A Noncommutative Gauss Map

Caleb Eckhardt

Université de Franche-Comté á Besançon

January 25, 2010, University of Copenhagen

イロト 不得 トイヨト イヨト

э

Continued Fractions

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

Continued Fractions

• Let $0 < \alpha < 1$ be irrational.

Caleb Eckhardt A Noncommutative Gauss Map

イロト イポト イヨト イヨト

æ

Continued Fractions

- Let $0 < \alpha < 1$ be irrational.
- Recall there is a unique sequence $(a_n) \subseteq \mathbb{Z}^+$ with

ヘロト ヘ帰 ト ヘヨト ヘヨト

э

Continued Fractions

- Let $0 < \alpha < 1$ be irrational.
- Recall there is a unique sequence $(a_n) \subseteq \mathbb{Z}^+$ with

ヘロト ヘ戸ト ヘヨト ヘヨト

Continued Fractions

- Let $0 < \alpha < 1$ be irrational.
- Recall there is a unique sequence $(a_n) \subseteq \mathbb{Z}^+$ with

• such that $\alpha = \lim_{n \to \infty} \frac{p_n}{q_n}$.

Continued Fractions

- Let $0 < \alpha < 1$ be irrational.
- Recall there is a unique sequence $(a_n) \subseteq \mathbb{Z}^+$ with

- such that $\alpha = \lim_{n \to \infty} \frac{p_n}{q_n}$.
- We write α = [a₁, a₂, ...] in it's continued fraction decomposition.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Continued Fractions

- Let $0 < \alpha < 1$ be irrational.
- Recall there is a unique sequence $(a_n) \subseteq \mathbb{Z}^+$ with

- such that $\alpha = \lim_{n \to \infty} \frac{p_n}{q_n}$.
- We write α = [a₁, a₂, ...] in it's continued fraction decomposition.
- This provides a nice, algorithmic approximation of irrational numbers by rational numbers.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Classical Gauss Map

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

æ

Classical Gauss Map

• The Gauss map $G: [0,1] \rightarrow [0,1]$ is defined as

$$G(\alpha) = \begin{cases} 0 & \text{if } \alpha = 0\\ 1/x - \lfloor 1/x \rfloor & \text{if } \alpha \neq 0 \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Classical Gauss Map

• The Gauss map $G: [0,1] \rightarrow [0,1]$ is defined as

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

• Then G is a Bernoulli shift for continued fractions.

Classical Gauss Map

• The Gauss map $G: [0,1] \rightarrow [0,1]$ is defined as

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

Then G is a Bernoulli shift for continued fractions.

$$G([a_1, a_2, a_3, ..]) = G\Big(\frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 ...}}}\Big)$$

Classical Gauss Map

• The Gauss map $G: [0,1] \rightarrow [0,1]$ is defined as

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

Then G is a Bernoulli shift for continued fractions.

$$G([a_1, a_2, a_3, ..]) = G\Big(\frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 ...}}}\Big)$$

Classical Gauss Map

• The Gauss map $G: [0,1] \rightarrow [0,1]$ is defined as

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

Then G is a Bernoulli shift for continued fractions.

$$G([a_1, a_2, a_3, ..]) = G\left(\frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 ...}}}\right)$$
$$= a_1 + \frac{1}{a_2 + \frac{1}{a_3 ...}} - a_1 = [a_2, a_3, ...].$$

イロト 不得 トイヨト イヨト

Gauss' Problem

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

₹ 990

Gauss' Problem

• Let *m* denote Lebesgue measure and define

 $m_n(x) = m(G^{-n}[0,x])$

イロト 不得 トイヨト イヨト

Gauss' Problem

• Let *m* denote Lebesgue measure and define

$$m_n(x) = m(G^{-n}[0,x])$$

 In an 1812 letter to Laplace, Gauss stated that he had shown that

くロト (得) (目) (日)

э

Gauss' Problem

• Let *m* denote Lebesgue measure and define

$$m_n(x) = m(G^{-n}[0,x])$$

 In an 1812 letter to Laplace, Gauss stated that he had shown that

•
$$m_n(x) \rightarrow rac{\ln(1+x)}{\ln 2}$$
 as $n \rightarrow \infty$

くロト (得) (目) (日)

