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Poincaré inequalities, non-linear spectral
calculus and superexpanders

Advisor:

Magdalena Musat

Master thesis

Department of Mathematical Sciences

September 29, 2020



Abstract

We study coarse geometric properties of expander graph sequences in terms of Poincaré
inequalities, which form an obstruction for coarsely embedding such sequences into Hilbert
space. This leads to a generalization of expanders, namely the notion of superexpander
sequences, which do not embed coarsely into uniformly convex Banach space. We prove
that Schreier coset graphs of residually finite groups with Kazhdan’s property (T) are
expander sequences. We then prove that being an expander with respect to a Banach
space is invariant under sphere equivalence of Banach spaces, as well as a generalization of
Matoušek’s extrapolation theorem. Moreover, we prove that expander sequences do not
coarsely embed into uniformly curved Banach spaces, which are contained in the class of
uniformly convex Banach spaces. Finally, we follow [MN14] to prove that uniformly con-
vex Banach spaces admit a non-linear spectral calculus which will lead to a combinatorial
construction of superexpanders through the zig-zag product of graphs.
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Introduction

Introduction

Expander graphs are often informally described as sparse yet highly connected graphs. They
have been widely studied within computer science for their pseudorandom properties. For
example, the so-called expander mixing lemma implies that the number of edges between two
vertex subsets are close to the expected number of edges between them in a random graph
on the same vertex set. Moreover, one can prove Chernoff-like bounds for random walks in
expander graphs, and due to the edge sparsity, sampling from a random walk on an expander
is more efficient than sampling the vertices independently.

We study expander sequences, i.e., sequences of graphs on vertex sets of increasing size
with uniform bounds on both their sparsity and expansion (read connectivity) properties.
These seemingly contradictory properties make it an obvious question whether they even
exist. This was first established probabilistically by Pinsker, who proved that random graphs
are expanders with overwhelming probability, i.e., asymptotically, most graphs are expanders!
Despite this fact, it has taken a great effort by mathematicians and computer scientists alike
to give explicit constructions of expander sequences. We will describe Margulis’ method to
obtain expanders as Schreier coset graphs of groups with Kazhdan’s property (T), which is
a rigidity property for unitary representations of groups on Hilbert spaces.

More recently, expander graphs have been gaining interest from mathematicians for their
analytic and coarse geometric properties. Expanders satisfy a certain set of inequalities
known as Poincaré inequalities which prevent them from being coarsely embedded into Hilbert
space. Loosely speaking, a coarse embedding is an embedding which looks like an isometry
when viewed from increasing distance. Examples of coarse embeddings are bi-Lipschitz maps
and, of course, actual isometries. The rather exotic geometric properties of expanders have
found applications within operator algebras and geometric group theory. For example, Osajda
[Osa18] used the existence of expanders to construct groups whose Cayley graphs contain such
expanders isometrically. These provided new examples of non-exact groups. The method of
constructing groups whose Cayley graphs contain expanders originates from [Osa14], where
such groups are used to provide counterexamples to versions of the Baum-Connes conjecture.

On a related note, Gromov suggested in [FRR95, p. 67, problems (4) and (5)] to use
coarse embeddings into Hilbert space or only uniformly convex Banach space in the study
of the Novikov and Baum-Connes conjectures. This was carried out by Kasparov and Yu in
[KY06] to prove that the coarse geometric Novikov conjecture holds for spaces which admit
a coarse embedding into a uniformly convex Banach space. Gromov also asked whether any
finitely generated or finitely presented group admits a coarse embedding into any Hilbert
space or even into any uniformly convex Banach space. The work of Osajda mentioned above
uses the fact that expanders exist to disprove this for Hilbert spaces. This leads naturally to
the question whether there exist graph sequences which cannot be coarsely embedded into
any uniformly convex Banach space. The focus of this thesis is this question rather than the
applications mentioned above.

We will describe how the notion of expander sequences generalizes; one can introduce
the notion of being an expander sequence with respect to a given metric space. We can
then define superexpanders to be graph sequences which are expanders with respect to every
uniformly convex Banach space. This makes any superexpander coarsely non-embeddable
into uniformly convex Banach space. Again, it is a non-trivial task to construct explicit
sequences of superexpanders, and giving one such construction will be the main objective of
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Introduction

this thesis. The first construction of superexpanders was given in 2008 by Lafforgue as part of
his work on the Novikov and Baum-Connes conjectures. He introduced several strengthenings
of Kazhdan’s property (T) which led to a refinement of Margulis’ construction. We shall follow
a more recent construction given by Mendel and Naor in 2014 using zig-zag products of graphs.
The zig-zag product takes two compatible graphs and gives a combinatorial way to construct
from them a new graph on a larger vertex set. It was first introduced in [RVW02] in order
to produce (classical) expander sequences. The construction of Mendel and Naor involves
iteratively producing a graph sequence through succesive zig-zag products as well as other
combinatorial graph operations - in other words, it will involve some counting arguments.
We will also introduce the notion of non-linear spectral calculus, a quantitative property for
metric spaces which generalizes (in a very broad sense, admittedly) the spectral calculus
known from linear algebra. This is an essential prerequisite for the zig-zag construction to
work, and establishing it for uniformly convex Banach spaces will involve some Banach space
theory, which we introduce appropriately. Moreover, the construction relies on the existence
of a base graph with certain analytic properties. Demonstrating that such a base graph exists
will involve further Banach space theory and analytic methods.

This exposition is intended to be as self-contained as possible. We will, however, assume
familiarity with measure and integration theory as well as functional analysis. Also a basic
knowledge of groups and graphs will be required.
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1 Preliminaries

1 Preliminaries

In this section we shall introduce the key notions of the thesis, such as the coarse geometry of
metric spaces. We will introduce the notion of expander graphs and prove results concerning
their coarse geometry when viewed as metric spaces. Since vector valued integration will be
an indispensable tool for us, we will also introduce this theory and define the Bochner spaces,
which are the vector valued analogue of the Lebesgue spaces. The treatment will be quite
brief and cursory and is only intended to give an overview of the necessary prerequisites
of this thesis. We will be giving references to the reader interested in obtaining a deeper
understanding of these matters.

1.1 Graphs

Recall that a graph G is given by a pair (V,E), where V is any set and E ⊂ V × V . We
think of V as vertices, and of E as edges connecting certain pairs of vertices. Our graphs will
always be undirected, which means that (u, v) ∈ E if and only if (v, u) ∈ E. We will allow
self-loops (i.e., (u, u) ∈ E) and multiple edges. The latter can be formalized by allowing E to
be a multiset or by letting E ⊂ V ×V ×N0, where N0 = N∪{0}, satisfying that for each pair
(u, v) ∈ V × V there is exactly one n ∈ N0 such that (u, v, n) ∈ E, specifying the number of
edges from u to v. We shall denote this number by E(u, v) and observe that for undirected
graphs E(u, v) = E(v, u). This notation will be convenient at times, but oftentimes we shall
omit the third coordinate of an edge. For the reader remotely familiar with graphs this should
lead to no confusion; for example, when we wish to sum over the edges of a graph we shall
usually write something along the lines of (u, v) ∈ E, by which of course we mean to sum
over all pairs (u, v) ∈ V × V weighting each term with E(u, v), and by ’there exists an edge
(u, v)’ we mean E(u, v) > 0.
A graph is called finite if its vertex set is finite. For u, v ∈ V , a finite sequence of edges
[(u1, v1), · · · , (um, vm)], m ∈ N, such that u1 = u, vm = v and vk = uk+1 for every
k = 1, · · · ,m − 1 is referred to as a path from u to v. We denote by l(γ) its lenght, m.
A path from v ∈ V to itself is called a cycle. A graph G is called connected if every u, v ∈ V
admit a path between them. Any graph can be uniquely partitioned into connected sub-
graphs. The members of this partition are called the path components of the graph. If
G = (V,E) is a connected graph, we can equip V vith a metric, referred to as the shortest
path metric, by letting dG(u, v) = min {l(γ) | γ is a path from u to v}.

Unless otherwise stated the reader can assume that our graphs are finite, undirected and
connected, in which case we can identify V with [n] where n = |V |, and [n] denotes the set
{1, · · · , n}. We then have the following very useful piece of notation:

Definition 1.1. Let G = (V,E) be a finite graph. By the adjaceny matrix of G we mean
the matrix (aij)i,j∈[n] where aij = E(i, j), i.e., aij is the number of edges from i to j.
Clearly G is undirected if and only if its adjacency matrix is symmetric.

A finite graph is completely determined by its adjacency matrix and we shall often identify
a graph with its adjacency matrix and write G and its adjacency matrix interchangeably. A
graph is called d-regular for d ∈ N if every vertex has exactly d edges emmanating from it,
i.e.,

∑
v∈V E(u, v) = d for every u ∈ V . The quantity

∑
v∈V E(u, v) is referred to as the

1



1.1 Graphs

degree or valence of u, so d-regularity just means that every vertex has degree exactly d. In
terms of the adjacency matrix this reads that every row, and hence every column, sums to
d. There are precisely two connected 1-regular graphs; one with one vertex and one with two
vertices, so we will always assume that the degree of regularity is at least 2 when considering
regular graphs. When a graph is d-regular (as is almost surely the case in this thesis), we
shall often consider the normalized adjacency matrix, (aij)/d. This matrix is symmetric and
stochastic, and can be viewed as the transition matrix of a random walk on G.

Definition 1.2. Let G = (V,E) be a finite, connected graph. For a subset U of V , let
∂U ⊂ E denote the edges in G with one endpoint in U and the other in U c; ∂U is referred
to as the boundary of U . We define the Cheeger constant of G to be

h(G) = min

{
|∂U |
|U |

| U ⊂ V, 0 < |U | ≤ |V |/2
}
.

In the literature, the Cheeger constant is also sometimes found under the name of expand-
ing constant or conductance. It gives a lower bound for the cost, in terms of the number of
edges one has to cut, of disconnecting a (non-empty) subset of V from the rest of the graph,
relative to the size of that subset. Thus a connected graph with a large Cheeger constant is
considered well-connected, since there are no virtually isolated parts of the graph.

Definition 1.3. A sequence of finite, connected, d-regular graphs (Gn)n≥1 is called a sequence
or family of edge expanders if |Vn| → ∞ as n → ∞, where Vn denotes the vertex set of Gn,
and there exists ε > 0 such that h(Gn) ≥ ε, for all n ∈ N.

The assumption about d-regularity ensures that the number of edges grows only propor-
tionally to the number of vertices, and the uniform bound away from zero of the Cheeger
constants ensures that the graphs are reasonably well-connected, thus giving rise to the pop-
ular description of expander graphs as being ’sparse graphs with strong connectivity proper-
ties’. This description can be quantified by the spectral properties of the adjacency matrix as
well, as we shall see now. Being symmetric and stochastic, it follows from elementary linear
algebra that the normalized adjacency matrix A = (aij) of a d-regular graph has only real
eigenvalues. These eigenvalues contain (not surprisingly) a lot of information about G. We
have the following result:

Proposition 1.4. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A, counted with muliplicity
and put in descending order.

1. |λi| ≤ 1, for all i = 1, · · · , n, and λ1 = 1.

2. λ2 < 1 if and only if G is connected.

3. λn = −1 if and only if G has a bipartite connected component.

Proof. 1 : Let 1V ∈ Rn be the all ones vector. Then, since A is stochastic we have A1V = 1V ,
so 1 is an eigenvalue. Moreover, any vector x ∈ Rn satisfies |(Ax)i| ≤ max1≤j≤n |xj | for any
1 ≤ i ≤ n, so that no eigenvalue can have absolute value larger than 1.

2



1 Preliminaries

2 : Assume that G is disconnected and let U ( V be a connected component of G. Then
A1U = 1U and A1Uc = 1Uc and since 1U and 1Uc are orthogonal, and hence linearly indepen-
dent, we have λ2 = 1.
Now assume that G is connected and let x = (xi)i ∈ Rn be an eigenvector of A with eigen-
value 1. Then, for all i ∈ [n], we have

∑n
j=1 aijxj = xi. In particular this holds for any

i0 ∈ [n] realizing maxi∈[n] xi, which implies that xj = xi0 , for all j such that ai0j 6= 0. Finally
connectedness of G means precisely that for any j ∈ [n] there is a sequence i0, i1, · · · , ik = j
such that ail,il+1

6= 0, for all l = 0, · · · , k − 1, so the above argument iterated l times yields
xj = xi0 . This demonstrates that x is a constant vector and hence a multiple of 1V .
3 : Suppose G has a bipartite component U = X ∪ Y ⊂ V , i.e., X and Y are nonempty and
disjoint, each vertex of X is adjacent only to vertices from Y and vice versa. Consider the
vector x = 1X − 1Y ∈ Rn. For i ∈ X we have

(Ax)i =
n∑
j=1

aij(1X(j)− 1Y (j)) =
n∑
j=1

−aij = −1 = −xi,

since aij = 0 whenever j /∈ Y . It can be seen analogously that (Ax)i = 1 = −xi whenever
i ∈ Y . Since also clearly (Ax)i = 0 = −xi when i ∈ (X ∪Y )c we have Ax = −x and −1 is an
eigenvalue of A with eigenvector x.
Suppose conversely that −1 is an eigenvalue of A with eigenvector x. This means that
for every i ∈ [n] we have

∑n
j=1 aijxj = −xi. In particular, this holds for any i0 ∈ [n]

realizing max1≤i≤n |xi| > 0. The above equality then implies that xj = −xi0 for each j such
that aij 6= 0, so any such j also realizes max1≤i≤n |xi|. This also means that any j in the
connected component of i0 has xj = ±xi0 and adjacent vertices have opposite signs. Let
X = {j ∼p i0 | xj = xi0} and Y = {j ∼p i0 | xj = −xi0}, where j ∼p i0 denotes that j and i0
are path connected in G. Then X ∪ Y form a bipartition of the path component of i0.

Definition 1.5. In the above notation, the quantity λ(G) := 1− λ2 > 0 is referred to as the
spectral gap of G and λ+(G) := 1−max {|x2|, |xn|} as the absolute spectral gap of G.

By the above proposition we then have λ(G) > 0 if and only G is connected and λ+(G) > 0
if and only if G is connected and not bipartite.

Definition 1.6. A sequence of finite, connected, d-regular graphs (Gn)n≥1 is called a sequence
or family of spectral expanders if |Vn| → ∞ as n → ∞ and there exists λ > 0 such that
λ(Gn) ≥ λ, for all n ∈ N.

The following theorem, the content of which is known as the Cheeger inequalities, implies
that being a family of edge expanders is equivalent to being a family of spectral expanders.

Theorem 1.7. Let G be a finite, d-regular graph. Then

dλ(G)

2
≤ h(G) ≤ 8d

√
2λ(G).

In particular a sequence of connected, d-regular graphs is a sequence of edge expanders if and
only if it is a sequence of spectral expanders.
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1.2 Coarse geometry and Poincaré inequalities

We will prove Theorem 1.7 in Section 2 after introducing the necessary prerequisites.
The existence of families of expanders is by no means obvious. The first existence proof is
probabilistic (and hence unconstructive) and due to Pinsker (see [Pin73]). We shall describe
explicit constructions of expander families in subsequent sections. We end this section by
introducing a very important class of graphs, namely Cayley graphs:

Definition 1.8. Let Γ be a group and Σ ⊂ Γ. The Cayley graph of Γ with respect to Σ,
denoted by Cay(Γ,Σ), is the graph whose vertex set is Γ and where (g, h) is an edge if there
exists s ∈ Σ such that h = sg.

By the cancellation rule there are no multiple edges, and there are self loops if and only
if e ∈ Σ, in which case there is a self loop at every vertex. Moreover Cay(Γ,Σ) is undirected
if and only if Σ is symmetric (i.e., s ∈ Σ if and only if s−1 ∈ Σ) and connected if and only if
Σ generates Γ. If Σ is finite then Cay(Γ,Σ) is |Σ|-regular.

Much more can be said about (edge and spectral) expanders, and we shall do so in Sections
2 and 3. This cursory introduction is by and large based on [Ost13]. We also refer to [AM85]
or [RVW02] for more properties and applications. For more on the interconnections between
groups and graphs we refer to [Mei08].

1.2 Coarse geometry and Poincaré inequalities

The key idea behind the notion of coarse geometry is viewing objects ’from far away’ and
consider them equal if they ‘look the same’ when seen from a large distance.

Definition 1.9. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is called a
coarse map if

1. There exists a non-decreasing function ρ+ : R+ → R+ such that

dY (f(x), f(x′)) ≤ ρ+(dX(x, x′)),

for all x, x′ ∈ X.

2. f is metrically proper, i.e., if B ⊂ Y is bounded then so is f−1(B).

Condition 1 can be rephrased as: For every R > 0 there exists an S > 0 such that
dY (f(x), f(x′)) ≤ S whenever d(x, x′) ≤ R. Note the difference between coarse and continu-
ous: we are not requiring that f(x) and f(x′) be close when x and x′ are, but only that they
do not get ’too far apart’. Also condition 1 is a uniform condition, whereas continuity is a
local condition. Condition 2 ensures that points that end up close could not have started too
far apart.

Definition 1.10. Let (X, dX) be a metric space. A subset S ⊂ X is called a net, if there
exists some N ∈ N such that for any x ∈ X we can find y ∈ S such that dX(x, y) < N .

Again the idea is to encapture the notion of things looking similar from far away; when
viewed from increasing distance, X will look like any net in itself.

Example 1.11. nZ ⊂ R is a net for any n ∈ N with N = dn/2e+ 1.

4



1 Preliminaries

Definition 1.12. A map f : X → Y is called a coarse embedding if there exist non-decreasing
maps ρ± : R+ → R+ such that limt→∞ ρ−(t) =∞ and, for all x, x′ ∈ X,

ρ−(dX(x, x′)) ≤ dY (f(x), f(x′)) ≤ ρ+(dX(x, x′)).

If furthermore f(X) is a net in Y we call f a coarse equivalence. The maps ρ− and ρ+ will
be referred to as the control functions of f .

Example 1.13. If Γ is a finitely generated group and Σ and Σ′ are both symmetric generating
subsets then the Cayley graphs Cay(Γ,Σ) and Cay(Γ,Σ′) are coarsely equivalent via the
identity map id : Γ→ Γ, when both graphs are equiped with the path metric.
Also any two finite metric spaces are coarsely equivalent, and in particular any finite metric
space embeds coarsely into any other metric space.

We now introduce the coarse disjoint union of metric spaces:

Definition 1.14. Let (Xi, di)i≥1 be a sequence of finite metric spaces. The coarse disjoint
union of these metric spaces is the space⊔

i≥1

Xi (the disjoint union of {Xi}i≥1)

with a metric d such that d(x, y) = di(x, y) whenever x, y ∈ Xi, for some i ≥ 1, and such
that dist(Xi, Xj)→∞, as i+ j →∞ and i 6= j.

Putting d(x, y) = max {i+ j,diam(Xi),diam(Xj)} when x ∈ Xi and y ∈ Xj with i 6= j
defines a metric on X with the desired properties.
The coarse disjoint union makes a sequence of finite metric spaces into one big (infinite)
metric space. One can think of this as putting the metric spaces in the sequence on a string
passing through a designated point in each space, such that the further out we go in the
sequence, the further apart they lie on the string. This means that not only are two spaces
which are far apart in the sequence also far apart in the coarse disjoint union, but also two
’adjacent’ spaces are far apart, provided they lie far out in the sequence. This idea, which is
clearly formalized in the above definition, leads to the following observation:

Remark 1.15. Let (Xi, di)i≥1 be a sequence of finite metric spaces and (Y, dY ) be yet another
metric space. Then there exists a coarse embedding from the coarse disjoint union of the Xi

into Y if and only if there exist functions fi : Xi → Y for each i ≥ 1 and maps ρ± : R+ → R+

satisfying the conditions of Definition 1.12 for each i ≥ 1. That is, ρ± are control functions
for all the fi simultaneously. For this reason we will simply say that the sequence coarsely
embeds into Y when we mean its coarse disjoint union.

We now introduce (discrete) Poincaré inequalities and describe their role as obstructions
to coarse embeddability:

Definition 1.16. Let (X, dX) and (Y, dY ) be metric spaces, (ax,y)x,y∈X and (bx,y)x,y∈X be
arrays of non-negative real numbers indexed over X with only finitely many non-zero entries,
and Ψ : R+ → R+ a non-decreasing function. If for any function f : X → Y the inequality∑

x,y∈X
ax,yΨ(dY (f(x), f(y))) ≥

∑
x,y∈X

bx,yΨ(dY (f(x), f(y))) (1)

is satisfied, we say the Y -valued functions on X satisfy the above Poincaré inequality.

5



1.2 Coarse geometry and Poincaré inequalities

Many a reader is probably quite puzzled by this definition. First of all it is not difficult
to find arrays and a function Ψ such that (1) is satisfied. The arrays can be chosen to be
identical, in which case (1) is trivially satisfied and completely uninteresting. Moreover, the
metric structure of X appears to be redundant - X is merely a labelling set. The metric
structure of X does however play a more subtle role: it usually determines the choice of the
arrays (ax,y) and (bx,y) and the function Ψ in order to get inequalities that yield interesting
results relating the coarse geometries of X and Y .
We shall be interested in the following type of Poincaré inequalities for connected graphs:

Definition 1.17. Let G = (V,E) be a finite, connected graph equipped with the shortest
path metric dG. Let (Y, dY ) be any metric space. We say that Y -valued functions on the
graph satisfy a p-Poincaré inequality with respect to the adjacency matrix if there exists a
γ > 0 such that

γ

|V |
∑
u,v∈V

dY (f(x), f(y))p ≤
∑
u,v∈V

au,vdX(f(x), f(y))p,

for all f : V → Y .

In terms of Definition 1.16, p-Poincaré inequalities are Poincaré inequalities for functions
on connected graphs with Ψ(t) = tp, bu,v ≡ γ/|V | and (au,v) is the adjacency matrix of G.
The reason why we are interested in these types of Poincaré inequalities is because of the
following proposition which appears to be attributed to Gromov:

Proposition 1.18. Let (Y, dY ) be a metric space and p > 0. Suppose Gn = (Vn, En) is a
sequence of finite, connected, d-regular graphs such that |Vn| → ∞ and there is γ > 0 such
that for all n ∈ N and f : Vn → Y we have

γ

|Vn|
∑

u,v∈Vn

dY (f(u), f(v))p ≤
∑

u,v∈Vn

anu,vdY (f(u), f(v))p, (2)

where (anu,v) is Gn’s adjacency matrix. Then (Gn)n≥1 does not coarsely embed into Y .

Proof. Suppose there were functions fn : Vn → Y and control functions ρ± : R+ → R+

satisfying the conditions of Definition 1.12. Together with the assumed inequality (2) this
yields for every n ∈ N that∑

u,v∈Vn

γ

|Vn|
ρ−(dGn(u, v))p ≤

∑
u,v∈Vn

anu,vdY (f(u), f(v))p

≤
∑

u,v∈Vn

anu,vρ+(dGn(u, v))p

≤
∑

u,v∈Vn

anu,vρ+(1)p = d|Vn|ρ+(1)p,

using that dGn(u, v) ≤ 1 whenever (u, v) is an edge in Gn, and the fact that |En| = d|Vn|
since Gn is d-regular. Now by d-regularity the number of vertices of distance at most D ≥ 0
to a given vertex is no more than dD+1. Taking D = logd(|Vn|/2−1) this reads that at least
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|Vn|2/2 of the |Vn|2 terms on the left of the above inequality have dGn(u, v) ≥ logd(|Vn|/2−1).
Because ρ− is non-decreasing this yields

γ

|Vn|
|Vn|2

2
ρ−(logd(|Vn|/2− 1))p ≤ d|Vn|ρ−(1)p,

and since |Vn| → ∞ this clearly contradicts limt→∞ ρ−(t) =∞.

In this thesis we will be concerned with introducing terminology and establishing Poincaré
inequalities with respect to the adjacency matrix with uniform constants, as those assumed
in Proposition 1.18. By the statement of this proposition we are then also establishing non-
coarse embeddability results between metric spaces.

For a deeper treatment of coarse geometry and its role in Banach space theory, we refer
to [NY12]. Poincaré inequalities as obstructions to coarse embeddings, including Proposition
1.18, are treated in [Ost13].

1.3 Superreflexive Banach spaces

Throughout this exposition, unless otherwise stated, vector spaces are over K, where K is
either C or R. If a result holds only for one of these cases, this will be elaborated explicitly.

Definition 1.19. A normed vector space, (X, ‖·‖), is called uniformly convex if for every
ε > 0 there exists δ > 0 such that whenever x, y ∈ X satisfy ‖x‖ , ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε

we have ‖x+y‖
2 ≤ 1− δ.

Remark 1.20. It can be seen that if we replace the condition ||x||, ||y|| ≤ 1 with ||x|| =
||y|| = 1 we get an equivalent definition of uniform convexity. So if we define the modulus of
(uniform) convexity of B by

δB(ε) = inf

{
1− ‖x+ y‖

2
| ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
,

then B is uniformly convex precisely when δB(ε) > 0, for all 0 < ε ≤ 2. We say that B has
modulus of convexity of power type p ≥ 2 if there exists a C > 0 such that δB(ε) ≥ Cεp, for
all 0 < ε ≤ 2. The modulus of uniform convexity, including its connection to other geometric
properties of Banach spaces, will be treated more thoroughly in Section 6.

Uniform convexity is a geometric notion for Banach spaces, but the following proposition
connects it to a functional analytical property:

Proposition 1.21. If B is a uniformly convex Banach space then B is reflexive.

Proof. We wish to prove that the isometric evaluation map Λ : B → B∗∗ given by Λ(x)(f) =
f(x), f ∈ B∗ and x ∈ B, is surjective. The proof is an application of Goldstine’s theorem
which states that the image under the evaluation map of the (norm) closed unit ball of B is

w∗ dense in the (norm) closed unit ball of the bidual, i.e., Λ(B1)
w∗

= (B∗∗)1.
Take ϕ ∈ B∗∗ and observe that by linearity we can assume that ϕ has unit norm so that there

exists, by Goldstine’s theorem, a net (xi)i∈I ⊂ B1 such that Λ(xi)
w∗→ ϕ, i.e., Λ(xi)(f)→ ϕ(f)

for every f ∈ B∗. It follows from uniform convexity that (xi) is Cauchy in norm. Indeed, let
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0 < ε < 1 and pick δ > 0 according to uniform convexity, i.e., (by contraposing) whenever
x, y ∈ B satisfy ‖x‖ , ‖y‖ ≤ 1 and

∥∥x+y
2

∥∥ > 1 − δ then ‖x− y‖ < ε. Since ‖ϕ‖ = 1 there is
f ∈ B∗ of unit norm such that |ϕ(f)| > 1 − δ and by scaling with a phase we may assume
that ϕ(f) is real and positive. Now since f(xi) = Λ(xi)(f) → ϕ(f) we can pick i0 ∈ I such
that <f(xi) > 1− δ whenever i � i0. Hence for i, j � i0 we have∥∥∥∥xi + xj

2

∥∥∥∥ ≥ |12f(xi + xj)| ≥
1

2
<f(xi + xj) > 1− δ

and hence ||xi−xj || < ε, demonstrating that (xi) is Cauchy in norms. By completeness of B

we can therefore find x ∈ B∗ such that xi
||·||→ x and since the evaluation map is an isometry

we obtain Λ(xi)
||·||→ Λ(x) implying Λ(xi)

w∗→ Λ(x). Since the w∗ topology is Hausdorff we
obtain ϕ = Λ(x) demonstrating the desired.

Example 1.22. Clearly uniform convexity passes to subspaces (and, with a little more
work, quotients), but it is not stable under isomorphisms. This can be seen by considering

`2 equipped with the norm ‖(xn)‖′ = max

{
2|x1|,

(∑
n≥2 |xn|2

)1/2
}

, which is equivalent

to the usual 2-norm on `2, i.e., (`2, ‖·‖2) ∼= (`2, ‖·‖′). We will see later in this subsection
that (`2, ‖·‖2) is uniformly convex, but (`2, ‖·‖′) is not. To see the latter claim consider
x = (1/2, 0, · · · ) and y = (1/2, 1/2, 0, · · · ). Then ‖x‖′ = ‖y‖′ = 1 and ‖x− y‖′ = 1/2,
whereas ‖x+ y‖′ /2 = 1, so that δ(`2,‖·‖′)(1/2) = 0.

Definition 1.23. A Banach space, (B, || · ||), is called superreflexive if it admits a uniformly
convex norm which is equivalent to || · ||. In other words, B is superreflexive if it is isomorphic
to a uniformly convex Banach space.

Obviously, uniform convexity implies superreflexivity which is stable under isomorphism.
Superreflexivity, however, does not imply uniform convexity, as is seen by example 1.22;
(`2, ‖·‖′) is superreflexive, being isomorphic to (`2, ‖·‖2), but not uniformly convex. Since
reflexivity is preserved under isomorphisms, Proposition 1.21 yields the following corollary:

Corollary 1.24. If B is superreflexive then B is also reflexive.

We will provide an example below of a reflexive Banach space which is not superreflexive,
so the latter is really a stronger requirement. Let us proceed to give some examples of
superreflexive Banach spaces.

Proposition 1.25. Let 1 < p < ∞ and let (Ω,A , µ) be a σ-finite measure space. Then
Lp(Ω) is superreflexive.

Indeed, Lp(Ω) equipped with the usual p-norm is even uniformly convex - a consequence
of Clarkson’s inequalities (see [Cla36]):

Lemma 1.26. Let f, g ∈ Lp(Ω).

1. If 1 < p < 2 then ‖f + g‖p/(p−1)
p + ‖f − g‖p/(p−1)

p ≤ 2
(
‖f‖pp + ‖g‖pp

)1/(p−1)

2. If 2 ≤ p <∞ then ‖f + g‖pp + ‖f − g‖pp ≤ 2p−1
(
‖f‖pp + ‖g‖pp

)
8
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Taking p = 2 we obtain that Hilbert space is uniformly convex, a fact which also follows
from the parallelogram identity. It is easy to see directly that L1(Ω) and L∞(Ω) with the usual
norms are not uniformly convex. But since they are not reflexive it follows from Corollary
1.24 that they are not even superreflexive, i.e., there is no equivalent norm on these spaces,
which is uniformly convex. The definition of superreflexivity given in Definition 1.23 is not
the original one, it is in fact a theorem that this definition is equivalent to the original one.
We will proceed to discuss super-properties for Banach spaces in order to give the original
definition of superreflexivity.

Definition 1.27. Let A and B be Banach spaces. We say that A is finitely representable in
B if the following holds:
For every ε > 0 and every finite-dimensional subspace V ⊂ A, there exists a finite-dimensional
subspace W ⊂ B and an isomorphism T : V →W such that ‖T‖

∥∥T−1
∥∥ < 1 + ε.

If P is some property defined for Banach spaces, then B is said to have super -P if every
Banach space which is finitely representable in B has P. Since obviously B is finitely repre-
sentable in itself super-P implies P. Also note that, since finite representability is obviously
transitive, super-super-P is equivalent to super-P. Now in this terminology ’superreflexiv-
ity’ of B means that any Banach space which is finitely representable in B is reflexive. This
is the original definition due to R. C. James, and it is a deep theorem of Enflo [Enf72] that
this is equivalent to the one given in Definition 1.23. Using martingale techniques, Pisier
[Pis75] improved Enflo’s results and proved:

Theorem 1.28. Let B be a Banach space. Then the following are equivalent

1. B is isomorphic to a uniformly convex Banach space (i.e., B is superreflexive in the
sense of Definition 1.23).

2. Any Banach space which is finitely representable in B is reflexive (i.e., B is superreflex-
ive in the sense of James’ original definition).

3. B is isomorphic to a uniformly convex Banach space with modulus of uniform convexity
of power type p for some p ≥ 2.

Superreflexive Banach spaces satisfy the following permanence properties, some of which
have already been discussed

Proposition 1.29. Suppose B is a superreflexive Banach space.

1. If M ⊂ B is a closed subspace then M is superreflexive.

2. If E is another Banach space which is finitely representable in B then E is superreflex-
ive.

3. If E is another Banach space which is isomorphic to B then E is superreflexive.

4. If M ⊂ B is a closed subspace then the quotien B/M is superreflexive.

Now we provide an example of a Banach space which is reflexive but not superreflexive:
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1.4 Vector valued integration

Example 1.30. Consider the n-dimensional spaces, `n1 , equipped with the 1-norm. Since
these are finite-dimensional they are all reflexive. For 1 ≤ p <∞, we define⊕

n≥1

`n1


p

=

{
(fn)n≥1 | fn ∈ `n1 ,

∞∑
n=1

‖fn‖p`n1 <∞

}

which, equipped with the norm ‖(fn)n≥1‖p = (
∑∞

n=1 ‖fn‖
p
`n1

)1/p, is a Banach space. Moreover,

for any 1 < p < ∞ we have
(⊕

n≥1 `
n
1

)∗
p

=
(⊕

n≥1(`n1 )∗
)
q

where q is the Hölder conjugate

of p. In particular reflexivity of `n1 for each n ≥ 1 implies that B :=
(⊕

n≥1 `
n
1

)
2

is reflexive.

