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Abstract

In this introduction to spectral expander graphs, we broadly cover different aspects of
the theory, taking care to formally define and explain the various concepts involved. First,
we present classic results such as the Cheeger inequalities and the mixing lemma. Second,
applications of random walks on spectral expander graphs are touched upon. Third, we prove a
generalisation of the Alon-Boppana bound on spectral expansion. Fourth, the expected second
largest eigenvalue in absolute value of the adjacency matrix of a random graph is bounded
from above, and we show concentration bounds for the distribution of this quantity around
its mean. Fifth, we present a construction of spectral expander graphs of non-constant degree
from Abelian Cayley graphs. Sixth, we briefly discuss the construction of constant degree
spectral expanders from the zig-zag product. Whereas many introductions to expander graphs
are written for an audience with a background in computer science, this material is presented
so as to be more broadly of interest to mathematicians.
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1 Introduction

Expander graphs are well-connected and often sparse graphs. In applications of graphs or in the
study of graph theory, one often requires or intuitively senses that the vertices of a graph are so
entangled with edges that one cannot easily and nicely partition them, without severing many
edges. This phenomenon, among other things, is captured by the notion of an expander graph. For
intuition, consider the following concrete example. Picture a road network with cities as vertices
and highways between pairs of cities as edges. Given that highways are expensive to build, suppose
we still wish to maintain the ability to drive from any city to any other city (possibly passing
through other cities on the way there), even while some number of highways are closed. Of course,
closing all highways out of any one city disconnects the city from the remaining network. Thus,
our requirement will rather be that the closing of any small number of highways leaves all but a
few cities connected to each other. A road network satisfying these criteria would be an expander.

Let G = (V,E) be a d-regular graph with vertices V and edges E ⊂ V 2. There are various math-
ematical characterisations of the above phenomenon. Most notably, G can be a vertex expander,
an edge expander, or a spectral expander. Edge expanders are most similar in spirit to the example
above. They require that for every subset, S ⊂ V , containing at most half the vertices of G, the
number of edges between S and V \ S is at least proportional to |S|. Stated in terms of the above
analogy, this would imply that to disconnect m cities from the remaining cities, one would have to
close a number of highways proportional to m. The definition of a vertex expander is similar in
nature. A graph is a vertex expander if for every subset, S ⊂ V , containing at most half of the
vertices of G, the number of neighbours of S in V \ S is proportional to |S|. Both these definitions
are straight-forward and intuitively corresponds well with the idea of an expanding graph. This
brings us to spectral expander graphs. Spectral expanders satisfy that the second largest eigenvalue
(in absolute value) of the adjacency matrix, A, of G is small relative to d. That the latter defini-
tion should imply expansion is nowhere close to intuitive. However, it turns out to be one of the
most flexible ways to work with the notion of expansion. Among other things, spectral expansion
implies both vertex and edge expansion. Our focus will be on spectral expanders, and on how their
algebraic definition allows for a fine analysis of their properties.

Expander graphs have found wide usage in all corners of computer science, appearing in subfields
as diverse as complexity theory, algorithms design, pseudorandomness, cryptography, and more.
Within mathematics, expander graphs have mainly been studied by graph theorists, but applications
of expander graphs also extend to other areas such as number theory, geometric group theory, and
operator algebras.

The goal of this exposition is to present some of the gems of spectral expander graph theory
to a mathematical audience. This entails both results, applications, and techniques. The paper
is organised as follows. Section 2 contains preliminary definitions and results. After this, we get
properly started in Section 3 where we touch upon some classic examples of the usefulness of
spectral expansion. We cover the mixing lemma, the Cheeger inequalities, and include a couple of
applications from computer science that are based on random walks on spectral expanders. Section
4 turns to bounding spectral expansion from below. In other words, it deals with how small the
eigenvalues of the adjacency matrices associated with a family of graphs can be. We first present an
elementary argument obtaining a bound on the second largest eigenvalue (in absolute value) of the
adjacency matrix. We then proceed with a more advanced approach due to Davidoff, Sarnak, and
Valette to establish deeper results regarding the distribution of the eigenvalues of the adjacency
matrices of large regular graphs. The fact that random graphs are good expanders, is the topic
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of Section 5. Contrary to how difficult it is to construct spectral expanders explicitly, a random,
regular graph will be a nearly optimal spectral expander with high probability. We cover the first
substantial result to this effect due to Broder and Shamir. Section 6 discusses Cayley graphs in the
context of expander graphs and constructs a simple example of a good expander that the author
found a direct application for in a recent paper. The final construction of an expander graph is
lacking in a vital sense. The degree of the expanders constructed in these notes is not constant.
Section 7 demonstrates how constant degree expanders can be constructed combinatorially through
the zig-zag product of Reingold, Vadhan, and Wigderson – a classical result in spectral expander
theory.

2 Preliminaries

We shall start by introducing basic notation, definitions, and results. The material on generating
functions will only be required for Section 4, and the reader may therefore defer reading it until
then.

2.1 Mathematical Notation

We start by introducing general mathematical notation.

Integers. We let N = {1, 2, . . . } denote the set of positive integers and N0 = {0, 1, . . . } the set of
non-negative integers. Furthermore, for n ∈ N0, we denote by [n] the set {k ∈ N | 1 ≤ k ≤ n}.

Indicator Functions. Let V be a set. For any subset A ⊂ V , the indicator function on A is
denoted 1A : V → {0, 1}.

Iverson Bracket. For some statement P , we shall use the notation [P ] as the indicator on
whether P is true or not, e.g., [2 + 2 = 5] = 0 and [π ∈ R] = 1. This is known as the Iverson
bracket.

Indices. Let n,m ∈ N be positive integers, v ∈ Rn be an n-dimensional vector, and A ∈ Rn×m
be an n by m matrix. For i ∈ [n] and j ∈ [m] denote by vi the ith entry of v and by Aij the entry
of A at the ith row and jth column. Furthermore, if V is a set and x ∈ `2(V ), then we denote by
xv the evaluation of x at v ∈ V .

2.2 Graphs

We start by defining a graph and introducing some notation.

Definition 2.1. [Undirected Graph] A graph is a tuple, G = (V,E), where V is a set of vertices,
and E is a multiset E ⊂ {{u, v} | u, v ∈ V } of edges, pairs, {u, v}, of vertices u, v ∈ V . We let E
be a multi-set so as to allow multiple edges between any two vertices.

• The graph G is d-regular, if every vertex, v ∈ V , has exactly d edges adjacent to it, in other
words, if |E ∩ {{v, u} | u ∈ V }| = d for every v ∈ V .
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• An edge, e ∈ E, is a self-loop, if e = {v} for some v ∈ V .

• For a graph G, we denote by V (G) the set of vertices of G.

• For a vertex v ∈ V , we denote by N(v) the set of neighbours of v in G, i.e.,

N(v) = {u ∈ V | {v, u} ∈ E}.

• For a subset of vertices C ⊂ V , we say that C is an independent set if no two vertices of C
are neighbours.

Remark 2.2. We shall almost exclusively work with undirected graphs. However, we shall occa-
sionally mention directed edges. A directed edge is a tuple (u, v) of vertices u, v ∈ V . In such cases,
an edge {u, v} represents two directed edges simultaneously, (u, v) and (v, u).

Vital to spectral graph theory is the concept of the adjacency matrix of a graph. Note that the
following definition allows for self-loops, multiple edges, and even works for directed graphs.

Definition 2.3. [Adjacency Matrix] Let G = (V,E) be a graph on n = |V | vertices. The adjacency
matrix of G, A ∈ NV×V0 , is the matrix satisfying that for u, v ∈ V , Auv is the number of edges from
u to v in G.

Defining the set of edges of a cut, we find our first use of the adjacency matrix as a simple linear
algebraic short form for the number of edges between two subsets of vertices.

Definition 2.4. For a graph G = (V,E) and subsets A,B ⊂ V of vertices, we denote by E(A,B)
the set of directed edges from A to B in G. This means that if {u, v} ∈ E and u, v ∈ A ∩ B, then
both (u, v) and (v, u) belong to E(A,B).

We have the following algebraic characterisation the size of a cut.

Lemma 2.5. Let G = (V,E) be a graph with adjacency matrix A. For any two subsets S, T ⊂ V ,

|E(S, T )| = 〈A 1S , 1T 〉 .

Proof. Let v ∈ V . The vth entry of A 1S can be expressed as (A 1S)v =
∑
u∈S Avu. Thus,

〈A 1S , 1T 〉 =
∑
v∈V

(
[v ∈ T ] ·

∑
u∈S

Avu

)
=
∑
v∈T

∑
u∈S

Avu = |E(S, T )| ,

since (1T )v = [v ∈ T ] for every v ∈ V .

Finally, we can introduce a metric on any connected graph by the following natural definition.

Definition 2.6. [Distance in Graphs] Let G = (V,E) be a graph and v, u ∈ V be vertices. We
denote by dist(v, u) the length of the shortest path between v and u in G and set dist(v, u) =∞ if
no such path exists.

Remark 2.7. Let G = (V,E) be a connected graph. Then dist(·, ·) : V 2 → N0 is a metric on V .

This naturally leads to the notion of a ball of radius r ∈ R+ with centre v ∈ V in G.

Definition 2.8. Let G = (V,E) be a graph and v ∈ V a vertex. For any non-negative integer
r ∈ N0 we denote by Br(v) the set of vertices that have distance at most r to v. i.e.,

Br(v) = {u ∈ V | dist(v, u) ≤ r}.
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2.3 Linear Algebra

A wealth of vectors and matrices will appear in this exposition. Mostly, they will be related to a
graph G = (V,E) and be indexed over V . Generally, we will thus be thinking of vectors as functions,
v : V → C, or more precisely as members of `2(V ), and square matrices as members of End(`2(V )).
However, from time to time it will also be convenient to think of vectors as members of Cn and
matrices as members of Cn×n for some n ∈ N. For finite n, these two notions are equivalent and
will be used interchangeably.

We recall a couple of lemmas from linear algebra, skipping the proof of the first one.

Lemma 2.9 (Min-max theorem). Let A ∈ Rn×n be a symmetric matrix and let λ1 ≥ · · · ≥ λn
be the eigenvalues of A counted with multiplicity with associated orthogonal eigenvectors v1, . . . vn.
Then for every i ∈ [n],

λi = sup
x∈{v1,...,vi−1}⊥
||x||2=1

〈Ax, x〉 .

Furthermore, λn = inf ||x||2=1 〈Ax, x〉.

Lemma 2.10. Let A ∈ Cn×n be a matrix with eigenvalues λ1, . . . , λn, counted with multiplicity.
Then for every polynomial p ∈ C[x], Tr(p(A)) =

∑n
i=1 p(λi).

Proof. Let P ∈ Cn×n be an invertible matrix such that J = PAP−1 is the Jordan normal form of
A. We apply the cyclic property of the trace to conclude that for every k ∈ N,

Tr(Ak) = Tr(P−1AkP ) = Tr(Jk) =

n∑
i=1

λki .

For a polynomial, p(x) =
∑t
i=0 aix

i ∈ C[x], it now follows that

Tr(p(A)) =

t∑
i=1

ai Tr(Ai) =

t∑
i=1

ai

n∑
k=1

λik =

n∑
k=1

p(λk),

since the trace is linear.

2.4 Generating Functions

We briefly introduce the notion of a generating function. For readers unfamiliar with combinatorial
counting using generating functions, a more thorough treatment of the subject may be found in
most introductory textbooks on combinatorics.1

Definition 2.11. [Generating Function] Let R be a unital ring and (an)n∈N0
be a sequence of

elements of R. The generating function associated with (an)n∈N0
is the formal power series f ∈

R[[t]], given by f(t) =
∑∞
n=0 ant

n.

While addition and multiplication of generating functions are readily inherited from the defini-
tion of a formal power series, the concept of division is not always well-defined. The cases in which
a formal power series has an inverse are exactly described by the following proposition, the proof
of which is an easy exercise.

1For example, Introduction to Enumerative and Analytical Combinatorics by Miklós Bónas.
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Proposition 2.12. Let R be a unital ring and let f ∈ R[[t]] be an element of the ring of formal
power series over R. Then f is invertible, i.e., there exists g ∈ R[[t]] satisfying fg = 1, if and only
if the constant term of f is a unit of R, i.e., f(0) ∈ R×. In this case, we shall denote the inverse
element by g(t) = 1/f(t).

3 Spectral Expansion – Definition and Initial Results

We measure the spectral expansion of a graph by the magnitude of the second largest eigenvalue, in
absolute value, of its adjacency matrix. It is by no means intuitive why this would be interesting,
useful, or related to expansion in a graph. Hence, this section shall, beyond formally defining
spectral expansion, provide motivating examples from the theory of spectral expander graphs. We
prove basic results regarding the eigenvalues of regular graphs and then showcase three different
classic aspects of spectral expansion. These should give the reader some confidence that spectral
expander graphs indeed have properties that one would intuitively associate with expander graphs.

Contrary to other forms of expander graphs, most literature on spectral expander graphs require
that they be regular graphs. This is because the largest eigenvalue of the adjacency matrix of any
d-regular graph is d as shall see in the lemma following the formal definition. The value of the
second largest absolute eigenvalue would not carry the same importance without this guarantee.

Definition 3.1. [Spectral Expander Graph] Let G = (V,E) be a d-regular graph on |V | = n
vertices, let A be the adjacency matrix of G, and let λ1 ≥ · · · ≥ λn be the eigenvalues of A
(counted with multiplicity). We denote by λ(G) the quantity max{|λ2| , |λn|} and say that G is a
λ(G)-spectral expander.

For most applications, it is vital to have good expander graphs with arbitrarily many vertices.
Hence, finding a single “good” expander graph is of little use. This motivates the definition of a
spectral expander family.

Definition 3.2. [Spectral Expander Family] Fix d > 1 and let (Gn)n∈N be a family of d-regular
graphs. We say that the family is a λ-spectral expander family if for every n ∈ N, λ(Gn) ≤ λ.

We proceed to prove our first results regarding the eigenvalues of the adjacency matrix of a
regular graph.

Proposition 3.3. Let G = (V,E) be a d-regular graph on n = |V | vertices and adjacency matrix
A. Let furthermore, λ1 ≥ · · · ≥ λn be the eigenvalues of A counted with multiplicity. Then

1. λ1 = d.

2. For every i ∈ [n], |λi| ≤ d.

3. For every k ∈ [n], λk = d if and only if G has at least k distinct connected components.

4. λn = −d if and only if G has a bipartite connected component.

Proof.

1. We observe that A 1V = d · 1V confirming that d is indeed an eigenvalue of A. That λ1 = d
now follows from 2.
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2. Recall that every row and column of A sums to d. Hence, every x ∈ `2(V ) satisfies

|〈Ax, x〉| ≤
∑
u,v∈V

Auv |xuxv| ≤
∑
u,v∈V

Auv

(
x2
u + x2

v

2

)
= d ·

∑
v∈V

x2
v = d ||x||22 . (1)

The conclusion now follows from Lemma 2.9, the min-max theorem.

3. Suppose that G has k connected components corresponding to the non-empty vertex sets
V1, . . . , Vk ⊂ V . It is clear that for every i ∈ [k], the vector 1Vi is an eigenvector of A with
eigenvalue d. Thus, there are k linearly independent eigenvectors with eigenvalue d meaning
that the eigenspace of d has dimension at least k. It follows that λk = d.

Conversely, suppose that λk = d and let V1, . . . , Vt be the connected components of G. For
every x ∈ Rn,

〈Ax, x〉 =
∑
u,v∈V

Auvxuxv = d ||x||22 −
∑
u,v∈V

Auv(xu − xv)2,

by a rearrangement of terms. Let x ∈ Rn be an eigenvector of A with eigenvalue d. Then∑
u,v∈V Auv(xu−xv)2 = 0. It follows that if there is an edge from u to v then xu = xv. Thus,

xu = xv whenever u and v belong to the same connected component of G. So x is a linear
combination of the vectors 1V1

, . . . , 1Vt . Since the eigenspace of d has dimension at least k
when λk = d and the eigenspace is contained in the span of 1V1 , . . . , 1Vt , t ≥ k as desired.

4. Suppose that G has a bipartite connected component with vertex set C ⊂ V and let L,R ⊂ C
partition the vertices of C into two independent sets. If we consider the vector x = 1L − 1R,
then, since Auv = 0 whenever (u, v) 6∈ (L×R) ∪ (R× L),

〈Ax, x〉
||x||22

=

∑
u,v∈V Auvxuxv

|C|
=
−
∑
u,v∈C Auv

|C|
= −d.