э

Gauss' Problem

• Let *m* denote Lebesgue measure and define

$$m_n(x) = m(G^{-n}[0,x])$$

 In an 1812 letter to Laplace, Gauss stated that he had shown that

•
$$m_n(x) \to \frac{\ln(1+x)}{\ln 2}$$
 as $n \to \infty$

 and that it would be very desirable to have a good estimate for the error term

Gauss' Problem

• Let *m* denote Lebesgue measure and define

$$m_n(x) = m(G^{-n}[0,x])$$

 In an 1812 letter to Laplace, Gauss stated that he had shown that

•
$$m_n(x) \to \frac{\ln(1+x)}{\ln 2}$$
 as $n \to \infty$

 and that it would be very desirable to have a good estimate for the error term

Gauss' Problem

• Let *m* denote Lebesgue measure and define

$$m_n(x) = m(G^{-n}[0,x])$$

 In an 1812 letter to Laplace, Gauss stated that he had shown that

•
$$m_n(x) \to rac{\ln(1+x)}{\ln 2}$$
 as $n \to \infty$

 and that it would be very desirable to have a good estimate for the error term

$$\mathbf{e}_n(\mathbf{x}) := \left| m_n(\mathbf{x}) - \frac{\ln(1+\mathbf{x})}{\ln 2} \right|$$

for large n.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Solution of Gauss' Problem

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

Solution of Gauss' Problem

 A proof of Gauss' claim didn't surface until 1928 by Kuzmin.

イロト 不得 トイヨト イヨト

Solution of Gauss' Problem

- A proof of Gauss' claim didn't surface until 1928 by Kuzmin.
- In 1974 Wirsing obtained the optimal bound for the error term *e_n(x)*.

ヘロト 人間 とくほ とくほ とう

э

Solution of Gauss' Problem

- A proof of Gauss' claim didn't surface until 1928 by Kuzmin.
- In 1974 Wirsing obtained the optimal bound for the error term e_n(x).
- (Wirsing 74) There is an optimal constant *q* ∼ .303 such that *e_n(x)* ≤ *qⁿ*.

イロト イポト イヨト イヨト

Solution of Gauss' Problem

- A proof of Gauss' claim didn't surface until 1928 by Kuzmin.
- In 1974 Wirsing obtained the optimal bound for the error term e_n(x).
- (Wirsing 74) There is an optimal constant *q* ∼ .303 such that *e_n(x)* ≤ *qⁿ*.
- Why would Gauss say a good estimate would be "very desirable"?

イロト イポト イヨト イヨト

One possibility...

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとく ほとう

æ

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

 What is the probability that a given number α = [a₁, a₂, ...] has a_n = k?

イロト 不得 トイヨト イヨト

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

- What is the probability that a given number α = [a₁, a₂, ...] has a_n = k?
- The solution to Gauss' Problem provides an excellent estimate for large *n*.

æ

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

- What is the probability that a given number α = [a₁, a₂, ...] has a_n = k?
- The solution to Gauss' Problem provides an excellent estimate for large *n*.
- Indeed, say k = 2 then

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

- What is the probability that a given number α = [a₁, a₂, ...] has a_n = k?
- The solution to Gauss' Problem provides an excellent estimate for large *n*.
- Indeed, say k = 2 then

•
$$m\{[a_1, a_2, .]: a_n = 2\} = m(G^{-n}[\frac{1}{3}, \frac{1}{2}]) =$$

One possibility...

Fix $k, n \in \mathbb{Z}^+$.

- What is the probability that a given number α = [a₁, a₂, ...] has a_n = k?
- The solution to Gauss' Problem provides an excellent estimate for large *n*.
- Indeed, say k = 2 then

•
$$m\{[a_1, a_2, .]: a_n = 2\} = m(G^{-n}[\frac{1}{3}, \frac{1}{2}]) =$$

= $m_n(\frac{1}{2}) - m_n(\frac{1}{3}) \sim \frac{\ln(9/8)}{\ln 2} + (.303..)^n.$

The point

Caleb Eckhardt A Noncommutative Gauss Map

イロン イロン イヨン イヨン

The point

 A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).