However, as we shall see below, `1 is finitely representable in B, yielding, since `1 is not
reflexive, that B is not superreflexive. To see the above claim let V be a finite-dimensional
subspace of `1 and let ε > 0. Take an algebraic basis ξ1, · · · , ξm of V such that ‖ξi‖`1 = 1 for
each i = 1, · · · ,m. Since any two norms on a finite-dimensional vector space are equivalent
we can find C > 0 such that

∑m
i=1 |ai| ≤ C−1 ‖

∑m
i=1 aiξi‖`1 for every sequence of scalars

a1, · · · , am. Now let 0 < α < C be such that 1+α/C
1−α/C < 1 + ε. Since ‖ξi‖`1 < ∞ we can find

M ∈ N such that
∑∞

j=M+1 |ξi(j)| < α for each i = 1, · · · ,m. So if we define ξ′1, · · · , ξ′m ∈ `1 by
ξ′i(j) = ξi(j) if j ≤M and ξ′i(j) = 0 if j > M we have ‖ξi − ξ′i‖`1 < α for every i = 1, · · · ,m.
Now we define T : V → span {ξ′1, · · · , ξ′m} by T (ξi) = ξ′i for i = 1, · · · ,m. Then for every
sequence of scalars a1, · · · , am we have∥∥∥∥∥T

(
m∑
i=1

aiξi

)∥∥∥∥∥
`1

≤

∥∥∥∥∥
m∑
i=1

ai(ξ
′
i − ξi)

∥∥∥∥∥
`1

+

∥∥∥∥∥
m∑
i=1

aiξi

∥∥∥∥∥
`1

≤ α
m∑
i=1

|ai|+

∥∥∥∥∥
m∑
i=1

aiξi

∥∥∥∥∥
`1

≤ (1 +
α

C
)

∥∥∥∥∥
m∑
i=1

aiξi

∥∥∥∥∥
`1

,

so ‖T‖ ≤ 1 + α/C. It is seen in a similar fashion that∥∥∥∥∥
m∑
i=1

aiξi

∥∥∥∥∥
`1

≤ α

C

∥∥∥∥∥
m∑
i=1

aiξi

∥∥∥∥∥
`1

+

∥∥∥∥∥
m∑
i=1

aiξ
′
i

∥∥∥∥∥
`1

,

which yields simultaneously that T is invertible and that
∥∥T−1

∥∥ ≤ (1− α/C)−1.
Since ξ′1, · · · , ξ′m sit isometrically in `M1 which in turn sits isometrically in B, we obtain,
by composing T with these isometries, an isomorphism T ′ : V → W , where W is a finite-
dimensional subspace of B such that ‖T ′‖

∥∥(T ′)−1
∥∥ ≤ 1+α/C

1−α/C < 1 + ε.

This subsection is based on [Bea82], which provides an excellent introduction to super-
reflexivity as a geometric property for Banach spaces. This includes even more characteriza-
tions of superreflexive Banach spaces, leading to proofs of the permanence properties stated
in Proposition 1.29.

1.4 Vector valued integration

Recall that we may equip a topological space with the Borel σ-algebra, generated by the open
sets. For finite dimensional (real or complex) vector spaces, this gives rise to the familiar
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theory of Lebesgue integration of functions with values in Kn. This theory hinges on the fact
that any Borel measurable, scalar valued function may be approximated pointwise by simple
functions. This fact, however, does not hold for general Banach spaces, so to develop an
integration theory for Banach space-valued functions we will need to make it an assumption.
This turns out to be intimately connected to the σ-algebra generated by the dual of a Banach
space, allowing for the use of functional analytical techniques.

Definition 1.31. Let B be a Banach space.

• Let B(B) denote the Borel σ-algebra on B.

• For Y ⊂ B∗ let σ(Y ) denote the σ-algebra generated by Y , i.e., the smallest σ-algebra
making every ϕ ∈ Y measurable (here the codomain of ϕ, R or C, is of course equipped
with the good old Borel σ-algebra).

Since any element of B∗ is continuous we clearly have σ(Y ) ⊂ σ(B∗) ⊂ B(B).

It is not difficult to see that σ(Y ) is generated by set of the form ((ϕ1(x), · · · , ϕn(x)) ∈ A),
where n ≥ 1, ϕ1, · · · , ϕn ∈ Y and A ∈ B(Kn). One might wonder whether the above
inclusions are in fact equalities. They are not in general but the following proposition shows
that they are if we assume separability of B:

Proposition 1.32. Assume that B is separable and Y is a weak∗ dense subspace of B∗.
Then σ(Y ) = σ(B∗) = B(B).

Proof. We prove σ(B∗) = B(B), the other equality can be seen by applying (a corollary of)
the Krein-Šmulian theorem. We trivially have σ(B∗) ⊂ B(B) and for the other inclusion,
choose, by separability, a sequence of functionals (ϕn) ⊂ B∗ of unit norm which is norming
for B. Then for any open ball, B(x0, r) ⊂ B, we have

B(x0, r) = {x ∈ B | ‖x− x0‖ < r} =

{
x ∈ B | sup

n≥1
|ϕn(x− x0)| < r

}
∈ σ(B∗).

Since the open balls generate the Borel σ-algebra we obtain B(B) ⊂ σ(B∗) as desired.

Definition 1.33. Let (S,A ) be a measurable space, B a Banach space and f : S → B a
function.

• If f is A −B(B) measurable we say that it is Borel measurable, in the scalar valued
case (i.e., B = K) we shall oftentimes simply say that f is measurable.

• We say that f is weakly measurable if it is A − σ(B∗) measurable. This is clearly
equivalent to ϕ ◦ f being measurable for each ϕ ∈ B∗.

We introduce one more notion of measurability:

Definition 1.34. Let (S,A ) be a measurable space. For a function f : S → K and x ∈ B
we denote by f ⊗ x : S → B the function given by f ⊗ x(s) := f(s)x. Functions f : S → B
of the form f =

∑n
i=1 1Ai ⊗ xi, where Ai ∈ A and xi ∈ B, are called simple.

Definition 1.35. A function f : S → B is called strongly measurable if it is the pointwise
limit of a sequence of simple functions.

11
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Remark 1.36. We have to decorate the above definition with the prefix ’strongly’, because
this notion does not in general coincide with Borel measurability. This is easily seen by
considering the case (S,A ) = (B,Σ), where Σ is any σ-algebra which contains the Borel
σ-algebra, and the identity map I : B → B. I is clearly Borel measurable, but if we assume
B to be non-separable then I cannot be approximated by a sequence of simple functions.
Indeed, if this were the case, then the values taken by the functions in such a sequence would
constitute a countable, dense subset of B.

We shall see that strong measurability implies Borel measurability. We now have three
different notions of measurability and their interconnections are described in the following
theorem and its corollaries:

Theorem 1.37. Let (S,A ) be a measurable space and B a Banach space.Then for a function
f : S → B the following are equivalent:

1. f is strongly measurable.

2. f is separably valued and weakly measurable.

where by f being separably valued we mean that there exists a closed, separable subspace
B0 ⊂ B such that f(S) ⊂ B0.

Proof. (1) =⇒ (2): Let (fn) be a sequence of simple functions converging pointwise to
f . Then since each fn takes only finitely many values the set {fn(s) | n ≥ 1, s ∈ S} ⊂ B is
countable, and since, by assumption, any element of f(S) can be approximated by elements of
this set, we see that f(S) is contained in its closed linear span, which is separable. Moreover,
since simple functions are clearly Borel measurable, we have that ϕ ◦ fn is Borel measurable
for each ϕ ∈ B∗, yielding, since ϕ is continuous, that ϕ ◦ f is Borel measurable, being the
pointwise limit of a sequence of Borel measurable functions (we are here back in scalar valued
case). This demonstrates that f is weakly measurable.
(2) =⇒ (1): Let B0 be as above, and choose a sequence (ϕn) ⊂ B∗ of unit norm which is
norming for B0 (such a sequence exists since B0 is separable). Also, let (xn) ⊂ B0 be a dense
sequence, and for each n ≥ 1 define the function gn : B0 → {x1, · · · , xn} in the following way:
For y ∈ B0 let k(n, y) be the smallest k ∈ [n] such that ‖y − xk‖ = mini∈[n] ‖y − xi‖. Now
put gn(y) = xk(n,y), and observe that, by construction and since (xn) ⊂ B0 is dense, we have
‖gn(y)− y‖ → 0, for all y ∈ B0. Hence if we define fn : S → {x1, · · ·xn} ⊂ B by fn = gn ◦ f
we have ‖fn(s)− f(s)‖ → 0, for all s ∈ S, so if we can demonstrate that fn is simple for each
n ∈ N we are done. To see that fn is simple we need to show that (fn = xk) ∈ A for every
k ∈ [n]. To this end observe that

(fn = xk) =

(
‖f − xk‖ = min

i∈[n]
‖f − xi‖ < min

i∈[k−1]
‖f − xi‖

)
and, since for any i ≥ 1 we have ‖f − xi‖ = supj≥1 |ϕj(f − xi)| and f is assumed weakly
measurable, this yields that s 7→ ‖f(s)− xi‖ : S → R is measurable. This implies that
(fn = xk) ∈ A as desired.

Note that the prove also yields that if f takes its values in a closed subspace X ⊂ B,
then f is strongly measurable as a function with values in B if and only if it is strongly
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measurable considered as a function with values in X. Also by a slight modification of the
definition of the ϕn’s we can choose fn such that ‖fn‖ ≤ ‖f‖, for all n ≥ 1, and it is easy to see
that a pointwise limit of strongly measurable functions is again strongly measurable. With
Proposition 1.32 and Theorem 1.37 at hand we are now able to connect strong measurability
to Borel measurability:

Corollary 1.38. Let f : S → B be a function. Then f is strongly measurable if and only if
it is separably valued and Borel measurable.

Proof. If f is strongly measurable then by Theorem 1.37 f is weakly measurable and there is a
closed, separable subspace B0 ⊂ B such that f(S) ⊂ B0. By referring to Hahn-Banach again
we obtain that f is weakly measurable considered as a B0 valued function. By Proposition
1.32 we then infer that f is Borel measurable as a B0 valued function. Now for A ∈ B(B)
we have A0 := A ∩B0 ∈ B(B0) and hence

(f ∈ A) = (f ∈ A0) ∈ A

demonstrating that f is Borel measurable considered as a B valued function. Now if we
assume f to be separably valued and Borel measurable, we have in particular that ϕ ◦ f is
measurable for any ϕ ∈ B∗. Hence f is weakly measurable and separably valued and therefore
stongly measurable by Theorem 1.37.

If B is separable (e.g. if it is equal to C or R), the above corollary gives the characterization
of Borel measurability that we know and love from scalar valued integration theory, but as the
above examples show we have to make it an assumption in the general case. This is what we
were alluding to, when we wrote in the beginning of this subsection that the Borel σ-algebra
is too large to be useful in the general setting. Having introduced the relevant notions of
measurability we now move to generalizing integration theory to vector valued functions.

Definition 1.39. Let (S,A , µ) be a measure space. A µ-simple function f : S → B is a
function of the form f =

∑n
i=1 1Ai⊗xi, where n ≥ 1, xi ∈ B and Ai ∈ A with µ(Ai) <∞. A

function is called strongly µ-measurable if it is the pointwise limit of a sequence of µ-simple
functions µ-almost everywhere.

Proposition 1.40. Let f : S → B. Then

1. If f is strongly µ-measurable then it is µ-almost everywhere equal to a strongly measur-
able function.

2. If f is almost everywhere equal to a strongly measurable function and (S,A , µ) is σ-
finite then f is strongly µ-measurable.

Proof. (1): Suppose f is strongly µ-measurable. Let fn be µ-simple and N ∈ A be a null set
such that fn → f pointwise on N c. Then 1Ncfn is simple for each n ∈ N and 1Acfn → 1Ncf
pointwise on S, so 1Ncf is strongly measurable and clearly equals f µ-almost everywhere.
(2): Suppose (S,A , µ) is σ-finite and f is µ-almost everywhere equal to a strongly measurable
function f̃ . Let N ∈ A be a null set such that f = f̃ an Ac. Now take a sequence
A1 ⊂ A2 ⊂ · · · of measurable sets of finite measure such that S = ∪n≥1An. Moreover let f̃n
be a sequence of simple functions converging pointwise to (̃f). Then fn := 1An f̃n is µ-simple
for every n ∈ N and fn(s)→ f(s) whenever s ∈ N c, so f is strongly µ-measurable.
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Remark 1.41. Considering any constant function S → B it is clear that σ-finiteness is really
a necessary assumption in item (2) above. In particular, also for scalar-valued functions, being
strongly µ-measurable is not the same as being Borel/strongly measurable unless we assume
σ-finiteness for µ.

Definition 1.42. A function f : S → B is called weakly µ-measurable if ϕ ◦ f is strongly
µ-measurable for every ϕ ∈ B∗.

Theorem 1.43. A function f : S → B is called µ-essentially separably valued if there exists a
closed, separable subset B0 ⊂ B such that f(s) ∈ B0 for µ-almost all s ∈ S. Then f is strongly
µ-measurable if and only if f is µ-essentially separably valued and weakly µ-measurable.

Proof. The ’only if’ part is proven similarly to the analogous statement in Theorem 1.37. For
the other implication let B0 be a closed, separable subspace of B in which f takes its values
almost surely, and let (ϕk)k≥1 ⊂ B∗ be a norming sequence for B0. Then ϕk ◦ f : S → K
is strongly µ-measurable for every k ∈ N. Let (f

(k)
n )n≥1 be a µ-almost surely approximating

sequence of µ-simple functions. Then µ(f
(k)
n 6= 0) < ∞, so if we put S1,k = ∪n≥1(f

(k)
n 6= 0)

and S0,k = Sc1,k then ϕk ◦ f ≡ 0 almost surely on S0,k, µ is σ-finite on S1,k and S is the
disjoint union of S0,k and S1,k. Hence if we put S0 = ∩k≥1S0,k and S1 = Sc0 we have, since
(ϕk) is norming for B0, that f ≡ 0 on S0 and µ is σ-finite on S1. So if we can approximate
f almost surely by µ-simple functions on S1 we are done. This shows that we can assume
that µ is σ-finite on S. Hence if we let (xj)j≥1 ⊂ B0 be a dense subset then the constant
function 1S ⊗ xj is strongly µ-measurable for every j ∈ N, so by the ’only if’ part of the
theorem it is weakly µ-measurable. This implies that ϕk ◦ (f − xj) : S → K is strongly
µ-measurable for every j, k ∈ N. By item (1) of Proposition 1.40 we can now find an array
of stongly measurable functions gjk : S → K and a µ-null set such that gjk = ϕk(f − xj)
on N c. Hence, by passing to the gjk-sequence, we may assume that ϕk(f − xj) is strongly
measurable. Since (ϕk)k≥1 is norming for B0 and (xj)j≥1 is dense in B0 we now find ourselves
in the same situation as in the proof of (2) =⇒ (1) in Theorem 1.37, so we construct a
sequence of simple functions (fn)n≥1 in the same way such that fn → f pointwise, yielding
that f is stongly measurable. Finally, since we reduced to the case where µ is σ-finite, we
use item (2) of Proposition 1.40 to conclude that f is strongly µ-measurable as desired.

Let f be a µ-simple functions, and write f =
∑n

i=1 1Ai⊗xi, where µ(Ai) <∞. We define
its Bochner integral in the obvious way:∫

S
fdµ =

n∑
i=1

µ(Ai)xi ∈ B.

Note that
∫
S fdµ is independent of the specific choice of Ai and xi to represent f , and the

well known formulae
∥∥∫

S fdµ
∥∥ ≤ ∫S ‖f‖ dµ and

∫
S fdµ+

∫
S gdµ =

∫
S f + gdµ hold.

If f : S → B is strongly µ-measurable and g is a µ-simple function then g is Borel measurable
and f is almost everywhere equal to a strongly, hence Borel, measurable function so that
‖f − g‖ ∈ M+(S). Hence the quantity

∫
S ‖f − g‖ dµ makes sense in the following definition:

Definition 1.44. A strongly µ-measurable function f : S → B is called Bochner integrable
with respect to µ if there exists a sequence of µ-simple functions gn : S → B such that

lim
n→∞

∫
S
‖f − gn‖ dµ = 0.

14



1 Preliminaries

Using the definition of Bochner integrals of µ-simple functions, it is easily seen that if
f and (gn) satisfy the above definition then (

∫
S gndµ) is a Cauchy sequence in B. Hence,

it converges to an element in B, which we denote by
∫
S fdµ. This notation suggests that

the choice of sequence, (gn), in the above definition does not matter, which is readily seen
to be the case using the triangle inequality. An important characterization of the Bochner
integrable functions is the following:

Proposition 1.45. A strongly µ-measurable function f : S → B is Bochner integrable if and
only if

∫
S ‖f‖ dµ <∞.

Proof. First assume
∫
S ‖f‖ dµ < ∞ and take a sequence of µ-simple functions (fn) such

that fn → f and ‖fn‖ ≤ ‖f‖ almost everywhere. It then follows by dominated convergence
that

∫
S ‖fn − f‖ dµ → 0. On the other hand, if f is assumed Bochner integrable we get by

observing that ‖f‖ ≤ ‖f − fn‖+ ‖fn‖ that
∫
S ‖f‖ dµ <∞.

A number of classical results from scalar valued integration theory carry over to Bochner
integrals mutatis mutandis, These count dominated convergence, substitution, Jensen’s in-
equality (whenever µ is a probability measure) and Fubini’s theorem (see [Hyt+16, sec. 1.2]).
Also, by first considering µ-simple functions and then an approximation argument, we get a
triangle inequality for Bochner integrals:

∥∥∫
S fdµ

∥∥ ≤ ∫S ‖f‖ dµ. Finally the Bochner integral
is linear and more generally:

Theorem 1.46. Let f : S → B and T : V → Y a linear map, where V ⊂ B is a closed
subspace and Y is a Banach space.

• If f is Bochner integrable, V = B and T is bounded then Tf : S → Y is Bochner
integrable and

∫
S Tfdµ = T

(∫
S fdµ

)
. In particular, for all ϕ ∈ B∗, we have

∫
S ϕfdµ =

ϕ
(∫
S fdµ

)
.

• If f is Bochner integrable, f ∈ V µ-almost surely, T is closed and Tf : S → Y (which
is almost everywhere defined) is Bochner integrable, then f is Bochner integrable as a
V valued function and

∫
S Tfdµ = T

(∫
S fdµ

)
.

The proof of the first item (which is the one we will need) follows directly from the
definition of the Bochner integral. We may now define the Bochner spaces Lp(S;B) by

• For 1 ≤ p < ∞, a function f : S → B is in Lp(S;B) if and only if f is strongly
µ-measurable and

∫
S ‖f‖

p dµ <∞.

• A function f : S → B is in L∞(S;B) if and only if f is strongly µ-measurable and
there is r ≥ 0 such that µ (‖f‖ > r) = 0.

where we of course identify functions that are almost surely equal. We can equip these spaces

with the norms ‖f‖p =
(∫
S ‖f‖

p)1/p for 1 ≤ p <∞, and ‖f‖∞ = inf {r ≥ 0 | µ(‖f‖ > r) = 0}
(we shall occasionally write ‖f‖Lp(S;B) if there is any risk of ambiguity). The proofs of the

facts that these are norms and that (Lp(S;B), ‖·‖p) is a Banach space for every 1 ≤ p ≤ ∞,
are analogous to the ones for the scalar valued case.

15
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Proposition 1.47. Let (S1,A1, µ1) and (S2,A2, µ2) be measure spaces and B a Banach
space. For all 1 ≤ p ≤ q <∞, the map

1A ⊗ (1B ⊗ x) 7→ 1B ⊗ (1A ⊗ x)

extends uniquely to a contractive embedding Lp(S1;Lq(S2;B))→ Lq(S2;Lp(S1;B)).

The proof of Proposition 1.47 essentially follows from the triangle inequality for Bochner
integrals and the fact that the µ-simple functions are dense in the Bochner spaces. We will
omit it. Simplifying to the case p = q we obtain the following version of Fubini’s theorem:

Corollary 1.48. Let (S1,A1, µ1) and (S2,A2, µ2) be measure spaces and B a Banach space.
For all 1 ≤ p <∞, the map

1A ⊗ (1B ⊗ x) 7→ 1B ⊗ (1A ⊗ x)

extends uniquely to an isometric isomorphism Lp(S1;Lp(S2;B)) ∼= Lp(S2;Lp(S1;B)).
If, moreover, we assume that µ and ν are σ-finite then the map

1A ⊗ (1B ⊗ x) 7→ (1A ⊗ 1B)⊗ x

extends uniquely to an isometric isomorphism Lp(S1;Lp(S2;B)) ∼= Lp(S1 × S2;B).

Example 1.49. Consider the function f : S → B given by f = f ′ ⊗ x for some non-zero
x ∈ B and measurable f ′ : S → K. Then f is Bochner integrable if and only if f ′ is integrable
and in this case

∫
S fdµ =

∫
S f
′dµ · x. In particular f ∈ Lp(S;B) if and only if f ′ ∈ Lp(S)

and ‖f‖Lp(S;B) = ‖f ′‖Lp(S) ‖x‖.

The above example motivates the notation f ⊗x for scalar valued functions f , and shows
that ‖·‖Lp(S;B) is a cross-norm on the algebraic tensor product Lp(S) ⊗ B ⊂ Lp(S;B). It is

not difficult to see, using what we know from scalar valued integration theory and (the proof
of) Proposition 1.45, that the µ-simple functions are dense in Lp(S;B) for 1 ≤ p < ∞, so
in particular Lp(S) ⊗ B is dense in Lp(S;B). This is an important fact for formulating the
extension problem: Let (S1,A1, µ1) and (S2,A2, µ2) be measure spaces, 1 ≤ p1, p2 ≤ ∞ and
T : Lp1(S1) → Lp2(S2) a bounded linear operator. We may then define the linear operator
T ⊗IB : Lp1(S1)⊗B → Lp2(S2)⊗B by (T ⊗IB)(f⊗x) = Tf⊗x. If this operator is bounded,
it extends uniquely to an operator from Lp1(S1;B) to Lp2(S2;B) with norm ‖T ⊗ IB‖. We
will denote this operator by TB. The question is, which assumptions on T (and/or on p and
q) guarantee boundedness, and hence extendability, of T ⊗ IB. For positive operators, i.e.,
Tf ≥ 0 whenever f ≥ 0, we have the following nice result:

Proposition 1.50. Suppose 1 ≤ p1, p2 <∞ and T : Lp1(S1)→ Lp2(S2) is a positive, bounded
linear operator. Then T ⊗IB : Lp1(S1)⊗B → Lp2(S2)⊗B is bounded for every Banach space
B and hence extends to a bounded linear operator TB : Lp1(S1;B) → Lp2(S2;B). Moreover,
this extention satisfies ‖TB‖ = ‖T ⊗ IB‖ = ‖T‖.
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Proof. It suffices to show boundedness for µ1-simple functions, so let f =
∑n

i=1 1Ai⊗xi where
Ai ∈ A1 are pairwise disjoint with µ1(Ai) <∞ and xi ∈ B. Then

‖(T ⊗ IB)f‖Lp2 (S2;B) =

(∫
S2

∥∥∥∥∥
n∑
i=1

T1Ai ⊗ xi

∥∥∥∥∥
p2

B

dµ2

)1/p2

≤

(∫
S2

(
n∑
i=1

T1Ai ‖xi‖B

)p2
dµ2

)1/p2

=

(∫
S2

(
T

(
n∑
i=1

‖xi‖B 1Ai

))p2
dµ2

)1/p2

=

∥∥∥∥∥T
(

n∑
i=1

‖xi‖B 1Ai

)∥∥∥∥∥
Lp2 (S2)

≤ ‖T‖

∥∥∥∥∥
n∑
i=1

‖xi‖B 1Ai

∥∥∥∥∥
Lp1 (S1)

= ‖T‖

∥∥∥∥∥
n∑
i=1

1Ai ⊗ xi

∥∥∥∥∥
Lp1 (S1;B)

,

where we used positivity of T to conclude that ‖T1Ai ⊗ xi‖B = |T1Ai | ‖xi‖B = T1Ai ‖xi‖.
This demonstrates that T ⊗IB is bounded with ‖T ⊗ IB‖ ≤ ‖T‖. Since the reverse inequality
is trivial this concludes the proof.

Remark 1.51. If, in stead of positivity of T , we make the weaker assumption that there
exists a positive R : Lp1(S1)→ Lp2(S2) such that |Tf | ≤ R|f |, for all f ∈ Lp1(S1). Then the
above proof carries over, with the estimate ‖T1Ai ⊗ xi‖B = |T1Ai | ‖xi‖B ≤ R1Ai ‖xi‖B, to
demonstrate extendability of T ⊗ IB with ‖T ⊗ IB‖ ≤ ‖R‖.

For Hilbert spaces we need no assumptions on the operator (we simplify to p1 = p2, since
this is the version we will need, but the theorem holds also without this assumption):

Theorem 1.52. Suppose 1 ≤ p < ∞ and let T : Lp(S1) → Lp(S2) be a bounded linear
operator. Then T ⊗ IH extends uniquely to a bounded linear operator TH : Lp(S1;H) →
Lp(S2;H), for every Hilbert space H. Its norm satisfies ‖TH‖ = ‖T‖.

This theorem was originally proven by Paley, Marcinkiewicz and Zygmund, but we follow
[Hyt+16]. Its proof requires the following proposition:

Proposition 1.53. Let (Ω, µ) be a probability space and let (γn)n≥1 be any sequence of
mutually independent standard Gaussian random variables on Ω. Then `2 is isometrically
isomorphic to span {γn | n ∈ N} ⊂ Lp(Ω), for every 1 ≤ p <∞.

Proof. Take
∑n

k=1 anγn ∈ span {γn | n ∈ N}. Then by elementary properties of Gaussian
random variables this is again a centered Gaussian with variance ‖(ak)nk=1‖`2 . Hence∥∥∥∥∥

n∑
k=1

anγn

∥∥∥∥∥
Lp(Ω)

= ‖γ‖p ‖(ak)
n
k=1‖`2 , (3)
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1.5 Martingales

where ‖γ‖p denotes the absolute pth moment of a standard Gaussian. Hence, by a density
argument, the map

(an)n≥1 7→
1

‖γ‖p

∞∑
n=1

anγn

establishes an isometric isomorphism between `2 and span {γn | n ∈ N}.

Proof of Theorem 1.52. First suppose thatH is separable. Then it is isometrically isomorphic
to `2, so we may identify it with the subspace in L2(Ω) from Proposition 1.53, which we denote
by G. For example, we can take Ω = (0, 1) with the Lebesgue measure; this probability space
certainly supports a sequence of independent Gaussians. Take f ∈ Lp(S1;G). Then, as
(γn)n≥1 is an orthonormal basis for G, we can write f(s) =

∑∞
n=1 fn(s)γn, for every s ∈ S1,

where fn(s) = 〈f(s), γn〉 =
∫

Ω f(s)γndµ. Then, since ‖fn‖pLp(S1) ≤ ‖γn‖
p
2 ‖f‖Lp(S1;G) < ∞,

we have that fn ∈ Lp(S1). This demonstrates that Lp(S1) ⊗ span {γn | n ∈ N} is dense in
Lp(S1;G), so it suffices to prove boundedness on elements of Lp(S1)⊗ span{γn | n ∈ N}. To

this end, take f =
∑N

n=1 fnγn ∈ Lp(S1) ⊗ span {γn | n ∈ N}. By formula (3) and Corollary
1.48, we obtain for such f that

‖(T ⊗ IG)f‖Lp(S2;G) =

∥∥∥∥∥
N∑
n=1

Tfnγn

∥∥∥∥∥
Lp(S2;G)

=
1

‖γ‖p

∥∥∥∥∥
N∑
n=1

Tfnγn

∥∥∥∥∥
Lp(S2;Lp(Ω))

=
1

‖γ‖p

∥∥∥∥∥
N∑
n=1

Tfnγn

∥∥∥∥∥
Lp(Ω;Lp(S2))

≤ ‖T‖
‖γ‖p

∥∥∥∥∥
N∑
n=1

fnγn

∥∥∥∥∥
Lp(Ω;Lp(S1))

=
‖T‖
‖γ‖p

∥∥∥∥∥
N∑
n=1

fnγn

∥∥∥∥∥
Lp(S1;Lp(Ω))

=
‖T‖ ‖γ‖p
‖γ‖p

∥∥∥∥∥
N∑
n=1

fnγn

∥∥∥∥∥
Lp(S1;G)

= ‖T‖ ‖f‖Lp(S1;G) .

This demonstrates that ‖T ⊗ IG‖ = ‖T‖, since the other inequality is trivial. Hence T ⊗ IG
extends uniquely to TG : Lp(S1;G)→ Lp(S2;G) with ‖TG‖ = ‖T‖.
Now in the general case, suppose T ⊗ IH is not bounded. Then we can find a sequence of
norm one functions fn ∈ Lp(S1) ⊗ H, n ∈ N, such that ‖(T ⊗ IH)fn‖Lp(S2;H) → ∞. But
since each fn takes values in a finite-dimensional subspace of H, all the fn take values in a
separable, closed subspace K ⊂ H. Then T ⊗ IK is bounded with norm ‖T‖ and hence

‖(T ⊗ IH)fn‖Lp(S2;H) = ‖(T ⊗ IK)fn‖Lp(S2;H) ≤ ‖T‖ ,

a contradiction, so T ⊗ IH must be bounded. A reiteration of this argument shows that we
also must have ‖T ⊗ IH‖ ≤ ‖T‖. This concludes the proof.

1.5 Martingales

We will now move on to introduce the notion of martingales, which is an important tool
in Banach space theory and will play a crucial role in parts of this thesis. We will write
Lp(S,A ;B) if we need to emphasize the σ-algebra, A , with respect to which we are consid-
ering the Bochner space. Note that if F is a sub σ-algebra of A then Lp(S,F ;B) is a closed
subspace of Lp(S,A ;B).
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Definition 1.54. Let (S,A , µ) be a probability space and B a Banach space. Suppose
F ⊂ A is a sub σ-algebra and f ∈ L1(S,A ;B). A function g ∈ L1(S,F ;B) is called a
conditional expectation of f given F if∫

F
fdµ =

∫
F
gdµ, (4)

for all F ∈ F .

For the remainder of this subsection it will be a standing assumption that (S,A , µ) is a
probability space and F ⊂ A a sub σ-algebra. We will prove that conditional expectations
exist and are almost surely unique, but first an example:

Example 1.55. Suppose F = σ(F1, · · · , Fn) for mutually disjoint F1, · · · , Fn ∈ A forming
a partition of S and such that µ(Fi) > 0. Then for f ∈ L1(S;B) the conditional expectation
of f given F exists and is given by

n∑
i=1

1Fi

∫
Fi
fdµ

µ(Fi)
,

as can be seen by direct computation, using that any F ∈ F is a (possibly empty) union of
a subsequence of (Fi)

n
i=1.

Lemma 1.56. Let f ∈ L1(S) and assume that g, g′ ∈ L1(S,F ) are conditional expectations
of f given F ⊂ A . Then g = g′ µ-almost surely.

Proof. First assume K = R. Then since (g > g′), (g′ > g) ∈ F by assumption, we have by
(4) that ∫

(g 6=g′)
|g − g′|dµ =

∫
(g>g′)

g − g′dµ+

∫
(g′>g)

g′ − gdµ

=

∫
(g>g′)

fdµ−
∫

(g>g′)
fdµ+

∫
(g′>g)

fdµ−
∫

(g′>g)
fdµ = 0,

which, as above, implies µ(g 6= g′) = 0.
The case K = C now follows by observing that if g is a conditional expectation of f then
<g and =g, are conditional expectations of <f and =f respectively. Indeed, <g = g+g

2 is
F -measurable and for F ∈ F∫

F
<gdµ =

∫
F gdµ+

∫
F gdµ

2
=

∫
F fdµ+

∫
F fdµ

2
=

∫
F
<fdµ

and similarly with the imaginary parts.

Theorem 1.57. Suppose f ∈ L1(S;B) and that g, g′ ∈ L1(S,F ;B) are conditional expecta-
tions of f given F . Then g = g′ µ-almost surely.

Proof. It follows directly from Theorem 1.46 that ϕ◦g and ϕ◦g′ are conditional expectations
of ϕ ◦ f for every ϕ ∈ B∗ It follows from Lemma 1.56 that ϕ ◦ g = ϕ ◦ g′ almost surely for
every ϕ ∈ B∗. The Theorem now follows from the following claim:
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Claim 1. Suppose g, g′ : S → B are strongly µ-measurable functions such that ϕ ◦ g = ϕ ◦ g′
µ-almost surely for every ϕ ∈ B∗. Then g = g′ µ-almost surely.

Proof of claim. Since g and g′ are µ-essentially separably valued, we can find a separable,
closed subspace B0 ⊂ B and a null set N ∈ A such that g(s), g′(s) ∈ B0, for all s ∈ N c.
Take a sequence (ϕn)n≥1 ⊂ B∗ which is norming for B0. Then for each n ≥ 1 there is a null
set Nn ∈ A such that ϕn(g(s)− g′(s)) = 0, for all s ∈ N c

n. Hence for each s outside the null
set N ∪

⋃
n≥1Nn we have∥∥g(s)− g′(s)

∥∥ = sup
n≥1
|ϕn(g(s)− g′(s))| = 0.