Thus, λn = −d, since λn = inf ||x||2=1 〈Ax, x〉 ≥ −d by 2.

Conversely, suppose that A has −d as an eigenvalue and let x ∈ `2(V ) be a corresponding
non-zero eigenvector orthogonal to 1V . In (1), we must have equality in both inequalities. The
first inequality is an equality if and only if every term of the sum is either ≥ 0 or ≤ 0. Since
x is an eigenvector of negative eigenvalue, for every u, v with Auv 6= 0, xuxv ≤ 0. The second
inequality is an equality if and only if |xu| = |xv| for every u, v ∈ V satisfying Auv 6= 0.
Now, let v ∈ V be a vertex satisfying xv 6= 0, and let C ⊂ V be the set of vertices of
the connected component containing v. By the second observation above, we must have
|xv| = |xu| 6= 0 for every u ∈ C. Partitioning C = C1 ·∪ C2 as

C1 = {u ∈ C | xu > 0}, C2 = {u ∈ C | xu < 0},

we see that Auw = 0 for every u,w ∈ C1 and for every u,w ∈ C2 since otherwise xuxw > 0,
contradicting the first observation above. Hence, C1 and C2 are both independent sets of
vertices of G, so C is a bipartite connected component of G, which was what we needed to
show.
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3.1 The Mixing Lemma and Its Converse

One of the classic results relating to spectral expander graphs is the mixing lemma. Suppose that
S, T ⊂ V are subsets of vertices and let the d-regular graph G = (V,E) be chosen uniformly at
random from the set of d-regular graphs on V . Then the expected number of edges between S and
T in G is d |S| |T | /n. The mixing lemma states in a spectral expander graph, the number of edges
between any pair of vertex subsets, S and T , deviates only a little from this expectation. Despite
its simple proof, the mixing lemma turns out to be very powerful in combinatorial applications.

Theorem 3.4 (Mixing Lemma). For every d-regular graph G = (V,E) and every pair of subsets
S, T ⊂ V , ∣∣∣∣|E(S, T )| − d |S| |T |

n

∣∣∣∣ ≤ λ(G)
√
|S| (1− |S| /n) |T | (1− |T | /n).

Proof. Let A be the adjacency matrix of G. For any eigenvector f ∈ `2(V ) of A with eigenvalue
θ, the orthogonal complement of f , W = {f}⊥ is invariant under A, i.e., AW ⊂ W . To see this,
observe that for any g ∈ W , 〈Ag, f〉 = 〈g,Af〉 = θ 〈g, f〉 = 0, since A is real and symmetric, hence
self-adjoint.

Now, decompose 1S , 1T ∈ `2(V ) into orthogonal components as

1S =
|S|
n

1V +

(
1S −

|S|
n

1V

)
, 1T =

|T |
n

1V +

(
1T −

|T |
n

1V

)
.

Since 〈A1V , 1V 〉 = dn and 1V is an eigenvector of A, we may apply Lemma 2.5 together with the
first observation to obtain∣∣∣∣|E(S, T )| − d |S| |T |

n

∣∣∣∣ =

∣∣∣∣〈A1S , 1T 〉 −
d |S| |T |

n

∣∣∣∣
=

∣∣∣∣∣ |S| |T |n

2

〈A1V , 1V 〉 −
d |S| |T |

n
+

〈
A

(
1S −

|S|
n

1V

)
, 1T −

|T |
n

1V

〉∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣A(1S −

|S|
n

1V

)∣∣∣∣∣∣∣∣
2

·
∣∣∣∣∣∣∣∣1T − |T |n 1V

∣∣∣∣∣∣∣∣
2

≤ λ(A)

∣∣∣∣∣∣∣∣1S − |S|n 1V

∣∣∣∣∣∣∣∣
2

·
∣∣∣∣∣∣∣∣1T − |T |n 1V

∣∣∣∣∣∣∣∣
2

= λ(A) ·

√
|S|
(
n− |S|
n

)
|T |
(
n− |T |
n

)
,

where the first inequality follows from the Cauchy-Schwartz inequality, and the second follows since

the vector 1S − |S|n 1V is orthogonal to 1V .

Far from just being a curiosity of spectral expander graphs, “mixing”, as described by the mixing
lemma, is in fact almost synonymous with spectral expansion. The two properties are equivalent
up to logarithmic factors, as the following theorem shows. We follow the proof given in the paper
by Bilu and Linial [1].

Theorem 3.5 (Converse Mixing Lemma [1]). Let G = (V,E) be a d-regular graph. If for every pair

of vertex subsets S, T ⊂ V ,
∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣ ≤ α√|S| |T |, then λ(G) = O (α(log(d/α) + 1)).
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The proof proceeds through the following proposition, which can very reasonably be interpreted
as a generalisation of the theorem.

Proposition 3.6. Let α > 0 be given. Let A be an n×n real symmetric matrix satisfying that every
row of A has `1 norm ≤ d, every diagonal element of A has absolute value O(α(log(d/α) + 1)), and
for every pair of subsets, S, T ⊂ [n], with S ∩ T = ∅, |〈A1T , 1S〉| ≤ α

√
|S| · |T |. Then the spectral

radius of A is O(α(log(d/α) + 1)).

Proof. First, suppose that the lemma holds for every matrix, B, satisfying the assumptions with
the additional constraint that B has only zeroes on its diagonal. Let A ∈ Rn×n be arbitrary satis-
fying the assumptions of the lemma and write A = B +D where B has only zeroes on its diagonal
and D is a diagonal matrix with every entry O(α(log(d/α) + 1). Then for every S, T ⊂ [n] with
S ∩ T = ∅, |〈B1T , 1S〉| = |〈A1T , 1S〉| ≤ α

√
|S| · |T |. Hence, since by assumption this implies that

B has spectral radius O(α(log(d/α) + 1)) and since the spectral radius of D is bounded by the
magnitude of its entries, A = B +D must also have spectral radius O(α(log(d/α) + 1)). Thus, we
shall assume A to have only zeroes on its diagonal.

Suppose that A satisfies the conditions of the lemma. We first wish to show that for any S ⊂ V ,
|〈A1S , 1S〉| ≤ 2α |S|. To this end, let k = |S|. We shall proceed by applying our assumption to all
partitions of S into two disjoint sets of sizes

⌊
k
2

⌋
and

⌈
k
2

⌉
. Summing, we get the inequality

∑
S1⊂S
|S1|=b k2 c

∣∣〈A1S1 , 1S\S1

〉∣∣ ≤ ∑
S1⊂S
|S1|=b k2 c

α
√
|S1| |S \ S1| ≤

αk

2

(
k⌊
k
2

⌋).
Since for every i, j ∈ S with i 6= j, the entry Ai,j appears exactly

( k−2

b k2 c−1

)
times in the sum on the

right-hand side of the inequality, and since Ai,i = 0 for every i ∈ S,(
k − 2⌊
k
2

⌋
− 1

)
· |〈A1S , 1S〉| =

∑
S1⊂S
|S1|=b k2 c

∣∣〈A1S1
, 1S\S1

〉∣∣ ≤ αk

2

(
k⌊
k
2

⌋).
It follows that indeed |〈A1S , 1S〉| ≤ 2αk.

Next, suppose that f = 1S1
− 1S2

∈ {−1, 0, 1}n for disjoint sets S1, S2 ∈ [n]. Then, by the
above,

|〈Af, f〉| ≤
∑

i,j∈{1,2}

∣∣〈A1Si , 1Sj
〉∣∣ (2)

≤ 2α
∑

i,j∈{1,2}

√
|Si| · |Sj | (3)

≤ 4α

√ ∑
i,j∈{1,2}

|Si| · |Sj | (4)

= 4α ||f ||22 . (5)
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If instead f = 1S1 − 1S2 ∈ {−1, 0, 1}n and g = 1T1 − 1T2 ∈ {−1, 0, 1}n, for pairwise disjoint sets
S1, S2, T1, T2 ⊂ [n], then, similarly,

|〈Af, g〉| ≤
∑

i,j∈{1,2}

∣∣〈A1Si , 1Tj
〉∣∣ (6)

≤ α
∑

i,j∈{1,2}

√
|Si| · |Tj | (7)

≤ 2α

√ ∑
i,j∈{1,2}

|Si| · |Tj | (8)

= 2α ||f ||2 · ||g||2 . (9)

We are now ready to find a bound on the spectral radius of A. Fix x ∈ Rn. We shall show that

|〈Ax, x〉|
||x||22

= O(α(log(d/α) + 1)),

which will conclude the proof. We first find a vector x′ ∈ Rn satisfying that every entry, i ∈ [n], of
x′ is of the form x′i = ±2−ki for some ki ∈ N. Furthermore, we require that

|〈Ax, x〉|
||x||22

≤ 4
|〈Ax′, x′〉|
||x′||22

. (10)

We proceed by the probabilistic method. By scaling, we can assume that ||x||∞ ≤
1
2 . For every

i ∈ [n], there exists ki ∈ N and δi ∈ [0, 1), such that we can write the ith coordinate of x as xi =
sgn(xi)(1 + δi) · 2−ki , where sgn: R→ {−1, 0, 1} is the sign function. We now stochastically sample
a vector X ∈ Rn. For each i ∈ [n] make the following independent choice: let Xi = sgn(xi)2

−ki

with probability 1 − δi and Xi = sgn(xi)2
−ki+1 with probability δi. Note that E [Xi] = xi. Since

the diagonal of A is zero and for i 6= j, Xi is independent of Xj , E [|〈AX,X〉|] = |〈Ax, x〉|. Thus,

we can choose x′ in the support of X such that |〈Ax′, x′〉| ≥ |〈Ax, x〉|. Furthermore, ||x′||22 ≤ 4 ||x||22
meaning that (10) is satisfied. Fix such a choice of x′.

For each i ∈ N, we now define the set Si = {j ∈ [n] | x′j = ±2−j}. For each set Si, we define

the corresponding signed indicator vector, xi ∈ {−1, 0, 1}n given by xij = [j ∈ Si] · sgn(x′j), j ∈ [n],
which is 0 at every index except at the indices of Si, where it takes the value of the sign of x′ at
that index. Note that by (4) and (8),∣∣〈Axi, xj〉∣∣ ≤ 4α

√
|Si| · |Sj | (11)

for every i, j ∈ [n], since Si ∩ Sj = ∅ for i 6= j. Now, writing qi = 2−2i |Si| for i ∈ N,

|〈Ax, x〉|
4 ||x||22

≤ |〈Ax
′, x′〉|

||x′||22

≤
∑
i,j∈N

(
2−(i+j) ·

∣∣〈Axi, xj〉∣∣)∑
i∈N 2−2i |Si|

=

∑
i∈N
(
2−2i ·

∣∣〈Axi, xi〉∣∣)∑
i∈N qi︸ ︷︷ ︸
Q1

+

∑
i<j

(
2−(i+j)+1 ·

∣∣〈Axi, xj〉∣∣)∑
i∈N qi︸ ︷︷ ︸
Q2

.

11



Applying (11) we bound the first term by

Q1 ≤
∑
i∈N
(
2−2i · 4α |S|i

)∑
i∈N qi

= 4α = O(α(log(d/α) + 1))

For the second term, set γ = dlog(d/α)e and write

Q2 ·
∑
i∈N

qi ≤
∑

i<j≤i+γ

(
2−(i+j)+1 ·

∣∣〈Axi, xj〉∣∣)︸ ︷︷ ︸
R1

+
∑
i+γ<j

(
2−(2i+γ)+1 ·

∣∣〈Axi, xj〉∣∣)︸ ︷︷ ︸
R2

.

Applying first (11) and then the inequality of the arithmetic and geometric means,

R1 ≤
∑

i<j≤i+γ

(
2−(i+j) · 8α ·

√
|Si| · |Sj |

)
= 8α ·

∑
i<j≤i+γ

√
qi · qj

≤ 4α
∑

i<j≤i+γ

(qi + qj)

≤ 4α(γ + 1)
∑
i∈N

qi.

Note that for every i ∈ N,
∣∣∣∣Axi∣∣∣∣

1
≤ d |Si|, since the `1-norm of any row or column of A is ≤ d.

Thus,
∑
j∈[n]

∣∣〈Axi, xj〉∣∣ ≤ d |Si|, because the non-zero entries of xj1 and xj2 are disjoint for j1 6= j2,

such that each entry of Axi contributes at most once to the sum. It follows that

R2 ≤ 2−γ ·
∑
i∈N

2−2i ·
∑
j∈N

∣∣〈Axi, xj〉∣∣
 ≤ 2−γ ·

∑
i∈N

2−2id |Si| ≤ 2−γd
∑
i∈N

qi.

Thus,

Q2 =
R1 +R2∑

i∈N qi
≤ 4α (dlog(d/α)e+ 1) + 2−dlog(d/α)ed = O(α(log(d/α) + 1)),

which concludes the proof.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. The largest eigenvalue of the adjacency matrix A of G is d with correspond-
ing eigenvector 1V . Hence, the matrix D = A − d

nJ , where J = 1V 1TV is the all-1s matrix, has
greatest absolute eigenvalue λ(G). Furthermore, the `1-norm of any row of D is at most 2d and
every diagonal entry of D is − d

n = O(1). For any vertex subsets S, T ⊂ V with S ∩ T = ∅,〈
d
nJ1S , 1T

〉
= d|S||T |

n , such that

α
√
|S| |T | ≥

∣∣∣∣|E(S, T )| − d |S| |T |
n

∣∣∣∣ =

∣∣∣∣〈A1S , 1T 〉 −
d |S| |T |

n

∣∣∣∣ = |〈D1S , 1T 〉| .

It follows that the requirements of Proposition 3.6 are satisfied. Thus, the spectral radius of D is
λ(G) = O(α(log(d/α) + 1)), which was what we needed to prove.

12



3.2 The Cheeger Inequalities

Another feature of spectral expansion is its close connection to its more combinatorial cousin,
edge expansion. Intuitively, edge expander graphs are graphs with no sparse cuts as the following
definition makes precise. For a graph, G = (V,E), on n vertices, and a vertex subset, S ⊂ V , we
denote by S the set of vertices S = V \ S, and by ∂S the set of edges ∂S = E(S, S).

Definition 3.7. [Cheeger Constant, Edge Expander] Let G = (V,E) be a graph. The Cheeger
constant of G is the quantity

h(G) = min
∅(S⊂V

|∂S|
min{|S| ,

∣∣S∣∣} .
We say that the graph G is an α-edge expander for every α satisfying h(G) ≥ α ≥ 0.

Suppose now that G is d-regular and let λk(G) denote the kth largest eigenvalue of the adjacency
matrix of G. The Cheeger inequalities, essentially state that up to constant factors, h(G) and λ2(G)
are equivalent quantities. Given the mixing lemma (Theorem 3.4), it is by no means surprising that
good spectral expansion, i.e., λ(G) = max{λ2, |λn|} being small, implies edge expansion. That the
converse is not the case, is clear from considering a bipartite graph. If G is bipartite, λn(G) = −d,
such that G has the worst possible spectral expansion, λ(G) = d. However, it is easy to see that G
may still have a strictly positive Cheeger constant. Thus, we disregard λn(G) and simply consider
λ2(G). More specifically, we consider the spectral gap, d− λ2(G), which is the smallest non-trivial
eigenvalue of the Laplacian of G, L = dI − A, where A is the adjacency matrix of G. Both the
Laplacian and the spectral gap hold significant importance within the theory.

To prove that a large spectral gap implies edge expansion is an easy exercise. The other direction
– showing how edge expansion implies a large spectral gap – is a trickier endeavour. For this part,
we follow the survey of Hoory, Linial, and Wigderson [6]. Intuitively, the trick is to find a sparse
cut using an eigenvector of the Laplacian with eigenvalue d− λ2(G).

Theorem 3.8 (Cheeger Inequalities). Let G = (V,E) be a d-regular graph. Then

d− λ2(G)

2
≤ h(G) ≤

√
2d(d− λ2(G)).

Note that since d − λ(G) ≤ d − λ2(G), it follows directly that spectral expansion implies edge
expansion.

Proof. Denote by n = |V | the number of vertices of G, let A be the adjacency matrix of G, and
denote by L = dI −A the Laplacian of G.

Towards proving the left-most inequality, let S ⊂ V be such that |S| ≤ n
2 and h(G) = |∂S|

|S| .

