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Abstract

In this thesis we study finitely-generated groups as geometric objects, where the
distance between points is defined by some word-length measured on the Cayley
graph of the group. We establish connections between analytic properties of groups
(amenability, Kazhdan’s property (T) and Haagerup’s property (H)) and large-scale
(coarse) geometry properties of certain families of graphs (the so-called box spaces)
constructed inside the group. We also introduce and study expander graphs, which are
highly connected finite graphs that play an important role in computer science and pure
mathematics. While existence of expanders follows from probabilistic arguments, ex-
plicit constructions require deep mathematical arguments. We prove Margulis’ result
that box spaces of residually finite property (T) groups, such as SL3(Z), are expanders.

Resumé

I dette speciale studerer vi geometrien af endeligt frembragte grupper. Vi definerer
afstanden mellem punkter ved længden af ord i den tilhørende Cayleygraf. Vi etable-
rer forbindelser mellem analytiske egenskaber for grupper (amenabilitet, Kazhdan’s
(T) og Haagerup’s (H)) og geometrien af familier af grafer, kaldet box-spaces. Vi vil
også introducere expander-grafer, som spiller en stor rolle i datalogi såvel som i ren
matematik. Eksistensen af sådanne grafer følger fra probabilistiske argumenter, men
en eksplicit konstruktion kræver dybe matematiske argumenter. Vi beviser Margulis’
resultat, der siger, at box-spaces af residually finite grupper med Kazhdan’s (T), såsom
SL3(Z), er expander-grafer.
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Introduction

The study of infinite finitely-generated groups as geometric objects has become an impor-
tant and very active research topic due to the fundamental work of Gromov in the 80’s. By
now there is lot of fruitful interaction between group theory, operator algebras and other
fields of mathematics, including number theory, combinatorics and graph theory.

A finitely generated group can be viewed as a metric space, where the distance between
points is defined by some “word-length” measured on a certain graph, namely the Cayley
graph, associated to the group.

The overall theme of this thesis is to give a comprehensive introduction to the funda-
mental ideas of large scale (or coarse) geometry, and use them to establish connections
between analytic properties of groups (including amenability, Kazhdan’s property (T) and
Haagerup’s property (H), or a-T-menability, in Gromov’s terminology) and coarse geometry
properties of certain families of graphs constructed inside the group. More precisely, these
are the so-called box spaces of the given finitely-generated group. (If Γ is such a group and
S is a finite (symmetric) generating set, the box space of Γ with respect to a sequence of
finite index normal subgroups having trivial intersection is the coarse disjoint union of the
Cayley graphs associated to the corresponding quotients in Γ.)

In particular, we will prove the following results for an infinite finitely-generated resid-
ually finite group Γ: Amenability of Γ is equivalent to box spaces having property (A), a
coarse geometry invariant introduced by G. Yu. Respectively, if the box space of Γ coarsely
embeds into a Hilbert space, then Γ has property (H). (The converse is not true.)

We also introduce and discuss a special class of graphs, namely expander graphs, which
are highly connected finite graphs that have already played an important role in computer
science (as basic building blocks for various networks and in computation theory), and in
recent years have provided a lot of applications in pure mathematics.

Following Bollobás, we will show that random d-regular graphs are expanders. (This is
a result originally due to Pinsker, 1972.) However, providing explicit constructions requires
deep mathematical theories. Building on seminal work of Kazhdan, Margulis gave in 1973
the first explicit examples of expanders, namely, box spaces of residually finite property (T)
groups, such as SL3(Z). We will prove this result, following ideas of Alon and Milman.

We also discuss briefly a weaker analytical property of Γ ensuring that the associated
box spaces form an expander family. This is property (τ) of Lubotzky and Zimmer. This
approach gave rise to further concrete examples of expanders, due to Bourgain-Gamburd
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viii Introduction

and Sarnak-Lubotzky-Phillips, using intricate number theory. We should also mention the
remarkable recent developments concerning approximate groups, introduced by Tao, and
their applications to expanders, including results of Breuillard, Green and Tao, using meth-
ods from additive combinatorics.

The thesis is organized as follows:
In Chapter 1, we consider metric spaces, for which we develop the notion of large

scale (coarse) geometry. We then introduce and discuss a coarsely invariant property, called
property (A). Last, we investigate how property (A) of a metric space relates to coarse
embeddings into Hilbert spaces.

In Chapter 2, we introduce graphs, and in particular we give the definition of expander
graphs. We then show results concerning expansion properties of graphs. Along the way,
we show that expander families do not coarsely embed into any Hilbert space, and conclude
that they do not posses property (A), either. We end the chapter by showing that almost
every d-regular graph, d ≥ 3, on n vertices is an expander, as n tends to infinity.

In Chapter 3, we introduce Cayley graphs, which will give us a way to view groups as
graphs. Also, it provides us with a natural way of considering growth of groups, which we
relate to amenability in Chapter 4. To study analytic properties of groups in Chapter 4, we
make use of unitary representation and cocycles, which we introduce here.

In Chapter 4, we introduce analytic properties of groups. We start with the notion of
amenability. By weakening the conditions of amenability, we introduce Haagerup’s prop-
erty (H). We then introduce Kazhdan’s property (T), which, as we shall see, in some sense is
the opposite to amenability and property (H). We give various examples and results relating
these properties to one another.

In Chapter 5, we introduce box spaces of residually finite groups. This construction
provides us with interesting examples of metric spaces with and without property (A). We
then investigate the connection between analytic properties of the group and large scale
geometric properties of the box spaces.

Each chapter ends with a section called Literature, containing the primary source of
literature used for the chapter.

My interest for the topics in this thesis was first developed in a course on approximation
properties for groups and C∗-algebras. Here I was exposed, for the first time, to concepts
such as property (T) and property (H). When my supervisor, Magdalena Musat, suggested
that I did a thesis on expanders, I was intrigued. I did not know much about graph theory,
but the connection between deep group theoretic results and computer science seemed sur-
prising and interesting. At first, it was my intention to discuss this relationship in the thesis.
However, as the thesis evolved, the main focus shifted from expander graphs to geometric
and analytic properties of groups.

Before I started writing the thesis, I participated in a Masterclass titled “Expanders and
rigidity of groups actions” held in Copenhagen (May 2016). Among the speakers were both
Lubotzky and Osajda. This was my first meeting with expanders and coarse geometry, and I
liked it! In the Summer 2016, I participated in the conference “YMC∗A” in Münster. Here
Willett was a main speaker, and since I now was familiar with the concepts, the lectures
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gave fruitful insights into the world of coarse geometry and expanders.
Regarding the available literature on the topics herein, I greatly appreciated Khukhro’s

well-written PhD-thesis [15]. Also Willett’s notes on property (A) [25] have been of great
help. The book ’Large Scale Geometry’ by Yu and Nowak [19] was a good introduction to
the topic of large scale geometry. Also the notes by Hoory, Linial and Wigderson [12] were
very interesting, as they established a connection between computer science and expander
graphs.
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Chapter 1

Metric spaces and coarse geometry

In this chapter we introduce the most basic facts of metric spaces and coarse geometry. We
then investigate a metric property, called property (A), introduced by Guoliang Yu in [26].
Last we show a result connecting property (A) and coarse embeddings.

1.1 Metric spaces

Definition 1.1.1. A (non-empty) set X equipped with a map dX : X ×X → R satisfying
the following properties

(i) dX(x, y) ≥ 0, dX(x, y) = 0⇔ x = y,

(ii) dX(x, y) = dX(y, x),

(iii) dX(x, z) ≤ dX(x, y) + dX(y, z),

is called a metric space and is denoted by the pair (X, dX).

For ease of notation, we will sometimes denote the metric space (X, dX) just by X
and the map dX by d. We define the open ball of radius r > 0 centered at x ∈ X as
B(x, r) := {y ∈ X | d(x, y) < r}.

Definition 1.1.2. For a metric space X , we say that X is

• uniformly discrete, if there exists ε > 0 such that d(x, y) ≥ ε for all x 6= y ∈ X .

• locally finite, ifX is uniformly discrete, and for all x ∈ X and r ≥ 0, the ballB(x, r)
is finite, i.e., |B(x, r)| <∞.

• bounded, if X is locally finite, and for all r ≥ 0, there exists n ∈ N such that
|B(x, r)| ≤ n, for all x ∈ X .

We define the diameter of a metric space (or of a subspace) to be the greatest distance
between any two points, that is, diam(X) = sup{d(x, y) | x, y ∈ X}.

1



2 Chapter 1. Metric spaces and coarse geometry

Definition 1.1.3. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y satisfying

dX(x, y) = dY (f(x), f(y)),

for all x, y ∈ X , is called an isometry.

1.2 Coarse geometry

We now introduce the notion of coarse geometry. The idea behind coarse geometry is,
roughly speaking, to study geometric objects from far away. When geometric objects are
viewed at a great distance, all the small differences will disappear. Thus coarse geometry
is in some sense the opposite of a topological study of a space. For instance, if we consider
the integers, they look like the real numbers from a great distance. See Figure 1.1 for an
illustration of this.

Figure 1.1: The integers Z viewed from increasing distance.

We start with a little bit of notation. Let X be a set, and let E ⊆ X ×X be a subset. The
inverse of E is defined as

E−1 := {(y, x) ∈ X ×X | (x, y) ∈ E}.

If F ⊆ X ×X is another subset, we define the product E ◦ F of E and F by

E ◦ F := {(x, y) ∈ X ×X | ∃z ∈ X : (x, z) ∈ E and (z, y) ∈ F}

Definition 1.2.1. A coarse structure on a setX is a collection E of subsets ofX×X , which
contains the diagonal and is closed under the formation of subsets, inverses, products and
finite unions. A set equipped with a coarse structure is called a coarse space.

Notice that E is also closed under intersections, since it is closed under taking subsets.
We will illustrate this definition with a few examples.

Example 1.2.2. Let X be a set. The maximal coarse structure E on X is the collection of
all subsets of X ×X .

Example 1.2.3. Let X be a metric space. Let E be the collection of all subsets of X ×X
such that sup{d(x, y)|x, y ∈ E} <∞. It is quite easy to see that E satisfies the conditions
of the definition, but for good measure we will check this. First note that d(x, x) = 0 <∞,
which means that E contains the diagonal. Let E ∈ E be some element in E . For any
E′ ⊆ E, we have that

sup
(x,y)∈E′

{d(x, y)} ≤ sup
(x,y)∈E

{d(x, y)} <∞,
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which shows that E′ ∈ E so that E is closed under taking subsets. Since d(x, y) = d(y, x),
for all x, y ∈ E , we see that E is closed under inverses. That E is closed under products
follows from the triangle inequality. To see that E is closed under finite unions, letE1, E2 ∈
E . We have

sup
(x,y)∈E1∪E2

{d(x, y)} ≤ sup
(x,y)∈E1

{d(x, y)}+ sup
(x,y)∈E2

{d(x, y)},

which is finite, and thus E1 ∪ E2 ∈ E . Hence any finite union
⋃n
i=1Ei = E ∈ E .

Example 1.2.4. Let X be a metric space and let E be the collection of all those subsets
E ⊆ X×X such that, for all ε > 0, there exists a compact setK ⊆ X such that d(x, y) < ε
whenever (x, y) ∈ E \K ×K. Clearly E satisfies the condition in the definition of being a
coarse structure. This coarse structure is called the C0 coarse structure on X .

Example 1.2.5. Let X be a set, and let E be the collection of all those subsets of X × X
containing finitely many points off the diagonal. This coarse structure is called the discrete
coarse structure.

Let E and E ′ be two coarse structures on a set X . If E ⊆ E ′, we say that E is finer than
E ′, or, equivalently, that E ′ is coarser than E . Notice that this notion is very similar to the
notion of topologies on a set being finer or coarser, except that the inclusion is reversed,
i.e., a coarse structure is finer if it is contained in a ‘coarser’ coarse structure. As with
topologies, we want to have a notion of a generating set for a coarse structure. The following
proposition will justify this notion.

Proposition 1.2.6. Let S be a family of subsets ofX×X . Then there exists a unique coarse
structure E on X such that E contains S and is finer than all other coarse structures on X
containing S. Such a coarse structure is said to be generated by S.

Proof. Let {Ei}i∈I be a collection of coarse structures on a set X containing S. Notice that
this collection is non-empty since the maximal coarse structure always contains S. Thus
E =

⋂
i∈I Ei is a coarse structure satisfying the properties.

We will now look at coarse maps between metric spaces.

Definition 1.2.7. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is called

• bornologous if for each pair of points x, x′ ∈ X and all R > 0, there exists S > 0
such that dX(x, x′) < R implies dY (f(x), f(x′)) < S.

• proper if for each pair of points x, x′ ∈ X and all R > 0, there exists S > 0 such
that dY (f(x), f(x′)) < R implies that dX(x, x′) < S.

If f satisfies both conditions, it is called a coarse map.

Two coarse maps f, g : X → Y are said to be close if there exists n ∈ N such that
dY (f(x), g(x)) < n, for all x ∈ X . This leads us to the definition of coarse equivalence.
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Definition 1.2.8. Two metric spaces (X, dX) and (Y, dY ) are said to be coarsely equivalent,
if there exist coarse maps f : X → Y and g : Y → X such that f ◦ g and g ◦ f are close to
the identities on Y and X , respectively.

We will now introduce the notion of coarse embeddings, which is very similar to the
notion of coarse maps.

Definition 1.2.9. A map f : (X, dX)→ (Y, dY ) between two metric spaces satisfying

• for allR > 0, there exists S > 0 such that whenever x, x′ ∈ X satisfy dX(x, x′) < R
then dY (f(x), f(x′)) < S,

• for all R > 0, there exists S > 0 such that for all x, x′ ∈ X with dY (f(x), f(x′)) <
S we have dX(x, x′) < R,

is called a coarse embedding.

At first glance the two definitions seems identical. However they do differ at one point,
namely the second condition of a coarse embedding is a uniform condition. In particular
any coarse embedding is a coarse map. Notice that a coarse embedding is in some sense a
large scale inclusion. We now give an equivalent description of coarse embeddings.

Proposition 1.2.10. A map f : (X, dX) → (Y, dY ) is a coarse embedding if and only if
there exist non-decreasing functions ρ± : R+ → R+ with limn→∞ ρ−(n) =∞, satisfying

ρ−(dX(x, x′)) ≤ dY (f(x), f(x′)) ≤ ρ+(dX(x, x′)), (1.1)

for all x, x′ ∈ X .

Proof. Suppose that f : X → Y is a coarse embedding. For each R ≥ 0 we define

ρ−(R) = inf{dY (f(x), f(x′)) | dX(x, x′) ≥ R},
ρ+(R) = sup{dY (f(x), f(x′)) | dX(x, x′) ≤ R}.

Then both maps are non-decreasing, since the sets we take infimum over become smaller
and the sets we take supremum over become larger, as R grows. To see that (1.1) hold, we
note that for any R > 0 satisfying dX(x, x′) = R, we have

ρ−(dX(x, x′)) = inf{dY (f(x), f(x′)) | dX(x, x′) ≥ R} ≤ dY (f(x), f(x′)),

and

dY (f(x), f(x′)) ≤ sup{dY (f(x), f(x′)) | dX(x, x′) ≤ R} = ρ+(dX(x, x′)).

To see that ρ−(R) → ∞ as R → ∞, we note that if x, x′ ∈ X satisfy dX(x, x′) ≥ R
for some R, then there exists S > 0 such that dY (f(x), f(x′)) > S. Using that ρ− is
non-decreasing, we conclude that ρ−(R)→∞, as wanted.
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Assume now that there exist two maps ρ± satisfying the above conditions. To see that
f satisfies the first condition, let R > 0 be given and assume that dX(x, x′) < R. By
assumption, dY (f(x), f(x′)) ≤ ρ+(dX(x, x′)), so letting S = ρ+(dX(x, x′)) + 1 shows
that dY (f(x), f(x′)) < S. The other condition follows similarly.

We end this section by introducing the notion of coarse disjoint unions of metric spaces.

Definition 1.2.11. Let {(Xi, di)}i≥1 be a sequence of finite metric spaces. The coarse
disjoint unionX =

⊔
Xi is turned into a metric space by defining a metric d onX satisfying

• d restricted to Xi coincides with di, for all i ≥ 1,

• d(xi, xj) ≥ max{diam(Xi),diam(Xj)}, for xi ∈ Xi, xj ∈ Xj and i 6= j.

We can picture a coarse disjoint union of finite metric spaces as a sequence of disjoint
metric spaces of increasing distance, displayed on a string passing through one element
xi ∈ Xi for each i ≥ 1.

1.3 Property (A)

We are now ready to introduce property (A). It was first introduced by G. Yu in [26] and it
turns out to be a large scale invariant property. We will make this more precise throughout
this section, but let us start by defining property (A).

Definition 1.3.1. A discrete metric space X is said to have property (A) if for all R, ε > 0,
there exists a family {Ax}x∈X of non-empty, finite subsets of X × N such that for every
x, y ∈ X , the following conditions hold

1. |Ax⊕Ay ||Ax∩Ay | < ε, whenever d(x, y) ≤ R,

2. there exists S > 0 such that Ax ⊆ B(x, S)× N,

whereA⊕B denotes the symmetric difference ofA andB, i.e.,A⊕B = (A\B)∪(B\A)†.

As we shall see, the first condition mimics the notion of amenability of a group. This
is by no means a coincidence, since property (A) is a somewhat weaker condition than
amenability. At first glance this comparison does not make sense since amenability is a
property for groups and property (A) is a property for metric spaces. However, as we shall
see later, it is possible to look at groups from a geometric point of view, and then it becomes
a natural question to ask, if the geometric structure of amenable groups have property (A).
However, before we can show this, we need to investigate property (A). We warm up by
showing a (almost) trivial fact regarding property (A).

†The reason for choosing this notation instead of the more commonly used A4B is twofold: We reserve
the symbol 4 for the Laplace operator. The other reason is that two sets A,B ⊆ X of some universal set
X can be viewed in terms of their power sets, i.e., P(A),P(B) ⊆ P(X). Now power sets can be viewed
algebraically as (Z/2Z)|X|, and then the symmetric difference is exactly the direct sum.
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Example 1.3.2. Any finite metric space has property (A).

Proof. Let (X, d) be a finite metric space. Set Ax = X × {1}, for all x ∈ X . Then, for all
ε,R > 0 and d(x, y) ≤ R, we have

|Ax ⊕Ay|
|Ax ∩Ay|

=
0

|X|
= 0 < ε,

and by choosing S ≥ |X| we are done.

We now show that property (A) is a large scale invariant, i.e., that property (A) is in-
variant under coarse equivalence.

Proposition 1.3.3. Property (A) is invariant under coarse equivalence.

Proof. Let (X, dX) and (Y, dY ) be coarsely equivalent metric spaces, i.e., there exist coarse
maps f : X → Y and g : Y → X satisfying the conditions. Assume that X has property
(A), and letR, ε > 0 be given. We wish to exhibit a family of finite sets {By}y∈Y ⊆ Y ×N
such that the conditions of property (A) are satisfied. By assumption g is bornologous,
so there exists R′ > 0 such that if dY (y, y′) < R, then dX(g(y), g(y′)) < R′. Let now
{Ax}x∈X ⊆ X × N be a family of subsets satisfying the definition of property (A) for
R′, ε > 0 and some S > 0. For fixed y0 ∈ Y , we define for each y ∈ Y

My0 := {(f−1(y)× N) ∩Ag(y0)} ⊆ X × N

and
Ny0 := {y ∈ Y | (f−1(y)× N) ∈ Ag(y0)} ⊆ Y.

Notice that⋃
y∈Y

My0 =
⋃
y∈Y
{(f−1(y)× N) ∩Ag(y0)} = {(

⋃
y∈Y

f−1(y)× N) ∩Ag(y0)} = Ag(y0).

Let ny0 = |My0 | and define

By0 :=
⋃

y∈Ny0

{(y, 1), (y, 2), . . . , (y, ny0)} =
⋃
y∈Y
{(y, 1), (y, 2), . . . , (y, ny0)},

and notice that that |By0 | = |Ag(y0)|. This allows us to construct a family of finite sets
{By}y∈Y , which will be our candidate. To show this, we see that for y, y′ ∈ Y we have

|By ∩By′ | ≥ |Ag(y) ∩Ag(y′)|,

which implies that

|Ag(y) ⊕Ag(y′)| = |Ag(y)|+ |Ag(y′)| − 2|Ag(y) ∩Ag(y′)|
= |By|+ |By′ | − 2|Ag(y) ∩Ag(y′)|
≤ |By|+By′ | − 2|By ∩By′ |
= |By ⊕By′ |.
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Thus, if dY (y, y′) < R, then dX(g(y), g(y′)) < R′ and we get from our assumption that

|By ⊕By′ |
|By ∩By′ |

≤
|Ag(y) ⊕Ag(y′)|
|Ag(y) ∩Ag(y′)|

< ε,

which proves the first condition of property (A). To prove that {By}y∈Y satisfy the other
condition, let (y′, n) ∈ By. Then (f−1(y′) × N) ∩ Ag(y) 6= ∅, which means we can pick
(x,m) in this set. Since the sets {Ax}x∈X satisfy property (A) by assumption, we get that
d(g(y), x) ≤ S. Using that f is bornologous, we get d(fg(y), y′) ≤ S′, for some S′ > 0.
Now we use that f ◦ g is close to the identity, which implies that there exists S′′ > 0
such that d(y, y′) ≤ S′′. This shows that the sets {By}y∈Y satisfy the second condition of
property (A).