This proves the claim.

Theorem 1.57 allows us to introduce the notation E(f | F ) for the conditional expectation
of f given F , whenever it exists. We now turn to a few basic properties of conditional
expectations after which we will adress existence.

Proposition 1.58. Suppose K = R and that g1, g2 ∈ L1(S,F ) are conditional expectations
of f1, f2 ∈ L1(S) respectively. If f1 ≤ f2 almost surely then g1 ≤ g2 almost surely.

Proof. Since (g1 > g2) ∈ F we have by (4) that∫
(g1>g2)

g2 − g1dµ =

∫
(g1>g2)

f2dµ−
∫

(g1>g2)
f1dµ ≥ 0,

by assumption of f1 and f2. Since obvisouly
∫

(g1>g2) g2−g1dµ ≤ 0 we have that this integral is

in fact equal to zero. Since obviously g2−g1 < 0 on (g1 > g2) we must have µ(g1 > g2) = 0

The next result is often referred to as a ’conditional triangle inequality’.

Proposition 1.59. Let f ∈ L1(S;B) and suppose that there exist conditional expectations
of f and ‖f‖ given F . Then

‖E(f | F )‖ ≤ E(‖f‖ | F ) a.s.

Proof. Since any complex Banach space is also a real Banach space we may assume that B
is real. Furthermore, since f is µ-essentially separably valued we may also assume that B
is separable (a conditional expectation of f as a function with values in a closed subspace
B0 ⊂ B is also a conditional expectation of f considered as a functions with values in B).
Take a norming sequence (ϕn)n≥1 ⊂ B∗. Then it is easy to see, using Theorem 1.46, that
ϕn(E(f | F )) is a conditional expectation of ϕn(f) given F . Moreover, since ϕn(f) ≤ ‖f‖,
Proposition 1.58 yields that ϕn(E(f | F )) ≤ E(‖f‖ | F ). Hence

‖E(f | F )‖ = sup
n≥1

ϕn(E(f | F )) ≤ E(‖f‖ | F ) a.s.,

which demonstrates the desired estimate.

Lemma 1.60. Suppose f ∈ L2(S). Then E(f | F ) exists and E(f | F ) ∈ L2(S,F ).
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Proof. Let P : L2(S) → L2(S,F ) denote the orthogonal projection. Then since orthogonal
projections are self-adjoint we get for any F ∈ F that∫

F
Pfdµ =

∫
1FPfdµ =

∫
(P1F )fdµ =

∫
1F fdµ =

∫
F
fdµ,

where we used that 1F ∈ L2(S,F ).

Lemma 1.61. Let f ∈ L1(S). Then E(f | F ) exists and satisfies ‖E(f | F )‖1 ≤ ‖f‖1.

Proof. First assume that f ∈ L1(S) ∩ L∞(S). Then by Hölder f, |f | ∈ L2(S), so their
conditional expectations exist. Since obviously E(αf + βg | F ) = αE(f | F ) + βE(g | F )
for any f, g ∈ L1(S)∩L∞(S) and α, β ∈ K, we see that E(· | F ) : L1(S)∩L∞(S)→ L1(S,F )
is a linear operator. By Proposition 1.59

‖E(f | F )‖1 =

∫
S
|E(f | F )|dµ ≤

∫
S
E(|f | | F )dµ =

∫
S
|f |dµ = ‖f‖1 ,

so this operator is contractive. Since L1(S)∩L∞(S) is dense in L1(S) (e.g., because it contains
the simple functions) it extends uniquely to a contractive operator L1(S)→ L1(S,F ). Denote
this operator by G. It remains to see that Gf is a conditional expectation of f in the case
where f ∈ L1(S) \ L∞(S). To this end set fn = 1(|f |≤n)f . Then fn ∈ L1(S) ∩ L∞(S).
Moreover, fn → f pointwise and hence, by dominated convergence, fn → f in L1(S). Hence
for any F ∈ F we have∫

F
Gfdµ = lim

n→∞

∫
F
Gfndµ = lim

n→∞

∫
F
fndµ =

∫
F
fdµ,

demonstrating that Gf is a conditional expectation of f .

By Lemma 1.61 and Theorem 1.57 we now have a unique contractive linear operator
E(· | F ) : L1(S)→ L1(S,F ) sending f to its conditional expectation given F .

Theorem 1.62. Suppose f ∈ L1(S;B). Then f has a unique conditional expectation given
F and ‖E(f | F )‖1 ≤ ‖f‖1.

Proof. By Propositions 1.59 and 1.58 we get that E(· | F ) : L1(S)→ L1(S,F ) is contractive
and positive. Hence by Proposition 1.50 the contraction

E(· | F )⊗ IB : L1(S)⊗B → L1(S,F )⊗B

extends to a unique contraction G : L1(S;B) → L1(S,F ;B). It follows from example 1.49
that E(· | F ) ⊗ IB(f ⊗ x) = E(f | F ) ⊗ x is the unique conditional expectation of f ⊗ x
whenever f ∈ L1(S) and x ∈ B, i.e., E(f ⊗ x | F ) = E(f | F ) ⊗ x. Hence we can use an
approximation argument similar to that from the proof of Lemma 1.61 to obtain that Gf is
a conditional expectation of any f ∈ L1(S;B).

Remark 1.63. The notion of conditional expectations can be defined, more generally, for
µ-measurable functions on arbitrary measure spaces, and existence and uniqueness can be
proven under weaker assumptions than integrability. We will only need the present level of
generality in this exposition but a more detailed description, including limit theorems and
more properties, can be found in [Hyt+16, Sec. 2.6]
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We are now finally ready to define martingales:

Definition 1.64. Let (S,A , µ) be a probability space, and suppose (Fn)n≥1 is a sequence
of sub σ-algebras of A such that Fn ⊂ Fn+1 for every n ∈ N (such a sequence is referred
to as a filtration). A sequence of functions (fn)n≥1 ⊂ L1(S;B) is called a martingale if fn is
strongly µ-measurable with respect to Fn (we say that (fn)n≥1 is adapted to (Fn)n≥1), and
E(fn+1 | Fn) = fn for every n ∈ N.

Martingales are widely studied in probability theory and analysis, as they satisfy many
intersting inequalities and convergence theorems. In probability theory the following piece of
intuition is often given: The conditional expectation of a random variable given a σ-algebra
can be seen as a ’best guess’ on the outcome of that variable, given the knowledge contained
in the σ-algebra. Example 1.55 substantiates this line of thought. A martingale is then
a random process, where the best guess on the outcome of the next variable based on the
current knowledge is simply the outcome of the current variable.

This subsection about martingales as well as the preceding one about vector valued inte-
gration are based on [Hyt+16].
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2 Poincaré inequalities for expanders

2 Poincaré inequalities for expanders

In this section we shall obtain p-Poincaré inequalities for functions on connected graphs taking
values in different normed spaces with constants depending on either the Cheeger constant
or the spectral gap of the graph. These will yield, by Proposition 1.18, that sequences of
(edge or spectral) expanders do not coarsely embed into these normed spaces.

2.1 Poincaré inequalities connected to the Cheeger constant

For a connected, undirected graph G with the path metric and Y = L1(0, 1) we have the
following p-Poincaré inequality with respect to the adjacency matrix:

Theorem 2.1. If G = (V,E) has cheeger constant h then for any f : V → L1(0, 1) we have∑
u,v∈V

au,v ‖f(u)− f(v)‖1 ≥
∑
u,v∈V

h

2|V |
‖f(u)− f(v)‖1 ,

where (au,v)u,v∈V is the adjacency matrix of G.

The proof of Theorem 2.1 is found in [Ost13] and requires the following lemma:

Lemma 2.2. For any function f : V → R the following inequality holds∑
u∈V
|f(u)−M | ≤

∑
(u,v)∈E

1

h
|f(u)− f(v)|, (5)

where M is a median of the set {f(u) | u ∈ V }.

Proof. First observe that we can assume M = 0 and, for notational ease, we also assume that
the number of vertices is odd. Let f1 ≤ f2 ≤ · · · ≤ fk ≤ 0 = fk+1 ≤ fk+2 ≤ . . . f2k+1 be the
function values of f . For 1 ≤ i ≤ k, let L−i = {v ∈ V | f(v) < fi+1} and for k+2 ≤ i ≤ 2k+1
let L+

i = {v ∈ V | f(v) > fi−1}. Then |L−1 | = 1− δf1,f2 and, for 1 ≤ i ≤ k − 1 we have

|L−i+1| = |L
−
i |+ (1− δfi,fi+1

)(i+ 1−min {j ≤ i | fi = fj}).

Also, |L+
2k+1| = 1− δf2k,f2k+1

and, for k + 2 ≤ i ≤ 2k, we have

|L+
i | = |L

+
i+1|+ (1− δfi+1,fi)(max {j ≥ i | fj = fi} − (i− 1)).

Using these equalities, we arrive at

2k+1∑
i=1

|fi| =
k∑
i=1

|L−i |(fi+1 − fi) +
2k+1∑
i=k+2

|L+
i |(fi − fi−1),

so L−i and L+
i just give a way of writing

∑
v∈V |f(v)−M | =

∑2k+1
i=1 |fi| as a sort of weighted

telescopic sum. As they are all subsets of V of size at most k ≤ |V |/2, we get by definition
of the cheeger constant that |L−i | ≤ |∂L

−
i |/h and |L+

i | ≤ |∂L
+
i |/h, and hence

∑
v∈V
|f(v)−M | ≤ 1

h

(
k∑
i=1

|∂L−i |(fi+1 − fi) +
2k+1∑
i=k+2

|∂L+
i |(fi − fi−1)

)
.
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2.1 Poincaré inequalities connected to the Cheeger constant

This sum is now indexed by the edges of G in stead of the vertices (since ∂L−i and ∂L+
i are

subsets of the edge set) and to compute the contribution of some edge (u, v) ∈ E assume
without loss of generality that f(u) ≤ f(v). First consider the case where there are iu < iv ≤ k
such that u ∈ L−iu and v ∈ L−iv and take both iu and iv to be minimal with this property.
Then f(u) = fiu and f(v) = fiv and since this edge will make a contribution of fi+1 − fi if
and only if u ∈ L−i and v /∈ L−i for 1 ≤ i ≤ k (and it will not contribute for any i ≥ k + 2),

we get a total contribution of
∑iv−1

j=iu
fj+1 − fj = fiv − fiu = |f(u) − f(v)|. The other cases

are checked similarly to obtain the same contribution (if, e.g., there is no iv with the above
property take iv ≥ k + 2 maximal such that v ∈ L+

iv
and similarly with iu). This now yields

1

h

(
k∑
i=1

|∂L−i |(fi+1 − fi) +

2k+1∑
i=k+2

|∂L+
i |(fi − fi−1)

)
=

1

h

∑
(u,v)∈E

|f(u)− f(v)|,

which concludes the proof.

Remark 2.3. Before we proceed to the proof of Theorem 2.1 let us first observe that we
could use the above lemma as an alternative definition of the Cheeger constant. Indeed, if a
constant h > 0 satisfies the inequality from Lemma 2.2 we have for any non-empty F ⊂ V
of size at most |V |/2 that h ≤ |∂F |/|F |. This can be seen by considering the function
1F : V → R. Since |F | ≤ |V |/2 this function has 0 as a median so inequality (5) reads
|F | ≤ |∂F |/h as desired. Hence h ≤ h(G) so we could define the Cheeger constant as the
supremum over all h satisfying (5), for all functions f : V → R.

Proof of Theorem 2.1. Let f : V → L1(0, 1) and let fu denote the L1 function corresponding
to u ∈ V . Furthermore, for each t ∈ [0, 1], let M(t) be a median of {fu(t) | u ∈ V }. Since
the continuous functions are dense in L1(0, 1) we can restrict ourselves to the case where
fu is continuous for each u ∈ V . In this case we can pick the medians such that M(t) is a
continuous function of t and hence M ∈ L1(0, 1). By Lemma 2.2 we have∑

u∈V
|fu(t)−M(t)| ≤ 1

h

∑
(u,v)∈E

|fu(t)− fv(t)|,

for every t ∈ [0, 1]. By integrating either side of this inequality, we obtain∑
u∈V

h ‖fu −M‖1 ≤
∑

(u,v)∈E

‖fu − fv‖1 .

This yields ∑
u,v∈V

h

2|V |
‖fu − fv‖1 ≤

∑
u,v∈V

h

2|V |
(‖fu −M‖1 + ‖fv −M‖1)

=
h

2

(∑
u∈V
‖fu −M‖1 +

∑
u∈V
‖fu −M‖1

)

≤
∑
u,v∈V

au,v ‖fu − fv‖1 ,

which is the desired estimate.
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2 Poincaré inequalities for expanders

Theorem 2.1 immediately yields, by Proposition 1.18, that a family of edge (and hence
spectral) expanders does not coarsely embed into L1(0, 1). Lemma 2.2 can also be used
(with an analogous proof) to obtain similar Poincaré inequalities for L1(S) where (S,A , µ)
is an arbitrary measure space, in particular for `1. In [Mat97] Matoušek develops a way to
extrapolate Poincaré inequalities to Lp-valued from the one obtained for L1-valued functions
(with constants depending on p). This is contained in the following theorem:

Theorem 2.4 (Matoušek’s extrapolation theorem). Let G = (V,E) be a d-regular
graph with Cheeger constant h. Then for any function f : V → Lp(S), where (S,A , µ) is any
measure space and p > 1, we have

∑
u,v∈V

(
c

p

)p 1

n
||f(u)− f(v)||pp ≤

∑
(u,v)∈E

||f(u)− f(v)||pp, (6)

where c = h/4(2d)1−1/p.

The proof of (6) will follow roughly the same steps as that of Theorem 2.1. So we will
first establish an inequality for real valued functions:

Lemma 2.5. Let f : V → R be any function and p > 1. Then∑
(u,v)∈E

|f(u)− f(v)|p ≥ (h/2p)p

(2d)p−1

∑
v∈V
|f(v)−M |p ≥ (h/4p)p

n(2d)p−1

∑
u,v∈V

|f(u)− f(v)|p, (7)

where M is a median of f .

Proof. Again we may assume that M = 0. Let S =
∑

(u,v)∈E |f(u) − f(v)|p and T =∑
v∈V |f(v)|p and observe that 0 is also a median of the set

{
f(u)|f(u)|p−1 | u ∈ V

}
(we

think of (·)| · |p−1 as a sign preserving way of raising to the pth power). Hence by Lemma 2.2
applied to these values we obtain

hT ≤
∑

(u,v)∈E

|f(u)|f(u)|p−1 − f(v)|f(v)|p−1|. (8)

We now claim the following:

Claim 2. For real numbers a and b and p ≥ 1 we have the following inequality

|ap − bp| ≤ p|a− b|(|a|p−1 + |b|p−1). (9)

Proof of claim: First observe that by passing to −a and −b if need be we may assume
that a ≥ |b| > 0 (if either a or b is 0 the claim trivially holds). Furthermore by rescal-
ing we may assume a = 1, so it suffices to prove 1 − bp ≤ p(1 − b) which is equivalent to
1 + p(b− 1) ≤ (1 + (b− 1))p, and since b− 1 ≥ −2 this follows by Bernoulli’s inequality.

Note that (9) is equally valid if we replace (·)p by (·)| · |p−1 (there are a few cases to check)
so we can use the claim on the individual terms on the right hand side of (8) followed by
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2.2 Poincaré inequalities through the spectral gap

Hölder’s inequality to obtain the bound

hT ≤
∑

(u,v)∈E

p|f(u)− f(v)|
(
|f(u)|p−1 + |f(v)|p−1

)

≤ p

 ∑
(u,v)∈E

|f(u)− f(v)|p
1/p ∑

(u,v)∈E

(
|f(u)|p−1 + |f(v)|p−1

)q1/q

,

where q = p/(p− 1) is the Hölder conjugate of p. Since

(|f(u)|p−1 + |f(v)|p−1)q ≤ 2q(|f(u)|q(p−1) + |f(v)|q(p−1)) = 2q(|f(u)|p + |f(v)|p),

and by using the d-regularity of G we obtain

hT ≤ pS1/p2(2d)1/q

(∑
v∈V
|f(v)|p

)1/q

= pS1/p2(2d)1/qT 1/q.

By rearranging we obtain the first inequality in (7). The second is routine to establish using
|f(u)− f(v)|p ≤ 2p(|f(u)|p + |f(v)|p).

Theorem 2.4 now follows directly by using Lemma 2.5 pointwise on each f(v), v ∈ V .
Theorem 2.4 yields that sequences of expanders do not coarsely embed into any Hilbert
space. This can also be established using the spectral characterization of expanders, i.e.,
we can obtain 2-Poincaré inequalities with respect to the adjacency matrix for Hilbert space
valued functions with the constant depending on the spectral gap. Since this result will be
necessary to see how the notion of expander graphs generalizes we will state and prove it in
the following subsection.

2.2 Poincaré inequalities through the spectral gap

We will now establish p-Poincaré inequalities similar to the ones in the previous subsection
but with constants depending on the spectral gap of G in stead of the Cheeger constant. This
will lead to a proof of the Cheeger inequalities and play an important role in generalizing the
notion of expander sequences to that of superexpanders. The setup is slightly more general:
Let G = (V,E) be a finite, connected, unoriented graph on n vertices, where each vertex is
of finite (but not necessarily constant) degree. Let (axy)x,y∈V denote its (non-normalized!)
adjacency matrix. For each vertex x ∈ V let ν(x) denote its degree. We can then consider
the n-dimensional (weighted) L2 space L2(V, ν) consisting of the functions f : V → C with
inner product

〈f, g〉 =
1

|ν|
∑
x∈V

ν(x)f(x)g(x),

where |ν| =
∑

x∈V ν(x). This space has an orthogonal basis (δx)x∈V where δx(y) = δx,y and

we note that ‖δx‖2 = 〈δx, δx〉 = ν(x)/|ν|. We can now define the Laplacian as the positive
operator ∆ = D∗D/2 where D : L2(V, ν) → L2(E) is the differential operator given by
Df(x, y) = f(x)−f(y) for (x, y) ∈ E. By computing 〈∆f, f〉 = ‖Df‖2L2(V,ν) /2 it can easily be
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2 Poincaré inequalities for expanders

checked that ∆f(x) = f(x)−
∑

y∈V ax,yf(y)/ν(x), which yields that ∆ = I− [axy/ν(x)]x,y∈V
and in particular C ·1V ⊂ ker(∆). Note that the rows of the matrix [axy/ν(x)]x,y∈V add up to
one (in the case where G is d-regular this is just the normalized adjacency matrix) so, since
G is connected, the proof of Proposition 1.4 carries over to show that ker(∆) = C · 1V . Now
if we let 0 = α0 ≤ α1 ≤ · · · ≤ αn−1 denote the eigenvalues of ∆, counted with multiplicity,
the statement that ker(∆) = C · 1V means precisely that α1 > 0.
Finally we observe that

〈∆δx, δy〉 =


ν(x)−1
|ν| if y = x and (x, y) ∈ E

ν(x)/|ν| if y = x and (x, y) /∈ E
−1/|ν| if y 6= x and (x, y) ∈ E
0 else

.

Now let H be a Hilbert space and f : V → H be a function. Denote by (fx)x∈V ∈ Hn its
function values. We can view f as an element of the Hilbert space L2(V, ν) ⊗ H through
the correspondence f ↔ f ′ =

∑
x∈V δx ⊗ fx. From [BO07], we have the following Poincaré

inequality for f :

Lemma 2.6. Let f : V → H be a function with function values (fx)x∈V ∈ Hn and let f ′ be
its representation in L2(V, ν)⊗H. Then

α1

2|ν|2
∑
x,y∈V

ν(x)ν(y)||fx − fy||2H = α1

(
||f ′||2L2(V,ν)⊗H − ||m(f)||2H

)
≤ 1

2|ν|
∑
x,y∈V

ax,y||fx − fy||2H ,

where m(f) =
∑

x∈V ν(x)fx/|ν| ∈ H is the average of f .

Proof. The equality to the left is straightforward to check by expanding the inner products
and rearranging terms. For the inequality to the right, let E : L2(V, ν) → L2(V, ν) be the
orthogonal projection onto the constant functions, i.e., E(g) = 〈g, 1V 〉 · 1V for g ∈ L2(V, ν).
Then if IH denotes the identity on H we have

E ⊗ IH(f ′) =
∑
x∈V
〈δx, 1V 〉1V ⊗ fx =

∑
x∈V

ν(x)

|ν|
1V ⊗ fx = 1V ⊗

∑
x∈V

ν(x)

|ν|
fx = 1V ⊗m(f),

and since the tensor product norm is a cross norm and 1V ∈ L2(V, ν) has unit norm we obtain
||m(f)||2H = ||E⊗ IH(f ′)||2L2(V,ν)⊗H . Moreoever, since f ′ = f ′−E⊗ IH(f ′) +E⊗ IH(f ′) and
the two terms on the right are mutually orthogonal we get by Pythagoras that

||f ′||2L2(V,ν)⊗H − ||m(f)||2H = ||f ′||2L2(V,ν)⊗H − ||E ⊗ IH(f ′)||2L2(V,ν)⊗H

= ||f ′ − E ⊗ IH(f ′)||2L2(V,ν)⊗H .

Now, since ∆ is positive, we can find an orthonormal basis (gj)
n−1
j=0 for L2(V, ν) such that

∆gj = αjgj . Note that α0 = 0 and by the above observations we have g0 = 1. Then by
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2.2 Poincaré inequalities through the spectral gap

standard results on tensor products of Hilbert spaces we can find ξ0, . . . , ξn−1 ∈ H such that
f ′ =

∑n−1
j=0 gj ⊗ ξj and so

〈∆⊗ IHf ′, f ′〉 =
n−1∑
j=1

αj ||ξj ||2 ≥ α1

n−1∑
j=1

||ξj ||2 = α1||f ′ − E ⊗ IH(f ′)||2,

where the last equality follows since E⊗ IH(f ′) = g0⊗ ξ0 and by orthogonality. To complete
the proof we should check that 〈∆ ⊗ IH(f ′), f ′〉 = (2|ν|)−1

∑
x∈V ax,y||fx − fy||2 which is

readily done using the computations of 〈∆δx, δy〉 above.

When the graph is d-regular, we have α1 = λ(G), the spectral gap of G, and the Poincaré
inequality above simplifies to

λ(G)

n

∑
u,v∈V

||fu − fv||2H ≤
∑
u,v∈V

ax,y
d
||fu − fv||2H ,

an inequality very similar to that for L1-valued functions obtained above. The significance of
the above Poincaré inequality is that it gives an alternative characterization of the spectral
gap which better lends it self to generalizations. The statement of the following proposition
is found in [MN14]:

Proposition 2.7. Let G = (V,E) be a finite, connected d-regular graph on n vertices and
let A = (au,v)u,v∈V be its normalized adjacency matrix with eigenvalues (in descending order
and counted with multiplicity) 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1. Then 1 − λ2 (the spectral gap
of G) is equal to the supremum over all γ satisfying

γ

n

∑
u,v∈V

(xu − xv)2 ≤
∑
u,v∈V

au,v(xu − xv)2, (10)

for every x = (xu)u∈V ∈ Rn.

Proof. First observe that since R is a Hilbert space the spectral gap satisfies (10), for all
x ∈ Rn, by Lemma 2.6. Now let γ > 0 be such that inequality (10) holds for any V -indexed
array of real numbers. Then the all-ones vector 1V ∈ Rn is the eigenvector of λ1, and since
A is symmetric, we get by the min-max theorem that λ2 = sup||x||=1, x⊥1V 〈Ax, x〉 and hence

1− λ2 = inf
||x||=1, x⊥1V

(1− 〈Ax, x〉) .

So take x ∈ Rn such that ||x|| = 1 and x ⊥ 1V and note that x ⊥ 1V means exactly that∑
i xi = 0, where x1, . . . , xn are the entries of x. Then the entries of this vector satisfy (10).

The left hand side of (10) simplifies to

γ

n

∑
i,j

(xi − xj)2 =
γ

n

∑
i,j

(x2
i + x2

j − 2xixj) = 2γ,

using that
∑

i,j x
2
i =

∑
j

∑
i x

2
i = n||x||2 = n and that

∑
i,j xixj =

∑
j xj

∑
i xi =

∑
j 0 = 0

by the assumptions on x. The right hand side equals∑
i,j

ai,j(xi − xj)2 =
∑
i,j

ai,jx
2
i +

∑
i,j

ai,jx
2
j − 2

∑
i,j

ai,jxixj = 2 (1− 〈Ax, x〉) ,
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2 Poincaré inequalities for expanders

using that A is normalized, whence
∑

i

∑
j ai,jx

2
i =

∑
i x

2
i = 1, and similarly with the second

term. This yields γ ≤ 1− 〈Ax, x〉 from which we conclude

γ ≤ inf
||x||=1, x⊥1V

(1− 〈Ax, x〉) = 1− λ2.

The conclusion now follows.

We are now ready to give the proof of the Cheeger inequalities:

Proof of Theorem 1.7. By Lemma 2.5 with p = 2 and Proposition 2.7 we obtain

λ(G) ≥ 1

2

(
h(G)

8d

)2

,

which is precisely the right hand side of the inequality in Theorem 1.7. For the left hand
side let A = (auv)u,v∈V be the normalized adjacency matrix of G with eigenvalues 1 = λ1 >
λ2 ≥ · · · ≥ λn ≥ −1. Observe that for U,W ⊂ V the standard Rn-inner product of (dA)1U
with 1W is precisely the number of edges between U and W , i.e., 〈A1U , 1W 〉 = |E(U,W )|/d,
where E(U,W ) denotes the edges of G with one end point in U and one in W . This follows
directly from the definition of the adjacency matrix. Now take F ⊂ V such that |F | ≤ |V |/2
and |∂F |/|F | = h(G). We may decompose 1F into an orthogonal sum of a constant vector
(i.e., an element of the eigenspace of 1) and a mean zero vector (an element of the direct sum
of the remaining eigenspaces). Specifically we have

1F =
|F |
|V |

1V + x,

where
∑n

i=1 xi = 0. Since ‖1F ‖22 = |F | and
∥∥∥ |F ||V |1V ∥∥∥2

2
= |F |2/|V | we have, by orthogonality,

that ‖x‖22 = |F | − |F |2/|V |. Moreover, since x is an orthogonal sum of eigenvectors with
eigenvalues at most λ2, we get

〈A1F , 1F 〉 =

〈
|F |
|V |

1V ,
|F |
|V |

1V

〉
+ 〈Ax, x〉 ≤ |F |

2

|V |
+ λ2 ‖x‖22

= λ2|F |+ (1− λ2)
|F |2

|V |
≤ λ2|F |+

1− λ2

2
|F | = 1 + λ2

2
|F |.

By the initial observation we also have

〈A1F , 1F 〉 = 〈A1F , 1V 〉 − 〈A1F , 1F c〉 = |F | − |∂F |/d = |F | − |F |h(G)

d
.

So we obtain

1− h(G)

d
≤ 1 + λ2

2
=
−λ(G)

2
+ 1,

which yields the desired inequality.
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2.2 Poincaré inequalities through the spectral gap

Remark 2.8. The inequality we have proven can be improved. In fact the multiplicative
constant 8 on the right hand side can be omitted without it losing its validity. This stronger
version is what is usually referred to as the Cheeger inequalities, and its proof is based on
a clever application of Lemma 2.2 (see e.g. [Ost13, Th. 5.7]). Since our inequality with
suboptimal constants suffices for demonstrating equivalence of edge expansion and spectral
expansion we will settle for this version.

We now have four equivalent ways to characterize sequences of expanders, which we sum
up in the following corollary:

Corollary 2.9. Let (Gn = (Vn, En)) be a sequence of connected, d-regular graphs such that
|Vn| → ∞. Then the following are equivalent:

1. Gn is a sequence of spectral expanders, i.e., if λ2(Gn) denotes the second largest eigen-
value of the normalized adjacency matrix of Gn then supn≥1 λ2(Gn) < 1.

2. Gn is a sequence of edge expanders, i.e., the Cheeger constants satisfy infn≥1 h(Gn) > 0.

3. There is γ > 0 such that, for all n ≥ 1 and f : Vn → R, we have

γ

n

∑
u,v∈Vn

(f(u)− f(v))2 ≤
∑

u,v∈Vn

anu,v(f(u)− f(v))2,

where (anu,v) is the normalized adjacency matrix of Gn.

4. For any Hilbert space H there is γ > 0 such that, for all n ≥ 1 and f : Vn → H, we
have

γ

n

∑
u,v∈Vn

‖f(u)− f(v)‖2 ≤
∑

u,v∈Vn

anu,v ‖f(u)− f(v)‖2 ,

where (anu,v) is the normalized adjacency matrix of Gn.

If any (and hence all) of these conditions are satisfied we shall simply call (Gn) a sequence
of expanders.

The last condition in the above corollary plays an important role in generalizations of ex-
pander families, and we deliberately formulated it this way, even though Lemma 2.6 demon-
strates that the same γ, namely the spectral gap, does the trick for any Hilbert space. This
topic will be further explored in subsequent sections. For now we turn our attention to the
thus far neglected question of existence of expander sequences.
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3 Constructing expander sequences

3 Constructing expander sequences

We now introduce Kazhdan’s property (T), an approximation property for representations
of groups. Residually finite groups with property (T) will result in sequences of expanders,
thus reducing the construction of such sequences to finding groups with these properties.

3.1 Kazhdan’s property (T)

Our discussion of Kazhdan’s property (T) for groups below is based on [BO07] and will
be somewhat cursory and only intended to introduce the concepts we need for constructing
sequences of expander graphs. First some terminology: Let H be a Hilbert space. We denote
by B(H) the bounded linear operators on H, i.e., linear maps T such that there exists a
constant C ≥ 0 satisfying ||Tξ|| ≤ C||ξ||, for all ξ ∈ H. By U(H) we denote the unitary
operators, i.e., the operators U ∈ B(H) such that UU∗ = U∗U = I, where I is the identity
operator on H and U∗ is the unique operator such that 〈Uξ, η〉 = 〈ξ, U∗η〉, for all ξ, η ∈ H.
Note that U(H) is a group with composition of maps as multiplication.

Let Γ be a group. A unitary representation of Γ on a Hilbert space, H, is a group
homomorphism π : Γ→ U(H) for some Hilbert space H. A non-zero vector ξ ∈ H is said to
be Γ-invariant if π(t)ξ = ξ, for all t ∈ Γ. A net (ξi)i∈I ⊂ H of unit vectors is called almost
Γ-invariant if ||π(t)ξi − ξi|| → 0, for all t ∈ Γ. We are now ready to introduce Kazhdan’s
property for groups:

Definition 3.1. A group, Γ, has Kazhdan’s property (T) if any unitary representation with
an almost Γ-invariant net also has a Γ-invariant vector.

Recall that a group Γ is amenable if and only if the left regular representation has an
almost Γ-invariant net. Moreover, if ξ ∈ `2(Γ) is a non-zero Γ-invariant vector for λ, then

〈ξ, δt〉 = 〈ξ, λ(t)δe〉 = 〈λ(t−1)ξ, δe〉 = 〈ξ, δe〉,

for all t ∈ Γ, where (δt)t∈Γ is the canoncial orthonormal basis for `2(Γ). Hence, we obtain

||ξ||2 =
∑
t∈Γ

|〈ξ, δt〉|2 =
∑
t∈Γ

|〈ξ, δe〉|2 = |Γ||〈ξ, δe〉|2,

so that, since ξ 6= 0, Γ must be finite. This demonstrates that if Γ is amenable and has
property (T), then Γ must be finite. Since all abelian groups are amenable, no infinite
abelian group can have property (T), so in particular Z does not have (T). Since property
(T) passes to quotients (see below), and Z is a quotient group of F2, the free group on two
generators, the latter cannot have property (T). It is also a fact that F2 is not amenable, so
there exist infinite groups which are neither amenable nor have (T). To see that property (T)
passes to quotients consider the quotient map q : Γ → Γ/N . For any unitary representation
π of Γ/N with an almost invariant net, we get a representation of Γ with an almost invariant
net by taking π ◦ q. Property (T) now follows by surjectivity of q.

Definition 3.2. Let S ⊂ Γ, k > 0 and let π be a unitary representation of Γ on H. If
sups∈S ||π(s)ξ − ξ|| < k||ξ|| for some ξ ∈ H we say that ξ is an (S, k)-invariant vector for π.
A pair (S,k) with S ⊂ Γ and k > 0 is called a Kazhdan pair if any unitary representation
with an (S, k)-invariant vector also has a Γ-invariant vector.
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3.1 Kazhdan’s property (T)

Proposition 3.3. Suppose (S, k) is a Kazhdan pair for Γ and let π : Γ → U(H) be a
unitary representation such that there exists ξ ∈ H with π(s)ξ = ξ, for all s ∈ S. Then ξ is
Γ-invariant for π.