The point

- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.

★ 문 ► ★ 문 ►
- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.
- See "Metrical Theory of Continued Fractions" by losifescu & Kraaikamp for complete list.

- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.
- See "Metrical Theory of Continued Fractions" by losifescu & Kraaikamp for complete list.
- We would like to import these ideas into the noncommutative world.

★ 문 ► ★ 문 ►

- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.
- See "Metrical Theory of Continued Fractions" by losifescu & Kraaikamp for complete list.
- We would like to import these ideas into the noncommutative world.
- Step 1 in this program is importing the Gauss Map to the noncommutative world.

イロト イポト イヨト イヨト

- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.
- See "Metrical Theory of Continued Fractions" by losifescu & Kraaikamp for complete list.
- We would like to import these ideas into the noncommutative world.
- Step 1 in this program is importing the Gauss Map to the noncommutative world.
- We recall candidates for "noncommutative irrational numbers"

くロト (得) (目) (日)

- A study of the dynamics of the classical Gauss map has had many applications throughout mathematics (especially probability).
- One example is the solution of Gauss' problem.
- See "Metrical Theory of Continued Fractions" by losifescu & Kraaikamp for complete list.
- We would like to import these ideas into the noncommutative world.
- Step 1 in this program is importing the Gauss Map to the noncommutative world.
- We recall candidates for "noncommutative irrational numbers"
- And for the "noncommutative unit interval."

Effros Shen Algebras

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

æ

Effros Shen Algebras

• Effros and Shen[80] constructed for each irrational number θ an AF algebra C_{θ} .

ヘロト ヘアト ヘビト ヘビト

Effros Shen Algebras

 Effros and Shen[80] constructed for each irrational number *θ* an AF algebra *C*_θ.

• Let
$$\theta = [a_1, a_2, ...] = \lim_{n \to \infty} \frac{p_n}{q_n}$$
.

ヘロト ヘアト ヘビト ヘビト

Effros Shen Algebras

• Effros and Shen[80] constructed for each irrational number θ an AF algebra C_{θ} .

• Let
$$\theta = [a_1, a_2, ...] = \lim_{n \to \infty} \frac{p_n}{q_n}$$
.

Then define

$$\mathcal{C}_{\theta} := \lim_{n \to \infty} \left(M_{q_n} \oplus M_{q_{n-1}}, \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix} \right)$$

ヘロト ヘアト ヘビト ヘビト

Effros Shen Algebras

• Effros and Shen[80] constructed for each irrational number θ an AF algebra C_{θ} .

• Let
$$\theta = [a_1, a_2, ...] = \lim_{n \to \infty} \frac{p_n}{q_n}$$
.

Then define

$$\mathcal{C}_{\theta} := \lim_{n \to \infty} \left(M_{q_n} \oplus M_{q_{n-1}}, \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix} \right)$$

 So, C_θ is approximated by finite dimensional C*-algebras in the same way that θ is approximated by rational numbers.

イロト イポト イヨト イヨト

Effros Shen Algebras

• Effros and Shen[80] constructed for each irrational number θ an AF algebra C_{θ} .

• Let
$$\theta = [a_1, a_2, ...] = \lim_{n \to \infty} \frac{p_n}{q_n}$$
.

Then define

$$\mathcal{C}_{\theta} := \lim_{n \to \infty} \left(M_{q_n} \oplus M_{q_{n-1}}, \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix} \right)$$

- So, C_θ is approximated by finite dimensional C*-algebras in the same way that θ is approximated by rational numbers.
- Let's think of C_{θ} as a "noncommutative irrational number."

イロト イポト イヨト イヨト

Boca Mundici Algebra

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとく ほとう

æ

Boca Mundici Algebra

Boca[08] and Mundici[88,08] (separately) considered an AF algebra, denoted by \mathfrak{A} that "contains" all of the noncommutative irrational numbers:

ヘロト ヘアト ヘビト ヘビト

Boca Mundici Algebra

Boca[08] and Mundici[88,08] (separately) considered an AF algebra, denoted by \mathfrak{A} that "contains" all of the noncommutative irrational numbers:

Properties of \mathfrak{A}

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

Properties of A

• The center of \mathfrak{A} is isomorphic to C[0, 1]

Properties of A

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of \mathfrak{A} is homeomorphic to [0, 1].

