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Resumé

I dette bachelorprojekt behandles det klassiske momentproblem og dets forbindelse til
momentmetoden i sandsynlighedsregning. Forskellige resultater bevises undervejs med
henblik p̊a at løse det klassiske momentproblem og at etablere resultater indenfor mo-
mentmetoden. Nogle af disse resultater (herunder Kontinuitets sætningen) har yderligere
anvendelser, som ogs̊a vil blive behandlet i dette projekt. Disse anvendelser inkluderer
blandt andet den centrale grænseværdis sætning i sandsynlighedsregning og Bochners sæt-
ning i analyse.

Abstract

This bachelor thesis in mathematics deals with the classical moment problem and its
connection to the Method of moments in probability theory. Several important results are
proven along the way, some of which are needed to establish the concept of the Method of
moments, or to solve the classical moment problem. Furthermore, a number of applications
of the results established along the way (of which, most notably, the Continuity Theorem)
are given, in order to illustrate how fruitfull the subject is. Such applications include the
Central Limit Theorem in probability and Bochner’s theorem in analysis.



Introduction

This thesis deals with the classical moment problem and its relevance and applications
in probability theory. The classical moment problem is as follows: given a sequence of
real numbers, does there exist a measure µ on R having these numbers as its moments?
Furthermore, if this is the case, is µ the only measure having this property?

The thesis is organized as follows: In the first chapter we introduce the basic concepts
regarding moments and characteristic functions, along with relevant and basic results con-
cerning them. The chapter concludes with an important connection between moments of
a probability measure and properties of its characteristic function. The basic inequalities
involving moments follow the approach from [3] and the proofs of the results regarding
characteristic functions mainly follow [6]. Also a great thanks to Ernst Hansen for pro-
viding us with some very useful notes on the subject of characteristic functions.

In Chapter 2, we first consider the uniqueness part of the classical moment problem,
i.e., we give sufficient conditions for a probability measure that has all moments, to be the
only probability measure with these moments. We apply these conditions to adress the
question whether a number of concrete probability distributions (which appear frequently
in applications, cf. Table 1.1) are completely determined by their moments, or not. While
the answer is yes in most cases considered, the Weibull distribution turned out to be more
difficult to handle. We would like to thank Thomas Mikosch for pointing out the reference
[8] to us, which proved instrumental in establishing the behaviour of this distribution.
Furthermore, we also give examples of families of probability measures, that share the
same moments. In the end of the second chapter we consider the existence part of the
classical moment problem. To adress this, we need to employ important tools from func-
tional analysis (such as the Hahn-Banach extension theorem and the Riesz representation
theorem, discussed therein).

The way the classical moment problem is closely linked to probability theory is dis-
cussed in Chapter 3. We consider several different types of convergence of real-valued
random variables, including distributional convergence (or weak convergence in measure
theory). As it turns out, one can determine distributional convergence from convergence
of the corresponding moments. This, however, requires the limit random variable to be
uniquely determined by its moments. This is how the previous chapter is linked to this
chapter. This approach to determine distributional convergence is called the Method of
moments. In the end of the chapter, the applicability of the Method of moments is il-
lustrated with a proof of the Central Limit theorem. The main tool used to prove the
Method of moments is the Continuity Theorem, which basically links weak convergence of
probability measures and pointwise convergence of the corresponding characteristic func-
tions. The Continuity theorem has a broad range of applications. For instance, we use
it to prove Stirling’s formula and another version of the Central Limit theorem. And we
also prove a little bonus result, giving necessary and sufficient conditions for a function
to be the characteristic function of some probability measure on R. (This is Bochner’s
theorem.)



The thesis ends with two appendices. The first contains several approximation re-
sults (of continuous functions by real polynomials, trigonometric polynomials and simple
functions). These are needed in order to prove some of the results regarding character-
istic functions and they are also used to show that probability measures concentrated
on bounded intervals are uniquely determined by their moments. The second appendix
contains the Carathéodory theorem, whose proof mainly follows [5]. This is used to prove
that every right-continuous and non-decreasing function F on R corresponds to a measure
µ on (R,B), related by F (x) = µ((−∞, x]), x ∈ R. With this latter result available, we
can prove some useful convergence results in Chapter 3.
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Chapter 1

Moments and Characteristic
Functions

1.1 Moments and Basic Inequalities

Let µ be a probability measure on the measure space (R,B), where B is the Borel σ-algebra
on R. The definition of the moments of µ naturally occurs when considering integrals of
polynomials with respect to µ. More precisely,

Definition 1.1. Let µ be a probability measure on (R,B). For k ∈ N, the measure µ has
kth moment if the map x 7→ xk is µ-integrable. In this case, the kth moment of µ is defined
as ∫

xk dµ(x),

while the kth absolute moment of µ is∫
|x|k dµ(x).

A sequence of real numbers (αn)n∈N is called a moment sequence, if there exists a
probability measure µ on (R,B), such that for each n ∈ N, αn is the nth moment of µ.

Let X be a real-valued random variable defined on a probability space (Ω,F, P ). Then
the distribution of X, denoted by X(P ) is a probability measure on (R,B), so if X(P )
has kth moment, we say that X has kth moment. In this case we define the kth moment
of X as the kth moment of X(P ). This is denoted by E(Xk), while the absolute moment
is denoted by E |X|k. By the Change of variable theorem (cf. Theorem 16.13 in [2]),∫

xkdX(P ) =

∫
XkdP ,

which justifies the above notation. In Table 1.1, we list the moments of a random vari-
able X which follows different distributions. All these moments can be derived from the
definition.
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The next lemma is an immediate result

Lemma 1.2. Let µ be a probability measure on (R,B) and m ∈ N. If µ has kth moment
and m ≤ k, then µ has mth moment, as well.

Proof. Indeed, for x ∈ R

|x|m ≤

{
1 if |x| < 1

|x|k else.

Hence |x|m ≤ 1 + |x|k. Integration reveals∫
|x|m dµ(x) ≤

∫
1 dµ(x) +

∫
|x|k dµ(x) <∞,

which shows that the mth moment exists, as claimed.

The following version of an important inequality will come in handy, later on.

Lemma 1.3 (Chebyshev’s inequality). Let X be a real-valued random variable defined
on (Ω,F, P ). Let φ be an even function that is strictly positive and increasing on (0,∞).
Assume that φ(X) has first moment. Then, for every r > 0,

P (|X| ≥ r) ≤ E (φ(X))

φ(r)
.

Proof. The function φ is non-negative and has minimum φ(r) on the set {|X| ≥ r}, so

E(φ(X)) =

∫
φ(X) dP ≥

∫
{|X|≥r}

φ(X) dP ≥ φ(r)P (|X| ≥ r).

Rearranging this gives us the result.

One of the many applications of Chebyshev’s inequality is in the proof of the Weier-
strass approximation theorem with φ(t) = t2 (see Appendix A). It will also be used in the
case φ(t) = |t|r for a positive integer r in the proof of a later theorem (cf. Theorem 3.35).

Lemma 1.4 (Lyapounov’s inequality). Let X be a real-valued random variable defined
on (Ω,F, P ). If X has kth moment, for some k ≥ 1, then for every m = 1, 2, ..., k − 1, we
have that

(E(|X|m))1/m ≤ (E(|X|k))1/k.

Proof. Fix m = 1, 2, ..., k − 1. By Lemma 1.2 we know that X has mth moment. We
observe that the map x 7→ xk/m is convex on [0,∞) (since k/m > 1). Jensen’s inequality
implies that

(E(|X|m))k/m ≤ E((|X|m)k/m) = (E(|X|k)).

Rearranging this gives us the result.
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Remark 1.5. With this lemma, we now see that a necessary condition for a sequence
of real numbers (αn)n∈N to be a moment sequence, is that ((αn)1/n)n∈N is non-decreasing.
However, it is not a sufficient condition, as we will see next. Consider the following
sequence

a1 = 1, a2 = 1, a3 = 2, a4 = 3, and am = mm, for m ≥ 5.

Then ((αn)1/n)n∈N is non-decreasing. Now assume that it is a moment sequence, i.e., that
there exists a probability measure µ, such that

∫
xn dµ(x) = αn for all n ∈ N. Then the

non-negative function x 7→ (3x− 2x2)2 is integrable and must have non-negative integral.
But we see that

0 ≤
∫

(3x− 2x2)2 dµ(x) =

∫
9x2 + 4x4 − 12x3 dµ(x) = 9α2 + 4α4 − 12α3 = −3,

which is a contradiction. So we conclude that no such measure µ exists, hence the condition
cannot be sufficient. For a necessary and sufficient condition, see chapter 2.

Let Cb(R) be the class of all real-valued, continuous and bounded functions on R. The
next result will provide a criteria for showing that two probability measures are equal.

Theorem 1.6. Let µ and ν be probability measures on (R,B). If∫
f dµ =

∫
f dν, for all f ∈ Cb(R),

then µ = ν.

Proof. Let (a, b) denote a bounded interval in R. There exists N ∈ N such that n >
2/(b− a) for all n > N . For each such positive integer n, define the following function

fn(x) =


1 if x ∈

[
a+ 1

n , b−
1
n

]
n(x− a) if x ∈

(
a, a+ 1

n

)
n(b− x) if x ∈

(
b− 1

n , b
)

0 else.

Then fn → 1(a,b), as n → ∞, pointwise and dominated by the constant function 1. By
the Lebesgue dominated convergence theorem,∫

fn dµ→
∫

1(a,b) dµ = µ(a, b), as n→∞.

Similarly for ν, and since fn ∈ Cb(R), µ and ν agree (a, b). Hence they also agree on
all open bounded intervals. These subsets form an intersection-stable generator for the
Borel σ-algebra B. So by the uniqueness theorem for probability measures (cf. Theorem
3.3 in [2]), µ = ν.
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1.2 Characteristic Functions

We will need another concept in order to obtain a new approach to moments of probability
measures.

Definition 1.7. Let µ be a probability measure on (R,B). The characteristic function of
µ is the function φ : R→ C defined by

φ(θ) =

∫
eiθx dµ(x), θ ∈ R.

Note that φ is well-defined, since the map x 7→ eiθx is measurable for all θ ∈ R and∣∣eiθx∣∣ = 1, so this map is also µ-integrable. The above formula involves a complex-valued
integral, so we rewrite it as

φ(θ) =

∫
cos(θx) dµ(x) + i

∫
sin(θx) dµ(x), θ ∈ R

From this we see that φ is conjugate symmetric (i.e., φ(−θ) = φ(θ) for all θ ∈ R). Since
sin is an odd function and cos is even, we get for all θ ∈ R,

φ(−θ) =

∫
cos(−θx) dµ(x) + i

∫
sin(−θx) dµ(x)

=

∫
cos(θx) dµ(x)− i

∫
sin(θx) dµ(x) = φ(θ).

If X is a real-valued random variable, then we can define the characteristic function
of X. We simply define it as the characteristic function of the distribution of X. This
approach is justified by the Change of variable theorem:∫

eiθx dX(P ) =

∫
eiθX dP = E(eiθX).

Lemma 1.8. Let X be a real-valued random variable with characteristic function φ. Then
aX + b has characteristic function ψ, given by

ψ(θ) = eiθbφ(aθ), θ ∈ R.

Proof. The proof is a simple calculation:

ψ(θ) =

∫
eiθ(aX+b) dP = eiθb

∫
eiaθX dP = eiθbφ(aθ),

as wanted.

Lemma 1.9. Let X1, X2, ..., Xn be real-valued independent random variables with charac-
teristic function φi, respectively. Then Sn =

∑n
i=1Xi has characteristic function ψ, given

by

ψ(θ) =

n∏
i=1

φi(θ), θ ∈ R.

6



Proof. Since X1, X2, ..., Xn are independent, then so are eiθX1 , eiθX2 , ..., eiθXn , for each
θ ∈ R. So

ψ(θ) = E(eiθSn) = E

(
n∏
i=1

eiθXi

)
=

n∏
i=1

E(eiθX) =
n∏
i=1

φi(θ),

as claimed.

By using some of the approximation results from Appendix A, we shall see that prob-
ability measures are uniquely determined by their characteristic functions.

Theorem 1.10. Let µ and ν be two probability measures on (R,B), and let φµ and φν be
their respective characteristic functions. If φµ = φν , then µ = ν.

Proof. Let q : R → C be a generalized trigonometric polynomial, i.e., of the form (see
Appendix A)

q(θ) =
N∑
j=1

cje
iαjθ, θ ∈ R.

Note that the integral of q with respect to µ is uniquely determined by the characteristic
function φµ. More precisely,

∫
q(θ) dµ(θ) =

N∑
j=1

cj

∫
eiαjθ dµ(θ) =

N∑
j=1

cjφµ(αj).

A similar result holds, of course, for ν. So µ and ν agree on the generalized trigonometric
polynomials, when it comes to integration. Given f ∈ Cb(R), by Corollary A.6 there exists
a sequence of real generalized trigonometric polynomials (qn)n∈N such that for every n ∈ N,

sup
θ∈[−n,n]

|f(θ)− qn(θ)| < 1

n
.

Furthermore, the fact that ‖qn‖ ≤ ‖f‖+1, for all n, ensures that the Lebesgue dominated
convergence theorem applies to the sequence (qn)n∈N converging pointwise to f , as n→∞.
Hence ∫

qn dµ→
∫
f dµ, as n→∞.

A similar argument applies to ν. So the integrals of any f ∈ Cb(R) are the same for both
measures. By Theorem 1.6, we conclude that µ = ν.

There are further important and useful results regarding characteristic functions. First
of all, we will establish a connection between existence of moments of a measure and
smoothness properties of its characteristic function. For this we need the following lemma:

Lemma 1.11. The following holds∫ y

0

sin(t)

t
dt→ π

2
, as y →∞.
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Proof. Note that the map t 7→ sin(t)/t is not integrable on (0,∞). For instance, observe
that

∞∑
j=1

1

2t
1(π

3
+πj, 2π

3
+πj) ≤

∣∣∣∣sin(t)

t

∣∣∣∣ ,
where it is easily seen that the left hand side has infinite integral, so we have to be careful.

We consider the function f : (0,∞)2 → R given by f(t, x) = sin(t)e−tx. For all y > 0
we see that f is m2-integrable over (0, y)× (0,∞) by use of Tonelli’s theorem,∫

(0,y)×(0,∞)
|f | dm2 =

∫ y

0

∫ ∞
0
|sin(t)| e−tx dxdt ≤

∫ y

0

∫ ∞
0

te−tx dxdt =

∫ y

0
1 dt = y <∞.

Fubini’s theorem then applies and both orders of integration represent the integral of f
on (0, y)× (0,∞) with respect to m2. The first order of integration reveals∫

(0,y)×(0,∞)
f dm2 =

∫ y

0

∫ ∞
0

sin(t)e−tx dxdt =

∫ y

0

sin(t)

t
dt.

In the other order we first consider the inner integral. Since the integration domain is
a bounded interval and the integrand is continuous on the whole real line, the integral
exists both as a Riemann integral and a Lebesgue integral. Therefore the integral can be
calculated as a Riemann integral (see section 17 in [2]). Using the substitution z = tx on
the inner integral gives us∫ y

0
sin(t)e−tx dt =

∫ yx

0
sin
( z
x

)
e−z

1

x
dz =

1

x

[
−x

1 + x2
e−z

(
cos
( z
x

)
+ x sin

( z
x

))]z=yx
z=0

=
1

x

(
−x

1 + x2
e−yx (cos(y) + x sin(y))− −x

1 + x2

)
=

(
1

1 + x2
− 1

1 + x2
e−yx cos(y)− x

1 + x2
e−yx sin(y)

)
,

where we used the antiderivative F (z) = −x
1+x2

e−z
(
cos
(
z
x

)
+ x sin

(
z
x

))
. Now we get that∫

(0,y)×(0,∞)
f dm2 =

∫ ∞
0

∫ y

0
sin(t)e−tx dtdx

=

∫ ∞
0

(
1

1 + x2
− 1

1 + x2
e−yx cos(y)− x

1 + x2
e−yx sin(y)

)
dx

=
π

2
−
∫ ∞

0

(
1

1 + x2
e−yx cos(y) +

x

1 + x2
e−yx sin(y)

)
dx.

The last equality follows since the integrand is integrable and
∫∞

0
1

1+x2
dx = π/2. Com-

bining the two representations of the integral reveals∣∣∣∣∫ y

0

sin(t)

t
dt− π

2

∣∣∣∣ =

∣∣∣∣∫ ∞
0

1

1 + x2
e−yx cos(y) +

x

1 + x2
e−yx sin(y)dx

∣∣∣∣ ≤ ∫ ∞
0

2e−yx dx ≤ 2

y
.

Letting y →∞ yields the result.
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As a consequence of the above theorem, we see that the map y 7→
∫ y

0
sin(t)
t dt is bounded

on (0,∞). It will also be useful to observe that

∫ y

−y

sin(αt)

t
dt = 2

∫ y

0

sin(αt)

t
dt = 2

∫ αy

0

sin(z)

z
dz →


π if α > 0

−π if α < 0

0 if α = 0

, as y →∞(1.1)

by using that t 7→ sin(αt)/t is an even function and by the substitution z = αt.
As we will see next, integrating the characteristic functions reveals some very interest-

ing results. First we need to make sure that the characteristic function of a measure can
be integrated, in fact, as it turns out, it is uniformly continuous:

Lemma 1.12. Let µ be a probability measure on (R,B). Let g : R→ C be a µ-integrable
function and let λ ∈ R. The complex-valued function

f(x) =

∫
eiλxtg(t) dµ(t), x ∈ R,

is uniformly continuous.

Proof. Integrability of g ensures that f is well-defined. Let x ∈ R be arbitrary. We want
to prove that |f(x+ ∆x)− f(x)| → 0, as ∆x→ 0. We see that

|f(x+ ∆x)− f(x)| =

∣∣∣∣∫ eiλ(x+∆x)tg(t)− eiλxtg(t) dµ(t)

∣∣∣∣
≤

∫
|g(t)|

∣∣∣(eiλ∆xt − 1
)
eiλxt

∣∣∣ dµ(t) =

∫
|g(t)|

∣∣∣eiλ∆xt − 1
∣∣∣ dµ(t).

Note that the integrand converges pointwise to 0, as ∆x → 0, dominated by the µ-
integrable function t 7→ 2 |g(t)|. Therefore, an application of the Lebesgue dominated
convergence theorem shows that |f(x+ ∆x)− f(x)| → 0, as ∆x→ 0.