Observe that the vector x = |S| 1S −
∣∣S∣∣ 1S is orthogonal to 1V . We have ||x||22 = n |S|

∣∣S∣∣ and

〈Ax, x〉 = |S|2
∣∣E(S, S)

∣∣+
∣∣S∣∣2 |E(S, S)| − 2 |S|

∣∣S∣∣ ∣∣E(S, S)
∣∣ ,

and since |E(T, T )| = d |T | −
∣∣E(T, T )

∣∣ for any T ⊂ V ,

〈Ax, x〉 = d |S|2
∣∣S∣∣+ d

∣∣S∣∣2 |S| − (|S|+
∣∣S∣∣)2

∣∣E(S, S)
∣∣ = dn |S|

∣∣S∣∣− n2
∣∣E(S, S)

∣∣ .
13



It follows that λ2(G) ≥ 〈Ax, x〉 / ||x||22 = d− n · h(G)/
∣∣S∣∣ ≥ d− 2h(G), and we are done.

For the right-most inequality, let f ∈ `2(V ) an eigenvector of A with eigenvalue λ2(G), and note
that f is also an eigenvector of L with eigenvalue d − λ2(G). Now, let g = f+ to be the positive
part of f , i.e., g(v) = f(v) · [f(v) ≥ 0] for v ∈ V . Intuitively, we shall use that g can be viewed as a
cut of G that approximates the Cheeger constant. Let V + = sup(g) denote the support of g, and
assume without loss of generality that |V +| ≤ n

2 . If this were not the case, we could just consider
g = f− instead. We shall now prove the inequalities

d− λ2(G) ≥ 〈Lg, g〉
||g||22

(12)

and

〈Lg, g〉
||g||22

≥ h(G)2

2d
, (13)

which will conclude the proof.
First, (12) follows by invoking that f(v) ≤ g(v) for every v ∈ V , and that every entry of A is

non-negative, yielding

〈Lg, g〉 = d 〈Ig, g〉 − 〈Ag, g〉

≤ d ||g||22 −
∑
v∈V +

(Af)(v)f(v)

= d ||g||22 − λ2(G)
∑
v∈V +

f(v)2

= (d− λ2(G)) ||g||22 .

Second, we prove (13) by comparing each side of the inequality to the quantity

Bg =
∑

{u,v}∈E

∣∣g(u)2 − g(v)2
∣∣ .

We start with a simple comparison by Cauchy-Schwartz

Bg =
∑

{u,v}∈E

|g(u)− g(v)| |g(u) + g(v)| ≤
√ ∑
{u,v}∈E

(g(u)− g(v))2 ·
√ ∑
{u,v}∈E

(g(u) + g(v))2.

Noting that ∑
{u,v}∈E

(g(u) + g(v))2 ≤ 2
∑

{u,v}∈E

g(u)2 + g(v)2 = 2d ||g||22 ,

and that ∑
{u,v}∈E

(g(u)− g(v))2 = d ||g||22 −
∑

{u,v}∈E

g(u)g(v) = 〈Lg, g〉 ,
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we conclude that Bg ≤ ||g||2 ·
√

2d 〈Lg, g〉. On the other hand, we can identify V with the set of
integers [n] in such a way that g : [n]→ R≥0 is weakly decreasing and write

Bg =
∑
{i,j}∈E
i<j

g(i)2 − g(j)2 =

n∑
i=1

g(i)2 ·
(∣∣∣N(i) ∩ [i]

∣∣∣− |N(i) ∩ [i− 1]|
)
,

where we recall that [i] = V \ [i] = {i+ 1, . . . , n}. Applying the identity∣∣∣N(i) ∩ [i]
∣∣∣− |N(i) ∩ [i− 1]| =

∣∣∣E([i], [i])
∣∣∣− ∣∣∣E([i− 1], [i− 1])

∣∣∣ ,
and telescoping the sum, we arrive at

Bg =

n∑
i=1

g(i)2 ·
(∣∣∣E([i], [i])

∣∣∣− ∣∣∣E([i− 1], [i− 1])
∣∣∣)

=

n−1∑
i=1

(g(i)2 − g(i+ 1)2) ·
∣∣∣E([i], [i])

∣∣∣
≥ h(G)

n−1∑
i=1

(g(i)2 − g(i+ 1)2) · i

= h(G) ||g||22 ,

where the inequality follows by definition of the Cheeger constant, since g(i) ≥ g(i + 1), for every
i ∈ [n], and since g(i) = 0 for i > n

2 . Combining the two bounds on Bg yields (13).

3.3 Random Walks on Expander Graphs

The following section considers applications of expander graphs to the area of randomised algorithms
and pseudorandomness. We begin with a few words on randomised algorithms. The field is huge
and complex, so the definitions and explanations found here are simplified ones, but they will suffice
for our purposes.

The goal of a traditional deterministic algorithm, A, is to accomplish some task given an input
x. On x, the algorithm A will always provide the same output and will always go through the same
computational steps. The efficiency of a deterministic algorithm is usually measured by the worst-
case running time. The worst-case running time of A is the maximal number of computational
steps that A may take to process an input x. In other words, there exists a worst-case input, x,
on which A always expends this amount of computational power. The efficiency of a deterministic
algorithm is usually measured by its worst-case running time.

A randomised algorithm, B, is a deterministic algorithm that has access to a source of random
bits. One can think of this, as the algorithm being able to “flip coins” or repeatedly sample from
the uniform distribution on {0, 1}. The way we measure the efficiency of a randomised algorithm
is significantly different from the deterministic setting. Randomised algorithms may answer incor-
rectly with some probability, and the running time of the algorithm may also be stochastic, since
it depends on the random bits. We measure the efficiency of a randomised algorithm in terms of
three parameters.
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Expected Running Time. If Ex is the expected number of computational steps forB to evaluate
on input x, then the expected running time of B is the worst-case, maxxEx.

Success Probability. If Px is the probability that B outputs the correct answer on input x, then
the success probability of B is the worst-case over the inputs, minx Px.

Expected Number of Random Bits. If Rx is the expected number of times a random bit is
sampled on input x, then the expected number of random bits of B is the worst-case, maxxRx.

When designing randomised algorithms, one wishes to optimise for these parameters. Optimally,
an algorithms should have a low expected running time while maintaining a high success proba-
bility and using few random bits. In this section, we shall only deal with Monte Carlo algorithms
which have a fixed running time, but may have erroneous output. Thus, we shall only care about
optimising success probability and the expected number of random bits.

Reducing the number of bits necessary to perform a task is the subject of pseudorandomness.
We shall illustrate how spectral expander graphs have pseudorandom properties by two examples.
In both cases, we consider classical problems in computation, where the introduction of spectral
expander graphs allows us to use fewer random bits than with the canonical randomised approach.
The presentation follows the survey on pseudorandomness by Salil Vadhan [13].

Member Search (or Error Reduction for RP Algorithms). Consider a set U . Suppose
that we have an algorithm A that given an input, x ∈ U , outputs 1 on some subset B ⊂ U and 0
on U \ B. Given oracle access to A, i.e., we can query A on any x ∈ U , but know nothing of its
inner workings, we wish to find a member of B. The input to our algorithm is the algorithm A.
Deterministically this task is hard and has a worst-case running time of |U \B|. However, consider
a Monte Carlo algorithm which simply samples t elements v1, . . . , vt ∈ U from U uniformly at
random and checks, if one of them belongs to B. The algorithm succeeds in finding an element of
B with probability 1 − (1− |B| / |U |)t using Θ(t · log |U |) random bits (each sample v ∈ U takes
Θ(log |U |) random bits). The success probability increases dramatically with t, for instance picking
t = |U | / |B| yields a success probability of around 1− 1

e .

Average Estimation (or Error Reduction for BPP Algorithms). Consider a set U and
a function f : U → [0, 1]. We wish to find the average, 1

|U |
∑
i∈U f(i), up to an additive error of

±ε given oracle access to f as an input. Again, this is hard to do with a deterministic algorithm,
requiring Ω(|U |) computational steps. However, simply sampling t uniformly random elements,
v1, . . . , vt ∈ U , from U and outputting their average, can be shown, as we will see shortly, to suc-
ceed with probability 1− 2e−Ω(ε2t). Again this uses Θ(t log |U |) random bits.

In both cases, there exist simple, efficient randomised algorithms that solve the problems. We
shall show that we can use random walks on expander graphs to solve both problems using much
fewer random bits than the naive Monte Carlo algorithmic solutions suggest. To this end, we define
the random walk matrix of a graph.

Definition 3.9. [Random Walk Matrix] Let G be a d-regular graph with adjacency matrix A. The
random walk matrix of G is the normalised adjacency matrix M = 1

dA.
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Remark 3.10. The name, random walk matrix, derives from the following observation. Let G =
(V,E) be a d-regular graph G = (V,E) with random walk matrix M . The probability that a
random walk on G, starting at vertex v ∈ V and taking t steps, ends at vertex u ∈ V is exactly
(M t)vu. This is also essentially the contents of Lemma 4.3.

Both the applications, we shall showcase, rely on the following two lemmas.

Lemma 3.11. Let G = (V,E) be a d-regular graph on n = |V | vertices with adjacency matrix A
and spectral expansion λ. Then there exists a symmetric matrix E ∈ Rn×n with ||E||2 ≤ 1 and

A =
d− λ
n

J + λE,

where J is the all-ones matrix.

Proof. We prove that the matrix E = 1
λ

(
A− d−λ

n J
)

has spectral norm at most 1. From this, the
conclusion follows. Let x ∈ `2(V ) be any vector of length 1. We can decompose x as x = c11V +c2v,
where v ∈ `2(V ) is orthogonal to 1V . Then

||Ex||22 =

∣∣∣∣∣∣∣∣ 1λ
(
A− d− λ

n
J

)
(c11V + c2v)

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣ 1λλc11V + c2Av

∣∣∣∣∣∣∣∣2
2

≤ (c21 ||1V ||
2
2 + c22 ||v||

2
2) = 1.

The conclusion follows.

Lemma 3.12. Let G = (V,E) be a graph with random walk matrix M , and let f : V → R be a
value function on the vertices of G. Identify V with [n] for some n ∈ N and let T be the matrix

T =

f(1) 0
. . .

0 f(n)

 .

Then for a random walk of length t− 1, (v1, . . . , vt), starting at a uniformly random vertex v1,

E

[
t∏
i=1

f(vi)

]
=
∣∣∣∣(TM)t−1Tu

∣∣∣∣
1
,

where u is the uniform distribution vector on V , i.e., the vector where every entry is 1/n.

Proof. We shall prove by induction on t that for any vertex v ∈ V ,

n ·
(
(TM)t−1Tu

)
v

= E

[
t∏
i=1

f(vi)

∣∣∣∣∣ vt = v

]
,

from which the conclusion follows. For t = 1 the statement is trivial. Suppose that the lemma holds
for some t ∈ N and let v be arbitrary. Then for (v1, . . . , vt+1) a random walk of length t starting at
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a uniformly random vertex v1,

E

[
t+1∏
i=1

f(vi)

∣∣∣∣∣ vt+1 = v

]
=

1

d

∑
w∈N(v)

E

[
t+1∏
i=1

f(vi)

∣∣∣∣∣ vt+1 = v, vt = w

]

=
1

d

∑
w∈N(v)

f(v) · E

[
t∏
i=1

f(vi)

∣∣∣∣∣ vt = w

]

= f(v) ·
∑

w∈N(v)

1

d

(
(TM)t−1Tu

)
w

= f(v)
(
M(TM)t−1Tu

)
v

=
(
(TM)tTu

)
v
.

The conclusion follows.

3.3.1 Member Search

Let U be a set and B ⊂ U a subset with µ = |B| / |U |. Picking elements v1, . . . , vt ∈ U uniformly
at random as described earlier, we find an element of B with probability.

P

(
t⋃
i=1

(vi ∈ B)

)
= 1− (1− µ)

t
.

This procedure uses Θ(t · log |U |) random bits. Alternatively, we can proceed as follows. Consider U
to be the vertex set of a d-regular spectral expander graphG. Sample the random elements according
to a random walk on G instead of uniformly at random. This requires only Θ((t−1) log d+ log |U |)
random bits, Θ(log |U |) bits to pick a starting vertex and Θ(log d) bits for each step in the random
walk. Meanwhile, the procedure matches the error probability up to an additive factor in the base
of the exponentiation as the following theorem shows. Using an expander graph of low degree hence
yields accurate sampling using few random bits.

Theorem 3.13. Let U be a set, B ⊂ U a subset, and write n = |U | and µ = |B| / |U |. Let G be
a d-regular graph with vertices V (G) = U and spectral expansion λ. The probability that a random
walk (v1, . . . , vt) of length t− 1 on G starting at a uniformly random vertex v1 ∈ U and proceeding
to a uniformly random neighbour at each step finds a member of B is

P

(
t⋃
i=1

(vi ∈ B)

)
≥ 1− (1− µ+ λµ/d)

t
.

Proof. We shall show that the probability that the random walk stays entirely inside U \ B is
≤ (1− µ+ λµ/d)

t
. Let M be the random walk matrix of G. Furthermore, let T be the diagonal

matrix satisfying Tii = [i ∈ U \ B] for each i ∈ [n], and let u ∈ `2(V ) be the uniform distribution
vector on the vertices of G, i.e., every entry of u is 1

n . We can now apply Lemma 3.12 to obtain

P

(
t⋂
i=1

(vi 6∈ B)

)
= E

[
t∏
i=1

[vi ∈ U \B]

]
=
∣∣∣∣(TM)t−1Tu

∣∣∣∣
1
.
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Using that T is idempotent we can estimate

P

(
t⋂
i=1

(vi 6∈ B)

)
=
∣∣∣∣(TMT )t−1Tu

∣∣∣∣
1

≤
√
|U | − |B| ·

∣∣∣∣(TMT )t−1Tu
∣∣∣∣

2

≤
√
|U | − |B| · ||Tu||2 ·

∣∣∣∣(TMT )t−1
∣∣∣∣

2

=
|U | − |B|
|U |

∣∣∣∣(TMT )t−1
∣∣∣∣

2

≤ (1− µ) ||TMT ||t−1
2 ,

where the last inequality uses the fact that TMT is a symmetric matrix. Thus, all that remains, is
to show that ||TMT ||2 ≤ 1− µ+ λµ

d .

To this end, observe that by Lemma 3.11 we can write M = d−λ
dn J + λ

dE, where ||E||2 ≤ 1 and
J is the all-ones matrix. Now,

||TMT ||2 ≤
d− λ
nd

||TJT ||2 +
λ

d
||TET ||2 ,

Since ||T ||2 ≤ 1, ||TET ||2 ≤ ||T ||
2
2 ||E||2 ≤ 1. Furthermore, for every x ∈ `2(U),

||TJTx||2 =

√√√√√(|U | − |B|)

 ∑
i∈U\B

xi

2

≤ (|U | − |B|) ||x||2 ,

implying 1
n ||TJT ||2 ≤ 1− |µ|. Thus, ||TMT ||2 ≤ 1− µ+ λµ/d, as desired.

3.3.2 Average Estimation

Recall that the goal of average estimation is to estimate the average, 1
|U |
∑
i∈U f(i), up to an

additive factor of ε, given a set U and a function f : U → [0, 1]. As mentioned above, this can be
accomplished by simply sampling t uniformly random elements and outputting their average. By
Theorem 3.14 below this will be correct up to an additive error of ±ε with probability at least
1− 2 exp(−nε2/4). This require Θ(t log |U |) random bits to be successful.

A recurrent theme in the analysis of randomised algorithms is the application of Chernoff bounds.
These are strong concentration bounds for the distribution of sums of independent random variables.
The bound presented here addresses additive error as required for our application.

Theorem 3.14. Let X1, . . . , Xn be independent random variables taking values in [0, 1] and let
µ = 1

nE [
∑n
i=1Xi]. Then for every ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−nε

2

4

)
.
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Proof. We start by observing that by Markov’s inequality,

P

(
1

n

n∑
i=1

Xi > ε+ µ

)
= P

(
exp

(
r

n∑
i=1

Xi

)
> exp(rn(ε+ µ))

)

≤
E [exp (r

∑n
i=1Xi)]

exp(rn(ε+ µ)
,

for some r ∈ (0, 1) to be specified later. Recall that ex ≥ 1 + x for every x ∈ R and observe that
ex ≤ 1 + x+ x2 for every x ∈ [0, 1]. Now, by independence of X1, . . . , Xn,

E

[
exp

(
r

n∑
i=1

Xi

)]
=

n∏
i=1

E
[
erXi

]
≤

n∏
i=1

E
[
1 + rXi + (rXi)

2
]
≤

n∏
i=1

erE[Xi]+r
2

= exp (rn(µ+ r)) .

