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Abstract

Kazhdan’s Property (T ) is a fundamental notion in the study of groups and has applications
in a number of different fields of mathematics. It is initially defined in terms of unitary
representations on Hilbert spaces, but was shown to be equivalent with a fixed-point property
for affine actions of the group on Hilbert spaces. In this thesis, we study fixed-point and
rigidity properties in the broader context of actions of groups on Banach spaces. We study
the relations between two such properties for group actions on Lp-spaces – a class of Banach
spaces where many of the tools from the study of actions on Hilbert spaces also applies.
Furthermore, we study spectral conditions for Property (T ) and for the related fixed-point
property for actions on Lp-spaces.

Resumé

Kazhdan’s egenskab (T ) er et fundamentalt begreb i studiet af grupper og har anvendelser i
en række forskellige grene af matematikken. Egenskab (T ) er oprindeligt defineret i termer af
unitære representationer p̊a Hilbertrum, men viste sig at være ækvivalent med en fikspunkt-
segenskab for affine gruppevirkninger p̊a Hilbertrum. I dette speciale studerer vi fikspunkts-
og rigide egenskaber i den bredere kontekst af gruppevirkninger p̊a Banachrum. Vi stud-
erer relationerne mellem to s̊adanne egenskaber for gruppervirkninger p̊a Lp-rum – en klasse
af Banachrum hvor mange af værktøjerne fra studiet af gruppevirkninger p̊a Hilbertrum
ogs̊a kan benyttes. Ydermere studerer vi spectrale betingelser for egenskab (T ) og for dens
relaterede fikspunktsegenskab for gruppevirkninger p̊a Lp-rum.
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Introduction

Property (T ) was introduced by D. Kazhdan in his paper [26] from 1967 and concerns how
a group may act on a Hilbert space. It has proved to be a fundamental notion with applica-
tions in a number of different fields such as geometric group theory, ergodic theory, operator
algebras and combinatorics among others. Despite its relevance, it took almost 40 years
from its introduction until the study of similar rigidity properties for groups in the broader
framework of Banach spaces was initiated. The first paper in this direction, by D. Fisher and
G. Margulis in 2005 (see [18]) considered actions of Kazhdan groups on Lp-spaces. Prop-
erty (TX) and (FX) were then introduced as generalizations of Property (T ) by U. Bader,
A. Furman, T. Gelander and N. Monod in 2007 (see [2]). In their paper, relations between
these properties for superreflexive Banach spaces, and in particular for Lp-spaces, are studied
systematically.

Concrete examples of infinite groups with Property (T ) are sparse and often complicated.
A celebrated result by A. Żuk gives a sufficient condition for Property (T ) in terms of the
spectral properties of the link graph associated to a generating set (see [55]). In the same
paper, A. Żuk gives an application of this result to random groups showing that, though
they may be hard to construct, infinite groups with Property (T ) are abundant. It is beyond
the scope of this thesis to study random groups, but this application does motivate studying
Żuk’s condition and, further, the question if there exists a similar condition for the Banach
space versions of Property (T ). Very resently, in [14], T. de Laat and M .de la Salle gave
such a sufficient condition for Property (FLp).

Property (T ) has many equivalent reformulations, and in Chapters 1 to 3, we study a
number of the different forms it takes. We hereby acquire a range of tools that we shall see in
Chapter 4 are applicable when studying Banach space relatives of Property (T ) for the class
of superreflexive Banach spaces. We include an introduction to superreflexivity of Banach
spaces in Appendix A. The main goal of Chapter 4 is to present the main results of the
paper [2] by U. Bader, A. Furman, T. Gelander and N. Monod. The main goal of the final
chapter of this thesis is to present the mentioned sufficient condition for Property (FLp) due
to T. de Laat and M .de la Salle in [14]. Central in their proofs is the use of techniques from
complex interpolations, and we therefore include a short review of this theory in Appendix B.

For the purpose of this thesis, we choose to focus on discrete groups only. This is because
we wish to avoid the extra layer of technicalities added when discussing more general locally
compact groups. However, many of the results do hold for locally compact groups, as well.
We refer the interested reader to [5] for details.

Chapter 1: We introduce Property (T ) choosing to define it in terms of invariant and
almost invariant vectors for unitary representations. We introduce the notion of a Kazh-
dan pair and show that Property (T ) is equivalent with the existence of a finite such.
Further, we introduce Fell’s topology on the unitary dual and proof that Property (T ) is
equivalent with the existence of a so called Kazhdan projection and with the isolation of
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the trivial representation in the unitary dual. The latter characterization is Kazhdan’s
original definition.

Chapter 2: We introduce Property (FH), which is the property that all affine actions on
a real Hilbert space have a fixed point. We give a thorough introduction to affine actions
on general vector spaces and to the 1-cohomology of a group with coefficients in a linear
isometric representation on a Banach space. We also give an introduction to the theory
of positivity of functions on groups including a famous theorem by Schoenberg. In the
end of the chapter, we specialize to Hilbert spaces and show that Property (FH) is equiv-
alent to Property (T ). This is a result due to P. Delorme in [15] and A. Guichardet in [20].

Chapter 3: We discuss measure preserving group actions on probability spaces (p.m.p.
actions). We introduce ergodicity and strong ergodicity of such actions and show that
Property (T ) is equivalent with the property that every ergodic p.m.p. action is strongly
ergodic. This is a result due to A. Connes and B. Weiss in [11].

Chapter 4: We introduce two generalizations of Property (T ) to the realm of Banach
spaces: Property (TX), which generalizes the definition of Property (T ) in terms of in-
variant and almost invariant vectors, and Property (FX), which generalizes Property
(FH). We shall see that (FX) is always stronger that (TX), but that they are not, in
general, equivalent. We further discuss their relations when X is an Lp-space.

Chapter 5: We discuss the mentioned spectral condition for Property (T ) due to A. Żuk,
as well as the spectral condition of the same flavor for Property (FLp) due to T. de Laat
and M .de la Salle. A short introduction to graphs and their spectrum is included. Along
the way, we introduce the regular norm of operators on (finite) `p-spaces, we introduce
p-uniform convexity, and we discuss Poincaré type inequalities.

The reader is assumed to be familiar with measure theory and with functional analysis.
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Chapter 1

A rigidity property for group
actions on Hilbert spaces

Property (T) was first introduced by D. A. Kazhdan in [26] and concerns actions on Hilbert
spaces. We give in Section 1.2 an introduction based mainly on [9]. In Section 1.3, we
study the relation between Property (T ) and the trivial representation, recovering, in Propo-
sition 1.3.18, the original definition by Kazhdan along with a characterization in terms of
the existence of a so called Kazhdan projection. We start by reviewing the basics of the
representation theory of groups on Hilbert spaces.

1.1 Representations of groups on Hilbert spaces

Definition 1.1.1. A (linear) representation of a discrete group Γ is a tuple (π, V ) consisting
of a vector space V and a map π : Γ ! GL(V ) which is multiplicative and unital.

Even though we have formally defined a representation to be a tuple (π, V ), we shall
often refer to the map π as a representation. When V is a normed vector space, we say
that a representation (π, V ) of Γ is isometric if π(g) is an isometry, for all g ∈ Γ. In that
case we shall also refer to (π, V ) as a (linear) isometric representation or say that π is a
representation by surjective isometries.

Let H be a Hilbert space. If H is complex, the surjective isometries on H are referred
to as unitary operators, and the group of all such operators are denoted U(H). If H is
real, we refer to the surjective isometries instead as orthogonal operators, and the set of all
such operators are denoted by O(H). Following this terminology, we refer to an isometric
representation on a Hilbert space as a unitary representation, respectively, an orthogonal
representation depending on whether the Hilbert space is complex or real

Example 1.1.2. The possibly simplest example of a unitary representation of a group Γ is
the trivial representation 1Γ : Γ ! C, given by

1Γ(g) = 1, for all g ∈ Γ. ◦

Example 1.1.3 (A unitary representation from an action). For a left action Γ y X of a
discrete group Γ on a set X, we may construct a unitary representation π of Γ on the Hilbert
space `2(X) as follows: For each g ∈ Γ and x ∈ X, set π(g)(δx) = δg.x. As Γ y X is a left
action, we see directly that π : Γ ! U(`2(X)) is a group homomorphism. ◦

Example 1.1.4. Any discrete group Γ has a left action on itself: The left translation action
given by left multiplication. By Example 1.1.3, this gives rise to a unitary representation
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λ : Γ ! U(`2(Γ)), given by

λg(δh) = δgh, for all g, h ∈ Γ.