Setting λ = 1 and g(t) ≡ 1 we see that the characteristic function of µ is uniformly
continuous. It is now possible to integrate the characteristic function with respect to the
Lebesgue measure over a bounded interval.

Theorem 1.13 (The inversion formula). Let φ be the characteristic function of a
probability measure µ on (R,B). For a < b,

1

2π

∫ T

−T

e−iat − e−ibt

it
φ(t) dt→ µ((a, b)) +

µ({a}) + µ({b})
2

, as T →∞. (1.2)

Proof. For fixed a, b we introduce the function f(t) = (e−iat − e−ibt)/(it), for t ∈ R.
Observe that f is bounded, since for t ∈ R

|f(t)| =
∣∣∣∣∫ b

a
e−itz dz

∣∣∣∣ ≤ ∫ b

a

∣∣e−itz∣∣ dz = b− a,

9



so the integral in (1.2) is well-defined. Also f is conjugate symmetric, hence fφ is also
conjugate symmetric. This implies that the imaginary part of the function is odd, so∫ T
−T f(t)φ(t)dt is real. We write out the characteristic function in (1.2),∫ T

−T
f(t)φ(t) dt =

∫ T

−T

∫
f(t)eitx dµ(x)dt.

We want to interchange the order of integration, by use of Fubini’s theorem. It applies
since we have the sufficient integrability conditions∫ T

−T

∫ ∣∣f(t)eitx
∣∣ dµ(x)dt ≤

∫ T

−T

∫
b− a dµ(x)dt = 2T (b− a) <∞.

We write out the integrand

f(t)eitx =
e−i(a−x)t − e−i(b−x)t

it

=
cos((a− x)t)− i sin((a− x)t)− cos((b− x)t) + i sin((b− x)t)

it

=
sin((b− x)t)− sin((a− x)t)

t
− icos((a− x)t)− cos((b− x)t)

t
.

The new inner integral is therefore (only the real part is relevant because of conjugate
symmetry)∫ T

−T

sin((b− x)t)− sin((a− x)t)

t
dt =

∫ T

−T

sin((b− x)t)

t
dt−

∫ T

−T

sin((a− x)t)

t
dt.

We consider the limit T → ∞. Depending on the sign of a − x and b − x the limits will
be either π, 0 or −π, as we saw in (1.1). This then gives us

∫ T

−T
f(t)eitx dt→


2π x ∈ (a, b)

π x ∈ {a, b}
0 else

, as T →∞.

This convergence is dominated (since the function y 7→
∫ y

0
sin(t)
t dt is bounded). Applying

the Lebesgue dominated convergence theorem we obtain∫ ∫ T

−T
f(t)eitx dtdµ(x)→

∫
2π1(a,b) + π1{a,b}dµ, as T →∞.

Thus proving the claim.

As an interesting application, we obtain the following:

Corollary 1.14. Let φ be the characteristic function of a probability measure µ on (R,B).
If φ is integrable with respect to the Lebesgue measure m, then µ has density with respect
to m. The density is

g(x) =
1

2π

∫
e−ixtφ(t) dm(t), x ∈ R.

10



Proof. One might think that the function g from above is complex-valued. However we
quickly realize that the integrand is conjugate symmetric, hence g is a real-valued function.
There can be at most countably many points of discontinuity for µ. So let a < b be two
points of continuity. Let f denote the function from the previous proof. For every T > 0
the map t 7→ 1(−T,T )fφ is bounded by an m-integrable function

∣∣1(−T,T )(t)f(t)φ(t)
∣∣ ≤ ∣∣∣∣e−iat − e−ibtit

φ(t)

∣∣∣∣ ≤ (b− a) |φ(t)| ,

since we assume that φ is integrable. Now letting T → ∞ we get that 1(−T,T )fφ → fφ.
So by the Lebesgue dominated convergence theorem combined with the inversion formula
we get (using that a, b are points of continuity, so that the point masses are zero)

µ((a, b)) =
1

2π

∫
fφ dm =

∫ ∫ b

a

1

2π
e−itxφ(t) dxdm(t),

Here we have used the integral representation of f that we saw in the previous proof. We
want to apply Fubini’s theorem, so we check for integrability∫ ∫ b

a

∣∣∣∣ 1

2π
e−itxφ(t)

∣∣∣∣ dxdm(t) =

∫ ∫ b

a

1

2π
|φ(t)| dxdm(t) =

b− a
2π

∫
|φ(t)| dm(t) <∞,

since φ is integrable by assumption. Applying Fubini’s theorem reveals

µ((a, b)) =

∫ b

a

∫
1

2π
e−itxφ(t) dm(t)dx =

∫ b

a
g(x)dx. (1.3)

So µ = g ·m on all Borel sets of the form (a, b), where a, b belongs to a dense subset in
R. These sets form an intersection-stable generator for the Borel σ-algebra on R. By the
uniqueness theorem for probability measures, we conclude that µ = g ·m.

Strictly speaking, we have not yet shown that g ·m is a probability measure. But we
can pick a sequence of endpoints an, bn consisting of continuity points of µ, such that

(an, bn)→ (−∞,∞), as n→∞.

So
∫∞
−∞ g(x)dx = µ((−∞,∞)) = 1. The density g is also continuous (actually uniformly

continuous) due to Lemma 1.12. This then implies that g cannot be negative. If g were
negative in a point x0 then it would also be negative in an interval (a, b) around x0. But
then (1.3) would give µ((a, b)) a negative value, which is impossible.

Now we can establish the connection between the characteristic function of a proba-
bility measure µ and its moments (if they exists).

Theorem 1.15. Let φ be the characteristic function of a probability measure µ on (R,B).
If µ has kth moment, then φ is a Ck-function. Furthermore, its derivatives are given by

φ(k)(θ) = ik
∫
xkeiθx dµ(x),

for all θ ∈ R.

11



Proof. Suppose that µ has nth moment. We prove the assertion by simple induction, let-
ting k ≤ n denote the order of differentiability. Let k = 1, we observe that

∣∣ d
dθ cos(θx)

∣∣ =
|−x sin(θx)| ≤ |x|. By the assumption that µ has 1st moment, the last function is inte-
grable. Hence the function θ 7→

∫
cos(θx) dµ(x) is differentiable and (see Appendix A.9

in [4])
d

dθ

∫
cos(θx) dµ(x) = −

∫
x sin(θx) dµ(x).

The same argument also gives that

d

dθ

∫
sin(θx) dµ(x) =

∫
x cos(θx) dµ(x).

Hence φ(θ) =
∫

cos(θx) dµ(x) + i
∫

sin(θx) dµ(x) is also differentiable and

φ′(θ) = −
∫
x sin(θx) dµ(x) + i

∫
x cos(θx) dµ(x) = i

∫
xeiθx dµ(x).

Continuity of φ′ follows from Lemma 1.12. This proves the induction start. Now let φ be
Ck−1. We want to show that φ ∈ Ck. We have, respectively, that∣∣∣∣ ddθxk−1 cos(θx)

∣∣∣∣ =
∣∣∣−xk sin(θx)

∣∣∣ ≤ ∣∣∣xk∣∣∣∣∣∣∣ ddθxk−1 sin(θx)

∣∣∣∣ =
∣∣∣xk cos(θx)

∣∣∣ ≤ ∣∣∣xk∣∣∣ ,
so the left hand side is integrable (µ has nth moment, hence also kth moment). It follows
that the functions θ 7→

∫
xk−1 cos(θx) dµ(x) and θ 7→

∫
xk−1 sin(θx) dµ(x) are differen-

tiable, hence φ(k−1) is also differentiable. The induction assumption gives

φ(k)(θ) = (φ(k−1))′(θ) = i(k−1)

(
−
∫
xk sin(θx) dµ(x) + i

∫
xk cos(θx) dµ(x)

)
= ik

∫
xkeiθx dµ(x).

Continuity follows from Lemma 1.12.

We quickly see that this result gives a new approach to obtain the moments of a
measure. If we know that the measure has kth moment, and we know its characteristic
function φ, then the kth moment of µ is equal to−ikφ(k)(0). As a further consequence of the
above result, it is possible, under additional assumptions, to approximate the characteristic
function of a measure with its moments. In order to obtain this result, we will need the
following lemma:

Lemma 1.16. For any n ≥ 0, we have that∣∣∣∣∣eiy −
n∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ min

(
2
|y|n

n!
,
|y|n+1

(n+ 1)!

)
, y ∈ R. (1.4)
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Proof. We prove (1.4) for all y > 0, the proof for y ≤ 0 is completely analogous. Let
y > 0, we will prove the following version of Taylor’s formula with remainder

eiy =

n∑
k=0

(iy)k

k!
+
in+1

n!

∫ y

0
(y − x)neix dx, (1.5)

which will be proved by induction on the non-negative integer n. The induction start is
clear. For the induction step fix n ∈ N and observe that integration by parts gives us∫ y

0
(y − x)neix dx =

[
−(y − x)n+1

n+ 1
eix
]x=y

x=0

−
∫ y

0
−(y − x)n+1

n+ 1
ieix dx

=
yn+1

n+ 1
+

i

n+ 1

∫ y

0
(y − x)n+1eix dx.

Hence

eiy =
n∑
k=0

(iy)k

k!
+
in+1

n!

∫ y

0
(y − x)neix dx

=
n∑
k=0

(iy)k

k!
+
in+1

n!

(
yn+1

n+ 1
+

i

n+ 1

∫ y

0
(y − x)n+1eix dx

)

=

n+1∑
k=0

(iy)k

k!
+

in+2

(n+ 1)!

∫ y

0
(y − x)n+1eix dx,

thus proving (1.5). With this available we observe that, for n ≥ 0∣∣∣∣∣eiy −
n∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ 1

n!

∫ y

0
(y − x)n dx =

yn+1

(n+ 1)!
.

So we have proved the first half of (1.4). For the other half, consider (1.5) for n−1, (where
n ≥ 1), then

eiy =

n−1∑
k=0

(iy)k

k!
+

in

(n− 1)!

∫ y

0
(y − x)n−1eix dx

=
n∑
k=0

(iy)k

k!
+

in

(n− 1)!

∫ y

0
(y − x)n−1(eix − 1) dx.

Hence ∣∣∣∣∣eiy −
n∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ 1

(n− 1)!

∣∣∣∣∫ y

0
(y − x)n−1(eix − 1) dx

∣∣∣∣ ≤ 1

(n− 1)!

2yn

n
.

The conclusion also holds for n = 0, thus completing the proof.
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Theorem 1.17. Let X be a real-valued random variable defined on a probability space
(Ω,F, P ) and let φ be the characteristic function of the probability measure. If X has nth

moment, for some n ∈ N, then

φ(θ) = 1 +

n∑
k=1

(iθ)k

k!
E(Xk) + o(|θ|n), as θ → 0.

Proof. What we need to prove, is that∣∣∣φ(θ)− 1−
∑n

k=1
(iθ)k

k! E(Xk)
∣∣∣

|θ|n
→ 0, as θ → 0.

We replace y by θX in (1.4) and obtain∣∣∣∣∣eiθX −
n∑
k=0

(iθX)k

k!

∣∣∣∣∣ ≤ |θ|n min

(
2
|X|n

n!
,
|θ| |X|n+1

(n+ 1)!

)
.

Integrating the above with respect to P and using Theorem 1.15 reveals∣∣∣∣∣φ(θ)− 1−
n∑
k=1

(iθ)k

k!
E(Xk)

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣eiθX −

n∑
k=0

(iθX)k

k!

∣∣∣∣∣ dP
≤ |θ|n

∫
min

(
2
|X|n

n!
,
|θ| |X|n+1

(n+ 1)!

)
dP .

The last integrand converges to 0, as θ → 0, bounded by the function θ 7→ 2 |X|n /n!,
which is integrable by assumption. By the Lebesgue dominated convergence theorem, we
have proved the claim.
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Chapter 2

The Classical Moment Problem

Let (αn)n∈N0 be a sequence of real numbers, where N0 = N ∪ {0}. The classical moment
problem focuses on two questions: Under what conditions is (αn)n∈N0 the moment se-
quence of some measure µ on R? This we call the existence part. Secondly if (αn)n∈N0

is a moment sequence of some measure µ, under what conditions is µ the only measure
having this property? This we call the uniqueness part. In this chapter we consider these
two questions.

2.1 Uniqueness

If a distribution has all moments and it is the only distribution with these moments, then
we say that the distribution is uniquely determined by its moments (or M-determinate);
if not we say it is M-indeterminate. The focus of the first section in this chapter is to
establish sufficient conditions for a given sequence of real numbers to be the moments of
at most one measure. One of these sufficient conditions, which we discuss next, involves
the support of the measure.

2.1.1 Bounded Support

As a consequence of Theorem 1.6 and the Weierstrass approximation theorem (see Ap-
pendix A), we obtain the following result:

Theorem 2.1. Let µ and ν be probability measures on (R,B) concentrated on a bounded
interval I. If µ and ν have the same moments, then µ = ν.

Proof. The maps x 7→ xk are bounded on I, so the moments always exist for measures
concentrated on bounded intervals. By hypothesis, the measures µ and ν have the same
moments, hence polynomials of the form p(x) =

∑n
i=1 aix

i are integrable and∫
p(x) dµ(x) =

n∑
i=1

ai

∫
xi dµ(x) =

n∑
i=1

ai

∫
xi dν(x) =

∫
p(x) dν(x).

Let f ∈ Cb(R). It follows that f is continuous on [a, b] for some a, b ∈ R such that
I ⊆ [a, b]. For any ε > 0, the Weierstrass approximation theorem ensures the existence of
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a polynomial p such that |f(x)− p(x)| < ε, for all x ∈ I. Since µ and ν are concentrated
on I, we deduce that ∣∣∣∣∫ f dµ−

∫
p dµ

∣∣∣∣ ≤ ∫
I
|f − p| dµ ≤ ε.

Similarly for ν. It follows that∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ ≤ ∣∣∣∣∫ f dµ−
∫
p dµ

∣∣∣∣+

∣∣∣∣∫ f dµ−
∫
p dν

∣∣∣∣ ≤ 2ε.

An application of Theorem 1.6 shows that µ = ν.

So if a probability measure µ is concentrated on a bounded interval, it is uniquely
determined by its moments. We therefore have the following corollary:

Corollary 2.2. The B-distribution and the uniform distribution are uniquely determined
by their moments.

2.1.2 Further Sufficient Conditions

Lemma 2.3. Let X be a real-valued random variable on a probability space, which has all
moments, and let a, b ∈ R. If X is uniquely determined by its moments, then so is aX+b.

Proof. Since X has all moments, so does aX + b. Let Y be another real-valued random
variable also having all moments. Assume that E((aX+b)k) = E(Y k) holds for all k ∈ N,
we want to show that aX + b = Y . Set Z = (Y − b)/a, then we have E((aX + b)k) =
E((aZ + b)k) for all k ∈ N. We prove, by complete induction on k, that E(Xk) = E(Zk)
holds for all k ∈ N. The induction start clearly holds, since

aE(X) + b = E(aX + b) = E(aZ + b) = aE(Z) + b.

Now suppose that E(Xr) = E(Zr) holds for all positive integers r < k. Then

k∑
i=0

(
k

i

)
br−iaiE(Xi) = E((aX + b)k) = E((aZ + b)k) =

k∑
i=0

(
k

i

)
br−iaiE(Zi).

We see that all the terms, except the last, cancel. Hence E(Xk) = E(Zk), by the assertion
that X is uniquely determined by its moments, we conclude that X = Z. Therefore
aX + b = aZ + b = Y , so the proof is complete.

Theorem 2.4. Let µ be a probability measure on (R,B) having all moments (αk)k∈N. If
the power series

∞∑
k=1

αk
rk

k!
,

has a positive radius of convergence r, then µ is the only measure having (αk)k∈N as
moments.
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Proof. Let (βk)k∈N denote the sequence of absolute moments of µ. First we want to show
that

βkr
k

k!
→ 0, as k →∞, (2.1)

for some positive r. By hypothesis, there exists s ∈ (0, 1) such that limk→∞(αks
k)/k! = 0,

since the series converges. Now choose 0 < r < s, then (2.1) holds for the sequence of
even k’s, since in this case αk = βk. Furthermore 2kr2k−1 < s2k holds for k large enough,
so

|x|2k−1 r2k−1

(2k − 1)!
≤ r2k−1

(2k − 1)!
+
|x|2k r2k−1

(2k − 1)!
≤ r2k−1

(2k − 1)!
+
|x|2k s2k

(2k)!
,

where we used that |x|2k−1 ≤ 1 + |x|2k. Integrating with respect to µ reveals

β2k−1r
2k−1

(2k − 1)!
≤ r2k−1

(2k − 1)!
+
β2ks

2k

(2k)!
=

r2k−1

(2k − 1)!
+
α2ks

2k

(2k)!
→ 0, as k →∞.

Hence (2.1) also holds for the sequence of odd k’s. Hence (2.1) must hold. By Lemma
1.16, with y = hx we have∣∣∣∣∣ei(θ+h)x −

n∑
k=0

(ihx)k

k!
eiθx

∣∣∣∣∣ =

∣∣∣∣∣eiθx
(
eihx −

n∑
k=0

(ihx)k

k!

)∣∣∣∣∣ =

∣∣∣∣∣eihx −
n∑
k=0

(ihx)k

k!

∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!

Hence by integrating with respect to µ and using Theorem 1.15 we get that∣∣∣∣∣φ(θ + h)−
n∑
k=0

hk

k!
φ(k)(θ)

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣ei(θ+h)x −

n∑
k=0

(ihx)k

k!
eiθx

∣∣∣∣∣ dµ(x)

≤
∫
|hx|n+1

(n+ 1)!
dµ(x) =

|h|n+1 βn+1

(n+ 1)!
.

Using (2.1) we conclude that

φ(θ + h) =
∞∑
k=0

φ(k)(θ)

k!
hk, for |h| ≤ r.

Similarly, if ν were another probability measure on (R,B) with moments (αk)k∈N and
characteristic function ψ, then

ψ(θ + h) =
∞∑
k=0

ψ(k)(θ)

k!
hk, for |h| ≤ r.

Let t = 0. Since φ(k)(0) = ikαk = ψ(k)(0), it follows that φ and ψ agree on (−r, r).
Hence their derivatives will also agree on (−r, r). Then letting t = r − ε and t = −r + ε
reveals that φ and ψ agree on (−2r + ε, 2r − ε). Therefore they agree on (−2r, 2r).
Repeating this argument gives us that φ and ψ will agree on R. By Theorem 1.10, the
proof is complete.
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Now we can prove the following corollary:

Corollary 2.5. The normal-, gamma- and Laplace-distribution are uniquely determined
by their moments.