イロト イ押ト イヨト イヨト

Properties of \mathfrak{A}

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of \mathfrak{A} is homeomorphic to [0,1].
- For each θ ∈ [0, 1], let I_θ denote the maximal ideal associated to θ

イロト イ押ト イヨト イヨト

Properties of \mathfrak{A}

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of 𝔅 is homeomorphic to [0, 1].
- For each θ ∈ [0, 1], let *I*_θ denote the maximal ideal associated to θ
- For θ irrational $\mathfrak{A}/I_{\theta} \cong C_{\theta}$

イロト イ押ト イヨト イヨト

Properties of \mathfrak{A}

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of 𝔅 is homeomorphic to [0, 1].
- For each θ ∈ [0, 1], let I_θ denote the maximal ideal associated to θ
- For θ irrational $\mathfrak{A}/I_{\theta} \cong C_{\theta}$
- For $\theta = p/q$ we have $\mathfrak{A}/I_{\theta} \cong M_q$.

ヘロト ヘアト ヘビト ヘビト

Properties of \mathfrak{A}

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of 𝔅 is homeomorphic to [0, 1].
- For each θ ∈ [0, 1], let *I*_θ denote the maximal ideal associated to θ
- For θ irrational $\mathfrak{A}/I_{\theta} \cong C_{\theta}$
- For $\theta = p/q$ we have $\mathfrak{A}/I_{\theta} \cong M_q$.

Properties of \mathfrak{A}

- The center of \mathfrak{A} is isomorphic to C[0, 1]
- The maximal ideal space of \mathfrak{A} is homeomorphic to [0, 1].
- For each θ ∈ [0, 1], let *I*_θ denote the maximal ideal associated to θ
- For θ irrational $\mathfrak{A}/I_{\theta} \cong C_{\theta}$
- For $\theta = p/q$ we have $\mathfrak{A}/I_{\theta} \cong M_q$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition of G on C[0, 1]

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

æ

Definition of G on C[0, 1]

$$G(\alpha) = \begin{cases} 0 & \text{if } \alpha = 0\\ 1/x - \lfloor 1/x \rfloor & \text{if } \alpha \neq 0 \end{cases}$$

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

æ

Definition of G on C[0, 1]

$$G(\alpha) = \begin{cases} 0 & \text{if } \alpha = 0\\ 1/x - \lfloor 1/x \rfloor & \text{if } \alpha \neq 0 \end{cases}$$

• Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

Definition of G on C[0, 1]

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

- Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.
- Gauss measure on [0, 1] is defined as $d\mu = \frac{\ln(1+x)}{\ln 2} dx$.

ヘロト 人間 とくほとくほとう

3

Definition of G on C[0, 1]

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

- Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.
- Gauss measure on [0, 1] is defined as $d\mu = \frac{\ln(1+x)}{\ln 2} dx$.
- μ is the unique *G*-invariant probability measure AC w.r.t *m*.

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

Definition of G on C[0, 1]

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

- Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.
- Gauss measure on [0, 1] is defined as $d\mu = \frac{\ln(1+x)}{\ln 2} dx$.
- μ is the unique *G*-invariant probability measure AC w.r.t *m*.
- Hence $V_G(f) = f \circ G$ defines an isometry on $L^2([0, 1], \mu)$

イロト イポト イヨト イヨト

Definition of G on C[0, 1]

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

- Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.
- Gauss measure on [0, 1] is defined as $d\mu = \frac{\ln(1+x)}{\ln 2} dx$.
- μ is the unique *G*-invariant probability measure AC w.r.t *m*.
- Hence $V_G(f) = f \circ G$ defines an isometry on $L^2([0, 1], \mu)$
- Conjugation by V_G provides a UCP map on C[0, 1]:

イロト 不得 とくほと くほとう

Definition of G on C[0, 1]

$$\mathbf{G}(\alpha) = \begin{cases} \mathbf{0} & \text{if } \alpha = \mathbf{0} \\ \mathbf{1}/\mathbf{x} - \lfloor \mathbf{1}/\mathbf{x} \rfloor & \text{if } \alpha \neq \mathbf{0} \end{cases}$$

- Note first that $f \circ G \in C[0, 1] \leftrightarrow f$ is constant.
- Gauss measure on [0, 1] is defined as $d\mu = \frac{\ln(1+x)}{\ln 2} dx$.
- μ is the unique *G*-invariant probability measure AC w.r.t *m*.
- Hence $V_G(f) = f \circ G$ defines an isometry on $L^2([0, 1], \mu)$
- Conjugation by V_G provides a UCP map on C[0, 1]:

•
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$

イロト 不得 とくほと くほとう

Properties of $\mathbb G$

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

Properties of \mathbb{G}

• π_{μ} GNS representation of C[0, 1] w.r.t. μ then

Caleb Eckhardt A Noncommutative Gauss Map

イロト イポト イヨト イヨト

3

Properties of \mathbb{G}

• π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}$.

Caleb Eckhardt A Noncommutative Gauss Map

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Properties of ${\mathbb G}$

 π_μ GNS representation of C[0, 1] w.r.t. μ then π_μ(𝔅(f)) = V_G^{*}π_μ(f)V_G.
∫ f dμ = ∫ 𝔅(f) dμ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Properties of $\mathbb G$

- π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}.$
- $\int f \, d\mu = \int \mathbb{G}(f) \, d\mu$
- G acts on the maximal ideals of C[0, 1] in the same manner that G acts on [0, 1] :

<ロ> <同> <同> < 回> < 回> < 回> = 三

Properties of ${\mathbb G}$

- π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}.$
- $\int f \, d\mu = \int \mathbb{G}(f) \, d\mu$
- G acts on the maximal ideals of *C*[0, 1] in the same manner that *G* acts on [0, 1] :

Set
$$I_{\theta} = \{ f \in C[0, 1] : f(\theta) = 0 \}.$$

<ロ> <同> <同> < 回> < 回> < 回> = 三
Properties of ${\mathbb G}$

- π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}.$
- $\int f \, d\mu = \int \mathbb{G}(f) \, d\mu$
- G acts on the maximal ideals of *C*[0, 1] in the same manner that *G* acts on [0, 1] :

Set
$$I_{\theta} = \{ f \in C[0, 1] : f(\theta) = 0 \}.$$

Set
$$\theta_{s} = G^{-1}(\theta) \cap [1/(s+1), 1/s]$$

<ロ> <同> <同> < 回> < 回> < 回> = 三

Properties of ${\mathbb G}$

• π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}.$

•
$$\int f d\mu = \int \mathbb{G}(f) d\mu$$

G acts on the maximal ideals of C[0, 1] in the same manner that G acts on [0, 1] :
Set I_θ = {f ∈ C[0, 1] : f(θ) = 0}.

Set
$$\theta_s = G^{-1}(\theta) \cap [1/(s+1), 1/s]$$

• Then
$$\mathbb{G}(I_{\theta_s}) = I_{\theta}$$
.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Properties of ${\mathbb G}$

• π_{μ} GNS representation of C[0, 1] w.r.t. μ then $\pi_{\mu}(\mathbb{G}(f)) = V_{G}^{*}\pi_{\mu}(f)V_{G}.$

•
$$\int f \, d\mu = \int \mathbb{G}(f) \, d\mu$$

 G acts on the maximal ideals of C[0, 1] in the same manner that G acts on [0, 1] :

Set
$$I_{\theta} = \{ f \in C[0, 1] : f(\theta) = 0 \}.$$

Set $\theta_s = G^{-1}(\theta) \cap [1/(s+1), 1/s]$

- Then $\mathbb{G}(I_{\theta_s}) = I_{\theta}$.
- These are the properties we want our noncommutative extension to inherit.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Gauss Measure on \mathfrak{A}

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

æ

Gauss Measure on \mathfrak{A}

Theorem (E 09)

Let ν be a state on C[0, 1]. Then ν has a unique tracial extension, τ_{ν} , to \mathfrak{A} .