Proof. Let H0 ⊂ H be the closed subspace of all Γ-invariant vectors and let K = H⊥0 . Then
both H0 and K are invariant under π(s), for all s ∈ Γ. Let π1 = π|K : Γ → U(K), i.e.,
π1(s) = π(s)|K . Then by definition of K, π1 has no Γ-invariant vectors. Since (S, k) is a
Kazhdan pair, for any η ∈ K there exists s ∈ S such that ||π(s)η − η|| ≥ k||η||. Now write
ξ = ξ0 + η uniquely with ξ0 ∈ H0 and η ∈ K. Then, for all s ∈ S, we have

ξ = π(s)ξ = π(s)ξ0 + π(s)η = ξ0 + π(s)η,

and hence by uniqueness of the decomposition we get π(s)η = η, for all s ∈ S. In particular,
this holds for the s such that ‖π(s)η − η‖ ≥ k ‖η‖, which implies that k||η|| ≤ 0 and hence
η = 0, so that ξ ∈ H0 as desired.

Lemma 3.4. If (S, k) is a Kazhdan pair for Γ, then S generates Γ.

Proof. Let Λ < Γ be the subgroup generated by S, and let Γ/Λ be the set of left cosets of
Λ. Let π : Γ → B(`2(Γ/Λ)) be given by π(t)δsΛ = δtsΛ, where (δsΛ)sΛ∈Γ/Λ is the canonical
basis for `2(Γ/Λ). This is well-defined and a unitary representation of Γ on `2(Γ/Λ). Now
observe that π(s)δΛ = δsΛ = δΛ, for any s ∈ S, and hence by Proposition 3.3 we get that
π(t)δΛ = δΛ, for all t ∈ Γ. Hence tΛ = Λ, for all t ∈ Γ, so we must have Λ = Γ as desired.

Proposition 3.5. A group Γ has property (T) if and only if there exists a finite subset S ⊂ Γ
and k > 0 such that (S, k) is a Kazhdan pair for Γ.

Proof. Assume that there exist a finite subset S ⊂ Γ and k > 0 such that (S, k) is a Kazhdan
pair for Γ. Let π : Γ → U(H) be a unitary representation of Γ with a net (ξi)i∈I ⊂ H of
almost Γ-invariant vectors. Then for any s ∈ S there is an is ∈ I such that ||π(s)ξi− ξi|| < k
whenever i ≥ is. Since S is finite and I is directed there exists i0 such that i0 ≥ is, for all
s ∈ S. Putting ξ = ξi0 6= 0 we obtain ||π(s)ξ − ξ|| < k, for all s ∈ S, and hence, since (S, k)
is a Kazhdan pair, we infer that there is a Γ-invariant vector, so Γ has property (T).

Now assume that there is no Kazhdan pair (S, k) with S finite. Define an index set
by I = {(S, k) | S ⊂ Γ, #S <∞, k > 0}, with the ordering (S1, k1) � (S2, k2) if S1 ⊂ S2

and k2 ≤ k1, making I a directed set. For each i = (Si, ki) ∈ I we can find a unitary
representation πi : Γ → U(Hi) and a unit vector ξi ∈ Hi such that ||πi(s)ξi − ξi|| ≤ ki, for
all s ∈ Si, but such that there are no non-zero Γ-invariant vectors for πi. This is because, by
assumption, (Si, ki) is not a Kazhdan pair. Let π : Γ→ U(H), where H =

⊕
i∈I Hi, be given

by π =
⊕

i∈I πi. Then, since Hi ⊂ H, we can consider (ξi)i∈I as a net of unit vectors in H.
Moreover, ||π(t)ξi− ξi|| → 0, for all t ∈ Γ, which can be seen by considering i0 = ({t} , ε) ∈ I
for each ε > 0. Now assume ξ ∈ H is Γ-invariant for π, and for each i ∈ I let Pi : H → Hi be
the orthogonal projection. Then π(t)Pi = Piπ(t), since Hi is invariant under π(t), and hence

π(t)Piξ = Piπ(t)ξ = Piξ, for all t ∈ Γ.

Demonstrating that Piξ is Γ-invariant for πi and hence, by assumption, Piξ = 0. Since i ∈ I
was arbitrary we obtain ξ = 0. This demonstrates that there are no non-zero Γ-invariant
vectors for π and hence that Γ does not have property (T).
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3 Constructing expander sequences

It is an important fact that (Γ,
√

2) is a Kazhdan pair for any group Γ. In light of the
above proposition, this implies that all finite groups have property (T), so the groups which
are amenable and have (T) are exactly the finite ones.

Remark 3.6. Let Γ be a group with property (T). By the above results we can find a
Kazhdan pair (Σ, k) with Σ finite such that Σ generates Γ. Furthermore, by adding the
inverses, we may assume that Σ is symmetric.

3.2 Expander sequences from groups with property (T)

Recall that for a group Γ and Σ ⊂ Γ the Cayley graph Cay(Γ,Σ) is the graph whose vertices
consist of the group elements, i.e., V = Γ, and has edge set E = {(t, st) | t ∈ Γ, s ∈ Σ}.
This notion generalizes to quotients as follows: For Λ < Γ, consider the graph Sch(Γ, N,Σ)
whose vertex set is V := Γ/N and whose edge set is E = {(tN, s, stN) | tN ∈ Γ/N, s ∈ Σ}.
The second coordinate is to distinguish distinct edges with the same source and range (which
will occur whenever s′s−1 ∈ N for distinct s′, s ∈ Σ). Such graphs are referred to in the
literature as Schreier coset graphs, and obviously any Cayley graph is a Schreier coset graph
with N = {e}. Consistent with this fact, we may sometimes abuse notation slightly and
write Sch(Γ, N,Σ) = Cay(Γ/N,Σ). We will now use the Schreier coset graphs of groups with
property (T) to construct expander graphs. This idea is originally due to Margulis, but we
follow [AM85].

Theorem 3.7. Let Γ be a group with property (T) (in particular it is finitely generated). Let
(Σ, k) be a Kazhdan pair with Σ a finite, symmetric, generating set for Γ.
If N C Γ is of finite index then Sch(Γ, N,Σ), which is d-regular with d = |Σ| on n vertices
with n = |Γ/N |, has Cheeger constant at least k2/2.

Proof. Consider the Hilbert space H = `2(Γ/N). Then for t ∈ Γ the map f 7→ tf , where
tf(sN) = f(st−1N) as in the proof of Lemma 3.4 is a unitary representation. The subspace
H0 = `20(Γ/N) of functions, f , such that

∑
s∈Γ/N f(s) = 0 is invariant under this representa-

tion, i.e., if f ∈ H0 then so is tf for any t ∈ Γ. Hence the left action of Γ is also a unitary
representation on H0. Furthermore if f ∈ H0 and tf = f , for all t ∈ Γ, then in particular
f(t−1) = f(e), for all t ∈ Γ, so f is constant. Since we also have

∑
v f(v) = 0 we conclude

that f = 0, demonstrating that there are no non-zero Γ-invariant vectors for this representa-
tion. Hence, (Σ, k) being a Kazhdan pair for Γ, for any f ∈ H0, there must exist some s ∈ Σ
such that ||sf − f || ≥ k||f ||. Now let S ⊂ Γ/N such that |S| ≤ n

2 . Let f ∈ H0 be given by
f(x) = 1S(x)|Sc| − 1Sc |S|. Then

||f ||2 = |Sc|2|S|+ |S|2|Sc| = |S||Sc|(|S|+ |Sc|) = |S||Sc|n.

Moreover, for any s ∈ Σ, we have

|sf(x)− f(x)| =

{
|S|+ |Sc| if x ∈ S, xs−1 ∈ Sc or x ∈ Sc, xs−1 ∈ S
0 if x, xs−1 ∈ S or x, xs−1 ∈ Sc

,

so if we define ∂sS =
{

(x, y) ∈ ∂S | y = xs or y = xs−1
}

a straightforward computation
yields ||sf−f ||2 = (|S|+|Sc|)2|∂sS| = n2|∂sS|. Now pick s ∈ Σ such that ||sf−f ||2 ≥ k2||f ||2.
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3.2 Expander sequences from groups with property (T)

Then

|∂S|
|S|
≥ |∂sS|
|S|

=
||sf − f ||2

n2|S|
≥ k2||f ||2

n2|S|
=

2k2|Sc|
2n

≥ k2

2
,

because 2|Sc| ≥ n. Since S was arbitrary of cardinality at most n/2, this yields that the

Cheeger constant is at least k2

2 as desired.

Recall that a group Γ is residually finite if there exists a filtration, i.e., a sequence N1 ⊃
N2 ⊃ . . . of normal, finite index subgroups such that ∩i≥1Ni = {e}, where e ∈ Γ is the
neutral element. In view of Theorem 3.7 we now have the following corollary:

Corollary 3.8. Suppose Γ is a residually finite group with Kazhdan’s property (T). Let
(Σ, k) be a Kazhdan pair for Γ with Σ a finite, symmetric, generating set for Γ and (Ni)i≥1

a filtration. Then the graph sequence Gi = Sch(Γ, Ni,Σ) is a sequence of expanders.

Consider the special linear group SLn(Z). The kernels of the surjective homomorphisms
SLn(Z) � SLn(Z/iZ), where i ∈ N, are of finite index and intersect trivially, so the special
linear group is residually finite. Moreover, it is an important theorem of Kazhdan himself
that SLn(Z) has property (T ) whenever n ≥ 3 (we refer the reader to Shalom’s proof in
[Sha99]). Hence, by the above corollary, SLn(Z) can be used to construct sequences of
expanders whenever n ≥ 3:

Corollary 3.9. Expander sequences exist and can be realized as Schreier graphs of the special
linear group of order at least 3.
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4 Superexpanders

4 Superexpanders

In this section we will generalize the spectral gap of a graph and use this to define the notion
of being an expander with respect to a given metric space. We will then see that being an
expander sequence in the sense of Section 2 is precisely being an expander with respect to the
usual Euclidean metric on R. Following [MN14], we will prove that certain of the properties
of the euclidean spectral gap from Section 1 pass over to the general version. The general-
ization of the notion of expander sequences will also lead to the definition of superexpander
sequences, being sequences which are expanders with respect to any superreflexive Banach
space. Superexpanders are in particular expanders, but whether the reverse implication holds
is an open question. Following [Pis10], we will give partial answers to this question. We will
then proceed, following [Mim18], to prove certain invariance properties for sequences being
expanders with respect to Banach spaces.

4.1 Non-linear spectral gaps

Let G = (V,E) be a d-regular graph on n vertices and A = (aij) its normalized adjacency
matrix. The following definition is from [MN14]:

Definition 4.1. Let X be a set and K : X ×X → R+ a kernel, i.e., K(x, y) = K(y, x), for
all x, y ∈ X, we define the reciprocal spectral gap of G with respect to K as the infimum over
all γ > 0 such that

1

n2

n∑
i,j=1

K(xi, xj) ≤
γ

n

n∑
i,j=1

aijK(xi, xj), (11)

for all x1, . . . , xn ∈ X, and we denote it by γ(G,K).
Analogously we define the reciprocal absolute spectral gap γ+(G,K) as the infimum over all
γ > 0 such that

1

n2

n∑
i,j=1

K(xi, yj) ≤
γ

n

n∑
i,j=1

aijK(xi, yj), (12)

for all x1, . . . , xn, y1, . . . , yn ∈ X.

Note, that clearly γ+(G,K) ≥ γ(G,K) ≥ 1. Examples of kernels are powers of norms or,
more generally, metrics. These will be our main interest, but we will state some results in
the general context of kernels.

Proposition 4.2. Let (X, dX) be a metric space with at least two points and p ≥ 1. Then
γ(G, dpX) is finite if and only G is connected and γ+(G, dpX) is finite if and only if G is
connected and not bipartite.

Proof. If G is not connected then any f : V → X which is constant on each path component
of G and attains at least two distinct values makes the left hand side of (11) strictly positive
and the right hand side zero. This demonstrates that no γ satisfies (11) for all f : V →
X and hence γ(G, dpX) = ∞. By the observation preceding the proposition we also have
γ+(G, dpX) =∞ in this case.
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4.1 Non-linear spectral gaps

If, conversely, G is connected then, for any x, y ∈ V , let γx,y be any shortest path between
x and y. In particular, l(γx,y) ≤ n and hence, for any f : V → X, we have, by Hölder’s
inequality, the estimate

dX(f(x), f(y))p ≤ l(γx,y)p−1
∑

(u,v)∈γx,y

dX(f(u), f(v))p ≤ np−1
∑

(u,v)∈γx,y

dX(u, v)p.

And from this we obtain

1

n2

∑
x,y∈V

dX(f(x), f(y))p ≤ np−1

n2

∑
x,y∈V

∑
(u,v)∈γx,y

dX(f(u), f(v))p

≤ np−1
∑

(u,v)∈E

dX(f(u), f(v))p =
dnp

nd

∑
(u,v)∈E

dX(f(u), f(v))p,

since no edge can occur twice in a shortest path, so each edge occurs at most n2 times in the
sum after the first inequality. This demonstrates that γ(G, dpX) ≤ dnp <∞.
If G is connected and bipartite, let U ∪W be a bipartition of V . Let x 6= y be two distinct
elements of X. Define f : V → X to be constantly equal to x on U and y on W , and define
g : V → X to be constantly equal to y on U and x on W . Then for these f and g the left
hand side of (12) is strictly positive, whereas the right hand side is zero. As before this yields
that γ+(G, dpX) =∞.
If G is connected and not bipartite, then G contains a cycle of odd length. Indeed, if all
cycles were of even length then, for any u, v ∈ V , either all paths between u and v are of
even length or all paths between u and v are of odd length. Hence, if we fix some v0 ∈ V and
let U ⊂ V consist of the vertices which are connected to u0 by paths of even length, then
U ∪ U c form a bipartition of V ; a contradiction. Let Co denote such a cycle of odd length.
For any u, v ∈ V , let γ be any shortest path from u to Co, and let γ′ be any shortest path
from v to Co. The terminal vertices of γ and γ′ respectively partition Co into a subpath of
even length and a subpath of odd length. Hence by concatenating γ and γ′ through either
the odd length or the even length subpath we can obtain a path from u to v whose length
is odd and at most 2n, and such that each edge occurs at most twice in this path. For each
u, v ∈ V let [(u, uu,v1 ), (uu,v1 , uu,v2 ), · · · , (uu,v2mu,v

, v)], with mu,v ≤ n − 1, be such a path. Then
for any f, g : V → X we have

1

n2

∑
u,v∈V

dX(f(u), g(v))p

≤
∑
u,v∈V

(2n)p−1

n2

(
dX(f(u), g(uu,v1 ))p +

mu,v∑
i=1

(
dX(g(uu,v2i−1), f(uu,v2i ))p + dX(f(uu,v2i ), g(uu,v2i+1))p

))

≤ (2n)p−12
∑

(u,v)∈E

dX(f(u), g(v))p =
(2n)p2d

dn

∑
(u,v)∈E

dX(f(u), g(v))p,

which yields γ+(G, dpX) ≤ (2n)p2d <∞, as desired.

We saw in Proposition 2.7 that in the case X = R and K(x, y) = (x − y)2 we have
γ(G,K) = 1

λ(G) = 1
1−λ2 , where 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of A (here
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4 Superexpanders

we interpret 1
1−λ2 as ∞ if λ2 = 0). This, together with the above proposition, explains the

terminology. In the euclidean case the absolute spectral gap is also given in terms of the
eigenvalues of A. This proposition is also stated in [MN14], we follow the proof from [Ost13].

Proposition 4.3. Let X = R and K : R × R → R+ be given by K(x, y) = (x − y)2. Then
γ+(G,K) = 1

λ+(G) where λ+(G) = 1 −max {|λ2|, |λn|} as in Section 1. Again, we interpret
1

λ+(G) as ∞ if λ+(G) = 0.

Proof. If λ+(G) = 0 then by Proposition 1.4 G is either disconnected or bipartite. In both
these cases γ+(G,K) = ∞ by Proposition 4.2, so we may assume that λ+(G) > 0. Let
x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Rn. By subtracting

∑
i yi/n from the yi’s and the xi’s

we may assume that
∑

i yi = 0. The left hand side of (12) computes

1

n2

n∑
i,j=1

(xi − yj)2 =
1

n2

n∑
i,j=1

x2
i + y2

j − 2xiyj

=
1

n

(
‖x‖22 + ‖y‖22

)
. (13)

The right hand side of (12) yields

γ

n

n∑
i,j=1

aij(xi − yj)2 =
γ

n

n∑
i,j=1

aij
(
x2
i + y2

j − 2xiyj
)

=
γ

n

(
‖x‖22 + ‖y‖22 − 2〈Ay, x〉

)
, (14)

using that A is symmetric and stochastic. By rearranging, this yields that γ+(G,K) is the
minimal γ > 0 such that

〈Ay, x〉 ≤
(

1− 1

γ

)
‖x‖22 + ‖y‖22

2
, (15)

for all x, y ∈ Rn with
∑

i yi = 0. So if we demonstrate that

1− λ+(G) = sup
2〈Ay, x〉
‖x‖22 + ‖y‖22

, (16)

where the supremums runs over all x, y ∈ Rn, which are not both zero and such that
∑

i yi = 0,
we are done. To see this, observe that

∑
i yi = 0 means precisely that y is orthogonal to 1,

the all ones vector, which is the eigenvector of A corresponding to the eigenvalue λ1 = 1.
Let A0 denote the restriction of A to the subspace of mean zero vectors (which is invariant
under A). Since A is symmetric we have that the operator norm ‖A0‖ = 1 − λ+(G), Hence
for x, y ∈ Rn as above we have

〈Ay, x〉 ≤ |〈Ay, x〉| ≤ ‖Ay‖2 ‖x‖2 ≤ (1− λ+(G)) ‖y‖2 ‖x‖2 ≤ (1− λ+(G))
‖x‖22 + ‖y‖22

2
,

demonstrating that 1−λ+(G) ≥ sup 2〈Ay, x〉/(‖x‖22 +‖y‖22). To obtain equality take x = y to
be an eigenvector of A orthogonal to 1 such that the corresponding eigenvalue has absolute
value 1− λ+(G). Then (passing to −y if needed) we get

〈Ay, x〉 = (1− λ+(G))〈y, x〉 = (1− λ+(G))
‖x‖22 + ‖y‖22

2
,

demonstrating the desired.
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4.1 Non-linear spectral gaps

Propositions 4.3 and 2.7 show that Definition 4.1 is really a generalization of the (eu-
clidean) spectral gaps as described in Section 1. Proposition 4.2 shows that, if we restrict
ourselves to metric spaces, the properties of Proposition 1.4 carry over. If we further restrict
ourselves to normed spaces we get the following analogy: For a Banach space B, let Lnp (B)
denote the Bochner space with values in B on the probability space ([n],P([n]), τ/n), where τ
denotes the counting measure. For a symmetric, stochastic n×n matrix A = (aij) the linear
operator A⊗ InB : Lnp (B)→ Lnp (B) is given by (A⊗ InB)f(i) :=

∑n
j=1 aijf(j), for f ∈ Lnp (B)

and i ∈ [n]. If B = K this is just the usual action of A on Kn. As usual, let (Lnp (B))0

denote the mean-zero functions, which is invariant under A ⊗ InB since A is symmetric and

stochastic. Let λ
(p)
B (A) := 1 − ‖A⊗ InB‖(Lnp (B))0→(Lnp (B))0

which is non-negative, again since

A is symmetric and stochastic. Observe that by elementary linear algebra λ
(2)
K (A) = λ+(A),

so that γ+(A, | · |2) = 1/λ
(2)
K (A). We cannot give a precise characterization of γ+(A, ‖·‖pB) in

terms of λ
(p)
B (A) as in the euclidean case, but a lower bound on λ

(p)
B (A) gives an upper bound

on γ+(A, ‖·‖pB):

Proposition 4.4. In the above set-up we have

γ+(A, ‖·‖pB) ≤

(
1 +

4

λ
(p)
B (A)

)p
,

where the right hand side is interpreted as ∞ if λ
(p)
B (A) = 0.

Proof. For ease of notation let λ = λ
(p)
B (A) and assume λ > 0. For f, g : [n] → B let

f = 1
n

∑n
i=1 f(i) and g = 1

n

∑n
i=1 g(i), making f0 = f − f and g0 = g − g elements of

(Lnp (B))0. Hence ‖(A⊗ InB)f0‖Lnp (B) ≤ (1−λ) ‖f0‖Lnp (B) and similarly for g0. Let h ∈ L2n
p (B)

be given by

h(i) :=

{
f0(i), if i ∈ [n]

g0(i), if i ∈ [2n] \ [n]
.

We then have the estimate

λ ‖h‖L2n
p (B) = ‖h‖L2n

p (B) − (1− λ) ‖h‖L2n
p (B)

= ‖h‖L2n
p (B) −

(
(1− λ)p ‖f0‖pLnp (B) + (1− λ)p ‖g0‖pLnp (B)

2

)1/p

≤ ‖h‖L2n
p (B) −

(‖(A⊗ InB)f0‖pLnp (B) + ‖(A⊗ InB)g0‖pLnp (B)

2

)1/p

= ‖h‖L2n
p (B) −

∥∥(B ⊗ I2n
B )h

∥∥
L2n
p (B)

,

where B =

(
0 A
A 0

)
. Using the reverse triangle inequality, stochasticity of A and convexity
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4 Superexpanders

of t 7→ tp we then obtain

λ ‖h‖L2n
p (B) ≤

∥∥∥(IL2n
p (B) −B ⊗ I2n

B

)
h
∥∥∥
L2n
p (B)

=

 1

2n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

aij(f0(i)− g0(j))

∥∥∥∥∥∥
p

B

+

∥∥∥∥∥∥
n∑
j=1

aij(g0(i)− f0(j))

∥∥∥∥∥∥
p

B

1/p

≤

 1

n

n∑
i,j=1

aij ‖f0(i)− g0(j)‖pB

1/p

≤
∥∥f − g∥∥

B
+

 1

n

n∑
i,j=1

aij ‖f(i)− g(j)‖pB

1/p

=

∥∥∥∥∥∥ 1

n

n∑
i,j=1

aij(f(i)− g(j))

∥∥∥∥∥∥
B

+

 1

n

n∑
i,j=1

aij ‖f(i)− g(j)‖pB

1/p

≤ 2

 1

n

n∑
i,j=1

aij ‖f(i)− g(j)‖pB

1/p

.

Finally, similar computations yield 1

n2

n∑
i,j=1

‖f(i)− g(j)‖pB

1/p

≤
∥∥f − g∥∥

B
+

 1

n2

n∑
i,j=1

‖f0(i)− g0(j)‖pB

1/p

≤
∥∥f − g∥∥

B
+

 1

n2

n∑
i,j=1

2p−1
(
‖f0(i)‖pB + ‖g0(j)‖pB

)1/p

≤

 1

n

n∑
i,j=1

aij ‖f(i)− g(j)‖p
1/p

+ 2 ‖h‖L2n
p (B)

≤
(

1 +
4

λ

) 1

n

n∑
i,j=1

aij ‖f(i)− g(j)‖pB

1/p

,

which yields the desired estimate for γ+(A, ‖·‖pB).

Definition 4.5. For a metric space (X, dX) we call a sequence of d-regular graphs (Gn)n≥1

an expander sequence with respect to X if |V (Gn)| → ∞ and if there exists a p > 0 such that
supn≥1 γ(Gn, d

p
X) <∞.

In the euclidean case this is equivalent to infn λ(Gn) > 0 so our definition of sequences of
expanders from Section 2 is just that of being an expander with respect to R equipped with
the kernel given by the square of the euclidean metric.
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4.2 Regular operators and uniformly curved Banach spaces

Remark 4.6. If (Gn) is an expander sequence with resepct to (X, dX) then, by Proposition
1.18, (Gn) does not coarsely embed into X. Some authors take this latter, weaker, property
as the definition of being a sequence of expanders with respect to (X, dX).

Definition 4.7. A sequence of connected, d-regular graphs, Gn = (Vn, En), is called a
sequence of superexpanders if |Vn| → ∞ and if for every superreflexive Banach space B, there
is some p > 0 such that supn γ(Gn, ‖·‖p) <∞.

Two questions present themselves: First of all, do superexpanders exist? To answer this
question in the affirmative, we shall give an explicit construction in Section 5.

Secondly, one might ask whether the class of expanders and that of superexpanders co-
incide. In light of the results obtained in Section 2 we see (recall, Hilbert spaces are super-
reflexive) that any sequence of superexpanders is in particular a sequence of expanders, but
whether the converse holds is still unresolved. We have already seen Matoušek’s extrapola-
tion theorem yield in Section 2 that any sequence of expanders is als a sequence of expanders
with respect to the Lp spaces, which are superreflexive for 1 < p <∞. We shall explore this
topic further in the rest of this section.

4.2 Regular operators and uniformly curved Banach spaces

Uniformly curved Banach spaces were first introduced by Lafforgue and the term was coined
by Pisier in [Pis10].

Definition 4.8. Let 1 ≤ p1, p2 < ∞. A linear operator T : Lp1(Ω1) → Lp2(Ω2), where
(Ω1,A1, µ1) and (Ω2,A2, µ2) are measure spaces, is called regular if there exists a positve,
linear operator S : Lp1(µ1)→ Lp2(µ2) such that |Tf | ≤ S|f |, for all f ∈ Lp1(µ1). We define
the regular norm of T by ‖T‖reg = inf {‖S‖ | S ≥ 0, |T (·)| ≤ S(| · |)} (it is easily checked
that this is really a norm).

Example 4.9. Every linear operator on `np is regular. Indeed, for some linear operator
A = (aij) on `np , there is a positive operator majorizing A, which realizes the regular norm
of A. This is given by abs (A) := (|aij |), as is readily seen from the definition.

We have the following alternative characterizations of regularity of an operator:

Proposition 4.10. For 1 ≤ p1, p2 <∞ and an operator T : Lp1(Ω1)→ Lp2(Ω2) the following
are equivalent:

1. T is regular

2. There exists C ≥ 0 such that for all x1, · · · , xn ∈ Lp1(µ1) we have∥∥∥∥∥
n∑
i=1

|Txi|

∥∥∥∥∥
Lp2 (Ω2)

≤ C

∥∥∥∥∥
n∑
i=1

|xi|

∥∥∥∥∥
Lp1 (Ω1)

(17)

3. T is the difference between two positive operators.

In this case the optimal constant in (17) is ‖T‖reg.
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4 Superexpanders

The proof of Proposition 4.10 can be found in [Hyt+16, Prop. 2.7.3] and we omit it here.
If T is itself positive then clearly |Tf | ≤ T |f | for all f ∈ Lp1(Ω1) and hence T is regular
with ‖T‖reg = ‖T‖. Recall also from Proposition 1.50 that positive operators satisfy the
extention problem for every Banach space. This is no coincidence; in fact regular operators
are precisely those that satisfy the extention problem for every Banach space:

Theorem 4.11. Let 1 ≤ p1, p2 < ∞ and T : Lp1(Ω1) → Lp2(Ω2). Then the following are
equivalent:

1. T ⊗ IB is bounded for every Banach space B.

2. T ⊗ I`1 is bounded.

3. T is regular.

and for every Banach space B we have ‖T ⊗ IB‖ ≤ ‖T‖reg ≤ ‖T ⊗ I`1‖. In particular
‖T‖reg = ‖T ⊗ I`1‖ = supB ‖T ⊗ IB‖ (the first equality also follows from Proposition 4.10).

Proof. That (1) =⇒ (2) is trivial.
To show that (2) =⇒ (3) let x1, · · · , xn ∈ Lp1(µ1). Putting xi = 0 for i > n we have

(xi)i ∈ Lp1(µ1; `1) and clearly (T ⊗ I`1)(xi)i = (Txi)i (since (xi)i =
∑n

i=1 xi ⊗ ei, where (ei)i
denotes the standard basis of `1). Hence∥∥∥∥∥

n∑
i=1

|Txi|

∥∥∥∥∥
Lp2 (Ω2)

=
∥∥‖(Txi)i‖`1∥∥Lp2 (Ω2)

= ‖(Txi)i‖Lp2 (Ω2;`1) = ‖(T ⊗ I`1)(xi)i‖Lp2 (Ω2;`1)

≤ ‖T ⊗ I`1‖ ‖(xi)i‖Lp1 (Ω1;`1) = ‖T ⊗ I`1‖

∥∥∥∥∥
n∑
i=1

|xi|

∥∥∥∥∥
Lp1 (Ω1)

which demonstrates, by Proposition 4.10, that T is regular and that ‖T‖reg ≤ ‖T ⊗ `1‖.
(3) =⇒ (1) follows from (the remark succeeding) Proposition 1.50, from which it also follows
that ‖T ⊗ IB‖ ≤ ‖T‖reg.

Definition 4.12. Let B be a Banach space. For ε > 0, we define

∆B(ε) := sup {‖TB‖} ,

where the supremum is taken over all pairs of measure spaces (S1,A1, µ1), (S2,A2, µ2) and
T : L2(S1) → L2(S2) with ‖T‖reg ≤ 1 and ‖T‖ ≤ ε. We say that B is uniformly curved if
∆B(ε)→ 0 as ε→ 0.

The following proposition, found in [Pis10], simplifies the definition of ∆B significantly:

Proposition 4.13. Let B be a Banach space, 0 < ε < 1 and δ > 0. Then the following are
equivalent:

• For any pair of measure spaces (Ω1, S1, µ1) and (Ω2, S2, µ2) and any linear operator
T : L2(Ω1)→ L2(Ω2) with ‖T‖reg ≤ 1 and ‖T‖ ≤ ε we have ‖TB‖ ≤ δ.

• For any n ∈ N and n×n matrix A with ‖abs(A)‖ ≤ 1 and ‖A‖ ≤ ε we have ‖AB‖ ≤ δ.
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4.2 Regular operators and uniformly curved Banach spaces

Remark 4.14. If we define

∆fin
B (ε) = sup {‖AB‖ | n ∈ N, A : `n2 → `n2 , ‖abs(A)‖ ≤ 1, ‖A‖ ≤ ε} ,

then, by Proposition 4.13, we have ∆fin
B = ∆B.

By Theorem 1.52, we have that ∆H(ε) = ε, for every Hilbert space H, and hence Hilbert
spaces are uniformly curved. More generally we have the following: A strictly θ-Hilbertian
Banach space, 0 < θ ≤ 1, is a Banach space which arises as a complex interpolation space
(B,H)θ, where B is any Banach space and H is a Hilbert space.

Proposition 4.15. If B is a strictly θ-Hilbertian Banach space then ∆B(ε) ≤ εθ. In partic-
ular any strictly θ-Hilbertian Banach space is uniformly curved.

The proof of this result (found in [Pis10]) requires the Riesz-Thorin interpolation theorem
for Bochner spaces (see [BL76, Th.’s 4.1.2 & 5.1.2]):

Theorem 4.16. Let B0 and B1 be a compatible couple of complex Banach spaces, let (S0,A0, µ0)
and (S1,A1, µ1) be measure spaces, and let 1 ≤ p0, p1, q0, q1 ≤ ∞. Suppose that

T : Lp0(S0;B0) + Lp1(S0;B1)→ Lq0(S1;B0) + Lq1(S1;B1)

is a linear operator, such that T : Lpj (S0;Bj) → Lqj (S1;Bj), for j = 0, 1, with norm
at most Mj. Then, for every 0 ≤ θ ≤ 1, the operator T maps Lpθ(S0; (B0, B1)θ) into
Lqθ(S1; (B0, B1)θ) with norm at most A1−θ

0 Aθ1, where pθ and qθ are defined by the relation

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Proof of Proposition 4.15. Suppose B is a strictly θ-Hilbertian Banach space, and let V be a
Banach space and H a Hilbert space such that B = (V,H)θ. Let (Ω1,A1, µ1) and (Ω2,A2, µ2)
be measure spaces and T : L2(Ω1)→ L2(Ω2) a linear operator with ‖T‖reg ≤ 1 and ‖T‖ ≤ ε.
By Theorem 1.52 we have that ‖TH‖L2(Ω1;H)→L2(Ω2;H) = ‖T‖L2(Ω1)→L2(Ω2) ≤ ε, and by
definition of the regular norm we have ‖TV ‖L2(Ω1;V )→L2(Ω2;V ) ≤ ‖T‖reg ≤ 1. Since, in the
above notation, we have p0 = p1 = q0 = q1 = 2, and hence pθ = qθ = 2, Theorem 4.16 yields
‖TB‖L2(Ω1;B)→L2(Ω2;B) ≤ 11−θεθ = εθ. This demonstrates that ∆B(ε) ≤ εθ, as desired.

Proposition 4.15 implies that the Lp spaces are uniformly curved whenever 1 < p < ∞.
For p = 1 or p = ∞ they are not, however, since these spaces are not reflexive, and, as we
shall see, uniformly curved Banach spaces are superreflexive. To see that uniform curvedness
implies superreflexivity we will need a criterion for superreflexivity from [Pis75] which we
state without proof:

Proposition 4.17. For n ∈ N, let Γ(n) be the n× n matrix given by

Γ(n)ij :=

{
1

n−i−j if i+ j 6= n

0 if i+ j = n
.

Let B be a Banach space and suppose that ‖Γ(n)B‖ / log(n)→ 0. Then B is superreflexive.
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4 Superexpanders

It was shown in [Tit26] that supn≥1 ‖Γ(n)‖B(`n2 ) < ∞. To give an idea of how these

matrices look, let us print Γ(5):

Γ(5) =


1/3 1/2 1 0 −1
1/2 1 0 −1 −1/2
1 0 −1 −1/2 −1/3
0 −1 −1/2 −1/3 −1/4
−1 −1/2 −1/3 −1/4 −1/5

 .