We may assume that ε ∈ (0, 1), since the theorem is trivially true for ε ≥ 1. Setting r = ε/2, it
then follows that

P

(
1

n

n∑
i=1

Xi > ε+ µ

)
≤ exp (rn(µ+ r))

exp(rn(ε+ µ)
= exp(rn(r − ε) = exp

(
−nε

2

4

)
. (14)

Now, applying (14) to the random variables 1−X1, . . . , 1−Xn,

P

(
1

n

n∑
i=1

Xi < −ε+ µ

)
≤ exp

(
−nε

2

4

)
. (15)

Combining (14) and (15) yields our conclusion.

To avoid the use of Θ(t log |U |) random bits in our sampling, we can instead sample elements
of U according to a random walk on a d-regular λ-spectral expander graph with vertex set U .
This allows us to find the average to within an additive error of ±(ε + λ/d) with a similar error
probability. While being less precise, this estimate only requires Θ(t log d + log |U |) random bits,
improving greatly on the more naive approach described above. The proof proceeds very similarly
to the proof of the classical Chernoff bound. The two sides of the inequality are exponentiated,
which allows for an application of Markov’s inequality. The conclusion then follows by suitably
applying Lemma 3.11 and Lemma 3.12.

Theorem 3.15. Let U be a set, f : U → [0, 1] be a function, and µ = 1
|U |
∑
i∈U f(i) denote the

average value of f on U . Furthermore, let G be a d-regular graph with vertex set V (G) = U and
spectral expansion λ. For every ε > 0, a random walk, (v1, . . . , vt), of length t− 1 on G starting at
a uniformly random vertex v1 ∈ U and proceeding to a uniformly random neighbour at each step,
satisfies

P

(∣∣∣∣∣1t
t∑
i=1

f(vi)− µ

∣∣∣∣∣ ≥ λ/d+ ε

)
≤ 2 exp

(
− tε

2

16

)
.
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Proof. Identify U with [n] for some n ∈ N, and as in the proof of Theorem 3.14, assume that
ε ∈ (0, 1). For some r ∈ (0, 1) to be specified later, it follows by Markov’s inequality that

P

(
t∑
i=1

f(vi) ≥ (µ+ ε+ λ/d)t

)
= P

(
exp

(
r

t∑
i=1

f(vi)

)
≥ exp (rt(µ+ ε+ λ/d))

)
(16)

≤
E
[
exp

(∑t
i=1(rf(vi))

)]
exp (rt(µ+ ε+ λ/d))

. (17)

Now, define the diagonal matrix

Tr =

e
rf(1) 0

. . .

0 erf(n)

 . (18)

By Lemma 3.12, it follows that E
[
exp

(∑t
i=1(rf(vi))

)]
=
∣∣∣∣(TrM)t−1Tru

∣∣∣∣
1
, where M is the

random walk matrix of G and u is the uniform distribution vector on U , i.e., the vector where every
entry is 1/n. Noting that Mu = u,

E

[
exp

(
t∑
i=1

(rf(vi))

)]
=
∣∣∣∣(TrM)tu

∣∣∣∣
1
≤
√
n
∣∣∣∣(TrM)t

∣∣∣∣
2
· ||u||2 ≤ ||TrM ||

t
2 . (19)

As in the proof of Theorem 3.13, we apply Lemma 3.11 to write M = d−λ
dn J + λ

dE, where ||E||2 ≤ 1
and J is the all-ones matrix. Then

||TrM ||2 ≤
d− λ
dn

||TrJ ||2 +
λ

d
||TrE||2 . (20)

Solving the equation ex = 1 + x+ 5
4x

2, one observes that for every x ∈ [0, 2], ex ≤ 1 + x+ 5
4x

2. We
apply this to bound the two terms of the right hand side of (20). First,

||TrE||2 ≤ ||Tr||2 ≤ e
r ≤ 1 + r +

5r2

4
,

and second,

||TrJ ||2 = sup
x 6=0

||TrJx||2
||x||2

= sup
x 6=0

||x||1 ·
√∑n

i=1 e
2rf(i)

||x||2

≤
√
n ·

√√√√ n∑
i=1

1 + 2rf(i) + 5r2f(i)2

≤ n ·
√

1 + 2µr + 5r2

≤ n
(

1 + µr +
5

2
r2

)
.
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Now, we may reexamine (20), to find that

||TrM ||2 ≤
(

1− λ

d

)(
1 + µr +

5µ

2
r2

)
+
λ

d

(
1 + r +

5r2

4

)
≤ 1 + (µ+ λ/d)r + 4r2

≤ exp((µ+ λ/d)r + 4r2).

Combining this with (17) and (19) yields

P

(
t∑
i=1

f(vi) ≥ (µ+ ε+ λ/d)t

)
≤ exp (rt ((µ+ λ/d+ 4r)− (µ+ ε+ λ/d)))

= exp (rt (4r − ε)) .

Setting r = ε
8 < 1, we obtain

P

(
t∑
i=1

f(vi) ≥ (µ+ ε+ λ/d)t

)
≤ exp

(
− tε

2

16
.

)
As in the proof of Theorem 3.14, a symmetry argument now yields the conclusion.

4 Lower Bounds on Spectral Expansion

Let d > 1 be fixed and (Gn)n∈N be a family of d-regular λ-spectral expanders. Alon and Boppana
famously showed that λ may be no smaller than 2

√
d− 1 or to put it differently, they showed that

for any d-regular graph, G, on n vertices,

λ(G) ≥ 2
√
d− 1− on(1),

where on(1)→ 0 as n→∞. This bound is in fact tight since there exist graphs, G, on arbitrarily
many vertices with λ(G) ≤ 2

√
d− 1. Such graphs are called Ramanujan graphs and they are one

of the main subjects of study within the field.

Definition 4.1. [Ramanujan Graph] Let G be a d-regular graph. We say that G is a Ramanujan
graph if λ(G) ≤ 2

√
d− 1.

In this section we present two proofs of the Alon-Boppana lower bound. One directly yields
the above statement, while the other is a more general statement regarding the spectrum of the
adjacency matrix of any sufficiently large d-regular graph. The reason for presenting two proofs of
the same fact is to gain a feel for the method of proof. The first result we prove is a great warm-up
towards understanding the methods employed to prove the second more general result.

Denote by Td = (V,E) the infinite d-regular tree, i.e., an infinite graph where each vertex has
degree d and there are no cycles. One may construct the adjacency operator of Td as an infinite-
dimensional linear operator, A : `2(V ) → `2(V ). The spectral norm of A is 2

√
d− 1, a fact that

we shall not prove in this exposition. We may think of this quantity as the spectral expansion of
Td. The vector 1V is not contained in `2(V ) meaning that d is not a trivial eigenvalue of A as
it is for finite d-regular graphs. In many ways, Td is the optimal d-regular expander. The graph
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infinitely expands and never turns back in on itself. This intuition turns out to be quite fruitful.
At a high level, the proofs of this section compare a family of d-regular graphs, (Gn)n∈N, with an
increasing number of vertices to Td. The conclusion is that the best expansion achievable arises if
for larger and larger neighbourhoods of vertices, Gn resembles Td as n approaches infinity. Thus,
in a sense, Td has the best possible spectral expansion, yielding the bound mentioned at the start
of the section.

The girth of a graph is the length of the shortest cycle. If a d-regular graph G has girth g(G) = 2i
for some i ∈ N then any ball of radius ≤ i in G would be indistinguishable from a similar ball in Td.
Thus, if G has large girth, it locally resembles Td. In fact, this translates to the spectral properties
of G. The last theorem of the section concerns the spectrum of a family of graphs (Gn)n∈N satisfying
|V (Gn)| → ∞ and g(Gn) → ∞ as n → ∞. The result states that the spectrum of the adjacency
matrix of Gn will approach the spectrum of the adjacency operator of Td as n tends to infinity in
a way that will be made precise later.

In this exposition, we provide three related and increasingly advanced bounds on spectral ex-
pansion using the same overall proof idea. Before going into the mathematical details, we shall first
provide some intuition. The goal is to compare finite graphs to the infinite d-regular tree, but how
to go about this is by no means obvious. The trick that is classically applied, and which will be
our focus as well, is to count closed walks. Let G be a d-regular graph, v be a vertex of G and v′

a vertex of Td. Denote by W`(G, v) the number of closed walks on G of length ` ∈ N starting at v.
The for any ` ∈ N, W`(G, v) ≥ W`(Td, v

′). To see this, note that a closed walk on Td starting at
v′ only can be closed if it backtracks to its origin. Every such backtracking walk can be mapped
to a unique backtracking walk on G starting at v. Walks traversing cycles will also be counted
by W`(G, v) while such walks are impossible on Td by definition. Furthermore, closed walks on G
relate to the spectrum of the adjacency matrix A of G. One can show that the number of closed
walks on G of length ` is given by

∑
v∈V (G)

W`(G, v) = Tr(A`) =

n∑
i=1

λ`i

where n is the number of vertices of G and λ1, . . . , λn are the eigenvalues of A counted with
multiplicity. Thus, we arrive at an inequality relating Td to G and a way to translate this into a
statement about the spectrum of G.

4.1 A First Bound on Spectral Expansion

Let us begin with a first bound on spectral expansion. It will be non-optimal, but we present it
here as a warm-up to show how the aforementioned proof strategy will work. To this end, we first
recall Lemma 2.10 from which the following lemma is a corollary.

Lemma 4.2. Let M ∈ Rn×n and λ1, . . . , λn be the eigenvalues of M counted with multiplicity.
Then for every k ∈ N,

Tr
(
Mk
)

=

n∑
i=1

λki .

Second, we note that walks on a graph are counted by powers of its adjacency matrix.
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Lemma 4.3. Let G = (V,E) be a graph and A its adjacency matrix. For every u, v ∈ V and
k ∈ N, the number of walks on G of length k, starting at u and ending at v, is given by

(
Ak
)
uv

. In

particular, the number of closed walks on G of length k ∈ N is given by Tr
(
Ak
)
.

Proof. We proceed by induction on k. For k = 1 the statement is trivially true. Suppose that the
statement is true for some k ∈ N. Let u, v ∈ V be given and let w1, . . . , wd be the neighbours of v
counted with multiplicity. We find that

(Ak+1)uv =
∑
x∈V

(Ak)uxAxv =

d∑
i=1

(Ak)uwi .

By the induction hypothesis, (Ak)uwi is the number of walks from u to wi of length k. The
conclusion follows.

We are now ready to use the connection between closed walks, the trace of the adjacency matrix,
and the spectrum of the adjacency matrix, to get the following naive bound.

Proposition 4.4. Let d > 1 be fixed and G = (V,E) be a d-regular graph on n = |V | vertices.
Then λ(G) ≥

√
d · (1− on(1)), where on(1)→ 0 as n→∞

Proof. Let A be the adjacency matrix of G and denote by d = λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues
of A counted with multiplicity. From every vertex v of G there are at least d closed walks of length
2 on G, one for each neighbour of v. Thus, the number of closed walks on G of length 2 is at least
dn. Combining this with Lemma 4.2 and Lemma 4.3 yields

∑n
i=1 λ

2
i = Tr(A2) ≥ dn. It follows

that d2 + (n− 1)λ(G)2 ≥ dn, such that λ(G) ≥
√
d(n− d)/(n− 1). The conclusion follows.

To get a better bound, we generalise and consider the number of walks of length 2` for any
` ∈ N. This, however, is not as simple as it sounds. We shall require a much more sophisticated
counting argument to arrive at our conclusion.

We shall need two facts regarding the Catalan numbers. The first is a well-known, albeit non-
trivial, property of the Catalan numbers and we omit its proof.

Definition 4.5. [Catalan Numbers] The Catalan numbers, (Cn)n≥0, are given by C0 = 1 and
Cn = 1

n+1

(
2n
n

)
, n ∈ N.

Lemma 4.6. The Catalan numbers form the unique sequence recursively given by C0 = 1 and
Cn =

∑n
i=1 Ci−1Cn−i, n ∈ N.

Lemma 4.7. For every n ≥ 1, Cn ≥ 4n

4n2 .

Proof. The lemma holds for n = 1 as C1 = 1. For n > 1, we first observe that by the binomial
identity, 4n = (1 + 1)2n =

∑2n
i=0

(
2n
i

)
, which yields

(
2n
n

)
≥ 4n

2n+1 , since
(

2n
k

)
≤
(

2n
n

)
for every

0 ≤ k ≤ 2n. With this at hand,

Cn =
1

n+ 1

(
2n

n

)
≥ 4n

(n+ 1)(2n+ 1)
≥ 4n

4n2
,

which is the desired conclusion.

With this at hand, we proceed with the main theorem of the subsection.
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Theorem 4.8. Fix d > 1. Let G = (V,E) be a d-regular graph on n = |V | vertices. Then
λ(G) ≥ 2

√
d− 1− on(1), where on(1)→ 0 as n→∞.

Proof. Denote by Td the infinite d-regular tree, i.e., an infinite d-regular graph with no cycles. For
any graph H and vertex v ∈ V (H) denote by W`(H, v) the number of closed walks on H of length
` starting at v.

Let e1, . . . , ed be the edges adjacent to a vertex v ∈ V (Td) of the infinite d-regular tree. Denote
by D` the set of closed walks of length 2` starting at v and never traversing ed. Clearly, W2`(Td, v) ≥
|D`|, so we shall derive a closed-form expression for |D`|. Let i ∈ [`] be given. We start by counting
the number of walks ω ∈ D` satisfying that the first time ω returns to v is after 2i steps. For every
such ω, we choose a starting edge e ∈ {e1, . . . , ed−1} traversing which we reach vertex v′. We then
choose a closed walk of length 2(i− 1) starting at v′ and not traversing e. After traversing e in the
opposite direction to arrive at v as our 2ith step, we choose any closed walk of D`−i. Thus, the
total number of such walks is (d− 1)Di−1D`−i. Summing over i ∈ [`], we get

D` =
∑̀
i=1

(d− 1)Di−1D`−i.

Noting that D0 = 1 and rewriting the recursing as

D`

(d− 1)`
=
∑̀
i=1

Di−1

(d− 1)i−1
· D`−i

(d− 1)`−i
,

we observe that in fact D`
(d−1)`

= C`. In conclusion, W2`(Td, v) ≥ |D`| = (d− 1)`C`.

Returning to the graph G, for every vertex v of G and v′ of Td, enumerate every edge e and e′

leaving v and v′, respectively, with a unique index i ∈ [d] (self-loops are considered to correspond
to two distinct directed edges). Since now any walk on G or Td can be uniquely described as a
sequence of indices corresponding to the edge chosen at each step in the walk, we obtain a bijection
from the set of walks (e1, e2, . . . , e`) ∈ E` on G or Td to the set of `-tuples (i1, . . . , i`) ∈ [d]`. This
immediately gives rise to a natural bijection from the set of walks on G starting at vertex v and
the set of walks on Td starting at vertex v′. Under this bijection, any closed walk on Td starting at
v′ is also a closed walk on G starting at v since any closed walk on Td backtracks to its origin. We
conclude that for every v ∈ V (G), v′ ∈ V (Td), and ` ∈ N, W`(G, v) ≥W`(Td, v

′).
We are now ready to bound the spectral expansion of G. Let A be the adjacency matrix of

G, and let λ1 ≥ · · · ≥ λn be the eigenvalues of A counted with multiplicity. By Lemma 4.3 and
Lemma 4.2, it follows that

n∑
i=1

λ2`
i = Tr

(
A2`
)

=
∑
v∈V

W2`(G, v) ≥ nW2`(Td, v
′) ≥ n(d− 1)`C`.

Thus, d2` + (n− 1)λ(G)2` ≥ n(d− 1)`C`, since λ1 = d. Now, set n = `2` + 1, recall that C` ≥ 4`

4`2

25



for ` ≥ 1, and note that 1
`1/`
→ 1 as `→∞. Then we obtain

λ(G) ≥ 2

√̀
n(d− 1)`C`

n− 1
− d2`

n− 1

≥ 2
√
d− 1 · 2

√̀
C`
22`
− d

(n− 1)1/(2`)

≥ 2
√
d− 1−

(
2
√
d− 1

(
1− 2

√̀
1

4`2

)
+
d

`

)
= 2
√
d− 1− on(1)

where on(1)→ 0 as n→∞.