Proof. We consider the power series in Theorem 2.4,

∞∑
k=1

αk
rk

k!
.

Here αk denotes the moment kth moment, and they are listed in Table 1.1. We know from
the root-criteria for power series, that the above has positive radius of convergence if

lim sup
k→∞

∣∣∣αk
k!

∣∣∣1/k <∞.
Due to Lemma 2.3, we only need to consider the standard normal distribution, the stan-
dard Laplace distribution and the gamma distribution with scale parameter β = 1.

For the standard normal distribution, we only need to consider the even moments. We
use that the gamma-function is increasing, when the argument is greater than 2. So for
k > 2 and even,

(αk
k!

)1/k
=

(
2k/2

Γ
(
k+1

2

)
√
πk!

)1/k

=
√

2

(
Γ
(
k+1

2

)
√
πΓ(k + 1)

)1/k

≤
√

2.

So the sequence ((αk/k!)1/k)k∈N is bounded, by the root-criteria we conclude that the
conditions in Theorem 2.4 are met.

For gamma distribution with scale parameter 1, we see that

(αk
k!

)1/k
=

 Γ(λ+k)
Γ(λ)

k!

1/k

=

(∏k
j=1 (λ+ j − 1)∏k

j=1 j

)1/k

≤

 k∏
j=1

(λ+ 1)

1/k

= λ+ 1.

We therefore see that the sequence ((αk/k!)1/k)k∈N is bounded, by the root-criteria we
conclude that the conditions in Theorem 2.4 are met. Hence the gamma distribution is
uniquely determined by its moments.

For the standard Laplace distribution, we have, for k even

(αk
k!

)1/k
=

(
k!

k!

)1/k

= 1.

Hence the Laplace distribution is uniquely determined by its moments.
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2.1.3 Examples of M-indeterminate Distributions

Given a measure µ on (R,B) having all moments, in general it may not be the only measure
with those moments. The following two examples, illustrate this (cf. [4], section 2.3).

Example 2.6 (Heyde (1963)). Consider the lognormal distribution, i.e., the measure on
(R,B) given by the following density with respect to the Lebesgue measure:

f0(x) =

{
(2π)−

1
2x−1e− log (x)2/2, x > 0

0 else.

It is well-known that µ0 = f0 · m is a probability measure. For α ∈ [−1, 1] we will
justify that fα(x) = f0(x) (1 + α sin(2π log(x))) is a probability density with respect to
the Lebesgue measure. First fα is clearly measurable. We also have that α sin(2π log(x)) ∈
[−1, 1] for all x, so fα is non-negative. For k ∈ N0 we have∫

xk dµα(x) =

∫ ∞
0

xkf0(x) (1 + α sin(2π log (x))) dx

=

∫ ∞
0

xkf0(x) dx+ α

∫ ∞
0

xkf0(x) sin(2π log (x)) dx.

Since the above integrands are integrable (they are bounded by the m-integrable function
x 7→ 2 |x|k f0(x)). So now we calculate the last integral. We use the substitution y = log(x)∫ ∞

0
xkf0(x) sin(2π log (x)) dx =

∫ ∞
−∞

(2π)−
1
2 eky−y

2/2 sin(2πy) dy.

We rewrite the exponent

ky − y2

2
= −1

2
(y2 − 2ky) = −1

2
((y − k)2 − k2) =

k2

2
− (y − k)2

2
,

so the integral is∫ ∞
0

xkf0(x) sin(2π log(x)) dx =

∫ ∞
−∞

(2π)−
1
2 ek

2/2e(y−k)2/2 sin(2πy) dy

=

∫ ∞
−∞

(2π)−
1
2 ek

2/2et
2/2 sin(2π(t+ k)) dt

=

∫ ∞
−∞

(2π)−
1
2 ek

2/2et
2/2 sin(2πt) dt = 0.

With use of the substition t = y − k, periodicity of sin and the last integrand being an
odd function. So we have found uncountably many probability measures all having the
same moments. By setting α to 0, we conclude that the standard log-normal distribution
is not uniquely determined by its moments.

Example 2.7. Let λ ∈ (0, 1) and α ∈ [−1, 1], then set

fα,λ(x) = cλe
−|x|λ

(
1 + α sin(β |x|λ sgn(x))

)
,
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where β = tan(λπ/2) and 1/cλ =
∫
e−|x|

λ

< ∞. It is well-known that cλe
−|x|λ is a

probability density with respect to m and it has all moments. The functions fα,λ are
measurable and non-negative since α ∈ [−1, 1]. The following integral exists (the integrand

is bounded by |x|n e−|x|
λ

) ∫
xne−|x|

λ

sin(β |x|λ sgn(x)) dx.

We claim it is 0 for all n ∈ N0, we would then get∫
xnfα,λ(x) dm(x) =

∫
xncλe

−|x|λ dm(x) + αcλ

∫
xne−|x|

λ

sin(β |x|λ sgn(x)) dm(x)

=

∫
xncλe

−|x|λ dm(x).

Thus (µα = fα,λ · m)α∈[−1,1] is a family of probability measures having the same
moments for each fixed λ. So now we prove the claim. We look at the integrand x 7→
xne−|x|

λ

sin(β |x|λ sgn(x)). If n is even then the integrand is odd and the claim holds. So
now let n be odd, then the integrand is even and we only have to prove the claim with
integration domain [0,∞), so we need to show∫ ∞

0
xne−x

λ
sin(βxλ) dx = 0,

for n odd. Using the identity with q ∈ C and Re(q) > 0∫ ∞
0

tp−1e−qt dt =
Γ(p)

qp
,

with p = (n+ 1)/λ, q = 1 + iβ and the substitution t = xλ we get

Γ(n+1
λ )

(1 + iβ)
n+1
λ

=

∫ ∞
0

xλ(
n+1
λ
−1)e−(1+iβ)xλλxλ−1 dx

= λ

∫ ∞
0

xne−x
λ

cos(βxλ) dx− iλ
∫ ∞

0
xne−x

λ
sin(βxλ) dx. (2.2)

We then focus on the denominator (1 + iβ)
n+1
λ . Since

1 + iβ = 1 + i tan(λπ/2) = 1 +
i sin(λπ/2)

cos(λπ/2)
=

eiλπ/2

cos(λπ/2)
,

we get that (1 + iβ)(n+1)/λ = e(iλπ(n+1))/(2λ)/ cos(λπ/2)(n+1)/λ. Since n + 1 is even the
right-hand side is real, thus (2.2) reveals the claim.
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2.1.4 The Weibull Distribution and the Krein Condition

So far we have studied whether certain commonly used distributions are uniquely deter-
mined by their moments. The only distribution listed in Table 1.1 that has all moments,
but we have not yet considered is the Weibull distribution. As it turns out, this is more
difficult to handle, and surprisingly the question whether or not it is uniquely determined
by its moments depends on the parameter value. In order to show this, we state the
following theorem from [8] without proof:

Theorem 2.8. Let f be a probability density with respect to the Lebesgue measure, that
has all moments and is concentrated on (0,∞). If the following Krein condition holds:∫ ∞

0

− log(f(x2))

1 + x2
dx <∞,

then the measure f ·m is M-indeterminate. If, however,∫ ∞
0

− log(f(x2))

1 + x2
dx =∞,

and f is differentiable and there exists x0 > 0, such that for x ≥ x0 we have that
(−xf ′(x))/f(x)↗∞, as x→∞, then f ·m is M-determinate.

Corollary 2.9. The Weibull distribution with parameter c > 0 (see Table 1.1) is uniquely
determined by its moments if and only if c ≥ 1/2.

Proof. The density of the Weibull distribution is given by f(x) = cβ−cxc−1e−x
c/βc , for

x > 0. We want to apply Theorem 2.8. Observe that

∫ ∞
0

− log(f(x2))

1 + x2
dx =

∫ ∞
0

− log
(
c
βc

)
1 + x2

− 2(c− 1) log(x)

1 + x2
+

1

βc
x2c

1 + x2
dx.

The two first terms in the integrand have finite integral, so the above if finite (respectively
infinite) if and only if

∫∞
1 x2c/(1 + x2) dx is finite (respectively infinite).

If c ≥ 1/2, then we have that∫ ∞
1

x2c

1 + x2
dx ≥

∫ ∞
1

x

1 + x2
dx ≥

∫ ∞
1

x/2

x2
dx =∞.

Furthermore we see that f is differentiable and

f ′(x) =
c

βc

(
(c− 1)xc−2e

− x
c

βc − xc−1e
− x

c

βc
cxc−1

βc

)
=

c

βc
e
− x

c

βc

(
(c− 1)xc−2 − c

βc
x2c−2

)
.

So we get that for all c > 0

−xf ′(x)

f(x)
=
x c
βc e
− x

c

βc

(
(c− 1)xc−2 − c

βcx
2c−2

)
c
βcx

c−1e
− xc
βc

= (1− c) +
c

βc
xc ↗∞, as x→∞.
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By Theorem 2.8 we conclude that if c ≥ 1/2, then the Weibull distribution with parameter
c is M-determinate.

Conversely, if 0 < c < 1/2, then we see that∫ ∞
1

x2c

1 + x2
dx ≤

∫ ∞
1

x2c−2 dx <∞,

since 2c − 2 < −1. By Theorem 2.8 we conclude that the Weibull distribution is M-
indeterminate for parameter values in (0, 1/2). Hence the proof is complete.

2.2 Existence

In this section, we will prove the existence part of the classical moment problem. We will
need some definitions and lemmas. First we prove that every non-negative polynomial is
a sum of squares, more precisely:

Lemma 2.10. If p : R → R is a non-negative polynomial, then there exists polynomials
q1, q2, ..., qk such that

p(x) = q1(x)2 + q2(x)2 + ...+ qk(x)2, for all x ∈ R.

Proof. We prove it by complete induction on n = deg(p). For n = 0, p is a non-negative
constant and the claim obviously holds. Let n > 0 and deg(p) = n and assume that the
claim holds for all non-negative polynomials of order less than n. Set

k = inf {p(x) | x ∈ R} = min {p(x) | x ∈ R} ≥ 0.

Set g(x) = p(x)− k, for all x ∈ R. Then g is a non-negative polynomial and g has at least
one real root c. The multiplicity of c is necessarily even, since the complex roots come in
conjugate pairs. We factor the polynomial g, so

g(x) = (x− c)2h(x), x ∈ R,

for some polynomial h, which has degree less than n. By the induction hypothesis h is a
sum of squares, hence

f(x) = (x− c)2h(x) + (
√
k)2, x ∈ R

is a sum of squares. Thus completing the proof.

Next we will need a very important result from functional analysis, the Hahn-Banach
extension theorem. First we need to define the following

Definition 2.11. Let X be vector space over R. A sublinear functional on X is a map
p : X → R, such that

1. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X

2. p(λx) = λp(x), for all x ∈ X,λ ≥ 0
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A seminorm on X is an example of a sublinear functional on X. The proof of The
Hahn-Banach extension Theorem follows [5] section 5.2.

Theorem 2.12 (The Hahn-Banach extension Theorem). Let X be a vector space over R
and let p : X → R be sublinear functional on X. If M is subspace of X and f : M → R is
a linear functional on M , such that f(x) ≤ p(x) for all x ∈ M , then there exists a linear
functional F : X → R such that F |M = f and F (x) ≤ p(x) for all x ∈ X.

Proof. First we show that if x ∈ X \M , then there exists a linear functional g : M+Rx→
R, such that g|M = f and g(y) ≤ p(y), for all y ∈ M + Rx. Observe that for y1, y2 ∈ M
we have that

f(y1) + f(y2) = f(y1 + y2) ≤ p(y1 + y2) = p(y1 − x+ x+ y2) ≤ p(y1 − x) + p(x+ y2).

Hence we deduce that sup {f(y)− p(y − x) | y ∈M} ≤ inf {p(x+ y)− f(y) | y ∈M}. Let
α be a number satisfying

sup {f(y)− p(y − x) | y ∈M} ≤ α ≤ inf {p(x+ y)− f(y) | y ∈M},

and define g : M + Rx → R by g(y + λx) = f(y) + λα, for y ∈ M . Clearly g is a linear
functional on M + Rx and g|M = f . So we have that g(y) ≤ p(y), for y ∈ M . We have
for λ > 0

g(y + λx) = λ
(
f
(y
λ

)
+ α

)
≤ λ

(
f
(y
λ

)
+ p

(
x+

y

λ

)
− f

(y
λ

))
= p(y + λx).

For λ < 0, set µ = −λ > 0 and we get that

g(y + λx) = µ

(
f

(
y

µ

)
− α

)
≤ µ

(
f

(
y

µ

)
− f

(
y

µ

)
+ p

(
y

µ
− x
))

= p(y + λx).

Hence g(y) ≤ p(y), for all y ∈M + Rx.
Now we consider the family of maps

F = {F : Y → R |M ⊆ Y subspace of X, F linear, F |M = f, F (y) ≤ p(y), for all y ∈ Y }

We define a relation � on F as follows: If F1, F2 ∈ F with domains Y1, Y2, respectively,
we say that F1 � F2 if Y1 ⊆ Y2 and F2|Y1 = F1. It is easily verified that � is a partial
ordering on F . We claim that any family of maps (Fi)i∈A in F , that is totally ordered
with respect to �, has an upper bound. For every i ∈ A, let Yi be the domain of Fi.
Set Y =

⋃
i∈A Yi. Then Y is a subspace of X, containing M . Indeed if y1, y2 ∈ Y , then

y1 ∈ Yi1 and y2 ∈ Yi2 for some i1, i2 ∈ A. By the total ordering of (Fi)i∈A, we conclude
that y1, y2 ∈ Yi1 or y1, y2 ∈ Yi2 , either way λ1y1 + λ2y2 ∈ Y for all λ1, λ2 ∈ R, since Yi1
and Yi2 are subspaces of X.

Then define F̃ : Y → R as follows: for y ∈ Y , then y ∈ Yi for a i ∈ A, set

F̃ (y) = Fi(y).

First, we justify that F̃ is well-defined. Suppose y ∈ Yi and y ∈ Yi′ . By the total
ordering of (Fi)i∈A, we can assume that Fi � Fi′ . Then y ∈ Yi ⊆ Yi′ and Fi′ |Yi = Fi, so
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Fi′(y) = Fi(y). Hence F̃ is well-defined. It is easily verified that F̃ ∈ F , simply by using
the properties of Fi. Also clearly Fi � F̃ , for all i ∈ A, hence F has an upper bound.

By Zorn’s Lemma there exists a maximal element F ∈ F for the partial ordered set
(F ,�). We now verify that F is the extension of f that the theorem claims exist. By
construction it is indeed a extension of f , however we need to show that F is defined on
the whole space X. Now suppose that the domain X ′ of F is not the whole space X. Let
x ∈ X \X ′. By the argument in the beginning of the proof, there exists a linear functional
g : X ′ + Rx → R, such that g|X′ = F and g(y) ≤ p(y), for all y ∈ X ′ + Rx. It is easily
seen that g ∈ F and that F � g and F 6= g, contradicting the fact that F was maximal
in (F ,�). We conclude that X ′ = X and thus proving the theorem.

The following Corollary, due to Choquet (1962), follows [1].

Corollary 2.13. Let X be a vector space over R and let M be a subspace of X. Let
E be a non-empty, convex subset of X, that is closed under multiplication with non-
negative constants and with the property that x ∈ E and −x ∈ E implies x = 0. Assume
furthermore that M+E = X. Then every linear functional f on M , which is non-negative
on M ∩ E, can be extended to a linear functional F on X, which is non-negative on E.

Proof. Define a relation � on X as follows: x � y if y − x ∈ E. We justify that it is a
partial order relation. Since 0 ∈ E we have that x � x, hence � is reflexive. If x � y
and y � x, then set z = y − x. We then have that z,−z ∈ E, hence y − x = z = 0, so
indeed x = y. Therefore � is anti-symmetric. Finally assume that x � y and y � z, then
y−x, z− y ∈ E so by convexity (z−x)/2 ∈ E, hence z−x ∈ E, thus proving transitivity.

Observe that for every x ∈ X, there exist y1, y2 ∈M such that y1 � x � y2. It follows
since x ∈ X = M +E, so x = y1 + y′ for some y1 ∈M and y′ ∈ E. Then x− y1 = y′ ∈ E,
so y1 � x. A similar argument gives the existence of y2. Also observe that if y1, y2 ∈ M
and y1 � y2, then y2 − y1 ∈ M ∩ E, so since f is linear and non-negative on M ∩ E, we
get that f(y1) ≤ f(y2).

For x ∈ X, consider the set {f(y) | y ∈ M,x � y}. The first observation above gives
us that the set is non-empty. Furthermore it gives us that there exists y1 ∈ M such that
y1 � x, so for all y ∈M where x � y, we get that f(y) ≥ f(y1). Hence the set is bounded
from below. So

p(x) = inf {f(y) | y ∈M,x � y}, x ∈ X,

is a well-defined real-valued function on X. We also see by the second observation above,
that f(y) = p(y) for all y ∈ M . We easily see that for λ ≥ 0 we have that y � x if and
only if λy � λx, so p(λx) = λp(x). We also see that for x, x′ ∈ X,

p(x) + p(x′) = inf {f(y) | y ∈M,x � y}+ inf {f(y) | y ∈M,x′ � y}
= inf {f(y) + f(y′) | y, y′ ∈M,x � y, x′ � y′}
≥ inf {f(y + y′) | y + y′ ∈M, (x+ x′)/2 � (y + y′)/2} = p(x+ x′)

so p is sublinear. So f is dominated by the sublinear functional p on M . By The Hahn-
Banach extension Theorem, there exists a linear functional F on X, so F |M = f and
F ≤ p on X. We only need to verify that F is non-negative on E. Let x ∈ E. We
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have that x = 0 − (−x) ∈ E, hence −x � 0, so F (−x) ≤ p(−x) ≤ f(0) = 0, hence F is
non-negative on E.

Please observe that in this section we let moment-sequences be label with N0, in
contrary to N in the definition. The 0th moment is then just understood as the measure
of the whole space.