This important special case of Example 1.1.3 is refered to as the left regular representation. ◦

Let (π,H) be a representation of the discrete group Γ. A subspace K ⊂ H is said to
be Γ-invariant if π(g)K ⊂ K, for all g ∈ Γ. Any representation has the trivial Γ-invariant
subspaces H and {0}. For a Γ-invariant subspace K ⊂ H, we obtain a representation of Γ on
K by restriction of π. We refer to this representation as the subrepresentation of π defined
by K. If π is unitary (orthogonal), then so is every subrepresentation.

Remark 1.1.5. If (π,H) is unitary and K ⊂ H is Γ-invariant then K⊥ is Γ-invariant, as well.
Indeed, for all ξ ∈ K⊥, η ∈ K and g ∈ Γ, we have 〈π(g)ξ , η〉 =

〈
ξ , π(g−1)η

〉
= 0.

Definition 1.1.6. We say that a representation (π,H) of a discrete group Γ is irreducible
if H contains no non-trivial Γ-invariant subspaces.

An intertwining operator between two representations (π,H) and (ρ,K) of a discrete
group Γ is a bounded linear operator T : H ! K satisfying Tπ(g) = ρ(g)T , for all g ∈ Γ.

Remark 1.1.7. Let (π,H) and (ρ,K) be unitary representations of a discrete group Γ. If
T : H ! K is an intertwining operator between π and ρ, then so is T ∗ : K ! H. Indeed, for
each g ∈ Γ, we have T ∗ρ(g) = (ρ(g−1)T )∗ = (Tπ(g−1))∗ = π(g)T ∗. It follows, in particular,
that T ∗T intertwines π with itself, and that TT ∗ intertwines ρ with itself.

Definition 1.1.8. The representations (π,H) and (ρ,K) are said to be equivalent if there
exists an intertwining operator between them which is isometric and onto. In that case we
write π ' ρ. We say that π is contained in ρ, and write π ≤ ρ, if π is equivalent to a
subrepresentation of ρ.

Lemma 1.1.9. Let (π,H) be a unitary representations of a discrete group Γ, and suppose
that T ∈ B(H) intertwines π with itself. Then so does f(T ), for any continuous function on
the spectrum of T .

Proof. By continuity of the functional calculus, it is enough to show the statement on a
dense subset of C(σ(T )). The statement is clear for polynomials, by induction, and the set
of polynomials is dense in C(σ(T )), by the Stone-Weierstrass theorem.

Proposition 1.1.10. Let (π,H) and (ρ,K) be two unitary representations of the discrete
group Γ, and let T : H ! K be an intertwining operator. Then (kerT )⊥ and ImT are closed
invariant subspaces of H and K, respectively. Moreover, the subrepresentation of π defined
by (kerT )⊥ is equivalent with the subrepresentation of ρ defined by ImT .

Proof. We start by showing that (kerT )⊥ and ImT are Γ-invariant. For each ξ ∈ H and
g ∈ Γ, we have Tπ(g)ξ = ρ(g)Tξ. This shows Γ-invariance of ImT directly. Further, if
ξ ∈ kerT , the so is π(g)ξ. Therefore, kerT is Γ-invariant, and as (π,H) is unitary, then so
is (kerT )⊥, by Remark 1.1.5.

By Remark 1.1.7, T ∗T intertwines π with itself and therefore, |T | = (T ∗T )1/2 intertwines
π with itself, by Lemma 1.1.9. Let T = U |T | be the polar decomposition of T . Then U is
a partial isometry on H with initial space (kerT )⊥ and final space ImT . We claim that U ,
viewed as an isometry U : (kerT )⊥ ! ImT , intertwines the subrepresentations of π and ρ
defined by these subspaces. Let ξ ∈ (kerT )⊥. Then Uξ ∈ ImT , so that Uξ = Tη = U |T |η,
or, equivalently, ξ = |T |η, for some η ∈ H. For each g ∈ Γ, we derive that

ρ(g)Uξ = ρ(g)Tη = Tπ(g)η = U |T |π(g)η = Uπ(g)|T |η = Uπ(g)ξ.

Hence, ρ(g)U = Uπ(g), for all g ∈ Γ, where ρ and π are the subrepresentations on the
mentioned Γ-invariant subspaces.
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In the following subsections we remind the reader briefly of a few standard constructions
for how to construct new representations from existing ones.

1.1.1 Extension and restriction of scalars

We show here how one may construct a unitary representation from an orthogonal one and
vice versa using extension, respectively, restriction of scalars.

Given an orthogonal representation (π,H), one can construct a unitary one by taking
its complexification. The complexification of the real Hilbert space H, denoted by HC, is
obtained from H by extension of scalars to the complex numbers – precisely we define HC
as the tensor product H ⊗R C. The complexification of a representation (π,H) of the group
Γ is then the representation πC on HC defined by

πC(g)(ξ ⊗ λ) = π(g)ξ ⊗ λ, for g ∈ Γ, ξ ∈ H, and λ ∈ C.

For a unitary representation (ρ,K), we obtain an orthogonal representation as follows:
We may view the complex vector space K as a real vector space by restriction of scalar
multiplication to R. Viewed as such we equip K with the inner product

〈ξ , η〉R = Re 〈ξ , η〉 , ξ, η ∈ K.

The obtained real Hilbert space is denoted by KR. We denote by πR the representation π
considered as acting on KR. It is straight forward to verify that (πR,KR) is an orthogonal
representation.

1.1.2 The contragredient representation

Let H be a Hilbert space. The conjugate Hilbert space, denoted by H, is the Hilbert space
which is identical to H as an additive group, with scalar multiplication given by

(λ, ξ) 7! λξ, for λ ∈ C and ξ ∈ H,

and an inner product given by

〈ξ , η〉H = 〈η , ξ〉H for ξ, η ∈ H,

Let (π,H) be a representation of Γ. The contragredient representation, denoted by π, is
the representation of Γ on H which is identical to π as a set-theoretic transformation.

We remark that the contragredient representation of a unitary representation is again
unitary. Observe also that π = π.

Lemma 1.1.11. If a unitary representation (π,H) is the complexification of an orthogonal
representation on a real Hilbert space, then it is unitarily equivalent to its contragredient
representation.

Proof. By assumption, H = H ′ ⊗ C, for some real Hilbert space H ′. The map H ! H
defined on elementary tensors by ξ′ ⊗ λ 7! ξ′ ⊗ λ, for ξ′ ∈ H ′ and λ ∈ C, is a C-linear. It is
clear that it is an isometric bijection and that it intertwines π and π.

1.1.3 Direct sums of representations

Let (Hi)i∈I be a family of Hilbert spaces over either R or C. For each i ∈ I, denote by 〈 · , · 〉i
the inner product on Hi and by || · ||i the corresponding norm. The Hilbert space direct sum
of this family is the Hilbert space⊕

i∈I
Hi =

{
(ξi)i∈I ∈

∏
i∈I

Hi

∣∣∣∣∣ ∑
i∈I
||ξi||2i <∞

}
,
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with inner product given by 〈
(ξi)i∈I , (ηi)i∈I

〉
=
∑
i∈I
〈ξi , ηi〉 .

The direct sum of a family of representations (πi, Hi)i∈I of a (discrete) group Γ is the
representation ⊕iπi of Γ on

⊕
i∈I Hi given by

⊕iπi(g)
(
(ξi)i∈I

)
= (πi(g)ξi)i∈I ,

for each g ∈ Γ and each (ξi)i∈I ∈
⊕

i∈I Hi.

Remark 1.1.12. If (πi, Hi)i∈I is a family of unitary representation then their direct sum is a
unitary representation, as well.

Example 1.1.13. For a representation (π,H) of a (discrete) group Γ and a Γ-invariant
subspace K ⊂ H, one easily verifies that π is equal to the direct sum of the subrepresentations
defined by K and its orthogonal complement. ◦

Proposition 1.1.14. Let (πi, Hi)i∈I be a family of unitary (orthogonal) representations of
a discrete group Γ and let (π,K) be an irreducible unitary (orthogonal) representation of Γ.
If π is contained in ⊕iπi then π is contained in πi, for some i ∈ I.

Proof. Set H =
⊕

i∈I Hi and suppose T : K ! H is an intertwining operator between π and
⊕iπi which is isometric onto a subspace of H. For each i ∈ I, denote by pi the orthogonal
projection onto Hi and let Ti = pi ◦ T . Then T = ⊕iTi, and so, there exists an i0 ∈ I such
that Ti0 is non-zero. Moreover, (⊕iπi) ◦ T = ⊕i(πi ◦ Ti), and so,

Ti0 ◦ π = pi0 ◦ (T ◦ π) = pi0 ◦ ⊕i(πi ◦ Ti) = πi0 ◦ Ti0 .

