 1929). M C B(H) is a von Neumann algebra iff
M= M* and M = M".
Definition 3. The center of M is denoted by Z(M) and defined as Z(M) =
Mo M.

M is a factor iff Z(M)=C-1.

Type of factor M | Model / characterization

I,, neN M, (C)

I B(H), dim(H)=o0

In dim(M) = oo, 3 tracial state 7 : M — CVa,b € M : 7(ab) = 7(ba)
II, M2 N@B(H), dim(H)=o00, N II; — factor

117 Everything else

If H is a separable Hilbert space and M C B(H) a von Neumann algebra, then
@
(1.1) M = / M(w)dw
Q
where each M(w) is a factor. This is the desintegration of M in factors.

2. PROJECTIONS IN A VON NEUMANN ALGEBRA
Definition 4. If M is a von Neumann algebra, we set
(2.1) PM)={pe Mlp=p" =p"}
the set of projections in M.
Theorem 5.
(2:2) M = span(P(M))
Definition 6. For p,q € P(M) we say p ~ q iff Ju € M : p = u*u,q = uu®.

Definition 7. M is finite iff (p € P(M) :p~1=p=1).

M s properly infinite iff Ip,q € P(M) :p L ¢,p ~ q ~ 1 In a von Neumann
algebra (but not in a general C*-algebra), this is the same as Ip,q € P(M) : p L
¢&p+qg=1p~qg~1
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Type I, and type II; factors are finite, type I, type 1., and type I1I factors
are properly infinite.

3. TRACES

A II-factor M has a unique trace state 7:

T is normal
7 is faithful ((a > 0,7(a) =0) = a = 0)
Vp,q € P(M) :p~q < 7(p) =1(q)
T(P(M)) = [0,1]
A I -factor or I1, factor Mhas a normal faithful semifinite trace 7 defined on
M (Semifinite means that the set {a € M|7r(a xa) < oo} is SO-dense in M.)
e 7 is unique up to multiplication by A €]0, oo]
o Vo e M: 1(a*a) = 1(aa”)
o If M is a type Il -factor, 7(P(M)) = [0, o0]

4. GROUP VON NEUMANN ALGEBRAS

Definition 8. If G is a discrete group (usually countable). Then we define L(G) as
the von Neumann algebra generated by the left reqular representation of G. For this
define A : G — B(I*(GQ)) as Vf € I2(G)Vz,y € G : (\N(z)f)(y) = f(z~ y). Set

(4.1) L(G) = span{N@)jz € G} ©
and
(4.2) C*(G) = spanA@)z e G} .

Observe Cf(G) C L(G).

L(G) is a finite von Neumann algebra.
Definition 9. A group G is an ICC-group iff Vg € G,g # e : {hgh™'|h € H} is
infinite.

Theorem 10. Let G # {e} then TFAE
G is an ICC-group

L(G) is a factor

L(G) is a II;-factor

5. INJECTIVITY AND HYPERFINITENESS OF VON NEUMANN ALGEBRAS

Definition 11. M C B(H) is injective iff 3p € P(B(H)), ||p|| = 1 of B(H) onto
M.

Definition 12. M is hyperfinite (or AFD) on a separable Hilbert space iff M =
Use M, where My C My C ... are finite dimensional von Neumann algebras.

Theorem 13 (Connes, 1976). If H separable, and M C B(H). Then M is injective
iff M is hyperfinite.

Theorem 14 (Murray + von Neumann, 1940). There is up to isomorphism only
one hyperfinite factor of type 11, on a separable Hilbert space.
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6. AMENDABLE GROUPS

Definition 15. A discrete group G is amendable if Iu : P(G) — [0,1] finite
additive measure with u(G) =1 such that VA C GVx € G : u(zA) = u(A).

Observation 16. G is amendable iff 3 state m : [*°(G) — C such that Vf €
[°(G)Vz € G:m(zf) =m(f) where Va,y € G : (zf)(y) = f(z™ty).
Theorem 17 (Sakai, Connes). If G is a discrete countable group TFAE

e G amendable
o L(G) is injective
o L(G) is hyperfinite

where the equivalence of the first two statements is old, and does not require count-
ability.

Remark 18. G amendable iff C*(G) nuclear.

Corollary 19. If G is a amendable, countable ICC-group then L(G) = R the
unique hyperfinite 11, -factor.

Definition 20. A group G is solvable iff 3G1 < Gy < --- < Gy, = G such that
Gr+1/Gi is abelian.

Definition 21.

(6.1) F, = group generated by {g1, ..., gn| no relations }
(6.2) SL(n,Z) ={g € M,(Z)|det(g) =1}
_ SL(n,Z) n odd
(6.3) PSL(n,Z) = { SL(n,Z)/{£1} n even
(6.4) Sp = { permutations of {1,...,n}}
(6.5) S, = U S,
n=1

Group Amendable

finite groups yes

abelian groups yes

solvable groups yes

inductive limits of amendable groups | yes

Soo yes

F, 2<n<o no

SL(n,Z), 2<n no

PSL(n,Z), 2<mn no

Remark 22. PSL(n,Z) is an ICC-group.