4.2 Distributional Results on Eigenvalues

In the following section, we shall establish a more general machinery for analysing the eigenvalues
of the adjacency matrices of d-regular graphs. Let (Gn)n∈N be a family of d-regular graphs with
|V (Gn)| → ∞ as n→∞, and let An be the adjacency matrix of Gn for every n ∈ N. We prove that
for any ε > 0, the number of eigenvalues of An in the interval [(2 − ε)

√
d− 1, d] increases linearly

with |V (Gn)|. Furthermore, we show that if g(Gn) → ∞ as n → ∞, i.e., the girth of (Gn)n∈N
tends to infinity with the number of vertices, then (An)n∈N satisfies Wigner’s semicircular law up
to a normalisation constant. It is worth noting that the spectrum of the adjacency operator of the
infinite d-regular tree is the Wigner semicircle distribution scaled by a constant factor. Theorem 4.8
presented in the previous subsection follows as an easy corollary.

More formally, we prove the following two theorems.

Definition 4.9. [Girth of Graph] Let G be a graph. The girth of G, denoted by g(G), is the length
of the shortest cycle on G.

Definition 4.10. [Wigner Semicircle Distribution] The Wigner semicircle distribution is the prob-
ability measure ν supported on [−1, 1] with density function

f(x) =
2
√

1− x2

π
.

Theorem 4.11. Let d ∈ N be given. For every ε > 0, exists a constant C(ε, d) > 0, such that
for any d-regular graph G on n vertices with adjacency matrix A, the number of eigenvalues of A
(counted with multiplicity) in the interval [(2− ε)

√
d− 1, d] is at least Cn.

Theorem 4.12. Let d ∈ N be given. Let (Gn)n∈N be a family of d-regular graphs satisfying that
|V (Gn)| → ∞ and g(Gn)→∞ as n→∞. Define the sequence of measures

νn =
1

|V (Gn)|

|V (Gn)|∑
i=1

δ
λ
(n)
i

2
√
d−1

,

where λ
(n)
1 , . . . , λ

(n)
|V (Gn)| are the eigenvalues of the adjacency matrix of Gn counted with multiplicity,

and δx is the Dirac measure at x ∈ R. Then (νn)n∈N converges weakly to the Wigner semicircle
distribution.
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We follow the presentation of the results as found in [3]. However, the order of the presentation
has been changed and care has been taken to highlight the main ideas and insights of the proofs.

4.2.1 The Wigner Semicircle Distribution and Chebyshev polynomials

The proofs of the theorems mentioned above crucially rely on connections between walks on graphs
and the Chebyshev polynomials of the second kind. We shall start by introducing the Chebyshev
polynomials of the second kind, prove some of their basic properties, and discuss their relation to
the Wigner semicircle distribution.

Definition 4.13. The Chebyshev polynomials of the second kind, (Um)m≥0, are given recursively
by U0(x) = 1, U1(x) = 2x, and for m ∈ N, Um+1(x) = 2xUm(x)− Um−1(x).

The Chebyshev polynomials of the second kind are also uniquely determined by the following
trigonometric identity.

Proposition 4.14. For every m ∈ N0 and θ ∈ R, Um(cos θ) = sin((m+ 1)θ)/ sin θ.

Proof. We prove that the expression satisfies the recurrence relation of the definition of Um. For
m = 0, there is nothing to show. For m = 1,

U1(cos θ) = 2 cos θ =
2 cos θ sin θ

sin θ
=

sin(2θ)

sin θ
.

Lastly, for m ∈ N,

sin((m+ 2)θ)

sin θ
=

cos θ sin((m+ 1)θ) + cos((m+ 1)θ) sin θ

sin θ

= 2 cos θ · sin((m+ 1)θ)

sin θ
− sin(mθ)

sin θ
,

where the last equality uses the fact that

sin(mθ) = sin((m+ 1)θ + (−θ)) = cos(θ) sin((m+ 1)θ)− cos((m+ 1)θ) sin(θ).

This indeed matches Um+1(cos θ) = 2 cos θ ·Um(cos θ)−Um−1(cos θ), and the conclusion follows.

The recursion formula in the definition of the Chebyshev polynomials of the second kind allows
us to find a closed expression for their generating functions.

Proposition 4.15. The generating function of (Um(x))m∈N0
is given, as a formal power series

over the ring of polynomials over Q[x], by

∞∑
m=0

Um(x)tm =
1

1− 2xt+ t2
∈ (Q[x])[[t]].

Proof. First, note that for every m ∈ N0, Um(x) has coefficients in Q, so the generating function is
indeed a formal power series over the polynomial ring of Q.

Second, observe that by the recursion formula for Um,

(1− 2xt+ t2)

∞∑
m=0

Um(x)tm = U0(x) + (U1(x)− 2x)t+

∞∑
m=2

(Um(x)− 2xUm−1(x) + Um−2) tm = 1,

as we were required to show.
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The Weierstrass approximation theorem states that the set of polynomials over the reals are
dense in the space of continuous functions on [−1, 1] equipped with the uniform norm, which is
denoted by C([−1, 1]). As the following proposition shows, we may use this fact to prove results
regarding weak convergence of measures.

Proposition 4.16. Let L ≥ 1 be given, and let (νn)n∈N be a sequence of measures satisfying that
for every m ∈ N0,

lim
n→∞

∫ L

−L
Um(x) dνn(x) =

{
1, m = 0

0, m > 0.

Then (νn)n∈N converges weakly to the Wigner semicircle distribution.

Proof. Denote by ν the Wigner semicircle distribution. A change of variables yields∫ L

−L
Um(x) dν(x) =

∫ 1

−1

Um(x) ·
√

1− x2 dx

=

∫ π

0

U(cos(θ)) sin2(θ) dθ

=

∫ π

0

sin((m+ 1)θ) sin(θ) dθ

=

{
1, m = 0

0, m > 0.

Thus, for every m ∈ N0, limn→∞
∫ L
−L Um(x) dνn(x) =

∫ L
−L Um(x) dν(x). To prove weak convergence

of (νn)n∈N to ν, it suffices to extend this statement from the Chebyshev polynomials of the second
kind to all functions of C([−L,L]).

To this end, note that every polynomial P (x) of degree n is a linear combination of the polyno-
mials U0, . . . , Un. Thus, for every P ∈ R[x],

lim
n→∞

∫ L

−L
P (x) dνn(x) =

∫ L

−L
P (x) dν(x).

Let f ∈ C([−L,L]) be given, and let ε > 0. By the Weierstrass approximation theorem, there exists
a polynomial P (x) ∈ R[x], such that for every x ∈ [−L,L], |f(x)− P (x)| < ε/3. Furthermore, there

exists an N ∈ N, such that for every n ≥ N ,
∣∣∣∫ L−L P (x) dνn(x)−

∫ L
−L P (x) dν(x)

∣∣∣ < ε/3. Thus, for

every n ≥ N ,∣∣∣∣∣
∫ L

−L
f(x) dνn(x)−

∫ L

−L
f(x) dν(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ L

−L
P (x) dν(x)−

∫ L

−L
f(x) dν(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫ L

−L
P (x) dν(x)−

∫ L

−L
P (x) dνn(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫ L

−L
P (x) dνn(x)−

∫ L

−L
f(x) dνn(x)

∣∣∣∣∣
< ε.
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It follow that, indeed, limn∈N
∫ L
−L f(x) dνn(x) =

∫ L
−L f(x) dν(x), for every f ∈ C([−L,L]).

The attentive reader may notice that the above proposition reduces the proof of Theorem 4.12
to a statement regarding the evaluation of Chebyshev polynomials of the second kind at certain
points relating to the eigenvalues of the adjacency matrices of graphs.

Remark 4.17. Invoking the Chebyshev polynomials of the second kind in the context of the Wigner
semicircle distribution, is in fact much more natural than may be immediately clear. Let W be
the real Hilbert space L2([−1, 1], ν), where ν is the Wigner semicircle distribution on [−1, 1], with
associated inner product 〈f, g〉 =

∫
fg dν, for f, g ∈ W . Gram-Schmidt orthonormalisation in W

of the polynomials 1, x, x2, · · · ∈ W yields exactly the Chebyshev polynomials of the second kind,
U0, U1, · · · ∈W . To see this, it suffices to observe that U0 = 1; for any n ∈ N0,

||Un||2 =

∫ 1

−1

U2
n(x) · 2

√
1− x2

π
dx =

2

π

∫ π

0

sin((n+ 1)θ)2 dθ = 1;

and for any n 6= m,

〈Un, Um〉 =
2

π

∫ π

0

sin((n+ 1)θ) sin((m+ 1)θ) dθ =
2

π

∫ π

0

cos((n−m)θ)− cos((n+m+ 2)θ) dθ = 0.

To prove Theorem 4.11, we shall need another property of the Chebyshev polynomials of the
second kind.

Proposition 4.18. Le L ≥ 2 and ε > 0 be given. There exists a constant C = C(L, ε), such that
whenever µ is a probability measure on [−L,L] satisfying that for all m ∈ N0,∫ L

−L
Um

(x
2

)
dµ(x) ≥ 0, (21)

then µ([2− ε, L]) ≥ C.

Proof. For simplicity, define Xm(x) = Um
(
x
2

)
, for every m ∈ N0. We note that the polynomials

(Xm)m∈N0
satisfy the recursion X0(x) = 1, X1(x) = x, and Xm+1(x) = xXm(x) − Xm−1(x), for

m ∈ N. Furthermore, Xm(2 cos θ) = sin((m+1)θ)
sin θ . It follows that for m > 0, Um has m roots,

{2 cos (2πk/(m+ 1))}k∈[m]. We will denote by αm = 2 cos (2π/(m+ 1)) the largest root of Xm.
Before proceeding with the proof, we shall first state some observations regarding the polynomials,
(Xm)m∈N, and their roots.

First, we show by induction on k that whenever k, ` ∈ N0, with k ≤ `, XkX` =
∑k
i=0Xk+`−2i.

For k = 0 this is trivially true. For k = 1, X1X` = xX` =
∑1
i=0X`−2i+1, by the recursion formula.

Now, let k ≥ 2, and assume the statement to be true for every k′ < k. Then, by the induction
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hypothesis and the recursion formula,

XkX` = xXk−1X` −Xk−2X`

= x

k−1∑
i=0

Xk+`−1−2i −
k−2∑
i=0

Xk+`−2−2i

=

k−1∑
i=0

(Xk+`−2i +Xk+`−2−2i)−
k−2∑
i=0

Xk+`−2−2i

=

k∑
i=0

Xk+`−2i,

for every ` ≥ k.
Second, we prove that for every m ∈ N,

Xm(x)

x− αm
=

m−1∑
i=0

Xm−1−i(αm)Xi(x).

The recursion formula and rearrangement of terms yields

x

m−1∑
i=0

Xm−1−i(αm)Xi(x) = X1(x)Xm−1(αm) +

m−1∑
i=1

Xm−1−i(αm)(Xi+1(x) +Xi−1(x))

=

m∑
i=1

Xm−i(αm)Xi(x) +

m−2∑
i=0

Xm−i−2(αm)Xi(x)

= X0(αm)Xm(x) +X1(αm)Xm−1(x) +Xm−2(αm)X0(x)

+

m−2∑
i=1

(Xm−i(αm) +Xm−i−2(αm))Xi(x)

= Xm(x) + αmXm−1(x) +Xm−2(αm) + α

m−2∑
i=1

Xm−i−1(αm)Xi(x)

= Xm(x) +Xm−2(αm) + α

m−1∑
i=1

Xm−i−1(αm)Xi(x).

Now, cancelling terms, applying the recursion formula yet again, and recalling that αm is a root of
Xm,

(x− αm) ·
m−1∑
i=0

Xm−1−i(αm)Xi(x) = Xm(x) +Xm−2(αm)− αXm−1(αm)X0(x)

= Xm(x)−Xm(αm)

= Xm(x),

which proves the claim.
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Third, for m ∈ N define the polynomium Ym = Xm(x)2/(x − αm). We prove that there exist

non-negative reals, y
(m)
0 , . . . , y

(m)
2m−1 ≥ 0, such that Ym(x) =

∑2m−1
i=0 y

(m)
i Xi(x). To this end, note

that by the previous observation, Ym(x) =
∑m−1
i=1 Xm−i−1(αm)Xi(x)Xm(x). Since αm > αj for

every j < m, and αj is the largest root of Xj , Xm−i−1(αm) > 0, for 1 ≤ i ≤ m − 1. Hence, the
terms Xi(x)Xm(x) all have non-negative coefficients in the above sum. Since Xi(x)Xm(x) can be
written as a linear combination of X0(x), . . . , X2m−1 with non-negative coefficients, as per our first
observation, the conclusion follows.

We are now ready to proceed with the proof of the proposition. Let ε > 0 be given. Suppose
for contradiction that µ([2 − ε, L]) = 0, and let m ∈ N be such that αm > 2 − ε. Since for every

k ∈ N0,
∫ L
−LXk(x) dµ(x) ≥ 0, it follows by the third observation above that

∫ L
−L Ym(x) dµ(x) ≥ 0.

As µ([2 − ε, L]) = 0, this implies
∫ −ε
−L Ym(x) dµ(x) ≥ 0. However, Ym(x) ≤ 0 for every x ≤ αm,

so the support of µ must be contained in the roots of Ym, {2 cos (2πk/(m+ 1))}k∈[m]. The same
argument applies to Ym+1, since αm+1 > αm, so the support of µ must also be contained in the
roots of Ym+1. The roots of Ym and of Ym+1 are disjoint, however, since m + 1 and m + 2 are
coprime. This implies that µ is the zero measure, a contradiction.

Let C([−L,L]) denote the space of continuous function from [−L,L] to R, endowed with the
uniform norm. Then, since [−L,L] is compact, it follows by the Riesz-Markov representation
theorem that the dual of C([−L,L]) is the space R([−L,L]) of signed Radon measures on [−L,L].
The closed unit ball of the dual of a normed space is compact in the weak∗ topology, by the
Banach–Alaoglu theorem, so the set of probability measures on [−L,L], P([−L,L]), which is a
closed subset of the closed unit ball of R([−L,L]), is compact.

Now, let W ⊂ P([−L,L]) denote the set of probability measures satisfying (21), for all m ∈ N0.
Since W is a countable intersection of closed sets,

W =

∞⋂
m=0

{
µ ∈ P([−L,L]) |

∫
Um dµ ≥ 0

}
,

W is closed, and hence compact. We may then consider the continuous function f : [−L,L] → R,
given by

f(x) =


0, x ≤ 2− ε
2
ε (x− (2− ε)), 2− ε < x < 2− ε

2

1, 2− ε
2 ≤ x,

and observe that for every µ ∈ W,

µ([2− ε, L]) ≥
∫ L

−L
f(x) dµ(x) ≥ µ

([
2− ε

2
, L
])

> 0.

Since the map, T : P([−L,L])→ R, given by µ 7→
∫ L
−L f(x) dµ(x), is weak∗ continuous, the image,

T (W) > 0, is compact in R. Thus, there exists C > 0, such that for every µ ∈ W,

µ([2− ε, L]) ≥
∫ L

−L
f(x) dµ(x) ≥ C,

which is what we set out to prove.
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4.2.2 Recursions on Non-backtracking Walks

In our proof of Theorem 4.8, we computed the number of closed walks on a graph and compared it
to the number of closed walks on the infinite d-regular tree, our “ideal” expander. In this section,
we shall instead consider the number of non-backtracking closed walks. The main goal of this
subsection is to prove a recurrence relation that will allow us to later relate non-backtracking walks
to the Chebyshev polynomials of the second kind. In the following, G = (V,E) is a d-regular graph
with adjacency matrix A.

Definition 4.19. [Non-backtracking Walks] A walk, ω = (v0, v1, . . . , vn), vi ∈ V , on G is a non-
backtracking walk, if for every i ∈ [n− 1], vi+1 6= vi−1, i.e., the walk never crosses from vertex vi−1

to vertex vi, and then crosses back to vi−1. For r ∈ N0, we shall denote by Ar the matrix counting
the number of non-backtracking walks of length r between two vertices. In other words, (Ar)u,v is
the number of non-backtracking walks on G from u to v.

Lemma 4.20. The matrices (Ar)r∈N0
satisfy the following relations.

a) A0 = I and A1 = A.

b) A2
1 = A2 + d · I.

c) For r ≥ 2, A1Ar = ArA1 = Ar+1 + (d− 1)Ar−1.