We will now show a result called the Higson-Roe condition. To do this, we will need a
few lemmas.

Lemma 1.3.4. For any finite sets A and B, we have

||A| − |B|| ≤ |A⊕B|.

Proof. Since A and B are finite, we may assume that |A| = n and |B| = m with n ≥ m.
This implies that |A ∩B| ≤ |B| = m, and we see that

|A⊕B| = |A|+ |B| − 2|A ∩B| ≥ n+m− 2m = n−m = ||A| − |B||.

Lemma 1.3.5. Let X be a metric space with property (A). Let R, ε > 0 be given, and let
{Ax}x∈X be a family of sets satisfying the conditions of property (A), for some S > 0. Then
for all x, y ∈ X with d(x, y) ≤ R, the following hold:

• 1 ≤ |Ax|
|Ax∩Ay | < 1 + ε,

• 1
1+ε <

|Ax|
|Ay | < 1 + ε.

Proof. It is clear that for any two sets A and B we have A \B ⊆ A⊕B. Let d(x, y) ≤ R,
then by property (A), we get

|Ax \Ay| ≤ |Ax ⊕Ay| < ε|Ax ∩Ay|,

and thus

|Ax ∩Ay|
|Ax ∩Ay|

≤ |Ax|
|Ax ∩Ay|

=
|Ax \Ay|+ |Ax ∩Ay|

|Ax ∩Ay|
<
ε|Ax ∩Ay|+ |Ax ∩Ay|

|Ax ∩Ay|
= ε+ 1,

which shows the first condition. Clearly this also hold for Ay, and thus combining the two
we get the second condition.
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In words, this lemma tells us that property (A) ensures that the cardinality of any two
sets Ax and Ay from the given family are almost equal when x and y are close. We are now
able to give an equivalent characterization of property (A).

Proposition 1.3.6. The first condition in Definition 1.3.1 can be replaced by

|Ax ⊕Ay|
|Ax|

< ε.

Proof. To see this, assume first that X is a metric space with property (A). Let ε,R > 0 be
given, and let {Ax}x∈X be a family of sets satisfying the conditions of property (A). Then
we see that

|Ax ⊕Ay|
|Ax|

=
|Ax ⊕Ay|
|Ax ∩Ay|

· |Ax ∩Ay|
|Ax|

< ε,

where we have used that
|Ax ∩Ay|
|Ax|

≤ 1.

Now assume that {Ax}x∈X is a family of finite sets satisfying property (A) with condition
(1) replaced by |Ax⊕Ay ||Ax| < ε for some given ε > 0. Then by the previous lemma we get

|Ax ⊕Ay|
|Ax ∩Ay|

=
|Ax ⊕Ay|
|Ax|

· |Ax|
|Ax ∩Ay|

≤ |Ax ⊕Ay|
|Ax|

· 1

1 + ε
<

ε

1 + ε
< ε.

We are now almost ready to show the Higson-Roe condition. Given a discrete set X ,
we define for 1 ≤ p <∞ the following spaces

`p(X) :=

f : X → C
∣∣ ‖f‖p =

(∑
x∈X
|f(x)|p

)1/p

<∞

 .

Further, we denote by `p(X)1,+ the set of positive functions in `1(X) with norm 1. That is,

`p(X)1,+ := {f ∈ `1(X) | ‖f‖p = 1, and f ≥ 0}.

Lemma 1.3.7. Let f ∈ `1(X)1,+ be finitely supported and let ε > 0 be given. Then there
exists n ∈ N and f̃ ∈ `1(X)1,+ such that f̃ : X → {0, 1

n ,
2
n , . . . ,

n−1
n , 1} and ‖f−f̃‖1 < ε.

Proof. Let A ⊆ X be the finite subset where f is non-zero, and let ε > 0 be given. Since
A is finite, we can enumerate its elements as x1, x2, . . . , xk. For each xi ∈ A we can find
ni ∈ N such that

|f(xi)−
mi

ni
| < ε

k
, |f(xi)−

mi + 1

ni
| < ε

k
,

for some mi ∈ {0, 1, . . . , ni}. Note that this also holds for all n ≥ ni by choosing mi

accordingly bigger. Now we choose n = max{n1, n2, . . . , nk} and define f̃(xi) = mi
n .

This leads to

‖f − f̃‖ =

k∑
i=1

|f(xi)− f̃(xi)| <
k∑
i=1

ε

k
= ε.
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Theorem 1.3.8. Let X be a uniformly discrete metric space with bounded geometry. Then
X has property (A) if and only if for all R, ε > 0, there exist a map ξ : X → `1(X)1,+ and
a number S > 0 such that

• ‖ξx − ξy‖ < ε when d(x, y) ≤ R,

• supp(ξx) ⊆ B(x, S).

Proof. Assume first that X has property (A). Let R, ε > 0 be given, and let {Ax}x∈X be a
family of sets satisfying the definition of property (A) for some S > 0. For fixed z ∈ X ,
let Azx := Ax ∩ ({z}×N), so that Azx is the vertical section of Ax at z. For each x ∈ X we
define ξx ∈ `1(X)1,+ by

ξx(z) =
|Azx|
|Ax|

.

To see that ξx in fact lies in `1(X)1,+, we start by noting that ξx ≥ 0 and that the support is
contained in B(x, S), since, by assumption, each Ax is. Furthermore we see that

‖ξx‖ =
∑
z∈X

ξx(z) =
∑
z∈X

|Azx|
|Ax|

= 1.

Thus it only remains to show that ‖ξx − ξy‖ < ε. To this end we observe that

‖(|Ax|ξx)− (|Ay|ξy)‖ =
∑
z∈X
|(|Ax|ξx(z))− |Ay|ξy(z)|

=
∑
z∈X
||Azx| − |Azy||

≤
∑
z∈X
|Azx ⊕Azy|

= |Ax ⊕Ay|,

where we have used Lemma 1.3.4 for the inequality. Thus we see that∥∥∥∥ξx − |Ay||Ax|ξy
∥∥∥∥ ≤ |Ax ⊕Ay||Ax|

≤ |Ax ⊕Ay|
|Ax ∩Ay|

,

which leads to

‖ξx − ξy‖ =

∥∥∥∥ξx − |Ay||Ax|ξy +
|Ay|
|Ax|

ξy − ξy
∥∥∥∥

≤
∥∥∥∥ξx − |Ay||Ax|ξy

∥∥∥∥+

∥∥∥∥ |Ay||Ax|ξy − ξy
∥∥∥∥

≤ |Ax ⊕Ay|
|Ax ∩Ay|

+

∣∣∣∣ |Ay||Ax| − 1

∣∣∣∣ ‖ξy‖ ≤ 2ε,
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where we in the last inequality have used Lemma 1.3.5.
To show the other direction, let R, ε > 0 be given, and assume that there exists a function
ξ : X → `1(X)1,+ satisfying the conditions. By Lemma 1.3.7 we can replace each ξx by
some function ξ̃x ∈ `1(X)1,+ such that ξ̃x : X → {0, 1

n , . . . ,
n−1
n , 1} and ‖ξx − ξ̃x‖ < ε.

We have to show that n is independent of x in order to get a uniform bound. Recall that
supp(ξx) ⊆ B(x, S), for some fixed S. Thus we have that | supp(ξx)| ≤ |B(x, S)|, and
sinceX has bounded geometry, there existsm ∈ N such that |B(x, S)| ≤ m, for all x ∈ X .
Thus we can choose some uniform N ∈ N only depending on ε. We can now define the
sets Ax by

Ax = {(z, i) ∈ X × N | ξx(z) ≥ i

N
}.

For each x ∈ X we see that Ax ⊆ B(x, S)× N and |Ax| = N <∞. Notice now that

‖ξ̃x − ξ̃y‖ =
∑
z∈X

∣∣∣∣kzN − lz
N

∣∣∣∣ =
1

N

∑
z∈X
|kz − lz| =

1

N
|Ax ⊕Ay|,

where kz, lz ∈ {0, 1, . . . , N − 1, N} is the denominator of the evaluation of ξ̃x at z. By the
triangle inequality we then achieve

|Ax ⊕Ay|
|Ax|

=
|Ax ⊕Ay|

N
= ‖ξ̃x − ξ̃y‖ ≤ ‖ξ̃x − ξx‖+ ‖ξx − ξy‖+ ‖ξy − ξ̃y‖ ≤ 3ε.

Using Lemma 1.3.6 we see that this indeed implies property (A).

We end this section with a lemma, which allows us to express property (A) for a coarse
disjoint union of metric spaces in terms of a local condition.

Lemma 1.3.9. Let (Xi)i∈N be a sequence of finite metric spaces. The coarse disjoint union
of Xi has property (A) if and only if for all R, ε > 0 and for all but finitely many i ∈ N, the
space Xi has a Higson-Roe function ξi for ε and R satisfying supp(ξix) ⊆ B(x, S), where
S > 0 is independent of i.

Proof. Suppose that for all ε,R > 0 there exists i0 ∈ N such that for all i > i0 there exist
Higson-Roe functions ξi : Xi → `1(Xi)1,+ with supp(ξix) ⊆ B(x, S), for some S > 0
independent of i. We wish to show that the coarse disjoint union

⊔
i∈NXi has property (A).

Let Y =
⊔i0
i=1Xi and Z =

⊔
i>i0

Xi. Define, for each 1 ≤ i ≤ i0, Axi := Xi×{1} for all
xi ∈ Xi. Then {Axi}xi∈Y is a finite collection of finite sets, and this collection satisfies the
definition of property (A) for any S1 ≥ max{diam(X1),diam(X2), . . . ,diam(Xi0)}. By
assumption, there exist Higson-Roe functions ξi for all i > i0. Defining ξ : Z → `1(Z)1,+

by x 7→ ξix for x ∈ Xi, we get a Higson-Roe function onZ. Thus Theorem 1.3.8 tells us that
there exists a family {Bx}x∈Z , satisfying the definition of property (A), for some S2 > 0.
This means that the family {Axi}xi∈Y ∪ {Bx}x∈Z is a family of finite sets satisfying the
definition of property (A), for S ≥ max{S1, S2}.
The converse follows by restricting the (global) Higson-Roe function to each Xi.

We will now turn our attention to coarse embeddings into Hilbert spaces. In particular,
we will show some results connecting property (A) and such coarse embeddings.
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1.4 Coarse embeddings

In this section we investigate which spaces it is possible to coarsely embed into a Hilbert
space. We first look at a space which can be coarsely embedded into a Hilbert space.

Example 1.4.1. The Banach space `1(N) coarsely embeds into a Hilbert space. To see this,
let H be the infinite dimensional Hilbert space given by

H =

( ∞⊕
i=1

L2(R,m))

)
,

where m is the Lebesgue measure. Define f : `1(N)→ H by

f(x) = f((x1, x2, . . .)) =
∞⊕
i=1

ϕ(xi),

where ϕ : R → R is given by ϕ(x) = 1[0,x] when x ≥ 0 and ϕ(x) = 1[x,0] when x ≤ 0.
Thus we see that for x, y ∈ `1(N) we have

‖f(x)− f(y)‖ =
√
‖x− y‖,

which shows that f is a coarse embedding with ρ−(t) = ρ+(t) = t1/2.

Lemma 1.4.2. Let X be a metric space with property (A). For every R, ε > 0, there exist a
map ξ : X → `2(X × N) and S > 0 such that for all x, y ∈ X ,

• ‖ξx‖2 = 1,

• ‖ξx − ξy‖ < ε when d(x, y) ≤ R,

• supp(ξx) ⊆ B(x, S)× N.

Proof. Let ε,R > 0 be given, and let {Ax}x∈X be a family of sets satisfying property (A)
for δ = ε2 and R. Define ξx by

ξx =
1Ax√
|Ax|

,

for each x ∈ X . Then clearly supp(ξx) = Ax ⊆ B(x, S)×N by assumption. Furthermore
we see that

‖ξx‖2 =
∑
x∈X

(
1Ax√
|Ax|

)2

=
1

|Ax|
∑
x∈Ax

1Ax = 1,

so that ‖ξx‖ = 1. Thus it only remains to show that the second condition is satisfied. To
this end note that

|Ax|+ |Ay| = 2|Ax ∩Ay|+ |Ax⊕Ay| = 2|Ax ∩Ay|+
|Ax ⊕Ay||Ax ∩Ay|

|Ax ∩Ay|
< (2 + δ)|Ax ∩Ay|,
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whenever d(x, y) ≤ R. Using this, we can estimate

〈ξx, ξy〉 =
∑
x∈X

1Ax · 1Ay√
|Ax||Ay|

=
|Ax ∩Ay|√
|Ax||Ay|

≥ 2|Ax ∩Ay|
|Ax|+ |Ay|

≥ 2

2 + δ
.

Note that 〈ξx, ξy〉 is real, which implies that 〈ξx, ξy〉 = 〈ξy, ξx〉. Thus we see that

‖ξx − ξy‖2 = 〈ξx − ξy, ξx − ξy〉
= 〈ξx, ξx〉+ 〈ξy, ξy〉 − 〈ξx, ξy〉 − 〈ξy, ξx〉
= 1 + 1− 〈ξx, ξy〉 − 〈ξy, ξx〉,

≤ 2− 2

(
2

2 + δ

)
≤ δ.

Since ε =
√
δ, we are done.

Having showed this lemma, we are now ready to introduce our first result relating prop-
erty (A) and embeddability into Hilbert spaces.

Theorem 1.4.3. A metric space X with property (A) can be coarsely embedded into some
Hilbert space.

Proof. For each n ∈ N, let ε = 2−n and R = n be given and choose ξn satisfying the
conditions in the lemma above. Then there exists an increasing sequence Sn of positive
numbers such that supp(ξnx ) ⊆ B(x, Sn)× N. This implies that if d(x, y) ≥ 2Sn, then

‖ξnx − ξny ‖ =
√

12 + 12 =
√

2.

Fix z ∈ X and define f : X →
⊕∞

n=1 `
2(X × N) by

f(x) =

∞⊕
n=1

(ξnx − ξnz ).

We have to show that f is well defined and that it is a coarse embedding. Consider k ∈ N
satisfying k − 1 < d(x, y) ≤ k. When n ≥ k, we have ‖ξnx − ξny ‖ < 1

2n . Thus we see that

‖f(x)− f(y)‖2 = ‖
∞⊕
n=1

(ξnx − ξnz )−
∞⊕
n=1

(ξny − ξnz )‖2

=

∞∑
n=1

‖ξnx − ξny ‖2

≤ 2k + 1,

which leads to

2k + 1 = 2(k − 1 + 1) + 1 < 2(d(x, y) + 1) + 1 = 2d(x, y) + 3.
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Note that if z = y, the calculations above shows that f is well defined. Now we see that

‖f(x)− f(y)‖ ≤ (2d(x, y) + 3)
1/2,

which means we have obtained an upper bound

ρ+(t) = (2t+ 3)
1/2.

Thus it only remains to find a lower bound. To this end, let for all k ∈ N,

ϕ(k) = sup
n∈N
{2Sn ≤ k − 1}.

Then we see that

‖f(x)−f(y)‖2 =

ϕ(k)∑
n=1

‖ξnx −ξny ‖2 +
∞∑

n=ϕ(k)+1

‖ξnx −ξny ‖2 =

ϕ(k)∑
n=1

2 +
∞∑

n=ϕ(k)+1

‖ξnx −ξny ‖2 ≥ 2ϕ(k).

We know that Sn is an increasing sequence, and thus ϕ(k) is a non-decreasing function
with ϕ(k)→∞ as k →∞. Now we define ρ− to be the piecewise linear extension of

√
ϕ

to the real numbers, and we have the desired result:

ρ−(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ+(d(x, y)).

The construction used in the proof above can be traced back to an article by Bekka,
Cherix and Valette [2].

1.5 Kernels and coarse embeddings

We now introduce a certain type of maps called kernels. We introduce kernels as maps into
the real numbers, but the theory can be generalized to complex numbers. As a consequence,
all Hilbert spaces in this section will be assumed to be real. We start with the definition.

Definition 1.5.1. Let X be a set. A map k : X ×X → R is a kernel. We say that k is

(i) symmetric if k(x, y) = k(y, x) for all x, y ∈ X ,

(ii) of positive type if for all finite sequences x1, . . . , xn of elements ofX and λ1, . . . , λn
of real numbers

n∑
i,j=1

λiλjk(xi, xj) ≥ 0.

If, furthermore, k(x, x) = 1, for all x ∈ X , we say that k is normalized.
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(iii) of negative type if for all finite sequences x1, . . . , xn of elements ofX and λ1, . . . , λn
of real numbers such that

∑n
i=1 λi = 0, one has

n∑
i,j=1

λiλjk(xi, xj) ≤ 0.

If, furthermore, k(x, x) = 0, for all x ∈ X , we say that k is normalized.

The following lemma shows some basic facts about kernels.

Lemma 1.5.2. Let X be a set and k : X ×X → R a kernel.

1. If k is constant, then k is of negative type,

2. If k is of the form k(x, y) = f(x)f(y), where f : X → R is any map, then k is of
positive type.

Proof. Suppose that for all (x, y) ∈ X × X we have k(x, y) = c, for some c ∈ R. Then
for any finite sequence x1, . . . , xn of elements of X and any sequence λ1, . . . , λn of real
numbers satisfying

∑n
i=1 λi = 0, we have

n∑
i,j=1

λiλjk(xi, xj) =
n∑

i,j=1

λiλjc = 0.

Thus k is a symmetric, normalized kernel of negative type.
Let f : X → R be some map, and suppose that k(x, y) = f(x)f(y). Then

n∑
i,j=1

λiλjk(xi, xj) =
n∑

i,j=1

λiλjf(xi)f(xj) =

(
n∑
i=1

λif(xi)

)(
n∑
i=1

λif(xi)

)
≥ 0.

Thus k is a symmetric kernel of positive type.

The next theorem shows that there exists a connection between Hilbert spaces and ker-
nels of positive or negative type.

Theorem 1.5.3. Let k be a symmetric kernel on a set X . Then there exists a (real) Hilbert
space H such that

(i) if k is of positive type, then there exists a map ϕ : X → H such that for all x, y ∈ X ,

k(x, y) = 〈ϕ(x), ϕ(y)〉.

(ii) if k is of negative type and normalized, i.e., k(x, x) = 0, for all x ∈ X , there exists a
map ψ : X → H such that for all x, y ∈ X ,

k(x, y) = ‖ψ(x)− ψ(y)‖2.
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A kernel as in (ii) is sometimes called a conditionally negative definite kernel.

Proof. Suppose that k : X × X → R is of positive type. Let V be the vector space of
finitely supported functions f : X → R. Define a bilinear form (or a pseudo-inner product)
on V by

〈f, g〉 =
∑
x,y∈X

k(x, y)f(x)g(y).

This bilinear form is positive semi-definite, due to k being of positive type. Consider the
set E = {f ∈ V | 〈f, f〉 = 0} ⊆ V , and notice that for any t ∈ R, and f, g ∈ V we have

0 ≤ 〈tf + g, tf + g〉 = t2〈f, f〉+ 2t〈f, g〉+ 〈g, g〉.

This is a quadratic polynomial in t, and since it is non-negative, it has at most one real
root. This implies that the discriminant is less than or equal to zero, i.e., (2〈f, g〉)2 −
4〈f, f〉〈g, g〉 ≤ 0, and rearranging we get the Cauchy-Schwarz inequality. Thus we can
consider the quotient V/E, and our bilinear form becomes a genuine inner product on this
space. LetH be the completion of V/E in the induced norm to get a Hilbert space. Consider
the map ϕ : X → H given by ϕ(x) = δx, where δx is the Dirac function at x. Then ϕ
satisfies the condition in the theorem, since

〈ϕ(x), ϕ(y)〉 =
∑
x,y∈X

k(x, y)ϕ(x)ϕ(y) =
∑
x,y∈X

k(x, y)δxδy = k(x, y).

Suppose now that k : X ×X → R is a normalized kernel of negative type. Let W be the
vector space of finitely supported functions f : X → R satisfying

∑
x∈X f(x) = 0. This

time we define a bilinear form by

〈f, g〉 = −1

2

∑
x,y∈X

k(x, y)f(x)g(y).

Again we quotient out by F = {f ∈ W | 〈f, f〉 = 0} and complete to get a Hilbert space
H . For any fixed point x0 ∈ X , we define ψ : X → H by ψ(x) = δx − δx0 . Then

‖ψ(x)− ψ(y)‖2 = 〈δx − δy, δx − δy〉 = −1

2
k(x, x)− 1

2
k(y, y) + k(x, y) = k(x, y),

as wanted.

The next result tells us when it is possible to coarsely embedded a coarse space into a
Hilbert space.

Corollary 1.5.4. LetX be a coarse space. ThenX can be coarsely embedded into a Hilbert
space if and only if there exist a symmetric, normalized kernel k of negative type on X and
non-decreasing maps ρ± : R+ → R+ such that ρ−(t)→∞ as t→∞, satisfying

ρ−(d(x, y)) ≤ k(x, y) ≤ ρ+(d(x, y)),

for all x, y ∈ R+.
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Proof. Suppose first that f : X → H is a coarse embedding of X into some (real) Hilbert
spaceH . Then Proposition 1.2.10 tells us that there exist non-decreasing maps ρ± : R→ R
such that

ρ−(dX(x, y)) ≤ dH(f(x), f(y)) ≤ ρ+(dX(x, y).

