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Let 0 < α < 1 be irrational.

Recall there is a unique sequence (an) ⊆ Z+ with

pn

qn
:=

1

a1 + 1
a2+

1
a3+ 1

...+ 1
an

such that α = limn→∞

pn
qn

.

We write α = [a1, a2, ...] in it’s continued fraction
decomposition.
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Continued Fractions

Let 0 < α < 1 be irrational.

Recall there is a unique sequence (an) ⊆ Z+ with

pn

qn
:=

1

a1 + 1
a2+

1
a3+ 1

...+ 1
an

such that α = limn→∞

pn
qn

.

We write α = [a1, a2, ...] in it’s continued fraction
decomposition.

This provides a nice, algorithmic approximation of irrational
numbers by rational numbers.
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Classical Gauss Map

The Gauss map G : [0, 1] → [0, 1] is defined as

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Then G is a Bernoulli shift for continued fractions.

G([a1, a2, a3, ..]) = G
( 1

a1 + 1
a2+

1
a3···

)

= a1 +
1

a2 + 1
a3···

− a1 = [a2, a3, ...].
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Gauss’ Problem

Let m denote Lebesgue measure and define

mn(x) = m(G−n[0, x ])

In an 1812 letter to Laplace, Gauss stated that he had
shown that

mn(x) → ln(1+x)
ln 2 as n → ∞

and that it would be very desirable to have a good estimate
for the error term

en(x) :=
∣∣∣mn(x) −

ln(1 + x)

ln 2

∣∣∣

for large n.
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A proof of Gauss’ claim didn’t surface until 1928 by
Kuzmin.

In 1974 Wirsing obtained the optimal bound for the error
term en(x).

(Wirsing 74) There is an optimal constant q ∼ .303 such
that en(x) ≤ qn.
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Solution of Gauss’ Problem

A proof of Gauss’ claim didn’t surface until 1928 by
Kuzmin.

In 1974 Wirsing obtained the optimal bound for the error
term en(x).

(Wirsing 74) There is an optimal constant q ∼ .303 such
that en(x) ≤ qn.

Why would Gauss say a good estimate would be "very
desirable"?
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One possibility...

Fix k , n ∈ Z+.

What is the probability that a given number α = [a1, a2, ...]
has an = k?

The solution to Gauss’ Problem provides an excellent
estimate for large n.

Indeed, say k = 2 then

m{[a1, a2, , ] : an = 2} = m(G−n[1
3 , 1

2 ]) =
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One possibility...

Fix k , n ∈ Z+.

What is the probability that a given number α = [a1, a2, ...]
has an = k?

The solution to Gauss’ Problem provides an excellent
estimate for large n.

Indeed, say k = 2 then

m{[a1, a2, , ] : an = 2} = m(G−n[1
3 , 1

2 ]) =

= mn(
1
2) − mn(

1
3) ∼ ln(9/8)

ln 2 + (.303..)n.
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The point

A study of the dynamics of the classical Gauss map has
had many applications throughout mathematics (especially
probability).

One example is the solution of Gauss’ problem.

See "Metrical Theory of Continued Fractions" by Iosifescu
& Kraaikamp for complete list.

We would like to import these ideas into the
noncommutative world.

Step 1 in this program is importing the Gauss Map to the
noncommutative world.

We recall candidates for "noncommutative irrational
numbers"

And for the "noncommutative unit interval."
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Effros Shen Algebras

Effros and Shen[80] constructed for each irrational number
θ an AF algebra Cθ.

Let θ = [a1, a2, ...] = limn→∞

pn
qn

.

Then define

Cθ := lim
n→∞

(
Mqn ⊕ Mqn−1 ,

[
an 1
1 0

] )
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θ an AF algebra Cθ.
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Then define

Cθ := lim
n→∞
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[
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1 0

] )

So, Cθ is approximated by finite dimensional C*-algebras in
the same way that θ is approximated by rational numbers.
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Effros Shen Algebras

Effros and Shen[80] constructed for each irrational number
θ an AF algebra Cθ.