Proof.

a) This follows by definition.

b) The walks of length two, where backtracking occurs, are exactly the walks of the form (v, u, v),
where (v, u) ∈ E. These walks are thus captured by the matrix d · I, since each vertex v has
degree d. Since A2

1 = A2 counts the walks of length two, A2
1 − d · I exactly counts the number

of non-backtracking walks of length two.

c) Let u0, v ∈ V . The entry (ArA1)u0v is exactly the number of walks of the form (u0, u1, . . . , ur, v)
where for each i ∈ [r−1], ui−1 6= ui+1. In other words, the number of walks from u0 to v of length
r + 1 where only the last edge traversal may be back-tracking. On the other hand, (Ar+1)u0v

is the number of walks of the form (u0, u1, . . . , ur, v) where for each i ∈ [r − 1], ui−1 6= ui+1,
and furthermore, v 6= ur−1. The paths of the form (u0, u1, . . . , ur−2, ur−1 = v, ur, v) where for
each i ∈ [r − 1], ui−1 6= ui+1, are exactly counted by (d − 1) · (Ar−1)u0v, since given a non-
backtracking walk (u0, u1, . . . , v) of length r − 1, there are exactly (d− 1) ways of choosing ur,
such that (u, u1, . . . , ur−2, v, ur) is non-backtracking. It follows that A1Ar = Ar+1 +(d−1)Ar−1

since both sides of the equation count the same thing. A symmetric argument establishes
A1Ar = Ar+1 + (d− 1)Ar−1.

Generating functions will be the key tool in connecting non-backtracking walks to the Chebyshev
polynomials of the second kind. We start by finding an expression for the generating function of
(Ar)r∈N0

. Note that this generating function is a formal power series over the ring End(`2(V )).

Lemma 4.21. The generating function of (Ar)r∈N0
is given by

∞∑
r=0

Art
r =

I − It2

I −At+ ((d− 1) · I)t2
.
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Proof. Repeated application of Lemma 4.20 yields

(I −At+ ((d− 1) · I)t2) ·
∞∑
r=0

Art
r = A0 + (A1 −AA0)t+

∞∑
r=2

(Ar −A1Ar−1 + (d− 1)Ar−2) tr

= I + (A2 −A1A1 + (d− 1)A0) t2

= I − It2,

from which the conclusion follows.

For simplicity, we shall henceforth write the identity matrix as 1, or omit it if it is the coefficient

of some term tn in a formal power series. We now introduce the quantity Tm =
∑bm2 c
r=0 Am−2r, since

its generating function resembles that of the Chebyshev polynomials of the second kind.

Lemma 4.22. The generating function of (Tm)m∈N0 is

∞∑
m=0

Tmt
m =

1

1−At+ (d− 1)t2
.

Proof. We observe that

∞∑
m=0

Tmt
m =

∞∑
r=0

∞∑
m=2r

Am−2rt
m

=

( ∞∑
r=0

t2r

)( ∞∑
m=0

Amt
m

)

=
1

1− t2
· 1− t2

1−At+ (d− 1)t2

=
1

1−At+ (d− 1)t2
,

from which the conclusion follows.

4.2.3 Walks and Eigenvalues of Regular Graphs

With the above at hand, we shall draw a connection between the Chebyshev polynomials of the
second kind and closed non-backtracking walks on graphs. One may notice that the generating
functions of Tm and Um, as presented in Lemma 4.22 and Proposition 4.15, are quite alike. A
simple change of variables allows us to equate the two in a striking manner.

Lemma 4.23. For every m ∈ N0, Tm = (d− 1)
m
2 Um

(
A

2
√
d−1

)
.

Proof. A change of variables in Proposition 4.15, to x = A
2
√
d−1

and t = s ·
√
d− 1, yields

∞∑
m=0

(d− 1)
m
2 Um

(
A

2
√
d− 1

)
sm =

1

1−As+ (d− 1)s2
.

Noting that this is exactly the generating function of Tm completes the proof.
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We turn our attention to closed non-backtracking walks on G. Let K`(v) denote the number of
closed non-backtracking walks on G of length ` starting and ending at v ∈ V . Then K`(v) = (A`)v,v,
such that ∑

v∈V
K`(v) =

∑
v∈V

(A`)v,v = Tr(A`).

The following key theorem is immediate.

Theorem 4.24. Let G be a d-regular graph with adjacency matrix A. Let λ1, . . . , λn be the eigen-
values of A counted with multiplicity. For every m ∈ N0,∑

v∈V

∑
0≤r≤m/2

Km−2r(v) = (d− 1)m/2
n∑
i=1

Um

(
λi

2
√
d− 1

)
.

Proof. By Lemma 2.10 and Lemma 4.23,∑
v∈V

∑
0≤r≤m/2

Km−2r(v) =
∑

0≤r≤m/2

Tr (Am−2r)

= Tr (Tm)

= Tr

(
(d− 1)

m
2 Um

(
A

2
√
d− 1

))
= (d− 1)

m
2

n∑
i=1

Um

(
λi

2
√
d− 1

)
.

The theorem follows.

We are now ready to prove the two main theorems of the section.

Theorem 4.11. Let d ∈ N be given. For every ε > 0, exists a constant C(ε, d) > 0, such that
for any d-regular graph G on n vertices with adjacency matrix A, the number of eigenvalues of A
(counted with multiplicity) in the interval [(2− ε)

√
d− 1, d] is at least Cn.

Proof. Let ε > 0 be given, and let λ1, . . . , λn be the eigenvalues of A counted with multiplicity.

Define the probability measure µ on
[
− d√

d−1
, d√

d−1

]
by

µ =
1

n

n∑
i=1

δ λi√
d−1

,

where δx is the Dirac measure at x ∈ R. By Theorem 4.24, it follows that for every m ∈ N0,∫ d

−d
Um

(x
2

)
dµ(x) =

1

n

n∑
i=1

Um

(
λi

2
√
d− 1

)
=

1

n(d− 1)m/2

∑
v∈V

∑
0≤r≤m/2

Km−2r(v) ≥ 0.

According to Proposition 4.18 this implies that there exists a constant, C, depending only on d and
ε, such that µ([2− ε, d]) ≥ C. Observing that

µ([2− ε, d]) =
1

n

∣∣∣{i ∈ [n] | λi ≥ (2− ε)
√
d− 1}

∣∣∣ ,
we find that there are at least Cn eigenvalues of A in the interval [(2− ε)

√
d− 1, d].
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Note that the above theorem has Theorem 4.8 as a corollary. Finally, we arrive at the second
major theorem of the section.

Theorem 4.12. Let d ∈ N be given. Let (Gn)n∈N be a family of d-regular graphs satisfying that
|V (Gn)| → ∞ and g(Gn)→∞ as n→∞. Define the sequence of measures

νn =
1

|V (Gn)|

|V (Gn)|∑
i=1

δ
λ
(n)
i

2
√
d−1

,

where λ
(n)
1 , . . . , λ

(n)
|V (Gn)| are the eigenvalues of the adjacency matrix of Gn counted with multiplicity,

and δx is the Dirac measure at x ∈ R. Then (νn)n∈N converges weakly to the Wigner semicircle
distribution.

Proof. By Proposition 4.16, it suffices to show that as n tends to infinity,
∫ d
−d Um(x) dνn converges

to 0 when m ∈ N, and converges to 1 when m = 0. To this end, first note that when m = 0,
Um(x) = 1 for every x, so the statement is trivially true. Second, observe that for m ∈ N, there

exists N ∈ N, such that for every n ≥ N , g(Gn) > m. Denote by K
(n)
` (v) the number of closed

non-backtracking walks of length ` on Gn starting at v ∈ V (Gn). When g(Gn) > m, there are

no closed non-backtracking walks of length ≤ m. Thus, whenever n ≥ N , K
(n)
` (v) = 0 for every

v ∈ V (Gn) and ` ≤ m. It now follows by Theorem 4.24 that for every n ≥ N ,∫ d

−d
Um(x) dνn =

1

n

∑
i=1

Um

(
λ

(n)
i

2
√
d− 1

)
=

1

n(d− 1)m/2

∑
v∈V

∑
0≤r≤m/2

K
(n)
m−2r(v) = 0.

The was what we needed to show.

5 Spectral Expansion of Random Graphs

A body of research has been dedicated to the study of the spectral expansion of random regular
graphs. We shall consider two such lines of research. First, applying the probabilistic method, one
may establish the existence of good spectral expanders. Notable examples are the work by Bilu and
Linial [1] proving the existence of near-Ramanujan spectral expanders, and the recent establishment
of the existence of bipartite Ramanujan graphs of every degree and size by Marcus, Spielman, and
Srivastava [8, 9]. Second, let G be a random graph. Another body focuses on the expected value
of λ(G). As we show below, the distribution of λ(G) is strongly concentrated around its mean, so
bounding the mean value equates to proving a bound on the spectral expansion of “most” regular
graphs. Friedman [4, 5] managed to find the optimal bound in this regard, showing that for every
ε > 0 and d ∈ N, a random d-regular graph G satisfies λ(G) < 2

√
d− 1 + ε with probability

1−Oε(|V (G)|−C), for a constant, C > 0, depending on d. This resolved a long-standing conjecture
by Noga Alon. Thus, a random graph is guaranteed to almost be Ramanujan with high probability.
A consequence of this, is that one can find a good spectral expander by simply picking random
graphs until one is found. In expectation, only a constant number of samples would be necessary,
implying an efficient procedure for producing good spectral expanders.2

2This sweeps under the rug, the issue of determining the eigenvalues of the adjacency matrix of a sampled graph,
something that takes time polynomial in the number of vertices to even approximate.
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In the following, we shall start by describing a framework for modelling random graphs. We
then proceed to prove that for a random graph G, λ(G) is concentrated around its mean. Lastly,
we present an upper bound on λ(G). In our treatment of the subject, we follow Broder and Shamir
[2] with inspiration from the presentation of the proof found in the survey by Hoory, Linial, and
Wigderson [6].

5.1 Modelling a Random Regular Graph

There are multiple ways to define random regular graphs. We shall consider the permutation model
for a random 2d-regular graph. It is defined as a union of d permutations on the vertices of the
graph.

Definition 5.1. [Permutation Model] The distribution Gn,2d is given as follows. For each i ∈ [d],
let πi : [n] → [n] be a permutation. The graph G(π1, . . . , πd) = (V,E) with vertices V = [n] is
generated by adding an edge between j and πi(j) for each i ∈ [d] and j ∈ [n]. One samples
from Gn,d by sampling eachpermutation πi ∈ Sn independently and uniformly at random and then
constructing G(π1, . . . , πd).

We observe that every G sampled from Gn,2d is indeed 2d-regular, but may contain self-loops
or multiple edges. We shall allow this for two reasons. First, the expansion properties of the
graph are not influenced by multiple edges and self-loops, so restricting to simple graphs is not
really necessary for the discussion of expander graphs. Second, the distribution Gn,2d is easier to
work with than other models of random graphs, such as, for instance, the uniform distribution on
the simple 2d-regular graphs. The results presented carry over to most other models of random
graphs by general arguments from the theory of random graphs. We shall, however, not cover this
phenomenon in detail here.

5.2 Concentration Around the Mean

We start our treatment of the spectral expansion of random graphs with a proof that the spectral
expansion is concentrated around its mean. Towards such a result, we state the Azuma-Hoeffding
inequality, a Chernoff-style bound for martingales.

Proposition 5.2 (Azuma-Hoeffding). Let the adapted sequence (Xi,Fi)0≤i≤n be a martingale with

X0 constant. If |Xi+1 −Xi| ≤ c, for every 0 ≤ i < n, then P (|Xn −X0| > γc
√
n) ≤ 2e−γ

2/2.

With this at hand, we are ready to prove the following concentration bound.

Theorem 5.3. Let d ≥ 2 be given, and let G be a graph drawn from the distribution Gn,2d. Then

P
(
|λ(G)− E [λ(G)]| > γ

√
d
)
≤ 2e−

γ2

32 .

Proof. The 2d-regular graph, G = G(π1, . . . , πd), is generated by uniformly random permutations
π1, . . . , πd ∈ Sn, as discussed above. Denote by Ω the associated probability space, and write
F0 = {∅,Ω} and Fi = σ(π1, . . . , πi), i ∈ [d]. For 0 ≤ i ≤ n, define Xi = E [λ(G) | Fi], and note that
the adapted sequence (Xi,Fi) is a martingale. Clearly, X0 = E [λ(G)] and Xd = λ(G), such that

P
(
|λ(G)− E [λ(G)]| > γ

√
d
)

= P
(
|Xd −X0| > γ

√
d
)
≤ 2e−

γ2

32 ,
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will follow directly from Proposition 5.2, if we can show that |Xi −Xi−1| ≤ 4 almost surely, for
every i ∈ [d]. Since Xi−1 = E [E [λ(G) | Fi−1, πi] | Fi−1], it follows that almost surely,

|Xi −Xi−1| ≤ max
π,π′∈Sn

|E [λ(G) | Fi−1, πi = π]− E [λ(G) | Fi−1, πi = π′]| . (22)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix, A, of G, counted with multiplicity.
Note that Aij =

∑d
k=1([πk(i) = j] + [πk(j) = i]), such that by the min-max theorem,

λ2 = sup
x∈{1V }⊥
||x||2=1

〈Ax, x〉 = sup
x∈{1V }⊥
||x||2=1

∑
1≤i,j≤n

Aijxixj = sup
x∈{1V }⊥
||x||2=1

d∑
k=1

n∑
i=1

2xixπk(i).

In the same fashion, λn = inf ||x||2=1

∑d
k=1

∑n
i=1 2xixπk(i). Let i ∈ [d] be given, and fix π1, . . . , πd−1 ∈

Sn. For π ∈ Sn, denote by λ2(π) and λn(π) the corresponding eigenvalues of the adjacency matrix
of the graph generated by π1, . . . , πd−1, and π. Then for any pair of permutations, π, π′ ∈ Sn,

|λ2(π)− λ2(π′)| ≤ sup
x∈{1V }⊥
||x||2=1

(∣∣∣∣∣
n∑
i=1

2xixπ(i) − 2xixπ′(i)

∣∣∣∣∣
)

≤ sup
x∈{1V }⊥
||x||2=1

2

(∣∣∣∣∣
n∑
i=1

xixπ(i)

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

xixπ′(i)

∣∣∣∣∣
)

≤ 4,

where the last inequality follows by the Cauchy-Schwartz inequality. A very similar computation
yields |λn(π)− λn(π′)| ≤ 4. It follows that any two graphs, G and G′, generated by permu-
tations π1, . . . , πd and τ1, . . . , τd, respectively, such that τi = πi for all but one i ∈ [d], satisfy
|λ(G)− λ(G′)| ≤ 4. Applying this insight to (22) yields |Xi −Xi−1| ≤ 4 almost surely, which
completes the proof.

5.3 A Bound on the Mean Spectral Expansion

We have established that the spectral expansion of a random graph in the permutation model is
concentrated around its mean. We now turn to bounding this mean from above. The best known
such bound is due to Friedman [5] and states that E [λ(G)] ≤ 2

√
d− 1 + o(1). However, that result

is far beyond the scope of this exposition. Instead, we shall prove a bound by Broder and Shamir
[2], the first bound achieving even E [λ(G)] = o(d). With its elegance and simplicity, the proof and
the framework of Broder and Shamir influenced the later series of papers culminating in the result
by Friedman.

Theorem 5.4. Let d ≥ 2 be given and let G be a graph drawn from the distribution Gn,2d. Then
E [λ(G)] ≤ 4

√
2 · d3/4 · (1 + o(1)) as n tends to infinity.

Before proceeding to the proof of the above theorem, let us first discuss the strategy and frame-
work of the proof. As in Section 4, we shall discuss walks on graphs to estimate λ(G). Recall that
for a graph G with adjacency matrix A and any k ∈ N, λ(G)2k ≤

∑n
i=2 λ

2k
i = Tr(A2k)− d2k, where
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λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of A counted with multiplicity. Expressed using the random

walk matrix, M , of the random graph G, this becomes
(
λ(G)
d

)2k

≤ Tr(M2k) − 1. By Jensen’s

inequality,

E [λ(G)] ≤ d ·
(
E
[
Tr(M2k)

]
− 1
) 1

2k . (23)

Thus, we shall aim to bound E
[
Tr(M2k)

]
, which is equal to n times the probability that a random

walk on the random graph G of length 2k, starting at a given vertex v ∈ V (G), is closed. For the
remainder of the section, we identify V with the set [n], and let the starting vertex be 1 ∈ V = [n].

Now, consider G = (V,E) to be drawn from the distribution Gn,2d. The graph G is then
defined by random permutations π1, . . . , πd ∈ Sn and any edge of G is of the form {u, πi(u)} or
{u, π−1

i (u)}, u ∈ V, i ∈ [d]. Thus, there is a bijective correspondence between words ω of length t
over the alphabet Σ = {π1, π

−1
1 , . . . , πd, π

−1
d } and the walks of length t on G starting at vertex 1.