Remark 23. L(F,) 2 L(Sx) = R for 2 <n < oo as L(F,) is not injective, but
F,, S are ICC-groups, so L(IF,,) is a II;-factor not hyperfinite.



UFFE HAAGERUPS FIRST TALK AT MASTERCLASS ON VON NEUMANN ALGEBRAS AND GROUP ACTIONS

7. THE FUNDAMENTAL GROUP OF II;-FACTORS

Recall 24. Let M be a 1I;-factor, then

e M has unique trace state T

® p,g€ P(M):p~qe7(p)=r(q)

o Vt € [0,1]3p € P(M) : t =7(p)
Observation 25. p,q € P(M) : p ~ g = pMp = qMq as von Neumann algebras
on pH and qH and these are 111 -factors too.

Definition 26. If ¢t €]0,1] put M; = p;Mp; which is welldefined up to isomor-
phism.

For general t €]0,00[ define My = M, (M), where n € N,n > 2. (Have to
check that My doesn’t depend on n up to isomorphism.

Proposition 27.

(7.1) (M) = Mgt Vs, t >0

and

(7.2) My = M,(M)=M®®M,(C) VneN
Definition 28. The fundamental group of M is the set

(7.3) F(M) = {t €]0, c0[| M = M}
Remark 29. F(M) is a multiplicative subgroup of (], 00[,-) and
(7.4) FM)N[0,1] ={r(p)lp € P(M) : pMp = M}

and F(M) is the multiplicative group generated by {T(p)|p € P(M) : pMp = M}
and

_7p) oMo o
(7.5) F(M) = {@Inq € P(M) : pMp = gMgq}
Observation 30. M, (M) = M iff n € F(M) and (Y¥n € N : M, (M) = M) iff
Qt C F(M).
Example 31 (Murray + von Neumann ~ 1940). If R is the hyperfinite 11 -factor,
F(R) =0, 00[.

Theorem 32 (Connes ~ 1975). If G has Kazhdan’s property T (e.g. G = PSL(n,Z),n >
3) then F(L(Q)) is countable, in particular F(L(G)) €0, o0].

Theorem 33 (Radulescu + Dykema = 1994). F(L(F)) =]0, oo|

Problem 34. Compute F(L(F,,)) for 2 <n < co.

~

Using free probability one can prove [Radulescu + Dykema] that L(F,) =

L(F3y);, where t,, = \/% From this follows that F(L(F,)) = F(L(Fg)) for
2 <n<oo.

Theorem 35 (Radulescu + Dykema). FEither
o F(L(F2)) = {1} in which case L(F3), L(Fs),...,L(F) are all nonisomor-
phic II-factors or
o F(L(Fq)) =|0, 00 in which case L(F3), L(F3), ..., L(F) are all isomorphic
11 -factors or
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8. INTERPOLATED FREE GROUP FACTORS

Definition 36. For t €]1,00[ define L(U;) = L([F») SEp
Remark 37. L(IF% ~ L(PSL(2,72)) = L(Zy % Z3) hence F(L(PSL(2,Z2)) =
F(L(F2)).

Theorem 38 (Sorin + Popa, 2004-2006). There exists a II1-factor M on a sepa-
rable Hilbert space such that F(M) = {1}. (e.g. M = L(Zy x SL(2,7Z)))

Theorem 39 (Popa, Popa + Adrian + Petersen). For all countable subgroups
I’ CJ0, oo[ there exists a II-factor M such that {(M) =T.

Theorem 40 (Popa + Vaes, 2008). There exists a I11-factor M such that F(M) C
10, 0o but F(M) is not countable.

9. THE "GROUP MEASURE SPACE"CONSTRUCTION

Definition 41. Let A C B(H) be a von Neumann algebra and G be a discrete
group and o : G — Aut(A) be an action of G on A (a group homomorphism).

Then the crossed product M = Ax G acts on 1*>(G, H) and M = {r(A)UN(G)}"
where 7 : A — B(I*(G, H)) is given by

(9.1) (m(@)é)(9) = ay ' (@)é(g) €€ l’(G,H),geC
where
(9.2) PG H=PH

geG

and \ : G — B(I*(G, H)) is given by
(9.3) A9)&)(h) =&(g™'h) €€ l*(G,H),g,h €G.
(m, A) is a 777 representation of (A, G, a):
(9.4) Mg)m(a)A(g) ™! = m(ay(a)) acAgeG.
and A= 7(A) C Ax, G and A x —aG is generated by A and A(g) for g € G and
(9.5) Mg)ar(g) ™! = ay(a).
10. SPECIAL CASE

If H is a seperable Hilbert space and A is abelian then A 2 L (Q, 1) for some
standard Borel space 2 and o-finite measure p.

Note that L>(Q, u) & L>(Q,v) when v € [u] that is when p and v have the
same null sets (v < p and p < v).

Given a group homomorphism o : G — Iso(f, [u]), that is a [p]-preserving Borel
isomorphism of 2), one can associate an action a : G — Aut(L>(£2, 1)) by

(10.1) a(f)w)=flo7lw)  feL®Qp).
Then M = L*>®(Q2) x4 G is called the von Neumann algebra obtained from the
"Group measure space-construction.