Let θ = [a1, a2, ...] = limn→∞

pn
qn

.

Then define

Cθ := lim
n→∞

(
Mqn ⊕ Mqn−1 ,

[
an 1
1 0

] )

So, Cθ is approximated by finite dimensional C*-algebras in
the same way that θ is approximated by rational numbers.

Let’s think of Cθ as a "noncommutative irrational number."
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Figure: Bratelli diagram of A
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Properties of A

The center of A is isomorphic to C[0, 1]

The maximal ideal space of A is homeomorphic to [0, 1].

For each θ ∈ [0, 1], let Iθ denote the maximal ideal
associated to θ

For θ irrational A/Iθ ∼= Cθ

For θ = p/q we have A/Iθ ∼= Mq.
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Properties of A

The center of A is isomorphic to C[0, 1]

The maximal ideal space of A is homeomorphic to [0, 1].

For each θ ∈ [0, 1], let Iθ denote the maximal ideal
associated to θ

For θ irrational A/Iθ ∼= Cθ

For θ = p/q we have A/Iθ ∼= Mq.

So if we (incorrectly) view A as operator valued continuous
functions on its maximal ideal space..then each function
evaluated at θ takes values in the Effros Shen algebra Cθ.
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Properties of A

The center of A is isomorphic to C[0, 1]

The maximal ideal space of A is homeomorphic to [0, 1].

For each θ ∈ [0, 1], let Iθ denote the maximal ideal
associated to θ

For θ irrational A/Iθ ∼= Cθ

For θ = p/q we have A/Iθ ∼= Mq.

So if we (incorrectly) view A as operator valued continuous
functions on its maximal ideal space..then each function
evaluated at θ takes values in the Effros Shen algebra Cθ.

For these reasons, we feel it is reasonable to attach the
moniker "noncommutative unit interval" to A.

Caleb Eckhardt A Noncommutative Gauss Map



Motivation
Noncommutative Unit Interval

Extension of Gauss Map

Definition of G on C[0, 1]

Caleb Eckhardt A Noncommutative Gauss Map



Motivation
Noncommutative Unit Interval

Extension of Gauss Map

Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Caleb Eckhardt A Noncommutative Gauss Map



Motivation
Noncommutative Unit Interval

Extension of Gauss Map

Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Note first that f ◦ G ∈ C[0, 1] ↔ f is constant.

Caleb Eckhardt A Noncommutative Gauss Map



Motivation
Noncommutative Unit Interval

Extension of Gauss Map

Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Note first that f ◦ G ∈ C[0, 1] ↔ f is constant.
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ln 2 dx .
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Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Note first that f ◦ G ∈ C[0, 1] ↔ f is constant.

Gauss measure on [0, 1] is defined as dµ = ln(1+x)
ln 2 dx .

µ is the unique G-invariant probability measure AC w.r.t m.

Hence VG(f ) = f ◦ G defines an isometry on L2([0, 1], µ)
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Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Note first that f ◦ G ∈ C[0, 1] ↔ f is constant.

Gauss measure on [0, 1] is defined as dµ = ln(1+x)
ln 2 dx .

µ is the unique G-invariant probability measure AC w.r.t m.

Hence VG(f ) = f ◦ G defines an isometry on L2([0, 1], µ)

Conjugation by VG provides a UCP map on C[0, 1]:
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Definition of G on C[0, 1]

G(α) =

{
0 if α = 0
1/x − ⌊1/x⌋ if α 6= 0

Note first that f ◦ G ∈ C[0, 1] ↔ f is constant.

Gauss measure on [0, 1] is defined as dµ = ln(1+x)
ln 2 dx .

µ is the unique G-invariant probability measure AC w.r.t m.