That is, Ti0 is an intertwiner of π and πi0 . In particular, kerTi0 is an invariant subspace for
π, so as π is irreducible and Ti0 is non-zero, kerTi0 = {0}. By Proposition 1.1.10, it follows
that π is equivalent with the subrepresentation of ⊕iπi defined by ImTi0 , which is clearly a
suprepresentation of πi0 .

1.1.4 Tensor products of representations

Let H and K be Hilbert spaces and let H �K denote their algebraic tensor product. The
Hilbert space tensor product, which we denote by H ⊗K, is the completion of H �K with
respect to the unique inner product satisfying

〈ξ1 ⊗ η1 , ξ2 ⊗ η2〉 = 〈ξ1 , ξ2〉 〈η1 , η2〉 ,

for all ξ1, ξ2 ∈ H, and all η1, η2 ∈ K.

Definition 1.1.15. Let (π,H) and (ρ,K) be unitary representations of the discrete group
Γ. Their tensor product is the (unique) unitary representation π ⊗ ρ of Γ on H ⊗K given
on elementary tensors by

(π ⊗ ρ)(g)(ξ ⊗ η) = π(g)ξ ⊗ ρ(g)η,

for all ξ ∈ H, η ∈ K and g ∈ Γ.

Let (ηi)i∈I be an orthonormal basis for K. We denote by HS(K,H) the set of space of
bounded linear operators form T : K ! H satisfying

Tr(T ∗T ) =
∑
i∈I
〈T ∗Tηi , ηi〉K <∞.
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This is a Hilbert space with inner product

(T , S ) = Tr(S∗T ), for S, T ∈ HS(K,H).

The operators in HS(K,H) are referred to as Hilbert-Schmidt operators. We define a map
Φ on the elementary tensors in H ⊗K with values in the space of bounded linear operators
K ! H by setting, for each pair of vectors η ∈ K and ξ ∈ H,

Φ(ξ ⊗ η)(ζ) = 〈η , ζ〉K ξ, for ζ ∈ K.

Then Φ is an isometry of set of elementary tensors onto the set of rank 1 operators. The linear
extension of Φ to the algebraic tensor product, H �K, is an isometry onto the set of finite
rank operators, and so, Φ extends to a linear Hilbert space isomorphism H⊗K ! HS(K,H)
(see [37, Theorem VI.22(f)]). Thus, HS(K,H) can be viewed as an alternative realization
of the tensor product of H and K. From this point of view, the unitary representation π⊗ ρ
on H ⊗K corresponds to the unitary representation on HS(K,H) given by

T 7! π(g)Tρ(g−1), for T ∈ HS(K,H). (1.1)

To see this, let T : K ! H be the rank 1 operator given by T = 〈η , · 〉K ξ, for η ∈ K and
ξ ∈ H. For each ζ ∈ K and each g ∈ Γ,

π(g)Tρ(g−1)(ζ) =
〈
η , ρ(g−1)ζ

〉
K
π(g)ξ = 〈ρ(g)η , ζ〉K π(g)ξ = Φ

(
π(g)ξ ⊗ ρ(g)η

)
(ζ).

The correspondence of equation (1.1) follows.

Lemma 1.1.16. For any finite dimensional representation π, π⊗π has an invariant vector.

Proof. Let (π,H) be a finite dimensional representation. Since H is finite dimensional,
HS(H,H) contains the identity operator, and the identity operator is clearly invariant under
the map given in equation (1.1) with ρ = π, for any group element, g.

Proposition 1.1.17. Let (π,H) and (ρ,K) be unitary representations of the discrete group
Γ. Then π ⊗ ρ contains the trivial representation 1Γ if and only if there exists a finite
dimensional representation of Γ which is contained in both π and ρ.

Proof. If σ is a finite dimensional representation of Γ contained in both π and ρ, then σ⊗ σ
is contained in π ⊗ ρ. It then follows directly from Lemma 1.1.16 that π ⊗ ρ contains the
trivial representation.

Conversely, supper that π ⊗ ρ contains the trivial representation. Then we may find a
non-zero T ∈ HS(K,H) such that π(g)Tρ(g−1) = T , for all g ∈ Γ. Rearranging, we see
that such a T intertwines π and ρ. By [37, Theorem VI.21], T ∗T is a compact operator on
K. As T ∗T is also non-zero and positive, it has an eigenvalue λ > 0, and the corresponding
eigenspace Eλ ⊂ K is finite dimensional and closed. Recall from Remark 1.1.7 that T ∗T
intertwines π with itself. Hence, Eλ is an invariant subspace. It remains to show that the
finite dimensional subrepresentation of π defined by Eλ is contained in rho, as well. We
have, for each ξ ∈ Eλ, ||Tξ||2 = 〈T ∗Tξ , ξ〉 = λ ||ξ||2. Hence, λ−1/2T is an isometry from Eλ
onto the closed subspace T (Eλ) of H. This finishes the proof.
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1.2 Kazhdan’s Property (T)

Definition 1.2.1. Let (π,H) be a unitary representation of the discrete group Γ.

• A non-zero vector ξ ∈ H is called invariant if π(g)ξ = ξ, for all g ∈ Γ. If such a vector
exists, we say that the representation (π,H) has a non-zero invariant vector.

• A net (ξi)i∈I of unit vectors in H is called almost invariant if ||π(g)ξi − ξi|| ! 0, for all
g ∈ Γ. If such a net exists, we say that the representation (π,H) has almost invariant
vectors.

Definition 1.2.2. Let Γ be a discrete group. We say that Γ has property (T ) if any unitary
representation of Γ with almost invariant vectors has a non-zero invariant vector.

Example 1.2.3. All finite groups have Property (T ) – see Corollary 1.2.15. ◦

In [55, Theorem 3 and 4], A. Żuk showed that there are plenty of infinite groups with
property (T ). However, not many concrete examples are known. It is beyond the scope of
this thesis to proof Property (T ) for concrete groups, and we mention here only the most
well known example:

Example 1.2.4. The special linear group over the integers, SLn(Z), has Property (T ), for
n ≥ 3. This was shown by Y. Shalom in [45]. ◦

For a discrete group Γ and a unitary representation (π,H), we denote by Hπ(Γ) the closed
subspace of H defined by

Hπ(Γ) := { ξ ∈ H | π(g)ξ = ξ, for all g ∈ Γ } .

That is, Hπ(Γ) is the set invariant vectors for the representation of Γ on H. Whenever either
the group or the representation is clear from context, we shall write Hπ or HΓ instead of
Hπ(Γ). It is clear that this is an invariant subspace for Γ.

Remark 1.2.5. For each g ∈ Γ, π(g) commutes with the orthogonal projection onto Hπ(Γ).
Indeed, if P is this projection, invariance of the subspace Hπ(Γ) (and its complement) implies
that Pπ(g)ξ = π(g)ξ, for ξ ∈ Hπ(Γ), and Pπ(g)ξ = 0, for ξ ∈ (Hπ(Γ))⊥. For ξ ∈ H, it follows
that Pπ(g)ξ = Pπ(g)Pξ + Pπ(g)(1− P )ξ = π(g)Pξ. Hence, Pπ(g) = π(g)P .

Given a unitary representation (π,H) and a closed Γ-invariant subspace M ⊂ H, we get
a canonical induced unitary representation of Γ on the quotient Hilbert space H/M .

Lemma 1.2.6. Let H be a Hilbert space and let M be a closed subspace. The quotient space
H/M is isometrically isomorphic to M⊥.

Proof. Let P be the orthogonal projection onto M . Observe that if ξ − ξ′ ∈ M , then
(1 − P )ξ = (1 − P )ξ′. The map Φ : H/M ! M⊥ given by Φ([ξ]) = (1 − P )ξ, for each
ξ ∈ H, is therefore well-defined. It is clearly an isomorphism. Further, each ξ ∈ H can be
decomposed uniquely as ξ = ξ′ + ξ′′, for ξ′ ∈M and ξ′′ ∈M⊥, and we see that Φ([ξ]) = ξ′′.
It follows from Pythagoras that ||Φ([ξ])|| = ||ξ′′|| = ||[ξ]||H/M .

Proposition 1.2.7. A discrete group Γ has property (T ) if and only if, for every unitary
representation (π,H), the induced representation on the quotient H/Hπ(Γ) does not have
almost invariant vectors.