Theorem 2.14. Let (αn)n∈N0 be a sequence of real-numbers. There exists a Radon mea-
sure µ on R such that

αn =

∫
xn dµ(x), for all n ∈ N0,

if and only if for all n ≥ 0 and all (n+ 1)-tuples (c0, c1, ..., cn) of real numbers we have

n∑
i,j=0

cicjαi+j ≥ 0. (2.3)

Note that the measure µ above is a probability measure if and only if α0 = 1.

Proof. Assume that there exists a measure µ on R with (αn)n∈N0 as moments. Let n ≥
0 and let (c0, c1, ..., cn) be any (n + 1)-tuple of real numbers. Then set the following
polynomial

p(x) =

(
n∑
i=0

cix
i

)2

=
n∑

i,j=0

cicjx
i+j .

Then clearly p(x) ≥ 0 for all x ∈ R. So the integral with respect to µ is well-defined and
non-negative:

0 ≤
∫
p dµ =

∫ n∑
i,j=0

cicjx
i+j dµ(x) =

n∑
i,j=0

cicjαi+j ,

hence (2.3) holds.

Conversely, assume that (2.3) holds for all n ≥ 0 and all (n+1)-tuples of real numbers.
Consider the following vector spaces of functions

C(R) = {f : R→ R | f is continuous} , Cc(R) = {f ∈ C(R) | supp(f) is compact} ,

Pol = {f ∈ C(R) | f is a polynomial} , H = {f ∈ C(R) | exists p ∈ Pol such that |f | ≤ p}

Here supp(f) = {x ∈ R | f(x) 6= 0} is the support of f . It is easily verified that these are
all vector spaces. Let H+ = H ∩ C(R)+ and Pol+ = Pol ∩ C(R)+, where C(R)+ is the
space on non-negative continuous functions on R.

Now consider again the sequence (αn)n∈N0 . Define the linear functional F : Pol → R
by

F (c0 + c1x+ c2x
2 + ...+ cnx

n) =

n∑
i=0

ciαi.
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It is easily verified that F is linear. We claim that F is a non-negative functional, i.e.,
F (p) ≥ 0 whenever p is a non-negative polynomial. By Lemma 2.10 and linearity of F it
suffices to prove that F (q2) ≥ 0 for every polynomial q(x) = c0 + c1x+ c2x

2 + ...+ cnx
x.

We quickly realize that it must hold, since (using that (2.3) is assumed to hold)

F (q(x)2) = F

 n∑
i,j=0

cicjx
i+j

 =

n∑
i,j=0

cicjαi+j ≥ 0.

So now we have constructed a linear functional on Pol, which is non-negative on
Pol+ = Pol ∩ H+. Observe that H+ is convex and that if both the function g and −g
lie in H+, then g must be the zero-function. We also see that H = Pol + H+, since
Pol + H+ ⊆ H obviously holds and given a function f bounded by a polynomial p, then
f = −p+ (f + p) ∈ Pol +H+. Now Corollary 2.13 (with X = H, M = Pol, and E = H+)
gives us that we can extend F to a linear functional F̃ on H, which is non-negative on H+.
Further, since Cc(R) ⊂ H, we can restrict F̃ to a linear functional F0 on Cc(R). By the
Riesz representation theorem (cf. Theorem 7.2 in [5]), there exists a unique non-negative
Radon measure µ on R, such that F0(f) =

∫
f dµ for all f ∈ Cc(R).

We show that polynomials are µ-integrable. For each n ∈ N, construct the function

1̃(−n,n)(x) =


1 for x ∈ (−n, n)

x+ (n+ 1) for x ∈ [−n− 1,−n]

−x+ n+ 1 for x ∈ [n, n+ 1]

0 else

Then 1̃(−n,n) ∈ Cc(R), for all n ∈ N. Let p be a polynomial, then |p| ∈ H+, and let q

denote a polynomial that bounds |p|. Then 1̃(−n,n) |p| ∈ Cc(R), so we get that∫
1̃(−n,n) |p| dµ = F0(1̃(−n,n) |p|) = F̃ (1̃(−n,n) |p|) ≤ F̃ (1̃(−n,n) |p|) + F̃ ((1− 1̃(−n,n)) |p|)

= F̃ (|p|) = F̃ (|p|) + F̃ (q − |p|) = F̃ (q) = F (q) <∞,

where we used that F̃ ((1− 1̃(−n,n)) |p|) ≥ 0 and F̃ (q− |p|) ≥ 0. The bound is independent

of n, so by Fatou’s Lemma
∫
|p| dµ ≤ F (q), since 1̃(−n,n) |p| converges pointwise to |p|, as

n→∞. Hence p is µ-integrable.
Let p ∈ Pol+ be a non-negative polynomial. We want to show that

∫
p dµ = F (p).

Because p is µ-integrable, we conclude by the Lebesque dominated convergence theorem,
that ∫

(1− 1̃(−n,n))p dµ→ 0, as n→∞.

So we get that∫
p dµ =

∫
1̃(−n,n)p dµ+

∫
(1− 1̃(−n,n))p dµ ≤ F̃ (1̃(−n,n)p) +

∫
(1− 1̃(−n,n))p dµ

≤ F̃ (p) +

∫
(1− 1̃(−n,n))p dµ = F (p) +

∫
(1− 1̃(−n,n))p dµ,
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holds for all n ∈ N. Letting n→∞ yields
∫
p dµ ≤ F (p). For the other inequality observe

that we can find another positive polynomial q such that p(x)/q(x) → 0, as n → ∞.
Hence there exists x0 ∈ R, such that x ≥ x0 implies that p(x) < εq(x). Let n be a positive
integer, such that n ≥ x0. Then 1[−x0,x0] ≤ 1̃(−n,n) ≤ 1, where 1̃(−n,n) ∈ Cc(R). Then we
get that

0 ≤ p(1− 1̃(−n,n)) ≤ p(1− 1[−x0,x0]) ≤ εq, for all x ∈ R.

Since F̃ is non-negative on H+, we get that

0 ≤ F̃ (p)− F̃ (p1̃(−n,n)) ≤ εF̃ (q).

Hence

F (p) = F̃ (p) ≤ F̃ (p1̃(−n,n)) + εF̃ (q) =

∫
p1̃(−n,n) dµ+ εF̃ (q) ≤

∫
p dµ+ εF̃ (q).

Since ε was arbitrary and independent of q, we get that F (p) ≤
∫
p dµ. Hence F (p) =∫

p dµ for all p ∈ Pol+.
Let n ∈ N0. If n is even, then xn is a non-negative polynomial, so in particular

it is the difference of two non-negative polynomials. If n is odd, then we have that
xn = (1+xn+1+xn)−(1+xn+1), so xn is still a difference of two non-negative polynomials.
For n ∈ N, let p1,2 ∈ Pol+ such that xn = p1 − p2, then∫

xn dµ(x) =

∫
p1 dµ−

∫
p2 dµ = F (p1)− F (p2) = F (xn) = αn.

Thus (αn)n∈N0 is the moment-sequence of the measure µ.
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Chapter 3

Method of Moments

The goal of this chapter will be to establish an important connection between two kinds
of convergence: weak convergence of measures and convergence of the corresponding mo-
ments.

3.1 Weak Convergence of Probability Measures

The next definition opens up for a new concept regarding convergence of a sequence of
measures. It is of great importance in asymptotic theory of mathematical statistics.

Definition 3.1. Let µ, (µn)n∈N be probability measures on (R,B). Let C denote the set of
points of continuity of µ (i.e., the points a ∈ R where µ({a}) = 0). The sequence (µn)n∈N
is said to converge weakly to µ if for all a ∈ C

µn(−∞, a]→ µ(−∞, a], as n→∞. (3.1)

We write µn
w−→ µ, as n→∞.

Note that the limit is unique. If ν were another probability measure on (R,B) sat-
isfying (3.1), then µ and ν would agree on the collection {(−∞, a] | a ∈ C}, which is an
intersection-stable generator of B. By the uniqueness theorem for probability measures,
we get that µ = ν.

Weak convergence of a sequence of probability measures can also be expressed in
terms of pointwise convergence of the associated distribution functions. Let us recall the
definition.

Definition 3.2. Let µ be a probability measure on (R,B). The distribution function of µ
is the function F : R→ [0, 1] given by

F (x) = µ(−∞, x], x ∈ R.

It is easily verified that the distribution function F of a probability measure on (R,B)
has the following properties: (1) F is non-decreasing, (2) F is right-continuous, (3)
limx→−∞ F (x) = 0 and (4) limx→∞ F (x) = 1. It is a deep result that if a function F
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satisfies the above conditions (1)-(4), then there exists a unique probability measure µ on
(R,B) such that F is the distribution function of µ. Details concerning the construction
can be found in Appendix B. We are now ready to spell out the above mentioned con-
nection to weak convergence of a sequence of probability measures. If F and Fn denote
the distribution functions of µ and µn, respectively, then the condition that µn

w−→ µ, as
n→∞, is equivalent to

Fn(a)→ F (a), as n→∞

for every continuity point a of F . In establishing this equivalence we have also used the
fact that left-continuity of F at a point x is equivalent with µ({x}) = 0. So F is continuous
at x if and only if µ({x}) = 0.

We can express weak convergence in terms of integrals of certain functions.

Theorem 3.3. Let µ, (µn)n∈N be probability measures on (R,B). Then µn
w−→ µ, as

n→∞, if and only if∫
f dµn →

∫
f dµ, as n→∞, for all f ∈ Cb(R). (3.2)

Proof. Suppose (3.2) holds and let a be a continuity point of µ. Define for each k ∈ N,
the functions gk and fk by

gk(x) =


1 if x ∈

(
−∞, a− 1

k

)
k(x− a) if x ∈

[
a− 1

k , a
]

0 else

, fk(x) =


1 if x ∈ (−∞, a)

k
(
a+ 1

k − x
)

if x ∈
[
a, a+ 1

k

]
0 else

.

Then
gk ≤ 1(−∞,a] ≤ fk. (3.3)

Also, note that (gk − fk)(x)→ 0, as k →∞, everywhere except for x = a, but since a
is a continuity point of µ, it follows that gk − fk → 0, as k → ∞, µ-almost surely. This
sequence is bounded by the constant 1, hence by the Lebesgue dominated convergence
theorem,

∫
(gk − fk) dµ → 0, as k → ∞. So, given ε > 0, we can then choose k large

enough so that ∣∣∣∣∫ gk dµ−
∫
fk dµ

∣∣∣∣ < ε. (3.4)

Let k be fixed, such that (3.4) holds. We also have for all n ∈ N (by using (3.3)) that∫
gk dµn ≤ µn(−∞, a] ≤

∫
fk dµn. (3.5)

And similarly we have that ∫
gk dµ ≤ µ(−∞, a] ≤

∫
fk dµ. (3.6)
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Since gk, fk ∈ Cb(R), we know by hypothesis that
∫
gk dµn →

∫
gk dµ, as n → ∞, and∫

fk dµn →
∫
fk dµ, as n→∞. So choose N1, N2 ∈ N such that∣∣∣∣∫ gk dµn −

∫
gk dµ

∣∣∣∣ < ε for all n ≥ N1∣∣∣∣∫ fk dµn −
∫
fk dµ

∣∣∣∣ < ε for all n ≥ N2.

Set N = max{N1, N2}. By using using (3.5) and (3.6), and then using (3.4), we deduce
that for all n ≥ N

|µn(−∞, a]− µ(−∞, a]| ≤
∣∣∣∣∫ fk dµn −

∫
gk dµ

∣∣∣∣+

∣∣∣∣∫ fk dµ−
∫
gk dµn

∣∣∣∣
≤

∣∣∣∣∫ fk dµn −
∫
fk dµ

∣∣∣∣+

∣∣∣∣∫ gk dµn −
∫
gk dµ

∣∣∣∣+ ε+ ε < 4ε.

Since ε was arbitrary, we conclude that µn(−∞, a] → µ(−∞, a], as n → ∞. This proves
that µn

w−→ µ, as n→∞.
For the converse implication, let Cµ denote the set of continuity points of µ. Pick

f ∈ Cb(R), let M > 0 denote the bound and let ε > 0. We have that (3.2) holds for
indicator functions 1(−∞,a] for all a ∈ Cµ. By additivity of integrals, (3.2) also holds
for indicator functions 1(a,b] where a, b ∈ Cµ and a < b. By linearity, (3.2) also holds
for all finite sums of such indicator functions, which we call simple functions. By the
approximation Theorem A.7 in Appendix A we can find a sequence of such simple functions
(sk)k∈N such that

sup
x∈(−k,k]

|f(x)− sk(x)| < ε. (3.7)

Now choose k large enough so that 1−µ(−k, k] < ε. Furthermore, choose N1 large enough
to ensure that for all n ≥ N1 ∣∣∣∣∫ sk dµn −

∫
sk dµ

∣∣∣∣ < ε. (3.8)

By hypothesis

µn(−k, k] = µn(−∞, k]− µn(−∞,−k]→ µ(−∞, k]− µ(−∞,−k] = µ(−k, k],

as n→∞. So choose N2 large enough to ensure that for all n ≥ N2

|µn(−k, k]− µ(−k, k]| < ε. (3.9)
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Then combining (3.8), (3.7) and (3.9), we obtain that for all n ≥ max{N1, N2}∣∣∣∣∫ f dµn −
∫
f dµ

∣∣∣∣ ≤ ε+

∣∣∣∣∫ f dµn −
∫
f dµ−

∫
sk dµn +

∫
sk dµ

∣∣∣∣
≤ ε+

∫
|f − sk| dµ+

∫
|f − sk| dµn

= ε+

∫
(−k,k]

|f − sk| dµ+

∫
(−k,k]c

|f − sk| dµ+

∫
(−k,k]

|f − sk| dµn

+

∫
(−k,k]c

|f − sk| dµn

≤ 3ε+Mµn((−k, k]c) +Mµ((−k, k]c)

≤ 3ε+M (2− µ(−k, k] + ε− µ(−k, k]) ≤ 3ε+ 3Mε = 3ε(M + 1).

Since ε > 0 was arbitrary, we conclude that (3.2) holds.

3.2 Convergence of Random Variables

We will focus on a few types of convergence of random variables in this section.

Definition 3.4. Let X, (Xn)n∈N be real-valued random variables. We say that Xn converge

in distribution to X, as n→∞, and write Xn
D−→ X, as n→∞, if the laws of Xn converge

weakly to the law of X, i.e., Xn(Pn)
w−→ X(P ), as n→∞.

Note that we do not require the random variables to be defined on the same probability
space. We illustrate this idea by an example, which follows section 25 in [2]:

Example 3.5. Let λ > 0. For each n ∈ N with n > λ, let Ωn denote the space of n-tuples
of 0’s and 1’s. Consider the σ-algebras Fn = P(Ωn), the power set of Ωn, and for ω ∈ Ω
let the probability measures Pn assign probability

Pn(ω) =

(
λ

n

)k (
1− λ

n

)n−k
.

Where k denotes the number of 1’s in ω. Let Xn be the random variable on (Ωn,Fn, Pn),
which represents the number of successes in n Bernoulli trials, with probability λ/n as
success parameter. The probability mass is concentrated on a countable set. So if we know
how the point masses behave in the limit, we know how the entire distribution behaves,
hence we know the weak convergence properties of (Xn)n∈N,λ<n. We see that

Xn(Pn)({k}) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

n!

k!(n− k)!

λk

nk

(
1− λ

n

)n 1(
1− λ

n

)k
=

λk
(
1− λ

n

)n
k!

1(
1− λ

n

)k k−1∏
i=0

(
1− i

n

)
→ λke−λ

k!
, as n→∞.

Hence Xn converge in distribution to the Poisson distribution.
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We also want to point out why it is too restrictive to require (3.1) to hold for points
of discontinuity. The basic argument is that it allows us to bring the weak law of large
numbers under the theory of weak convergence. It is illustrated in the next example.

Example 3.6. Let X1, X2, ... be independent random variables where P (Xk = 1) = 1/2 =
P (Xk = −1). For n ∈ N, set Sn =

∑n
k=1Xk. Then the weak law of large numbers asserts

that for every ε > 0,

P

(∣∣∣∣ 1nSn
∣∣∣∣ > ε

)
→ 0, as n→∞. (3.10)

If Fn is the distribution function of n−1Sn and µn denotes its law, then (3.10) gives us
that

Fn(x) = 1− P
(

1

n
Sn > x

)
→ 1, as n→∞, if x > 0 (3.11)

Fn(x) ≤ P

(∣∣∣∣ 1nSn
∣∣∣∣ ≥ |x|)→ 0, as n→∞, if x < 0. (3.12)

So if we let ε0 denote the one-point measure at 0, then µn
w−→ ε0, as n→∞.

However, we also see that if µn
w−→ ε0, as n → ∞, then (3.11) and (3.12) holds.

So (3.10) is equivalent with µn
w−→ ε0, as n → ∞. Now we see why requiring (3.1) to

hold in all points a ∈ R is too restrictive. Letting n go through the odd numbers, then
Sn = 0 is impossible. By symmetry we must have P (Sn ≤ 0) = 1/2 = P (Sn ≥ 0), hence
Fn(0) = 1/2. Thus µn(−∞, 0] = 1/2 fails at converging to ε0(−∞, 0] = 1, as n→∞.

We introduce two other familiar types of convergence of real valued random variables.
The definition requires all of the random variables to be defined on the same probability
space, in contrast with the case of convergence in distribution.

Definition 3.7. Let X, (Xn)n∈N be real-valued random variables on the same probability
space (Ω,F, P ). We say that Xn converge almost surely (or a.s.) to X, as n→∞ if

P
(

lim
n→∞

Xn = X
)

= 1.

In this case we write Xn
a.s.−−→ X, as n→∞.

Definition 3.8. Let X, (Xn)n∈N be real-valued random variables on the same probability
space (Ω,F, P ). We say that Xn converge in probability to X, as n → ∞ and write

Xn
P−→ X, as n→∞, if for every ε > 0

P (|Xn −X| > ε)→ 0, as n→∞.

Theorem 3.9. Let X, (Xn)n∈N be real-valued random variables on the same probability
space (Ω,F, P ). Then

1. If Xn
a.s.−−→ X, as n→∞, then Xn

P−→ X, as n→∞.

2. If Xn
P−→ X, as n→∞, then Xn

D−→ X, as n→∞.
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Moreover, all implications are strict.