The following proposition is stated in [Pis10]:

Proposition 4.18. Suppose B is uniformly curved. Then ‖Γ(n)B‖ / log(n)→ 0, as n→∞,
and hence B is superreflexive.

Proof. As observed above, there exists C ≥ 1 such that ‖Γ(n)‖ ≤ C, for all n ∈ N. Recall
from Example 4.9 that the regular norm of Γ(n) is given by the operator norm of abs(Γ(n)).
Observe that abs(Γ(n)) =

∑2n
k=2 Γk(n), where Γn(n) = 0 and Γk(n) is given by

Γk(n)ij =

{
1
|n−k| if i+ j = k

0 if i+ j 6= k
,

when k 6= n. When k 6= n, we see that Γk(n) has all zero entries, except on the (k − 1)st
North-East to South-West diagonal, all of whose entries are equal to 1/|n − k|. It follows,
e.g. by applying Γk(n) to the standard orthonormal basis of `n2 , that ‖Γk(n)‖ = 1/|n − k|.
Hence, by the triangle inequality, we obtain

‖abs(Γ(n))‖ ≤
(

1

n− 2
+

1

n− 3
+ · · ·+ 1 + 0 + 1 +

1

2
+ · · ·+ 1

n

)
≤ 2

n∑
k=1

1

k
∈ O(log(n)).

Together with the initial observation this allows us to conlclude that there exists C ′ ≥ 1 and
N ∈ N such that ‖Γ(n)‖ ≤ C ′ and such that ‖Γ(n)‖reg ≤ C ′ log(n), whenever n ≥ N . Hence,

for such n, we have
∥∥∥ 1
C′ log(n)Γ(n)

∥∥∥ ≤ 1/ log(n) and
∥∥∥ 1
C′ log(n)Γ(n)

∥∥∥
reg
≤ 1, which implies, by

definition of ∆B, that

‖Γ(n)B‖ ≤ C ′ log(n)∆B

(
1

log(n)

)
.

Since ∆B(ε)→ 0 as ε→ 0, by assumption, the conclusion follows.

So far we have seen that uniformly curved Banach spaces constitute a rich subclass of the
class of superreflexive Banach spaces, and it is in fact not known whether it exhausts this
class or not. In terms of embeddability of expander sequences, we have the following result:

Proposition 4.19. Suppose (Gn)n≥1 is a sequence of finite, connected, d-regular graphs such
that |Vn| → ∞ and such that infn λ+(Gn) > 0, where λ+(Gn) was defined in Section 1 (in
particular (Gn) is a sequence of expanders). Let B be a uniformly curved Banach space. Then
supn γ(Gn, ‖·‖2) <∞, i.e., (Gn) is an expander sequence with respect to B.
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4.2 Regular operators and uniformly curved Banach spaces

Proof. Let An = (anu,v) denote the (normalized) adjacency matrix of Gn. Then we can
decompose `2(Vn) = `02(Vn) ⊕ `c2(Vn) into a direct sum of the mean-zero functions and the
constant functions. Clearly `c2(Vn) = C · 1Vn is the eigenspace of the eigenvalue 1, so we
have 1 − λ+(Gn) = ‖An‖B(`02(Vn)). For f ∈ `2(Vn) let Enf =

∑
u∈Vn f(u)/|Vn| denote the

average of f . We can view this as an element of C · 1Vn ⊂ `2(Vn), and En : `2(Vn)→ C · 1Vn
is the orthogonal projection. Let γ = supn(1 − λ+(Gn)) = 1 − infn λ+(Gn) < 1. Then
‖An‖B(`02(Vn)) ≤ γ < 1, for every n ≥ 1, and by a straightforward computation, we have
AnEn = EnAn = En. Hence

‖Anf − Enf‖2 ≤ γ ‖f − Enf‖2 ≤ γ ‖f‖2 ,

for all n ≥ 1 and f ∈ `2(Vn), demonstrating that ‖An − En‖B(`2(Vn)) ≤ γ. We also see, since

An clearly also commutes with In − En, that Akn − En = Akn(In − En) = (An − En)k, and
hence

∥∥Akn − En∥∥B(`2(Vn))
≤ γk, for every k ∈ N. Note that ‖An‖reg = ‖An‖B(`2(Vn)) ≤ 1

and ‖En‖reg = ‖En‖B(`2(Vn)) ≤ 1, since An and En are both positive contractions, and

hence
∥∥Akn − En∥∥reg

≤ 2, for every k ∈ N. Since γ < 1 and we have by assumption that

∆B(ε) → 0 as ε → 0, we can choose k ∈ N such that δ := 2∆B(γk/2) < 1. Then∥∥1
2(Akn − En)

∥∥
B(`2(Vn))

≤ γk/2 and
∥∥1

2(Akn − En)
∥∥

reg
≤ 1, and hence, by definition of ∆B,

we infer that
∥∥Akn − En∥∥B(`2(Vn;B))

≤ δ < 1. This yields

‖f − Enf‖2 ≤
∥∥∥f −Aknf∥∥∥

2
+
∥∥∥Aknf − Enf∥∥∥

2
≤
∥∥∥f −Aknf∥∥∥

2
+ δ ‖f − Enf‖2 ,

for any f : Vn → B, and hence ‖f − Enf‖2 ≤
1

1−δ
∥∥f −Aknf∥∥2

. Since

1

|Vn|
∑

u,v∈Vn

‖f(u)− f(v)‖2B ≤ 4
∑
u∈V
‖f(u)− Enf‖2B = 4 ‖f − Enf‖22 ,

we obtain from the above that

1

|Vn|
∑

u,v∈Vn

‖f(u)− f(v)‖2B ≤
(

2

1− δ

)2 ∥∥∥f −Aknf∥∥∥2

2

=

(
2

1− δ

∥∥∥∥∥
k−1∑
i=0

Ain(f −Anf)

∥∥∥∥∥
2

)2

≤

(
2

1− δ

k−1∑
i=0

‖f −Anf‖2

)2

=

(
2k

1− δ

)2

‖f −Anf‖22

≤
(

2k

1− δ

)2 ∑
u,v∈Vn

anu,v ‖f(u)− f(v)‖2 .

Since k and δ are independent of n this demonstrates that γ(Gn, ‖·‖2) ≤ 4k2/(1− δ)2 for all
n ≥ 1 which is what we wanted.
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Remark 4.20. By Proposition 1.18 we get as a consequence of the above proposition that
if a graph sequence satisfies infn≥1 λ+(Gn) > 0, then (Gn)n≥1 does not coarsely embed into
uniformly curved Banach space. It still remains to consider graph sequences which satisfy
infn λ(Gn) > 0 but such that infn λ+(Gn) = 0. This can only happen if infn λn = −1, where
λn denotes the smallest eigenvalue of the adjacency matrix of Gn. We can think of such
sequences as ’approximately bipartite’ expander sequences (recall Proposition 1.4).

The above piece of intuition (obtained in [Ost13, chap. 6]) yields the following proposition:

Proposition 4.21. Suppose (Gn) is a sequence of connected, d-regular graphs satisfying
infn λ(Gn) > 0. Then there exists a sequence of (d + d2)-regular graphs (Hn) on the same
vertex sets satisfying infn λ+(Hn) > 0 such that Hn embeds coarsely into Gn for each n ≥ 1
with control functions independent of n.

Proof. The edge set of Hn is constructed in the following way: Between each pair of vertices
u, v ∈ V (Hn) = V (Gn) we draw an edge in Hn for each edge and for each path of length
2 in Gn connecting u and v. Clearly each Hn is connected and (d + d2)-regular and if An
is the non-normalized adjacency matrix of Gn then Bn = 1

d+d2
(An + A2

n) is the normalized

adjacency matrix of Hn. Denote the eigenvalues of An by d = λ
(n)
1 > λ

(n)
2 ≥ · · · ≥ λ(n)

k(n) ≥ −d
and let k(n) = |V (Hn)| = |V (Gn)|. Our assumption that infn λ(Gn) > 0 then means precisely

that supn λ
(n)
2 < d. By the spectral theorem the eigenvalues of Bn are

1 =
λ

(n)
1 + (λ

(n)
1 )2

d+ d2
,
λ

(n)
2 + (λ

(n)
2 )2

d+ d2
, · · · ,

λ
(n)
k(n) + (λ

(n)
k(n))

2

d+ d2
,

and hence

λ+(Hn) = 1− max
2≤i≤k(n)

|λ(n)
i + (λ

(n)
i )2|

d+ d2
.

By the monotonicity properties of the function t 7→ t+ t2 there are three cases to consider:

• If d ≥ λ(n)
i > 0 then also λ

(n)
2 > 0 and

|λ(n)
i + (λ

(n)
i )2| = λ

(n)
i + (λ

(n)
i )2 ≤ λ(n)

2 + (λ
(n)
2 )2 ≤ sup

n
λ

(n)
2 + (sup

n
λ

(n)
2 )2 < d+ d2.

• If −1 ≤ λ(n)
i ≤ 0 then |λ(n)

i + (λ
(n)
i )2| ≤ 1/4 < d+ d2.

• If −d ≤ λ(n)
i < −1 then

|λ(n)
i + (λ

(n)
i )2| = λ

(n)
i + (λ

(n)
i )2 ≤ −d+ d2 < d+ d2.

Hence

λ+(Hn) ≥ 1−
max

{
supn λ

(n)
2 + (supn λ

(n)
2 )2, 1/4,−d+ d2

}
d+ d2

> 0,
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for all n ≥ 1, demonstrating that infn λ+(Hn) > 0. For the coarse embeddability of Hn

into Gn observe that, since Gn is a subgraph of Hn we have dGn(u, v) ≥ dHn(u, v) for every
u, v ∈ V (Hn). Moreover every edge in a path in Hn between vertices u and v is either an
edge in Gn or can be replaced by two edges in Gn forming a path between its end points.
So every such path admits a path in Gn between u and v of at most double the lenght of
the original path. Hence dGn(u, v) ≤ 2dHn(u, v). This demonstrates that the identity map
V (Hn)→ V (Gn) forms a coarse embedding with control functions ρ−(t) = t/2 and ρ+(t) = t,
which are independent of n.

Since the control functions of the above proposition were independent of n and composi-
tions of coarse embeddings are again coarse embeddings we obtain:

Corollary 4.22. Suppose (X, dX) is a metric space such that any sequence (Gn) of finite,
connected, regular graphs with |V (Gn)| → ∞ and infn λ+(Gn) > 0 does not coarsely embed
into X. Then also any sequence with |V (Gn)| → ∞ and infn λ(Gn) > 0 does not coarsely
embed into X. In particular sequences of expanders do not coarsely embed into uniformly
curved Banach space.

The above corollary shows that an expander sequence is an expander sequence with
respect to any uniformly curved Banach space in the weaker sense of Remark 4.6. Fur-
thermore, if we want to prove coarse non-embeddability results for graph sequences with
supn≥1 λ(Gn) < 1 then it always suffices to prove non-embeddability only for sequences sat-
isfying supn≥1 λ+(Gn) < 1.

4.3 Sphere equivalence and invariance

Definition 4.23. Two Banach spaces B and V are called sphere equivalent if there exists
a uniformly continuous homeomorphism ϕ : S(B) → S(V ), i.e., a uniformly continuous
bijection with uniformly continuous inverse. Here S(B) and S(V ) denote the unit spheres of
B and V respectively.

We write B ∼S V to signify that B and V are sphere equivalent, and it is clear that this
relation is an equivalence relation. We denote the class of spaces which are sphere equivalent
to B by [B]S . The following classical theorem due to [Maz29] (see also [BL00, Th. 9.1]) gives
an important class of examples of sphere equivalent spaces:

Theorem 4.24. Let (Ω, µ) be a measure space and 1 < p, q < ∞. Then the Mazur map
Mp,q : Lp(Ω)→ Lq(Ω), given by Mp,q(f) = |f |p/q−1f if f 6= 0 and Mp,q(0) = 0, restricts to a
Lipschitz function between S(Lp(Ω)) and S(Lq(Ω)) - in particular it is uniformly continuous.
Since Mq,p is a two-sided inverse of Mp,q we have in particular that Lp(Ω) ∼S Lq(Ω).

This theorem generalizes to Bochner spaces:

Lemma 4.25. [LS17, Lemma 3.10] Let (Ω, µ) be a measure space, B a Banach space and

1 < p, q <∞. Define the Mazur map Mp,q : Lp(Ω;B)→ Lq(Ω;B) by Mp,q(f) = ‖f‖p/q−1
B · f

if f 6= 0 and Mp,q(0) = 0. Then there exists a constant C = Cp,q > 0 such that

‖Mp,q(f1)−Mp,q(f2)‖Lq(Ω;B) ≤ C ‖f1 − f2‖min{p/q,1}
Lp(Ω;B) ,

whenever ‖f1‖Lp(Ω;B) , ‖f2‖Lp(Ω;B) ≤ 1. In particular Lp(Ω;B) ∼S Lq(Ω;B).
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Proof. Write fi = riϕi with ri : Ω → R+ and ϕi : Ω → S(B). Then ri ∈ S(Lp(Ω)) (since

ri = ‖fi‖B) and hence, by Theorem 4.24, we have
∥∥∥rp/q1 − rp/q2

∥∥∥
Lq(Ω)

≤ C ‖r1 − r2‖Lp(Ω), for

some C = Cp,q > 0. Moreover, the reverse triangle inequality yields that

‖r1 − r2‖Lp(Ω) =

(∫
| ‖f1‖B − ‖f2‖B |

pdµ

)1/p

≤
(∫
‖f1 − f2‖pB dµ

)1/p

= ‖f1 − f2‖Lp(Ω;B) .

Since Mp,q(f1)−Mp,q(f2) = r
p/q
1 ϕ1− rp/q2 ϕ2 = (r

p/q
1 − rp/q2 )ϕ1 + r

p/q
2 (ϕ1−ϕ2) we obtain that

‖Mp,q(f1)−Mp,q(f2)‖Lq(Ω;B) ≤
∥∥∥rp/q1 − rp/q2

∥∥∥
Lq(Ω)

+
∥∥∥rp/q2 (ϕ1 − ϕ2)

∥∥∥
Lq(Ω;B)

≤ C ‖f1 − f2‖Lp(Ω;B) +
∥∥∥rp/q2 (ϕ1 − ϕ2)

∥∥∥
Lq(Ω;B)

. (18)

If q ≤ p then Hölder’s inequality yields the following estimate for the second term above:∥∥∥rp/q2 (ϕ1 − ϕ2)
∥∥∥q
Lq(Ω;B)

=

∫
rp2 ‖ϕ1 − ϕ2‖qB dµ =

∫
‖ϕ1 − ϕ2‖qB 1Ωd(rp2 · µ)

≤
(∫ (

‖ϕ1 − ϕ2‖qB
)p/q

d(rp2 · µ)

)q/p(∫
1Ωd(rp2 · µ)

)(p−q)/p

= ‖r2(ϕ1 − ϕ2)‖qLp(Ω;B) · ‖r1‖p−qLp(Ω)

≤ ‖r2(ϕ1 − ϕ2)‖qLp(Ω;B)

≤
(
‖r2ϕ1 − r1ϕ1‖Lp(Ω;B) + ‖r1ϕ1 − r2ϕ2‖Lp(Ω;B)

)q
≤
(

2 ‖f1 − f2‖Lp(Ω;B)

)q
,

so (18) yields

‖Mp,q(f1)−Mp,qf(2)‖Lq(Ω;B) ≤ (C + 2) ‖f1 − f2‖Lp(Ω;B) = (C + 2) ‖f1 − f2‖min{p/q,1}
Lp(Ω;B) .

If q > p then, since

‖ϕ1 − ϕ2‖qB ≤ ‖ϕ1 − ϕ2‖q−pL∞(Ω,rp2 ·µ;B)
‖ϕ1 − ϕ2‖pB , (rp2 · µ)− a.s.,

we obtain

‖rp2(ϕ1 − ϕ2)‖Lq(Ω;B) ≤ ‖ϕ1 − ϕ2‖Lq(Ω,rp2 ·µ;B)

≤ ‖ϕ1 − ϕ2‖1−p/qL∞(Ω,rp2 ·µ;B)
· ‖ϕ1 − ϕ2‖p/qLp(Ω,rp2 ·µ;B)

≤ 21−p/q ‖r2(ϕ1 − ϕ2)‖p/qLp(Ω;B)

≤ 21−p/q
(

2 ‖f1 − f2‖Lp(Ω;B)

)p/q
= 2 ‖f1 − f2‖p/qLp(Ω;B) .

This estimate together with (18) yields

‖Mp,q(f1)−Mp,q(f2)‖Lq(Ω;B) ≤ (C21−p/q + 2) ‖f1 − f2‖p/qLp(Ω;B)

= (C21−p/q + 2) ‖f1 − f2‖min{p/q,1}
Lp(Ω;B) ,

concluding the proof.
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We now follow Mimura’s proof in [Mim18] of the following theorem and, using Lemma
4.25, its corollary:

Theorem 4.26. Let B and V be Banach spaces, p ≥ 1 and (Gn) a sequence of finite,
connected, d-regular graphs. If B is sphere equivalent to V , then supn γ(Gn, ‖·‖pB) < ∞ if
and only if supn γ(Gn, ‖·‖pV ) <∞.

Corollary 4.27. Let B and (Gn) be as above and p, q > 1. Then supn γ(Gn, ‖·‖pB) < ∞ if
and only if supn γ(Gn, ‖·‖qB) <∞.

These two results serve as a generalization of Matoušek’s extrapolation theorem (Theorem
2.4) since, by Theorem 4.24, Lp(Ω) ∼S L2(Ω) for any p > 1.

Definition 4.28. Let B be a Banach space, p ≥ 1 and G = (V,E) a finite, connected,
d-regular graph. We define the Banach space spectral gap of G with respect to (B, p) by

λ1(G,B, p) :=
1

2
inf

∑
(u,v)∈E ‖f(u)− f(v)‖p∑
u∈V ‖f(u)−m(f)‖p

, (19)

where m(f) :=
∑

u∈V f(u)/|V | denotes the mean of f and the infimum is taken over all
non-constant functions f : V → B.

Using convexity of t 7→ tp and Hölder’s inequality, it is not difficult to see that the Banach
space spectral gap of [Mim18] relates to the reciprocal spectral gap of [MN14] by

d

2λ1(G,B, p)
≤ γ(G, ‖·‖p) ≤ 2pd

2λ1(G,B, p)
.

Hence supn γ(Gn, ‖·‖p) < ∞ is equivalent to infn λ1(Gn, B, p) > 0. This demonstrates that
the above definition and terminology is consistent with the theory we have developed so far
and we pass to the Banach space spectral gap in this subsection for notational convenience. It
follows from the definition that if E ⊂ B is a closed subspace then λ1(G,E, p) ≥ λ1(G,B, p)
and so in particular λ1(G,B, p) ≥ λ1(G,Lp(Ω;B), p) for any measure space (Ω,A , µ). Using
the estimate from (19) pointwise and integrating yields the reverse inequality. We summarize
this observation in a lemma:

Lemma 4.29. For any measure space (Ω,A , µ) we have λ1(G,B, p) = λ1(G,Lp(Ω;B), p).
In particular, if we let Bp := `p(N;B), we have λ1(G,B, p) = λ1(G,Bp, p).

If F is any countable set then the symmetric group on F , Sym(F ), acts by isometries on
`r(F ;B) for any r ≥ 1 by σ.ξ(a) = ξ(σ−1(a)) for σ ∈ Sym(F ), ξ ∈ `r(F ;B) and a ∈ F . A
map ϕ : S → `q(F ;B), where S ⊂ `p(F ;B) and p, q ≥ 1, is then called Sym(F )-invariant if
σ.ϕ(ξ) = ϕ(σ.ξ) for all ξ ∈ S and σ ∈ Sym(F ).
When F is finite then ξ ∈ `r(F ;B) is constant precisely when σ.ξ = ξ for all σ ∈ Sym(F ),
and hence if ξ ∈ S ⊂ `r(F ;B) is constant and ϕ : S → `q(F ;B) is Sym(F )-invariant, we
have for any σ ∈ Sym(F ) that σ.ϕ(ξ) = ϕ(σ.ξ) = ϕ(ξ), demonstrating that ϕ(ξ) is constant.
Moreover, it is clear that if ϕ is bijective and Sym(F )-invariant then ϕ−1 is Sym(F )-invariant
as well. These elementary observations will come in handy in the subsequent arguments.
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4 Superexpanders

Definition 4.30. For Banach spaces B and V and a map ϕ : S(B) → S(V ) we define the
class of upper moduli of continuity Mϕ consisting of all functions δ : [0, 2] → [0, 2] that are
non-decreasing such that limε↘0 δ(ε) = 0, and which satisfy ‖ϕ(x)− ϕ(y)‖V ≤ δ(‖x− y‖B)
for all x, y ∈ B. Then ϕ is uniformly continuous if and only if Mϕ 6= ∅.

For ϕ : S(B)→ S(V ) we may also define its canonical extension ϕ̄ : B → V by ϕ̄(0) = 0
and ϕ̄(x) = ‖x‖B ϕ(x/ ‖x‖B) for x 6= 0.

Proposition 4.31. Suppose ϕ : S(B) → S(V ) is a uniformly continuous map. Then the
map Φp : S(Bp) → S(Vp) given by Φp((xi)i≥1) = (ϕ̄(xi))i≥1 is also uniformly continuous.
Moreover it is (by construction) Sym(N)-invariant.

Proof. First observe that, by definition of ϕ, we do have Φp(x) ∈ S(Vp) whenever x ∈ S(Bp).
To prove uniform continuity, take δ ∈Mϕ and observe that we can assume that δ is concave.
Furthermore, it can be checked that we can even assume that there exists D > 0 such that
δ(t)p ≤ Dδ(tp) whenever t ∈ [0, 21/p]. Now take x = (xi)i≥1, y = (yi)i≥1 ∈ S(Bp). First
assume that ‖xi‖B = ‖yi‖B, for every i ∈ N. Let ri = ‖xi‖B and choose εi such that
εiri = ‖xi − yi‖B. Note that it is possible to pick εi this way, since if ri = 0 then so is
‖xi − yi‖B. Then

∑
i r
p
i = 1 and hence by concavity of δ and Jensen’s inequality we obtain

‖Φp(x)− Φp(y)‖pVp =
∑
i:ri 6=0

rpi ‖ϕ(xi/ri)− ϕ(yi/ri)‖pV

≤
∞∑
i=1

rpi δ(εi)
p ≤ D

∞∑
i=1

rpi δ (εpi ) ≤ δ

( ∞∑
i=1

(riεi)
p

)
= δ

(
‖x− y‖pBp

)
,

whenever ‖x− y‖Bp ≤ 21/p. For general x, y ∈ S(Bp) define z = (zi)i≥1 by zi =
‖xi‖B
‖yi‖B

yi if

yi 6= 0 and zi = xi otherwise. By the reverse triangle inequality we have

‖zi − yi‖B = ‖yi‖B | ‖xi‖B / ‖yi‖B − 1| = | ‖xi‖B − ‖yi‖B | ≤ ‖xi − yi‖B ,

when yi 6= 0, and by the way the zi’s were defined, we have equality when yi = 0. In any
case, we obtain, since ‖zi‖B = ‖xi‖B, for every i ∈ N, that

‖Φp(x)− Φp(z)‖pVp ≤ δ
(
‖x− z‖pBp

)
≤ δ

(
2p−1

(
‖x− y‖Bp + ‖y − z‖Bp

))
≤ δ

(
2p ‖x− y‖pBp

)
,

whenever ‖x− y‖Bp ≤ 21/p−1. Moreover, by definition of z and Φp, we can check that

‖Φp(y)− Φp(z)‖Vp ≤ ‖x− y‖Bp , and hence

‖Φp(x)− Φp(y)‖Vp ≤ δ
((

2 ‖x− y‖Bp
)p)1/p

+ ‖x− y‖Bp ,

whenever ‖x− y‖Bp ≤ 21/p−1. This demonstrates that Φp is uniformly continuous.

We now turn our attention to Schreier coset graphs (see Section 3) which turn out, as we
shall see, to constitute quite a large subclass of all d-regular graphs.
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Lemma 4.32. Let Γ be a finitely generated group, Λ < Γ of finite index, and S a finite,
symmetric generating subset of Γ not containing the identity. For a Banach space B and
p ≥ 1 define the p-displacement constant by

κ = κB,p(Γ,Λ, S) := inf
ξ /∈`cp(Γ/Λ;Bp)

max
s∈S

‖s.ξ − ξ‖p
‖ξ −m(ξ)‖p

, (20)

where `cp(Γ/Λ;Bp) ⊂ `p(Γ/Λ;Bp) denotes the subspace of constant functions. Then if G is

the Schreier coset graph Sch(Γ,Λ, S), we have κp ≤ λ1(G,B, p) ≤ |S|2 κ
p.

Proof. Recall that λ1(G,B, p) = λ1(G,Bp, p). Then by definition of Sch(Γ,Λ, S) we have

λ1(G,Bp, p) = inf
f non-constant

1

2

∑
(u,v)∈E ‖f(u)− f(v)‖pBp∑
u∈Γ/Λ ‖f(u)−m(f)‖pBp

= inf
ξ /∈`cp(Γ/Λ,Bp)

1

2

∑
xΛ∈Γ/Λ

∑
s∈S

∥∥ξ(s−1xΛ)− ξ(xΛ)
∥∥p
Bp∑

xΛ∈Γ/Λ ‖ξ(xΛ)−m(ξ)‖pBp

= inf
ξ /∈`cp(Γ/Λ,Bp)

1

2

∑
s∈S

(
‖s.ξ − ξ‖p
‖ξ −m(ξ)‖p

)p
.

Since ‖s.ξ − ξ‖p =
∥∥s−1.ξ − ξ

∥∥
p

and S is symmetric we have

|S|
2

max
s∈S

(
‖s.ξ − ξ‖p
‖ξ −m(ξ)‖p

)p
≥ 1

2

∑
s∈S

(
‖s.ξ − ξ‖p
‖ξ −m(ξ)‖p

)p
≥ max

s∈S

(
‖s.ξ − ξ‖p
‖ξ −m(ξ)‖p

)p
,

which gives the desired estimate.

Lemma 4.33. Let B and V are Banach spaces and p, q ≥ 1. Suppose Φ : S(Bp)→ S(Vq) is
a Sym(N)-invariant uniform homeomorphism. For Γ, Λ and S as above we then have

κB,p(Γ,Λ, S) ≥ δ−1
1

(
1

2
δ−1

2

(
1

2

)
κV,q(Γ,Λ, S)

)
, (21)

for every δ1 ∈MΦ and δ2 ∈MΦ−1. Here, if δ1 or δ2 are not bijective we interpret δ−1
1 (s) as

inf {t ∈ [0, 2] | δ1(t) ≥ s} and similarly with δ2.

Proof. First observe that Bp is isometrically isomorphic to `p(Γ/Λ, Bp) (since Γ/Λ is finite)
and similarly with Vq so we may regard Φ : S(`p(Γ/Λ, Bp)) → S(`q(Γ/Λ, Vq)) a Sym(Γ/Λ)-
invariant uniform homeomorphism. For notational convenience, put κp = κB,p(Γ,Λ, S) and
κq = κV,q(Γ,Λ, S). Let ξ ∈ S(`p(Γ/Λ, Bp)) be non-constant and observe that, by passing to
ξ −m(ξ), we may assume that ξ has mean zero. Put η = Φ(ξ) ∈ S(`q(Γ/Λ, Vq)). Observe
that by Sym(Γ/Λ)-invariance we have Φ(S(`cp(Γ/Λ, Bp))) ⊂ S(`cq(Γ/Λ, Vq)), and similarly for
Φ−1. This in particular implies that η /∈ `cq(Γ/Λ, Vq). Now for any ζ ∈ `cp(Γ/Λ, Bp) we have

‖ζ‖pp =
∑
u∈Γ/Λ

‖ζ(u)‖pBp =
∑
u∈Γ/Λ

∥∥∥∥∥∥ 1

|Γ/Λ|
∑
v∈Γ/Λ

(ζ(v)− ξ(v))

∥∥∥∥∥∥
p

Bp

≤
∑
v∈Γ/Λ

‖ζ(v)− ξ(v)‖pBp = ‖ζ − ξ‖pp ,
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and hence 1/2 = ‖ξ‖p /2 ≤ (‖ζ − ξ‖p + ‖ζ‖p)/2 ≤ ‖ζ − ξ‖p, which demonstrates that

dist(ξ, `cp(Γ/Λ, Bp)) ≥ 1/2. Hence, by uniform continuity of Φ−1 we obtain the estimate

dist(η, S(`cq(Γ/Λ, Vq))) ≥ δ−1
2 (1/2). If m(η) 6= 0 we can view it as an element of `cq(Γ/Λ, Vq)

and put η′ = m(η)/ ‖m(η)‖p ∈ S(`cq(Γ/Λ, Vq)). By the above estimate, we then have

‖η − η′‖q ≥ δ
−1
2 (1/2). Also by the reverse triangle inequality we obtain∥∥m(η)− η′

∥∥
q

= | ‖m(η)‖q − 1| = | ‖m(η)‖q − ‖η‖q | ≤ ‖η −m(η)‖q ,

which yields

‖η −m(η)‖q ≥
‖η −m(η)‖q + ‖m(η)− η′‖q

2
≥
‖η − η′‖q

2
≥ δ−1

2 (1/2)

2
.

If m(η) = 0 similar (but even simpler) computations may be carried through to obtain ‖η‖q ≥
δ−1

2 (1/2)/2, by just letting η′ be any element of S(`cq(Γ/Λ, Vq)). It follows, by definition of
the q-displacement constant of V , that

max
s∈S
‖s.η − η‖q ≥ ‖η −m(η)‖q κq ≥

1

2
δ−1

2

(
1

2

)
κq.

Moreover, by Sym(Γ/Λ)-invariance of Φ, we have ‖s.η − η‖q = ‖Φ(s.ξ)− Φ(ξ)‖q ≤ δ1

(
‖s.ξ − ξ‖p

)
,

which together with the above inequality yields

max
s∈S
‖s.ξ − ξ‖ ≥ δ−1

1

(
1

2
δ−1

2

(
1

2

)
κV

)
.

The desired estimate now follows.

The reason why it suffices for us to study Schreier coset graphs is the following theorem due
to Gross [Gro77]. Its very beautiful proof is an application of Petersen’s 2-factor theorem,
a classical result, which is often referred to as one of the first theorems in graph theory.
Nevertheless, we shall omit it here.

Theorem 4.34. Every finite, connected, regular graph of even degree can be realized as (i.e.,
is isomorphic to) a Schreier coset graph.

A general d-regular graph can be 2d edge completed. This completion is then, by Theorem
4.34, isomorphic to a Schreier coset graph. As we saw in Section 5, spectral gaps behave nicely
under edge completion, and this holds for Mimura’s Banach space spectral gaps as well: it
follows from the definition that λ1(C2d(G), B, p) = 2λ1(G,B, p) whenever G is d-regular.
Hence for expansion properties it is often enough to argue for Schreier coset graphs. This
method is known as the Gross trick.

Lemma 4.35. Suppose G = Sch(Γ,Λ, S) is a Schreier coset graph and B ∼S V . Then

λ1(G,B, p) ≥ δ−1
1

(
1

2

(
2

|S|

)1/p

δ−1
2

(
1

2

)
λ1(G,V, p)1/p

)p
where δ1 and δ2 are as above.
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Proof. By Proposition 4.31 we have a uniform homeomorphism Φp : S(Bp)→ S(Vp). Hence,
by Lemma 4.33 we have

λ1(G,B, p) ≥ κpB ≥ δ
−1
1

(
1

2
δ−1

2

(
1

2

)
κV

)p
,

where κB and κV are the p-displacement constants of B and V , respectively. By Lemma 4.32

we have κV ≥
(

2
|S|λ1(G,V, p)

)1/p
. Combining these two facts yields the desired.

Corollary 4.36. Suppose G is a finite, connected, d-regular graph and B ∼S V . Then

λ1(G,B, p) ≥ 1

2
δ−1

1

(
1

2

(
2

d

)1/p

δ−1
2

(
1

2

)
λ1(G,V, p)1/p

)p
Proof. If d is even then G = Sch(Γ,Λ, S) with d = |S| and the conclusion follows from Lemma
4.35. If not then λ1(G,B, p) = λ1(C2d(G), B, p)/2 and λ1(C2d(G), V, p) = 2λ1(G,V, p), from
which the desired estimate follows.

Proof of Theorem 4.26. Interchanging the roles of B and V in the corollary above gives the
desired conclusion.

Proof of Corollary 4.27. By Lemma 4.25 the Mazur map Mp,q : Bp → Bq restricts to a sphere
equivalence. Since it is defined coordinatewise it is also Sym(N)-invariant. Hence, Lemma
4.33 allows us to conclude that

κB,p(Γ,Λ, S) ≥ δ−1
1

(
1

2
δ−1

2

(
1

2

)
κB,q(Γ,Λ, S)

)p
,

for every δ1 ∈ MMp,q and δ2 ∈ MMq,p . Finally, Lemma 4.32 and the Gross trick can be
applied again to obtain

λ1(G,B, p) ≥ δ−1
1

(
1

2

(
2

d

)1/q

δ−1
2

(
1

2

)
λ1(G,B, q)1/q

)p
,

for every finite, connected, d-regular graph G. Interchanging p and q concludes the proof.