Proof. Let (π,H) be a unitary representation of Γ and let π′ denote the induced representa-
tion on H/Hπ(Γ). Let P be the orthogonal projection onto Hπ(Γ). By Lemma 1.2.6, H/Hπ(Γ)

is isometrically isomorphic to (Hπ(Γ))⊥ through the map [ξ] 7! (1− P )ξ, for ξ ∈ H.
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Suppose ([ξi])i∈I is a net of almost invariant vectors in H/Hπ(Γ). For each i ∈ I, let ξ′i =
Pξi ∈ Hπ(Γ) and ξ′′i = (1−P )ξi ∈ (Hπ(Γ))⊥. For each i ∈ I, we have ||ξ′′i || = ||[ξi]||H/Hπ(Γ) = 1.
Further, by Remark 1.2.5,∣∣∣∣π(g)ξ′′i − ξ′′i

∣∣∣∣ = ||(1− P )(π(g)ξi − ξi)|| = ||[π(g)ξi − ξi]||H/Hπ(Γ)

=
∣∣∣∣π′(g)[ξi]− [ξi]

∣∣∣∣
H/Hπ(Γ) ! 0.

Hence, (ξ′′i )i∈I is a net of almost invariant vectors in (Hπ(Γ))⊥. By restricting π to the
invariant subspace (Hπ(Γ))⊥, we obtain a unitary representation of Γ which has almost
invariant vectors but no non-zero invariant vectors. Hence, Γ does not have (T ).

Conversely, suppose Γ does not have (T ) and let (π,H) be a unitary representation with
almost invariant vectors but no non-zero invariant vector. Then Hπ(Γ) is trivial, and so
H/Hπ(Γ) ∼= H has a net of almost invariant vectors for Γ.

1.2.1 Kazhdan pairs

Definition 1.2.8. Let (π,H) be a unitary representation of the discrete group Γ. A non-zero
vector ξ ∈ H is said to be (E, k)-invariant, for a subset E ⊂ Γ and a constant k > 0, if

sup
g∈E
||π(g)ξ − ξ|| < k ||ξ|| .

If such a vector exists, we say that (π,H) has a non-zero (E, k)-invariant vector.

Proposition 1.2.9. A representation (π,H) of a discrete group Γ has almost invariant
vectors if and only if, for every finite subset F ⊂ Γ and every ε > 0, there exists a (F, ε)-
invariant vector for (π,H).

Proof. Suppose we may, for every finite subset F ⊂ Γ and every ε > 0, find an (F, ε)-invariant
vector ξ(F,ε) for (π,H). We may take each ξ(F,ε) to be a unit vector. This defines a net (ξ(F,ε))
indexed by the set of all tuples (F, ε), where F ⊂ Γ is finite and ε > 0. We equip this index
set with a direction by setting (F, ε) ≤ (F ′, ε′) if F ⊂ F ′ and ε′ < ε. It is straight forward to
verify that (ξ(F,ε)) is a net of almost invariant vectors. The converse statement is trivial.

Definition 1.2.10. Let Γ be a discrete group. A pair (E, k), where E ⊂ Γ and k > 0,
is called a Kazhdan pair for Γ if every unitary representation which has a non-zero (E, k)-
invariant vector, has a non-zero Γ-invariant vector.

Remark 1.2.11. If (E, k) is a Kazhdan pair then so is (E, k′), for all 0 < k′ ≤ k.

We shall see in a moment that (Γ,
√

2) is a Kazhdan pair for any discrete group Γ. The
existence of a Kazhdan pair is therefore nothing special. However, the existence of a Kazhdan
pair with a finite Kazhdan set turns out to be equivalent with property (T ).

Proposition 1.2.12. Let Γ be a discrete group. Then Γ has property (T) if and only if there
exists a Kazhdan pair (F, k) for Γ with F ⊂ Γ finite.

Proof. Suppose first that there exists a Kazhdan pair (F, k) for Γ with F ⊂ Γ finite, and
let (ξi)i∈I be a net of almost invariant vectors for a given unitary representation (π,H) of
Γ. Then, for all g ∈ Γ, there exists ig ∈ I such that ||π(g)ξi − ξi|| < k, for all i < ig. Since
I is directed and F is finite, we can take i0 ∈ I such that i0 < ig, for all g ∈ F . Then
||π(g)ξi0 − ξi0 || < k, for all g ∈ F , and so ξi0 is (F, k)-invariant. Since (F, k) is a Kazhdan
pair it follows that the representation (π,H) has a non-zero invariant vector, and hence that
Γ has property (T).
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Suppose instead that Γ has no Kazhdan pair (F, k) with F finite. Then, for all finite
subsets F ⊂ Γ and all k > 0, there exists a unitary representation with an (F, k)-invariant
vector but with with no non-zero invariant vectors. Let

I = { (F, k) | F ⊂ Γ finite, k > 0 } .

For (F1, k1), (F2, k2) ∈ I, set (F1, k1) 4 (F2, k2) if F1 ⊂ F2 and k2 ≤ k1. Then (I,4) is a
directed set. For each i = (Fi, ki) ∈ I, let (πi, Hi) be the aforementioned existing unitary
representation of Γ, and let ξi ∈ Hi be an (Fi, ki)-invariant unit vector, i.e.,

||πi(g)ξi − ξi|| < ki, t ∈ Fi.

Set H =
⊕

i∈I Hi. Then H is a Hilbert space, and each vector ξi can be viewed as a unit
vector in H through the inclusion Hi ↪! H. Moreover, π =

⊕
i∈I πi : Γ ! B(H) is a

unitary representation of Γ on H. For all i ∈ I and for all g ∈ Γ, we see that ||π(g)ξi − ξi|| =
||πi(g)ξi − ξi|| ! 0. Hence, (ξi)i∈I is a net of almost invariant unit vectors.

Suppose that ξ ∈ H is a non-zero invariant vector. For each i ∈ I, let Pi : H ! Hi be
the orthogonal projection onto Hi. Then, for all g ∈ Γ and all i ∈ I,

πi(g)Piξ = Piπ(g)ξ = Piξ.

Hence, Piξ is invariant with respect to the representation (πi, Hi). But (πi, Hi) has no non-
zero invariant vectors, and so Piξ = 0. Since this is true for all i ∈ I, we deduce that
ξ =

∑
i∈I Piξ = 0. Hence, (π,H) has no non-zero invariant vectors, and we conclude that Γ

does not have property (T ).

We proceed to show in Lemma 1.2.14 the already mentioned result that all discrete
groups have a Kazhdan pair. To show this, we shall need the so called circumcenter lemma
for Hilbert spaces.

For a Hilbert space H and a non-empty bounded subset S ⊂ H, we define the radius of
S to be the number

rad(S) = inf
{
r > 0

∣∣ S ⊂ B(ζ, r), for some ζ ∈ H
}
.

An element ζ ∈ H is called a circumcenter of S if S ⊂ B
(
ζ, rad(S)

)
Lemma 1.2.13 (The circumcenter lemma for Hilbert spaces). Any bounded subset S ⊂ H
of a Hilbert space H has a unique circumcenter. Morover, this circumcenter lies in the closed
convex hull of S.

Proof. For each n ∈ N, take ξn ∈ H such that S ⊂ B(ξn, rad(S) + 1
n). We claim that the

obtained sequence (ξn)n≥1 is Cauchy.

For each η ∈ H and each n,m ∈ N, the parallelogram identity yields that∣∣∣∣∣∣∣∣ξn + ξm
2

− η
∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣ξn − ξm2

∣∣∣∣∣∣∣∣2 = 2

∣∣∣∣∣∣∣∣ξn − η2

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣ξm − η2

∣∣∣∣∣∣∣∣2
If η ∈ S, we have ||ξn − η|| ≤ rad(S) + 1/n, for each n ∈ N. Hence, for η ∈ S and 1 ≤ n ≤ m,∣∣∣∣∣∣∣∣ξn − ξm2

∣∣∣∣∣∣∣∣2 =
1

2
||ξn − η||2 +

1

2
||ξm − η||2 −

∣∣∣∣∣∣∣∣ξn + ξm
2

− η
∣∣∣∣∣∣∣∣2

≤
(

rad(S) +
1

n

)2

−
∣∣∣∣∣∣∣∣ξn + ξm

2
− η
∣∣∣∣∣∣∣∣2 .
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Fix 1 ≤ n ≤ m. For each δ > 0, we have S 6⊂ B
( ξn+ξm

2 , rad(S) − δ
)
, and so, we may find

η ∈ S such that ||(ξn + ξm)/2− η|| > rad(S) − δ. Combining this with our preparations
above, we see that ∣∣∣∣∣∣∣∣ξn − ξm2

∣∣∣∣∣∣∣∣2 ≤ (rad(S) +
1

n

)2

− (rad(S)− δ)2

It follows that (ξn)n≥1 is, indeed, Cauchy. Let ζ be the point of convergence. For η ∈ S and
ε > 0, pick n ∈ N such that n > 2/ε and such that ||ξn − ζ|| < ε/2. Then

||η − ζ|| ≤ ||η − ξn|| + ||ξn − ζ|| < rad(S) + ε.