Caleb Eckhardt A Noncommutative Gauss Map

イロト イポト イヨト イヨト

Gauss Measure on \mathfrak{A}

Theorem (E 09)

Let ν be a state on C[0, 1]. Then ν has a unique tracial extension, τ_{ν} , to \mathfrak{A} .

Caleb Eckhardt A Noncommutative Gauss Map

イロト イポト イヨト イヨト

Gauss Measure on \mathfrak{A}

Theorem (E 09)

Let ν be a state on C[0, 1]. Then ν has a unique tracial extension, τ_{ν} , to \mathfrak{A} .

We let τ_{μ} be the unique tracial extension of μ to \mathfrak{A} .

イロト 不得 トイヨト イヨト

Extension to \mathfrak{A}

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

Extension to \mathfrak{A}

• Recall
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$
 for $f \in C[0,1]$.

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

Extension to \mathfrak{A}

• Recall
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$
 for $f \in C[0, 1]$.
• Since $\frac{1+\theta}{(\theta+s)(\theta+s+1)} \in C[0, 1] \subseteq \mathfrak{A}$,

ヘロト 人間 とくき とくきとう

Extension to \mathfrak{A}

• Recall
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$
 for $f \in C[0,1]$.

• Since
$$\frac{1+ heta}{(heta+s)(heta+s+1)} \in C[0,1] \subseteq \mathfrak{A}$$
,

We only have to consider extending the action *f* → *f* ∘ *g*_s for each *s* ∈ N

イロト イポト イヨト イヨト

Extension to \mathfrak{A}

• Recall
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$
 for $f \in C[0,1]$.

• Since
$$\frac{1+\theta}{(\theta+s)(\theta+s+1)} \in C[0,1] \subseteq \mathfrak{A}$$
,

We only have to consider extending the action *f* → *f* ∘ *g*_s for each *s* ∈ N

• where
$$g_s(\theta) = \frac{1}{\theta+s}$$
.

イロト イポト イヨト イヨト

Extension to \mathfrak{A}

• Recall
$$\mathbb{G}(f)(\theta) = \sum_{s=1}^{\infty} f\left(\frac{1}{\theta+s}\right) \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$
 for $f \in C[0,1]$.

• Since
$$\frac{1+\theta}{(\theta+s)(\theta+s+1)} \in C[0,1] \subseteq \mathfrak{A}$$
,

We only have to consider extending the action *f* → *f* ∘ *g*_s for each *s* ∈ N

• where
$$g_{s}(\theta) = \frac{1}{\theta+s}$$
.

• Let's outline this extension for s = 1.

æ

Extension of Composition of g_1

Caleb Eckhardt A Noncommutative Gauss Map

æ

ヘロト 人間 とくほとくほとう

Extension of Composition of g_1

The map $g_1 : [0,1] \rightarrow [\frac{1}{2},1]$ shrinks [0,1] in half and then flips it.

イロト 不得 トイヨト イヨト

э.

Extension of Composition of g_1

The map $g_1 : [0,1] \rightarrow [\frac{1}{2},1]$ shrinks [0,1] in half and then flips it. We want to imitate this on the Bratelli diagram of \mathfrak{A} :

ヘロト ヘ帰 ト ヘヨト ヘヨト

Extension of Composition of g_1

The map $g_1 : [0,1] \rightarrow [\frac{1}{2},1]$ shrinks [0,1] in half and then flips it. We want to imitate this on the Bratelli diagram of \mathfrak{A} :

Figure: Bratelli Diagram of \mathfrak{A}Bratelli Diagram of Quotient of \mathfrak{A}

The Problem

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

The Problem

• For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.

Caleb Eckhardt A Noncommutative Gauss Map

イロト 不得 トイヨト イヨト

The Problem

- For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.
- We want a map $T: M_2 \rightarrow M_3$ such that

イロト イポト イヨト イヨト

- For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.
- We want a map $T: M_2 \rightarrow M_3$ such that
 - 1. *T* is unital completely positive.