Proof. Assume Xn
a.s.−−→ X, as n → ∞, and let ε > 0. Consider the set Ω0 = {ω ∈ Ω |

limn→∞Xn(ω) 6= X(ω)}. We have that Ω0 ∈ F and it has P -measure 0. Now,( ∞⋃
n=m

{ω ∈ Ω | |Xn(ω)−X(ω)| > ε}

)
m∈N

is a decreasing sequence of F-sets. By downward continuity of P ,

lim
m→∞

P

( ∞⋃
n=m

{|Xn −X| > ε}

)
= P

( ∞⋂
m=1

∞⋃
n=m

{|Xn −X| > ε}

)
. (3.13)

Note that
∞⋂
m=1

∞⋃
n=m

{ω ∈ Ω | |Xn(ω)−X(ω)| > ε} ⊆ Ω0,

because if ω lies in the left-hand side then |Xn(ω)−X(ω)| > ε happens infinitly often,
hence Xn(ω) cannot converge. But then the right-hand side in (3.13) is 0. This proves the
first implication. Next we find a counterexample confirming that the implication is strict.
Let P be the uniform distribution on (0, 1]. Let X ≡ 0 and set

X1 = 1(0,1/2] X2 = 1(1/2,1]

X3 = 1(0,1/4] X4 = 1(1/4,1/2] X5 = 1(1/2,3/4] X6 = 1(3/4,1],

and so on we divide each interval in the preceeding block in halfs. Then the probability
of Xn and X being different will decrease towards 0, as we move along the blocks, so Xn

converges in probability to X, as n → ∞. However Xn(ω) = 1 infinitely often for all
ω ∈ (0, 1], hence Xn fails to converge to X on a set with P -measure 1.

Now assume that Xn converges in probability to X, as n → ∞. Let ε > 0 and
f ∈ Cb(R) be given, and let M denote the bound on f . Since f is continuous, there exists
δ > 0 such that |Xn(ω)−X(ω)| ≤ δ implies |f(Xn(ω))− f(X(ω))| ≤ ε. Now we see that∣∣∣∣∫ f dXn(P )−

∫
f dX(P )

∣∣∣∣ =

∣∣∣∣∫ f(Xn) dP −
∫
f(X) dP

∣∣∣∣ ≤ ∫ |f(Xn)− f(X)| dP

=

∫
|Xn−X|≤δ

|f(Xn)− f(X)| dP

+

∫
|Xn−X|>δ

|f(Xn)− f(X)| dP

≤ ε+ 2MP (|Xn −X| > δ)→ ε, as n→∞.

Since ε was arbitrary, we conclude that Xn
D−→ X by Theorem 3.3.

Now let X and Y be independent random variables, each attaining the values 0 and 1
with probability 1/2. Set Xn = Y , for all n ≥ 1. Then clearly Xn converge in distribution
to X, as n→∞. However, because of independence, we have P (|X − Y | = 1) = 1/2. So
Xn fails to converge in probability to X, thus proving the converse does not hold.
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Remark 3.10. If the limit is a constant P -a.s. then convergence in distribution implies
convergence in probability. Let X = a P -a.s. and ε > 0. Then

P (|Xn − a| > ε) ≤ P (Xn ≤ a− ε) + P (Xn ≥ a+ ε)

= P (Xn ≤ a− ε) + 1− P (Xn ≤ a+ ε)→ 0, as n→∞.

The following theorem, due to Skorohod, is very useful in proving some of the following
results.

Theorem 3.11 (Skorohod’s Theorem). Let µ, (µn)n∈N be probability measures on (R,B)
and assume that µn

w−→ µ, as n → ∞. Then there exist real-valued random variables
Y, (Yn)n∈N defined on the same probability space (Ω,F, P ) such that Y, (Yn)n∈N have dis-
tribution µ, (µn)n∈N, respectively, and Yn(ω)→ Y (ω), as n→∞ for all ω ∈ Ω.

Proof. Set the background space to
(

(0, 1),B|(0,1),m|B|(0,1)
)

. Let F be the distribution

function corresponding to µ. Then define

Y (ω) = inf{x ∈ R | ω ≤ F (x)} , ω ∈ (0, 1).

Consider the set {x ∈ R | ω ≤ F (x)}. It is an interval going to ∞, because F is non-
decreasing. Furthermore, this interval is closed, due to right-continuity of F . Therefore
{x ∈ R | ω ≤ F (x)} = [Y (ω),∞). So for ω ∈ (0, 1), we have that ω ≤ F (x) if and only
if Y (ω) ≤ x. This observation will be used several times in the proof. First, we get that

P (ω ∈ Ω | Y (ω) ≤ x) = P (ω ∈ Ω | ω ≤ F (x)) = F (x), x ∈ R.

So Y has distribution µ. The construction and above argument also hold for Yn, n ∈ N.
We only need to show the pointwise convergence. Let ω ∈ (0, 1). Given ε > 0, find

x ∈ R such that Y (ω) − ε < x < Y (ω) and that µ({x}) = 0 (recall that there are at
most countably many discontinuity points of µ). So F (x) < ω. Since Fn(x) → F (x), as
n → ∞, this implies Fn(x) < ω for n large enough. Hence Y (ω) − ε < x < Yn(ω) for n
large enough, therefore we have that

lim inf
n→∞

Yn(ω) ≥ Y (ω). (3.14)

Next, if ω < ω′ choose x′ such that Y (ω′) < x′ < Y (ω′) + ε and that µ({x′}) = 0. Then
we have that ω < ω′ ≤ F (x′). So for n large enough, ω ≤ Fn(x′) holds. Therefore we have
that Yn(ω) ≤ x′ < Y (ω′) + ε for n large enough. Hence for all ω′ > ω

lim sup
n→∞

Yn(ω) ≤ Y (ω′).

If ω is a point of continuity for Y , then lim supn→∞ Yn(ω) ≤ Y (ω). This combined with
(3.14) gives us that Yn(ω)→ Y (ω), as n→∞, for all continuity points ω of Y . Since Y is
non-decreasing, there can be at most countably many of these. Changing Yn(ω) = Y (ω) =
0 for such points reveals pointwise convergence for all ω ∈ (0, 1). Changing Y, Yn on a set
with Lebesgue measure 0 does not change the fact that Y and Yn have distributions µ and
µn, respectively, and the proof is complete.
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Theorem 3.12. Let h : R→ R be B-B-measurable. If µn
w−→ µ, as n→∞ and µ(Dh) = 0,

where Dh is the set of discontinuity points of h, then h(µn)
w−→ h(µ), as n→∞.

Proof. First, note that Dh is measurable, so the assumption makes sense. We show this
by looking at the complement. If h is continuous at x then it is also continuous on an
ε-neighbourhood of x, let B(x, εx) denote it. So

Dc
h =

⋃
x∈Dch

B(x, εx),

hence Dc
h is open, hence Dh is measurable.

Let Y, Yn denote the random variables having distribution µ and µn, respectively,
according to Skorohod’s Theorem. So if Y (ω) /∈ Dh then h(Yn(ω))→ h(Y (ω)), as n→∞.
Since P (ω ∈ Ω | Y (ω) ∈ Dh) = µ(Dh) = 0, the convergence happens with probability 1.
So h(Yn) converges to h(Y ) in probability, as n → ∞. Using Theorem 3.9 reveals that
h(µn)

w−→ h(µ), as n→∞.

3.3 Tightness and Weak Convergence of Measures

Using Helly’s selection principle allows us to establish additional results about weak con-
vergence. This will be illustrated in the next theorem.

Theorem 3.13. For every sequence of distribution functions (Fn)n∈N there exists a sub-
sequence (Fnk)k∈N and a non-decreasing right-continuous function F such that Fnk(x)→
F (x), as k →∞, for all continuity points x of F .

Proof. Let D be a countable dense subset of R. Let {rk | k ∈ N} be an enumeration of
it. Then the sequence of numbers {Fn(r1) | n ∈ N} is bounded. Hence there exists a
subsequence (F1k)k∈N of (Fn)n∈N, that converges at r1. Let l1 denote the limit. Clearly
l1 ∈ [0, 1]. Now this new sequence of numbers {F1k(r2) | k ∈ N} is also bounded. So again
there exists a further subsequence (F2k)k∈N, that converges at r2. Let l2 denote the limit
and we have again that l2 ∈ [0, 1]. In this way, we recursively define subsequences (Fjk)k∈N
for each j ∈ N, that converges at rj . Let lj denote the limit, we have that lj ∈ [0, 1].

Next choose the diagonal elements (Fkk)k∈N. Pick rj ∈ D, then from a certain step on
(Fkk)k∈N is a subsequence of (Fjk)k∈N, so (Fkk)k∈N converges at rj , as k → ∞. Thus we
have found a subsequence (Fnk)k∈N, that converges at all points in D. We can then define
the following function

G(r) = lim
k→∞

Fnk(r), for all r ∈ D.

Note that G is non-decreasing, because the Fn’s are so. Define

F (x) = inf{G(r) | r ∈ D, x < r}, for all x ∈ R.

By construction, F is non-decreasing. Given x0 ∈ R, we show right-continuity of F at
this point. Let ε > 0. There exists r0 ∈ D such that x0 < r0 and G(r0) − ε ≤ F (x0) ≤
G(r0). If r ∈ D and x0 < r < r0 then

0 ≤ G(r)− F (x0) ≤ G(r0)− F (x0) ≤ ε,
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but then by passing to infimum (and using the definition of F ) we obtain

0 ≤ F (x)− F (x0) ≤ ε, for all x0 < x < r0.

This shows that F is right-continuous.
We then only need to show that Fnk(x) converges pointwise to F (x) for all continuity

points of F , as k → ∞. Let x0 be a continuity point of F and let ε > 0. There exist
r, r′, r′′ ∈ D such that r < r′ < x0 < r′′ and by continuity we can also assume that
F (r′′)− F (r) ≤ ε. Then we have

F (r) ≤ G(r′) ≤ F (x0) ≤ G(r′′) ≤ F (r) + ε, (3.15)

and, respectively, for all k ∈ N,

Fnk(r′) ≤ Fnk(x0) ≤ Fnk(r′′).

Letting k →∞ combined with (3.15) gives us that for k large enough

|Fnk(x0)− F (x0)| ≤ ε.

Hence Fnk(x) converges pointwise to F (x), as k →∞, for all continuity points x of F .

In accordance with Theorem B.5, we see that there exists a unique measure µ on
(R,B), such that for all a, b ∈ R, a < b

µ(a, b] = F (b)− F (a) ∀a, b ∈ R, a < b.

However, we cannot be sure that µ is a probability measure. We do see from the above
proof that F (x) ≤ 1, for all x ∈ R, but nothing is preventing mass from escaping at
infinity. The following example shows that this can, indeed, happen.

Example 3.14. Consider, for each n ∈ N, the uniform distributions on (n, n + 1), µn.
Then for all a, b ∈ R, µn(a, b]→ 0, as n→∞. Hence every subsequence of (µn)n∈N must
converge weakly to the 0-measure.

We therefore introduce a new concept which will play an important role for weak
convergence.

Definition 3.15. A sequence of probability measures (µn)n∈N on (R,B) is said to be tight,
if for each ε > 0 there exists a finite interval (a, b] such that for all n ∈ N

µn(a, b] > 1− ε.

Example 3.16. Let (xn)n∈N denote a sequence of real numbers. For each n ≥ 1, let εxn
be the corresponding one-point-measure. Then

εxn(a, b] =

{
1 if xn ∈ (a, b]

0 else.

So the family of one-point-measures corresponding to the sequence (xn)n∈N is tight if and
only if the sequence is bounded.
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As it turns out, the concept of tightness is precisely what prevents mass from escaping
at infinity.

Theorem 3.17. Let (µn)n∈N be a sequence of probability measures on (R,B). Tightness
is a necessary and sufficient condition that for every subsequence (µnk)k∈N there exists a

further subsequence (µnk(j))j∈N and a probability measure µ such that µnk(j)
w−→ µ, as

j →∞.

Proof. Let (µn)n∈N be tight. For each n ≥ 1, let Fn denote the distribution function of µn.
Applying Theorem 3.13 to the sequence of distribution functions reveals a new function
F . Where Fnk converges pointwise to F , as k → ∞, in every continuity point of F , for
some subsequence (Fnk)k∈N of (Fn)n∈N. Now, by applying Theorem B.5, we can find a
measure µ on (R,B), such that µ(a, b] = F (b)− F (a) for every a, b ∈ R and a < b. Given
ε > 0, choose a < b according to tightness so that

µn(a, b] > 1− ε ∀n ∈ N

By increasing b and a ensures it holds in continuity points of F . Then we obtain that

µ(a, b] = F (b)− F (a) = lim
n→∞

(Fn(b)− Fn(a)) = lim
n→∞

µn(a, b] ≥ 1− ε,

hence µ is a probability measure (we knew from the proof of Theorem 3.13 that µ(R) ≤ 1).
Hence F is indeed a distribution function and Fn converges pointwise to F , in all of the
continuity points of F , along a subsequence. As discussed in the section after Definition
3.2, this is equivalent with the measures µn converging weakly to µ, along a subsequence.
Hence the convergence also holds along any further subsequence.

For the other implication, assume that (µn)n∈N is not tight. Then there exists ε > 0
so that for every finite interval (a, b], µn(a, b] ≤ 1− ε for some n. For each k ∈ N, choose
nk such that µnk(−k, k] ≤ 1 − ε. Assume that some subsequence (µnk(j))j∈N of (µnk)k∈N
converges weakly to some probability measure µ. Let (a, b] be any finite interval, where
a < b and µ({a}) = µ({b}) = 0. For j large enough (a, b] ⊆ (−k(j), k(j)] and so

1− ε ≥ µnk(j)(−k(j), k(j)] ≥ µnk(j)(a, b]→ µ(a, b], as j →∞.

So µ(a, b] ≤ 1− ε for every finite inteval. Hence µ cannot be a probability measure, which
is a contradiction.

Corollary 3.18. Let (µn)n∈N be a sequence of probability measures on (R,B). If (µn)n∈N
is tight and if every weakly convergent subsequence (µnk)k∈N has the same limit µ, then

µn
w−→ µ, as n→∞.

Proof. Note that µ is a probability measure due to the previous theorem. According to the
theorem every sequence (µnk)k∈N contains a further subsequence (µnk(j))j∈N converging
weakly to some limit. This limit must be µ by hypothesis. So every subsequence (µnk)k∈N
contains a further subsequence (µnk(j))j∈N converging weakly to µ.

Now suppose (µn)n∈N fails to converge weakly to µ, as n→∞. So for some continuity
point a of µ, µn(−∞, a] 9 µ(−∞, a], as n→∞. Hence there exists ε > 0 so that

|µnk(−∞, a]− µ(−∞, a]| ≥ ε,
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for an infinite sequence (µnk)k∈N. No further subsequence of such can converge weakly to
µ, contradicting what we just concluded.

Tightness also has a strong connection to characteristic functions.

Theorem 3.19. Let (µn)n∈N be probability measures on (R,B) and let (φn)n∈N be the
respective characteristic functions. If for all θ ∈ R

φn(θ)→ φ(θ), as n→∞,

where φ is a function that is continuous at θ = 0, then (µn)n∈N is tight.

Proof. Observe that for every u > 0 we have

1

u

∫ u

−u
1− eiθx dθ =

1

u

[
θ − 1

ix
eiθx

]θ=u
θ=−u

=
1

u

(
u− 1

ix
eiux + u+

1

ix
e−iux

)
= 2− 2

ux2i

(
eiux − e−iux

)
= 2− 2

ux
sin(ux).

Furthermore we also have that∫ u

−u
|1− φn(θ)| dθ ≤

∫ u

−u
2 dθ = 4u.

Therefore we can apply Fubini’s theorem. Using the definition of the characteristic func-
tion gives

1

u

∫ u

−u
1− φn(θ) dθ =

∫
1

u

∫ u

−u
1− eiθx dθ dµn(x)

= 2

∫
1− sin(ux)

ux
dµn(x) ≥ 2

∫
|x|≥2/u

1− 1

|ux|
dµn(x)

≥ µn

{
x ∈ R | |x| ≥ 2

u

}
. (3.16)

The function φ is continuous at θ = 0 and φ(0) = limn→∞ φn(0) = 1, hence it is also
continuous in a neighbourhood (−u0, u0). So for every ε > 0 we find a u > 0 such that
u < u0 and

1

u

∫ u

−u
1− φ(θ) dθ < ε.

We have that φn converges to φ bounded by 1, the Lebesgue dominated convergence
theorem gives us that there exists n0 ∈ N such that

1

u

∫ u

−u
1− φn(θ) dθ < 2ε, for all n ≥ n0.

Setting a = 2/u in (3.16) we get that

µn {x ∈ R | |x| ≥ a} < 2ε, n ≥ n0.

Letting a increase insures that it also holds for the first finitely many n. Hence (µn)n∈N
is tight.
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This leads us to a connection between weak convergence and characteristic functions.

Theorem 3.20 (The Continuity Theorem). Let (µn)n∈N be probability measures on (R,B)
and let (φn)n∈N be the respective characteristic functions. Assume that φn converges point-
wise to some function φ, as n→∞. The following are equivalent:

1. (µn)n∈N is tight.

2. (µn)n∈N converges weakly to some probability measure µ.

3. φ is the characteristic function of some probability measure µ.

4. φ is continuous.

5. φ is continuous at θ = 0.

Where µ in 2. and 3. refers to the same probability measure.

Proof. (2. implies 3.) Assume that (µn)n∈N converges weakly to some probability measure
µ, let φ∗ denote the characteristic function of µ. For every θ ∈ R, the function x 7→ eiθx

has bounded modulus and it is continuous. Applying Theorem 3.3 to both imaginary and
real part of eiθx reveals that φn(θ)→ φ∗(θ), as n→∞ for every θ ∈ R. So we must have
that φ = φ∗. Hence φ is the characteristic function of µ.

(1. implies 2.) By Corollary 3.18, we only need to check that every weakly convergent
subsequence of (µn)n∈N has the same limit. Assume that µnk

w−→ ν, as k → ∞ and let
φ∗ denote the characteristic function of ν. By the proof of the preceeding implication
and since (µnk)k∈N is a subsequence of (µn)n∈N, we must have that φ = φ∗. So the limit
of every weakly convergent subsequence of (µn)n∈N has the same characteristic function,
hence by Theorem 1.10, we conclude that the limits are the same. Corollary 3.18 gives us,
that µn

w−→ µ, as n→∞.
(3. implies 4.) By Lemma 1.12 every characteristic function is continuous.
(4. implies 5.) Trivially true.
(5. implies 1.) Follows simply by Theorem 3.19.