We conclude that S ⊂ B(ζ, r0). This shows existence of the circumcenter. To see that the
circumcenter is unique, suppose ζ ′ ∈ H is also a circumcenter. Let

ηn =

{
ζ if n is odd

ζ ′ if n is even
.

Clearly, S ⊂ B(ηn, r0 + 1
n), for all n ∈ N. By our previous argument, the sequence (ηn)n≥1

is Cauchy, and so, we must have ζ = ζ ′.
It remains to show that ζ lies in conv(S). Suppose for contradiction that this is not

the case. Since conv(S) is closed and convex there exists a unique vector ξ0 ∈ conv(S)
such that ||ζ − ξ0|| = dist(ζ, conv(S)) > 0. Moreover, for each ξ ∈ conv(S), it holds that
Re 〈ζ − ξ0 , ξ − ξ0〉 ≤ 0. Let M = {ζ − ξ0}⊥. For ξ ∈ conv(S), we may uniquely write
ξ − ξ0 = λ(ζ − ξ0) + η, for some λ ∈ C (or R, if H is real) and some η ∈M . Observe that

Re(λ) ||ζ − ξ0||2 = Re 〈ζ − ξ0 , ξ − ξ0〉 ≤ 0.

Hence, Re(λ) ≤ 0. Isolating ξ − ζ on one side of the decomposition of ξ − ξ0, we see that

||ξ − ζ||2 = |λ− 1|2 ||ζ − ξ0||2 + ||η||2 =
(
|λ|2 + 1− 2 Re(λ)

)
||ζ − ξ0||2 + ||η||2

≥
(
|λ|2 + 1

)
||ζ − ξ0||2 + ||η||2 = ||ξ − ξ0||2 + ||ζ − ξ0||2 .

The last equality follows from the decomposition of ξ−ξ0. SetR = sup { ||ξ − ξ0|| | ξ ∈ conv(S) }.
This is a finite number because S is bounded, and we have that

||ξ − ζ||2 ≥ ||ξ − ξ0||2
(

1 +
||ζ − ξ0||2

R2

)
,

for each ξ ∈ conv(S). Set δ = (1 + ||ζ − ξ0||2 /R2)−1/2. Then ||ξ − ξ0|| ≤ δ ||ξ − ζ|| ≤ δ rad(S),
for all ξ ∈ conv(S). But then conv(S) ⊂ B(ξ0, δ rad(S)), which contradicts the definition of
rad(S) as δ < 1. Thus, we must have ζ ∈ conv(S).

Lemma 1.2.14. For any discrete group Γ, the pair (Γ,
√

2) is a Kazhdan pair.

Proof. Let (π,H) be a unitary representation of Γ and suppose that ξ is a non-zero (Γ,
√

2)-
invariant vector. We may take ξ to be a unit vector. Let Oξ = π(Γ)ξ denote the orbit of ξ.
This is clearly a Γ-invariant subset of H. Moreover, as π is isometric, Oξ is bounded, and so,
there exists a unique circumcenter of Oξ, by Lemma 1.2.13. Let ζ be this circumcenter. Then
π(g)ζ is a circumcenter for π(g)Oξ, for each g ∈ Γ, since π is isometric. But π(g)Oξ = Oξ,
and so π(g)ζ = ζ, by uniqueness of the circumcenter. Hence, ζ is an invariant vector. It
remains to show that ζ 6= 0. For this, recall from Lemma 1.2.13 that ζ ∈ convOξ. If
ζ ∈ convOξ we may write ζ =

∑n
i=1 aiπ(gi)ξ, where each ai > 0 and

∑n
i=1 ai = 1. Then

Re 〈ξ , ζ〉 =

n∑
i=1

ai Re 〈ξ , π(gi)ξ〉 ≥ inf
g∈Γ

Re 〈ξ , π(g)ξ〉 = 1− 1

2
sup
g∈Γ
||ξ − π(g)ξ||2 ,
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where we in the last equality use that ξ is a unit vector. This inequality holds for ζ ∈ convOξ
as well, by continuity. Since ξ is (Γ,

√
2)-invariant, it follows that Re 〈ξ , ζ〉 is strictly positive.

In particular, ζ 6= 0, as we wanted to show.

Corollary 1.2.15. Every finite group has property (T ).

Proof. This is immediate from Lemma 1.2.14 and Proposition 1.2.12.

Proposition 1.2.16. Let (E, k) be a Kazhdan pair for the discrete group Γ, and suppose
that (π,H) is a unitary representation of Γ with the property that there exists a non-zero
vector ξ ∈ H such that π(g)ξ = ξ, for all g ∈ E. Then ξ is Γ-invariant for π.

Proof. Let H0 be the set of all Γ-invariant vectors in H, and let K = H⊥0 . Since H = H0⊕K,
we can find unique vectors ξ0 ∈ H0 and η0 ∈ K such that ξ = ξ0 + η0. Then, for all g ∈ E,

ξ = π(g)ξ = π(g)ξ0 + π(g)η0 = ξ0 + π(g)η0.

Hence, π(g)η0 = η0, for all g ∈ E, by the uniqueness of the decomposition ξ = ξ0 + η0.
Observe next that both H0 and K are invariant under π, that is, π(g)H0 ⊂ H0 and

π(g)K ⊂ K, for all g ∈ Γ. We can then define a unitary representation (π′,K) of Γ on K
by setting π′(g) = π(g)|K , for all g ∈ Γ. By construction of K, this representation has no
non-zero Γ-invariant vectors. As (E, k) is a Kazhdan-pair for Γ it follows that, for all η ∈ K,
there exists g ∈ E such that ||π′(g)η − η|| ≥ k ||η||. In particular, we can find such a g ∈ E
for the vector η0 ∈ K. Hence, η0 = 0, and so ξ = ξ0 ∈ H0. We conclude that ξ is Γ-invariant
for the representation (π,H).

Corollary 1.2.17. Let E ⊂ Γ be a subset of the discrete group Γ. If there exists a k > 0
such that (E, k) is a Kazhdan pair then E is a generating set for Γ.

Proof. Let Γ0 ≤ Γ be the subgroup generated by E, and let π be the unitary representation
of Γ on `2(Γ/Γ0) induced by the left translation action of Γ on the set Γ/Γ0 of left cosets
(see Example 1.1.3). By construction of Γ0, the trivial coset is left invariant by all elements
of E. It follows from Proposition 1.2.16 that δΓ0 ∈ `2(Γ/Γ0) is an invariant vector for π.
Hence, Γ0 = Γ.

Corollary 1.2.18. Every discrete group with Property (T ) is finitely generated.

Proof. This follows immediately from Proposition 1.2.12 and Corollary 1.2.17.

Proposition 1.2.19. Let Γ be a discrete group and let Λ /Γ be a normal subgroup. If Γ has
property (T) then so does the quotient Γ/Λ.

Proof. Let q : Γ ! Γ/Λ be the quotient homomorphism. If π : Γ/Λ ! U(H) is a unitary
representation of the quotient group Γ/Λ then π ◦ q : Γ ! U(H) is a unitary representation
of Γ. If, moreover, π has almost Γ/Λ-invariant vectors then so does π ◦ q. In fact, if (ξi)i∈I is
a net of almost Γ/Λ-invariant unit vectors in H, then it is almost Γ-invariant as well. As Γ
has property (T) we can find a non-zero vector ξ ∈ H such that π(q(g))ξ = π ◦ q(g)ξ = ξ, for
all g ∈ Γ. We deduce that ξ is Γ/Λ-invariant, and it follows that Γ/Λ has property (T).

Remark 1.2.20. Let Γ be a discrete group, let Λ/Γ be a normal subgroup and let q : Γ ! Γ/Λ
be the quotient homomorphism. If (E, k) is a Kazhdan pair for Γ then (q(E), k) is a Kazhdan
pair for the quotient.
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1.3 Property (T ) and the trivial representation

We point out, in Proposition 1.3.1 below, the easy observation that a unitary representation
has invariant vectors if and only if it contains the trivial representation. We shall see hereafter
that it is possible to define a weaker notion of containment that captures having almost
invariant vectors.