イロト イボト イヨト イヨト

æ

- For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.
- We want a map $T: M_2 \rightarrow M_3$ such that
 - 1. *T* is unital completely positive.
 - 2. The induced map $T : L^2(M_2, \tau_2) \to L^2(M_3, \tau_3)$ is an isometry.

æ

- For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.
- We want a map $T: M_2 \rightarrow M_3$ such that
 - 1. *T* is unital completely positive.
 - 2. The induced map $T : L^2(M_2, \tau_2) \to L^2(M_3, \tau_3)$ is an isometry.
- Since $2 \nmid 3$, we can't simultaneously satisy 1 and 2.

イロト イボト イヨト イヨト

- For example, we want to map the "node" $\frac{1}{2}$ to the node $\frac{2}{3}$.
- We want a map $T: M_2 \rightarrow M_3$ such that
 - 1. *T* is unital completely positive.
 - 2. The induced map $T : L^2(M_2, \tau_2) \to L^2(M_3, \tau_3)$ is an isometry.
- Since $2 \nmid 3$, we can't simultaneously satisy 1 and 2.
- For this reason, we define a CP map that preserves as much trace as possible with induced map an L²-isometry..

ヘロト ヘアト ヘヨト

Fixing the Problem

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとく ほとう

æ

Fixing the Problem

Define the CP map $T: M_2 \rightarrow M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

æ

Fixing the Problem

Define the CP map $T: M_2 \rightarrow M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

• Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Fixing the Problem

Define the CP map $T: M_2 \rightarrow M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.

イロト 不得 トイヨト イヨト

Fixing the Problem

Define the CP map $T: M_2 \to M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),

ヘロト ヘ戸ト ヘヨト ヘヨト

Fixing the Problem

Define the CP map $T: M_2 \to M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),
- take a limit to obtain a UCP map $G_1 : \mathfrak{A}_1 \to \mathfrak{A}$.

◆□▶ ◆쪧▶ ◆臣▶ ◆臣▶ ○

Fixing the Problem

Define the CP map $T: M_2 \to M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),
- take a limit to obtain a UCP map $G_1 : \mathfrak{A}_1 \to \mathfrak{A}$.

• Let
$$G_1 = G_1 \circ \pi_1$$
.

イロト 不得 とくほ とくほ とう

Fixing the Problem

Define the CP map $T: M_2 \to M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),
- take a limit to obtain a UCP map $G_1 : \mathfrak{A}_1 \to \mathfrak{A}$.

• Let
$$G_1 = G_1 \circ \pi_1$$
.

イロト 不得 とくほ とくほ とう

Fixing the Problem

Define the CP map $T: M_2 \to M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),
- take a limit to obtain a UCP map $G_1 : \mathfrak{A}_1 \to \mathfrak{A}$.
- Let $\widetilde{G}_1 = G_1 \circ \pi_1$. Define $\widetilde{G}_2, ...$ similarly. Then,

イロト 不得 とくほ とくほう 二日

Fixing the Problem

Define the CP map $T: M_2 \rightarrow M_3$ as

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \& \quad \phi_3 = (3/2)\tau_3 \circ T.$$

- Induced map $T: L^2(M_2, \tau_2) \rightarrow L^2(M_3, \phi_3)$ is isometry.
- The induced adjoint map T^* is UCP from $M_3 \rightarrow M_2$.
- Using the adjoint maps T*, we build a big commutative diagram (that preserves all the stuff we want to preserve),
- take a limit to obtain a UCP map $G_1 : \mathfrak{A}_1 \to \mathfrak{A}$.
- Let $\widetilde{G}_1 = G_1 \circ \pi_1$. Define $\widetilde{G}_2, ...$ similarly. Then,

$$\widetilde{\mathbb{G}} = \sum_{s=1}^{\infty} \widetilde{G}_s \frac{1+\theta}{(\theta+s)(\theta+s+1)}$$

イロト 不得 とくほ とくほ とう

Extension Theorem

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくほとう ほとう

ъ.