Thus we have to show that dH(f(x), f(y)) = ‖f(x)− f(y)‖2 is a symmetric, normalized
kernel of negative type. To see this, we let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R satisfy∑n

i=1 λi = 0. Then we see that

n∑
i,j=1

λiλj‖f(xi)− f(xj)‖2

=
n∑

i,j=1

λiλj
(
‖f(xi)‖2 + ‖f(xj)‖2 − 2〈f(xi), f(xj)〉

)

=
n∑
i=1

λif(xi)

 n∑
j=1

λj

+
n∑
j=1

λjf(xj)

(
n∑
i=1

λi

)
− 2

n∑
i,j=1

〈f(xi), f(xj)〉

= −2

〈
n∑
i=1

λif(xi),
n∑
i=1

λif(xi)

〉
≤ 0.

Clearly, the map defined by k(x, y) = ‖f(x) − f(y)‖2 is a symmetric, normalized kernel
of negative type.
On the other hand, assume that there exist a symmetric, normalized kernel k : X ×X → R
of negative type and non-decreasing maps ρ± : R+ → R+ satisfying the conditions above.
From Theorem 1.5.3 we get a Hilbert space H and a function ψ : X → H satisfying
k(x, y) = ‖ψ(x)− ψ(y)‖2. By assumption,√

ρ−(dX(x, y)) ≤ ‖ψ(x)− ψ(y)‖2 ≤
√
ρ+(dX(x, y)),

showing that ψ is a coarse embedding.

There is a similar result for positive type kernels (see [25, Theorem 3.2.8]), but we will
only need the result for negative type kernels.

1.6 Literature

Sections 1 through 4 of this chapter are mostly inspired by [19]. However, some of the
ideas, and in particular the last section regarding kernels, are taken from [25] and [20].



Chapter 2

Graphs

In this chapter we introduce the notion of graphs. A graph is a rich structure which is stud-
ied in many areas of mathematics and in many other sciences as well. We are in particular
interested in a certain type of graphs called expanders. Expanders first appeared in a paper
of Pinsker in 1973, although some research by Larry Guth showed that Barzdin and Kol-
mogorov studied a concept equivalent to expanders before Pinsker. Expanders are sparse,
highly connect finite graphs. This definition seems almost contradictory since sparse means
that there are “few” edges, and highly connected means that there are “many” connections.
We will of course make this more precise in this chapter. Even though Pinsker was the first
to show the existence of expanders, the first explicit construction is due to Margulis, who
constructed expanders using the notion of box spaces of residually finite groups with Kazh-
dan’s property (T). The reasons for the study of expander graphs are plentyful. Among
others, they play an important role in various aspects of computer science and hence the
strong interest to make explicit constructions.

2.1 Introduction to Graphs and expanders

We start with the definition of a graph:

Definition 2.1.1. A graph is an ordered pair G = (V,E) consisting of a set V (G) of
vertices and a (multi) set E(G) of edges equipped with two maps s, r : E → V , called the
source and range map, respectively.

For any edge e ∈ E, the image of the source map s(e) ∈ V is the vertex at which
the edge begins, and the image of the range map r(e) ∈ V is the vertex at which the
edge ends. As for any mathematical object there is a lot of standard terminology. We will
go through the most important notions and state them together in a definition below. The
reader acquainted with graph theory may skip directly to Definition 2.1.2 below.
In the following, let G = (V,E) be a graph. The number of vertices of a graph is denoted
by |V | and the number of edges by |E|. If |V |+ |E| <∞, we say that G is a finite graph.

17



18 Chapter 2. Graphs

We call G undirected if whenever (x, y) ∈ E it follows that (y, x) ∈ E. Equivalently,
one could say that whenever s(e) = v, for some e ∈ E and v ∈ V , there exists e′ ∈
E such that r(e′) = v. A graph which is not undirected is called directed. A directed
graph is called oriented if there are no symmetric edges, i.e., whenever (x, y) ∈ E then
(y, x) 6∈ E. Given an undirected graph, it is possible to make it into a directed graph, by
assigning an orientation to each edge. That is, for each pair of edges (x, y), (y, x) ∈ E of
the undirected graph, we choose one pair and delete the other. For a vertex x ∈ V we define
the neighbourhood of x as Nx = {y ∈ G | (x, y) ∈ E}, and the degree of x as dx = |Nx|.
If all vertices of the graph have the same degree, we say that G is regular. In particular, if
the degree of each vertex is d, we say that G is d-regular. A loop is an edge which begins
and ends at the same vertex, i.e., s(e) = r(e). If the map e 7→ (s(e), r(e)) ∈ V 2 is injective,
we say that G has no multiple edges. A graph is called simple if it contains no loops and
no multiple edges. If the graph contains loops or multiple edges (or both), it is called a
multigraph. Two vertices x, y ∈ V are called adjacent if there exists an edge e ∈ E such
that s(e) = x and r(e) = y. A path in a graph is a list of distinct adjacent vertices, or,
equivalently a string of distinct edges e1e2 · · · en with r(ei) = s(ei+1), i = 1, . . . , n− 1. A
path consisting of l edges is said to be a path of length l. A cycle of length l, also called an
l-cycle, is a path of length l which starts and ends at the same vertex. We say that a graph is
connected if there is a path connecting any two vertices. By convention, a graph consisting
of a single vertex is connected. A component is a maximal connected subset of G. Note
that if G is connected, then G has exactly one component. To sum up the most important
notions, we have the following definition:

Definition 2.1.2. Let G = (V,E) be a graph. The graph G is called

• finite, if |V |+ |E| <∞.

• undirected, if whenever (x, y) ∈ E, then (y, x) ∈ E.

• oriented, if it is directed and whenever (x, y) ∈ E, then (y, x) 6∈ E.

• regular, if all vertices have the same degree.

• simple, if it contains no loops, nor multiple edges.

• connected, if any two vertices are connected.

We continue by introducing a little more notation. For subsets S, T ⊂ V , we denote by
E(S, T ) = {(x, y) ∈ E | x ∈ S, y ∈ T} = {E ∩ (S × T )} the set of edges from S to T .
Note that E(S, T ) is a set of directed edges. By E(S) we denote the set of edges contained
in S, i.e., E(S) = {(x, y) ∈ E | x, y ∈ S}. Let S = V \ S denote the complement of
S† and ∂S = E(S, S) the boundary set of edges of S. Note that ∂S = ∂S, whenever G is

†Note that we here use the bar notation to denote complement and not the closure. We will later use the bar
to also denote the closure, but it should always be clear from the context if it means closure or complement.
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simple. It is in fact very easy to turn a graph into a metric space. To see this, letG = (V,E)
be a connected graph and let d : G×G→ R be defined by

d(x, y) = min{l(π) ∈ N0
† | π is a path connecting x and y}.

Clearly d is a metric and it is known as the path metric. An important consequence of this
is that it makes sense to consider the coarse disjoint union of a sequence of (finite) graphs.
We proceed by defining the expansion rate of a graph:

Definition 2.1.3. Let G = (V,E) be a graph, and let X be a component of G. We define
the (discrete isoperimetric) Cheeger constant as

h(G) = inf
S⊆X

(
|∂S|

min{|S|, |S|}

)
,

where the infimum runs over all non-empty subsets of the components of G.

It is called the discrete isoperimetric Cheeger constant because it is a discrete version
of the isoperimetric Cheeger constant for compact Riemannian manifolds. We say that the
graph G is an expander graph if there exists ε > 0 such that h(G) ≥ ε. If G is a finite,
d-regular expander for some ε > 0, we say that G is an (n, d, ε)-expander, where n is the
number of vertices in G.

Definition 2.1.4. A sequence of finite connected d-regular graphs {Gi = (Vi, Ei)} is called
a family of expanders if |Vi| → ∞, as i→∞, and there exists ε > 0 such that h(Gi) ≥ ε,
for all i ∈ N.

This means that the Cheeger constants of the finite graphs are uniformly bounded away
from zero. Note that if G =

⊔
Gi is the coarse disjoint union of finite connected d-regular

graphs Gi, with |Vi| → ∞ as i → ∞, and there exists some ε > 0 such that h(Gi) ≥ ε
for all i, then G is a family of expanders. We will use expanders to construct metric spaces
which do not coarsely embed into any Hilbert space. However, we need more properties of
graphs before we can carry out this construction.

2.2 Regular graphs

Two useful tools in the study finite graphs (and expanders) are the associated adjacency
matrix AG and the incidence matrix BG.

Definition 2.2.1. Let G = (V,E) be a finite graph on n vertices. The adjacency matrix
AG, or just A if no ambiguity will arise, is the n× n matrix whose entries are defined by

ai,j = the number of edges from vertex i to j, where 1 ≤ i, j ≤ n,

and the normalized adjacency matrix is ÃG = 1
dx
AG.

†We use N0 to denote the set {0} ∪ N.
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Note that if G is an undirected graph, then AG is symmetric. It is a well known fact
that any real and symmetric n × n matrix has n real (not necessarily distinct) eigenvalues
λ0(A) ≥ λ1(A) ≥ . . . ≥ λn−1(A) with corresponding eigenvectors v0, . . . , vn−1. If
we normalize the eigenvectors and recall that vi is orthogonal to vj , whenever λi 6= λj ,
we see that the eigenvectors form an orthonormal basis for the vector space associated
with the (different) eigenvalues of AG. The set of eigenvalues of AG is referred to as the
spectrum of G. In the case when G is d-regular, it follows from the Perron-Frobenius
theorem that all the eigenvalues are contained in [−d, d], and the greatest eigenvalue is
λ0 = d with corresponding eigenvector 1√

n
(1, . . . , 1). We will be interested in the second

greatest eigenvalue λ1, since this eigenvalue tells us a lot about the structure of the graph.
The number

λ0(A)− λ1(A) = d− λ1,

is referred to as the spectral gap. It is worth noting that if G is connected, then λ0 > λ1

and hence d− λ1 > 0, i.e., the spectral gap is non-zero.

Definition 2.2.2. Let G = (V,E) be a finite directed graph on n vertices and m edges. We
define the incidence matrix BG, or just B if the underlying graph is clear, as the n × m
matrix defined by

bi,j =


1 if s(j) = i 6= r(j),
−1 if r(j) = i 6= s(j),
0 else.

If G is undirected, the incidence matrix is obtained by replacing each −1 with 1 and loops
get the value 2.

Following ideas from [12], we use the incidence matrix to construct the discrete version
of the Laplace operator 4:

The discrete Laplace operator

The Laplace operator 4 is usually defined as the divergence of the gradient of a differen-
tiable function f . Thus we start by defining the discrete version of the gradient ∇(f), and
then we define the divergence. In the following, letG = (V,E) be a finite undirected graph,
and assign an orientation to each of the edges turningG into an oriented graph. The specific
orientation does not matter as long it is stays fixed.
The usual interpretation of the gradient is a generalization of the derivative, and hence it
measures the changes of a function on a surface or manifold. We want a similar measure-
ment in the discrete case, so we want to measure the change at each vertex. To do this,
let f : V → R be a function of the vertices of G. We define the gradient ∇(f) to be the
operator that maps f , viewed as a row vector, to fBG. Given an edge e ∈ E which goes
from a vertex x to a vertex y with respect to the given orientation, i.e., with s(e) = x and
r(e) = y, we see that

(fBG)(e) = f(x)− f(y).
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Now we are ready to define the discrete version of divergence. The divergence measures
the accumulated outflow at a given point, and this should, of course, be reflected in the
discrete version. Let g : E → R be a function of the edges of G, and define the divergence
as the operator mapping g, considered as a column vector, to BGg. Thus we see that given
a vertex x ∈ V , we get

(Bg)(x) =
∑
s(e)=x

g(e)−
∑
r(e)=x

g(e).

We now define the discrete Laplace operator for finite, connected d-regular graphs by the
formula4 = BBT = dI −A. That is, given a function f : V → R, the Laplacian maps f
to4f = BBT f . For x, y ∈ V , the entries in4 are given by

lx,y =


−1 if (x, y) ∈ E,
dx ifx = y,
0 else,

where lx,y are the entries of4. This means that the diagonal consists of the degree of each
vertex, and the other entries are either 0 or −1. In particular, if G is d-regular, the degree of
each vertex is d and 4 = dI − A. Furthermore, since 4 is real-valued and symmetric, 4
has real eigenvalues. We may also write4 in quadratic form, yielding

fT4f =
∑
x∈V

∑
y∈V

lx,yf(x)f(y) =
∑

(x,y)∈E

(f(x)− f(y))2,

from which we see that 4 is positive semi-definite. This implies that all the eigenvalues
are non-negative, and since 4 = dI − A, the eigenvalues are contained in [0, 2d]. The
eigenvalue zero is obtained if and only if f : V → R is a constant function. Further-
more, the spectral gap d− λ1(A) is the smallest non-zero eigenvalue of4. An interesting
property for the expansion of a graph is the close relation between the spectral gap and the
Cheeger constant. This result is known as the Cheeger inequalities, and it is due to Tan-
ner [24], Dodziuk [7], and independently to Alon and Milman [1]. The proof we give here
follows [12].

Theorem 2.2.3. Let G be finite, connected d-regular graph. Then

1

2
(d− λ1(G)) ≤ h(G) ≤

√
2d(d− λ1(G)). (2.1)

We will prove the theorem in two steps; one for each inequality. But before we prove
the inequalities, we need one last concept, namely the (real) Rayleigh quotient.

Definition 2.2.4. Given a real symmetric matrix A and a non-zero vector x, the Rayleigh
quotient R(A, x) is defined as

R(A, x) =
xTAx

xTx
.
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We note that the Rayleigh quotient satisfies R(A, x) ∈ [λn−1(A), λ0(A)] with

R(A, v0) = λ0 ≥ R(A, x) ≥ R(A, vn−1) = λn−1,

where λ0 ≥ . . . ≥ λn−1 are the eigenvalues ofA and vi are the corresponding eigenvectors.
Using the Rayleigh quotients, we can now show the inequalities.

Proof (of the lefthand side of (2.1)). Rewriting the inequality we get λ1 ≥ d−2h. To show
this inequality, let S ⊆ V be a proper subset of the vertices, i.e., S is non-empty and S 6= V .
We know that the first eigenvector of a d-regular graph is the vector (1, . . . , 1), so we need to
find a non-zero vector f orthogonal to (1, . . . , 1), such that the Rayleigh quotientR(AG, f)

satisfies fTAGf
‖f‖2 ≥ d−2h. To do this, we consider f given by f(x) = 1S(x)|S|−1S(x)|S|,

where 1S is the characteristic function of S. Then we see that the norm of f is given by
‖f‖2 = |S||S|2 + |S||S|2 = n|S||S|, and

fTAGf =
n∑
i=1

f(xi)
n∑
j=1

ai,jf(xj) = 2(|E(S)||S|2 + |E(S)||S|2 − |S||S||∂S|).

Since G is d-regular, we know that each vertex has exactly d edges, and thus we can write

2|E(S)| = d|S| − |∂S| 2|E(S)| = d|S| − |∂S|.

Substituting this into fTAGf shows us that

fTAGf = (d|S| − |∂S|)|S|2 + (d|S| − |∂S|)|S|2 − 2|S||S||∂S| = d|S||S|n− |∂S|n2.

Thus we see that

fTAGf

‖f‖2
=
nd|S||S| − n2|∂S|

n|S||S|
= d− n|∂S|

|S||S|
≥ d− 2

|∂S|
min{|S|, |S|}

≥ d− 2h,

since max{|S|, |S|} ≥ n
2 and h is the infimum over all such sets S.

The proof of the other inequality is given in more generality in the next section. Most
of what we have done so far has been for finite connected d-regular graphs, but we can
generalize this to any (possible infinite) graph with multiple edges, loops and any number
of edges between the vertices, with the only assumptions that G is locally finite and has
finite components. To do this, we change our point of view to graphs viewed as `2-spaces.

2.3 Graphs as `2-spaces

Throughout this section let G = (V,E) be any locally finite graph, i.e., dx < ∞, for all
x ∈ V . We consider the real `2(V ) space equipped with the measure µ({x}) = dx, and
standard inner product, i.e., given two functions f and g on V , we set

〈f, g〉V =
∑
x∈V

dxf(x)g(x).
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In connection with the normalized adjacency matrix, we define the local average operator
A : `2(V )→ `2(V ) by

(Af)(x) =
1

dx

∑
y∈Nx

f(y).

We see that A is self-adjoint by the following computations

〈Af, g〉V =
∑
x∈V

dx

 1

dx

∑
y∈Nx

f(y)

 g(x)

=
∑
x∈V

∑
y∈Nx

f(y)g(x)

=
∑
y∈V

dyf(y)

 1

dy

∑
x∈Ny

g(y)


= 〈f,Ag〉V ,

where we have used the assumption of locally finiteness to manipulate the sums. Using the
Cauchy-Schwarz inequality twice, we further see that

|〈Af, g〉V | =

∣∣∣∣∣∣
∑
x∈V

dx

 1

dx

∑
y∈Nx

f(y)

 g(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈V

dyf(y)

 1

dy

∑
x∈Ny

g(x)

∣∣∣∣∣∣
≤
∑
y∈V
|f(y)|

√
dy

∑
x∈Ny

|g(x)|2
1/2

≤

∑
y∈V
|f(y)|2dy

1/2∑
y∈V

∑
x∈Ny

|g(y)|2
1/2

= ‖f‖‖g‖,

showing that ‖A‖ ≤ 1. Note that Af = f if and only if f is constant on each component
of G. We now generalize the discrete Laplacian to locally finite graphs by setting

4 := I −A.

Note that we here use the local average operator in place of the adjacency matrix. As
before, the Laplacian is a self-adjoint, positive operator, and we have the norm estimate
‖4‖ = ‖I − A‖ ≤ ‖I‖ + ‖A‖ ≤ 1 + 1 = 2. Furthermore, we note that the kernel of 4
is spanned by the characteristic functions of the components of G, which implies that if G
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is connected (consists of exactly one component), then zero is an eigenvalue of multiplicity
one. Note that this is the same result as in the previous section. The orthogonal complement
of the kernel, denoted by `20(V ), is the space of so-called balanced function. That is, for
each component X ⊆ G we have

`20(V ) = {f ∈ `2(V ) | 〈f, 1X〉V = 0} = {f ∈ `2(V ) |
∑
x∈X

dxf(x) = 0}.

Theorem 2.3.1. Let h(G) be the Cheeger constant of G (cf. Definition 2.1.3). Then

1

2
λ ≤ h(G) ≤

√
2kλ,

where λ is the infimum of the positive eigenvalues of4, and k = max{dx | x ∈ V }. Note
that if G is d-regular, then k = d.

Proof. We start by proving that λ ≤ 2h. Let X ⊆ G be a component and S ⊆ X a proper
subset. Consider f ∈ `20(V ) given by f(x) = α1S(x) + β1S(x), for α, β ∈ R. Since we
want f ∈ `20(V ), it must satisfy the following equation

0 = 〈f, 1X〉V =
∑
x∈X

dx(α1S(x) + β1S(x)) = (2|E(S)|+ |∂S|)α+ (2|E(S)|+ |∂S|)β,

from which we see that
β

α
=
−(2|E(S)|+ |∂S|)

2|E(S)|+ |∂S|
.

For ease of notation, we will follow the notation of [23]. Thus, let e(S) = |E(S,G)| =

2|E(S)|+ |∂S| and we get βα = −e(S)

e(S)
. Since f is not constant, it follows that

λ ≤ 〈4f, f〉V
〈f, f〉V

, (2.2)

since λ is the infimum over all the non-zero eigenvalues. For x ∈ S, we have

4f(x) = α− (Af)(x)

= α− 1

dx

 ∑
y∈Nx∩S

α+
∑

y∈Nx∩S

β


= α− |Nx ∩ S|

dx
α− |Nx ∩ S|

dx
β

=
|Nx ∩ S|

dx
(α− β).

Similar calculations show that for x ∈ S,

4f(x) =
|Nx ∩ S|

dx
(β − α).
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From this we can now calculate 〈4f, f〉V . Note that we only need to consider x ∈ X since
f is zero for x outside of X . We have, accordingly,

〈4f, f〉V =
∑
x∈X

dx4f(x)f(x)

=
∑
x∈S

dx4f(x)f(x) +
∑
x∈S

dx4f(x)f(x)

=
∑
x∈S
|Nx ∩ S|(α− β)α+

∑
x∈S

|Nx ∩ S|(β − α)β

= |∂S|(α2 − αβ) + |∂S|(β2 − αβ)

= |∂S|(α− β)2.

Now we are ready to calculate the denominator 〈f, f〉V of (2.2). Indeed,

〈f, f〉V =
∑
x∈X

dxf(x)f(x)

=
∑
x∈S

dxα
2 +

∑
x∈S

dxβ
2

= (2|E(S)|+ |∂S|)α2 + (2|E(S)|+ |∂S|)β2

= e(S)α2 + e(S)β2.

Combining the above we get

λ ≤ 〈4f, f〉V
〈f, f〉V

=
(α− β)2

e(S)α2 + e(S)β2
|∂S| =

(
1− β

α

)2

e(S) + e(S)β
2

α2

|∂S|.