Proposition 1.3.1. A unitary representation (π,H) of the discrete group Γ contains the
trivial representation if and only if there exists a non-zero Γ-invariant vector in H.

Proof. Suppose 1Γ ≤ π, and take T : C ! H such that T1Γ = πT . Let ξ = T (1). Then
π(g)ξ = ξ. Conversely, suppose π(g)ξ = ξ, for some non-zero vector ξ ∈ H. Set T (z) = zξ,
for z ∈ C. Then π(g)T (z) = zπ(g)ξ = zξ = T (z) = T1Γ(g)(z), for all g ∈ Γ.

Denote by C[Γ] the group ring of the discrete group Γ, i.e., the set of all finite formal
linear sums over Γ with coefficients in C equipped, as usual, with the structure of a ∗-algebra.
Further, we denote by C∗(Γ) the universal C∗-algebra of Γ, i.e., the completion of C[Γ] with
respect to supremum norm over all norms on C[Γ] obtained from a unitary representation.
We refer the reader to [9, Section 2.5] for details on this construction.

A unitary representation (π,H) of Γ induces a ∗-homomorphism C[Γ] ! B(H) simply by
extending π linearly. We shall denote this ∗-homomorphism by π̂. By universality, we may
extend π̂ further to a ∗-homomorphism C∗(Γ) ! B(H). With a slight abuse of notation, we
shall use π̂ to denote the extension to all of C∗(Γ), as well.

Definition 1.3.2. Let (π,H) and (ρ,K) be unitary representations of the discrete group Γ.
We say that π is weakly contained in ρ if, for all x ∈ C∗(Γ),

||π̂(x)|| ≤ ||ρ̂(x)|| . (1.2)

In that case we write π ≺ ρ.

Remark 1.3.3. Since the norm on C∗(Γ) majorizes the norm on C[Γ] induced by any repre-
sentation of Γ, it suffices in the above definition that equation (1.2) holds for all x ∈ C[Γ].

Lemma 1.3.4. Let H be a complex Hilbert space. For any ε > 0 and any n ≥ 2, there
exists a δ > 0 such that, if ξ1, . . . , ξn ∈ H are unit vectors with ||

∑n
i=1 ξi|| ≥ n − δ, then

||ξi − ξj || < ε, for all 1 ≤ i, j ≤ n

Proof. Suppose ξ1, . . . , ξn ∈ H is a collection of at least two unit vectors satisfying the
inequality ||

∑n
i=1 ξi|| ≥ n− δ, for some δ > 0. Then

n∑
k,l=1

〈ξk , ξl〉 =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
∣∣∣∣∣
2

≥ n2 − 2nδ + δ2.

On the other hand, as ξ1, . . . , ξn are unit vectors, we have, for each pair of indices 1 ≤ i, j ≤ n,

n∑
k,l=1

〈ξk , ξl〉 ≤ n2 − 2 + 2 Re 〈ξi , ξj〉 .

Comparing the two inequalities, it follows that Re 〈ξi , ξj〉 ≥ 1 − nδ + δ2/2. From this, we
derive the following inequality, for each pair of indices 1 ≤ i, j ≤ n:

||ξi − ξj ||2 = 2− 2 Re 〈ξi , ξj〉 ≤ 2nδ − δ2.

Given ε > 0 and n ∈ N, we may choose 0 < δ < n(1 −
√

1− ε2/n2). Rearranging, we see
that, for such a δ, the inequality 2nδ − δ2 < ε2 holds. The statement of the lemma then
follows from our above derivations.
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Proposition 1.3.5. Let (π,H) be a unitary representation of the discrete group Γ. Then
1Γ ≺ π if and only if (π,H) has almost invariant vectors.

Proof. Suppose (ξi)i∈I is a net of almost invariant vectors for the representation (π,H), and
let x =

∑
g∈Γ agg ∈ C[Γ] be a finite sum. For a given ε > 0, we may choose i0 ∈ I such that

||π(g)ξi − ξi|| < ε/
∑

g∈Γ |ag|, for all i < i0. Then

||π(x)|| ≥ ||π(x)ξi0 || =

∣∣∣∣∣
∣∣∣∣∣∑
g∈Γ

agπ(g)ξi0

∣∣∣∣∣
∣∣∣∣∣ >

∣∣∣∣∣
∣∣∣∣∣∑
g∈Γ

agξi0

∣∣∣∣∣
∣∣∣∣∣ − ε =

∣∣∣∣∣∑
g∈Γ

ag

∣∣∣∣∣− ε = ||1Γ(x)|| − ε.

Since ε > 0 was arbitrary, we deduce that ||π(x)|| ≥ ||1Γ(x)||. This holds for all x ∈ C[Γ], and
so, 1Γ ≺ π, by Remark 1.3.3.

Conversely, suppose 1Γ ≺ π. Let F ⊂ Γ be a finite set, put Fe = F ∪ {e}, and let
ε > 0. Set x =

∑
g∈Fe g. By the triangle inequality, and since π is a unitary representation,

we have ||π(x)|| ≤
∑

g∈Fe ||π(g)|| = |Fe|. On the other hand, since 1Γ ≺ π, we see that
||π(x)|| ≥ ||1Γ(x)|| = |Fe|, and so ||π(x)|| equals |Fe|. Let δ > 0 be as in Lemma 1.3.4 with
n = |Fe|. By definition of the operator norm, we may take ξ ∈ H such that∣∣∣∣∣∣

∣∣∣∣∣∣
∑
g∈Fe

π(g)ξ

∣∣∣∣∣∣
∣∣∣∣∣∣ = ||π(x)ξ|| ≥ |Fe| − δ.

Lemma 1.3.4 then yields that ||π(g)ξ − π(h)ξ|| < ε, for all pairs of elements g, h ∈ Fe. Since
Fe contains the identity and F is finite, it follows that

sup
g∈F
||π(g)ξ − ξ|| < ε.

It follows from Proposition 1.2.9 that (π,H) has almost invariant vectors.

We obtain the following rephrasing of Property (T ) as an immediate corollary to Propo-
sition 1.3.5 and Proposition 1.3.1.

Corollary 1.3.6. A discrete group Γ has property (T ) if and only if, whenever a unitary
representation weakly contains 1Γ, it contains 1Γ. �

This is less of a characterization of Property (T ) than it is a rephrasing of Definition 1.2.2
in fancy terms. Weak containment, however, allows us to define a topology on the unitary
dual of a group, namely Fell’s topology, and we shall see in Proposition 1.3.18 that isolation
of the trivial representation this topology is equivalent to having Property (T ). We shall take
a different route in defining Fell’s topology and make the connection to weak containment
in Lemma 1.3.9.

Let A be a unital C∗-algebra. Recall that the kernel of any ∗-representation of A is
a closed two-sided ideal in A (see, e.g., [8, Paragraph II.6.1.2]). A two-sided ideal which
arises as the kernel of an irreducible ∗-representation is called a primitive ideal. We denote
by Prim(A) the set of all primitive ideals of A, and we endow this set with a topology as
follows: For a subset S ⊂ Prim(A), its closure is defined as

S =

{
I ∈ Prim(A)

∣∣∣∣∣ ⋂
J∈S

J ⊂ I

}
.

One easily verifies that this, indeed, defines a topology on Prim(A) – see [16, Section 3.1.1].
This topology is known as Jacobsen’s topology.
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Definition 1.3.7. The unitary dual of a (discrete) group Γ, denoted by Γ̂, is the set of
equivalence classes of irreducible unitary representations of Γ.

Let Γ be a discrete group. Define a map Φ : Γ̂ ! Prim(C∗(Γ)) by setting Φ(π) = ker(π̂).
The topology on Γ̂ generated by all sets of the form Φ−1(U), where U is an open set in
Prim(C∗(Γ)), is known as Fell’s topology. With this definition of Fell’s topology we have
the following understanding of closures: If S ⊂ Γ̂ and π ∈ Γ̂ then π ∈ S if and only if⋂
ρ∈S ker(ρ̂) ⊂ ker(π̂). In Corollary 1.3.11 below, we characterize Fell’s topology in terms of

convergence of nets.

Lemma 1.3.8. Let (πi, Hi)i∈I be a family of unitary representations of a discrete group Γ.
Then the extension, (⊕iπi)̂ , of their direct sum to C∗(Γ) equals the direct sum, ⊕iπ̂i, of
their extensions. Moreover, for each x ∈ C∗(Γ), it holds that

||⊕iπ̂i(x)|| = sup
i∈I
||π̂i(x)|| .