52



5 Constructing superexpander sequences

5 Constructing superexpander sequences

In this section we will retrace the steps of [MN14] for an iterative construction of a sequence of
superexpanders through zig zag products of graphs. The construction is iterative in the sense
that it takes a base graph on which we perform certain graph operations iteratively in order
to produce a sequence of larger and larger, constant degree graphs. For each superreflexive
Banach space we can then choose a base graph such that the corresponding graph sequence
is an expanding sequence with respect to that space (to be defined later). From this array of
graphs we shall distill one sequence to rule them all - a sequence of superexpanders.

5.1 Graph operations

Our construction of superexpanders involves performing several types of graph operations,
which we now introduce.

Definition 5.1. Let G = (V,E) be a finite, regular graph with normalized adjacency matrix
A. For t ∈ N the graph power Gt is the graph whose normalized adjacency matrix is At, i.e.,
Gt has the same vertex set as G and an edge is drawn between vertices u, v ∈ V for each
path from u to v in G of length t.

In the Euclidean case we have control over spectral gaps when taking graph powers in the
following way: recall that γ+(G, | · |2) = 1

λ+(G) and since the adjacency matrix is self-adjoint
we get by elementary spectral calculus that

γ+(Gt, | · |2) =
1

λ+(Gt)
=

1

1− (1− λ+(G))t
,

which decays rather rapidly to 1 with t. This computation, however, is very specific to the
spectral characterization of γ+(G, | · |2), and there is no reason to believe that it applies to
more general kernels such as (powers of) norms on superreflexive Banach spaces - [MN14]
even present counter examples, demonstrating that it does not. We can prove similar ’decay
of the spectral gap’ with respect to certain kernels though, if we pass to a different graph
operation namely that of the Cesáro average:

Definition 5.2. In the same setup as above we define for t ∈ N the Cesáro average At(G)
to be the graph whose normalized adjacency matrix is 1

t

∑t−1
m=0A

m, i.e., for u, v ∈ V and
m ∈ {0, . . . , t− 1} we draw dt−1−m edges between u and v for each path from u to v in G of
length m.

If G is d-regular then At(G) is tdt−1-regular, as can be easily verified. Obtaining decay of
the spectral gap under some appropriate graph operation, as the one for γ+(Gt, | · |2) above,
for non-euclidean kernels is referred to as a non-linear spectral calculus and we shall treat
this in the subsequent section.

Definition 5.3. Let D ≥ d ≥ 2 and G = (V,E) a d-regular graph. The D-edge completion of
G, denoted CD(G) is the D-regular graph with vertex set V obtained by writing D = md+r,
with m ∈ N and 0 ≤ r ≤ d− 1, and duplicating each edge in E m times followed by adding r
self-loops to each vertex, i.e., if E(G)(u, v) denotes the number of edges in G between u and
v then E(CD(G))(u, v) = mE(G)(u, v) + rδuv.
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Spectral gaps behave in the following way when taking edge completions:

Lemma 5.4. In the above setup we have for any kernel K : X ×X → R+ that

γ+(CD(G),K) ≤ 2γ+(G,K) and γ(CD(G),K) ≤ 2γ(G,K)

Proof. We prove the statement for γ, the argument for γ+ is analogous. So take any function
f : V → X and observe that

1

n

∑
(u,v)∈E(CD(G))

1

D
K(f(u), f(v)) =

1

n

∑
u,v∈V

mE(G)(u, v) + rδuv
md+ r

K(f(u), f(v))

≥ 1

n

∑
u,v∈V

mE(G)(u, v)

(m+ 1)d
K(f(u), f(v))

≥ 1

n

∑
u,v∈V

1

2

E(G)(u, v)

d
K(f(u), f(v))

≥ 1

n2

∑
u,v∈V

1

2γ(G,K)
K(f(u), f(v)).

Hence, by definition of the spectral gap we obtain γ(CD(G),K) ≤ 2γ(G,K) as desired.

The operations we have introduced so far arguably do not seem very applicable to the
task of constructing expander families; they preserve spectral properties but they dramatically
increase the degree of the graph thereby making it less sparse. This is where the notion of
the zig-zag product enters the picture. It takes as arguments two graphs, G1 and G2, and we
think of G1 as being a highly dense graph with certain spectral properties and G2 as being
a sparse base graph. The resulting graph is larger than both, inherits the spectral properties
of G1 and the sparsity of G2. It is a rather cumbersome definition but it is possible to obtain
some intuition about it, making it actually quite reasonable to work with.

Definition 5.5. Let G1 = (V1, E1) be a d1-regular graph on n1 vertices and G2 = (V2, E2)
be a d2-regular graph on d1 vertices. The zig-zag product of G1 and G2, denoted by G1 z©G2,
is a graph whose vertex set is V1×V2 and whose edge set is determined in the following way:

• Enumerate the vertices of G2 so that we may identify V2 with [d1] = {1, . . . , d1}.

• For each u ∈ V1 fix an enumeration, e1
u, . . . , e

d1
u , of the edges emanating from u.

• Two vertices (u1, a1), (u2, a2) ∈ V1 × [d1] are adjoined by an edge if there are i, j ∈ [d1]
such that

1. (a1, i) ∈ E2

2. eiu1 = eju2

3. (j, a2) ∈ E2.

This makes G1 z©G2 a d2
2-regular graph.
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5 Constructing superexpander sequences

The intuition behind this definition is that we have a copy, often referred to as a cloud, of
V2 at each vertex of G1, and each G2-vertex in the cloud based at some G1-vertex corresponds
to an edge emanating from that vertex. Two vertices are then adjoined in G1 z©G2 if the bases
of their clouds are connected by an edge in G1, and if they are connected in G2 to the vertex
in their respective clouds corresponding to that edge. This is often referred to as taking a ’zig’
in G2, followed by a ’zag’ in G1, followed by another ’zig’ in G2, which yields an obvious way
to find the neighbours of a given vertex in G1 z©G2, given that one can find the neighbours
of vertices in G1 and G2 easily. Since there are d2 possible ’zigs’ from a given vertex in a
given cloud, and then d2 ’zigs’ again in the cloud where we end up following the ’zag’, we see
that G1 z©G2 is indeed d2

2-regular. The specific enumerations chosen do matter in the sense
that different enumerations can lead to non-isomorphic graphs. For our purpose, however,
they are of no importance, since any choice of enumerations will lead to the same behaviour
of spectral gaps:

Theorem 5.6 (Submultiplicativity of the zig-zag product).
Let G1 and G2 be as above and K : X ×X → R+ an arbitrary kernel on a set X. Then

γ+(G1 z©G2,K) ≤ γ+(G1,K)γ+(G2,K)2

under any choice of enumerations.

Proof. Let f, g : V1 × [d1] → X be functions. For a vertex v (in G1 or G2) let N(v) denote
the set of neighbours of v and for each u ∈ V1 let πu : N(u)→ [d1] be an arbitrary (but fixed)
enumeration of N(u), i.e., a bijection to the vertex set of G2. By definition of the absolute
spectral gap we have for any fixed pair a, b ∈ [d1] that

1

n2
1

∑
u,v∈V1

K(f(u, a), g(v, b)) ≤ γ+(G1,K)

n1d1

∑
(u,v)∈E1

K(f(u, a), g(v, b)).

Hence

T :=
1

|V1 × [d1]|2
∑

(u,a),(v,b)∈V1×[d1]

K(f(u, a), g(v, b))

=
1

d2
1

∑
a,b∈[d1]

1

n2
1

∑
u,v∈V1

K(f(u, a), g(v, b))

≤ 1

d2
1

∑
a,b∈[d1]

γ+(G1,K)

n1d1

∑
(u,v)∈E1

K(f(u, a), g(v, b))

=
γ+(G1,K)

n1d1

∑
u∈V1

∑
b∈[d1]

1

d2
1

∑
a∈[d1]

∑
v∈N(u)

K(f(u, a), g(v, b)). (22)

Since |N(u)| = d1 we can view (g(v, b))v∈N(u) as a sequence indexed over [d1] so, again by
definition of the absolute spectral gap, we obtain for each u ∈ V1 and b ∈ [d1] that

1

d2
1

∑
a∈[d1]

∑
v∈N(u)

K(f(u, a), g(v, b)) ≤ γ+(G2,K)

d1d2

∑
v∈N(u)

∑
a∈N(πu(v))

K(f(u, a), g(v, b)).
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5.1 Graph operations

Inserting this in (22)) we obtain

T ≤ γ+(G1,K)γ(G2,K)

n1d2
1d2

∑
u∈V1

∑
b∈[d1]

∑
v∈N(u)

∑
a∈N(πu(v))

K(f(u, a), g(v, b)).

Now for (u, v) ∈ E1 let k1
u,v, . . . , k

d2
u,v denote the neighbours of πu(v) in G2. Then by rear-

ranging and using the same idea as above we obtain

T ≤ γ+(G1,K)γ(G2,K)

n1d2
1d2

∑
u∈V1

∑
b∈[d1]

∑
v∈N(u)

d2∑
j=1

K(f(u, kju,v), g(v, b))

=
γ+(G1,K)γ+(G2,K)

n1d2

∑
v∈V1

d2∑
j=1

1

d2
1

∑
u∈N(v)

∑
b∈[d1]

K(f(u, kju,v), g(v, b))

≤ γ+(G1,K)γ+(G2,K)2

n1d2d1d2

∑
v∈V1

d2∑
j=1

∑
u∈N(v)

d2∑
i=1

K(f(u, kju,v), g(v, kiv,u))

=
γ+(G1,K)γ+(G2,K)2

|V1 × [d1]|d2
2

∑
(u,v)∈E2

d2∑
j=1

d2∑
i=1

K(f(u, kju,v), g(v, kiv,u)).

By the ’zig-zag intuition’ this last sum amounts exactly to summing over all the edges of
G1 z©G2, so by definition of the absolute spectral gap we now get

γ+(G1 z©G2,K) ≤ γ+(G1,K)γ+(G2,K)2.

This concludes the proof.

Back in the euclidean case the zig-zag submultiplicativity theorem gives, after rearranging,
a zig-zag supermultiplicativity for the absolute spectral gap:

λ+(G1 z©G2) ≥ λ+(G1)λ+(G2)2.

Supermultiplicative properties for the zig-zag product were first proven in [RVW02] and used
to construct a sequence of expanders. We shall briefly sketch their construction: Suppose
H is a graph on n0 vertices of degree d0 such that λ+(H) > 0. Pick ε, δ ∈ (0, 1) such that
sλ+(H)2 ≥ ε whenever s ≥ δ (such ε and δ trivially exist). Also find t0 such that

min
{

1− (1− λ+(H))2t0 , 1− (1− ε)t0
}
≥ δ.

We will assume that n0 = d2t0
0 (the existence of a base graph with all these properties is

of course by no means obvious; for a treatment of this matter see [RVW02]). Now define
G1 = H2, and inductively define Gi+1 = Gt0i z©H (this is a legal zig-zag product by the
assumption that n0 = d2t0

0 ). Then Gi is a graph on ni0 = d2it0
0 vertices, which is regular

of degree d2
0. Moreover, we have λ+(Gi) ≥ min

{
1− (1− λ+(H))2, ε

}
> 0, for each i ∈ N.

Indeed, this holds for i = 1 since λ+(G1) = λ+(H2) = 1− (1− λ+(H))2. And if it holds true
for i ≥ 1 then

λ+(Gt0i ) = 1− (1− λ+(Gi))
t0 ≥ min

{
1− (1− λ+(H))2t0 , 1− (1− ε)t0

}
> δ,
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5 Constructing superexpander sequences

and hence λ+(Gi+1) ≥ λ+(Gt0i )λ+(H)2 ≥ ε, as claimed. Our goal is to generalize this
construction to produce a sequence of superexpanders, but since the above construction relies
heavily on the spectral characterization of γ+(G, | · |2), it does not immediately generalize.
This is what motivates the need for a non-linear spectral calculus.

5.2 A non-linear spectral calculus

To set the framework we first introduce the notion of metric Markov cotype, a property which,
once the necessary foot work has been done, makes the proof of non-linear spectral calculus
for Cesáro averages come out quite neatly.

Definition 5.7. A metric space (X, dX) has metric Markov cotype p with exponent q, where
p, q ∈ (0,∞) if there exists C ∈ (0,∞) such that for every n, t ∈ N, every n × n symmetric,
stochastic matrix A = (aij) and every x1, . . . , xn ∈ X there exist y1, . . . , yn ∈ X such that

n∑
i=1

dX(xi, yi)
q + tq/p

n∑
i,j=1

aijdX(yi, yj)
q ≤ Cq

n∑
i,j=1

At(A)ijdX(xi, xj)
q. (23)

We let C
(q)
p (X, dX) denote the infimum over C satisfying this.

Let us immediately proceed to discuss why this definition is relevant to us.

Theorem 5.8. Let B be a superreflexive Banach space. Then there exists p = p(B) ∈ [2,∞)

such that C
(2)
p (B, || · ||) <∞.

One might object that it seems redundant to set our theory of spectral calculus in the
framework of metric spaces (hence the ’non-linear’ in the headline) to then apply it to Banach
spaces - thus taking us back in the linear setting. We do believe though that it is of great
interest to treat this matter in the non-linear setting since it uncovers its true identity (as
with the zig-zag submultiplicativity, which even holds for general kernels) as a non-linear
phenomenon. The study of such phenomena was coined by Bourgain in 1985 as the Ribe
program, and is an active area of research with many interesting open problems (see [Nao12]
for a good introduction). The proof of Theorem 5.8 will be postponed to section 6, for now
we will focus on the following important result.

Theorem 5.9. Suppose (X, dX) has metric Markov cotype p with exponent q. Then for any

C ≥ C(q)
p (X, dX) we have

γ+(At(A), dqX) ≤ (45C)q max

{
1,
γ+(A, dqX)

tq/p

}
,

whenever n, t ∈ N and A is an n× n symmetric, stochastic matrix.

Remark 5.10. The name ’metric Markov cotype’ suggests that there is also a notion of
’metric Markov type’, which is of course the case (see [Ost13, sec. 8]). Metric Markov type
serves as a generalization of the well known fact that the expected distance to the origin at
time t of a standard random walk on Z is at most

√
t. Metric Markov cotype is intended to

be dual to that of Markov type in the sense that the inequality is reversed, but there are also

57



5.2 A non-linear spectral calculus

some new elements introduced: the power of the transition matrix is replaced by the Cesáro
average and we pass to the approximating points y1, · · · , yn (hence the initial error term in
(23) ensuring that, on q-average, these are close to the initial points x1, · · · , xn). One might
object that this makes Definition 5.7 rather unsatisfactory as a dual notion to metric Markov
type, and referring to [Nao12, sec. 4.1] we could also motivate the notion of metric Markov
cotype simply because it yields non-linear spectral calculus in the sense of Theorem 5.9.

The proof of Theorem 5.9 requires several lemmas. The first one being a spectral calculus
inequality for the (non-absolute) spectral gap.

Lemma 5.11. Suppose (X, dX) has metric Markov cotype p with exponent q ≥ 1. Then for

any C ≥ C(q)
p (X, dX) we have

γ(At(A), dqX) ≤ (3C)q max

{
1,
γ(A, dqX)

tq/p

}
,

whenever A is a symmetric, stochastic n× n matrix and t ∈ N.

Proof. For notational ease, write At(A) = (bij), A = (aij) and suppose γ(At(A), dqX) > (3C)q.
Take γ ∈

(
(3C)q, γ(At(A), dqX)

)
, i.e., there exist x1, . . . , xn ∈ X such that

1

n2

n∑
i,j=1

dX(xi, xj)
q >

γ

n

n∑
i,j=1

bijdX(xi, xj). (24)

Since C ≥ C(q)
p (X, dX), there exist y1, . . . , yn ∈ X such that

n∑
i=1

dX(xi, yi)
q + tq/p

n∑
i,j=1

aijdX(yi, yj)
q ≤ Cq

n∑
i,j=1

bijdX(xi, xj)
q. (25)

Finally, by the triangle and Hölder inequalities we have

dX(xi, xj)
q ≤ 3q−1(dX(xi, yi)

q + dX(yi, yj)
q + dX(yj , xj)

q), (26)

for all i, j ∈ {1, . . . , n}. Combining (26) with (24), (25) and the definition of the spectral gap
we obtain

γ(A, dqX)

n

n∑
i,j=1

aijdX(yi, yj)
q ≥ 1

n2

n∑
i,j=1

dX(yi, yj)
q

≥ 1

3q−1n2

n∑
i,j=1

dX(xi, xj)
q − 2

n

n∑
i=1

dX(xi, yi)
q

>
γ

3q−1n

n∑
i,j=1

bijdX(xi, xj)
q − 2

n

n∑
i=1

dX(xi, yi)
q

≥ γtq/p

3q−1Cqn

n∑
i,j=1

aijdX(yi, yj)
q +

(
γ

3q−1Cqn
− 2

n

) n∑
i=1

dX(xi, yi)
q

>
γtq/p

(3C)qn

n∑
i,j=1

aijdX(yi, yj)
q,
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5 Constructing superexpander sequences

where the last inequality is due to the assumption that γ > (3C)q. Cancellation yields
γ(A, dqX) > γtq/p/(3C)q and letting γ ↗ γ(At(A), dqX) we obtain the desired.

Lemma 5.12. Let (X, dX) be a metric space, 1 ≤ q < ∞ and A a stochastic, symmetric
n× n matrix. Then

2γ
((

0 A
A 0

)
, dqX

)
2q + 1

≤ γ+(A, dqX) ≤ 2γ
((

0 A
A 0

)
, dqX

)
Proof. For notational ease, put γ = γ

((
0 A
A 0

)
, dqX

)
. Let f, g : [n] → X be arbitrary and

define h : [2n]→ X by h(i) = f(i), for i ∈ [n], and h(i) = g(i− n), for i ∈ [2n] \ [n]. Then

1

n2

n∑
i,j=1

dX(f(i), g(j))q =
1

n2

n∑
i,j=1

dX(h(i), h(j + n))q ≤ 1

2n2

2n∑
i,j=1

dX(h(i), h(j))q

≤ 2γ

2n

2n∑
i,j=1

(
0 A
A 0

)
ij
dX(h(i), h(j))q =

2γ

n

n∑
i,j=1

aijdX(f(i), g(j))q,

demonstrating the inequality to the right. For the other one let h : [2n] → X be arbitrary
and define f, g : [n]→ X by f(i) = h(i) and g(i) = h(i+ n). Then by the triangle inequality
we obtain

n∑
i,j=1

dX(h(i), h(j))q ≤ 1

n

n∑
i,j,l=1

2q−1 (dX(h(i), h(l + n))q + dX(h(j), h(l + n))q)

= 2q
n∑

i,j=1

dX(f(i), g(j))q.

By a similar computation we also get
∑n

i,j=1 dX(h(i+n), h(j+n))q ≤ 2q
∑n

i,j=1 dX(f(i), g(j))q.
Using these two estimates, we obtain

1

(2n)2

2n∑
i,j=1

dX(h(i), h(j))q =
1

(2n)2

n∑
i,j=1

dX(h(i), h(j))q +
1

(2n)2

n∑
i,j=1

dX(h(i+ n), h(j + n))q

+
1

(2n)2

n∑
i,j=1

dX(h(i), h(j + n))q +
1

(2n)2

n∑
i,j=1

dX(h(i+ n), h(j))q

≤ 2q + 1

2n2

n∑
i,j=1

dX(f(i), g(j))q

≤
(2q + 1)γ+(A, dqX)

2n

n∑
i,j=1

aijdX(f(i), g(j))q

≤
(2q + 1)γ+(A, dqX)

2
· 1

2n

2n∑
i,j=1

(
0 A
A 0

)
ij
dX(h(i), h(j))q,

which yields the inequality to the left.
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5.3 Constructing superexpanders

The following lemma has a proof as well. It is similar in flavour to the above argument,
only it involves even more tedious computations. For this reason, we omit it and refer the
interested (and stubborn) reader to [MN14, Lemma 2.4].

Lemma 5.13. In the same setup as above we have

γ
((

0 At(A)
At(A) 0

)
, dqX

)
≤ (2q+1 + 1)γ

(
At

((
0 A
A 0

))
, dqX

)

We are now ready to give the proof of Theorem 5.9:

Proof of Theorem 5.9: By Lemmas 5.12 and 5.13 we have

γ+(At(A), dqX) ≤ 2γ
((

0 At(A)
At(A) 0

)
, dqX

)
≤ 2(2q+1 + 1)γ

(
At

((
0 A
A 0

))
, dqX

)
.

Moreover, by Lemma 5.11 and Lemma 5.12 again we obtain

γ
(
At

((
0 A
A 0

))
, dqX

)
≤ (3C)q max

{
1,
γ
((

0 A
A 0

)
, dqX

)
tq/p

}

≤ (3C)q max

{
1,

2q + 1

2
·
γ+(A, dqX)

tq/p

}
.

Using that (2q + 1)(2q+1 + 1) ≤ 15q the above two estimates yield the desired.

5.3 Constructing superexpanders

We are still one ingredient short for the iterative construction of superexpanders using zig-zag
products namely that of a base graph, but before we adress this let’s see how the non-linear
spectral calculus obtained above comes into play. Note how the assumptions imposed on G0

(the base graph) in the following lemma are similar in flavour to the ones imposed on the
base graph in the construction of [RVW02] sketched above. In addition, however, we have to
make spectral calculus (i.e., decay of the absolute spectral gap) an assumption.

Lemma 5.14. Let d,m, t ∈ N satisfy td2(t−1) ≤ m and suppose G0 = (V0, E0) is a d-regular
graph on m vertices. Then there exists a sequence of d2-regular graphs, F tj = (V t

j , E
t
j), j ∈ N,

with |V t
j | = mj satisfying the following: If K : X ×X → R+ is a kernel such that

• γ+(G0,K) ≤ γ for some γ ≥ 1,

• there exist C ≥ 1 and ε ∈ (0, 1), satisfying t ≥ (2Cγ2)1/ε, such that for every finite,
regular graph G we have γ+(At(G),K) ≤ C max {1, γ+(G,K)/tε},

then supj γ+(F tj ,K) ≤ 2γ2C.

Proof. Define F t1 := Cd2(G0) and recursively define F tj+1 := Cm(At(F
t
j )) z©G0. Then F t1 has

m vertices and is d2 regular, and if F tj has mj vertices and is d2-regular then At(F
t
j ) has

mj vertices and is td2(t−1)-regular which is no more than m by assumption. Hence we can
perform the m-edge completion on it, making Cm(At(F

t
j )) an m-regular graph on mj vertices
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5 Constructing superexpander sequences

enabling us to perform the zig-zag product on it with G0. This yields a d2-regular graph on
m ·mj = mj+1 vertices as claimed. By Lemma 5.4 we have

γ+(F t1,K) ≤ 2γ+(G0,K) ≤ 2γ ≤ 2γ2C.

Moreover, if γ+(F tj ,K) ≤ 2γ2C we get, by using zig-zag submultiplicativity and Lemma 5.4
once more, that

γ+(F tj+1,K) ≤ γ+(Cm(At(F
t
j )),K)γ+(G0,K)2

≤ 2γ+(At(F
t
j ),K)γ2

≤ 2γ2C max

{
1,
γ+(F tj ,K)

tε

}

≤ 2Cγ2 max

{
1,

2Cγ2

tε

}
≤ 2Cγ2,

so the uniform bound on the absolute spectral gaps follows by induction.

It follows from Theorems 5.8 and 5.9 that superreflexive Banach spaces satisfy the spectral
calculus inequality from Lemma 5.14 for every t ∈ N, but with constants depending on the
space. Hence, this lemma can be used to construct expander sequences with respect to some
fixed superreflexive Banach space provided we can find a base graph satisfying the remaining
properties. The following lemma provides an entire continuum of graphs from which we can
pick base graphs for any superreflexive Banach space.

Lemma 5.15. There exists a strictly increasing sequence of natural numbers (mn)n≥1 such
that 2n/10 ≤ mn ≤ 2n satisfying the following:
For every 1 ≥ δ > 0 there is n0(δ) ∈ N and a sequence of regular graphs (Hn(δ))n≥n0(δ) such
that |V (Hn(δ))| = mn for every n ≥ n0(δ).
The degree of Hn(δ), denoted dn(δ), satisfies dn(δ) ≤ exp(log(mn)1−δ).
Finally, for every superreflexive Banach space B we have γ+(Hn(δ), || · ||2) < ∞ for every
δ ∈ (0, 1) and n ≥ n0(δ) and there exists δ0(B) ∈ (0, 1) such that

sup
0<δ≤δ0(B)

sup
n≥n0(δ)

γ+(Hn(δ), || · ||2) <∞.

We postpone the proof of this lemma to Section 7, where we will prove it for the larger
class of K-convex Banach spaces, and for now soldier on to see how it applies to our problem:

Corollary 5.16. For every k ∈ N there exists dk ∈ N and a sequence of dk-regular graphs,
(Fj(k))j≥1 such that |V (Fj(k))| =: nj(k)↗∞, as j →∞, and the following holds:

For every superreflexive Banach space B we have γ+(Fj(k), || · ||2) <∞ for every j, k ∈ N,
and there exist k(B) ∈ N such that

sup
j,k∈N
k≥k(B)

γ+(Fj(k), || · ||2) ≤ k(B).
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Proof. Let k ∈ N. Since (following the notation from Lemma 5.15) 2n/10 ≤ mn ≤ 2n we
can find n(k) ≥ n0(1/k) such that k exp

(
2(k − 1) log(mn(k))

1−1/k
)
≤ mn(k). Now consider

Hn(k)(1/k) from Lemma 5.15. The degree, dn(k)(1/k), of Hn(k)(1/k) satisfies

kdn(k)(1/k)2(k−1) ≤ k exp
(

2(k − 1) log(mn(k))
1−1/k

)
≤ mn(k) = |V (Hn(k)(1/k))|,

so by Lemma 5.14 there is a sequence of
(
dn(k)(1/k)

)2
-regular graphs on mj

n(k) vertices.

Denote this sequence (Fj(k))j≥1 and let dk :=
(
dn(k)(1/k)

)2
and nj(k) := mj

n(k). Now let

B be a superreflexive Banach space, and pick δ0(B) according to Lemma 5.15, i.e., there is
γ ≥ 1 such that γ+(Hn(k)(1/k), || · ||2) < γ whenever k ≥ 1/δ0(B). By Theorem 5.9 we infer
the existence of C = C(B) ∈ [0,∞) and ε = ε(B) ∈ (0, 1) such that

γ+(At(A), || · ||2) ≤ C max
{

1, γ+(A, || · ||2)/tε
}
,

for every t ∈ N and stochastic, symmetric n× n matrix A.
So if we put k(B) = dmax

{
1/δ0(B), (2Cγ2)1/ε, 2Cγ2

}
e we have by Lemma 5.14 that

sup
j
γ+(Fj(k), || · ||2) ≤ 2Cγ2 ≤ k(B), whenever k ≥ k(B),

which yields the desired.

This corollary settles the base graph issue for fixed target spaces, thus producing expander
sequences with respect to a fixed superreflexive Banach space; for a superreflexive Banach
space, B, we just take any k ≥ k(B), and then (Fj(k))j≥1 from Corollary 5.16 is an expander
sequence with respect to B. The trouble is that the degree of the graphs in this sequence
might grow with k (and by the way the graphs in Lemma 5.15 are constructed, this is in
fact the case) so it takes one more intricate construction to obtain from the array (Fj(k))j,k
a sequence of constant degree graphs which is a sequence of expanders with respect to any
superreflexive Banach space. This construction is contained in the following lemma:

Lemma 5.17. Let (dk)k≥1 be a sequence of natural numbers and for each k ∈ N let (nj(k))j≥1

be a strictly increasing sequence of natural numbers, such that for every j, k ∈ N there is a
dk-regular graph, Fj(k), on nj(k) vertices. Suppose that K is a family of kernels such that
γ+(Fj(k),K) <∞, for all K ∈ K and j, k ∈ N. Suppose furthermore that for every K ∈ K
there are k1(K), k2(K) ∈ N such that

sup
j,k∈N

k≥k1(K)

γ+(Fj(k),K) < k1(K) (27)

and, for any finite, regular graph G and t ∈ N, we have

γ+(At(G),K) ≤ k2(K) max

{
1,
γ+(G,K)

t1/k2(K)

}
. (28)

Then there exists d ∈ N and a sequence of d-regular graphs (Hi)i≥1 such that |V (Hi)| → ∞
and supi≥1 γ+(Hi,K) <∞, for all K ∈ K .
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5 Constructing superexpander sequences

Proof. We shall again be zig zagging our way through a great many graphs from which we
will finally be able to extract our desired sequence. First we shall need to define some integer
sequences. For every k ∈ N define Mk := (2k3)k, and

j(k) := min
{
j ∈ N | nj(k) > 2d2

1 +Mk+1d
2(Mk+1−1)
k+1

}
.

Now let i ∈ N and define l(i) ∈ N and a sequence of regular graphs W 0
i , · · · ,W

l(i)
i in the

following way: Put W 0
1 := C2d21

(Fj(1)(1)) and l(1) := 0. For i > 1, put W 0
i := Fj(i)(i) and

define h1(i) := min
{
h ∈ N | nj(h)(h) ≥ di

}
. Note that i − 1 ∈

{
h ∈ N | nj(h)(h) ≥ di

}
since

otherwise we would have

di > nj(i−1)(i− 1) > 2d2
1 +Mid

2(Mi−1)
i ≥ di,

This demonstrates both that h1(i) is well defined and that h1(i) < i. By definition of h1(i)
we have nj(h1(i))(h1(i)) ≥ di so that we may take the edge completion Cnj(h1(i))(h1(i))(W

0
i ) and

since the number of vertices of Fj(h1(i))(h1(i)) is exactly nj(h1(i))(h1(i)) we may perform the
zig zag product (followed by taking Césaro average)

W 1
i := AMh1(i)

(
Cnj(h1(i))(h1(i))(W

0
i ) z©Fj(h1(i))(h1(i))

)
,

which is Mh1(i)d
2(Mh1(i)

−1)

h1(i) -regular. For k > 1 assume we have already defined hk−1(i) ∈ N

and W k−1
i which is regular of degree Mhk−1(i)d

2(Mhk−1(i)
−1)

hk−1(i) . If hk−1(i) = 1 we terminate and

put l(i) = k − 1. Otherwise put

hk(i) = min

{
h ∈ N | nj(h)(h) ≥Mhk−1(i)d

2(Mhk−1(i)
−1)

hk−1(i)

}
.

In the same fashion as above it can be seen that the set we are minimizing contains hk−1(i)−1
so that hk(i) < hk−1(i). Then, as before, we may define

W k
i := AMhk(i)

(
Cnj(hk(i))(hk(i))(W

k−1
i ) z©Fj(hk(i))(hk(i))

)
,

which is then Mhk(i)d
2(Mhk(i)

−1)

hk(i) -regular. Since the integer sequence h1(i), h2(i), · · · is strictly

decreasing, this proces does terminate and we have our graph sequence W 0
i , · · · ,W

l(i)
i . Since

hl(i)(i) = 1 the degree of W
l(i)
i is 2d2

1 so if we put Hi = W
l(i)
i and d = 2d2

1 we have, through a
tour de force of integer sequences and subindexes, defined our d-regular graph sequence. Also,

since by construction |V (Hi)| ≥ |V (W
l(i)−1
i )| ≥ · · · ≥ |V (W 0

i )| = nj(i)(i) ≥ Mi+1 we have
that |V (Hi)| → ∞. It remains to prove the claim regarding the absolute spectral gaps. Note
that we may assume, without destroying the argument, that all the absolute spectral gaps are
at least 1 (all the bounds will be equally valid if we replace γ+( · ,K) with max{1, γ+( · ,K)}).
Then by Lemma 5.4 and Theorem 5.6 we get for i > 1 and every k ∈ {1, · · · , l(i)} that

γ+(W k
i ,K) ≤ k2(K) max

1,
2γ+(W k−1

i ,K)γ+(Fj(hk(i))(hk(i)),K)2

M
1/k2(K)
hk(i)


≤ 2k2(K)γ+(W k−1

i ,K)γ+(Fj(hk(i))(hk(i)),K)2. (29)
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5.3 Constructing superexpanders

Hence, by iterating over l(i), l(i)− 1, · · · , 1 we obtain

γ+(Hi,K) = γ+(W
l(i)
i ,K) ≤ (2k2(K))l(i)γ+(Fj(i)(i),K)

l(i)∏
k=1

γ+(Fj(hk(i))(hk(i)),K)2 <∞,

due to the assumptions of the lemma. Since γ+(H1,K) < ∞ we have demonstrated that
γ+(Hi,K) < ∞, for all i ≥ 1. To prove a uniform bound put k3(K) = max {k1(K), k2(K)}
and fix i > k3(K). We now claim that it follows by induction on k ∈ {0, · · · , l(i)} that

hk(i) > k3(K) =⇒ γ+(W k
i ,K) ≤ k3(K) (30)

where we define h0(i) = i. Indeed, for k = 0 we have h0(i) = i > k3(K) ≥ k1(K) by
assumption on i, and

γ+(W 0
i ,K) = γ(Fj(i)(i),K) ≤ k1(K) ≤ k3(K),

so the induction start holds. For k > 0, if k − 1 satisfies (30) and hk(i) > k3(K), then since
hk−1(i) > hk(i) we get by the induction hypothesis that γ+(W k−1

i ,K) ≤ k3(K). This yields,
by a similar computation as above, that

γ+(W k
i ,K) ≤ k2(K) max

1,
2k3(K)γ+(Fj(hk(i))(hk(i)),K)2

M
1/k2(K)
hk(i)


≤ k3(K) max

1,
2k3(K)3

M
1/k3(K)
k3(K)

 = k3(K),

where we used that hk(i) > k3(K) and the way Mk was defined. This demonstrates the claim.
Since h0(i) = i > k3(K) we may define k0 = max {k ∈ {0, · · · , l(i)− 1} | hk(i) > k3(K)}.
Then since k3(K) ≥ hk0+1(i) > hk0+2(i) > · · · > hl(i)(i) = 1 we conclude that the inclusion{
hk0+1(i), · · · , hl(i)(i)

}
⊂ [k3(K)] holds and so by an iterative application of (29) we obtain

γ+(Hi,K) ≤ γ+(W k0
i ,K)

l(i)∏
k=k0+1

2k2(K)γ+(Fj(hk(i))(hk(i)))
2

≤ k3(K)(2k3(K))k3(K)

k3(K)∏
r=1

γ+(Fj(r)(r)) =: C <∞.