Substituting our value of αβ into this, we get

λ ≤
|∂S|

(
1 + e(S)

e(S)

)2

e(S) + e(S)
(
−e(S)

e(S)

)2 =
|∂S|(e(S) + e(S))2

e(S)e(S)2 + e(S)2e(S)
= |∂S|e(S) + e(S)

e(S)e(S)
,

from which we see that

λ ≤ |∂S|
e(S)

+
|∂S|
e(S)

≤ 2
|∂S|

min{e(S), e(S)}
≤ 2

|∂S|
min{|S|, |S|}

= 2h,

which proves the first inequality.
For the second inequality, let f be an eigenfunction of 4 with corresponding eigenvalue
λf ≤ λ + ε, for some ε > 0, i.e., 4f(x) = λff(x), for all x ∈ V . We may assume that
f : G→ R is supported on a component X ⊆ G with |X| = n. We now define

S+ = {x ∈ V | f(x) > 0} = {x ∈ X | f(x) > 0}.
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Note that we may assume that |S+| ≤ n
2 by choosing −f , if necessary. We now define

g(x) = 1S+(x)f(x), for x ∈ V . Then we see that for x ∈ S+,

4f(x) = f(x)− 1

dx

∑
y∈Nx

f(y)

= g(x)− 1

dx

∑
y∈Nx∩S+

f(y)− 1

dx

∑
y∈Nx∩S+

f(y)

= 4g(x) +
1

dx

∑
y∈Nx∩S+

(−f(y))

≥ 4g(x).

By construction, g(x) = 0 for x 6∈ S+, and since f is an eigenfunction of4, we get

λf 〈g, g〉V = λf
∑
x∈S+

dxg(x)2 =
∑
x∈S+

dx4f(x)g(x) ≥
∑
x∈S+

dx4g(x)g(x) = 〈4g, g〉V ,

which shows that λ+ ε ≥ λf ≥ 〈4g,g〉V〈g,g〉V . Now we want to estimate 〈4g, g〉V in a different
way. We start by defining

M =
∑
x∈V

dx
1

dx

∑
y∈Nx

|g(x)2−g(y)2| =
∑
x∈V

∑
y∈Nx

|g(x)2−g(y)2| =
∑

(x,y)∈E

|g(x)2−g(y)2|.

If we recall the definition of the discrete gradient, we note that M = ∇g2. Using the
Cauchy-Schwarz inequality, we obtain:

M =
∑

(x,y)∈E

|g(x)2 − g(y)2|

=
∑

(x,y)∈E

|g(x) + g(y)||g(x)− g(y)|

≤

 ∑
(x,y)∈E

(g(x) + g(y))2

1/2 ∑
(x,y)∈E

(g(x)− g(y))2

1/2

.

We will calculate these sums one by one. First we have

∑
(x,y)∈E

(g(x) + g(y))2 ≤ 2
∑

(x,y)∈E

(g(x)2 + g(y)2) = 2
∑
x∈V

dxg(x)2 + 2
∑
y∈V

dyg(y)2 = 4〈g, g〉V ,
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while for the second one we have∑
(x,y)∈E

(g(x)− g(y))2

=
∑

(x,y)∈E

(g(x)2 + g(y)2 − 2g(x)g(y))

=
∑

(x,y)∈E

(g(x)[g(x)− g(y)])−
∑

(x,y)∈E

(g(y)[g(x)− g(y)])

≤
∑
x∈V

kg(x)
∑
y∈Nx

(g(x)− g(y))−
∑
y∈V

kg(y)
∑
x∈Ny

(g(x)− g(y))

= k

∑
x∈V

dxg(x)
1

dx

∑
y∈Nx

(g(x)− g(y))−
∑
y∈V

dyg(y)
1

dy

∑
x∈Ny

(g(x)− g(y))


= 2k〈4g, g〉V .

Putting all this together, we have shown that

M2 ≤ 4〈g, g〉V 2k〈4g, g〉V ≤ 8kλf 〈g, g〉2V ≤ 8k(λ+ ε)〈g, g〉2V ,

where we have used the estimate that λf 〈g, g〉V ≥ 〈4g, g〉V . Recalling from vector anal-
ysis that ∇(fg) = f∇g + g∇f , we get that ∇g2 = 2g∇g. Motivated by this, we will
estimate M in a different way. First recall that |S+| ≤ n

2 , which means that g takes at
most n

2 different values. Denote these values by 0 = α0 < α1 < . . . < αr, and let
Li = {x ∈ V | g(x) ≥ αi} be the level set of the vertices. Note that L0 = V and |Li| ≤ n

2
for i > 0. Last we let δx,y denote the number of edges between vertices x and y. Then we
can rewrite, for all x, y ∈ V ,

M = 2
∑

g(x)>g(y)

δxy(g(x)2 − g(y)2) = 2
r∑
i=1

∑
g(x)=αi

∑
g(y)<αi

δxy(g(x)2 − g(y)2).

Next note that L0 ⊇ L1 ⊇ . . . ⊇ Lr, hence ∂Li = {(x, y) ∈ E | x ∈ Li, y ∈ Lj , j < i}.
Furthermore, we note that for any edge (x, y) ∈ E with g(x) = αi and g(y) = αj , i > j,
we have

g(x)2 − g(y)2 = α2
i − α2

j = (α2
i − α2

i−1) + (α2
i−1 − α2

i−2) + · · ·+ (α2
j+1 − α2

j ),

which means that (x, y) ∈ ∂Li. This allows us to rewrite

M = 2

r∑
i=1

|∂Li|(α2
i − α2

i−1).

Now note that the definition of the Cheeger constant gives us |∂Li| ≥ h|Li| for i > 0 (since
|∂Li|
|Li| ≥ h), which leads to

M ≥ 2h
r∑
i=1

|Li|(α2
i − α2

i−1) = 2h(|Lr|α2
r +

r−1∑
i=1

α2
i (|Li| − |Li+1|)).
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It is clear that x ∈ Li \ Li+1 if and only if g(x) = αi, and thus we get

M ≤ 2h
r−1∑
i=1

∑
g(x)=αi

dxα
2
i + 2h

∑
g(x)=αr

dxα
2
r = 2h

∑
x∈V

dxg(x)2 = 2h〈g, g〉V ,

and finally putting everything together, we see that

2h〈g, g〉V ≤ A ≤ 2
√

2k(λ+ ε)〈g, g〉V

for all ε > 0, which concludes the proof.

Having established these inequalities, we are ready to relate coarse geometric concepts
to graphs. In particular, we are interested in the relationship between property (A) and
families of expander graphs.

2.4 Coarse embeddings and property (A)

In this section we investigate geometric properties of graphs in terms of coarse embeddings
and property (A). We start with a few examples of graphs with property (A).

Example 2.4.1. Any finite graph has property (A).

Example 2.4.2. Any tree† T = (V,E) has property (A) .

Proof. Let T = (V,E) be an infinite tree, and let ε,R > 0 be given. Fix a vertex x0 ∈ V ,
and let γ0 be an infinite path x0, x1, . . . starting at x0 with xi 6= xj , for all i 6= j. Such a
path is sometimes called a geodesic ray. For each x ∈ V , let γx denote the (unique) path
starting at x and following γ0 for an infinite distance. For each x ∈ V , we then define

Ax = {(y, 1) ∈ V × N | y ∈ γx, d(x, y) ≤ 3R/ε + 1}.

Note that 3R/ε ≤ |Ax| ≤ 3R/ε+1, for all x ∈ V . Furthermore, we see that |Ax⊕Ay| ≤ 2R,
whenever d(x, y) ≤ R, which implies that |Ax ∩ Ay| ≥ 3R/ε − R. Thus, we have the
following estimate

|Ax ⊕Ay|
|Ax ∩Ay|

≤ 2R
3R/ε−R

< ε,

showing that T = (V,E) has property (A).

In particular, Z viewed as a graph with the usual metric d(n,m) = |m−n|, is an infinite
tree, and hence it has property (A). Note also that Theorem 1.4.3 tells us that each of these
graphs are embeddable into the Hilbert space H = `2(V ), where V is the vertex set of the
graph in question. The example showing that infinite trees have property (A) becomes even
more interesting, when we begin the study of groups. This is because the Cayley graph

†A tree is an undirected, connected graph, in which any two vertices can be connected by exactly one path.
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associated to a free group on n generators is an infinite tree.
The remainder of this section is devoted to show that there exist graphs without property
(A). We begin with the following lemma.

Lemma 2.4.3. Let G = (V,E) be a finite connected d-regular graph with λ1(G) ≥ λ > 0.
Let f : V → R be a map from the vertices of G, then∑

x∈V
‖f(x)−m(f)‖2 ≤ 1

λ

∑
(x,y)∈E

‖f(x)− f(y)‖2,

where m(f) = 1
|V |
∑

x∈V f(x) is the mean of f .

Comparing m to the local averaging operator defined in Section 2.3 we see that m is a
global average.

Proof. Let λ1 ≤ λ2, . . . , λn denote the eigenvalues of the Laplace operator4. Since `2(V )
is finite dimensional, we can decompose `20(V ) (the orthogonal complement of ker(4)),
into the direct sum

⊕m
i=1Ei of eigenspaces Ei for some m ≤ n. This means that we

can write any element f ∈ `2(V ) as f1 + f2 + · · · + fm, where each fi belongs to Ei.
Furthermore, we have

〈4f, f〉 =
m∑
i=1

〈λif, f〉 =
m∑
i=1

λi‖f‖2 ≥ λ‖f‖2,

by assumptions on λ. If we consider m(f) as a constant map V → R, we have that
m(f) ∈ ker(4), which implies that f −m(f) ∈ `20(V ). Thus,

λ
∑
x∈V
|f(x)−m(f)|2 = λ‖f −m(f)‖2 ≤ 〈4(f −m(f)), f −m(f)〉 = 〈4f, f〉.

However, 〈4f, f〉 =
∑

(x,y)∈E(f(x) − f(y))2 =
∑

(x,y)∈E ‖f(x) − f(y)‖2, yielding the
desired result.

This lemma tells us that the total variance of f from its mean value is bounded by λ−1

multiplied by the sum of variances over each edge. With this in mind, we are ready to show
the main theorem of this section.

Theorem 2.4.4. The coarse disjoint union of expanders {Xn = (Vn, En)}n∈N do not
coarsely embed into any Hilbert space.

Proof. Let X =
⊔
Xn be the coarse disjoint union of a family of d-regular expanders

{Xn = (Vn, En)}n∈N. Let λn = λn(X) be the spectral gap for each of the graphs sat-
isfying λn ≥ λ, for some λ > 0. Assume, for contraction, that f : X → H is a coarse
embedding into some Hilbert space H . Recall that a coarse embedding is both proper and
bornologous. As f is proper, we know that for any vertex x ∈ V and r > 0, there exists
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s > 0 such that for all y ∈ V with dH(f(x), f(y)) < r, we have y ∈ BX(x, s). This
means that there exists k ∈ N such that at most k = |BX(x, s)| vertices gets mapped into
BH(f(x), r). Furthermore, due to f being bornologous, there exists c > 0 such that for
any two vertices x, y ∈ V with (x, y) ∈ E, we have dH(f(x), f(y)) < c, or, equivalently
‖f(x)− f(y)‖H < c . Let fn be the restriction of f to Vn for each n ∈ N, and translate the
origin such that ∑

x∈Vn

fn(x) = 0,

which implies that the average m(f) becomes trivial. Using Lemma 2.4.3, we see∑
x∈Vn

‖fn(x)‖2 =
∑
x∈Vn

‖fn(x)−m(fn)‖2

≤ 1

λ

∑
(x,y)∈En

‖fn(x)− fn(y)‖2

≤ c2|Vn|
λ

.

This shows that at most |Vn|/2 terms on the left hand side can be larger than 2c2/λ in absolute
value, which means that fn maps at least |Vn|/2 vertices into the ball BH(0, 2c2/λ). This
implies that k2c2/λ is unbounded, which is a contradiction. Thus such an f cannot exist.

We deduce the following interesting corollary.

Corollary 2.4.5. The coarse disjoint union of expanders does not have property (A).

We now turn our attention to random graphs, since, quite surprisingly, almost every
d-regular graph on n vertices has Cheeger constant uniformly bounded away from zero, as
n→∞. The next section is devoted to proving this result.

2.5 Random graphs

We end this chapter with the study of random graphs. Our goal is to show that almost every
d-regular graph with d ≥ 3 on n > d vertices has Cheeger constant strictly greater than
zero. This means that almost every d-regular graph is an expander graph. In order to show
this, we need the notion of random graphs. Let Gn,m denote the family of all (labelled)
graphs on n vertices and m edges. A random graph G ∈ Gn,m on n vertices and m edges
is obtained by taking the empty graph on n vertices, and then connecting the vertices by
edges at random, where any two vertices have equal probability of being connected. Now,
letG(n, d) denote a random d-regular graph on n vertices chosen uniformly at random from
the set of all d-regular graphs on n vertices. Note that such a graph has nd edges. Our goal
is to show that

lim
n→∞

P [h(G(n, d)) > 0] = 1.
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In the following we assume that dn = m is even. In order to show results concerning
random d-regular graphs, we need a way to take samples uniformly at random from the set
of all d-regular graphs. To do this, we introduce Bollobás’ configuration model.

The Bollobás configuration model

For fixed d, n ∈ N with 3 ≤ d < n and nd = m even, we let W =
⋃n
i=1Wi be a fixed

set of m vertices, where |Wi| = d, for each i = 1, . . . , n. A configuration M is a partition
of W into m pairs of vertices, called a matching. Note that we can view such a matching
M as a subset of W ×W , so it makes sense to talk about the elements ofM as edges. See
Figure 2.1 for an illustration of a configuration with n = 4 and d = 3. The number of such
matchings N(m) of a set with m elements is

N(m) = (m− 1)(m− 3) · · · (3)(1) := (m− 1)!!,

from which it follows that

N(m) =
m!

2m/2(m/2)!
.

W1 W2 W3 W4

Figure 2.1: A configuration for a 3-regular graph on 4 vertices.

Figure 2.2: The 3-regular graph arising from a matching of the configuration in Figure 2.1.

Recall Sterling’s Formula,

m! ∼
√

2πm
(m
e

)m
,
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where ∼ denotes the asymptotic behaviour, i.e., the ratio between the terms tends to 1, as
m tends to infinity. We then get

N(m) ∼
√

2πm
(
m
e

)m
2m/2

√
2π(m/2)

(
(m/2)
e

)(m/2)
=
√

2
(m
e

)(m/2)
.

Such a matching M gives rise to a d-regular (multigraph) on n edges, i.e., we put an edge
between vertex i and j if and only if M has an edge connecting Wi and Wj . Note that
we allow loops and multiple edges. Let G∗(n, d) denote a (random) d-regular graph on n
vertices constructed from a matching. See Figure 2.2 for a continuation of the example from
before. One could hope that this process constructs a random multigraph on n vertices in a
uniform way. However, it turns out that the probability that a certain graph arises depends
on the number of loops and multiple edges. Luckily, the probability that G∗(n, d) is simple
(has no loops and no multiple edges) tends to e−(d2−1)/4, as n tends to infinity. Thus, for
any d ≥ 3, the configuration model gives rise to a simple, d-regular graph, with probability
bounded away from zero. Furthermore, each of the simple, d-regular graphs obtained in this
way occur equiprobable. To see this, we notice that a simple d-regular graph arises from
exactly (d!)n of the matchings. This means that if we condition on G∗(n, d) being simple,
we get a d-regular graph on n vertices chosen uniformly at random, which is G(n, d).
Our next goal is to show that

lim
n→∞

P [G∗(n, d) is simple] = e−(d2−1)/4.

To show this, we will consider the probability that a random graph G∗(n, d) has cycles of
length l. Recall that an l-cycle is a path of length l, which starts and ends at the same vertex.
In particular, we are interested in l = 1, 2, since l = 1 is the case of loops and l = 2 is the
case of multiple edges. Let the random variable Zl,n be the number of l-cycles in G∗(n, d).

Lemma 2.5.1. For any integer 1 ≤ l, the expected number of l-cycles in G∗(n, d) satisfies

lim
n→∞

E[Zl,n] =
(d− 1)l

2l
.

Proof. First note that for a given (random) graph G∗(n, d), the number of l-cycles can be
identified with sets of l edges {e1, . . . , el} from the matching M , such that there exists a
sequence of l distinct vertices (v1, . . . , vl) of the graph, where each ei connects vertex vi to
vi+1, and el connects vl to v1. Since we are interested in the expected number of l-cycles
in any random d-regular graph on n vertices, we have to look at the number of possible
ways to construct such sequences from all the possible matchings. Thus, let al denote the
number of sets of l pairwise disjoint edges {e1, . . . , el} ⊆ W ×W such that there exists
a sequence (W1, . . . ,Wl) with each Wi being unique and ei connecting Wi with Wi+1,
and el connecting Wi with W1. In order to find this number, we let bl denote the number
of sequences of l disjoint edges (e1, . . . , el) such that there exist l distinct (W1, . . . ,Wl)
with ei connecting the sets as described above. This set corresponds to 2al. To see this,
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we start at some Wi, of which there are l, and then we follow the l edges in a circle back
to Wi. Since we have to choose the direction in which we traverse the circle, we end up
with bl = 2al. To calculate the number bl, we note that we have n sets to choose from.
After one is chosen, we have n− 1 sets to choose from, and continuing in this way, we get
n(n − 1) · · · (n − l + 1) := (n)l possible ways of choosing the l sets Wi. Each Wi has
exactly d elements, and we need to choose one element which connects Wi to Wi−1, and
one element which connects Wi to Wi+1. This can be done in d(d− 1) ways, and since we
have l sets, we conclude that

bl = (n)l(d(d− 1))l.

From this we see that

al =
(n)l(d(d− 1))l

2l
.

We have already calculated the number of possible matchings, N(m), so the probability
that a particular set of l pairwise disjoint edges appear in a random matching is

pl = ((m− 1)(m− 3) · · · (m− 2l + 1))−1 = ((nd− 1)(nd− 3) · · · (nd− 2l + 1))−1.

Thus, the expected number of l-cycles in G∗(n, d) is

E[Zl,n] = alpl =
(nl)(d(d− 1))l

2l(nd− 1) · · · (nd− 2l + 1)
∼ (d− 1)l

2l
,

as n→∞, proving the lemma.

The next lemma will help us to determine the expected number of ordered pairs of
distinct l-cycles in G∗(n, d).

Lemma 2.5.2. Let H be a fixed connected multigraph with more edges than vertices. Then
the expected number of copies of H in G∗(n, d) is O( 1

n)†.

Proof. Let H be a connected multigraph on m vertices and k edges with m < k. Let aH
be the number of sets of k edges in W ×W , such that each set produces a copy of H in
G∗(n, d). There are

(
n
m

)
ways to choose the vertices for the copy of H , and given this

choice, the number of copies of H depends only upon d. This implies that aH = O(nm).
From this we see that the expected number of copies of H in G∗(n, d) is

aHpk = O(nm−k) = O

(
1

ns

)
= O

(
1

n

)
,

for some s ≥ 1, completing the proof.

†Recall that for functions f, g : R → R we say that f is O(g), written f = O(g), if there exist constants
k ≥ 0 and c > 0 such that |f(x)| ≤ c|g(x)|, for all x ≥ k.
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Lemma 2.5.3. For any integer 1 ≤ l, the expected number of ordered pairs of l distinct
l-cycles in G∗(n, d) satisfies

lim
n→∞

E[Zl,n · (Zl,n − 1)] = lim
n→∞

E[(Zl,n)2] =

(
(d− 1)l

2l

)2

.

Proof. Let Y = (Zl,n)2 be the number of ordered pairs of distinct l-cycles in G∗(n, d). We
split Y into Y ′ + Y ′′, where Y ′ is the number of ordered pairs of vertex-disjoint l-cycles in
G∗(n, d), and Y ′′ is the number of ordered pairs of non-vertex-disjoint l-cycles. Note that
each unordered pair of non-vertex-disjoint l-cycles corresponds to a connected multigraph
H with more edges than vertices. Lemma 2.5.2 then tells us that the expected numbers of
such copies in G∗(n, d) is O( 1

n), i.e., it tends to zero as n tends to infinity. Thus, it suffices
to show that

lim
n→∞

E[Y ′] =

(
(d− 1)l

2l

)2

.

To see this, we use the same technique as we used in the proof of Lemma 2.5.1. Let al,l be
the total number of sets of ordered pairs of 2l pairwise disjoint edges, i.e., the sets of the
form ({e1, . . . , el}, {f1, . . . , fl}), such that there exists a sequence ((Wei)

l
i=1, (Wfi)

l
i=1)

with each Wi being unique and ei connecting Wei with Wei+1 , and fi connecting Wfi to
Wfi+1

. Then, by a similar argument as before, we get

al,l =
(n)2l(d(d− 1))2l

(2l)2
.

Since the probability that all 2l edges in such a pair appear in a random matching is p2l, we
see that

E[Y ′] = al,lp2l =
(n)2l(d(d− 1))2l

(2l)2(nd− 1) · · · (nd− 4l + 1)
∼
(

(d− 1)l

2l

)2

,

as n→∞, proving the lemma.

Generalizing the above results, we get that for any fixed k1, k2, . . . , km ∈ N0, we have

lim
n→∞

E[(Z1,n)k1(Z2,n)k2 · · · (Zm,n)km ] =

m∏
i=1

λkii ,

where λi = (d−1)i

2i . In order to show the desired result, we now introduce an approximation
theorem for joint Poisson distributions [8].

Theorem 2.5.4. Let Xi,1, Xi,2, . . . be a sequence of bounded random variables taking val-
ues in N0, for each 1 ≤ i ≤ m. If there exists λ1, λ2, . . . , λm ≥ 0 such that for any fixed
r1, r2, . . . , rm ∈ N0, it holds that

E[(X1,n)r1(X2,n)r2 · · · (Xm,n)rn ]→
m∏
i=1

λrii ,
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as n→∞. Then, as n→∞, P [X1,n, X2,n, . . . , Xm,n]→ P [Y1, Y2, . . . , Ym], where Yi is
an independent Poisson random variable with E[Yi] = λi, for each 1 ≤ i ≤ m.