Proof. The extension (⊕iπi)̂ is the unique ∗-homomorphism C∗(Γ) ! B(H) satisfying
(⊕iπi)̂ (g) = ⊕iπi(g), for all g ∈ Γ. On the other hand, for each i ∈ I and each g ∈ Γ,
π̂i(g) = πi(g), by definition of π̂i. Thus, the first statement of the lemma is direct from
uniqueness of (⊕iπi)̂ .

Let x ∈ C∗(Γ). By definition of the norm on the universal C∗-algebra of Γ, it is clear
that supi∈I ||π̂i(x)|| is finite. For each ξ = (ξi)i∈I ∈

⊕
i∈I Hi, we have, by definition of the

norm on the Hilbert space direct sum, that

∣∣∣∣(⊕iπ̂i(x)
)
ξ
∣∣∣∣2 = ||⊕iπ̂i(x)ξi||2 =

∑
i∈I
||π̂i(x)ξi||2i ≤

(
sup
i∈I
||π̂i(x)||

)2

||ξ||2

Hence, ||⊕iπ̂i(x)|| ≤ supi∈I ||π̂i(x)||. For the opposite inequality, recall that each Hi embeds
isometrically into the direct sum

⊕
i∈I Hi by considering each vector ξ ∈ Hi as the vector in⊕

i∈I Hi with ξ in the i’th coordinate and the zero-vector elsewhere. Thus, for each i0 ∈ I,

||⊕iπ̂i(x)|| ≥ sup { ||⊕iπ̂i(x)ξ|| | ξ ∈ Hi0 , ||ξi||i = 1 }
= sup { ||π̂i0(x)ξ|| | ξ ∈ Hi0 , ||ξi||i = 1 } = ||π̂i0(x)|| .

Taking the supremum over i0 ∈ I, we obtain the inequality ||⊕iπ̂i(x)|| ≥ supi∈I ||π̂i(x)||. This
finishes the proof of the lemma.

Lemma 1.3.9. Let (πi)i∈I be a net in Γ̂. The following are equivalent:

(i)
⋂
i∈I ker(π̂i) ⊂ ker(π̂),

(ii) π ≺ ⊕i∈Iπi,

(iii) supi∈I ||π̂i(x)|| ≥ ||π̂(x)||, for all x ∈ C∗(Γ).

Proof. The equivalence of (ii) and (iii) is clear by Lemma 1.3.8 and by definition of weak
containment. We proceed to show that (i) and (iii) are equivalent.

Suppose that (iii) holds, for all x ∈ C∗(Γ). Then, if x ∈
⋂
i∈I ker(π̂i), then

||π̂(x)|| ≤ sup
i∈I
||π̂i(x)|| = 0,

and so, x ∈ ker(π̂). Hence, (iii) implies (i). Suppose, conversely, that the inclusion in (i)
holds. It suffices to show that supi∈I ||π̂i(x)|| ≥ ||π̂(x)||, for all positive elements of x ∈ C∗(Γ)+.
Indeed, the inequality then follows for all x ∈ C∗(Γ) by the C∗-identity for the norm. So let
x ∈ C∗(Γ)+ be a positive element. For each t ∈ R+, let ft : R+ ! R+ be the continuous
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function given by ft(s) = max{s − t, 0}. By the properties of the continuous functional
calculus, π̂i(ft(x)) = ft(π̂i(x)), for all i ∈ I and all t ∈ R+. Set t = supi∈I ||π̂i(x)||. Then, for
all i ∈ I, ft equals zero on the spectrum of π̂i(x), and so, π̂i(ft(x)) = ft(π̂i(x)) = 0. By our
assumption that the inclusion of (i) holds, it follows that ft(π̂(x)) = π̂(ft(x)) = 0. Thus, ft
equals zero on the spectrum of π̂(x). But then the spectrum of π̂(x) must be contained in
the interval [0, t]. Because π̂(x) is normal, the spectral radius formular implies that

||π̂(x)|| ≤ t = sup
i∈I
||π̂i(x)|| .

This shoes that (i) implies (iii).

Proposition 1.3.10. Let (πi)i∈I be a net in Γ̂ and let π ∈ Γ̂. Then π is a cluster point for
(πi)i∈I if and only if one and hence all of the following equivalent conditions hold:

(i) For every i0 ∈ I, we have the inclusion
⋂
i<i0 ker(π̂i) ⊂ ker(π̂),

(ii) For every i0 ∈ I, π ≺
⊕

i<i0 πi,

(iii) We have the inequality lim supi∈I ||π̂i(x)|| ≥ ||π̂(x)||, for all x ∈ C∗(Γ).

Proof. We have that π is a cluster point for (πi)i∈I if and only if π lies in the closure of
all sets {πi | i < i0 }, for i0 ∈ I. Hence, π is a cluster point if and only if (i) holds. The
equivalence of (i) and (ii) is direct from Lemma 1.3.9.

Suppose that (iii) holds, for all x ∈ C∗(Γ). Fix i0 ∈ I. If x ∈
⋂
i<i0 ker(π̂i), then

||π̂(x)|| ≤ lim sup
i∈I

||π̂i(x)|| ≤ sup
i<i0
||π̂i(x)|| = 0,

and so, x ∈ ker(π̂), showing that (iii) implies (i). Suppose, conversely, that the inclusion in
(i) holds, for all i0 ∈ I. By Lemma 1.3.9, this implies that

sup
i<i0
||π̂i(x)|| ≥ ||π̂(x)|| ,

for all x ∈ C∗(Γ) and all i0 ∈ I. Thus,

lim sup
i∈I

||π̂i(x)|| = inf
i0∈I

sup
i<i0
||π̂i(x)|| ≥ ||π̂(x)|| ,

as we wanted to show.

Corollary 1.3.11. Let (πi)i∈I be a net in Γ̂ and let π ∈ Γ̂. Then π is a limit point for
(πi)i∈I if and only if, for every subnet (πj)j∈J of (πi)i∈I , one and hence all of the following
equivalent conditions hold:

(i)
⋂
j∈J ker(π̂j) ⊂ ker(π̂),

(ii) π ≺
⊕

j∈J πj,

(iii) supj∈J ||π̂j(x)|| ≥ ||π̂(x)||, for all x ∈ C∗(Γ).

Proof. The conditions are equivalent by Lemma 1.3.9. We show that π is a limit point if and
only if (i) holds. Suppose π is a limit point for (πi)i∈I and let (πj)j∈J be any subnet. Fix
j0 ∈ J . As π is, in particular, a cluster point for (πj)j∈J , Proposition 1.3.10 implies that⋂

j∈J
ker(π̂j) ⊂

⋂
j04j∈J

ker(π̂j) ⊂ ker(π̂).

Suppose, conversely, that (i) holds, for all subnets. Let (πj)j∈J be any subnet. For each
j0 ∈ J , (πj)j04j∈J is a subnet of (πj)j∈J and therefore also of (πi)i∈I . Our assumption
therefore gives us the inclusion

⋂
j04j∈J ker(π̂j) ⊂ ker(π̂), for all j0 ∈ J . Thus, π is a cluster

point for (πj)j∈J , by Proposition 1.3.10. We deduce that π is a cluster point for all subnets
of (πi)i∈I , and so, π is a limit point, as we wanted to show.
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Definition 1.3.12. A non-empty linear subspace I of a unital C∗-algebra A is called an
algebraic (two-sided) ideal of A if axb ∈ I, for all x ∈ I and all a, b ∈ A. An algebraic
two-sided ideal which is, moreover, closed in norm is called a (two-sided) ideal of A.

Let A be a unital C∗-algebra. For a two-sided ideal I of A, the quotient A/I is an algebra
with addition and multiplication given by addition and multiplication of representatives.
Furthermore, the involution given by (a+ I)∗ = a∗+ I is well-defined and the quotient norm
on A/I is a C∗-norm (see [36, Theorem 1.9.1]). We denote by πI : A ! A/I the canonical
projection. It is clear that πI is a ∗-homomorphism.

Lemma 1.3.13. Let A be a unital C∗-algebra. Let I and J be two-sided ideals in A and
denote by πI : A ! A/I and πJ : A ! A/J the canonical quotient maps. The map
Φ : A! A/I ⊕A/J given by

Φ(a) = (πI(a), πJ(a)), a ∈ A,

is a ∗-homomorphism. Moreover,

(i) Φ is injective if and only if I ∩ J = {0},

(ii) Φ is surjective if and only if I + J = A.