Note that C is independent of i > k3(K). Hence we have

sup
i≥1

γ+(Hi,K) ≤ max
{
γ+(H1,K), · · · , γ+(Hk3(K),K), C

}
<∞,

which demonstrates the lemma.

Let K be the family of squares of norms on superreflexive Banach spaces. By corollary
5.16 we obtain the existence of an array of graphs such that condition (27) of the above
lemma is satisfied. By Theorems 5.8 and 5.9 we infer that condition (28) is too. We obtain
the following:
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5 Constructing superexpander sequences

Theorem 5.18. There exists d ∈ N and a sequence of d-regular graphs, which is a sequence
of superexpanders.

The proof of Lemma 5.15 from [MN14] gives an explicit construction of the Hn(δ)’s
through quotients of graphs on Fn2 so Theorem 5.18 is constructive, and each Hi even comes
about through a finite number of basic graph operations. Performing these operations is
arguably a tedious matter, especially since there are principally no bounds on the constants
involved, i.e., the metric Markov cotype p(B), the constant k(B) from Lemma 5.16, the
number of iterations l(i) before we arrive at Hi, and the computation of the numbers in the

auxiliary sequence (hk(i))
l(i)
k=0.

65



6 Superreflexive Banach spaces have metric Markov cotype

The quantitative decay of the absolute spectral gap when taking Césaro averages, yielding
the non-linear spectral calculus for superreflexive Banach spaces, hinges on the property of
metric Markov cotype. In this section we will establish this property for superreflexive Banach
spaces, following [MN14]. To this end we shall first introduce some preliminary notions.

6.1 Uniform convexity and uniform smoothness

Let B be a Banach space, and recall that its modulus of uniform convexity is given by

δB(ε) = inf

{
1− ||x− y||

2
| ||x|| = ||y|| = 1, ||x− y|| = ε

}
, ε ∈ [0, 2],

and that B is uniformly convex if and only if δB(ε) > 0 whenever ε > 0. Moreover, we say
that B has modulus of convexity of power type p ≥ 2 if there exists a constant c > 0 such that
δB(ε) ≥ cεp, for all ε ∈ [0, 2]. We have the following characterization of uniform convexity of
power type p, due to [BCL94]:

Theorem 6.1. A Banach space B has modulus of convexity of power type p if and only if
there exists K ≥ 1 such that for every x, y ∈ B we have

||x||p +
||y||p

Kp
≤ ||x+ y||p + ||x− y||p

2
. (31)

The infimum over such K is denoted by Kp(B).

Definition 6.2. The modulus of uniform smoothness of B is given by

ρB(τ) = sup

{
||x+ τy||+ ||x− τy||

2
− 1 | ||x|| = ||y|| = 1

}
, τ > 0,

and we say that B is uniformly smooth if limτ→0 ρB(τ)/τ = 0.

Similarly B has modulus of smoothness of power type p ∈ (1, 2] if there is C > 0 such that
ρB(τ) ≤ Cτp, for all τ > 0. We have, again due to [BCL94], the following characterization
of uniform smoothness of power type p:

Theorem 6.3. A Banach space B has modulus of smoothness of power type p if and only if
there exists S ≥ 1 such that for every x, y ∈ B we have

||x+ y||p + ||x− y||p

2
≤ ||x||p + Sp||y||p. (32)

The infimum over such S is denoted Sp(B).

From [Lin63] we have the following duality relation between the modulus of smoothness
and convexity respectively:

Lemma 6.4. For any Banach space B we have

ρB∗(τ) = sup
0≤ε≤2

{τε
2
− δB(ε)

}
.
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6 Superreflexive Banach spaces have metric Markov cotype

Proof. Fix τ > 0. For 0 ≤ ε ≤ 2 let x, y ∈ B with ||x|| = ||y|| = 1 and ||x− y|| = ε, and take,
by the Hahn-Banach theorem, f, g ∈ B∗ with ||f || = ||g|| = 1 and f(x + y) = ||x + y|| and
g(x− y) = ||x− y|| = ε. Then we have

ρB∗(τ) ≥ ||f + τg||+ ||f − τg||
2

− 1

≥ |f(x) + τg(x)|+ |f(y)− τg(y)|
2

− 1

≥ |f(x+ y) + τg(x− y)|
2

− 1

=
||x+ y||

2
+
τε

2
− 1 =

τε

2
−
(

1− ||x+ y||
2

)
,

yielding ρB∗(τ) ≥ sup0≤ε≤2 {τε/2− δB(ε)}. For the reverse inequality let f, g ∈ B∗ be of unit
norm. For any η > 0 take x, y ∈ B with ||x|| = ||y|| = 1 such that |f(x)+τg(x)| > ||f+τg||−η
and |f(y)−τg(y)| > ||f−τg||−η. By multiplying by a phase we may assume that f(x)+τg(x)
and f(y)− τg(y) are real and positive. Then we have

||f + τg||+ ||f − τg||
2

− 1 <
f(x) + τg(x) + f(y)− τg(y) + 2η

2
− 1

=
f(x+ y) + τg(x− y) + 2η

2
− 1

≤ ||x+ y||+ τ ||x− y||
2

− 1 + η

=
τ ||x− y||

2
−
(

1− ||x+ y||
2

)
+ η

≤ τ ||x− y||
2

− δB (||x− y||) + η ≤ sup
0≤ε≤2

{τε
2
− δB(ε)

}
+ η,

using that ||x− y|| ∈ [0, 2]. Letting η ↘ 0, we obtain the desired.

Using Lemma 6.4, it is not difficult to see that B is uniformly convex (resp. smooth) if
and only if B∗ is uniformly smooth (resp. convex). An application of Hölder’s inequality
yields the duality relation (see [BCL94, Lemma 5]):

Kp(B) = Sp/(p−1)(B
∗). (33)

For smoothness constants of Bochner spaces we have the following estimate

Lemma 6.5. For every 1 < p ≤ 2 and q ≥ p and any σ-finite measure space (S,A , µ) we
have

Sp(Lq(S;B)) ≤ (5pq)1/pSp(B).

Proof. We will give the main idea of the proof. Suppose that there exists K ≥ 1 such that
for every x, y ∈ B we have

||x+ y||q + ||x− y||q

2
≤ (||x||p +K||y||p)q/p . (34)
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6.1 Uniform convexity and uniform smoothness

Then for any f, g ∈ Lq(µ,B) we have

‖f + g‖pLq + ‖f − g‖pLq
2

≤

(
‖f + g‖qLq + ‖f − g‖qLq

2

)p/q

=

(∫
S

‖f + g‖q + ‖f − g‖q

2
dµ

)p/q
≤
(∫

S
(||f ||p +K||g||p)q/p

)p/q
= ‖(‖f‖p +K ‖g‖p)‖Lq/p
≤ ‖f‖pLq +K ‖g‖pLq .

The first inequality follows from the fact that t 7→ tp/q is concave (since q ≥ p) the second is
due to (34) and the third is the triangle inequality and the definition of norms on Bochner
spaces. This yields Sp(Lq(S;B))p ≤ K. In [MN14] the estimate from (34) is proven with the
constant K = 5pqSp(B)p which yields the desired.

Remark 6.6. Recall the well-known duality relation Lp(Ω)∗ = Lp/(p−1)(Ω) for scalar valued
Lp spaces. For Bochner spaces the relation Lp(Ω;B)∗ = Lp/(p−1)(Ω;B∗) unfortunately does
not hold in general. It does hold, however, if B has the so-called Radon-Nikodym property
(RNP), which allows one to extend the proof of the dual relation of scalar valued Lp spaces,
using the Radon-Nikodym theorem, to Bochner spaces on B, see [Hyt+16, sec. 1.3]. Here it
is also shown that reflexive spaces have the RNP, so in particular superreflexive spaces do.

The above remark and (33) now yield the following estimate for convexity constants:

Corollary 6.7. Suppose B is reflexive. Then for p ≥ 2 and 1 < q ≤ p and any σ-finite
measure space (S,A , µ) we have

Kp(Lq(S;B)) ≤
(

5pq

(p− 1)(q − 1)

)1−1/p

Kp(B).

Proof. By (33) we get

Kp(Lq(S;B)) = Sp/(p−1)(Lq(S;B)∗) = Sp/(p−1)(Lq/(q−1)(S;B∗)).

Since p ≥ 2 and 1 < q ≤ p we have 1 ≤ p
p−1 ≤ 2 and q

q−1 ≥
p
p−1 and hence Lemma 6.5 and

(33) yield

Kp(Lq(S;B)) ≤
(

5 · p

p− 1
· q

q − 1

) p−1
p

Sp/(p−1)(B
∗) =

(
5pq

(p− 1)(q − 1)

)1−1/p

Kp(B),

as desired.
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6 Superreflexive Banach spaces have metric Markov cotype

We will also need the following observation: For q ≥ p, recall that, by Hölder’s inequality,
Lq(Ω) ⊂ Lp(Ω) for any probability space Ω and `p(A) ⊂ `q(A) for any set A where both
inclusions are contractive. Hence, for all x, y ∈ B, we have

(
||x+ y||p + ||x− y||p

2

)1/p

≤
(
||x+ y||q + ||x− y||q

2

)1/q

and (
||x||q +

||y||q

Kq

)1/q

≤
(
||x||p +

||y||p

Kp

)1/p

.

These two facts together yield that

Kq(B) ≤ Kp(B) whenever q ≥ p (35)

It can be seen analogously that Sq(B) ≤ Sp(B) whenever q ≤ p.
Recall from Section 1 that B is superreflexive if and only if it admits an equivalent norm

which has modulus of convexity of power type p for some p ≥ 2 (see Theorem 1.28). This
motivates our interest in such norms and we shall prove metric Markov cotype for spaces
with modulus of convexity of power type p.

Proposition 6.8. Let B be a Banach space with modulus of convexity of power type p ≥ 2.
Then for every random vector U with values in B such that E||U ||p <∞ we have

||EU ||p +
1

(2p−1 − 1)Kp(B)p
E||U − EU ||p ≤ E||U ||p. (36)

Before we give the proof we observe that the existence of a constant such that (36) holds
for every p-integrable random vector in fact gives an equivalent characterization of uniform
convexity of power type p; this due to [Pis75]. It can be thought of as a generalization of the
well-known variance formula for Hilbert space valued random vectors; namely that, in this
case, equality holds in (36) with constant 1.

Proof of Proposition 6.8. Note that 36 follows from Jensen’s inequality if E ‖U − EU‖p = 0,
so we can restrict ourselves to the case E ‖U − EU‖p > 0. Let θ denote the supremum over
all constants satisfying (36) for every p-integrable random vector with non-zero centralized
pth moment. Observe that this supremum is finite and non-negative by Jensen’s inequality.
Fix an arbitrary ϕ > θ. Then there exists a p-integrable random vector, U0, such that
E ‖U0 − EU0‖p > 0 and ϕE||U0 − EU0||p > E||U0||p − ||EU0||p. Applying inequality (31)
pointwise to the vectors U0/2 + EU0/2 and U0/2− EU0/2 we obtain

2

∥∥∥∥U0

2
+
EU0

2

∥∥∥∥p +
2

Kp(B)p

∥∥∥∥U0

2
− EU0

2

∥∥∥∥p ≤ ||U0||p + ||EU0||p.
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6.2 Vector valued martingales and metric Markov cotype

By the way U0 was chosen and θ defined, integrating this on either side yields

ϕE||U0 − EU0||p > E||U0||p − ||EU0||p

≥ 2

(
E

∥∥∥∥U0

2
+
EU0

2

∥∥∥∥p − ∥∥∥∥E (U0

2
+
EU0

2

)∥∥∥∥p)+
2

Kp(B)p
E

∥∥∥∥U0

2
− EU0

2

∥∥∥∥p
≥ 2θE

∥∥∥∥U0

2
+
EU0

2
− E

(
U0

2
+
EU0

2

)∥∥∥∥p +
2

Kp(B)p
E

∥∥∥∥U0

2
− EU0

2

∥∥∥∥p
= 2θE

∥∥∥∥U0

2
− EU0

2

∥∥∥∥p +
2

Kp(B)p
E

∥∥∥∥U0

2
− EU0

2

∥∥∥∥p
=

(
θ

2p−1
+

1

2p−1Kp(B)p

)
E ‖U0 − EU0‖p .

This yields ϕ > θ/2p−1 + 1/(2p−1Kp(B)p) and letting ϕ ↘ θ we obtain θ ≥ 1
(2p−1−1)Kp(B)p

yielding the desired.

6.2 Vector valued martingales and metric Markov cotype

Let B be a Banach space with Kp(B) < ∞ for some p ≥ 2. Furthermore, let (Mk)
n
k=0

be a sequence of p-integrable random vectors with values in B which is a martingale with
respect to some filtration F0 ⊂ · · · ⊂ Fn. By reiterating the proof of Proposition 6.8 with
the unconditional expectation replaced by the conditional we obtain

E (‖Mn −M0‖p | Fn−1) ≥ ‖E (Mn −M0 | Fn−1)‖p

+
1

(2p−1 − 1)Kp(B)p
E (‖Mn −M0 − E (Mn −M0 | Fn−1)‖p | Fn−1)

= ‖Mn−1 −M0‖p +
1

(2p−1 − 1)Kp(B)p
E (‖Mn −Mn−1‖p | Fn−1) .

Integrating both sides of this inequality yields

E ‖Mn −M0‖p ≥ E ‖Mn−1 −M0‖p +
1

(2p−1 − 1)Kp(B)p
E ‖Mn −Mn−1‖p .

Iterating over n− 1, · · · , 1 gives the following inequality attributed to [Pis75]:

E ‖Mn −M0‖p ≥
1

(2p−1 − 1)Kp(B)p

n∑
k=1

E ‖Mk −Mk−1‖p . (37)

We shall need the following extention of Pisier’s inequality:

Lemma 6.9. Let p ≥ 2 and q > 1. Let B be a Banach space with Kp(B) <∞ and (Mk)
n
k=0

a B-valued, q-integrable martingale with respect to the filtration F0 ⊂ · · · ⊂ Fn. If q ≥ p then

E ‖Mn −M0‖q ≥
1

(2q−1 − 1)Kp(B)q

n∑
k=1

E ‖Mk −Mk−1‖q ,

70



6 Superreflexive Banach spaces have metric Markov cotype

and if q ≤ p then

E ‖Mn −M0‖q ≥
((1− 1/p)(1− 1/q))q(1−1/p)

5q(1−1/p)(2Kp(B))qn1−q/p

n∑
k=1

E ‖Mk −Mk−1‖q .

Note that the estimate also holds for q = 1, but in this case the statement is quite trivial.

Proof. The case q ≥ p is a consequence of (37) and (35) so assume q ≤ p. Then by corollary
6.7 we have

Kp(Lq(Ω;B)) ≤
(

5pq

(p− 1)(q − 1)

)1−1/p

Kp(B) =: K,

where (Ω, µ) is the probability space on which the martingale is defined. By definition of
Kp(Lq(µ,B)) we then have(

E

∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥q)p/q +
1

(2K)p
(E ‖Mn −Mn−1‖q)p/q

=

∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥p
Lq

+
1

Kp

∥∥∥∥Mn −Mn−1

2

∥∥∥∥p
Lq

≤ (E ‖Mn −M0‖q)p/q + (E ‖Mn−1 −M0‖q)p/q

2
. (38)

Using the martingale property and conditional Jensen’s inequality we obtain the following
two estimates:

E ‖Mn−1 −M0‖q = E ‖E (Mn −M0 | Fn−1)‖q

≤ E (E (||Mn −M0||q | Fn−1)) = E ‖Mn −M0‖q ,

and

E

∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥q = E

(
E

(∥∥∥∥Mn−1 −M0 +
Mn −Mn−1

2

∥∥∥∥q | Fn−1

))
≥ E

∥∥∥∥E (Mn−1 −M0 +
Mn −Mn−1

2
| Fn−1

)∥∥∥∥q = E ‖Mn−1 −M0‖q .

Inserting these in (38) yields

(E ‖Mn−1 −M0‖q)p/q +
1

(2K)p
(E ‖Mn −Mn−1‖q)p/q ≤ (E ‖Mn −M0‖q)p/q .

Repeating the argument for the first term on the left iteratively, we obtain

(2K)p (E ‖Mn −M0‖q)p/q ≥
n∑
k=1

(E ‖Mk −Mk−1‖q)p/q

≥ n

(
1

n

n∑
k=1

E ‖Mk −Mk−1‖q
)p/q

=
1

np/q−1

(
n∑
k=1

E ‖Mk −Mk−1‖q
)p/q

,
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where we used convexity of the function t 7→ tp/q. Raising both sides to the power q
p yields

the desired estimate.

Before we state the main theorem of this section, recall from Section 4, that for an n× n
scalar valued matrix A = (aij) we define the linear operator A ⊗ InB : Lnp (B) → Lnp (B) by
(A⊗ InB)f(i) =

∑n
j=1 aijf(j), for f ∈ Lnp (B) and i ∈ [n].

Theorem 6.10. Let B be a Banach space with Kp(B) <∞ for some p ≥ 2. Then for every
n, t ∈ N, every n× n symmetric, stochastic matrix A = (aij) and every x1, · · · , xn ∈ B there
exist y1, · · · , yn such that, for all q > 1, we have

max


n∑
i=1

‖xi − yi‖q ,

(
((1− 1/p)(1− 1/q))1−1/p

16 · 51−1/pKp(B)

)q
tq/p

n∑
i,j=1

aij ‖yi − yj‖q


≤
n∑
i,j

At(A)ij ‖xi − xj‖q .

Proof. The structure of the proof is as follows: First we find a suitable martingale, integrating
which gives initial estimates using the above martingale inequalities. Then we choose our yi’s
cleverly and obtain bounds on either side of these estimates to yield the desired inequality.
Let us first find our martingale. To this end, define f ∈ Lnp (B) by f(i) = xi and for each

l ∈ [n] let Z l0, Z
l
1, · · ·Z lt denote the Markov chain on [n] which starts at l and has transition

matrix A, i.e., Z l0 = l a.s. and P
(
Z lm = j | Z lm−1 = i

)
= aij , for all m ∈ [t] and i, j ∈ [n].

For 0 ≤ m ≤ t define fm = (At−m ⊗ InB)f ∈ Lnp (B) and M l
m = fm(Z lm), for l ∈ [n] and

0 ≤ m ≤ t. We claim that (M l
m)tm=0 is a martingale with respect to the filtration generated

by Z l0, · · · , Z lt. Indeed, if we interpret 1/P (Z lm−1 = i) as 0 whenever (Z lm−1 = i) is a null set
and let L := A⊗ InB, we have by example 1.55 that

E
(
f(Z lm) | Z lm−1

)
=

n∑
i=1

1(Zlm−1=i)

1

P (Z lm−1 = i)

∫
(Zlm−1=i)

f(Z lm)dP

=

n∑
i=1

1(Zlm−1=i)

1

P (Z lm−1 = i)

n∑
j=1

xjP (Z lm = j, Z lm−1 = i)

=
n∑
i=1

1(Zlm−1=i)

1

P (Z lm−1 = i)

n∑
j=1

xjP (Z lm = j | Z lm−1 = i)P (Z lm−1 = i)

=

n∑
i=1

1(Zlm−1=i)

n∑
j=1

xjaij =

n∑
i=1

1(Zlm−1=i)(Lf)(i),

demonstrating that E(f(Z lm) | Z lm−1) = Lf(Z lm−1). Now, using basic properties of Markov
chains, we obtain

E
(
M l
m | Z l0, · · · , Z lm−1

)
= E

(
Lt−mf(Z lm) | Z lm−1

)
= Lt−mE

(
f(Z lm) | Z lm−1

)
= Lt−m(Lf(Z lm−1)) = Lt−(m−1)(Z lm−1) = M l

m−1,
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6 Superreflexive Banach spaces have metric Markov cotype

demonstrating the claim (we are here also using some well-known properties of conditional
expectations for scalar valued random variables, which carry over to the vector valued case
verbatim). Hence by Lemma 6.9 (the integrability assumptions are automatically satisfied)
we have for each l ∈ [n] that KE

∥∥M l
t −M l

0

∥∥q ≥∑t
m=1E

∥∥M l
m −M l

m−1

∥∥q, where

K =


(
2q−1 − 1

)
Kp(B)q if q ≥ p

5q(1−1/p)(2Kp(B))qt1−q/p

((1−1/p)(1−1/q))q(1−1/p) if q ≤ p
.

Now let Z0, · · · , Zt be the Markov chain on [n] with transition matrix A where Z0 is uniformly
distributed on [n]. Then, using the formula defining M l

m and averaging over l ∈ [n], we obtain

KE
∥∥f(Zt)− (Ltf)(Z0)

∥∥q ≥ t∑
m=1

E
∥∥(Lt−mf)(Zm)− (Lt−m+1f)(Zm−1)

∥∥q . (39)

Using that A is the transition matrix and the Markov chain property the left hand side

equals K
∑n

i,j=1

∥∥f(i)− (Ltf)(j)
∥∥q P (Zt = i, Z0 = j) = K

∑n
i,j=1

∥∥f(i)− (Ltf)(j)
∥∥q (At)ij

n .
A similar computation for the right hand side yields that (39) is equivalent to

K
n∑

i,j=1

(At)ij
∥∥f(i)− (Ltf)(j)

∥∥q ≥ t∑
m=1

n∑
i,j=1

aij
∥∥(Lt−mf)(i)− (Lt−m+1f)(j)

∥∥q . (40)

Now we define yi = 1
t

∑t−1
k=0(Lkf)(i) = 1

t

∑n
j=1

∑t−1
k=0(Ak)ijxj , for i ∈ [n]. The rest of the

proof is a matter of obtaining estimates of either side of (40) in terms of the xi’s and yi’s
using convexity. First observe that since At is symmetric and stochastic we have

1

t

t∑
k=1

(Lkf)(i) = yi +
1

t
(Ltf)(i)− 1

t
xi = yi −

1

t

n∑
s=1

(At)is(xi − xs).

This observation together with convexity of x 7→ ‖x‖q yields

t∑
m=1

n∑
i,j=1

aij
∥∥(Lt−mf)(i)− (Lt−m+1f)(j)

∥∥q
≥ t

n∑
i,j=1

aij

∥∥∥∥∥1

t

t∑
m=1

(
(Lt−mf)(i)− (Lt−m+1f)(j)

)∥∥∥∥∥
q

= t
n∑

i,j=1

aij

∥∥∥∥∥yi − yj +
1

t

n∑
s=1

(At)js(xj − xs)

∥∥∥∥∥
q

≥ t

2q−1

n∑
i,j=1

aij ‖yi − yj‖q −
1

tq−1

n∑
i,j=1

aij

∥∥∥∥∥
n∑
s=1

(At)js(xj − xs)

∥∥∥∥∥
q

=
t

2q−1

n∑
i,j=1

aij ‖yi − yj‖q −
1

tq−1

n∑
j=1

∥∥∥∥∥
n∑
s=1

(At)js(xj − xs)

∥∥∥∥∥
q

≥ t

2q−1

n∑
i,j=1

aij ‖yi − yj‖q −
1

tq−1

n∑
j,s=1

(At)js ‖xj − xs‖q . (41)
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The left hand side of 40 has the following estimate:

n∑
i,j=1

(At)ij
∥∥f(i)− (Ltf)(j)

∥∥q =

n∑
i,j=1

(At)ij

∥∥∥∥∥
n∑
s=1

(At)js(xi − xs)

∥∥∥∥∥
q

≤
n∑

i,j,s=1

(At)ij(A
t)js ‖xi − xs‖q

≤ 2q−1
n∑

i,j,s=1

(At)ij(A
t)js(‖xi − xj‖q + ‖xj − xs‖q)

= 2q
n∑

i,j=1

(At)ij ‖xi − xj‖q . (42)

Using that 0 =
∑n

i,j=1 δij ‖xi − xj‖
q =

∑n
i,j=1(In)ij ‖xi − xj‖q, where In is the n×n identity

matrix, we have

n∑
i,j=1

(At)ij ‖xi − xj‖q =

n∑
i,j=1

(
1

t

t−1∑
m=0

AmAt−m

)
ij

‖xi − xj‖q

≤ 2q−1

t

n∑
i,j=1

n∑
s=1

t−1∑
m=0

(Am)is(A
t−m)sj (‖xi − xs‖q + ‖xs − xj‖q)

= 2q−1
n∑

i,s=1

(
1

t

t−1∑
m=0

Am

)
is

‖xi − xs‖q + 2q−1
n∑

j,s=1

(
1

t

t−1∑
m=0

At−m

)
sj

‖xs − xj‖q

= 2q
n∑

i,j=1

At(A)ij ‖xi − xj‖q +
2q−1

t

n∑
i,j=1

(At)ij ‖xi − xj‖q .

If t ≥ 2q, this yields
n∑

i,j=1

(At)ij ‖xi − xj‖q ≤ 2q+1
n∑

i,j=1

At(A)ij ‖xi − xj‖q ,

and if t ≤ 2q we have the bound
n∑

i,j=1

(At)ij ‖xi − xj‖q =
n∑

i,j,r=1

air(A
t−1)rj ‖xi − xj‖q

≤ 2q−1
n∑

i,j,r=1

air(A
t−1)rj (‖xi − xr‖q + ‖xr − xj‖q)

= 2q−1
n∑

i,r=1

air ‖xi − xr‖q + 2q−1
n∑

j,r=1

(At−1)rj ‖xr − xj‖q

≤ 2q−1t
n∑

i,j=1

At(A)ij ‖xi − xj‖q

≤ 22q−1
n∑

i,j=1

At(A)ij ‖xi − xj‖q .
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In either case we have

n∑
i,j=1

(At)ij ‖xi − xj‖q ≤ 4q
n∑

i,j=1

At(A)ij ‖xi − xj‖q . (43)

Finally, combining (41) and (42) into (40) we get

t

2q−1

n∑
i,j=1

aij ‖yi − yj‖q −
1

tq−1

n∑
j,s=1

(At)js ‖xj − xs‖q ≤ K2q
n∑

i,j=1

(At)ij ‖xi − xj‖q ,

which, after rearranging and applying (43), gives

t
n∑

i,j=1

aij ‖yi − yj‖q ≤ 4qK
n∑

i,j=1

(At)ij ‖xi − xj‖q ≤ 16qK
n∑

i,j=1

At(A) ‖xi − xj‖q .

Now, since

((1− 1/p)(1− 1/q))q(1−1/p)

5q(1−1/p)2qKp(B)qt1−q/p
≤ tq/p−1

(2q−1 − 1)Kp(B)q
,

this yields(
((1− 1/p)(1− 1/q))1−1/p

16 · 51−1/pKp(B)

)q
tq/p

n∑
i,j=1

aij ‖yi − yj‖q ≤
n∑

i,j=1

At(A)ij ‖xi − xj‖q .

The last thing to observe is that by definition of the yi’s we have

n∑
i=1

‖xi − yi‖q =

n∑
i=1

∥∥∥∥∥∥1

t

n∑
j=1

t−1∑
k=0

(Ak)ij(xi − xj)

∥∥∥∥∥∥
q

≤
n∑

i,j=1

At(A)ij ‖xi − xj‖q .

This concludes the proof.

Reducing to the case q = 2 we obtain the following corollary:

Corollary 6.11. Let B be a Banach space with Kp(B) < ∞ for some p ≥ 2. Then B has
metric Markov cotype p with exponent 2 and we have the estimate

C(2)
p (B) ≤

√
2

16 · 51−1/pKp(B)

((1− 1/p)/2)1−1/p
≤ 320Kp(B).

Proof of Theorem 5.8. Observe that metric Markov cotype p with exponent q is stable under
isomorphism of normed spaces. Theorem 1.28 yields that there exists some p ≥ 2 such that
B is isomorphic to a uniformly convex Banach space of power type p. The theorem then
follows from the above corollary.
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In this section we shall describe the proof of Lemma 5.15 as given in [MN14]. It involves a
beautiful blend of functional analytic results, discrete Fourier analysis as well as techniques
from combinatorics. As this is a thesis in functional analysis, we will focus on the analytical
parts of the proof, and state without proof the combinatorial parts. Throughout this section
we will work with Banach spaces over the complex numbers only, but the results can be
extended to real Banach spaces by a standard complexification strategy.

7.1 K-convex Banach spaces

We now introduce the notion of K-convex Banach spaces and prove an important theorem
about such spaces which will be crucial in demonstrating the spectral properties of the base
graphs from Lemma 5.15. For a Banach space B we denote by Lp(Fn2 ;B) the Banach space

of functions f : Fn2 → B with the norm ‖f‖p =
(

1
2n
∑

x∈Fn2
‖f(x)‖p

)1/p
, where F2 denotes the

field of order 2 (these are just Bochner spaces on the measurable space (Fn2 ,P(Fn2 )) equipped
with the normalized counting measure, τ/2n, making it a probability space). Furthermore,
for A ⊂ [n], the Walsh function WA : Fn2 → {±1} is given by WA(x) = (−1)

∑
j∈A xj (this

definition is independent of whether the exponent is computed modulo 2 or in N). Observe
that WA and WB are independent whenever A 6= B, that WA is a Rademacher variable
whenever A 6= ∅ and that W∅ = 1. Hence any f : Fn2 → B has the unique expansion
f =

∑
A⊂[n]WAf̂(A), where

f̂(A) :=
1

2n

∫
Fn2
fWadτ =

1

2n

∑
y∈Fn2

f(y)WA(y).

To see this in the scalar valued case it suffices to observe that the Walsh functions form an
orthonormal basis for L2(Fn2 ) (note that, as sets, Lp(Fn2 ;B) and L2(Fn2 ;B) are equal for any
p ≥ 1 and any Banach space B). Now the vector valued case follows by observing that for

any ψ ∈ B∗ we have ψ̂ ◦ f = ψ(f̂). For any function ϕ : Fn2 → C and f : Fn2 → B we define
their convolution in the usual way:

ϕ ∗ f(x) :=
1

2n

∫
Fn2
ϕ(x− y)WA(y)dτ(x) =

1

2n

∑
y∈Fn2

ϕ(x− y)f(y) =
∑
A⊂[n]

ϕ̂(A)f̂(A)WA(x).

To see that (ϕ ∗ f)∧(A) = ϕ̂(A)f̂(A) observe that, for any x, y ∈ Fn2 and A ⊂ [n], we have
WA(x+ y) = WA(x)WA(y), and hence

(ϕ ∗ f)∧(A) =
1

2n

∑
x∈Fn2

1

2n

∑
y∈Fn2

ϕ(x− y)f(y)WA(x)

=
1

2n

∑
y∈Fn2

1

2n

∑
x∈Fn2

ϕ(x− y)WA(x− y)f(y)WA(y)

=
1

2n

∑
y∈Fn2

ϕ̂(A)f(y)WA(y) = ϕ̂(A)f̂(A).
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Following the notation in [MN14] we define the Rademacher projections in the following
way: for m = 0, · · · , n the m-level Rademacher projection Radm : Lp(Fn2 ;B) → Lp(Fn2 ;B)

is defined by Radm(f) :=
∑
|A|=m f̂(A)WA. Finally, for z ∈ C, we define the operator

ez∆ : Lp(Fn2 ;B)→ Lp(Fn2 ;B) by

ez∆f :=
n∑

m=0

ezmRadm(f) =
∑
A⊂[n]

ez|A|f̂(A)WA = Rz ∗ f,

where

Rz(x) :=

n∏
j=1

(1 + ez(−1)xj ) = (1− ez)‖x‖1(1 + ez)n−‖x‖1 .