From this theorem it follows that for fixed m ∈ N, we have

lim
n→∞

P [Z1,n, Z2,n, . . . , Zm,n] = P [Y1, Y2, . . . , Ym],

where the Yi’s are independent Poisson random variables with E[Yi] = λi, for each i. So
in particular we have that (Z1,n, Z2,n)→ (Y1, Y2), as n→∞. From this we can calculate

lim
n→∞

P [G∗(n, d) is simple] = lim
n→∞

P [(Z1,n, Z2,n) = (0, 0)]

= P [(Y1, Y2) = (0, 0)]

= P [Y1 = 0]P [Y2 = 0]

= e−λ1e−λ2

= e−(d2−1)/4.

As mentioned earlier, our main goal of this section is to show that almost every random
d-regular graph on n vertices is an expander, as n tends to infinity. In order to prove this,
we need a way to connect random d-regular graphs G(n, d) and graphs arising from the
configuration model G∗(n, d). This connection is established by noting that if G∗(n, d) has
a certain property with high probability, then so does G(n, d). Indeed, if P [G∗(n, d) 6∈
A]→ 0, as n→∞, for some property A, then, by the Bayes theorem, we get

lim
n→∞

P [G(n, d) 6∈ A] = lim
n→∞

P [G∗(n, d) 6∈ A, G∗(n, d) is simple]

P [G∗(n, d) is simple]
= 0. (2.3)

Here we have used that P [G∗(n, d) is simple] > 0, and that G∗(n, d) is uniformly dis-
tributed when G∗(n, d) is simple. Having this established, we are now ready to prove our
main theorem of this section, due to Bollobás [3].

Theorem 2.5.5. Let d ≥ 3, and let η ∈ (0, 1) be such that

24/d < (1− η)1−η(1 + η)1+η.

Then almost every d-regular graph has Cheeger constant at least (1 − η)d/2, as n → ∞,
that is,

lim
n→∞

P

[
h(G(n, d)) ≥ (1− η)d

2

]
= 1.

Proof. We have shown that

lim
n→∞

P [G∗(n, d) is simple] = e−(d2−1)/4,

so by (2.3), it suffices to prove that h(G∗(n, d)) ≥ (1 − η)d/2 almost surely. Let P [s, k]
denote the probability thatG∗(n, d) contains a set S on s vertices, such that there are exactly
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k edges, each of which has precisely one vertex in ∪i∈SWi, i.e., there are precisely k edges
between S and S. Let ks be the largest integer less than (1 − η)ds/2 such that ds − ks is
even. Notice that for 0 ≤ k ≤ ks, it follows that h(G∗(n, d)) < (1 − η)ds/2, since the
subset S satisfies

|∂S|
min{|S|, |S|}

=
k

s
.

Thus, by Boole’s inequality, we have

P

[
h(G∗(n, d) <

(1− η)d

2

]
≤
bn/2c∑
s=1

∑
0≤k≤ks

P [s, k],

where k must satisfy that ds− k is even. Here b·c denotes the floor function, i.e., bjc is the
greatest integer less than (or equal to) j. Since a configuration is a partition of a set of dn
elements into pairs, we deduce that

P [s, k] ≤
(
n

s

)(
ds

k

)(
d(n− s)

k

)
k!
N(ds− k)N(d(n− s)− k)

N(dn)
:= P0[s, k].

We briefly explain the terms in the above product. First, we have to choose s vertices from
the set of n vertices. Each of these vertices has d edges, due to regularity, and of these ds
edges we have to choose k. Each of the k edges must end in the complement of S, so we get
d(n−s) edges to choose from. Given all these choices, we get a number, say, r, of possible
ways to choose our set of k edges, and we now have k! ways to pick the edges. Last, we
have the number of ways to do the matchings divided by the total number of matchings, i.e.,
the number of matchings of ds− k elements multiplied by the number of matchings in the
complement of S, d(n− s)− k, and then divided by the total number of matchings N(dn).
Notice that for 0 ≤ k < k′ ≤ ks and 1 ≤ s ≤ bn/2c, we have P0[s, k] ≤ P0[s, k′]. Thus,

bn/2c∑
s=1

∑
0≤k≤ks

P0[s, k] ≤
bn/2c∑
s=1

sP0[s, ks],

where on the left hand side, k must satisfy that ds− k is even. So it suffices to show that

bn/2c∑
s=1

sP0[s, ks] = o(1)†.

To do this, we show that

1. P0[s, ks] = o(1), for 1 ≤ s ≤ 100,

2. P0[s, ks] = o(n−2) for 100 ≤ s ≤ n/2,
†Recall that for functions f, g : R → R we say that f is o(g), written f = o(g), if for all ε > 0 there

exists N ∈ N such that |f(x)| ≤ ε|g(x)|, for all x ≥ N . Note that if f = o(g), then f = O(g).
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The first statement is easily checked. For the second statement we note that there exists a
constant c > 0 such that

P0[s, ks] ≤ cP0[bn/2c, kbn/2c],

whenever, say, 100 ≤ s ≤ bn/2c. Hence it suffices to prove the statement for s = bn/2c.
To avoid unnecessary difficulties, we will now assume that n is even. We then have

P0[n/2, kn/2] =

(
n

n/2

)(
d(n/2)

kn/2

)2

(kn/2)!
N(d(n/2)− kn/2)2

N(dn)
.

Applying Stirling’s formula several times we deduce that

P0[n/2, kn/2] ≤ c(24/d(1− η)−(1−η)(1 + η)−(1+η))n/4d,

for some constant c > 0. Using our assumption on η, concludes to proof.

2.6 Literature

This chapter is based on [16], [17], [12], [23] and [3]. In particular, the section regarding
regular graphs is inspired by [12] and [16]. The section on l2-spaces is inspired by [23].
The last section concerning random graphs is [3], with great help from the lecture notes
by [8].





Chapter 3

Groups

In this chapter we introduce a way to view groups as graphs, and thus, by the previous
chapter, a way to view groups as metric spaces. We also discuss the notion of growth of a
group in terms of balls of increasing size. In the end of the chapter we study the notion of
unitary representations and cocycles. This will be useful in later chapters, where we want
to study analytic and geometric properties of groups. Recall that we assume all groups to
be discrete and finitely generated unless otherwise stated.

3.1 Cayley graphs

We start this section by associating a graph, called the Cayley graph, to a finitely gener-
ated discrete group. We will do this in a very natural way: each element of the group is
represented as a vertex in this graph, and the edges are obtained by applying each of the
generators to the element. One problem with this construction is that the graph seem to
depend a lot on the chosen generating set, but as we shall see, these graphs, considered as
metric spaces, are coarsely equivalent. However, before we introduce Cayley graphs, we
need to introduce the notion of word length in a group.

Definition 3.1.1. Let Σ ⊆ Γ be a finite (symmetric) generating subset of a group Γ. For
each g ∈ Γ, we define the word length of g with respect to Σ as

lΓΣ(g) = min{n ∈ N0 | g = s1s2 · · · sn, s1, . . . , sn ∈ Σ}.

We will sometimes write this as |g|, when the group and the generating subset are
clear from the context. Note that |g| = 0 if and only if g = e, where e is the identity
element of Γ. Furthermore, we may, in fact, always assume that Σ is symmetric, i.e.,
Σ = Σ−1 = {s ∈ Σ | s−1 ∈ Σ}, since if Σ is not symmetric, we consider Σ′ = Σ ∪ Σ−1,
which then will be a finite symmetric generating subset. We now show some properties of
the word length.

39
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Proposition 3.1.2. Let Σ ⊆ Γ be a finite generating subset. Then for all g, h ∈ Γ we have

|g| = |g−1| and |gh| ≤ |g|+ |h|.

Proof. We start by proving that |g−1| ≤ |g|. If g is the identity of Γ, the statement is
trivial. Hence we assume that g ∈ Γ \ {e}. Let g = s1 · · · sn, for some n ∈ N, where
si ∈ Σ. Since g−1 = (s1 · · · sn)−1 = s−1

n · · · s−1
1 we see that |g−1| ≤ n = |g|, due

to minimality in the definition of the word length. The other direction follows by noting
that g = (g−1)−1. To show the other property, let g, h ∈ Γ \ e with g = s1 · · · sn and
h = t1 · · · tm for some n,m ∈ N, where si, ti ∈ Σ. Now gh = s1 · · · snt1 · · · tm, and thus
|gh| ≤ n+m = |g|+ |h|.

This proposition tells us that the word length induces a metric d on the group, given by

d(g, h) = lΓΣ(g−1h) = |g−1h|,

called the word metric. The following proposition shows that this metric is left-invariant.

Proposition 3.1.3. Let Σ ⊆ Γ be a finite generating subset. For any γ, g, h ∈ Γ, we have

d(γg, γh) = d(g, h).

Proof. This is seen by the following computation

d(γg, γh) = |(γg)−1(γh)| = |g−1γ−1γh| = |g−1h| = d(g, h).

We now define the Cayley graph of a group.

Definition 3.1.4. Let Γ be a discrete group (not necessarily finitely generated), and Σ ⊆ Γ
a finite subset. The Cayley graph of Γ with respect to Σ is defined as Cay(Γ; Σ) := (V,E),
where V is the set of elements of Γ and E = {(g, s, gs) ∈ Γ× Σ× Γ | g ∈ Γ, s ∈ Σ}.

We note that the Cayley graph is |Σ|-regular, and if Σ generates Γ, then Cay(Γ; Σ)
is connected. Furthermore, the set of vertices V of Cay(Γ; Σ) comes naturally equipped
with the Γ-action of right (or left) translation, that is, for all g ∈ Γ and x ∈ V , we have
(gf)(x) = f(xg), where f : V → R is a map of the vertices. We saw in the previous
chapter how to put a metric on a connected graph, so a natural question is whether the path
metric and the word metric are equivalent in some sense. The following proposition shows
that this is indeed the case.

Proposition 3.1.5. Let Γ be a finitely generated group and Σ ⊆ Γ a finite generating
subset. Then the word metric dw and the path metric dp agree, i.e., dw(g, h) = dp(g, h),
for all g, h ∈ Γ.



3.1. Cayley graphs 41

Proof. Pick g, h ∈ Γ. If g = h, then it is clear, since both terms are zero. Thus assume that
g 6= h. We will start by showing that dw(g, h) ≤ dp(g, h). To do this, let π = (e1, . . . , en)
be a path of minimal length connecting g and h (such a path always exists since Cay(Γ; Σ)
is connected). Now e1 = (g, s1, gs1), for some s1 ∈ Σ, and if we write g1 = gs1, we can
write ei = (gi, si, gs1 · · · si), for i = 1, . . . n with gs1 · · · sn = h. This leads to the formula
g−1h = s1 · · · sn, which implies that

dw(g, h) = |g−1h| = |s1 · · · sn| ≤ n = l(π) = dp(g, h).

On the other hand, assume that dw(g, h) = m, for some m ∈ N. By definition, there exist
t1, . . . , tm ∈ Σ such that g−1h = t1 · · · tm, which is the same as h = gt1 · · · tm. This
string of generators induces a path, π′, consisting of at most m elements connecting g and
h. Hence we get

dp(g, h) = l(π′) ≤ m = |g−1h| = dw(g, h),

proving the other inequality.

We now turn our attention to some common examples of Cayley graphs.

Example 3.1.6. One of the most intuitive examples of Cayley graphs is the Cayley graph
of the group Γ = Z, with generating set Σ = {−1, 1}. This is a finite symmetric generating
subset of Z, and the associated Cayley graph can be seen in Figure 3.1 below.

−2 −1 e 1 2

Figure 3.1: The Cayley graph of Z.

Example 3.1.7. Another interesting example of a Cayley graph is for Γ = F2, the free
group on two generators labelled a and b. The generating set is {a, b}, but since we want a
symmetric generating set, we add the inverses of a and b to get Σ = {a, a−1, b, b−1}. The
Cayley graph can be seen in Figure 3.2 below.

We now show that the generating subset is, in some sense, unimportant.

Theorem 3.1.8. Let Γ be a finitely generated group, and let Σ,Σ′ ⊆ Γ be finite symmetric
generating subsets. Then (Γ, dΣ) and (Γ, dΣ′) are coarsely equivalent (as metric spaces).

Proof. To prove this, we show that the identity map id : (Γ, dΣ) → (Γ, d′Σ) is a coarse
equivalence in terms of Definition 1.2.8. Let d and d′ denote the metrics on (Γ, dΣ) and
(Γ, dΣ′), respectively. Note that for any fixed R > 0, the ball

Bd(e,R) := {g ∈ Γ : d(e, g) ≤ R} = {g ∈ Γ | g = s1 · · · sn, si ∈ Σ, n ≤ R}
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Figure 3.2: The Cayley graph of F2.

has size at most |Σ|R which is a finite number, and hence the image of this ball under the
identity is a finite set. Furthermore, due to the metric d being left-invariant, the size of the
ball stays fixed under left translations. This shows that the map is bornologous. Similarly,
the pull-back of a finite ball Bd′(e, S) is again finite, which shows that the map is proper.
This means that the identity map is a coarse map, and it follows that the identity map
id′ : (Γ, d′) → (Γ, d) is also a coarse map. This finishes the proof, since composition of
identities is close to the identity.

Note that this theorem tell us that, up to coarse equivalence, we may view a group as a
metric space, and we also have the following useful corollary:

Corollary 3.1.9. Let Λ ⊆ Γ be a subgroup of a finitely generated group Γ. The inclusion
map ι : Λ ↪→ Γ is a coarse embedding.

Since we can view groups as metric spaces, it makes good sense to introduce the notion
of functions of positive (negative) type of groups in relation to kernels of metric spaces.

Definition 3.1.10. Let Γ be a group and k : Γ×Γ→ R a kernel on Γ. We say that a function
f : Γ→ R is of positive (negative) type on Γ if the map defined by k(x, y) = f(x−1y), for
x, y ∈ Γ, is a kernel of positive (negative) type.

Recall that we can associate an `2-space to a discrete group Γ by

`2(Γ) :=

f : Γ→ C
∣∣ ‖f‖2 =

∑
g∈Γ

|f(g)|2
1/2

<∞

 .

Clearly `2(Γ) is a Hilbert space with orthonormal basis {δg : g ∈ Γ}, where for g ∈ Γ,

δg(s) =

{
1 g = s,
0 else.
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3.2 Growth of groups

In this section we study growth of groups. The rate at which groups grows gives us (often)
a lot of information about the group. For instance, a group which growth sufficiently slow
must be amenable. We will return to this topic in the next chapter, but first we need to study
growth of groups. Given two functions f, g : R → R with f = O(g), we write f � g.
The idea is that if f is O(g) then there exists a sufficiently large constant c such that f is
dominated by cg, for all sufficiently large x. Furthermore, if f is O(g) and g is O(f), we
say that the growth rate of f and g is equivalent, and we write f ∼ g. Note that if f ∼ g,
there exist positive constants c1, c2 and k ≥ 0 such that for all x ≥ k,

c1|f(x)| ≤ |g(x)| ≤ c2|f(x)|.

Remark 3.2.1. It is immediate from the calculation above that ∼ is an equivalence relation.

We are now ready to define the growth of a group.

Definition 3.2.2. Let Σ ⊆ Γ be a finite generating subset. We define the growth of Γ with
respect to Σ by the function γ : N0 → N given by

γ(n) = |{g ∈ Γ : |g| ≤ n}| = |B(n)|,

where B(n) denotes the ball of radius n (centered at the identity).

Note that the requirement that the ball is centered at the identity is only for convenience,
due to Σ generating Γ. Thus, to study the growth of a group, we look at balls of increasing
size, and count the elements in each of these balls. However, since we have defined growth
in terms of a generating set, we wish to show that two generating sets have the same growth
rate.

Proposition 3.2.3. Let Σ,Σ′ ⊆ Γ be two finite generating subsets of Γ. If γ, γ′ are the
associated growth functions, then γ ∼ γ′.

Proof. Set c = max{lΣ′(s) | s ∈ Σ}. Then lΣ′(g) ≤ clΣ(g), for all g ∈ Γ. To see this, let
g ∈ Γ be fixed, and suppose that lΣ(g) = lΣ(s1 · · · sn) = n, for some si ∈ Σ. Then

lΣ′(g) = lΣ′(s1 · · · sn) ≤
n∑
i=1

lΣ′(si) ≤ cn.

Thus, for g ∈ BΣ(n) we have that g ∈ BΣ′(cn), which show that γ � γ′. Similar calcula-
tions shows that γ′ � γ, and thus γ ∼ γ′.

This shows that we can identify the growth rate of the group, regardless of the chosen
generating subset. We will abuse notation a little, and write γ(Γ) for the growth type of the
group. We say that a group Γ has exponential growth if γ(Γ) ∼ exp(n), for some n ∈ N.
We show below that any finitely generated group has at most exponential growth, which
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leads to notion of subexponential growth. That is, if γ(Γ) � exp(n), but γ(Γ) 6∼ exp(n),
we say that it has subexponential growth. Further, we say that a group has polynomial
growth if γ(Γ) ∼ nd, for some integer d ≥ 0. Note in particular that if Γ has constant
growth, i.e., γ(Γ) ∼ 1, then Γ has polynomial growth. The following proposition relates
different types of growth.

Proposition 3.2.4. Let Γ be a finitely generated group. Then

(i) Γ is finite if and only if Γ has constant growth.

(ii) if Γ has polynomial growth, then Γ has subexponential growth.

(iii) Γ has at most exponential growth.

Proof. (i): Suppose Γ is finite. It is clear that 1 � γ(Γ) since γ(0) = 1. On the other
hand, we can pick c = |Γ|, which gives us γ(n) = |B(n)| ≤ c, for all n. This shows that
γ(Γ) � 1. Assume now that γ(Γ) ∼ 1. This means that there exists a constant c such that
γ(n) ≤ c, for all n, and this implies that |Γ| ≤ c <∞.
(ii): Let d ≥ 0 be an integer such that γ(Γ) ∼ nd. It is well known that nd

exp(n) → 0, as
n → ∞, which implies that there exists c ∈ N such that nd ≤ c exp(n). This shows that
γ(Γ) � exp(n). On the other hand, exp(n)

nd
→ ∞, as n → ∞, and thus there can not exist

integers c, n0 such that exp(n) ≤ cnd, for all n ≥ n0.
(iii): Let Σ ⊆ Γ be a symmetric finite generating subset. If Σ has only one element, then
Γ has only two elements, namely e and g, and hence it has subexponential growth by (ii).
Suppose Σ has k elements. Note that Γ has maximal growth if there are no relations among
the generators, i.e., Γ is the free group on k generators. The elements in the ball of radius
1 are the identity element and each of the generators, thus there are 1 + k elements. Each
time we increase the size of the ball by one, we get k − 1 new elements for each element g
with |g| = n. Now we can calculate the elements in a ball of radius n by the formula

γ(n) = 1 + k

n−1∑
i=0

(k − 1)i =
k(k − 1)n − 2

k − 2
, (3.1)

which shows that Γ grows exponentially.

Remark 3.2.5. The above proposition tells us that for any finitely generated group Γ, the
limit limn→∞ γ(n)1/n exists. Furthermore, if limn→∞ γ(n)1/n > 1, then Γ has exponential
growth, and if limn→∞ γ(n)1/n ≤ 1, then Γ has subexponential growth.

We now look at the growth type of some common groups.

Example 3.2.6. The growth type of the free group F2 on two generators is

γ(F2) ∼ 3n.

In particular it has exponential growth.
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Proof. Recall that we want the generating subset to be symmetric which means that it con-
tains 4 elements. Thus, by Equation 3.1, we see that

γ(n) = 1 + 4
n−1∑
i=0

(3)i =
4(3)n − 2

2
= 2 · 3n − 1 ∼ 3n.

Example 3.2.7. The growth type of the abelian group Z is

γ(Z) ∼ n,

in particular it has polynomial growth.

Proof. Let Σ = {−1, 1} be the generating subset. Then the ball of radius n is

BΣ(n) = {g ∈ Z | |g| ≤ n} = {−n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n}.

Thus γ(Z) = |BΣ(n)| = 2n+ 1 ∼ n.

We end this section by showing that any abelian group has polynomial growth. To do
this, we start with a lemma:

Lemma 3.2.8. Let Γ1 and Γ2 be two finitely generated groups, and let Γ = Γ1 × Γ2 be
their direct product. Then there exists a finite subset Σ ⊆ Γ which generates Γ.

Proof. Let Σ1 ⊆ Γ1 and Σ2 ⊆ Γ2 be finite generating subsets of Γ1 and Γ2, respectively.
We show that the set

Σ = (Σ1 × {e2}) ∪ ({e1} × Σ2)

is a finite generating subset of Γ. Clearly it is finite, since it is a union of finite sets. For
(g1, g2) ∈ Γ, there exist s1, . . . , sn ∈ Σ1 and r1, . . . , rm ∈ Σ2 such that g1 = s1 · · · sn and
g2 = r1 · · · rm, respectively. Thus we have

(g1, g2) = (s1 · · · sn, r1 · · · rm) = (s1, e2) · · · (sn, e2)(e1, r1) · · · (e1, rm),

which is a product of elements in Σ. This shows that Σ generates Γ, as wanted.

Note that this also shows us that for (g1, g2) ∈ BΓ
Σ(k) with n + m ≤ k, we have

BΓ
Σ ⊆ B

Γ1
Σ1

(k)×BΓ2
Σ2

(k).

Theorem 3.2.9. Let Γ = Γ1 × Γ2 be the direct product of two finitely generated groups.
Then γ(Γ) ∼ γ(Γ1)γ(Γ2).