As an example, the word ω = π1π
−1
2 π−1

1 corresponds to the walk

1→ v1 = π1(1)→ v2 = π−1
2 (v1)→ v3 = π−1

1 (v2).

A word of length t over the alphabet Σ can be regarded as a member of the free group with
generating set {π1, . . . , πd}. It will be natural to consider the reduced word ω′ = red(ω), where
each substring of ω of the form αα−1, α ∈ Σ, has been repeatedly removed until no such string
occurs.

To perform a random walk of length 2k on the random graph G, we pick a random word,
ω, of length 2k over the alphabet Σ, and then choose a random assignment of permutations to
π1, . . . , πd ∈ Sn. The word ω then describes a walk on G(π1, . . . , πd). We shall be interested in
whether or not the walk described by ω is closed. We shall analyse this in two steps. We call a
reduced word ω′ bad if it is of the form ω′ = ω1ω

j
2ω
−1
1 for some j ≥ 2 and words ω1, ω2, where

taking inverses should be interpreted as in the free group over {π1, . . . , πd}. It is worth noting that
the empty word is bad. First, we show that the reduced word, ω′ = red(ω), of a random word is
unlikely to be bad. Second, we show that any word that is not bad is unlikely to yield a closed walk
on G. We prove this in two lemmas and then finally conclude with a proof of Theorem 5.4.

Lemma 5.5. Let ω be a uniformly drawn word of length 2k from Σ and let ω′ be the reduced word.

The probability that ω′ is bad is less than 4k2 ·
(

2
d

)k
.

Proof. We bound the number of words of length 2k that reduce to a bad word of length 2`. Note
that a word of even length can only reduce to another word of even length. Let ω = a1a2 . . . a2k be
a word, let ai1ai2 . . . ai2` = ω′ = red(ω) be the reduced word of ω, and suppose that ω′ is bad. We
call an index j staying if j ∈ {i1, . . . , i2`}. If the index j ∈ [k] satisfies that aj is eliminated when
reducing from ω to ω′, we call it opening if aj gets cancelled out with some ak, k > j and closing
otherwise. We make this notion well-defined by requiring that the reduction occurs by repeatedly
passing over ω from left to right and cancelling each subword of the form αα−1, α ∈ Σ in that
order until no such subwords occur. Denote by A,B,C ⊂ [2k], respectively, the set of opening,
closing, and staying indices. We claim that A uniquely defines B and C. This follows as for every
j ∈ [2k] \ A, j ∈ B if and only if |A ∩ [j − 1]| > |B ∩ [j − 1]|, since if some aj and ak, j < k,
cancel out in the reduction, then there can be no staying index m ∈ C with j < m < k. Thus,
if |A ∩ [j − 1]| > |B ∩ [j − 1]| there is an index of A ∩ [j − 1] the letter of which is not cancelled
out by any letter with index m < j. Now, as |A| = k − ` it follows that there are at most

(
2k
k−`
)

configurations of A,B,C that lead to a valid cancelling of letters. Fix such a configuration A,B,C.
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The letters at the indices of A and B can be chosen in at most (2d)k−` ways since the choice for
the indices of A determine the choice of indices for B. By assumption the reduced word ω′ can be
written in the form ω′ = ω1ω

j
2ω
−1
1 with j ≥ 2. Then |ω1|+ |ω2| ≤ ` since |ω′| = 2`. Thus, for every

possible choice of lengths t1, t2 ∈ {0, 1, . . . , `} for ω1 and ω2, i.e.,|ω1| = t1 and |ω2| = t2, there are
at most (2d)` ways of choosing ω′ since it is fixed after choosing ω1 and ω2. It follows that we can
choose ω′ in at most (`+ 1)2(2d)` ways.

In conclusion there are at most

k∑
`=0

(
2k

k − `

)
(2d)k−` · (`+ 1)2(2d)` ≤ 4k2(2d)k ·

k∑
`=0

(
2k

k − `

)
≤ 4k2(8d)k

ways to choose ω such that the reduced word ω′ is bad. Since we can choose ω in (2d)2k ways, it

follows that the probability that ω reduces to a bad word is less than 4k2(8d)k/(2d)2k = 4k2 (2/d)
k
.

Lemma 5.6. Let k = o(n) and let ω be a word of length 2k over Σ satisfying that the corresponding
reduced word, ω′, is good. Let G be drawn from Gn,2d. The probability that ω corresponds to a closed

walk on G from vertex 1 to itself is at most (2k)4

(n−2k)2 + 1
n−2k . i.e.,

P (ω(1) = 1) ≤ (2k)4

(n− 2k)2
+

1

n− 2k
. (24)

Proof. The walk corresponding to ω in G is closed if and only if the walk corresponding to ω′ is
closed. Hence, let the reduced word ω′ = σ1σ2 . . . σs, σi ∈ Σ, have length s and let us consider a
walk as a sequence of random variables v0, v1, . . . , vs given by v0 = 1 and vi = σi(vi−1) for i ∈ [s].
We shall view this process as one in which every value σ(a) for σ ∈ Σ and a ∈ [n] is undecided at
the beginning. In each step, going from vi−1 to vi reveals the value of σi on vi−1 and σ−1

i on vi
but nothing else. A step from vi−1 to vi is called forced if σ(vi−1) has already been fixed by the
preceding steps. Otherwise, we say that the step is free. If a free step from vi−1 to vi coincides
with a previously visited vertex, i.e., if vi = vj , j < i, we call the step a coincidence.

The probability that a coincidence occurs at step i is at most i
n−i since the random choice of

the value σ(vi−1) ∈ [n] must take a value in {v0, . . . , vi−1} and at most i values of σ can have been
fixed before that choice. Thus, for distinct i, j ∈ [s], the probability that both step i and step j
are coincidences is less than s2/(n − s)2. Since there are less than s2 ways to choose the pair of
indices, i and j, the probability that two or more coincidences occur is less than s4/(n − s)2 by a
union bound.

Since ω′ is good, some coincidence must occur for the walk v0, v1, . . . , vs to be closed and return
to v0 = 1. We will bound the probability that exactly one coincidence occurs and that the walk
returns to its origin. Suppose that v0, . . . , vs is an instance of exactly such an outcome and suppose
that the step from vi−1 to vi is where the coincidence occurs. Then since ω′ is reduced, the walk
v0, . . . , vi−1 is a simple path, i.e., it is a path with no repeating vertices. Now, the coincidence at
step i turns the path into a cycle with a (possibly empty) tail. We must have vi = vj for some j < i
and then vj , vj+1, . . . , vi is a cycle while the tail consists of v0, . . . , vj−1. The only coincidence was
at step i, so all remaining steps are forced. This means that the walk will continue solely on already
traversed edges. Since the walk v0, . . . , vs is closed and ω′ is reduced, the only option for the walk
is to continue around the cycle t ∈ N0 times and then traverse back along the tail. Thus, the walk
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will have the form v0v1 . . . vj−1(vj . . . vi−1)t+1vjvj−1 . . . v0. Given that every move after the ith is
forced, this means that ω′ can be written as ω1ω

t
2ω
−1
1 where ω1 = σ1 . . . σj and ω2 = σj+1 . . . σi.

Note that ω2 cannot be the empty string because ω′ is reduced. Furthermore, σj+1 6= σ−1
i since

then step i would not be a free move. It follows that writing ω′ = ω1ω
t+1
2 ω−1

1 is the unique way
to write ω′ in that form with the length of ω1 maximised. Since ω′ is good, we furthermore have
t = 0. In order to conclude, we observe that the lengths of ω1 and ω2 were not dependent on G.
Their lengths were deduced merely based on the fact that exactly one coincidence occurred. Thus,
said coincidence must occur at step |ω1| + |ω2| and is a free move to the specific vertex vj . The
probability of this event is at most 1

n−s since at most s values of σi can have been fixed at that
point.

In conclusion, the probability that the walk returns to its origin is bounded by the sum of the
probability that more than one coincidence occurs and the probability that the walk is closed with
exactly one coincidence. Thus,

P (ω(1) = 1) ≤ (s)4

(n− s)2
+

1

n− s
≤ (2k)4

(n− 2k)2
+

1

n− 2k

as we set out to prove.

Combining the two lemmas with a union bound, we get the following corollary.

Corollary 5.7. The probability that a randomly chosen walk on G from a fixed starting vertex is
closed is less than 4k2 (2/d)

k
+ (2k)4/(n− 2k)2 + 1/(n− 2k).

We are now ready to prove the main result of the subsection.

Proof of Theorem 5.4. Let ε > 0 and set k =
⌊
2 logd/2 n

⌋
. The corollary above now states that the

probability that a random walk on G sampled from Gn,2d of length 2k returns to its origin is less
than C · log4 n/n2 + 1/(n−2k), for some constant C > 0 independent of n. By (23) and the remark
following it,

E [λ(G)] ≤ d ·
(
E
[
Tr(M2k)

]
− 1
) 1

2k

≤ d ·
(
n ·
(
C · log4 n

n2
+

1

n− 2k

)
− 1

) 1
2k

= d ·
(
C · log4 n

n
+

2k

n− 2k

) 1
2k

≤ d ·
(
C ′ · log4 n

n

) 1
2k

for some new constant, C ′ > 0, independent of n. Now, n−
1
2k → (d/2)−1/4 as n→∞, while

(C ′ · log4 n)
1
2k = e

O

(
log(C·log4 n)

logn

)
→ 1

as n → ∞. It follows that d ·
(
C ′ · log4 n/n

)1/(2k) → 4
√

2 · d3/4 as n → ∞, such that, indeed,

E [λ(G)] ≤ 4
√

2 · d3/4 · (1 + o(1)).
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Combining the result above with our concentration bound, we find that the spectral expansion
of a random graph is very unlikely to be significantly larger than O(d3/4).

Corollary 5.8. Let d ≥ 2 be given. There exists a constant N ∈ N such that for every n ≥ N , a
graph G drawn from the distribution Gn,2d satisfies

P
(
λ(G) ≤ (2 + γ)d3/4

)
≥ 1− 2 exp

(
−γ

2d1/2

32

)
.

Proof. This follows directly from Proposition 5.2 and Theorem 5.4 since for sufficiently large n,
E [λ(G)] ≤ 2d3/4.

6 Spectral Expanders from Cayley Graphs

Given a group (Γ, ·) one may define a graph structure on the group elements in the following way.

Definition 6.1. [Cayley Graph] Let Γ be a group and S ⊂ Γ be a symmetric subset of Γ, i.e.,
g−1 ∈ S whenever g ∈ S. The Cayley graph of Γ and S is denoted by Cay (Γ;S) = (V,E). It has
vertex set V = Γ and edge set E = {{g, gs} | g ∈ Γ, s ∈ S}.

In other words, Cay (Γ;S) is a graph on the elements of Γ satisfying that the neighbours of
any g ∈ Γ are exactly the group elements g · S. Cayley graphs are studied within many parts of
mathematics. In expander theory, they are of great interest since their algebraic nature allows us
to translate graph theoretic properties to group properties, which are often better understood.

In this section, we shall explore some very basic results and present a construction of a graph
with spectral expansion O(

√
d). The first subsection loosely follows Section 4.3 of a book by Krebs

and Shaheen [7] while the two last subsections are based on chapter 5 of lecture notes by Luca
Trevisan [12].

6.1 Negative Results

We start out by proving a negative result, showing that the construction of good expanders from
groups is not straight-forward. More specifically, we show that the expansion of d-regular Cayley
graphs of Abelian groups with n vertices is close to d when d is kept constant and n approaches
infinity. Our proof relies on the fact that the diameter of the Cayley graph of an Abelian group is
large, while the diameter of an expander graph is small. The following lemma provides a bound to
the effect of the latter.

Lemma 6.2. Let G be a connected d-regular graph on n vertices and h(G) be the Cheeger constant.
Then diam(G) ≤ 2 log n/ log (1 + h(G)/d).

Note: The denominator of the right hand side of the inequality is well-defined since the Cheeger
constant is strictly positive for connected graphs.

Proof. Let u, v ∈ V be vertices and denote by r1, r2 ∈ N the smallest integers satisfying that |Br1(v)|
and |Br2(u)| are both strictly larger than n/2. Focusing on v, note that B0(v) = 1 and for every
s < r1, Bs(v) ≤ n/2. Since every vertex of G has d neighbours and Bs+1(v) = Bs(v) ·∪ ∂Bs(v),

|Bs+1(v)| ≥ |Bs(v)|+ |∂Bs(v)|
d

≥ |Bs(v)| ·
(

1 +
h(G)

d

)
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for every s < r1. Thus, n ≥ |Br1(v)| ≥ (1 + h(G)/d)
r1 , implying r1 ≤ log n/ log (1 + h(G)/d). The

conclusion now follows, as dist(v, u) ≤ r1 + r2 and the choice of u and v was arbitrary.

Proposition 6.3. Let Γ be an Abelian group with |Γ| = n and S ⊂ Γ a symmetric subset with
|S| = d > 1. The spectral expansion of the Cayley graph Cay (Γ;S) is bounded by

|d− λ(Cay (Γ;S))| ≤ 2

(
exp

(
4 log n

n
1
d − e

)
− 1

)
.

Proof. Let g ∈ Γ be given and enumerate the elements of S as s1, . . . , sd. We shall bound the size of
the ball Br(g) in Cay (Γ;S). For every h ∈ Br(g) there exists a path of length t ≤ r from g to h in
Cay (Γ;S). Thus, we can write h · g−1 as a product of t elements of S, h · g−1 = a1a2 . . . at, ai ∈ S.

Now, as Γ is Abelian, we can write h·g−1 = sα1
1 . . . sαdd with

∑d
i=1 αi = t. Adding a dummy variable

α0 = r − t, we get
∑d
i=0 αi = r. It is well-known that the number of ways to express a positive

integer, r, as a sum of d + 1 non-negative integers is
(
r+d
d

)
. Thus, the number of such elements,

h ∈ Br(g), can at most be
(
r+d
d

)
. In conclusion, |Br(g)| ≤

(
r+d
d

)
≤ (e(r + d)/d)

d
, by an elementary

bound on the binomial coefficient.
Denote by D the diameter D = diam(Cay (Γ;S)) and by C the quantity C = 1 + h(Cay (Γ;S)).

We invoke Lemma 6.2 and the bound 2d > e, to find that

n = BD(g) ≤
(
e(D + d)

d

)d
≤

e
(

2 logn
logC + d

)
d

d

≤
(

4 log n

logC
+ e

)d
,

which implies 1 + h(Cay (Γ;S)) = C ≤ exp
(
4 log n/(n1/d − 2d)

)
. By the Cheeger inequality,

0 ≤ d− λ(Cay (Γ;S)) ≤ 2h(Cay (Γ;S)) ≤ 2

(
exp

(
4 log n

n
1
d − e

)
− 1

)
,

from which the conclusion follows.

In conclusion, for constant d > 1, it is not possible to have a family of spectral expander graphs
of increasing size, where each graph is a d-regular Cayley graph generated by an Abelian group.

Corollary 6.4. Fix an integer d > 1 and let (Gn)n∈ N be a family of d-regular Cayley graphs
satisfying |V (Gn)| → ∞ as n → ∞. If each Gn is the Cayley graph of an Abelian group, then
(Gn)n∈N is not a λ-spectral expander family for any λ < d.

Proof. This follows directly from the fact that by Proposition 6.3,

|d− λ(Gn)| ≤ exp

(
4 log |V (Gn)|
|V (Gn)|1/d − e

)
− 1→ 0,

as n→∞.
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6.2 Linear Characters and Eigenvalues of Cayley Graphs

Despite the negative result of the previous subsection, we shall nonetheless analyse the Eigenvalues
of Cayley graphs of Abelian groups. The theory we develop here shall serve in the construction of
spectral expander graph families of non-constant degree in the next subsection.

We first introduce the notion of a linear character of a group.

Definition 6.5. [Linear Character] Let Γ be a group. A linear character of Γ is a group homo-
morphism χ : Γ→ C from Γ into the multiplicative group of C.

We shall only be working with finite groups in this exposition. For finite groups, linear characters
have a particularly nice form.

Lemma 6.6. Let Γ be a finite group with n = |Γ|. For any g ∈ Γ and any linear character χ of Γ,
χ(g) is an nth root of unity.

Proof. This follows trivially by Lagrange’s theorem as χ(g)n = χ(gn) = 1.

One can consider linear characters of a finite group Γ to be elements of `2(Γ). In this light, we
get the following lemma.