The fact that R̂z(A) = ez|A| is seen by a simple computation in the case where n = 1. For
n > 1 we proceed by induction. First consider the case where A ⊂ [n] does not contain n.
Then we can consider A as a subset of [n− 1] and hence

R̂z(A) =
∑
x∈Fn2

(
1− ez

2

)‖x‖1 (1 + ez

2

)n−‖x‖1
WA(x)

=
∑

x∈Fn−1
2

(
1− ez

2

)‖x‖1 (1 + ez

2

)n−‖x‖1
WA(x)

+
∑

x∈Fn−1
2

(
1− ez

2

)‖x‖1+1(1 + ez

2

)n−‖x‖1−1

WA(x)

=

(
1 + ez

2
+

1− ez

2

) ∑
x∈Fn−1

2

(
1− ez

2

)‖x‖1 (1 + ez

2

)n−1−‖x‖1
WA(x)

= ez|A|,

by the induction hypothesis. If n ∈ A we can consider A\{n} as a subset of [n−1] and write∑
j∈A xj =

∑
j∈A\{n} xj + xn. Then we obtain by a computation analogous to the one above

that

R̂z(A) =

(
1 + ez

2
− 1− ez

2

)
ez|A\{n}| = ezez(|A|−1) = ez|A|,

demonstrating the claim. Using the fact that ez∆f = Rz ∗ f we get for every x ∈ Fn2 that

ez∆f(x) =
∑
y∈Fn2

(
1− ez

2

)‖x−y‖1 (1 + ez

2

)n−‖x−y‖1
f(y), (44)

so in particular

ez∆δy(x) =

(
1− ez

2

)‖x−y‖1 (1 + ez

2

)n−‖x−y‖1
. (45)
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Finally, for k ∈ N, we let L≥kp (Fn2 ;B) denote the subspace of functions f such that f̂(A) = 0
whenever |A| < k. Observe that L≥p (Fn2 ;B) is invariant under the Rademacher projections

and hence under ez∆. K-convexity was introduced by Maurey and Pisier (Studia math, 1976):

Definition 7.1. Let B be a Banach space. The K-convexity constant of B is defined by
K(B) = supn ‖Rad1‖L2(Fn2 ;B)→L2(Fn2 ;B) and we say that B is K-convex if K(B) <∞.

It is relatively straightforward to see that Hilbert spaces are K-convex. Indeed, let H be
a Hilbert space and take f ∈ L2(Fn2 ;H). Write f =

∑
A⊂[n] f̂(A)WA with f̂(A) ∈ H. Then

‖Rad1(f)‖2L2(Fn2 ;H) =
1

2n

∑
x∈Fn2

〈
n∑
i=1

f̂({i})W{i}(x),
n∑
i=1

f̂({i})W{i}(x)

〉

=
n∑

i,j=1

〈f̂({i}), f̂({j})〉 1

2n

∑
x∈Fn2

W{i}(x)W{j}(x)

=
n∑
i=1

〈f̂({i}), f̂({i})〉 =
n∑
i=1

∥∥∥f̂({i})
∥∥∥2

H
,

using that the Walsh functions form a system of mutually independent Rademacher variables.

It can be seen in the same way that ‖f‖2L2(Fn2 ;B) =
∑

A⊂[n]

∥∥∥f̂({A})
∥∥∥2

H
, demonstrating that

Rad1 is a contraction on L2(Fn2 ;B), for all n ∈ N. This proves that H is K-convex with
K(H) ≤ 1. In fact all Lp spaces are K-convex and more generally we have:

Remark 7.2 (Superreflexive Banach spaces are K-convex). It is a deep theorem due
to Pisier [Pis82] that B is K-convex if and only if there exists n0 ∈ N and ε0 > 0 such that for
every injective, linear map T : `n0

1 → B we have ‖T‖`n01 →B
∥∥T−1

∥∥
T (`

n0
1 )→`n01

≥ 1 + ε0. Using

this characterization of K-convexity we can see that superreflexivity implies K-convexity.
Indeed, if B is not K-convex then for every n ∈ N and every ε > 0 we could find an injective,
linear map T : `n1 → B such that ‖T‖`n1→B

∥∥T−1
∥∥
T (`n1 )→`n1

< 1 + ε. This implies that `1 is

finitely representable in B (the proof of this claim is almost analogous to the argument in
Example 1.30). Since `1 is not reflexive, this yields that B cannot be superreflexive.

The expansion properties of the graphs from Lemma 5.15 hinge on the following theorem:

Theorem 7.3. Let K, p ∈ (1,∞) be arbitrary. Then there exist α = α(K, p) ∈ (0, 1),
b = b(K, p) ∈ (2,∞) and c = c(K, p) ∈ (2,∞) such that for every K-convex Banach space B
with K(B) ≤ K, every k, n ∈ N and every t ∈ (0,∞) we have the estimate∥∥e−t∆∥∥

L≥kp (Fn2 ;B)→L≥kp (Fn2 ;B)
≤ ce−αkmin{t,tb}.

The proof of the above theorem requires the following deep result about K-convex Banach
spaces due to Pisier [Pis82], which we state without proof:

Theorem 7.4. Let K, p ∈ (1,∞) be arbitrary. Then there exist φ = φ(K, p) ∈ (0, π/4) and
M = M(K, p) ∈ (2,∞) such that whenever B is a K-convex Banach space with K(B) ≤ K
we have the estimate ∥∥e−z∆∥∥

Lp(Fn2 ;B)→Lp(Fn2 ;B)
≤M, (46)

for every n ∈ N and every z ∈ C satisfying | arg(z)| ≤ φ.
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We now introduce the notion of harmonic measure. This piece of theory draws on several
more or less classical results from complex analysis, proofs of which can be found in Rudin’s
legendary text book on real and complex analysis [Rud87].

Definition 7.5. Let Ω be an open subset of the complex plane, which we may identify with
R2. For a C2 function u : Ω→ C we define its Laplacian

∆u :=
∂2u

∂x2
+
∂2u

∂y2
: Ω→ C.

We say that u is harmonic if ∆u = 0 on all of Ω.

It follows directly from this definition (since the Laplacian of a real valued function is
real valued) that a function is harmonic if and only if both its real and imaginary parts
are harmonic. Hence it follows from the Cauchy-Riemann differential equations that any
holomorphic function is harmonic. There is a local converse to this fact, namely:

Theorem 7.6. [Rud87, Th. 11.9] Suppose Ω is simply connected and u : Ω→ R is harmonic.
Then there exists a holomorphic function f : Ω→ C such that u = <(f). In particular u has
partial derivatives of all orders.

The following theorem provides a solution to the so-called Dirichlet boundary problem:
given a continuous function f : T → C, where T ⊂ C denotes the unit circle, find a continuous
function u : D → C which is harmonic on D and such that u|T = f (here D ⊂ C denotes the
open unit disc).

Theorem 7.7. [Rud87, Sec. 11.5] Let f : T → C be continuous. Then there exists a
continuous function Hf : D → C which is harmonic on D and such that (Hf)|T = f . This
function is given by

Hf(reiθ) :=

{
f(eiθ) if r = 1,
1

2π

∫ π
−π Pr(θ − t)f(eit)dt if 0 ≤ r < 1

,

where

Pr(t) :=

∞∑
−∞

r|n|eint, 0 ≤ r < 1, t ∈ R

is the Poisson kernel. The integral in the definition of Hf is known as the Poisson integral
of f . Conversely, if u : D → C is continuous and harmonic on D, then H(u|T ) = u.

Remark 7.8. Note that, by definition of the Poisson kernel, Hf(z) is independent of the
choice of argument of z ∈ D, i.e., Hf(reiθ) = Hf(rei(θ+2π)) so that Hf is well defined.
Moreover, since P0(t) = 1, for all t ∈ R, we have Hf(0) =

∫
T f(z) dz2π .

We need one more important theorem from complex analysis before we introduce harmonic
measure, namely the Riemann mapping theorem. Recall that a conformal map between two
open regions Ω1,Ω2 ⊂ C is a holomorphic bijection ψ : Ω1 → Ω2 (this automatically implies
that ψ−1 is also holomorphic and that ψ′(z) 6= 0, for all z ∈ Ω1). If such a conformal map
exists we say that Ω1 and Ω2 are conformally equivalent. The following theorem is known as
The Riemann mapping theorem:
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Theorem 7.9. [Rud87, Th.s 14.8 & 14.19] If Ω ( C is open and simply connected then Ω
is conformally equivalent to D. Moreover, for every z0 ∈ Ω there exists a conformal equiva-
lence which carries z0 to the origin. Finally, if Ω is convex and bounded then Ω and D are
homeomorphic and any conformal equivalence between Ω and D extends to a homeomorphism
between Ω and D.

Now suppose Ω is an open, bounded, convex, simply connected region of the complex
plane, and let ψ : Ω → D be a conformal equivalence which extends to a homeomorphism.
Then ∂Ω is compact and for f ∈ C(∂Ω) we can view f ◦ψ−1 as an element of C(T ), so it has
a solution to the Dirichlet boundary problem, H(f ◦ ψ−1). The composition of a harmonic
function with a conformal map is clearly harmonic, so Hψf := H(f ◦ ψ−1) ◦ ψ : Ω → C is
harmonic and extends to a continuous map on Ω which is equal to f on ∂Ω. Let z0 = ψ−1(0)
and let µz0 := dz

2π ◦ ψ
−1, the image measure of dz

2π (i.e., normalized Lebesgue measure on T )
under ψ−1, which is a probability measure. As a consequence of the above remark we have

Hψf(z0) = H(f ◦ ψ−1)(0) =
1

2π

∫
T
H(f ◦ ψ−1)(z)dz

=

∫
T
f ◦ ψ−1 dz

2π
=

∫
∂Ω
f

(
dz

2π
◦ ψ−1

)
=

∫
∂Ω
fdµz0 .

By the Riesz representation theorem for the dual of C(K), where K is a compact space, µz0 is
unique with this property. Hence, it does not depend on ψ, only on z0, i.e., on the fact that ψ
carries z0 to the origin. In particular, for any Borel set E ⊂ δΩ we have µz0(E) =

∫
ψ(E) dz/2π

where ψ : Ω→ D is any conformal map with ψ(z0) = 0, which exists by the Riemann mapping
theorem. We summarize this in the following definition:

Definition 7.10. Let Ω be an open, bounded, convex, simply connected region of the complex
plane. For z0 ∈ Ω, the unique Borel probability measure µz0 on ∂Ω such that every continuous
u : Ω→ C which is harmonic on Ω satisfies

u(z0) =

∫
∂Ω
udµz0 .

is called the harmonic measure for z0. It is given by the image measure of normalized
Lebesgue measure on T under the inverse of any conformal equivalence between Ω and D
which carries z0 to the origin.

Now, let K, p ∈ (1,∞) and let φ ∈ (0, π/4) be as in Theorem 7.4. Pick a > 0 such that
the vertical line segment connecting a+ iπ with a− iπ is contained in the unbounded pizza
slice section {z ∈ C | | arg(z)| ≤ φ} ⊂ C. Specifically, we can put a = π/ tanφ, which is the
smallest a satisfying this. Define Vφ to be the bounded pizza slice section:

Vφ :=
{
z ∈ C | |z| ≤ 2

√
a2 + π2 and | arg(z)| ≤ φ

}
,

which contains the line segment connecting a+ iπ with a− iπ and that connecting the origin
with 2a. This section is bounded, convex and simply connected so any interior point of Vφ
admits a harmonic measure on its boundary, which is the disjoint union of the two sets

V 0
φ = {x± ix tanφ | 0 ≤ x < 2a} and V 1

φ =
{

(2
√
a2 + π2)eiθ | |θ| ≤ φ

}
.
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Lemma 7.11. Let φ ∈ (0, π/4), a > 0 and Vφ be as above and put r := 2
√
a2 + π2.

For t ∈ (0, 2a) ⊂ Int(Vφ) put θt := µt(V
1
φ ). Then

θt ≥
1

2

(
t

r

)π/2φ
. (47)

Moreover, for every ε ∈ (0, 1) there exists a bounded, continuous function Ψt
ε : Vφ → C which

is holomorphic (and hence harmonic) on the interior of Vφ such that

• Ψt
ε(t) = 1,

• |Ψt
ε(z)| = ε for every z ∈ V 0

φ ,

• |Ψt
ε(z)| = 1

ε(1−θt)/θt
for every z ∈ V 1

φ .

The proof of the first part of Lemma 7.11 (the content of which is found in [MN14, Lemma
5.7]) writes up an explicit conformal equivalence between V and D which takes t to the origin
and computes the normalized arc length of the image of V 1

φ under this map. The second part
(which corresponds to [MN14, Lemma 5.8]) is essentially attributed to Pisier. Though they
are not at all trivial we shall omit the proofs.

Proof of Theorem 7.3. For K, p ∈ (1,∞) take φ ∈ (0, π/4) and M ∈ (2,∞) according to
Theorem 7.4. Let a = π/ tan(φ) as above and let B be a K-convex Banach space with
K(B) ≤ K. Let t ∈ (0,∞) and suppose first that t ≥ 2a. Now, for m = 0, · · · , n we have for
any f ∈ Lp(Fn2 ;B) and x ∈ Fn2 that the function

s 7→ eimse−(a+is)∆f(x)

from [−π, π] to B is Bochner integrable and by Example 1.49 we get

1

2π

∫ π

−π
eimse−(a+is)∆f(x)ds =

1

2π

∫ π

−π
eims

n∑
k=0

e−(a+is)kRadk(f)(x)ds

=

n∑
k=0

e−ak
1

2π

∫ π

−π
eis(m−k)dsRadk(f)(x) = e−amRadm(f)(x).

By a slight abuse of notation we will write this as

1

2π

∫ π

−π
eimse−(a+is)∆ds = e−amRadm.

By Theorem 7.4 we have
∥∥e−(a+is)∆

∥∥
Lp(Fn2 ;B)→Lp(Fn2 ;B)

≤M for every s ∈ [−π, π] and hence,

in the above notation,

‖Radm‖Lp(Fn2 ;B)→Lp(Fn2 ;B) ≤
ema

2π

∫ π

−π

∥∥∥e−(a+is)∆
∥∥∥
Lp(Fn2 ;B)→Lp(Fn2 ;B)

ds ≤Mema.
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This implies, for any k ≤ n and any z ∈ C with <(z) ≥ 2a (so in particular for t), that∥∥e−z∆∥∥
L≥kp (Fn2 ;B)→L≥kp (Fn2 ;B)

=

∥∥∥∥∥
n∑

m=k

e−zmRadm

∥∥∥∥∥
L≥kp (Fn2 ;B)→L≥kp (Fn2 ;B)

≤
n∑

m=k

e−<(z)mMema ≤M
n∑

m=k

e−m<(z)/2 ≤Me−k<(z)/2
∞∑
m=0

(e−<(z)/2)m

=
Me−k<(z)/2

1− e−<(z)/2
≤ Me−k<(z)/2

1− e−a
≤ Me−ka

1− e−a
, (48)

using that a ≤ <(z)/2 by assumption. This demonstrates that for t ≥ 2a the conclusion of
the Theorem holds with α(K, p) = 1/2, c(K, p) = M/(1− e−a) and any b(K, p) > 2.

Now suppose that t < 2a, and let ε ∈ (0, 1). Take θt and Ψt
ε as in Lemma 7.11 and

observe that there are probability measures, µ0
t and µ1

t , on V 0
φ and V 1

φ , respectively, such

that µt(E) = (1 − θt)µ
0
t (E ∩ V 0

φ ) + θtµ
1
t (E ∩ V 1

φ ), for all Borel sets E ⊂ Vφ. Indeed, we

just define µ0
t (E) = µt(E)/µt(V0) = µt(E)/(1− θt) and similarly for µ1

t . Now, since e−mz is
holomorphic for every m = 0, · · · , n we obtain

e−t∆ = Ψt
ε(t)e

−t∆ =

∫
∂Vφ

Ψt
ε(z)e

−z∆dµt(z)

= (1− θt)
∫
V 0
φ

Ψt
ε(z)e

−z∆µ0(z) + θt

∫
V 1
φ

Ψt
ε(z)e

−z∆dµ1(z).

Hence, since any z ∈ V 1
φ has <(z) ≥ 2a and any z ∈ V 0

φ has arg(z) = φ, we get by (48),
Lemma 7.11 and Theorem 7.4 that∥∥e−t∆∥∥

L≥kp (Fn2 ;B)→L≥kp (Fn2 ;B)
≤ (1− θt)εM +

θt

ε(1−θt)/θt
· Me−ka

1− e−a

≤ εM +
1

ε2(r/t)π/2φ−1
· Me−ka

1− e−a
,

using that 1/θt ≤ 2(r/t)π/2φ. Since this estimate is valid for every ε ∈ (0, 1) we can put
ε = exp(−1

2(t/r)π/2φka) to obtain

∥∥e−t∆∥∥
L≥kp (Fn2 ;B)→L≥kp (Fn2 ;B)

≤M exp

(
−1

2

(
t

r

)π/2φ
ka

)
+

M

1− e−a
· exp

(
−1

2

(
t

r

)π/2φ
ka

)

≤
(
M +

M

1− e−a

)
exp

(
− a

2rπ/2φ
ktπ/2φ

)
.

So taking c(K, p) = M +M/(1− e−a), α(K, p) = min
{

1/2, a/(2rπ/2φ)
}

and b(K, p) = π/2φ,
the conclusion of the theorem is valid for any t > 0.

7.2 Construction of the base graphs

Let t ∈ (0,∞) and n ∈ N and define τt = 1−e−t
2 and σnt = τ4τtn

t (1− τt)(1−4τt)n. Furthermore
let ent : {0, · · · , n} → N0 denote the function given by

ent (k) =

⌊
τkt (1− τt)n−k

σnt

⌋
.
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7 The Base Graph

The following lemma constitutes the afforementioned combinatorial parts of the proof of
Lemma 5.15. Its proof can be found in [MN14, Lemma 7.2].

Lemma 7.12. Fix t ∈ (0, 1/4), p ≥ 1 and an integer n ≥ 213 such that

τt ≥
√
p log(18n)

18n
.

Let Gnt = (V n
t , E

n
t ) be the graph whose vertex set is Fn2 and where every x, y ∈ Fn2 are joined

by ent (‖x− y‖1) edges. Then Gnt is dnt -regular, where 1
3σnt
≤ dnt ≤ 1

σnt
. and for every metric

space (X, dX) and every f, g : Fn2 → X we have

1

3|Ent |
∑

(x,y)∈Ent

dX(f(x), g(y))p ≤ 1

2n

∑
x,y∈Fn2

e−t∆δx(y)dX(f(x), g(y))p

≤ 3

|Ent |
∑

(x,y)∈Ent

dX(f(x), g(y))p. (49)

In what follows, for each n ∈ N, let Vn ⊂ Fn2 be a ’good linear code’, i.e., a linear subspace
such that Dn := dim(Vn) ≥ n/10 and the Hamming weight kn := minx∈Vn\{0} ‖x‖1 ≥ n/10.
There are many sources for the existence of linear codes with these properties, we refer to
[Ost13, Sec. 4]. As usual, we let V ⊥n = {x ∈ Fn2 |

∑n
i=1 xiyi = 0 ∀y ∈ Vn}. Let π : Fn2 →

Fn2/V ⊥n be the quotient map and for f ∈ Lp(Fn2/V ⊥n ;B) define πf ∈ Lp(Fn2 ;B) by πf(x) =
f(π(x)). Then πf is constant on cosets of V ⊥n , i.e., πf(x + y) = πf(x) for every x ∈ Fn2
and y ∈ V ⊥n , and clearly any function which satisfies this arises in this way. Furthermore
‖f‖Lp(Fn2 /V ⊥n ;B) = ‖πf‖Lp(Fn2 ;B) and f ∈ Lp(Fn2/V ⊥n ;B) is mean-zero if and only if πf ∈
Lp(Fn2 ;B) is mean-zero.

Lemma 7.13. Let Lp(Fn2/V ⊥n ;B)0 ⊂ Lp(Fn2/V ⊥n ;B) denote the subspace of mean-zero func-
tions. Then πf ∈ L≥knp (Fn2 ;B), for every f ∈ Lp(Fn2/V ⊥n ;B)0.

Proof. Let A ⊂ [n] satisfy |A| < kn, and assume first that A is non-empty. Then, if we
let 1A ∈ Fn2 denote the vector whose i’th coordinate is 1 if and only if i ∈ A, we have by
definition of kn that 1A /∈ Vn = (V ⊥n )⊥ (this equality is seen analogously to the result for
real or complex, finite dimensional vector spaces). Hence there is a vector y ∈ V ⊥n such that∑n

i=1 yi(1A)i =
∑

i∈A yi = 1 mod 2. Hence WA(y) = −1 and then, since πf is constant on
cosets of V ⊥n we get

(πf)∧(A) =
1

2n

∑
x∈Fn2

πf(x)WA(x) =
1

2n

∑
x∈Fn2

πf(x+ y)WA(x)

=
1

2n

∑
z∈Fn2

πf(z)WA(z + y) =
1

2n

∑
z∈Fn2

πf(z)WA(z)WA(y) = −(πf)∧(A),

which implies (πf)∧(A) = 0. If A = ∅ then (πf)∧(A) = 0 by the mean-zero assumption.

Using formula (44) for ez∆ it is easily seen that if f is constant on cosets then so is ez∆f ,
and hence for any f ∈ Lp(Fn2/V ⊥n ;B) we can view (ez∆π)f as an element of Lp(Fn2/V ⊥n ;B)
as well with

∥∥(ez∆π)f
∥∥
Lp(Fn2 ;B)

=
∥∥(ez∆π)f

∥∥
Lp(Fn2 /V ⊥n ;B)

.
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Lemma 7.14. Let K, p > 1. Then there exist n(K, p) ∈ N, δ(K, p) ∈ (0, 1), and a sequence
of connected, regular graphs (Hn(K, p))n≥n(K,p) satisfying the following:

For each n ≥ n(K, p), Hn(K, p) has mn := |Fn2/V ⊥n | = 2Dn vertices and degree of regularity

dn(K, p) satisfying dn(K, p) ≤ e(logmn)1−δ(K,p). Moreover, for each K-convex Banach space,
B, with K(B) ≤ K we have the uniform bound

sup
n≥n(K,p)

γ+

(
Hn(K, p), ‖·‖pB

)
≤ 9p+1.

Proof. Let α, b and c denote the constants (depending on K and p) according to Theorem

7.3. Let n ∈ N and put tn =
(

log(2c)
knα

)1/b
. Then, since kn → ∞ as n → ∞, we have tn → 0

as n→∞. Hence there is n(K, p) ∈ N such that, for every n ≥ n(K, p), the assumptions of
Lemma 7.12 are satisfied for tn, p and n. Furthermore, there is δ = δ(K, p) ∈ (0, 1) such that

1

τ
8nτtn
tn

≤ e(logmn)1−δ ,

whenever n ≥ n(K, p) (recall mn = 2Dn and kn, Dn ≥ n/10). Let n ≥ n(K, p) and put t = tn.
Then the graph Gnt from Lemma 7.12 is dnt -regular on 2n vertices and

dnt ≤
1

σnt
≤ 1

τ8nτt
t

≤ e(logmn)1−δ ,

where the second estimate follows from the definition of σnt in the beginning of this subsection.
Now define Hn = Hn(K, p) to be the graph whose vertex set it Fn2/V ⊥n and where the number
of edges between two vertices S, T ∈ Fn2/V ⊥n is the number of edges in Gnt with one end point
in S and one in T divided by |V ⊥n |. So if En = En(K, p) denotes the edge set of Hn, we have
for S = x+ V ⊥n and T = y + V ⊥n , x, y ∈ Fn2 , that

En(S, T ) =
1

|V ⊥n |
∑

u,v∈V ⊥n

ent (‖x+ u− (y + v)‖1)

=
1

|V ⊥n |
∑

u,v∈V ⊥n

ent (‖x− y + (u− v)‖1)

=
∑
u∈V ⊥n

ent (‖x− y + u‖1) =
∑
u∈T

ent (‖x− u‖1).

Hence, the degree of S = x+V ⊥n is
∑

T∈Fn2 /V ⊥n
∑

u∈T e
n
t (‖x− u‖1) = dnt , so Hn is dnt -regular.

Furthermore, by definition of Dn, the number of vertices of Hn is 2Dn . Let B be a K-convex
Banach space with K(B) ≤ K. Then, for f ∈ Lp(Fn2/V ⊥n ;B)0 \ {0}, we have by Lemma 7.13
that πf ∈ L≥knp (Fn2 ;B) and hence by Theorem 7.3 we have∥∥(e−t∆π)f

∥∥
Lp(Fn2 /V ⊥n ;B)

‖f‖Lp(Fn2 /V ⊥n ;B)

≤ ce−αkn min{t,tb} =
1

2
, (50)
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where the last equality follows from the definition of t = tn and the fact that t < 1/4 and
b > 2, whence tb ≤ t. Now let Q = (qS,T )S,T∈Fn2 /V ⊥n be the mn ×mn matrix given by

qS,T =
1

|V ⊥n |
∑

u∈S,v∈T
τ
‖u−v‖1
t (1− τt)n−‖u−v‖1 .

This matrix is clearly symmetric and since, for fixed S ∈ Fn2/V ⊥n , we have

∑
T∈Fn2 /V ⊥n

qS,T =
1

|V ⊥n |
∑
u∈S

∑
T∈Fn2 /V ⊥n

∑
v∈T

τ
‖u−v‖1
t (1− τt)n−‖u−v‖1

=
∑
x∈Fn2

τ
‖x‖1
t (1− τt)n−‖x‖1

=

n∑
k=0

∑
x∈Fn2
‖x‖1=k

τkt (1− τt)n−k

=

n∑
k=0

(
n

k

)
τkt (1− τt)n−k = 1,

we see that Q is also stochastic. Furthermore, for every f ∈ Lp(Fn2/V ⊥n ;B), we have

(Q⊗ ImnB )f(S) =
∑

T∈Fn2 /V ⊥n

qS,T f(T )

=
∑

T∈Fn2 /V ⊥n

1

|V ⊥n |
∑

u∈S,v∈T
τ
‖u−v‖1
t (1− τt)n−‖u−v‖1f(T )

=
1

|V ⊥n |
∑
u∈S

∑
T∈Fn2 /V ⊥n

∑
v∈T

τ
‖u−v‖1
t (1− τt)n−‖u−v‖1πf(v)

=
1

|V ⊥n |
∑
u∈S

(e−t∆π)f(u) = (e−t∆π)f(S),

where by (e−t∆π)f(S) we mean the (constant) value (e−t∆π)f takes on the coset S. This

demonstrates that Q ⊗ ImnB = e−t∆π, and hence by (50) we have λ
(p)
B (Q) ≥ 1/2. Moreover,

Lemma 4.4 yields

γ+(Q, ‖·‖p) ≤

(
1 +

4

λ
(p)
B (Q)

)p
≤ 9p.

Now, let f, g : Fn2/V ⊥n → B be arbitrary. Then by definition of the absolute spectral gap,
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formula (45) and Lemma 7.12 we have

1

|Fn2/V ⊥n |2
∑

S,T∈Fn2 /V ⊥n

‖f(S)− g(T )‖pB

≤ 9p

|Fn2/V ⊥n |
∑

S,T∈F2/V ⊥n

qS,T ‖f(S)− g(T )‖pB

=
9p

2Dn

∑
S,T∈Fn2 /V ⊥n

1

|V ⊥n |
∑

v∈T,u∈S
τ
‖u−v‖1
t (1− τt)n−‖u−v‖1 ‖f(S)− g(T )‖pB

=
9p

2n

∑
x,y∈Fn2

e−t∆δx(y) ‖πf(x)− πg(y)‖pB

≤ 3 · 9p

|Ent |
∑

(x,y)∈Ent

‖πf(x)− πg(y)‖pB

=
3 · 9p · 2Dn

2ndnt

∑
S,T∈Fn2 /V ⊥n

1

|V ⊥n |
∑

u∈S,v∈T
Ent (u, v) ‖f(S)− g(T )‖pB

=
3 · 9p

|Fn2/V ⊥n |dnt

∑
(S,T )∈E(Hn)

‖f(S)− g(T )‖pB ,

from which it follows that γ+(Hn, ‖·‖pB) ≤ 3 · 9p ≤ 9p+1 as desired.

As a consequence of Lemma 7.14 we obtain the following generalization of Lemma 5.15:

Corollary 7.15. For every δ ∈ (0, 1) and p > 1 there exist np0(δ) ∈ N and a sequence of graphs

(Hp
n(δ))n≥np0(δ) such that Hp

n(δ) is dpn(δ)-regular on mn vetices with dpn(δ) ≤ e(logmn)1−δ and

2n/10 ≤ mn ≤ 2n. If B is a Banach space with K(B) < ∞, we have γ+(Hp
n(δ), ‖·‖pB) < ∞,

for all n ≥ np0(δ), and there exists δp0(B) ∈ (0, 1) such that γ+(Hp
n(δ), ‖·‖pB) ≤ 9p+1, for all

δ ∈ (0, δp0(B)] and n ≥ np0(δ).

Proof. First observe that by the way δ(K, p) is defined in Lemma 7.14, for any fixed p > 1
we may assume that it decreases continuously to 0 with K. Let δ ∈ (0, 1) and p > 1
be given. First assume that δ > δ(2, p). Then it follows from Proposition 4.2 that any
connected regular graph which is not bipartite has finite absolute spectral gap with respect
to ‖·‖pB. Hence we can let np0(δ) be the smallest integer such that e(logmn)1−δ ≥ 3 and,
for each n ≥ np0(δ), let Hp

n(δ) be the mn-cycle (with mn as defined in Lemma 7.14) with
self loops. These graphs satisfy the bounds and finiteness assumptions per default. In case
δ ≤ δ(2, p) put Kp

δ = sup {K ≥ 2 | δ(K, p) ≥ δ} which is finite since δ(2, p) ≥ δ by assumption
and because of the monotonicity assumptions above. Also, as δ(K, p) > 0, for all K, p > 1,
it is clear that limδ→0+ K

p
δ = ∞. Now set np0(δ) = n(Kp

δ , p) and, for each n ≥ n0(δ), put
Hp
n(δ) = Hn(Kp

δ , p). This defines Hp
n(δ) for every δ ∈ (0, 1) and p > 1, satisfying the degree

and vertex set bounds and finiteness of absolute spectral gaps. For a K-convex Banach
space B we put δp0(B) = inf

{
δ ∈ (0, δ(2, p)] | Kp

δ < K(B)
}

where we interpret this infimum
as being equal to δ(2, p) if the set is empty. Note that δp0(B) > 0 since Kp

δ →∞ as δ → 0+.
Then for any 0 < δ ≤ δp0(B) we have Kp

δ ≥ K(B), and thus for such δ and n ≥ np0(δ) we have
Hp
n(δ) = Hn(Kp

δ , p). Hence γ+(Hp
n(δ), ‖·‖p) ≤ 9p+1 by Lemma 7.14, concluding the proof.
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Final remarks

We saw in Section 3 that if a group has property (T ) then its Schreier coset graphs with
respect to a finite Kazhdan (and hence generating) set with Kazhdan constant k have lower
bounds on their expansion properties in terms of k. More recently, spectral conditions of
graphs associated to a group Γ have been proven to imply property (T ) for Γ. Namely, let
Γ be a group with finite, generating set S. We then define the link graph of S, denoted by
L(S), to be the graph whose vertex set is S, and where (s, t) ∈ S×S is an edge if and only if
s−1t ∈ S. The following theorem, due to [Żuk03], gives a spectral criterion for property (T ):

Theorem. Let Γ be a group with finite, symmetric generating set S not containing the iden-
tity. If λ(L(S)) > 1/2 then Γ has property (T ) with Kazhdan pair (S,

√
2(2− λ(L(S))−1)).

The estimate λ(L(S)) > 1/2 gives an upper bound on the constant in the Poincaré
inequality for functions on the link graph with values in Hilbert space. This observation was
used in [LS17] to prove spectral criteria for Banach space versions of property (T ). It can be
shown that a group Γ has property (T ) if and only if every affine isometric action of Γ on
a Hilbert space has a fixed point. This characterization, due to Delorme and Guichardet, is
why property (T ) is also referred to as a fixed point property for group actions, and is used to
generalize property (T ) to Banach spaces: if B is a Banach space, then Γ has property (FB)
if every affine isometric action of Γ on B has a fixed point. This definition is due to Bader,
Furman, Gelander and Monod, who introduced it as well as other generalizations of property
(T ), and systematically studied them (Acta matematica, 2007). The aforementioned work by
[LS17] introduces Poincaré inequalities as criteria for property (FB):

Theorem. Let S be a finite, symmetric generating set for Γ, not containing the identity and
let B be a Banach space. Suppose there exists p ∈ (1,∞) and a constant C ∈ (0, 1) such that

inf
x∈B
‖f − x‖`p(L(S);B) ≤ C ‖∇f‖Lp(E(L(S));B) ,

for every f : S → B, where ∇f : E(L(S)) → B is given by ∇f(s, t) = f(s) − f(t). Then Γ
has property (FB).

They proceed to give spectral criteria, in terms of the operator norm of the adjacency
matrix associated to the link graph, for obtaining Poincaré inequalities as in the above theo-
rem, and hence for a group to have property (FB). These criteria are then applied to certain
random groups, to prove that, with high probability, such groups have property (FB), for all
uniformly curved Banach spaces B. Having studied constructions of expander sequences in
this thesis, I would be very interested in moving on to study such spectral criteria for fixed
point properties and further applications to random groups.
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[Mat97] Jǐŕı Matoušek. “On embedding Expanders into `p spaces”. In: Israel Journal of
Mathematics 102 (1997), pp. 189–197.
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