Proof. Let Γ = Γ1 × Γ2 and let Σ ⊆ Γ be a finite generating subset. Given (g1, g2) ∈ Γ
with g1 = s1 · · · sn and g2 = r1 · · · rm, there exists a ball BΓ

Σ(k) containing (g1, g2) such
that n+m ≤ k. Since BΓ

Σ(n) ⊆ BΓ1
Σ1

(n)×BΓ2
Σ2

(n), it follows that γ(Γ) � γ(Γ1)γ(Γ2).
Conversely, for g1 ∈ BΓ1

Σ1
(k) and g2 ∈ BΓ2

Σ2
(k), we have (g1, g2) ∈ BΓ

Σ(2k), showing
that BΓ1

Σ1
(k) × BΓ2

Σ2
(k) ⊆ BΓ

Σ(2k). From this it follows that γ(Γ1)γ(Γ2) � γ(Γ), so we
conclude that γ(Γ) ∼ γ(Γ1)γ(Γ2).
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Corollary 3.2.10. Any finitely generated abelian group has polynomial growth.

Proof. If Γ is a finitely generated abelian group, it follows from the structure theorem for
finitely generated abelian groups (cf. [13, Theorem 2.1]) that Γ is isomorphic to th product
Zd × Zq1 × · · · × Zqn for some integers d, q1, . . . , qn. It follows that

γ(Γ) ∼ γ(Zd)γ(Zq1) · · · γ(Zqn) ∼ γ(Zd) ∼ γ(Z× · · · × Z) ∼ γ(Z) · · · γ(Z) ∼ nd,

since γ(Zqi) ∼ 1 and γ(Z) = n.

If Γ has neither polynomial nor exponential growth, we say that Γ has intermediate
growth. It was an open question for several decades, if groups with intermediate growth do
exist. Grigorchuk showed in 1983 in [9] that they do exist. Unfortunately, we do not have
the time to dive further into this subject.

3.3 Unitary representations and cocycles

In this section we introduce the notion of unitary representations of groups, and cocycles
of such unitary representations. To do this we briefly recall the notion of bounded linear
operators.

Definition 3.3.1. Let X and Y be normed vector spaces over the same field F (which for
us will be R or C). A map T : X → Y is called a linear operator, if

T (αx+ βy) = αT (x) + βT (y)

for all x, y ∈ X and α, β ∈ F .

Definition 3.3.2. A linear operator said to be bounded if

‖T‖ := sup{‖Tx‖ : ‖x‖ ≤ 1} <∞

Note that a bounded linear operator is continuous and T (0) = 0. Denote by B(H) the
set of bounded linear operators on a Hilbert space H .

Definition 3.3.3. A unitary operator is a bounded linear operator U : H → H on a Hilbert
space H satisfying UU∗ = I = U∗U , where I : H → H is the identity operator, and U∗

is the (Hilbert space) adjoint of U .

We denote by U(H) the set of unitary operators in B(H). Note that U(H) is a group
with respect to composition and identity element I . We say that two operators T, S :
H → H are unitarily equivalent if there exists a unitary operator U : H → H such
that U∗TU = S. We are now ready to introduce the notion of unitary representations.

Definition 3.3.4. Let Γ be a discrete group. A unitary representation of Γ on a Hilbert
space H is a group homomorphism π : Γ→ U(H) such that π(g) ∈ U(H), for all g ∈ Γ.
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Two important unitary representations of Γ on the associated Hilbert space `2(Γ) are
the following:

1. The left regular representation λ : Γ→ B(`2(Γ)), λg(δs) = δgs, for g, s ∈ Γ.

2. The right regular representation ρ : Γ→ B(`2(Γ)), ρg(δs) = δsg−1 , for g, s ∈ Γ.

Note that λ and ρ are unitarily equivalent. This can be seen by considering the unitary
operator U : `2(Γ) → `2(Γ) given by U(δg) = δg−1 , g ∈ Γ. Indeed, for any g, s ∈ Γ, we
have

(U∗ρgU)(δs) = (U∗ρg)(δs−1) = U∗(δs−1g−1) = δ(s−1g−1)−1 = δgs = λg(δs).

The above representations can be used to construct C∗-algebras associated to (discrete)
groups. There is an interesting interplay between analytic properties of groups and approxi-
mation properties of their associated C∗-algebras. These are very interesting topics, but we
will not pursue them here.

One way of constructing unitary representation of a discrete group Γ is by using positive
definite functions on Γ.

Definition 3.3.5. A function ϕ : Γ→ C is called positive definite if the matrix with entries
given by [ϕ(s−1t)]s,t∈F is a positive definite matrix for every finite set F ⊆ Γ.

Fix a positive definite function ϕ : Γ → C and recall that Cc(Γ) denotes the set of
compactly supported functions on Γ. Note that since we only work with discrete groups,
this is the same as finitely supported functions. Define 〈·, ·〉ϕ : Cc(Γ)× Cc(Γ)→ C by

〈f, g〉ϕ =
∑
s,t∈Γ

ϕ(s−1t)f(s)g(t),

for f, g ∈ Cc(Γ). It is clear that 〈·, ·〉ϕ is positive semidefinite, since ϕ is positive definite.
Let `2ϕ(Γ) be the Hilbert space completion of Cc(Γ)/{f∈Cc(Γ)|〈f,f〉ϕ=0}. Furthermore, we
write f̂ = [f ] ∈ `2ϕ(Γ), for all f ∈ Cc(Γ).

Definition 3.3.6. Let ϕ : Γ→ C be positive definite. Define λϕ : Γ→ B(`2ϕ(Γ)) by

λϕs (f̂) = ŝf , s ∈ Γ,

where (sf)(t) = f(s−1t) for all t ∈ Γ.

Then λϕ is a unitary representation satisfying λϕs λ
ϕ
t = λϕst, for all s, t ∈ Γ. Further-

more, the calculation

‖λϕs (f̂)‖2 =
∑
x,y∈Γ

ϕ(x−1y)f(s−1x)f(s−1y) =
∑

x′,y′∈Γ

ϕ((x′)−1y′)f(x′)f(y′) = ‖f̂‖2
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shows that λϕs is an isometry for all s. Moreover,

〈λϕs δ̂e, δ̂e〉ϕ = 〈δ̂s, δ̂e〉 = ϕ(s),

for s ∈ Γ, showing that we can recover ϕ from the inner product. From this we get the
following connection between positive definite functions on Γ and unitary representations
of the group.

Lemma 3.3.7. A map ϕ : Γ → C with ϕ(e) = 1 is positive definite if and only if there
exists a unitary representation λϕ of Γ on a Hilbert space Hϕ and a unit vector ξϕ ∈ Hϕ,
such that

ϕ(g) = 〈λϕ(g)ξϕ, ξϕ〉,

for all g ∈ Γ.

We now introduce the notion of cocycles of unitary representations.

Definition 3.3.8. A 1-cocycle b : Γ→ H on Γ with coefficients in a unitary representation
(π,H) of Γ is a function satisfying

b(st) = b(s) + π(s)b(t), s, t ∈ Γ.

Note that b(e) = 0, by setting s = t = e.

Lemma 3.3.9. If (π,H) is a unitary representation of Γ and ξ ∈ H , then

b(s) = ξ − π(s)ξ, s ∈ Γ

defines a 1-cocycle on Γ. Such a 1-cocycle is called a 1-coboundary.

Proof. Indeed, for all s, t ∈ Γ we have

b(s)+π(s)b(t) = ξ−π(s)ξ+π(s)(ξ−π(t)ξ) = ξ−π(s)π(t)ξ = ξ−π(st)ξ = b(st).

Let AffIso(H) denote the (sub)set of affine isometries ofH satisfying ϕ(ξ) = u(ξ)+ξ0,
for ξ ∈ H and some u ∈ U(H) and ξ0 ∈ H . Note that any element ϕ ∈ AffIso(H) is
an affine isometry of H , however the converse is not true in general. To see this, consider
H = C and ϕ(z) = z, z ∈ C. Clearly, ϕ is an affine isometry ofH , but ϕ 6∈ AffIso(H). On
the other hand, if H is a real Hilbert space, then AffIso(H) is the set of all affine isometries
of H .

Lemma 3.3.10. The map θ : Γ→ AffIso(H) is a group homomorphism of Γ into the group
AffIso(H) if and only if

θ(s)ξ = π(s)ξ + b(s), s ∈ Γ, ξ ∈ H,

for some unitary representation π(Γ)→ B(H) and some 1-cocycle b on Γ with coefficients
in (π,H).
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Proof. Suppose θ : Γ → AffIso(H) is a group homomorphism. Then for all s, t ∈ Γ and
ξ ∈ H , we have

θ(st)ξ = π(st)ξ + b(st).

Using that θ is a group homomorphism we get that

π(st)ξ+b(st) = θ(st)ξ = θ(s)θ(t)ξ = θ(s)(π(t)ξ+b(t)) = π(s)π(t)ξ+π(s)b(t)+b(s).

This shows that π(st) = π(s)π(t) and b(st) = π(s)b(t) + b(s), as wanted. The converse is
proved similarly.

We end this section with a result showing that 1-cocycles on the group Γ give rise to
positive definite functions on the group. For this we need the following result, known as
Schoenberg’s theorem, which we state without proof.

Theorem 3.3.11. Let k be a conditionally negative definite kernel on Γ. Then, for all γ > 0,
the kernel ϕγ : Γ× Γ→ R defined by

ϕγ(s, t) = e−γk(s,t),

for all (s, t) ∈ Γ× Γ, is positive definite.

As a consequence, we deduce the following corollary, which will be useful in Chapter 4.

Corollary 3.3.12. Let b : Γ → H be a 1-cocycle on Γ with coefficients in a unitary repre-
sentation (π,H) of Γ. Then, for any γ > 0, the function ϕbγ : Γ→ C defined by

ϕbγ(g) = e−γ‖b(g)‖
2
,

for all g ∈ Γ, is positive definite.

Proof. For any γ > 0, we observe that
√
γb is also a 1-cocycle on Γ. By the definition of a

1-cocycle, it follows that for all s, t ∈ Γ,
√
γ‖b(s)− b(t)‖ =

√
γ‖ − π(s)b(s−1t)‖ =

√
γ‖b(s−1t)‖. (3.2)

Hence the map kbγ(s, t) = γ‖b(s−1t)‖2, for (s, t) ∈ Γ × Γ is a conditionally negative
definite kernel on Γ (see Theorem 1.5.3).
By Schoenberg’s theorem, the map (s, t) 7→ e−k

b
γ(s,t) = e−γ‖b(s

−1t)‖2 , is a positive definite
kernel on Γ. Equivalently, by using 3.2, we see that ϕbγ is a positive definite function on Γ,
as wanted.

3.4 Literature

This chapter is written with inspiration from [6] and [5]. In particular the introduction to
Cayley graphs and growth of groups are from [6], and the sections regarding cocycles and
unitary representations are written with inspiration from [5].
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Analytic properties of groups

4.1 Amenability

In this section we investigate an important property of groups, called amenability. It was
first introduced by John von Neumann in connection with the Banach-Tarski paradox.
Amenability of a group ensures that no action of the group gives rise to this paradox.
We will introduce amenability the way John von Neumann originally did it, which is in
terms of the existence of a finite additive probability measure on the group. We will then
discuss equivalent characterisations of amenability (and show that these are in fact equiv-
alent). Last we will look at the examples from the previous chapter and decide whether or
not these groups are amenable. We start with the definition of a finitely additive probability
measure.

Definition 4.1.1. Let Ω be a set. A map µ : P(Ω)→ [0, 1], where P(Ω) denotes the power
set of Ω, is a finitely additive probability measure on Ω provided µ(Ω) = 1, and for any
disjoint subsets A,B ⊆ Ω we have µ(A ∪B) = µ(A) + µ(B).

We note that if Ω is finite, then the normalized counting measure, i.e., 1
|Ω|
∑

x∈Ω 1{x},
is a finitely additive probability measure. We are now ready to define amenability in terms
of the existence of such a measure.

Definition 4.1.2. Let Γ be a (discrete) group. We say that Γ is amenable if there exists a
finitely additive left-invariant measure µ : P(Γ)→ [0, 1] such that µ(Γ) = 1.

Another common definition of amenability is in terms of the existence of a left-invariant
mean on `∞(Γ), where

`∞(Γ) := {f : Γ→ C | ‖f‖∞ = sup
x∈Γ
|f(x)| <∞}.

A mean on a discrete group Γ is a non-negative functional m : `∞(Γ) → C satisfying
m(1Γ) = 1, where a non-negative functional m on `∞(Γ) is a functional that satisfies
m(f) ≥ 0, whenever 0 ≤ f ∈ `∞(Γ).
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Theorem 4.1.3. A discrete group Γ is amenable if and only if there exists a left-invariant
mean m : `∞(Γ)→ C.

Proof. It is easy to see that any amenable group has an left-invariant mean so we only need
to show the converse. Let m : `∞(Γ) → C be a mean and define µ(A) := m(1A), for all
A ⊆ Γ. Then µ is a finitely additive probability measure since µ(Γ) = m(1Γ) = 1, and for
disjoint A,B ⊆ Γ we have µ(A ∪ B) = m(1A∪B) = m(1A) + m(1B) = µ(A) + µ(B).
Furthermore, m is left-invariant if and only if µ is left-invariant. To see this, observe that
for all g ∈ Γ,

gµ(A) = gm(1A) = m(g−11A) = m(1g−1A) = µ(g−1A) = gµ(A).

We now introduce the Følner condition.

Definition 4.1.4. A discrete group Γ is said to satisfy the Følner condition if for every ε > 0
and all finite subsets S ⊆ Γ, there exists a finite subset F ⊆ Γ such that

max
s∈S

|sF ⊕ F |
|F |

< ε,

where A ⊕ B is the symmetric difference. A net (Fi)i∈I of finite subsets of Γ is called a
Følner net if

|sFi ⊕ Fi|
|Fi|

→ 0,

for all s ∈ Γ.

Remark 4.1.5. The Følner condition can easily be translated into the notion of graphs as
follows. Let Γ be a discrete group and S ⊆ Γ a finite subset. If Γ satisfies the Følner
condition, it means that for ε > 0, there exists a finite set F of vertices such that |∂F ||F | < ε.
Comparing this to the definition of expanders, we see that a group satisfying the Følner
condition is a somewhat bad expander. We will make this more precise later.

Definition 4.1.6. Let Γ be a discrete group. We say that Γ has an approximate invariant
mean if for any finite set S ⊆ Γ and any ε > 0, there exists f ∈ `1(Γ)1,+ such that

‖f − sf‖ < ε,

for all s ∈ S.

We next give several equivalent characterisations of amenability. In order to do so, we
need the following lemma:

Lemma 4.1.7. For every mean m on `∞(Γ), there exists a net (µi)i∈I in `1(Γ)1,+ such
that, for all f ∈ `∞(Γ), we have

lim
i

∑
g∈Γ

f(g)µi(g)

 = m(f).
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Proof.

We are now ready to prove our main theorem of this section.

Theorem 4.1.8. Let Γ be a discrete group. The following are equivalent:

(1) Γ is amenable.

(2) Γ has a left-invariant mean.

(3) Γ has an approximate invariant mean.

(4) Γ satisfies the Følner condition.

(5) Γ has a Følner net.

(6) There exists a net of unit vectors ξi ∈ `2(Γ) such that for all g ∈ Γ,

‖λgξi − ξi‖ → 0,

where λ is the left regular representation. That is, (ξi)i∈I is a net of almost invariant
unit vectors for λ.

(7) There exists a net (ϕi)i∈I of finitely supported positive definite functions on Γ such
that limi(ϕi(g)) = 1, for all g ∈ Γ.

Proof. We have already showed (1) ⇔ (2), so we proceed with (2) ⇒ (3). To this end,
let m be a left-invariant mean on `∞(Γ). By Lemma 4.1.7 there exists a net µi ∈ `1(Γ)1,+

such that µi converges to m in the weak ∗-topology. Given g ∈ Γ and f ∈ `∞(Γ) we have

(gµi)(f) =
∑
h∈Γ

(gµi)(h)f(h) =
∑
h∈Γ

µi(g
−1h)f(h) =

∑
s∈Γ

µi(s)f(gs) = µi(s
−1f),

which shows that (gµi)(f)
w∗→ m(s−1f). Now using that m is left-invariant we see that

µi− gµi
w∗→ 0 for all g ∈ Γ. Since µi− gµi ∈ `1(Γ) and `1(Γ)∗ is isometrically isomorphic

to `∞(Γ), we see that µi− gµi converges weakly in `1(Γ). Let now S = {s1, . . . , sn} ⊆ Γ
be a finite set. We have that the zero element belongs the weak closure of the convex set

(0, . . . , 0) ∈ conv({(µi − s1µi, . . . , µi − snµi) : i ∈ I})w,

and since the weak closure of a convex set in a Banach space is equal to the norm closure,
we have

(0, . . . , 0) ∈ conv{(µi − s1µi, . . . , µi − snµi) : i ∈ I}‖·‖1 .

Thus there exists a net (νi)i∈I in the convex hull conv({µi : i ∈ I}) satisfying

‖νi − sνi‖1 ≤
∑
s∈S
‖νi − sνi‖1 → 0,
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which means that for any ε > 0 there exists i ∈ I such that ‖νi − sνi‖1 < ε yielding the
desired result.
(3)⇒ (4). Let S ⊆ Γ be finite and f ∈ `1(Γ)1,+ with ‖f −sf‖ < δ for some δ > 0. From
Lemma 1.3.7 we know that there exists f̃ ∈ l1(Γ)1,+ such that

‖f̃ − f‖ < δ

for some n ∈ N. Applying the triangle inequality three times we get

‖f̃ − sf̃‖1 ≤ ‖f̃ − f‖1 + ‖f − sf‖1 + ‖sf − sf̃‖1 ≤ 3δ,

for all s ∈ S. Define A ⊆ Γ× N by

A = {(g, i) ∈ Γ× N | in ≤ f̃(g)}.

Note that |A| = n due to f̃ having norm 1. Thus we see that

∑
s∈S

|A⊕As|
|A|

=
∑
s∈S
‖f̃ − sf̃‖ ≤ |S|3δ. (4.1)

Let now Ai = A ∩ Γ× {i} be the i’th level set of A. Then we see that

∑
s∈S

|A⊕As|
|A|

=
∑
i∈N

∑
s∈S

|Ai ⊕Ais|
|A|

=
∑
i∈N

|Ai|
|A|

∑
s∈S

|Ai ⊕Ais|
|Ai|

.

To finish the proof, we assume, by contradiction, that

∑
s∈S

|Ai ⊕Ais|
|Ai|

> |S|3δ

for all i ∈ N. This implies by the above calculations that

∑
s∈S

|A⊕As|
|A|

=
∑
i∈N

|Ai|
|A|

∑
s∈S

|Ai ⊕Ais|
|Ai|

>
∑
i∈N

|Ai|
|A|

(|S|3δ) = |S|3δ,

since
∑

i∈N |Ai| = |A|. But this contradicts our estimate in (4.1), so choosing F = {g ∈
Γ | (g, i) ∈ Ai} satisfy the Følner condition. That is, given ε > 0 and some finite set S ⊆ Γ
we can choose δ = ε

3|S| to get the desired result.
(4) ⇒ (5). Let I = {E ⊆ Γ | E finite} × N. This is a partially ordered set with the order
given by (E,n) � (E′, n′) if and only if E ⊆ E′ and n ≤ n′. Since Γ satisfy the Følner
condition for each α = (E,n) ∈ I , we can find a finite subset Fα ⊆ Γ such that

max
s∈E

|sFα ⊕ Fα|
|Fα|

≤ 1

n
.
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Thus (Fα)α∈I is a Følner net. Indeed, given s ∈ Γ and ε > 0, set α0 = ({s}, n), where
n ≥ 1/ε. Then for any α = (E,m) with α0 � α, we have s ∈ E and 1/m ≤ ε (by the
definition of the partial order �), and hence,

|sFα ⊕ Fα|
|Fα|

≤ 1

m
≤ ε.

This proves the claim.
(5)⇒ (6). Let (Fi)i∈I be a net of non-empty finite subsets of Γ satisfying

|sFi ⊕ Fi|
|Fi|

→ 0,

for all s ∈ Γ. Consider ξi = |Fi|−1/21Fi . Then

‖ξi‖22 =
∑
g∈Γ

(
1√
|Fi|

1Fi(g)

)2

=
|Fi|
|Fi|

= 1,

and
λgξi − ξi = gξi − ξi = |Fi|

−1/2(1gFi − 1Fi).

Thus, we have

‖λgξi − ξi‖2 =
∑
s∈Γ

(
1√
|Fi|

(1gFi − 1Fi)(s)

)2

=
|gFi ⊕ Fi|
|Fi|

→ 0,

be assumption.
(6) ⇒ (7). Consider ϕi(g) = 〈λgξi, ξi〉 for g ∈ Γ. Note that ϕi(e) = ‖ξ‖2 = 1. Thus,
by Lemma 3.3.7 we have that ϕi is positive definite. Furthermore, we can rewrite ϕi as
ϕi(g) = 〈λgξi − ξi, ξi〉+ 〈ξi, ξi〉 = 〈λgξi − ξi, ξi〉+ 1. Hence, for all g ∈ Γ, we have

|ϕi(g)− 1| = |〈λgξi − ξi, ξi〉 ≤ ‖λgξi − ξi‖‖ξi‖ = ‖λiξi − ξi‖ → 0.