Lemma 6.7. Let χ1, χ2 ∈ `2(Γ) be distinct linear characters of the finite group Γ. Then χ1 and
χ2 are orthogonal.

Proof. By assumption there exists g ∈ Γ such that χ1(g) 6= χ2(g). Now, the left action of multipli-
cation by g permutes Γ yielding

〈χ1, χ2〉 =
∑
a∈Γ

χ1(a)χ2(a)

=
∑
a∈Γ

χ1(g · a)χ2(g · a)

= χ1(g)χ2(g) ·
∑
a∈Γ

χ1(a)χ2(a)

= χ1(g)χ2(g) · 〈χ1, χ2〉 .

Since χ1(g) and χ2(g) are distinct roots of unity, χ1(g)χ2(g) 6= 1. Hence, 〈χ1, χ2〉 = 0.

Proposition 6.8. The number of distinct linear characters of a finite Abelian group, Γ, is |Γ|.

Proof. First, Γ can have at most |Γ| distinct linear characters since they are non-zero orthogonal
vectors of `2(Γ), a vector space of dimension |Γ|.

Second, note that the group (Zn,+) has n distinct linear characters, χ1, . . . , χn, given by
χm(k) = e2πi·mk/n for m ∈ [n]. Furthermore, suppose that the groups Γ1 and Γ2 have n1 and
n2 distinct linear characters χ1, . . . , χn1

and η1, . . . , ηn2
, respectively. Then Γ1 × Γ2 have the n1n2

distinct linear characters, {κi,j}i∈[n1],j∈[n2], given by κi,j((g, h)) = χi(g)ηj(h). It is easily veri-
fied that these are indeed distinct well-defined linear characters. The conclusion now follows by
the fundamental theorem of finite Abelian groups by which Γ can be written as a direct product
Γ = Zn1 × · · · × Znk of cyclic groups with

∏k
i=1 ni = |Γ|.
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The eigenvalues of the adjacency matrix of a Cayley graph of an Abelian group are very accu-
rately described by the linear characters of the group. This is the content of the following theorem.

Theorem 6.9. Let Γ be an Abelian group with |Γ| = n and let χ1, . . . , χn be the linear characters
of Γ. For any symmetric subset S ⊂ Γ, the eigenvalues of the adjacency matrix of Cay (Γ;S) are
given by λi =

∑
a∈S χi(a), i ∈ [n].

Proof. Let A be the adjacency matrix of Cay (Γ;S). Each χi is an eigenvector of A with corre-
sponding eigenvalue

∑
a∈S χi(a). To see this, observe that for every g ∈ Γ,

(Aχi)g =
∑
h∈g·S

χi(h) =
∑
h∈S

χi(g · h) = χi(g)
∑
h∈S

χi(h).

It follows that indeed Aχi =
(∑

h∈S χi(h)
)
· χi. This proves the theorem as the linear characters

of Γ form a basis for `2(Γ) by Lemma 6.7 and Proposition 6.8.

6.3 Non-Constant Degree Spectral Expanders

We are now ready for a construction of spectral expanders from Cayley graphs. We shall jump
right into it. Denote by Fp the finite field of order p.

Theorem 6.10. Let p be a prime, let t > 2 be an integer, let Γ be the group Γ = (Ftp,+), and let
S = {(a, ab, . . . , abt−1) ∈ Ftp | a, b ∈ Fp}. Then Cay (Γ;S) is a p2-regular graph with pt vertices and
spectral expansion (t− 1)p.

Proof. The following facts are immediate: S is a symmetric set with |S| = p2 and |Γ| = pt. So
Cay (Γ;S) is indeed a p2-regular graph on pt vertices.

Let A be the adjacency matrix of Cay (Γ;S). Each linear characters, χ, of (Ftp,+) is of the

form χ(x1, . . . , xt) = e
2iπ
p

∑t
k=1 xkck for some c1, . . . , ct ∈ [p]. To see this, one verifies that each such

function is indeed a linear character and that we have identified all pt linear characters since each
choice of c1, . . . , ct ∈ [p] yields a different linear character. By Theorem 6.9, the eigenvalue of A
corresponding to χ is then

λ =
∑
b∈[p]

∑
a∈[p]

e
2iπ
p

∑t
k=1 ckab

k−1

=
∑
b∈[p]

∑
a∈[p]

(
e

2iπ
p

∑t
k=1 ckb

k−1
)a

=
∑
b∈[p]

(
p ·

[
t∑

k=1

ckb
k−1 = 0

])
,

where the last equality follows since for every pth root of unity, ξ, the sum
∑
a∈[p] ξ

a is p if ξ = 1 and

0 otherwise. If some ck is non-zero then |λ| ≤ (t− 1)p since the polynomial P (b) =
∑t
k=1 ckb

k−1 is
of degree < t and thus has at most t− 1 roots. The only linear character of Ftp not satisfying this is
the trivial character, χ = 1. Thus, every eigenvalue of A except one has absolute value ≤ (t− 1)p.
The conclusion follows.

Setting t = 3 and d = p2, we get a d-regular graph G on n = p3 vertices with spectral expansion
(t − 1)p = 2

√
d. This is pretty close to being a Ramanujan graph! One problem, though, is that

the graph is not very sparse, something that is required for most applications of expanders. For
instance, the member search and average estimation applications of Section 3.3, which are very
typical of computer science applications of expander graphs, crucially rely on spectral expanders of
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constant or at least sub-polynomial degree to reduce the number of random bits used. In our case,
the degree of the graph is d = n2/3, which is very much not sub-polynomial. For some applications,
however, such graphs can still be useful. For instance, a recent paper co-authored by the author
(see [10]) crucially relies on graphs of high degree with strong spectral expansion. In such a case,
the above graph is perfect, since it is very easy to compute the neighbours of a vertex and to decide
whether a given pair of vertices are neighbours.

7 Constant Degree Expanders from the Zig-Zag Product

The zig-zag product construction of constant degree spectral expanders is another gem of expander
theory. For all but the most theoretical applications in computer science, expander graphs are
required to have an explicit, efficient description to be of use. By explicit and efficient, we mean
that given a vertex of the graph (represented in binary), we may find the neighbours of the vertex
in time polynomial in the size of the representation of the vertex. Before the paper of Reingold,
Vadhan, and Wigderson [11] that this section is based on, there were no combinatorial constructions
of spectral expander graphs satisfying this.

The construction of Reingold et al. start from an expander graph and recursively extend it
by taking a graph product called the zig-zag product. We shall first describe this product and
its properties. Then we describe the recursive construction of constant degree spectral expander
families.

7.1 The Zig-Zag Product

Essential to the zig-zag product is the idea of an enumeration or labelling of the edges adjacent to a
vertex of a graph. Let G = (V,E) be a d-regular graph. We may fix an enumeration of the incident
edges of the vertices of G as follows. For each vertex v ∈ V , enumerate the edges incident to it by
{e1
v, . . . , e

d
v} ⊂ E. Note that for any neighbour u ∈ V of v there are indices k, ` ∈ [d] with ekv = e`u.

In the following we shall be comparing the spectral expansion of regular graphs of different
degrees. Thus, the following “normalised” way of parameterising a graph will come in handy.

Definition 7.1. Leg G = (V,E) be a d-regular graph on n = |V | vertices. We say that G is an
(n, d, γ)-spectral expander graph whenever γ ≥ λ(G)/d.

With this definition in place, we are ready to define the zig-zag product of two graphs.

Definition 7.2. [Zig-Zag Product] Let G = (V1, E1) be a d1-regular graph on n vertices and let
H = ([d1], E2) be a d2-regular graph on d1 vertices. Fix an enumeration of the edges of G. Then
the zig-zag product of G and H, G z H, is a d2

2-regular graph on n · d1 vertices with vertex set
V1 × [d2] and edge set given as follows. The vertices (u, k), (v, `) ∈ V1 × [d1] are connected by an
edge if and only if there exists i, j ∈ [d1] such that

1. The vertices k and i are adjacent in H, i.e., (k, i) ∈ E2.

2. Edge i incident with u ∈ V1 is identical to edge j incident with v ∈ V1, i.e., eiu = ejv.

3. The vertices ` and j are adjacent in H, i.e., (`, j) ∈ E2.
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Remark 7.3. We shall call each vertex set of the form {u}× [d1] for u ∈ V1 a cloud of the zig-zag
product. In this manner, we consider G z H to consist of the graph G (the big graph)with a copy
of H sitting at each vertex. With this terminology, each edge of G z H is found by starting at a
vertex (u, k) of a cloud, taking a step in the cloud to (u, i), jumping across clouds in the big graph
to (v, j), and finally taking a step in the destination cloud, ending up at (v, `).

Remark 7.4. The adjacency matrix of G z H, which we denote by Z ∈ R(V1×[d1])×(V1×[d1]) may
be expressed as follows. Let P ∈ R(V1×[d1])×(V1×[d1]) be the permutation matrix satisfying that
P(u,k),(v,`) = 1 if and only if eku = e`v, and let B be the adjacency matrix of H. Denote by B̃ the

matrix In ⊗ B ∈ R(V1×[d1])×(V1×[d1]), the tensor product of the n × n identity matrix and B. The
matrix P corresponds to a step on G between clouds in the big graph, while B̃ corresponds to
taking a step on H within a cloud. Having defined this, we may express Z as Z = B̃P B̃.

Furthermore, we define the square of a graph.

Definition 7.5. [Square of Graph] Let G be a d-regular graph on n vertices. If A is the adjacency
matrix of G, then the square of G is the d2-regular graph G2 on n vertices with adjacency matrix
A2.

We shall construct expanders using these two graph operations. To that end, we prove the
following two statements.

Proposition 7.6. If G is an (n, d, γ)-spectral expander, then G2 is an (n, d2, γ2)-spectral expander.

Proof. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix A of G. Then
λ2

1, . . . , λ
2
n are the eigenvalues of A2 since A is real symmetric. It follows that λ(G2) = λ(G)2 and

since G2 is d2-regular, γ2 ≥ λ(G)2/d2 = λ(G2)/d2.

Theorem 7.7. If G = (V,E1) is an (n, d1, γ1)-spectral expander and H = ([d1], E2) is an (d1, d2, γ2)-
spectral expander. Then G z H is a (nd1, d

2
2, γ1 + γ2 + γ2

2)-spectral expander.

Proof. Initially, we note that G z H is indeed a d2
2-regular graph on nd1 vertices. Thus, all that

remains is the claim regarding the spectral expansion.
Let Z = B̃P B̃ be the adjacency matrix ofG z H as described in Remark 7.4. Let f ∈ `2(V×[d1])

be a vector of length ||f ||2 = 1 orthogonal to 1V×[d1]. We may decompose f as f = f ||+ f⊥, where

f || is given by f ||(u, i) = 1
d1

∑
k∈[d1] f(u, k). In other words, f || is constant on each cloud. Note

that now, f || ⊥ 1V×[d1] since
∑
u∈V,k∈[d1] f

||(u, k) =
∑
u∈V,k∈[d1] f(u, k) = 0. It follows that also

f⊥ ⊥ 1V×[d1].
Towards applying the min-max theorem (Lemma 2.9), we bound the inner product 〈Zf, f〉 by

|〈Zf, f〉| ≤
∣∣∣〈B̃P B̃f ||, f ||〉∣∣∣︸ ︷︷ ︸

T1

+2
∣∣∣〈B̃P B̃f ||, f⊥〉∣∣∣︸ ︷︷ ︸

T2

+
∣∣∣〈B̃P B̃f⊥, f⊥〉∣∣∣︸ ︷︷ ︸

T3

.

We bound each term individually.
First, since B̃f || = d2f

|| and because B̃ is symmetric,

T1 =
∣∣∣〈PB̃f ||, B̃f ||〉∣∣∣ = d2

2

∣∣∣〈Pf ||, f ||〉∣∣∣ .
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Let g ∈ `2(V ) be given by g(v) = f ||(v, i) for v ∈ V and i ∈ [d1] arbitrary. This definition is
independent of the choice of i because f || is constant on each cloud. Furthermore, we must have
g ⊥ 1V as f || ⊥ 1V×[d1]. Denoting by A the adjacency matrix of G, it holds that 〈Ag, g〉 =〈
Pf ||, f ||

〉
. Thus, T1 ≤ d2

2(γ1d1) ||g||22 = γ1d
2
2

∣∣∣∣f ||∣∣∣∣2
2
.

Second, we may write T2 = d2

∣∣∣〈Pf ||, B̃f⊥〉∣∣∣. Then, as P is a permutation,

T2 ≤ d2

∣∣∣∣∣∣Pf ||∣∣∣∣∣∣
2
·
∣∣∣∣∣∣B̃f⊥∣∣∣∣∣∣

2
= d2

∣∣∣∣∣∣f ||∣∣∣∣∣∣
2
·
∣∣∣∣∣∣B̃f⊥∣∣∣∣∣∣

2
.

Now, as on each cloud, f⊥ �{u}×[d1] is orthogonal to 1{u}×[d1] and B̃ = In ⊗B, we may consider B
to be an operator on `2({u} × [d1]) for each u ∈ V so that∣∣∣∣∣∣B̃f⊥∣∣∣∣∣∣

2
=

√∑
u∈V

∣∣∣∣Bf⊥ �{u}×[d1]

∣∣∣∣2
2
≤
√∑
u∈V

d2
2γ

2
2

∣∣∣∣f⊥ �{u}×[d1]

∣∣∣∣2
2

= d2γ2

∣∣∣∣f⊥∣∣∣∣
2
.

Thus, T2 ≤ d2
2γ2

∣∣∣∣f ||∣∣∣∣
2
·
∣∣∣∣f⊥∣∣∣∣

2
.

Third, we find that T3 ≤
∣∣∣∣∣∣B̃f⊥∣∣∣∣∣∣2

2
≤ d2

2γ
2
2

∣∣∣∣f⊥∣∣∣∣2
2
.

Combining these three bounds and noting that
∣∣∣∣f⊥∣∣∣∣2

2
+
∣∣∣∣f ||∣∣∣∣2

2
= 1, we conclude that

|〈Zf, f〉| ≤ d2
2

(
γ1

∣∣∣∣∣∣f ||∣∣∣∣∣∣2
2

+ 2γ2

∣∣∣∣∣∣f ||∣∣∣∣∣∣
2
·
∣∣∣∣f⊥∣∣∣∣

2
+ γ2

2

∣∣∣∣f⊥∣∣∣∣2
2

)
≤ d2

2(γ1 + γ2 + γ2
2). (25)

Thus, λ(G z H) ≤ d2
2(γ1 + γ2 + γ2

2), from which the conclusion follows.

7.2 Expander Construction

Having established the above properties, we proceed to construct constant degree expanders. The
construction requires an instantiation using a (d4, d, γ)-spectral expander for some d > 1 and
γ ≤ 1/8. Such an expander may either be found using an exhaustive search on d-regular graphs on
d4 vertices or using the construction of Section 6.3.

Theorem 7.8. Let H be a (d4, d, γ)-spectral expander for some d > 1 and γ ≤ 1/8. Recursively
define a series of graphs G1 = H2 and for n ≥ 1,

Gn+1 = (Gn)2 z H. (26)

Then for every n ∈ N, Gn is a (d4n, d2, γ + 3γ2)-spectral.expander

Proof. We proceed by induction on n. The claim is clearly true for n = 1. Now, suppose it is true
for some n ∈ N. Then (Gn)2 is a (d4n, d4, (γ + 3γ2)2)-spectral expander by Proposition 7.6. It
follows now by Theorem 7.7 that Gn+1 is a (d4n, d2, (γ + 3γ2)2 + γ + γ2)-spectral expander. Since
γ ≤ 1/8,

(γ + 3γ2)2 + γ + γ2 = γ + 2γ2 + 6γ3 + 9γ4 ≤ γ + 3γ2, (27)

and the conclusion follows.
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It is worth noting that suppose we enumerate the edges of the d-regular graph H = (V,E)
and there is an efficient algorithm to determine given v ∈ V and i ∈ [d], u ∈ V and j ∈ [d]
with u 6= v such that eju = eiv. In other words, an efficient algorithm to walk on the graph and
know the enumeration of the edges. It is then possible to construct an algorithm to efficiently
walk on G1 = H2 and G2 = G2

1 z H. Recursively, one may construct such an algorithm for
any Gn using θ(rn) steps, where r is the number of steps the original algorithm would take to
find u and j. Thus, the zig-zag product construction satisfies the initially mention requirement of
being efficiently computable. The enumeration is fairly straightforward when using for instance the
expander of Section 6.3.
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