Hence VG(f ) = f ◦ G defines an isometry on L2([0, 1], µ)

Conjugation by VG provides a UCP map on C[0, 1]:

G(f )(θ) =
∑

∞

s=1 f
(

1
θ+s

)
1+θ

(θ+s)(θ+s+1)
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πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.
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πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ
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πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ

G acts on the maximal ideals of C[0, 1] in the same
manner that G acts on [0, 1] :
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Properties of G

πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ

G acts on the maximal ideals of C[0, 1] in the same
manner that G acts on [0, 1] :

Set Iθ = {f ∈ C[0, 1] : f (θ) = 0}.
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Properties of G

πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ

G acts on the maximal ideals of C[0, 1] in the same
manner that G acts on [0, 1] :

Set Iθ = {f ∈ C[0, 1] : f (θ) = 0}.

Set θs = G−1(θ) ∩ [1/(s + 1), 1/s]
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Properties of G

πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ

G acts on the maximal ideals of C[0, 1] in the same
manner that G acts on [0, 1] :

Set Iθ = {f ∈ C[0, 1] : f (θ) = 0}.

Set θs = G−1(θ) ∩ [1/(s + 1), 1/s]

Then G(Iθs) = Iθ.
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Properties of G

πµ GNS representation of C[0, 1] w.r.t. µ then

πµ(G(f )) = V ∗

Gπµ(f )VG.∫
f dµ =

∫
G(f ) dµ

G acts on the maximal ideals of C[0, 1] in the same
manner that G acts on [0, 1] :

Set Iθ = {f ∈ C[0, 1] : f (θ) = 0}.

Set θs = G−1(θ) ∩ [1/(s + 1), 1/s]

Then G(Iθs) = Iθ.

These are the properties we want our noncommutative
extension to inherit.
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Theorem (E 09)

Let ν be a state on C[0, 1]. Then ν has a unique tracial
extension, τν , to A.
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extension, τν , to A.
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Gauss Measure on A

Theorem (E 09)

Let ν be a state on C[0, 1]. Then ν has a unique tracial
extension, τν , to A.

We let τµ be the unique tracial extension of µ to A.
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Extension to A

Recall G(f )(θ) =
∑

∞

s=1 f
(

1
θ+s

)
1+θ

(θ+s)(θ+s+1) for f ∈ C[0, 1].
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Recall G(f )(θ) =
∑

∞

s=1 f
(

1
θ+s

)
1+θ

(θ+s)(θ+s+1) for f ∈ C[0, 1].

Since 1+θ
(θ+s)(θ+s+1) ∈ C[0, 1] ⊆ A,

We only have to consider extending the action f 7→ f ◦ gs

for each s ∈ N
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1
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)
1+θ

(θ+s)(θ+s+1) for f ∈ C[0, 1].

Since 1+θ
(θ+s)(θ+s+1) ∈ C[0, 1] ⊆ A,

We only have to consider extending the action f 7→ f ◦ gs

for each s ∈ N

where gs(θ) = 1
θ+s .
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Extension to A

Recall G(f )(θ) =
∑

∞

s=1 f
(

1
θ+s

)
1+θ

(θ+s)(θ+s+1) for f ∈ C[0, 1].

Since 1+θ
(θ+s)(θ+s+1) ∈ C[0, 1] ⊆ A,

We only have to consider extending the action f 7→ f ◦ gs

for each s ∈ N

where gs(θ) = 1
θ+s .

Let’s outline this extension for s = 1.
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Extension of Composition of g1

The map g1 : [0, 1] → [1
2 , 1] shrinks [0, 1] in half and then flips it.
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Extension of Composition of g1

The map g1 : [0, 1] → [1
2 , 1] shrinks [0, 1] in half and then flips it.

We want to imitate this on the Bratelli diagram of A :
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Extension of Composition of g1

The map g1 : [0, 1] → [1
2 , 1] shrinks [0, 1] in half and then flips it.