Unfortunately, ϕi is not (in general) finitely supported. However, since ξi ∈ `2(Γ), then for
all n ∈ N, there exists a finitely supported ξi,n ∈ `2(Γ) satisfying ‖ξi − ξi,n‖ < 1/n with
‖xii,n‖ = 1. Defining ϕi,n : Γ→ C by ϕi,n(g) = 〈λgξi,n, ξi,n〉, we get a finitely supported
function which converges pointwise to ϕi as n → ∞. To see that this is the case, observe
that ϕi,n(g) is non-zero only if both λgξi,n and ξi,n are non-zero. This means that

supp(ϕi,n) ⊆ {g ∈ Γ | ∃x, y ∈ supp(ξi,n) : gx = y} = {yx−1 | x, y ∈ supp(ξi,n)},

and the support of ξi,n is assumed to be finite. Let P1(Γ) be the set of all positive definite
functions ϕ on Γ with ϕ(e) = 1 and Cc(Γ) the set of finitely supported functions on Γ.
Now ϕi,n ∈ P1(Γ) by Lemma 3.3.7, and ϕi,n ∈ Cc(Γ) by construction, showing that
ϕi,n belongs to P1(Γ) ∩ Cc(Γ). Due to ϕi,n converges to ϕi pointwise, we get that ϕi ∈
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P1(Γ) ∩ Cc(Γ) and 1 ∈ P1(Γ) ∩ Cc(Γ), where 1 is the constant function with value 1, and
the closure is taken in the topology of pointwise convergence of functions. This shows us
that there exists a net (ψj)j∈J ∈ P1(Γ) ∩ Cc(Γ) such that ψj(g) → 1, for all g ∈ Γ as
wanted.
(7) ⇒ (1). The proof of this implication requires results about completely positive maps
and multipliers on C∗-algebras associated to the group Γ, which (unfortunately) is beyond
the scope of this thesis. We refer the reader to [5] for the necessary background and the
proof of Theorem 2.6.8 therein.

Now we are ready to consider some of the most commonly known groups and determine
if they are amenable or not. We start with the easiest example, which we almost have proved
already.

Example 4.1.9. Let Γ be a finite group. Then Γ is amenable.

Proof. Take F = Γ. Then F satisfies the Følner condition.

Example 4.1.10. Let Γ = Z. Then Γ is amenable.

Proof. Let Fn = {−n, . . . , 1, 0, 1, . . . , n}. Then Fn is a Følner sequence.

We now show a theorem connecting growth and amenability.

Theorem 4.1.11. A finitely generated group Γ with subexponential growth is amenable.

Proof. Let Γ be a finitely generated group with subexponential growth. We will use the sets
B(n) as Følner sets. From Remark 3.2.5, we know that lim |B(n)|1/n = c ≤ 1, for some
constant c. This means that for any ε > 0, there exists some kε ∈ N such that

|B(kε + 1)|
|B(kε)|

< 1 + ε.

Let now Σ ⊆ Γ be a finite generating subset of Γ, and define ni := k(1/i) for each i. Then
for each s ∈ Σ we have

|sB(ni)⊕B(ni)|
|B(ni)|

≤ 2(|B(ni + 1)| − |B(ni)|)
|B(ni)|

< 2(1 + 1
i )− 2→ 0,

as i→∞. Thus, for every g ∈ Γ, we get

|gB(ni)⊕B(ni)

|B(ni)|
→ 0,

as i → ∞, since any g ∈ Γ is a finite string of elements from Σ, i.e., g is of the form
g = s1 · · · sn with si ∈ Σ.

Corollary 4.1.12. All abelian groups are amenable.
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Proof. Recalling Corollary 3.2.10 we know that any abelian group has polynomial growth.
Next using Proposition 3.2.4, we see that any abelian group has subexponential growth.
Last we invoke Theorem 4.1.11 above to conclude the proof.

The last example is an example of group which is not amenable.

Example 4.1.13. The free group Γ = F2 on two generators is not amenable.

Proof. Let Σ = {a, a−1, b, b−1} and let A,A−1, B,B−1 denote the sets of all words start-
ing with a, a−1, b, b−1 respectively, i.e. A = {g ∈ Γ | g = ag′ : g′ ∈ Γ}. Suppose for
contradiction that for any ε > 0, we can find a finite, non-empty set F ⊆ Γ satisfying the
Følner condition. Notice that the set a · (F ∩ (A−1 ∪B ∪B−1)) = a · (F \A) is contained
in a · F and in A. This implies that

|a(F \A−1)| ≤ |F ∩A| − ε|F |,

which leads to
|F | − |F ∩A−1| ≤ |F ∩A| − ε|F |.

This hold for each of the four permutations, and summing over all four, we get

4|F | − |F | ≤ |F |+ 4ε|F |,

and for 0 < ε < 1/2 we obtain the contradiction.

In fact, any group containing a subgroup isomorphic to F2 is non-amenable. This fol-
lows from the fact that amenability passes to subgroups. There are many nice permanence
properties of amenability, but we will not pursue this further.

We end this section with a result relating amenability and property (A).

Theorem 4.1.14. The Cayley graph associated to an amenable, finitely generated group Γ
has property (A).

Proof. Let ε > 0 and R > 0 be given and pick δ < ε
ε+1 . For g ∈ Γ we choose S ⊆ Γ to be

S = B(g,R) = {h ∈ Γ | d(g, h) = |h−1g| ≤ R}.

This is a finite set, and since Γ is assumed amenable, we know that there exists finite F ⊆ Γ
satisfying the Følner condition with respect to S and δ. This lets us define Ag = gF ×{1}.
Thus for g, h ∈ Γ with d(g, h) ≤ R we have

|Ag ⊕Ah|
|Ag ∩Ah|

=
|gF ⊕ hF |
|gF ∩ hF |

=
|h−1gF ⊕ F |
|h−1gF ∩ F |

=
|h−1gF ⊕ F |

|F |
· |F |
|h−1gF ∩ F |

.

By assumption we have that |h
−1gF⊕F |
|F | < δ. For the other factor we note that

|h−1gF ∩ F |
F

=
|h−1gF ∪ F |

|F |
− |h

−1gF ⊕ F |
|F |

≥ 1− δ,
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where we have used that A ∩B and A⊕B are disjoint and A ∪B = (A⊕B) ∪ (A ∩B).
Putting it all together we obtain

|Ag ⊕Ah|
|Ag ∩Ah|

≤ δ

1− δ
< ε.

A natural question is whether any group, for which the Cayley graph has property (A), is
amenable. But the answer to this question is negative. To see this, we recall that any infinite
tree has property (A), and the Cayley graph of F2 is indeed such a tree, but Example 4.1.13
shows that F2 is not amenable.

4.2 Haagerup’s property (H)

We now introduce the Haagerup property, abbreviated property (H). This property is also
known as a-T-menability, a terminology due to Gromov. Haagerup [11] and Gromov [10]
independently introduced this property in different settings. The Haagerup property is a
weaker notion than amenability. The definition of property (H) we use here is due to Alain
Connes. First recall that given a discrete group Γ, we define

P1(Γ) := {ϕ : Γ→ C | ϕ is positive definite and ϕ(e) = 1}.

Furthermore, we define C0(Γ) to be the set of functions ϕ : Γ → C vanishing at infinity,
i.e., for any ε > 0, the set {g ∈ Γ | |ϕ(g)| ≥ ε} is finite.

Definition 4.2.1. We say that a finitely generated group Γ has property (H) if there exists a
net (ϕi)i∈I ⊆ C0(Γ) ∩ P1(Γ) such that ϕi converges pointwise to 1 on Γ.

Notice how this definition resembles one of the properties of Γ being amenable. In fact,
by Theorem 4.1.8, it follows that amenable groups have property (H). However, property
(H) is a priori a weaker notion than amenability, since the net is allowed to exist in C0(Γ)
and not just in C1(Γ). As we shall see later (see Example 4.2.5), property (H) turns out to
be strictly weaker than amenability.

There are several other equivalent definitions of property (H). One which is commonly
used is in terms of affine actions.

Definition 4.2.2. A 1-cocycle b : Γ → H is called proper if ‖bg‖ → ∞ as |g| → ∞, i.e.,
the set {g ∈ Γ | ‖bg‖ ≤ R} is finite, for all R > 0.

Note that if Σ ⊆ Γ is a finite generating set of Γ, it suffices to require that the set
{s ∈ Σ | ‖bs‖ ≤ R} is finite, for all R > 0.

Definition 4.2.3. Let Γ be a finitely generated group. A group homomorphism θ : Γ →
AffIso(Γ) is called proper if for all ξ ∈ H , ‖θ(g)ξ‖ → ∞, as |g| → ∞.

Theorem 4.2.4. Let Γ be a finitely generated group the following are equivalent:
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1. Γ has property (H).

2. Γ admits a proper 1-cocycle.

3. Γ admits a proper isometric action on a Hilbert space.

Proof. We will prove that 1⇔ 2 and 2⇔ 3.
(1) ⇒ (2). Since Γ has property (H), there exists a sequence (ϕn)∞n=1 ∈ C0(Γ) ∩ P1(Γ)
such that ϕn → 1 pointwise. Let {sn}∞n=1 be an enumeration of Γ and choose l1 ∈ N such
that |1− ϕl1(s1)| < 1

2 . Now choose l2 > l1 such that

|1− ϕl2(sk)| < 1
4 , k = 1, 2.

Continue this construction inductively by choosing ln > ln−1 such that

|1− ϕln(sk)| < 1
2n , k = 1, 2, . . . , n.

We define ψn = ϕln . Since ψn ∈ P1 for all n we see that ψn is positive definite and
ψn(e) = 1. Furthermore we have that

|1− ψn(sk)| < 1
2n , k = 1, . . . , n.

Now we use the GNS construction to obtain a triple (πn, Hn, ξn), where Hn is a Hilbert
space, πn : Γ → B(H) is a unitary representation and ξn ∈ Hn with ‖ξn‖ = 1 such that
for all g ∈ Γ,

ψn(g) = 〈πn(g)ξn, ξn〉,

Let H =
⊕∞

n=1Hn and define b : Γ → H by b(g) = (ξn − πn(g)ξn)∞n=1 ∈ H , for all
g ∈ Γ. Further we set π(g) =

⊕∞
n=1 πn(g). Note that for each n, bn(g) = ξn − πn(g)ξn

is a 1-coboundary with coefficients in (πn, Hn). Thus, b becomes a 1-cocycle provided it
is well defined, i.e., that

∑∞
n=1 ‖b(g)‖2 <∞, for all g ∈ Γ. To this end, we fix g ∈ Γ, and

see that

∞∑
n=1

‖bn(g)‖2 =
∞∑
n=1

(‖ξn‖2 + ‖πn(g)ξn‖2 − 2<〈πn(g)ξn, ξn〉)

=

∞∑
n=1

(2− 2<ψn(g)) ≤ 2

∞∑
n=1

|1− ψn(g)|.

Now we note that for g = sk, we get

∞∑
n=k

|1− ψn(sk)| ≤
∞∑
n=k

1

2n
<∞.

From this we see that
∑∞

n=1 ‖b(g)‖2 <∞, for all g ∈ Γ, and hence b is well defined.
It remains to show that b is proper. To do this, it suffices to show that for all N ∈ N, the set
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EN := {g ∈ Γ | ‖b(g)‖ ≤
√
N} is finite. Applying the calculations above, we see that for

any g ∈ EN ,

N ≥ ‖b(g)‖2 ≥
N∑
n=1

‖bn(g)‖2 = 2
N∑
n=1

|1−<ψn(g)‖ ≥ 2N − 2
N∑
n=1

<ψn(g).

This shows us that EN ⊆ {g ∈ Γ |
∑N

n=1<ψn(g) ≥ N
2 }. By construction of ψn,∑N

n=1<ψn(g) ∈ C0(Γ), so EN must be finite, as wanted.
(1) ⇐ (2). Suppose that b : Γ → H is a proper 1-cocycle. Then, by Corollary 3.3.12
(Schoenberg’s theorem), we see that e−γ‖b(g)‖ ∈ P1(Γ) ∩ C0(Γ). Letting γ → 0 we see
that Γ has property (H).
(2) ⇒ (3). Let b : Γ → H be a 1-cocycle for a unitary representation (π,H). By
Lemma 3.3.10 we get that θ : Γ→ AffIso given by

θ(g)ξ = π(g)ξ + b(g),

defines a group homomorphism. Furthermore, we have that for all ξ ∈ H

‖θ(g)ξ‖ = ‖π(g)ξ + b(g)‖ ≥ ‖b(g)‖ − ‖pi(g)ξ‖ = ‖b(g)‖ − ‖ξ‖.

By assumption, ‖b(g)‖ → ∞, as |g| → ∞, and the assertion follows.
(2) ⇐ (3). Let θ : Γ → AffIso be a group homomorphism. For ξ ∈ H and g ∈ Γ we get
from Lemma 3.3.10 that

θ(g)ξ = π(g)ξ + b(g),

for some unitary representation π → B(H) and some 1-cocycle b : Γ → H with coeffi-
cients in (π,H). Now using that θ is a proper isometric action, we see that for ξ = 0H , the
zero vector in H , we have ‖θ(g)0H‖ → ∞ as |g| → ∞, and this implies that

‖b(g)‖ = ‖θ(g)0H‖ → ∞,

as |g| → ∞, proving that b is a proper 1-cocycle.

As mentioned earlier, property (H) is a weaker notion than amenability. This can be
seen by the following example, which was proven by Haagerup in [11]:

Example 4.2.5. The free group Γ = F2 on two generators has property (H).

More precisely, Haagerup showed that the map s 7→ e−λ|s| belongs to C0(Γ) ∩ P1(Γ),
for all λ > 0 (see [11, Lemma 1.2]). It was his result that prompted Alain Connes to
introduce the Haagerup property.
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4.3 Kazhdan’s property (T)

Property (T) is a another interesting property for groups, introduced by Kazhdan in [14]. It
is in some sense the opposite of amenability and property (H) as we shall see.

We say that a net (ξi)i∈I ∈ H in some Hilbert space H is almost Γ-invariant if, for all
g ∈ Γ, we have

‖π(g)ξi − ξi‖ → 0.

Definition 4.3.1. We say that a discrete group Γ has property (T) if for every unitary repre-
sentation π : Γ→ B(H) with almost invariant unit vectors ξi ∈ H , i.e., ‖π(g)ξi− ξi‖ → 0
for all g ∈ Γ, there exists a non-zero ξ ∈ H such that π(g)ξ = ξ, for all g ∈ Γ.

Lemma 4.3.2. Let Γ be a discrete group. Then,

1. if Γ is amenable, then the left regular representation λ has almost Γ-invariant vectors.

2. if Γ is infinite, then λ has no non-zero Γ-invariant vectors.

Proof. 1. This follows from Theorem 4.1.8.
2. Assume, for contradiction, that there exists a non-zero ξ ∈ H , such that ξ is Γ-invariant
for λ. Then, for all g ∈ Γ, we have

〈ξ, δg〉 = 〈ξ, λ(g)δe〉 = 〈λ(g−1)ξ, δe〉 = 〈ξ, δe〉,

since ξ is Γ-invariant. This, however, implies that

‖ξ‖2 =
∑
g∈Γ

|〈ξ, δg〉| =
∑
g∈Γ

|〈ξ, δe〉| <∞,

which contradicts the fact that Γ is infinite.

As a consequence we obtain the following:

Remark 4.3.3. If Γ is amenable and has property (T), then Γ is finite.

Next we introduce the notion of a Kazhdan pair for a discrete group Γ. For a subset
S ⊆ Γ and a constant ε > 0 we say that ξ ∈ H is (S, ε)-invariant if ξ is non-zero and

sup
s∈S
‖π(s)ξ − ξ‖ < ε‖ξ‖.

Definition 4.3.4. A pair (S, ε) where S ⊆ Γ is a subset and ε > 0 is called a Kazhdan
pair for Γ if any unitary representation of Γ with a non-zero (S, ε)-invariant vector has a
non-zero Γ-invariant vector.

We say that Γ has property (T) with respect to a subset S ⊆ Γ if there exists ε > 0 such
that (S, ε) is a Kazhdan pair. The following proposition relates the two notions.
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Proposition 4.3.5. Let Γ be a discrete group. Then Γ has property (T) if and only if there
exist finite S ⊆ Γ and ε > 0 such that (S, ε) Kazhdan pair for Γ.

Proof. We prove the first part by contraposition. Suppose that there exists no finite S ⊆ Γ
and ε > 0 such that (S, ε) is a Kazhdan pair for Γ. Then by negating the definition of
a Kazhdan pair we see that for all finite sets S ⊆ Γ and ε > 0 there exists a unitary
representation (π,H) of Γ without any non-zero Γ-invariant vectors, but such that there
exists a unit vector ξ ∈ H with ‖π(s)ξ − ξ‖ < ε for all s ∈ S. Define

I := {(S, ε) | S ⊆ Γ is a finite set and ε > 0}.

We now turn I into a directed set by defining (S1, ε1) � (S2, ε2) if S1 ⊆ S2 and ε2 ≤ ε1.
By our assumption, we have that for all i = (Si, εi) ∈ I there exists a unitary representation
(πi, Hi) without any non-zero Γ-invariant vectors, but such that there exists unit vectors
ξi ∈ Hi with ‖πi(s)ξi − ξi‖ < εi for all s ∈ Si. Let now H =

⊕
i∈I Hi and define

π =
⊕

i∈I πi : Γ→ B(H). Then ξi ∈ H for all i ∈ I and ‖π(g)ξi−ξi‖ → 0 for all g ∈ Γ.
This means that (ξi)i∈I is a net of almost Γ-invariant unit vectors. Thus, to finish the proof
of the implication, we must show that there exists no non-zero Γ-invariant vectors, since
then Γ does not have property (T). To this end assume, for contradiction, that there exists a
non-zero Γ-invariant ξ ∈ H . Let Pi : H → Hi be the orthogonal projection and note that
πi(g)Pi = Piπ(g) for all g ∈ Γ and i ∈ I . This means that

πi(g)Piξ = Piπ(g)ξ = Piξ,

since ξ is Γ-invariant. This, however, shows that Piξ is Γ-invariant with respect to πi for
all i ∈ I , but πi does not have any non-zero Γ-invariant vectors which implies that Piξ
must be zero. Rewriting ξ as ξ =

∑
i∈I Piξ, we conclude that ξ = 0 which contradicts our

assumption of ξ being non-zero. This shows that Γ does not have property (T) as wanted.
Suppose now that there exists finite S ⊆ Γ and ε > 0 such that (S, ε) is a Kazhdan
pair for Γ. Let (ξi)i∈I be a net of almost Γ-invariant unit vectors for some given unitary
representation (π,H), i.e., ‖π(g)ξi− ξi‖ → 0 for all g ∈ Γ. Then for all g ∈ Γ there exists
ig ∈ I such that ‖π(g)ξi− ξi‖ < ε for all i � ig. Due to I being directed and S finite, there
exists i0 ∈ I (depending on S) such that i0 � is for all s ∈ S. Setting ξ0 = ξi0 we have
that ‖π(s)ξ0 − ξ0‖ < ε for all s ∈ S which means that ξ0 is a (S, ε)-invariant vector. Now
using that (S, ε) is a Kazhdan pair for Γ it follows that π has a non-zero Γ-invariant vector,
and hence we see that Γ has property (T) as wanted.

Remark 4.3.6. Using the notion of circumcenter of a bounded subset of a Hilbert space, one
can prove the following very useful fact: for any group Γ, the pair (Γ,

√
2) is a Kazhdan

pair. For a proof of this, see [5, Lemma 12.1.5]. Combining this with 4.3.5, we conclude
that finite groups have property (T).

Another application of the Kazhdan pair is illustrated by the following result:

Proposition 4.3.7. Suppose (S, ε) is a Kazhdan pair for Γ and that π : Γ → B(H) is a
unitary representation of Γ with the property that there exists a non-zero ξ ∈ H such that
π(s)ξ = ξ for all s ∈ S. Then π(g)ξ = ξ for all g ∈ Γ, i.e., ξ is in fact Γ-invariant.
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Proof. Let H0 be the set of all Γ-invariant vectors in H , and set K = H⊥0 . Note that both
H0 and K are invariant under π, i.e., π(g)H0 ⊆ H0 and π(g)K ⊆ K for all g ∈ Γ. Let π1

be the restriction of π to K, i.e., π1 = π|K : Γ→ B(K). Then, by construction, π1 has no
non-zero Γ-invariant vectors. This means that for all η ∈ K, there exists some s ∈ S such
that

‖π1(s)η − η‖ ≥ ε‖η‖.

Now rewrite ξ = ξ0 + η for some ξ0 ∈ H0, η ∈ K. Then we see that for all s ∈ S,

ξ = π(s)ξ = π(s)ξ0 + π(s)η = ξ0 + π(s)η.

This implies that π(s)η = η for all s ∈ S and hence η = 0. Thus ξ = ξ0 and hence ξ is
Γ-invariant as wanted.

We now introduce the notion of the Kazhdan constant associated to a finite subset of a
group Γ with property (T). This concept will be useful for us, when we construct expanders
in Section 5.4. We begin with the following more general definition:

Definition 4.3.8. Let Γ be a discrete group and S ⊆ Γ a finite set. We define the Kazhdan
constant kS by

kS := inf
(π,H)

inf
ξ∈H,
‖ξ‖=1

max
s∈S

(1−<〈π(s)ξ, ξ〉),

where the infimum is taken over all unitary representations (π,H) having no non-zero Γ-
invariant vectors.