With this result at hand, we can prove the following theorem, which is a version of the
Central Limit Theorem. It illustrates how useful the Continuity theorem is.

Theorem 3.21. Let (Xi)i∈N be a sequence of independent, identically distributed real-
valued random variables. Assume that the second moment exists and let E(Xi) = µ and
let the variance be V (Xi) = E((Xi − E(Xi))

2) = σ2. Set, for each n ≥ 1, Sn =
∑n

i=1Xi.
Then

Sn − nµ
σ
√
n

D−→ X, as n→∞,

where X is standard normal distributed.

Proof. Set Yi = (Xi − µ)/σ, i ≥ 1. Then E(Yi) = 0, V (Yi) = 1 and the sequence (Yi)i∈N
is independent and identically distributed. Also note that

Sn − nµ
σ
√
n

=

∑n
i=1Xi − nµ
σ
√
n

=

∑n
i=1 Yi√
n

.
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So if we prove the claim for µ = 0 and σ2 = 1, then we have also proven it in general.
We calculate the characteristic function φ of X,

φ(θ) =

∫
eiθX dP =

∫
eiθx

1√
2π
e−

x2

2 dm(x) =

∫
1√
2π
e−
−2iθx+x2

2 dm(x)

=

∫
1√
2π
e−

(x−iθ)2
2 e

(iθ)2

2 dm(x) = e−
θ2

2

∫
1√
2π
e−

y2

2 dm(y) = e−
θ2

2 .

In view of the Continuity Theorem, we only need to prove that

φ Sn√
n

(θ)→ e−
θ2

2 , as n→∞,

for all θ ∈ R. We write out, using Lemma 1.8, Lemma 1.9 and Theorem 1.17

φ Sn√
n

(θ) = φSn

(
θ√
n

)
= φX1

(
θ√
n

)n
=

(
1− θ2

2n
+ o

(
θ2

n

))n
.

We want to show that the last expression converges to e−θ
2/2, as n → ∞. Let θ ∈ R be

fixed and let ε > 0. Then we can find N ∈ N, such that for all n ≥ N we have that∣∣o(θ2/n)
∣∣ /(θ2/n) < ε/(2θ2). Hence for all n ≥ N we have that 2n

∣∣o(θ2/n)
∣∣ < ε. So we

have, for n large enough, that(
1− θ2 + ε

2n

)n
≤
(

1− θ2

2n
+ o

(
θ2

n

))n
≤
(

1− θ2 − ε
2n

)n
.

From the above we can then obtain that

lim sup
n→∞

(
1− θ2

2n
+ o

(
θ2

n

))n
≤ e−

θ2−ε
2 , and lim inf

n→∞

(
1− θ2

2n
+ o

(
θ2

n

))n
≥ e−

θ2+ε
2 .

Since ε was arbitrary, we conclude that

lim sup
n→∞

(
1− θ2

2n
+ o

(
θ2

n

))n
≤ e−

θ2

2 , and lim inf
n→∞

(
1− θ2

2n
+ o

(
θ2

n

))n
≥ e−

θ2

2 .

Hence

φ Sn√
n

(θ) =

(
1− θ2

2n
+ o

(
θ2

n

))n
→ φ(θ), as n→∞.

By the Continuity Theorem, the proof is complete.

As an additional consequence of the Continuity theorem, we have an approach to
determine if a function is a characteristic function of some probability measure. Next we
will prove a result that gives necessary and sufficient conditions for a function to be a
characteristic function of some probability measure. But first we will need a definition
and a few lemmas.

Definition 3.22. A function f : R→ C is positive definite if for any finite set of numbers
zj , tj, where 1 ≤ j ≤ n and tj ∈ R and zj ∈ C, we have that

n∑
j=1

n∑
k=1

f(tj − tk)zjzk ≥ 0. (3.17)
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We have the following properties of such functions:

Lemma 3.23. If f : R→ C is positive definite, then for each t ∈ R

f(−t) = f(t), |f(t)| ≤ f(0).

If f is continuous at t = 0, then f is uniformly continuous. If so, then for every g : R→ C
continuous we have that∫ T

0

∫ T

0
f(s− t)g(s)g(t) dsdt ≥ 0, for all T > 0. (3.18)

Proof. Setting n = 1, t1 = 0 and z1 = 1 at (3.17) reveals that f(0) ≥ 0. Then we set
n = 2, t1 = 0, t2 = t and z1 = 1 = z2 and get that 2f(0) + f(t) + f(−t) ≥ 0, hence
f(t) + f(−t) is real (since f(0) was). Now we set n = 2, t1 = 0, t2 = t, z1 = 1 and z2 = i,
and so we get 2f(0) − if(−t) + if(t) ≥ 0, hence f(t) − f(−t) is purely imaginary. We
therefore conclude that f(−t) = f(t). Let t1 = 0, t2 = t, z1 = f(t), z2 = − |f(t)|, then we
get that

f(0) |f(t)|2+f(0) |f(t)|2+f(t)(− |f(t)|)f(t)+f(−t)f(t)(− |f(t)|) = 2f(0) |f(t)|2−2 |f(t)|3 ,

using what we just proved. The left-hand side is non-negative, hence we conclude that
f(0) ≥ |f(t)|. We see that if f(0) = 0, then f is constantly 0, in this case (3.18) holds. If
f(0) 6= 0 then we can assume without loss of generality that f(0) = 1, just replace f(t)
with f(t)/f(0). Note that (3.17) can be written as a matrix product, so we see that f is
positive definite if and only if the matrix A = (f(tj−tk))j,k=1,2,...,n is positive semi-definite
for all choices of n ∈ N and tj ∈ R. We know that positive semi-definite matrices have
non-negative determinants. Hence setting t1 = 0, t2 = t and t3 = t+ h we have that∣∣∣∣∣∣

f(0) f(t) f(t+ h)
f(−t) f(0) f(h)

f(−t− h) f(−h) f(0)

∣∣∣∣∣∣ = 1−|f(t)|2−|f(h)|2−|f(t+ h)|2+2Re(f(t)f(h)f(t+ h)).

Where the determinant is non-negative. So we see that

|f(t)− f(t+ h)|2 = |f(t)|2 + |f(t+ h)|2 − 2Re(f(t)f(t+ h))

≤ 1− |f(h)|2 + 2Re(f(t)f(h)f(t+ h))− 2Re(f(t)f(t+ h))

= 1− |f(h)|2 + 2Re(f(t)f(h)f(t+ h)(f(h)− 1))

≤ 1− |f(h)|2 + 2 |1− f(h)| → 0, as h→ 0.

Hence f is uniformly continuous, when f is continuous at t = 0. Therefore we see that
the integral

∫ T
0

∫ T
0 f(s− t)g(s)g(t) dsdt is well-defined, both as a double Riemann-integral

and as a double Lebesgue integral. It is therefore equal to the limit of Riemann sums.
Each sum is non-negative due to (3.17), hence the limit is also non-negative. We conclude

that
∫ T

0

∫ T
0 f(s− t)g(s)g(t) dsdt ≥ 0, for each T > 0.
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Lemma 3.24. Let h : [0,∞)→ R be a measurable function, which is bounded from below,
and assume that h(β) converges, as β →∞ (possibly to ∞). If

1

α

∫ α

0
h(β) dβ → c, as α→∞, for some c ∈ R,

then limβ→∞ h(β) = c.

Proof. Assume that limβ→∞ h(β) 6= c. If the limit is larger, then we can find ε > 0 and
K > 0 such that h(β) ≥ c+ ε for all β ≥ K. Hence we have that

1

α

∫ α

0
h(β) dβ =

1

α

∫ K

0
h(β) dβ +

1

α

∫ α

K
h(β) dβ ≥ K

α
inf

β∈[0,K]
h(β) +

α−K
α

(c+ ε)

This converges to (c + ε), as α → ∞, contradicting the assumption limβ→∞ h(β) 6= c. If
the limit is assumed to be smaller than c, the argument is completely analogous.

Theorem 3.25 (Bochner). Let f : R→ C be a function. f is a characteristic function of
some probability measure if and only if f is positive definite, f(0) = 1 and f is continuous
at t = 0.

Proof. Let f be the characteristic function of the probability measure µ. Then f(0) = 1
is clear, and f is continuous due to Lemma 1.12. We see that:

n∑
j=1

n∑
k=1

f(tj − tk)zj z̄k =

n∑
j=1

n∑
k=1

∫
ei(tj−tk)x dµ(x)zjzk =

∫ n∑
j=1

n∑
k=1

eitjxzjeitkxzk dµ(x)

=

∫ ∣∣∣∣∣∣
n∑
j=1

eitjxzj

∣∣∣∣∣∣
2

dµ(x) ≥ 0

Hence f is positive definite.
Conversely, let f have the above properties. By the Continuity theorem, we only need

to construct a sequence of probability measures, such that the corresponding characteristic
functions converge to f . Set for each T > 0

fT (t) =

{(
1− |t|T

)
f(t) if t ∈ [−T, T ]

0 else.

pT (x) =
1

2π

∫ T

−T

(
1− |y|

T

)
f(y)e−iyx dy, x ∈ R.

Then fT → f pointwise, as T →∞. So we only need to verify, that for each T > 0, pT is a
probability density with respect to the Lebesgue measure and it has fT as its characteristic
function. We quickly realize that pT is measurable for all T > 0. Also pT only attains
real-values, since the integrand is conjugate symmetric (since f is due to Lemma 3.23), so
the integral over the interval [−T, T ] is real.
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By use of Lemma 3.23 with the function g(t) = e−itx, we obtain

0 ≤ 1

2πT

∫ T

0

∫ T

0
f(s− t)e−i(s−t)x dsdt =

1

2πT

∫
f(s− t)e−i(s−t)x d(1[0,T ]2 ·m2)(s, t)

=
1

2πT

∫
f(y)e−iyx dh(1[0,T ]2 ·m2)(y) =

1

2πT

∫ T

−T
(T − |y|)f(y)e−iyx dy = pT (x).

Here we have used Fubini’s Theorem (we integrate over bounded intervals, so the integra-
bility conditions are met). Then we used the Change of variable theorem, with the trans-
formation h(s, t) = s − t. We considered the image measure h(ν), where ν = 1[0,T ]2 ·m2.
It can be verified that h(ν) has the density y 7→ (T − |y|)1[−T,T ](y) with respect to the
Lebesgue measure m.

So we have now concluded that pT is non-negative. Next we verify that pT integrates
to 1 for all T > 0. Consider, for α > 0 and y 6= 0, the integral

1

α

∫ α

0

∫ β

−β
eiyx dxdβ =

1

α

∫ α

0

2 sin(βy)

y
dβ =

2(1− cos(αy))

αy2
. (3.19)

And for y = 0
1

α

∫ α

0

∫ β

−β
1 dxdβ = α = lim

y→0

2(1− cos(αy))

αy2
.

So for α > 0 the following holds

1

α

∫ α

0

∫ β

−β
pT (x) dxdβ =

1

α

∫ α

0

∫ β

−β

1

2π

∫ T

−T

(
1− |y|

T

)
f(y)e−iyx dydxdβ

=
1

π

∫ T

−T

1

2

(
1− |y|

T

)
f(y)

1

α

∫ α

0

∫ β

−β
e−iyx dxdβdy

=
1

π

∫ T

−T

(
1− |y|

T

)
f(y)

1− cos(αy)

αy2
dy

=
1

π

∫
fT (y)

1− cos(αy)

αy2
dm(y)

=
1

π

∫
fT

(
t

α

)
1− cos(t)

t2
dm(t). (3.20)

Where we used Fubini’s theorem and the transformation t = αy. Observe that the last
integrand is bounded by the map t 7→ (1−cos(t))/t2 (recall that Lemma 3.23 ensures that
|f(t)| ≤ f(0) = 1). The map is integrable and integrates to π, hence we can apply the
Lebesgue dominated convergence theorem and obtain

lim
α→∞

1

α

∫ α

0

∫ β

−β
pT (x) dxdβ = lim

α→∞

1

π

∫
fT

(
t

α

)
1− cos(t)

t2
dy

=
1

π

∫
fT (0)

1− cos(t)

t2
dy = 1

Since f (so fT as well) is continuous at t = 0. Consider the function h(β) =
∫ β
−β pT (x) dx,

it is increasing (since pT (x) ≥ 0), hence it converges, as β → ∞. By Lemma 3.24 we
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conclude that h(β) → 1, as β → ∞. So pT is a probability density with respect to the
Lebesgue measure, for each T > 0.

Let θ ∈ R. By substitution in (3.19), we get that

1

α

∫ α

0

∫ β

−β
eiθxeiyx dxdβ =

2 sin(α(θ − y))

α(θ − y)2
.

Hence by substitution in (3.20) we get that, for α > 0

1

α

∫ α

0

∫ β

−β
eiθxpT (x) dxdβ =

1

π

∫
fT (y)

1− cos(α(θ − y))

α(θ − y)2
dm(y)

=
1

π

∫
fT

(
θ − t

α

)
1− cos(t)

t2
dm(t)→ fT (θ), as α→∞.

Where we used the transformation t = α(θ − y), the Lebesgue dominated convergence
theorem and that f (so also fT ) is continuous at t = θ by Lemma 3.23. Now consider the

function h(β) =
∫ β
−β e

iθxpT (x) dx. Due to conjugate symmetry of the integrand, it is real-
valued. The integrand is bounded by the integrable function pT , hence by the Lebesgue
dominated convergence theorem h(β) converges to the characteristic function of pT ·m, as
β →∞. By Lemma 3.24, h(β) also converges to fT (θ). So now we conclude that, for each
T > 0, µT = pT ·m is a probability measure, and that fT is the corresponding characteristic
function. By the Continuity theorem, we conclude that f is the characteristic function of
some probability measure.

3.4 Convergence of Moments

In this section we will establish a method of deducing weak convergence from convergence
of moments. First we consider yet another type of convergence of random variables:

Definition 3.26. Let p > 0 and X, (Xn)n∈N be real-valued random variables defined on a
common probability space (Ω,F, P ). Then Xn converge in Lp to X if

E |Xn −X|p → 0, as n→∞.

It is written Xn
Lp−→ X, as n→∞.

Theorem 3.27. Let p > 0 and X, (Xn)n∈N be real-valued random variables defined on a

common probability space (Ω,F, P ). If Xn
Lp−→ X, as n→∞, then Xn

P−→ X, as n→∞.

Proof. It follows from Chebyshev’s inequality, that for every ε > 0

P (|Xn −X| > ε) ≤ E |Xn −X|p

εp
→ 0, as n→∞.

Rearranging this yields the result.
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Remark 3.28. The converse is not necessarily true. For each n let Xn attain two values
0 and n and let

P (Xn = 0) = 1− 1

np
, P (Xn = n) =

1

np
.

Then clealy Xn
P−→ 0, as n→∞, but

E |Xn − 0|p =

∫
|Xn|p dP = np

1

np
= 1 9 0, as n→∞.

So Xn fails to converge to 0 in Lp, as n→∞.
So we have checked for general relations between all the types of convergence, except

between Lp-convergence and almost surely convergence. As we will see next, none of them
implies the other.

Let Xn be uniformly distributed on (n, n+ 1), then

Xn(ω)→ 0, as n→∞, for all ω ∈ Ω.

Hence Xn
a.s.−−→ 0, as n→∞. But

E |Xn − 0|p =

∫
|Xn|p dP ≥

∫
Xn∈(n,n+1)

|Xn|p dP ≥ np →∞, as n→∞.

So Xn fails to converge to 0 in Lp for every p > 0.
For proving that the implication also does not hold the other way, consider the counter

example in Theorem 3.9. Here Xn where indicator functions on smaller and smaller blocks
of (0, 1]. We saw that Xn failed to converge to 0 almost surely, but

E |Xn − 0|p =

∫
|Xn|p dP =

∫
{Xn=1}

|Xn|p dP → 0, as n→∞.

So Xn
Lp−→ 0, as n→∞, for every p > 0

Consider a sequence of random variables, which converges in distribution to some limit
random variable. We want to consider if the moments of the limit random variable exist.

Lemma 3.29. Let X, (Xn)n∈N be real-valued random variables, not necessarily defined on

the same probability space. If Xn
D−→ X, as n→∞, then

E |X| ≤ lim inf
n→∞

En |Xn| .

Proof. Because the random variables are not necessarily defined on the same probability
space, the means are dependent of the probability space. This is emphazised by using
the index. However, using Skorohod’s Theorem makes it possible to construct random
variables Y, (Yn)n∈N such that X and Y have the same distribution, and similarly for Xn

and Yn. These new variables are defined on the same background space, therefore using
Y = limn→∞ Yn almost surely combined with Fatou’s Lemma gives us

E |X| = E |Y | = E
∣∣∣lim inf
n→∞

Yn

∣∣∣ ≤ lim inf
n→∞

E |Yn| = lim inf
n→∞

E |Xn| .

This completes the proof.
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The following concept will be used in order to establish connection with convergence
of moments and convergence in Lp.

Definition 3.30. A sequence of random variables (Xn)n∈N, not necessarily defined on a
common probability space, is uniformly integrable if

lim
α→∞

sup
n∈N

∫
|Xn|≥α

|Xn| dPn = 0. (3.21)

Theorem 3.31. Let X, (Xn)n∈N be real-valued random variables defined on a common
background space. If Xn

a.s.−−→ X, as n→∞, then the following two statements hold:

1. If (Xn)n∈N is uniformly integrable, then (Xn)n∈N as well as X have first moment
and E(Xn)→ E(X), as n→∞.

2. If X, (Xn)n∈N are non-negative and have first moment and E(Xn) → E(X), as
n→∞, then (Xn)n∈N is uniformly integrable.

Proof. (1) If (3.21) holds, then let α be large enough so the supremum is less than 1. This
gives us that

E |Xn| =
∫
|Xn| dP =

∫
|Xn|<α

|Xn| dP +

∫
|Xn|≥α

|Xn| dP ≤ α+ 1.

So the moments exists for (Xn)n∈N, as well for X by applying Lemma 3.29. Now define a
new set of random variables for each α ∈ R

Xα
n = 1{|Xn|<α}Xn , Xα = 1{|X|<α}X.

The set of discontinuity points of X is at most countable, so pick a sequence of continuity
points (αk)k∈N which goes to ∞, as k →∞. Since P (|X| = αk) = 0, then Xαk

n
a.s.−−→ Xαk ,

as n→∞, bounded by αk. Hence by the Lebesgue dominated convergence theorem

E(Xαk
n ) =

∫
Xαk
n dP →

∫
Xαk dP = E(Xαk), as n→∞.