We want to imitate this on the Bratelli diagram of A :

• • • • • • • • •

• • • • • • • • ⊙ •

• ⊙ • • ⊡ ⋆

⋆ ⊡ • •

• •

• • • • • • • • •

0
1

0
1

1
1

1
1

1
2

1
3

2
3

0
1

0
1

1
1

1
1

1
2

1
3

2
3

A → A1

Figure: Bratelli Diagram of A.....Bratelli Diagram of Quotient of A
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For example, we want to map the "node" 1
2 to the node 2

3 .

We want a map T : M2 → M3 such that
1. T is unital completely positive.
2. The induced map T : L2(M2, τ2) → L2(M3, τ3) is an

isometry.

Since 2 ∤ 3, we can’t simultaneously satisy 1 and 2.
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The Problem

For example, we want to map the "node" 1
2 to the node 2

3 .

We want a map T : M2 → M3 such that
1. T is unital completely positive.
2. The induced map T : L2(M2, τ2) → L2(M3, τ3) is an

isometry.

Since 2 ∤ 3, we can’t simultaneously satisy 1 and 2.

For this reason, we define a CP map that preserves as
much trace as possible with induced map an L2-isometry..
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Fixing the Problem

Define the CP map T : M2 → M3 as

T (x) =

[
x 0
0 0

]
& φ3 = (3/2)τ3 ◦ T .
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Induced map T : L2(M2, τ2) → L2(M3, φ3) is isometry.

The induced adjoint map T ∗ is UCP from M3 → M2.

Using the adjoint maps T ∗, we build a big commutative
diagram (that preserves all the stuff we want to preserve),
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The induced adjoint map T ∗ is UCP from M3 → M2.
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take a limit to obtain a UCP map G1 : A1 → A.
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Define the CP map T : M2 → M3 as

T (x) =

[
x 0
0 0

]
& φ3 = (3/2)τ3 ◦ T .

Induced map T : L2(M2, τ2) → L2(M3, φ3) is isometry.

The induced adjoint map T ∗ is UCP from M3 → M2.

Using the adjoint maps T ∗, we build a big commutative
diagram (that preserves all the stuff we want to preserve),

take a limit to obtain a UCP map G1 : A1 → A.

Let G̃1 = G1 ◦ π1. Define G̃2, ... similarly. Then,
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Fixing the Problem

Define the CP map T : M2 → M3 as

T (x) =

[
x 0
0 0

]
& φ3 = (3/2)τ3 ◦ T .

Induced map T : L2(M2, τ2) → L2(M3, φ3) is isometry.

The induced adjoint map T ∗ is UCP from M3 → M2.

Using the adjoint maps T ∗, we build a big commutative
diagram (that preserves all the stuff we want to preserve),

take a limit to obtain a UCP map G1 : A1 → A.

Let G̃1 = G1 ◦ π1. Define G̃2, ... similarly. Then,

G̃ =
∞∑

s=1

G̃s
1 + θ

(θ + s)(θ + s + 1)
.
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2. G̃(J (θs)) = J (θ).
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iii. An isometry ṼG : L2(A, τ) → L2(A, φ) such that

1. G̃|C[0,1] = G.

2. G̃(J (θs)) = J (θ).

3. ṼG|L2([0,1],µ) = VG and Ṽ ∗

G|L2([0,1],µ) = V ∗

G.
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Extension Theorem

Theorem (E 09)

There exist

i. A UCP map G̃ : A → A

ii. State and tracial extensions φ, τµ of Gauss measure µ

iii. An isometry ṼG : L2(A, τ) → L2(A, φ) such that

1. G̃|C[0,1] = G.

2. G̃(J (θs)) = J (θ).

3. ṼG|L2([0,1],µ) = VG and Ṽ ∗

G|L2([0,1],µ) = V ∗

G.

4. Ṽ ∗

Gπφ(x)ṼG = πτµ
(G̃(x)) for x ∈ A.

5. φ(x) = τµ(G̃(x)) for x ∈ A.
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