Note that kS ≥ 0. This leads us to our next result.

Lemma 4.3.9. Let Γ be a discrete group and S ⊆ Γ a finite set.

• If (S, ε) is a Kazhdan pair for some ε > 0, then kS ≥ ε2/2.

• For any unitary representation (π,H) of Γ with no non-zero Γ-invariant vectors, and
for any unit vector ξ ∈ H , there exists s ∈ S such that

1−<〈π(s)ξ, ξ〉 ≥ kS .

Proof. Both statements follows from the estimate

‖π(s)ξ − ξ‖2 = 〈π(s)ξ − ξ, π(s)ξ − ξ〉 = 2(1−<〈π(s)ξ, ξ〉).

Remark 4.3.10. If Γ has property (T) with respect to a finite set S ⊆ Γ, then kS > 0 and,
moreover, (S,

√
2kS) is a Kazhdan pair.

Our next result shows us that any discrete group with property (T) is finitely generated.

Theorem 4.3.11. Any discrete group with property (T) is finitely generated.
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Proof. Let (S, ε) be a Kazhdan pair for Γ. Since Γ has property (T), Proposition 4.3.5 tells
us that such a pair exists with S ⊆ Γ finite. We wish to show that S is in fact a generating
set for Γ. Denote by Γ0 the set generated by S, and consider Γ/Γ0 = {gΓ0 : g ∈ Γ}. Let
π : Γ→ B(`2(Γ/Γ0)) be the unitary representation defined by

π(g)δsΓ0 = δgsΓ0 ,

for g, s ∈ Γ. Consider the vector ξ = δΓ0 ∈ `2(Γ/Γ0) and note that for all s ∈ S,

π(s)ξ = π(s)δΓ0 = δsΓ0 = δΓ0 = ξ,

since s ∈ S ⊆ Γ0. Using Theorem 4.3.7 we see that π(g)ξ = ξ for all g ∈ Γ. This implies
that gΓ0 = Γ0 for every g ∈ Γ which shows that Γ0 = Γ as wanted.

Lemma 4.3.12. Let N C Γ be a normal subgroup of Γ. If Γ has property (T), then so does
the quotient Γ/N .

Proof. Let (ξi)i∈I ∈ H be a net of almost Γ/N-invariant vectors for some unitary represen-
tation (π̃, H) of Γ/N . Our goal is to show that there exists ξ ∈ H such that π̃(s)ξ = ξ, for
all s ∈ Γ/N . Define π : Γ→ B(H) by π = π̃ ◦ q, where q : Γ→ Γ/N is the quotient map.
Then π is a unitary representation (since π is the composition of group homomorphisms)
of Γ, and (ξi)i∈I is a net of almost invariant Γ vectors. Using that Γ has property (T), we
know that there exists ξ ∈ H such that π(g)ξ = ξ for all g ∈ Γ. Thus, for any s ∈ Γ/N , we
can choose a representative g ∈ Γ such that q(g) = s. From this, we see that

ξ = π(g)ξ = π̃(q(g))ξ = π̃(s)ξ

for all s ∈ Γ/N , showing that Γ/N has property (T).

In order to establish connections between property (T) and property (H), we state (with-
out proof) the following important equivalent definition of property (T) in terms of positive
definite functions on the group (for a proof, see [5, Theorem 12.1.7]).

Theorem 4.3.13. Let Γ be a discrete countable group. Then Γ has property (T) if and only
if any sequence of positive definite functions on Γ that converges pointwise to the constant
function 1, converges uniformly on Γ.

Combining this with the definition of property (H), we obtain the following result.

Corollary 4.3.14. A countable discrete group Γ having both property (H) and property (T)
is finite.

We end this section by discussing some concrete examples.

Example 4.3.15. The group Γ = Zn, n ≥ 1, does not have property (T).

Proof. We know from Corollary 4.1.12 that Zn is amenable, and clearly, Zn is not finite for
n ≥ 1. Thus, it follows from Remark 4.3.3 that Zn does not have property (T).
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Example 4.3.16. The group Γ = Fn, n ≥ 2, is non-amenable, but does not have property
(T).

Proof. It is a well-known fact that Zn is a quotient of Fn, and combining this with the result
of Lemma 4.3.12, we conclude that Fn cannot have property (T). Another way to prove that
Fn does not have property (T), is to recall that Fn has property (H), but is infinite.

It is an important result of Kazhdan [14] that the group SLn(Z), n ≥ 3 has property
(T). These are all residually finite groups. We refer the reader to [22] for a nice proof of
Kazhdan’s result. These groups will play an important role in connection with a concrete
construction of expanders. We discuss this construction in section 5.4. Note also that the
case n = 2 is different, since the group SL2(Z) does not have property (T).

4.4 Literature

This chapter is written with inspiration from [5].





Chapter 5

Box spaces

5.1 Introduction to box spaces

In this chapter we introduce the notion of box spaces. These are of great interest for us,
since they give us ways of constructing spaces without property (A). We first show that a
box space of a finitely generated group Γ has property (A) if and only if Γ is amenable.
The other important result we will show is that box spaces of residually finite groups with
property (T) are in fact families of expanders. This result has a lot of interest to us, since
it gives us a way to explicit construct a family of expanders. We start with some notation.
Let Γ be a finitely generated, residually finite group, i.e. the exists a finite (symmetric)
subset Σ ⊆ Γ generating Γ, and for each non-trivial g ∈ Γ there exists a homomorphism
h to a finite group with h(g) 6= e. Note that this means that the intersection of all finite
index normal subgroups of a residually finite group Γ is trivial. Let (Ni)i≥1 be a decreasing
sequence of finite index normal subgroups with trivial intersection, i.e., Ni ⊆ Nj if i ≥ j
and with

⋂∞
i=1Ni = {e}. We call such a sequence a filtration of Γ.

Definition 5.1.1. The box space �(Ni)Γ of a residually finite group Γ with respect to the
filtration (Ni), is the coarse disjoint union

⊔
Γ/Ni.

The coarse structure of the box space�(Ni)Γ is independent of the generating set Σ, but
it may depend on the sequence (Ni). Thus we have to be careful when we are dealing with
box spaces. Given a box space of a group Γ, it can be thought of as a family of finite Cayley
graphs which converges to the Cayley graph of Γ. This can be justified by the following
result which shows that the geometry of the finite quotients approximates, in some sense,
the geometry of the group.

Proposition 5.1.2. Let �(Ni)Γ be the box space of a residually finite group Γ. Then for all
R > 0, there exist isometries πi : BΓ(e,R)→ BΓ/Ni

(e,R), for all i ≥ i0, for some i0 ∈ N.

Proof. Let Γ be a residually finite group and letNi ⊆ Γ be a filtration. EachNi is the kernel
of the quotient homomorphism πi, and πi is an isomorphisms when restricted to Γ/Ni. Since
the intersection of the subgroups is trivial, the kernels satisfy lim∞i=1 ker(πi) = {e}. Let

67
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R > 0 be given and consider the finite ball BΓ(e,R). For each g1, g2, . . . , gn ∈ BΓ(e,R)
we can pick i1, i2, . . . , in ∈ N such that πi(gi) 6∈ ker(πi). For i0 = max{i1, i2, . . . , in}
we see that πi0(BΓ(e,R)) ' BΓ/Ni

(e,R), and thus πi : BΓ(e,R) → BΓ/Ni
(e,R) is an

isometry for all i ≥ i0.

Note that for any finite subset S ⊆ Γ there exists an R > 0 such that S ⊆ BΓ(e,R).
This implies that for all i ≥ i0 the quotient maps are isometries when restricted to S.

5.2 Property (A)

In this section we prove that a box space of a group has property (A) if and only if the group
is amenable. Before we can do that, we need a few results.

Theorem 5.2.1. Let Γ be an amenable group, and let ε,R > 0 be given. Then for any
S > 0 the following are equivalent:

1. There exists a map ξ : Γ→ `1(Γ)1,+ such that ‖ξx− ξy‖ < ε when d(x, y) ≤ R and
supp(ξx) ⊆ B(x, S).

2. There exists a function f ∈ `1(Γ)1,+ such that ‖f − gf‖ < ε when |g| ≤ R and
supp(f) ⊆ B(e, S).

This theorem tells us that given constants ε and R, then any S > 0 satisfies the condi-
tions for the Higson-Roe function ξ and the approximate invariant mean f simultaneously.

Proof. Suppose there exists ξ : Γ → `1(Γ)1,+ satisfying the above. Since Γ is amenable,
there exists a left-invariant mean m : `∞(Γ)→ R. We define f : Γ→ R by

f(g) = m(ξx(xg)),

for all g ∈ Γ. This is a well defined function, since ξx(xg) ≤ 1, for all x, g ∈ Γ, and
ξx(xg) ∈ `∞(Γ) as a function of x. First we note that if

d(x, xg) = |g−1x−1x| = |g−1| = |g| > S,

then ξx(xg) = 0, for all x ∈ Γ, and thus f(g) = 0 whenever |g| > S. This implies that

‖f‖ =
∑
g∈Γ

f(g) =
∑

g∈B(e,S)

m(ξx(xg)) = m(1Γ) = 1,

which shows that f ∈ `1(Γ)1,+. We now have to show that f satisfies ‖f − hf‖ < ε, when
|h| ≤ R. To this end, let h ∈ Γ satisfy |h| ≤ R, and note that

m(ξx(xh−1g)) = m(ξxh((xh)h−1g)) = m(ξxh(xg)).
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Thus we get

‖f − hf‖ =
∑
g∈Γ

|f(g)− f(h−1g)|

=
∑

g∈B(e,S)∪hB(e,S)

|m(ξx(xg))−m(ξx(xh−1g))|

=
∑

g∈B(e,S)∪hB(e,S)

|m(ξx(xg)− ξxh(xg))|

≤ m

 ∑
g∈B(e,S)∪B(h,S)

|ξx(xg)− ξxh(xg)|


< m(ε1Γ) = ε.

On the other hand, suppose that f ∈ `1(Γ)1,+ satisfies the above. Set ξg = g · f for all
g ∈ Γ. Then ξ : Γ→ `1(Γ)1,+ and we see that supp(ξx) ⊆ B(x, S) and

‖ξx − ξy‖ = ‖xf − yf‖ = ‖f − x−1yf‖ < ε,

whenever |x−1y| = d(x, y) ≤ R as wanted.

We are now ready to show the result relating amenability, box spaces and property (A).

Theorem 5.2.2. Let �(Ni)Γ be the box space of a residually finite group Γ. Then �(Ni)Γ
has property (A) if and only if Γ is amenable.

Proof. First assume that Γ is amenable, and let ε,R > 0 given. Then there exists an
approximate invariant mean f ∈ l1(Γ)1,+ such that

‖f − gf‖1 < ε,

for all |g| ≤ R, and there exists S > 0 such that supp(f) ⊆ B(e, S). By Proposition 5.1.2
there exists i0 ∈ N such that BΓ(e, 2(S + R)) is isometric to BΓ/Ni

(e, 2(S + R)) for all
i ≥ i0. Let ϕi : BΓ/Ni

(e, 2(S + R)) → BΓ(e, 2(S + R)) be this isometry. For all i ∈ N,
we define fi ∈ `1(Γ/Ni)1,+ by

fi(s) =


f(ϕi(s)) s ∈ BΓ/Ni

(e, 2(S +R), i ≥ i0,
0 s 6∈ BΓ/Ni

(e, 2(S +R)), i ≥ i0,
1
|Γ/Ni|

i < i0.

It is easy to see that fi is an approximate invariant mean on Γ/Ni for the given ε and R, and
applying Theorem 5.2.1 and Theorem 1.3.8 we conclude that �(Ni)Γ has property (A).
Suppose now that�(Ni)Γ has property (A). This means that for given ε,R > 0, there exists
ξ : �(Ni)Γ→ `1(�(Ni)Γ)1,+ such that for any S > 0, we have

‖ξx − ξy‖ < ε,
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whenever d(x, y) ≤ R. From Lemma 1.3.9 we get that for each i ∈ N, there exists a
Higson-Roe function ξ satisfying the conditions for the same ε,R and S. Since each Γ/Ni
is finite, we know from Example 4.1.9 that each Γ/Ni is amenable, and applying Theo-
rem 5.2.1, we get the existence of functions fi ∈ `1(Γ/Ni)1,+ satisfying ‖f − gf‖ < ε,
whenever |g| ≤ R and with supp(fi) ⊆ B(e, S), for all i ∈ N. From Proposition 5.1.2
we know that there exists i0 ∈ N such that the ball BΓ/Ni

(e, 2(S + R)) is isometric to
BΓ(e, 2(S +R)) via an isometry ϕi, for all i ≥ i0. We define

f(g) =

{
fi(ϕ

−1(g)) g ∈ BG(e, 2(S +R)),
0 g 6∈ BG(e, 2(S +R)).

Then f is an approximate invariant mean, as wanted.

5.3 Property (H)

In this section we show that if the box space of a group coarsely embeds into a Hilbert
space, then the group has property (H).

Theorem 5.3.1. Let Γ be a finitely generated, residually finite group. If the box space
�(Ni)Γ coarsely embeds into a Hilbert space, then Γ has property (H).

Proof. Let (Ni)i≥1 ⊆ Γ be a filtration of Γ and set Xi = Γ/Ni. Let d be the metric on
�(Ni)Γ induced by di, the metric on each component Xi. By assumption, �(Ni)Γ coarsely
embeds into a Hilbert space, and thus by Theorem 1.5.4 we know that there exists a sym-
metric, normalized kernel of negative type k on �(Ni)Γ. This kernel induces negative type
kernels ki : Xi ×Xi → R and uniformly non-decreasing functions ρ−, ρ+ : R+ → R+ as
in Definition 1.2.10 such that

ρ−(di(x, y)) ≤ ki(x, y) ≤ ρ+(di(x, y)),

for all i simultaneously. We now define averaging functions fi on each Xi by

fi(x
−1y) =

1

|Xi|
∑
g∈Xi

ki(gx, gy).

Clearly, each fi is a negative type function satisfying the same estimates

ρ−(di(x, y)) ≤ fi(x−1y) ≤ ρ+(d(i(x, y)).

Let f̂i = fi ◦ πi be the lift of fi to Γ, where πi : Γ → Xi is the quotient map. Recall
from Proposition 5.1.2 that for any finite subset S ⊆ Γ, there exists i0 ∈ N such that
each πi is an isometry, for all i ≥ i0, when restricted to S. Thus for x, y ∈ S we have
that f̂i(x−1y) ≤ ρ+(d(x, y)), for almost all i. Thus we can pick a subsequence such that
f̂i converges pointwise to a function f̂ : Γ → R. Since each f̂i is of negative type, the
pointwise limit f̂ is also of negative type, and thus f̂ satisfies

ρ−(d(x, y)) ≤ f̂(x−1y).

By Theorem 4.2.4, this shows that Γ has property (H).
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Remark 5.3.2. Note that the converse of this theorem is not true. To see this, we assume for
contradiction that the converse is true. LetH be a quotient of some group Γ, i.e., there exists
a surjective homomorphism ϕ : Γ→ H . Then the box space �(Ni)H coarsely embeds into
�(Ni)Γ. Due to Haagerup’s result [11], we know that the free group on n generators has
property (H) for all n. Thus, if we set Γ = Fn, we deduce that the box space of any
finitely generated group can be coarsely embedded into some Hilbert space. However, in
the next section we show that the box space of groups with property (T), which are finitely
generated by Theorem 4.3.11, give rise to a family of expander graphs. Combining this
with Theorem 2.4.4, we see that there exists finitely generated groups with property (H),
but such that the box space do not coarsely embed into any Hilbert space.

5.4 Property (T)

In this section, we investigate the box spaces of residually finite groups with property (T).
As mentioned before, examples of such groups include SLn(Z), for n ≥ 3. In particular
we show that box spaces of residually finite groups with property (T) are expanders. In
order to prove this, we first need a result by Alon and Milman [1]:

Theorem 5.4.1 (Alon-Milman). If Γ has property (T ) with respect to a finite symmet-
ric generating subset Σ then for every N C Γ of finite index, the Cayley graph G =
Cay(Γ/N; Σ) is a (n, d, ε)-expander, where n = |Γ/N|, d = |Σ| and 0 < ε = kΣ is the
Kazhdan constant.

Proof. Let S ⊆ Γ/N . We may assume |S| ≤ n
2 by picking S instead of S if necessary. Let

|Σ| = d and recall that Cay(Γ/N; Σ) is a finite, connected d-regular graph and that the set
of vertices comes naturally equipped with the Γ action of right translation. Let f ∈ `20(V )
be given by

f(x) = 1S(x)|S| − 1S(x)|S|.

Recall here that `2(V ) is a real Hilbert space and that `20(V ) is the orthogonal complement
to the kernel of 4, which is a unitary representation of Γ with no Γ-invariant vectors. The
weighted `2-norm of f is then

‖f‖22 =
1

d

∑
x∈V

dxf(x)2 =
1

d
d(|S|2|S|+ |S|2|S|) = |S||S|(|S|+ |S|) = |S||S|n.

Now for s ∈ Σ we have

|(sf)(x)− f(x)| =
{
|S|+ |S| x ∈ S, xs ∈ S or xs ∈ S, x ∈ S,

0 x, xs ∈ S or x, xs ∈ S.

If we rewrite ∂S as
⋃
s∈Σ ∂sS, where ∂sS = {(x, y) ∈ ∂S | y = xs ∨ y = xs−1}. This

gives us

|(sf)(x)− f(x)| =
{
|S|+ |S| s ∈ ∂sS,

0 else,
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which leads to
‖sf − f‖22 = (|S|+ |S|)2|∂sS| = n2|∂sS|,

so that |∂sS| = ‖sf−f‖2
n2 . Using that Γ has property (T) we know from Lemma 4.3.9 that

there exists some s ∈ Σ such that ‖sf − f‖22 ≥ 2ε‖f‖22, and thus

|∂S|
|S|
≥ |∂sS|
|S|

=
‖sf − f‖22
|S|n2

≥ 2ε‖f‖22
n2|S|

=
2ε|S||S|n
n2|S|

= ε
2|S|
n
≥ ε,

since 2|S| ≥ n. As S was arbitrary, it will in particular hold for S satisfying the definition
of the Cheeger constant, which completes the proof.

We get the following corollary:

Corollary 5.4.2. Given a discrete residually finite group Γ with property (T), any box space
of Γ is a family of expanders.

The reader may note from the proof of Theorem 5.4.1 that property (T) is, in fact, too
strong a requirement for the box spaces to be expanders. A weaker condition, introduced
by Lubotzky and Zimmer in [18], called property (τ ), turns out to be sufficient. We will
study this property in the next section.

5.5 Property (τ )

As mentioned above, property (τ ) is a weaker notion than property (T). We begin this
section with the definition of property (τ ), cf. [16].

Definition 5.5.1. Let Γ be a finitely generated discrete group, Σ ⊆ Γ a (symmetric) gener-
ating subset, and L = {Ni}i∈I a collection of finite index normal subgroups. We say that
Γ has property (τ ) (with respect to L), if for every unitary representation π : Γ → B(H),
with Ni ⊆ ker(π) for some i ∈ I , without any non-zero Γ-fixed vectors, and for every
0 6= ξ ∈ H , there exists s ∈ Σ such that

‖π(s)ξ − ξ‖ > ‖ξ‖ε,

for some ε > 0. If L is the collection of all finite index normal subgroups, we say that Γ
has property (τ ).

With this definition, we have the following important theorem (for a proof see [16,
Theorem 4.3.2]):

Theorem 5.5.2. Let Γ be a finitely generated discrete group, Σ ⊆ Γ a symmetric generating
subset, andL = {Ni}i∈I a collection of finite index normal subgroups. Then Γ has property
(τ ) with respect to L if and only if �LΓ is a family of expander graphs.
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We do not prove this theorem here. Instead, we give some intuition on how property (τ )
relates to property (T). First note that if Γ has property (T), then clearly Γ also has property
(τ ). However, a group Γ has property (T) if for all unitary representations, the trivial rep-
resentation is isolated, whereas for property (τ ), we only require the trivial representation
being isolated with respect to the unitary representations which factors through the quo-
tients Γ/Ni. Notice that this is exactly how we constructed the expander graphs from groups
with property (T). This justifies the claim that property (T) is a priori too strong a property
when constructing expanders.

We now give an example of a group which does not have property (T), but does have
property (τ ) with respect to a certain family of finite index normal subgroups.

Example 5.5.3. Let Γ = SL2(Z) and let Γ(m) = ker(SL2(Z) → SL2(Z/mZ) be the
congruence subgroup, where m ∈ N. It is known that Γ neither has property (T), nor
property (τ ), however, Γ has property (τ ) with respect to the family of congruence sub-

groups Γ(p), where p is a prime, as shown in [21]. Thus, if we let a =

(
1 ±1
0 1

)
and

b =

(
1 0
±1 1

)
be the generators of SL2(Z), we deduce from Theorem 5.5.2 that the

Cayley graphs Cay(SL2(Z/pZ); {a, b}) with respect to these generators form a family of
expanders.

For an overview of recent developments concerning property (τ ) and applications to
expander graphs, we refer the reader to the lecture notes by Breuillard [4].

5.6 Literature

This chapter is written with inspiration from [20],[25],[16],[17],[19],[15] and [23]. In par-
ticular, the introduction to box spaces has benefited from [15]. The section regarding prop-
erty (A) is mainly based on [19]. The section on property (H) has in particular used [25]
and [20]. The section on property (T) is mainly based on [23] and [16]. The last section,
regarding property (τ ) has used [16] and [17].
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