So let ε > 0, then choose n large enough, so that |E(Xαk
n )− E(Xαk)| < ε. Then we have

for n large enough

|E(Xn)− E(X)| ≤ |E(Xn)− E(Xαk
n )|+ |E(Xαk)− E(X)|+ ε

=

∣∣∣∣∫ Xn −Xαk
n dP

∣∣∣∣+

∣∣∣∣∫ Xαk −X dP

∣∣∣∣+ ε

=

∣∣∣∣∣
∫
|Xn|≥αk

Xn dP

∣∣∣∣∣+

∣∣∣∣∣
∫
|X|≥αk

X dP

∣∣∣∣∣+ ε

≤

∣∣∣∣∣sup
n∈N

∫
|Xn|≥αk

Xn dP

∣∣∣∣∣+

∣∣∣∣∣
∫
|X|≥αk

X dP

∣∣∣∣∣+ ε→ ε, as k →∞.

It holds for every ε as long as n is large enough, hence E(Xn)→ E(X), as n→∞.
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(2) We still have that∫
Xαk
n dP = E(Xαk

n )→ E(Xαk) =

∫
Xαk dP , as n→∞.

Thus leading to∣∣∣∣∫
Xn≥αk

Xn dP −
∫
X≥αk

X dP

∣∣∣∣ =

∣∣∣∣∫ Xn −Xαk
n dP −

∫
X −Xαk dP

∣∣∣∣
=

∣∣∣∣∫ Xn −X dP

∣∣∣∣+

∣∣∣∣∫ Xαk
n −Xαk dP

∣∣∣∣ .
Which tends to 0, as n→∞. It follows that∫

Xn≥αk
Xn dP →

∫
X≥αk

X dP, as n→∞,

for every αk. For each ε > 0 choose αk so large that
∫
X≥αk X dP < ε. Then there exists

n0 so that for all n ≥ n0, ∫
Xn≥αk

Xn dP ≤ ε.

By possibly increasing αk, the above holds for every n. Since Xn are assumed to be
non-negative, we can replace Xn with |Xn|. Thus (Xn)n∈N is uniformly integrable.

Theorem 3.32. Let X, (Xn)n∈N be real-valued random variables not necessarily defined

on a common probability space. If Xn
D−→ X, as n → ∞, and (Xn)n∈N is uniformly

integrable, then X has first moment and

En(Xn)→ E(X), as n→∞.

Proof. Construct new random variables defined on a common probability space Y, (Yn)n∈N,
as in the proof of Lemma 3.29. Since Yn

a.s.−−→ Y , as n → ∞, and (Yn)n∈N is uniformly
integrable the result follows from Theorem 3.31.

Corollary 3.33. Let X, (Xn)n∈N be real-valued random variables, not necessarily defined

on the same probability space. Assume that Xn
D−→ X, as n → ∞, and supn∈NE |Xn|p =

M <∞ for some p > 1. If r < p is a positive integer, then

En(Xr
n)→ E(Xr), as n→∞.

Proof. E(Xr), E(Xr
n) are welldefined, since |Xn|r ≤ |Xn|p + 1, so E |Xn|r ≤ M + 1. By

Lemma 3.29, E |X|r ≤ lim infn→∞E |X|r ≤M + 1.
If |Xn| ≥ α, then (|Xn| /α)r ≤ (|Xn| /α)p. Therefore we get that∫

|Xn|≥α
|Xn|r dPn ≤ αr−p

∫
|Xn|≥α

|Xn|p dPn ≤ αr−pM.
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Hence

sup
n∈N

∫
|Xn|≥α

|Xn|r dPn ≤ αr−pM → 0, as α→∞.

So (Xr
n)n∈N is uniformly integrable for every positive integer r < p. By Theorem 3.12,

Xr
n
D−→ Xr, as n→∞. So now limn→∞En(Xr

n) = E(Xr) follows from Theorem 3.32.

With this result available, we can now prove Stirling’s Formula:

Theorem 3.34 (Stirling’s Formula). The following holds

lim
n→∞

(n
e

)n √2nπ

n!
= 1.

Proof. Let (Xi)i∈N be a sequence of real-valued, independent, identically distributed ran-
dom variables. Let Xi follow a gamma distribution, with shape and scale parameter 1,
so the mean and variance are 1. For each n ≥ 1, set Sn =

∑n
i=1Xi, then Sn is gamma

distributed with shape parameter n and scale parameter 1. Then for each n ≥ 1, set

Un = (Sn−n)/
√
n. According to Theorem 3.21 Un

D−→ X, as n→∞, where X is standard

normal distributed. By Theorem 3.12, |Un|
D−→ |X|, as n→∞.

Observe that

E(U2
n) = E

((
Sn − n√

n

)2
)

=
E(S2

n) + n2 − 2nE(Sn)

n
=
n(n+ 1) + n2 − 2n2

n
= 1.

Hence supn∈NE(|Un|2) = 1 <∞. By Corollary 3.33, we conclude that

E |Un| → E |X| =
√

2

π
, as n→∞. (3.22)

Now we calculate E |Un|, using that Sn are gamma distributed,

E |Un| =
∫ ∞

0

|x− n|√
n

xn−1e−x

Γ(n)
dx =

√
n

n!

∫ ∞
0
|x− n|xn−1e−x dx.

Consider the last integral. By the Monotone convergence Theorem (cf. Theorem 16.2 in
[2]), ∫ ∞

0
|x− n|xn−1e−x dx = lim

k→∞,k≥n

∫ k

0
|x− n|xn−1e−x dx
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We split up the last integral and use partial integration∫ k

0
|x− n|xn−1e−x dx =

∫ n

0
(n− x)xn−1e−x dx+

∫ k

n
(x− n)xn−1e−x dx

= n

∫ n

0
xn−1e−x dx−

∫ n

0
xne−x dx+

∫ k

n
xne−x dx

−n
∫ k

n
xn−1e−x dx

= n

∫ n

0
xn−1e−x dx−

[
−xne−x

]n
0
− n

∫ n

0
xn−1e−x dx

+
[
−xne−x

]k
n

+ n

∫ k

n
xn−1e−x dx− n

∫ k

n
xn−1e−x dx

=
[
−xne−x

]k
n
−
[
−xne−x

]n
0
→ 2

(n
e

)n
, as k →∞.

So the above calculations gives us that

E |Un| =
2
√
n

n!

(n
e

)n
.

This combined with (3.22) yields the result.

With Corollary 3.33 at hand, we are also able to prove the next theorem, which
gives a method of deducing weak convergence from convergence of moments, under some
additional assumptions.

Theorem 3.35 (The Method of Moments). Let X, (Xn)n∈N be real-valued random vari-
ables not necessarily defined on a common probability space, but all of them have all mo-
ments. Suppose that X is uniquely determined by its moments (see Chapter 2). If for
every positive integer r

En(Xr
n)→ E(Xr), as n→∞,

then Xn
D−→ X, as n→∞.

Proof. Let µ, (µn)n∈N denote the distributions of X, (Xn)n∈N, respectively. Since E(X2
n)

converges, it is bounded. Let K denote the bound. Chebyshev’s inequality gives us, for
each n ∈ N, that

Pn(|Xn| ≥ x) ≤ K

x2
.

So in terms of µn this means that

µn(−x, x) ≥ 1− K

x2
,

for all n ∈ N, hence (µn)n∈N is tight. So by Theorem 3.17 there exists a weakly convergent
subsequence. Now let (µnk)k∈N denote any weakly convergent subsequence of (µn)n∈N
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(such exists as we just saw). Let ν denote the limit, we want to show that ν = µ. For any
even positive integer p we have, by hypothesis∫

xp dµnk(x) = Enk(Xp
nk

)→ E(Xp), as k →∞,

since (µnk)k∈N is a subsequence of (µn)n∈N. So
(∫
xp dµnk(x)

)
k∈N is bounded. Since p

is even,
∫
xp dµnk(x) =

∫
|x|p dµnk(x). Therefore

(∫
|x|p dµnk(x)

)
k∈N is bounded, hence

by Corollary 3.33 we have for all positive integers r < p∫
xr dµnk(x)→

∫
xr dν(x), as k →∞.

But it also converges to
∫
xr dµ(x). So µ and ν have the same moments, since p ∈ N

was arbitrary. Now, µ is uniquely determined by its moments by hypothesis, so we have
that µ = ν. Now we have seen that every weakly convergent subsequence converges to µ
weakly, hence by Corollary 3.18, we conclude that µn

w−→ µ, as n→∞.

To end this chapter we will discuss an application of the above theorem. More pre-
cisely, we apply the Method of moments to prove yet another more general version of the
Central Limit Theorem for the case of so-called triangular arrays of random variables.
Triangular arrays are described as follows: Let (kn)n∈N be a sequence of positive integers
tending to ∞, as n→∞. Let for each n ∈ N, {Xn,1, Xn,2, ..., Xn,nk} denote independent
real-valued random variables defined on a common probability space (Ωn,Fn, Pn). The
probability spaces are allowed to vary with n. Let Sn =

∑kn
k=1Xn,k, for n ≥ 1, denote the

row sums.

Theorem 3.36. Let ({Xn,1, Xn,2, ..., Xn,nk})n∈N be a triangular array of real-valued ran-
dom variables as described above. Assume that for each n ∈ N, there exists Mn > 0
such that |Xn,k| ≤ Mn for each k = 1, 2, ..., kn. Furthermore, assume that E(Xn,k) = 0
for all n ∈ N and k = 1, 2, ..., nk, and let E(X2

n,k) = σ2
n,k denote the 2nd moments. Let

sn =
∑kn

k=1 σ
2
n,k, n ≥ 1. If

Mn

sn
→ 0, as n→∞,

then Sn/sn
D−→ X, as n→∞, where X is standard normal distributed.

Proof. Note that the bounds ensure that the moments of all the random variables Xn,k

exist. Hence the moments of Sn exist. Using the multinomial formula we obtain

(Sn)r =
∑ r!

r1!r2!...rnk !
Xr1
n,1X

r2
n,2...X

rnk
n,nk , r ∈ N, (3.23)

where the sum
∑

extends over all kn-tuples of non-negative integers, which sum up to r.
Since r < kn eventually for n large enough, some factors will be Xrk

n,k = 1 (for rk = 0).
To avoid this, we consider another way of writing up the above sum. Let u denote the
number of rk’s different from 0, then 1 ≤ u ≤ r. Summing over these, we get:

(Sn)r =

r∑
u=1

∑ ′ r!

r1!r2!...ru!

1

u!

∑ ′′
Xr1
n,i1

Xr2
n,i2

...Xru
n,iu

, for n large enough so that r ≤ kn.
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Here the sum
∑′ extend over all u-tuples (r1, r2, ..., ru) of positive integers, which sum

up to r, and
∑′′ extends over u-tuples (i1, i2, ..., iu) of distinct integers in the range

1 ≤ iα ≤ kn. The sum
∑′′ is introduced to ensure that all the kn-tuples in (3.23), which

are represented by the same u-tuple in the sum
∑′ , are accounted for. However

∑′
and

∑′′ both accommodate for any permutation of the index (iα)1≤i≤u, hence 1/(u!) is
introduced.

By independence we have that

E

((
Sn
sn

)r)
=

r∑
u=1

∑ ′ r!

r1!r2!...ru!

1

u!
An(r1, r2, ..., ru), for n large enough so that r ≤ kn,

(3.24)
where

An(r1, r2, ..., ru) =
∑ ′′ 1

s
∑u
α=1 rα

n

E(Xr1
n,i1

)E(Xr2
n,i2

)...E(Xru
n,iu

).

We want to show that

lim
n→∞

An(r1, r2, ..., ru) =

{
1 if r1 = r2 = ... = ru = 2

0 else.
(3.25)

For the case r1 = r2 = ... = ru = 2, observe that we can rewrite the sum as

An(2, 2, ..., 2) =
∑

∗ 1

s2u
n

σ2
n,i1σ

2
n,i2 ...σ

2
n,iu −

∑
∗∗ 1

s2u
n

σ2
n,i1σ

2
n,i2 ...σ

2
n,iu , (3.26)

where
∑∗ extends over all u-tuples (i1, i2, ..., iu) in the range 1 ≤ iα ≤ kn. And

∑∗∗
extends over all u-tuples (i1, i2, ..., iu) in the range 1 ≤ iα ≤ kn, with at least two index
equal. Now observe that

s2u
n =

kn∑
k=1

(
σ2
n,is

2u−1
n

)
=

kn∑
k=1

σ2
n,k

kn∑
j=1

(
σ2
n,js

2u−2
n

) = ... =
∑

∗σ2
n,i1σ

2
n,i2 ...σ

2
n,iu .

Hence (3.26) is reduced to

An(2, 2, ..., 2) = 1−
∑

∗∗ 1

s2u
n

σ2
n,i1σ

2
n,i2 ...σ

2
n,iu .

Each term in
∑∗∗ has at least one σ2

n,iα
repeated. For each such term, replace one of these

repeated factors with the bound M2
n. Then

0 ≤
∑

∗∗ 1

s2u
n

σ2
n,i1σ

2
n,i2 ...σ

2
n,iu ≤

(
Mn

sn

)2

→ 0, as n→∞.

We here used that the rest of the sum is bounded by the sum over all (u − 1)-tuples
(i1, i2, ..., iu−1) in the range 1 ≤ iα ≤ kn, which we just saw was equal to s2u−2

n . So we
conclude that (3.25) holds for r1 = r2 = ... = ru = 2.
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If rα = 1 for at least one α, then E(Xrα
n,iα

) = 0, so (3.25) holds. Now assume that
rα ≥ 2 for all α and rα > 2 for at least one α. Then r =

∑u
α=1 rα > 2u. We now have

E|Xrα
n,iα
| ≤M rα−2

n σ2
n,iα

, so

An(r1, r2, ..., ru) ≤
∑ ′′ 1

srn
M r−2u
n σ2

n,i1σ
2
n,i2 ...σ

2
n,iu

=

(
Mn

sn

)r−2u∑ ′′ 1

s2u
n

σ2
n,i1σ

2
n,i2 ...σ

2
n,iu

=

(
Mn

sn

)r−2u

An(2, 2, ..., 2)→ 0, as n→∞.

Thus we conclude (3.25) holds.
Now we return to (3.24). If r is odd, then all terms in the sum will go to 0, as n→∞,

because of (3.25). This agrees with the fact that E(Xr) = 0, when X is standard normal
distributed. Similarly if r is even, then all terms will also go to 0, as n → ∞, except for
the case u = r/2 and r1 = r2 = ... = ru = 2. So in this case (3.24) will converge to

r!

2!2!...2!

1

(r/2)!
= 1 · 3 · 5 · ... · (r − 1) = E(Xr),

where X is standard normal distributed. Since the normal distribution is uniquely de-
termined by its moments (Corollary 2.5), we conclude by the Method of moments (The-
orem 3.35), that Sn/sn converge in distribution to the standard normal distribution, as
n→∞.
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Appendix A

Approximation Results

A.1 Real Polynomials

Theorem A.1 (The Weierstrass Approximation Theorem). Let f : [a, b]→ R be contin-
uous. There exists a sequence of real polynomials (qn)n∈N, so that

sup
x∈[a,b]

|f(x)− qn(x)| → 0, as n→∞.

The idea of the proof is due to Bernstein (cf. section 2.6 in [7])

Proof. We prove it first for continuous functions defined on [0, 1]. Consider the Bernstein
polynomials: pn(x) =

∑n
k=0 f

(
k
n

) (
n
k

)
xk(1− x)n−k, they are defined for x ∈ [0, 1]. Observe

that pn(0) = f(0) and pn(1) = f(1). So we need to check that for any ε > 0, we can choose
n ∈ N, such that supx∈(0,1) |f(x)− pn(x)| < ε.

Since f is continous on a compact interval, it is also uniformly continous. Choose δ
such that, for any x, y ∈ [0, 1], where |x− y| < δ implies that |f(x)− f(y)| < ε

2 . Now
choose n ∈ N large enough, such that ‖f‖ /(2nδ2) < ε. Here ‖f‖ = supx∈[a,b] |f(x)| is the
uniform norm, which is finite since f is continous on the compact interval [0, 1]. Now let
x ∈ (0, 1), we see that

|f(x)− pn(x)| =

∣∣∣∣∣f(x)

n∑
k=0

(
n

k

)
xk(1− x)n−k −

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
=

n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

=

n∑
| kn−x|<δ

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

+

n∑
| kn−x|≥δ

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k (A.1)

Where we used that
∑n

k=0

(
n
k

)
xk(1− x)n−k = (1−x+x)n = 1. For the first sum we will use

uniform continuity and in the second we will use the general inequality |f(x)− f(k/n)| ≤
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2 ‖f‖. Now let X be a binomial distributed random variable, with size n and succes
parameter x, and let P denote the corresponding probability measure. Then we recognize

n∑
| kn−x|≥δ

(
n

k

)
xk(1− x)n−k = P (|X − E(X)| ≥ δn) ≤ V (X)

(δn)2
=
nx(1− x)

δ2n2
≤ 1

4δ2n
,

by use of Chebyshev’s inequality and that x(1− x) ≤ 1/4. So in (A.1) we get

|f(x)− pn(x)| ≤ ε

2
+ 2 ‖f‖

n∑
| kn−x|≥δ

(
n

k

)
xk(1− x)n−k ≤ ε

2
+ 2 ‖f‖ 1

4δ2n
≤ ε

2
+
ε

2
= ε.

Thus we have justified that
sup
x∈[0,1]

|f(x)− pn(x)| ≤ ε.

For establishing the result for arbitrary compact intervals [a, b], with a < b, we use the
affine transformation t(x) = (x− a)/(b− a). It maps [a, b] bijectively to [0, 1]. So given a
continuous function f on [a, b], the function f̃ = f ◦ t is continous on [0, 1]. Let (p̃n)n∈N
denote the approximating polynomials, then (pn)n∈N = (p̃n ◦ t−1)n∈N approximates f ,
since

sup
x∈[a,b]

|f(x)− pn(x)| = sup
y∈[0,1]

|f ◦ t(y)− pn ◦ t(y)| = sup
y∈[0,1]

∣∣∣f̃(y)− p̃n(y)
∣∣∣ .