Extension Theorem

Theorem (E 09)

There exist

Caleb Eckhardt A Noncommutative Gauss Map

くロン 人間 とくほとく ほとう

æ
Motivation Noncommutative Unit Interval Extension of Gauss Map

Extension Theorem

Theorem (E 09)

There exist

i. A UCP map
$$\widetilde{\mathbb{G}} : \mathfrak{A} \to \mathfrak{A}$$

Caleb Eckhardt A Noncommutative Gauss Map

くロン 人間 とくほとく ほとう

æ

Motivation Noncommutative Unit Interval Extension of Gauss Map

Extension Theorem

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{G}: L^{2}(\mathfrak{A}, \tau) \rightarrow L^{2}(\mathfrak{A}, \phi)$ such that

イロト イポト イヨト イヨト

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{G}: L^{2}(\mathfrak{A}, \tau) \to L^{2}(\mathfrak{A}, \phi)$ such that

1.
$$\widetilde{\mathbb{G}}|_{C[0,1]} = \mathbb{G}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{\mathsf{G}}: L^2(\mathfrak{A}, \tau) \to L^2(\mathfrak{A}, \phi)$ such that

1.
$$\widetilde{\mathbb{G}}|_{C[0,1]} = \mathbb{G}.$$

2. $\widetilde{\mathbb{G}}(\mathcal{J}(\theta_s)) = \mathcal{J}(\theta)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{\mathsf{G}}: L^2(\mathfrak{A}, \tau) \to L^2(\mathfrak{A}, \phi)$ such that

1.
$$\widetilde{\mathbb{G}}|_{C[0,1]} = \mathbb{G}$$
.
2. $\widetilde{\mathbb{G}}(\mathcal{J}(\theta_s)) = \mathcal{J}(\theta)$.
3. $\widetilde{V}_G|_{L^2([0,1],\mu)} = V_G \text{ and } \widetilde{V}_G^*|_{L^2([0,1],\mu)} = V_G^*$.

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{\mathsf{G}}: L^2(\mathfrak{A}, \tau) \to L^2(\mathfrak{A}, \phi)$ such that

1.
$$\widetilde{\mathbb{G}}|_{C[0,1]} = \mathbb{G}$$
.
2. $\widetilde{\mathbb{G}}(\mathcal{J}(\theta_s)) = \mathcal{J}(\theta)$.
3. $\widetilde{V}_G|_{L^2([0,1],\mu)} = V_G \text{ and } \widetilde{V}_G^*|_{L^2([0,1],\mu)} = V_G^*$.
4. $\widetilde{V}_G^* \pi_\phi(x) \widetilde{V}_G = \pi_{\tau_\mu}(\widetilde{\mathbb{G}}(x)) \text{ for } x \in \mathfrak{A}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (E 09)

There exist

- i. A UCP map $\widetilde{\mathbb{G}}:\mathfrak{A}\to\mathfrak{A}$
- ii. State and tracial extensions ϕ, τ_{μ} of Gauss measure μ
- iii. An isometry $\widetilde{V}_{\mathsf{G}}: L^2(\mathfrak{A}, \tau) \to L^2(\mathfrak{A}, \phi)$ such that

1.
$$\widetilde{\mathbb{G}}|_{C[0,1]} = \mathbb{G}$$
.
2. $\widetilde{\mathbb{G}}(\mathcal{J}(\theta_s)) = \mathcal{J}(\theta)$.
3. $\widetilde{V}_G|_{L^2([0,1],\mu)} = V_G \text{ and } \widetilde{V}_G^*|_{L^2([0,1],\mu)} = V_G^*$.
4. $\widetilde{V}_G^* \pi_\phi(x) \widetilde{V}_G = \pi_{\tau_\mu}(\widetilde{\mathbb{G}}(x)) \text{ for } x \in \mathfrak{A}$.
5. $\phi(x) = \tau_\mu(\widetilde{\mathbb{G}}(x)) \text{ for } x \in \mathfrak{A}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Noncommutative Unit Interval Extension of Gauss Map

Mange tak!

Caleb Eckhardt A Noncommutative Gauss Map

ヘロト 人間 とくき とくきとう

æ