The above proof can easily be generalized to the multidimensional case, only the
notation is changed. Let x = (x1, x2, ..., xk) and i = (i1, i2, ..., ik). Recall that a polynomial
of several variables x1, x2, ..., xk is a function p : Rk → R, of the form

p(x) =
∑
i∈∆N

αi

k∏
j=1

x
ij
j x ∈ Rk,

for some N ∈ N, where αi ∈ R. The summation extends over the set of all k-tuples, that
sums to N , ∆N = {(i1, i2, ..., ik) ∈ Nk0 |

∑k
j=1 ij = N}.

Theorem A.2. Let f :
∏k
j=1 [aj , bj ]→ R be continuous, where (aj)j∈{1,2,...,k}, (bj)j∈{1,2,...,k}

are real numbers such that aj < bj for each j. There exists a sequence of real polynomials
(pn(x))n∈N such that

sup
x∈
∏k
j=1 [aj ,bj ]

|f(x)− pn(x)| → 0, as n→∞.

As a consequence, we now obtain the following result which will be very useful in the
next section.
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Corollary A.3. Let f : C → R be continuous, where C is a compact subset of Rk. There
exists a sequence of polynomials (pn(x))n∈N, such that

sup
x∈C
|f(x)− pn(x)| → 0, as n→∞.

Proof. Since Rk is a normal space and C is closed, Tietze’s extension theorem (cf. Theorem
4.16 in [5]) gives us that f can be extended in to a continuous map f̃ defined on Rk. We
therefore have f(x) = f̃(x), for x ∈ C. Since C is bounded, choose K > 0 large enough,
so that C ⊆ [−K,K]k. Then the previous theorem gives us the sequence of polynomials
and

sup
x∈C
|f(x)− pn(x)| ≤ sup

x∈[−K,K]k
|f(x)− pn(x)| → 0, as n→∞.

A.2 Trigonometric Polynomials

Definition A.4. A real trigonometric polynomial is a function p : R→ R of the form

p(θ) = c+

n∑
k=1

ak cos(kθ) + bk sin(kθ), θ ∈ R, (A.2)

where c, ak, bk ∈ R for all k = 1, 2, ..., n.
A complex trigonometric polynomial is a function p : R→ C of the form

p(θ) =

n∑
k=−n

cke
ikθ, θ ∈ R, (A.3)

where ck ∈ C for all k = −n, ...,−1, 0, 1, ..., n.
A generalized trigonometric polynomial is a function p : R→ C of the form

p(θ) =
n∑
k=1

ake
iαkθ, θ ∈ R, (A.4)

where ak ∈ C and αk ∈ R for all k = 1, 2, ..., n. We call it a real generalized trigonometric
polynomial, if the imaginary part is 0.

We see that the product of two complex trigonometric polynomials is again a complex
trigonometric polynomials, using the identity eikθeimθ = ei(k+m)θ. Using translations
between the complex exponential function and the trigonometric functions, reveals that the
product of two real trigonometric polynomials are again a real trigonometric polynomial.
We also see that every complex trigonometric polynomial, p, can be written on the form
p = p1 + ip2, for propriate real trigonometric polynomials p1, p2.

Theorem A.5. Let f : [−π, π]→ R be a function where f(−π) = f(π). If f is continuous,
then there exists a sequence of real trigonometric polynomials (pn)n∈N, such that

sup
x∈[−π,π]

|f(x)− pn(x)| → 0, as n→∞.
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Proof. The periodicity of f secures that we can find a function F : S1 → R, where S1

denotes the unit circle, such that

F (cos(θ), sin(θ)) = f(θ), ∀θ ∈ [−π, π].

F is continuous, since f is so. So by Corollary A.3, there exists a sequence of polynomials
of two variables (qn)n∈N, such that

sup
(x,y)∈S1

|F (x, y)− qn(x, y)| → 0, as n→∞.

Where qn(x, y) =
∑n

k,l=0 ak,lx
kyl for some ak,l ∈ R. Then

pn(θ) = qn(cos(θ), sin(θ)) =
n∑

k,l=0

ak,l cosk(θ) sinl(θ),

so pn is a linear combination of products of real trigonometric polynomials, which is again
a real trigonometric polynomial. Using that the map, θ 7→ (cos(θ), sin(θ)), is a bijection
of [−π, π] to S1, gives us that

sup
θ∈[−π,π]

|f(θ)− pn(θ)| = sup
(x,y)∈S1

|F (x, y)− qn(x, y)| → 0, as n→∞.

Corollary A.6. Let f : R→ R be continuous and bounded. For every K > 0 there exists
a sequence of real generalized trigonometric polynomials (pn)n∈N such that

sup
θ∈[−K,K]

|f(θ)− pn(θ)| → 0, as n→∞,

and for all n ∈ N
‖pn‖ ≤ ‖f‖+ 1.

Proof. Let g : R→ R be a function given by

g(x) =


1 if x ∈ [−K,K]

(x+K + 1) if x ∈ (−K − 1,−K)

(K + 1− x) if x ∈ (K,K + 1)

0 else.

and define f̃ : R→ R by
f̃(θ) = g(θ)f(θ), θ ∈ R.

Then f̃ is continuous and equal to 0 on (−K − 1,K + 1)c (so especially f̃(−K − 1) =

f̃(K + 1)). Also f̃(θ) = f(θ) for θ ∈ [−K,K] and
∥∥∥f̃∥∥∥ ≤ ‖f‖. By the previous theorem,

we can find a sequence of real trigonometric polynomials (qn)n∈N, such that

sup
θ∈[−π,π]

∣∣∣∣f̃ ((K + 1)θ

π

)
− qn(θ)

∣∣∣∣→ 0, as n→∞.
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With the possibility of removing the first finitely many n’s, we can assume that

‖qn‖ ≤
∥∥∥f̃∥∥∥+

∥∥∥f̃ − qn∥∥∥ ≤ ∥∥∥f̃∥∥∥+ 1 ≤ ‖f‖+ 1.

Where periodicity of qn ensures that we only need to consider the interval [−π, π]. Then
set

pn(θ) = qn

(
πθ

K + 1

)
, θ ∈ R.

These are real generalized trigonometric polynomials. We have that

sup
θ∈[−K,K]

|f(θ)− pn(θ)| = sup
θ∈[−K,K]

∣∣∣f̃(θ)− pn(θ)
∣∣∣ ≤ sup

θ∈[−K−1,K+1]

∣∣∣f̃(θ)− pn(θ)
∣∣∣

= sup
θ∈[−π,π]

∣∣∣∣f̃ ((K + 1)θ

π

)
− qn(θ)

∣∣∣∣→ 0, as n→∞.

A.3 Simple Functions

Theorem A.7. Let f : R → R be continuous, let a, b ∈ R where a < b and let ε > 0.
There exists a simple function of the form s(x) =

∑n
i=1 1(ai,bi]ci, such that

sup
x∈(a,b]

|f(x)− s(x)| < ε.

Proof. f is uniformly continuous on [a, b]. So given ε choose δ > 0 such that

∀x, y ∈ [a, b] : |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Divide [a, b] into δ-pieces, i.e., find a1, a2, ..., an, so that a = a1 < a2 < ... < an = b and

|ai − ai+1| < δ for i = 1, 2, ..., n− 1.

Then s(x) =
∑n−1

i=1 1(ai,ai+1]f(ai) has the wanted properties.
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Appendix B

The Carathéodory Theorem

We will briefly introduce a very powerful mathematical construction in order to prove
that certain real-valued functions uniquely determines a measure on (R,B). The idea
is to prove existence of measures from certain set-functions that only have some of the
properties of a measure. Let P(X) denote the power set of a set X.

Definition B.1. An outer measure µ∗ on a set X is a function µ∗ : P(X)→ [0,∞] such
that

1. µ∗(∅) = 0.

2. µ∗(A) ≤ µ∗(B), if A ⊆ B.

3. µ∗ (
⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An) for any sequence (An)n∈N of subsets of X

We then define another concept:

Definition B.2. Let µ∗ be an outer measure on X. A subset E of X is called µ∗-
measurable if

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

holds for all A ∈ P(X).

The definition of outer measures automatically gives us one inequality

µ∗(A) = µ∗((A ∩ E) ∪ (A ∩ Ec)) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec).

Lemma B.3. Let A be an algebra on X. If A is stable under countable disjoint union,
then A is a σ-algebra.

Proof. We only need to check that for given any sequence (An)n∈N of A-sets, the union

will still be in A. Set B1 = A1 and inductively define Bn = An \
⋃n−1
j=1 Bj , for n ≥ 2. Then

(Bn)n∈N are disjoint and therefore
⋃∞
n=1An =

⋃∞
n=1Bn ∈ A.

The proof of the Carathéodory theorem follows [5], section 1.4.
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Theorem B.4 (The Carathéodory Theorem). Let µ∗ be an outer measure on X. Let E
denote the set of µ∗-measurable subsets of X. Let µ be the restriction of µ∗ to E. Then
(X,E, µ) is a measure space.

Proof. First we show that E is an algebra. By definition ∅ ∈ E and E is stable under
complement. Let E,F ∈ E and let A ⊆ X be arbitrary, then

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)
= µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c)
≥ µ∗((A ∩ E ∩ F ) ∪ (A ∩ E ∩ F c) ∪ (A ∩ Ec ∩ F )) + µ∗(A ∩ (E ∪ F )c)

= µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c),

so E ∪ F ∈ E, so E is an algebra. Now we show that E is stable under disjoint countable
union. Let (En)n∈N be a disjoint sequence of E-sets. Set Fn =

⋃n
j=1Ej ∈ E for each

n ∈ N, and set F =
⋃∞
n=1En =

⋃∞
n=1 Fn. We want to show that F ∈ E. Let A ⊆ X

be arbitrary. We first show that µ∗(A ∩ Fn) =
∑n

j=1 µ
∗(A ∩ Ej), by induction on n. It

clearly holds for n = 1. Let it be true for n− 1, n ≥ 2. Then we have that

µ∗(A∩Fn) = µ∗(A∩Fn∩En)+µ∗(A∩Fn∩Ecn) = µ∗(A∩En)+µ∗(A∩Fn−1) =
n∑
j=1

µ∗(A ∩ Ej).

So now we have that

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F cn) =
n∑
j=1

µ∗(A ∩ Ej) + µ∗(A ∩ F cn)

≥
n∑
j=1

µ∗(A ∩ Ej) + µ∗(A ∩ F c).

Hence it also holds in the limit. That combined with the fact that A = (A∩F )∪(A∩F c) =(⋃∞
j=1A ∩ Ej

)
∪ (A ∩ F c), gives us that

µ∗(A) ≥
∞∑
j=1

µ∗(A ∩ Ej) + µ∗(A ∩ F c) ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c) ≥ µ∗(A). (B.1)

So F ∈ E, hence E is stable under countable disjoint union, hence by Lemma B.3, E is
a σ-algebra. By setting A =

⋃∞
n=1En in (B.1) also gives us that µ∗ is a measure when

restricted to E.

Theorem B.5. Let F : R → R be a function. Assume that F is non-decreasing and
right-continuous. Then there exists a unique measure µ on (R,B), with the property that
for all a, b ∈ R, where a < b

µ(a, b] = F (b)− F (a).
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Proof. (Uniqueness) Let λ be another measure on (R,B) with the above property. The
measure(s) having this property must be σ-finite, i.e., there exists a sequence of B-sets
(Kn)n∈N such that λ(Kn) < ∞ and

⋃∞
n=1Kn = R. It follows by using the sequence

((−n, n])n∈N. We see that µ and λ must agree on the collection {(a, b] | a, b ∈ R, a ≤ b},
which is an intersection stable generator of B. By the uniqueness theorem of σ-finite
measures (cf. Theorem 10.3 in [2]), we conclude that µ = λ.

(Existence) Let L = limx→−∞ F (x) denote the limit to the left, it may be −∞. The
limit exists since F is non-decreasing. Let I denote the collection

I = {(−∞, a] | a ∈ R} ∪ {(a, b] | a, b ∈ R a < b} ∪ {∅} .

Define ν : I → [0,∞] by ν(∅) = 0, ν(−∞, a] = F (a) − L and ν(a, b] = F (b) − F (a). Now
let

µ∗(A) = inf


∞∑
j=1

ν(Ij) | Ij ∈ I, A ⊆
∞⋃
j=1

Ij

 , (B.2)

which is well-defined for all subsets A ⊆ R. By Carathéodory’s Theorem the proof is
complete, if we show the following:

1. µ∗ is an outer-measure.

2. B ⊆ E, where E denotes the set of µ∗-measurable subsets of R.

3. ν(a, b] = µ∗(a, b] for all a, b ∈ R, a < b.

1. µ∗(∅) = 0 and monotonicity of µ∗ follows from the definition of µ∗. We only need to
check, for every sequence (An)n∈N of subsets of X, that

µ∗

( ∞⋃
n=1

An

)
≤
∞∑
n=1

µ∗(An). (B.3)

First (B.3) holds whenever µ∗(An) = ∞ for at least one n, so now we assume they are
all finite. Let ε > 0 be given. For each An choose a sequence (In,j)j∈N in I, so that
An ⊆

⋃∞
j=1 In,j and µ∗(An) + ε2−n ≥

∑∞
j=1 ν(In,j). Then

⋃∞
n=1An ⊆

⋃∞
n,j=1 In,j , so

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n,j=1

In,j =
∞∑
n=1

µ∗(An) + ε2−n = ε+
∞∑
n=1

µ∗(An).

Since ε was arbitrary, (B.3) holds.
2. Since I generates B, and E is a σ-algebra by Carathéodory’s Theorem, it is enough

to show that I ⊆ E. Let I ∈ I, according to the definition of an outer measure and the
remark following it, we only need to show that

µ∗(A) ≥ µ∗(A ∩ I) + µ∗(A ∩ Ic),

for all subsets A ⊆ R. Let A ⊆ R be arbitrary and (In)n∈N be any sequence of I-sets, such
that A ⊆

⋃∞
n=1 In. Observe that the complement of any I-set is a disjoint union of two

other I-sets. So I = I ′ ∪ I ′′, where I ′, I ′′ ∈ I are disjoint. Now set for each n ∈ N

Jn := I ∩ In , J ′n := I ′ ∩ In , J ′′n := I ′′ ∩ In.
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For each n ∈ N, Jn, J
′
n, J

′′
n are I-sets and they form a disjoint union of In. Furthermore

ν(Jn) + ν(J ′n) + ν(J ′′n) = ν(In). This combined with the fact that

A ∩ I ⊆
∞⋃
n=1

Jn , A ∩ I ′ ⊆
∞⋃
n=1

J ′n , A ∩ I ′′ ⊆
∞⋃
n=1

J ′′n ,

and that µ∗ was an outer measure gives us

∞∑
n=1

ν(In) =

∞∑
n=1

ν(Jn) +

∞∑
n=1

ν(J ′n) +

∞∑
n=1

ν(J ′′n)

≥ µ∗(A ∩ I) + µ∗(A ∩ I ′) + µ∗(A ∩ I ′′)
≥ µ∗(A ∩ I) + µ∗(A ∩ (I ′ ∪ I ′′)) = µ∗(A ∩ I) + µ∗(A ∩ Ic).

Since (In)n∈N was arbitrary we must have that

µ∗(A) ≥ µ∗(A ∩ I) + µ∗(A ∩ Ic).

3. Let I = (a, b] be given. µ∗(I) ≤ ν(I) by definition. In order to show the other
inequality we need to establish the following:

(a, b] ⊆
N⋃
n=1

(an, bn]⇒ ν(a, b] ≤
N∑
n=1

ν(an, bn]. (B.4)

We prove it by complete induction by the number N . The induction start holds because F
is non-decreasing. So now let N ≥ 2 and assume that (B.4) holds for all covers of strictly
less than N intervals. Find n0 ∈ {1, 2, .., N}, such that b ∈ (an0 , bn0 ]. If an0 ≤ a, then we
are done. So now assume a < an0 , then

(a, an0 ] = (a, b] \ (an0 , bn0 ] ⊆
N⋃

n6=n0

(an, bn].

Then the induction assumption gives us that ν(a, an0 ] ≤
∑N

n6=n0
ν(an, bn]. So

ν(a, b] = F (b)− F (a) ≤ F (bn0)− F (an0) + F (an0)− F (a)

≤ ν(an0 , bn0 ] + ν(a, an0 ] = ν(an0 , bn0 ] +
N∑

n6=n0

ν(an, bn] =
N∑
n=1

ν(an, bn].

Thus proving (B.4). Now choose any sequence (In)n∈N of I-sets, such that I ⊆
⋃∞
n=1 In.

Then µ∗(I) ≥ ν(I) will follow if

ν(I) ≤
∞∑
n=1

ν(In). (B.5)

It is enough to show it, when In’s are of the form (an, bn]. If In = ∅ we can disregard
it, if In = (−∞, a] then replace it with (c, a] for a propriate c. We will still have that
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I ⊆
⋃∞
n=1 In and monotonicity of ν (since F is non-decreasing) will still ensure (B.5).

Since F is right-continuous we have that

ν(I) = sup
{
F (b′)− F (a′) | a′, b′ ∈ I, a′ < b′

}
. (B.6)

Let ε > 0 and a′, b′ ∈ I be arbitrary, such that a′ < b′. For each n choose bn < b′n,
such that F (b′n) ≤ F (bn) + ε2−n according to right-continuity in bn. Then In = (an, bn] ⊆
(an, b

′
n) and then [a′, b′] ⊆ I ⊆

⋃∞
n=1 (an, b

′
n). In accordance with compactness of [a′, b′],

choose a finite subcover such that

(a′, b′] ⊆ [a′, b′] ⊆
N⋃
n=1

(an, b
′
n) ⊆

N⋃
n=1

(an, b
′
n].

By (B.4) we obtain

F (b′)− F (a′) = ν(a′, b′] ≤
N∑
n=1

ν(a′n, b
′
n] =

N∑
n=1

F (b′n)− F (an)

≤
∞∑
n=1

F (bn)− F (an) + ε2−n = ε+

∞∑
n=1

ν(In).

Since ε was arbitrary, ν(a′, b′] ≤
∑∞

n=1 ν(In). Now since a′, b′ were arbitrary (B.6) gives
us that ν(a, b] ≤

∑∞
n=1 ν(In). Since (In)n∈N was an arbitrary cover of I, we conclude

that µ∗(I) ≥ ν(I). Hence we have proved the existence of a measure with the wanted
properties.

Setting F (x) = x proves the existence of a measure on (R,B) which, for every interval
of the form (a, b], assigns a value equal to the length of (a, b]. As a further remark, if
F also has the property that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, then the unique
measure corresponding to F is a probability measure.
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