Proof. It is clear that Φ is a ∗-homomorphism because πI and πJ are. To see that (i) holds,
observe that an element a lies in the intersection I∩J if and only if Φ(a) = (0, 0). It remains
to show (ii). Suppose I + J = A and let a, b ∈ A so that (πI(a), πJ(b)) is a generic element
of A/I ⊕ A/J . By assumption, a and b has decompositions a = a1 + a2 and b = b1 + b2,
for a1, b1 ∈ I and a2, b2 ∈ J . Then πI(a) = πI(a2 + b1) and πJ(b) = πJ(a2 + b1). Hence,
Φ is surjective. Conversely, suppose I + J ( A and take a ∈ A\(I + J). We claim that
(πI(a), πJ(−a)) is not in the image of Φ. Indeed, if it were, we could find an element x ∈ A
such that a − x ∈ I and a + x ∈ J . Adding these two equalities leads to a contradiction.
Hence, Φ is not surjective.

Remark 1.3.14. Since 1̂Γ : C∗(Γ) ! C is a surjective ∗-homomorphism, we see that the
quotient C∗-algebra C∗(Γ)/ ker(1̂Γ) is ∗-isomorphic to C. Specifically, the ∗-isomorphism is
the unique map optained from the universal property of the quotient making the following
diagram commutative:

C∗(Γ) C

C∗(Γ)/ ker 1̂Γ

1̂Γ

πker 1̂Γ

Remark 1.3.15. The kernel of the trivial representation, ker(1̂Γ), is a maximal ideal in C∗(Γ).
Indeed, if there were another ideal ker(1̂Γ) ( J ⊂ C∗(Γ), we could find x ∈ J\ ker(1̂Γ). Since
such an x cannot be 0, the image of [x]ker(1̂Γ) under the isomorphism C∗(Γ)/ ker(1̂Γ) ∼= C
from Remark 1.3.14 is not zero, and so, by normalizing, we find an element x′ ∈ J such that
[x′]ker(1̂Γ) maps to 1. But then x′ = 1 + y, for some y ∈ ker(1̂Γ). As J contains ker(1̂Γ), we

deduce that 1 ∈ J , and so, J = C∗(Γ).

Definition 1.3.16. A two-sided ideal I of a unital C∗-algebra A is called complemented if
there exists another two-sided ideal J in A such that I ∩ J = {0} and such that I + J = A.

Remark 1.3.17. If I is a complemented ideal in a unital C∗-algebra A, then Lemma 1.3.13
yields that A is ∗-isomorphic to A/I ⊕ B, for some unital C∗-algebra B.
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Let S ⊂ Γ̂ be a subset. A representation π ∈ S ⊂ Γ̂ is called an isolated point in S if the
singleton {π} is an open set in the subspace topology, or, equivalently, if π /∈ S\{π}. That
is, π is isolated in S if and only if ⋂

ρ∈S\{π}

ker(ρ̂) 6⊂ ker(π̂) (1.3)

Proposition 1.3.18. Let Γ be a discrete group. The following are equivalent:

(i) Γ has Property (T ),

(ii) The trivial representation, 1Γ, is an isolated point in the unitary dual, Γ̂,

(iii) The kernel of 1̂Γ is a complemented ideal in C∗(Γ),

(iv) There is a central projection q in C∗(Γ) such that 1̂Γ(q) = 1 and ugq = qug = q, for all
g ∈ Γ.

Proof. (i)⇒(ii): Suppose 1Γ is not an isolated point in Γ̂. Then 1Γ lies in the closure of
Γ̂\{1Γ}, and so, we may find a net (πi)i∈I in Γ̂\{1Γ} converging to 1Γ. Let π =

⊕
i∈I πi. Then

1Γ is weakly contained in π, by Corollary 1.3.11. But π does not contain 1Γ, as otherwise,
1Γ would be contained in πi0 , for some i0 ∈ I, by Proposition 1.1.14. By construction, πi0 is
an irreducible representation not equivalent to 1Γ, so this would be a contradiction. Hence,
π is a unitary representation weakly containing but not containing 1Γ, and so, Γ does not
have property (T ), by Corollary 1.3.6.

(ii)⇒(iii): Let I0 = ker(1̂Γ) and let J0 =
⋂
π∈Γ̂\{1Γ} ker(π̂). Recall that there are enough

irreducible representations to separate the points of C∗(Γ) (see, e.g., [54, Theorem 13.11(a)]
and recall that pure states correspond to irreducible representations via the GNS construc-
tion). Therefore, as the irreducible representations of Γ are in 1-1 correspondence with the
irreducible representations of C∗(Γ), we see that

I0 ∩ J0 =
⋂
π∈Γ̂

ker(π̂) = {0}.

If 1Γ is isolated in Γ̂, equation (1.3) yields that J0 6⊂ I0, and so, I0 + J0 is an ideal strictly
containing I0. But I0 is a maximal ideal by Remark 1.3.15. Thus, I0 + J0 = C∗(Γ). That is,
ker(1̂Γ) is complemented in C∗(Γ).

(iii)⇒(iv): By Lemma 1.3.13, Remark 1.3.17 and Remark 1.3.14, we have a ∗-isomorphism
Φ : C∗(Γ) ! C⊕B, for some unital C∗-algebra B. Moreover, we have 1̂Γ = πC◦Φ, where πC is
the canonical projection C⊕B ! C. As Φ is a ∗-isomophism, there exists a (unique) central
projection q ∈ C∗(Γ) such that Φ(q) = (1, 0). We see immediately that 1Γ(q) = πC(Φ(q)) = 1.
Further, for each g ∈ Γ, πC(Φ(ug)) = 1̂Γ(ug) = 1, and so, we must have Φ(ug) = (1, vg), for
some unitary element vg ∈ B. It follows that qug = ugq = q, for all g ∈ Γ.

(iv)⇒(ii): Suppose for contradiction that 1Γ is not an isolated point and let (πi)i∈I be a

net in Γ̂\{1Γ} converging to 1̂Γ. By Corollary 1.3.11, sup ||π̂i(q)|| ≥
∣∣1̂Γ(q)

∣∣ = 1. Hence, we
may find an index i ∈ I such that π̂i(q) is non-zero. Let Hi be the Hilbert space on which
π̂i acts. By the properties of q and since π̂i is a representation, we have, for each g ∈ Γ and
each ξ ∈ Hi,

πi(g)
(
π̂i(q)ξ

)
= π̂i(ug)

(
π̂i(q)ξ

)
= π̂i(ugq)ξ = π̂i(q)ξ.

Hence, π̂i(q)ξ is a Γ-invariant vector for πi, for all ξ ∈ Hi. As π̂i(q) is non-zero, this implies
the existence of a non-zero Γ-invariant vector for πi. But πi is irreducible, and so, we must
have that πi is equivalent to 1Γ. But this contradicts that (π̂i)i∈I is a net in Γ̂\{1Γ}.

Remark 1.3.19. The projection in Proposition 1.3.18 is known as a Kazhdan projection.
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1.4 Literature

The brief introduction to representations on Hilbert spaces in Section 1.1 is based on [5,
Appendix A]. In the introduction to Kazhdan’s Property (T ) in Section 1.2 we follow mainly
[9, Chapter 12.1 and Chapter 6.4]. Another reference for an introduction to Property (T ) is
[5, Chapter 1]. In the introduction to this book, the reader may also find more references
to the literature on the topic. The results of Section 1.3 can be found in [5, Section 1.2 and
Appendix F]. The presentation given in Section 1.3 is based mainly on private communication
with my supervisor, Magdalena Musat.
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Chapter 2

Property (T ) as a fixed-point
property

We introduce in the last section of this chapter, Section 2.5, a property regarding the existence
of fixed points for affine actions on real Hilbert spaces. Our aim is to show that this property,
known as Property (FH), is equivalent with Property (T ). In the first four sections we shall
develop the tools needed to study affine actions and, in particular, to proof the mentioned
equivalence. These tools will also be useful to us when studying group actions on Banach
spaces in Chapter 4, and we shall therefore not restrict ourselves to the Hilbert space setting
before in the final section. In Section 2.1 we introduce what we mean by an affine map and
discuss how this set of maps on a normed vector space relates to the set of isometric maps. In
Section 2.2 we discuss affine actions of a group on a general vector space, and we define and
study the vector space of 1-cocycles with respect to a (linear) representation. In Section 2.3,
we introduce the first cohomology of a group with coefficients in a (linear) representation,
and we discuss how one may use analysis to study this object for representations on Banach
spaces. In Section 2.4, we give an introduction to the theory of positivity of functions on
groups. At first, this section might seem misplaced, but we shall see that the tools developed
here will be very useful to us in the final section of this chapter.

2.1 Affine maps and isometries

Definition 2.1.1. A map f : V ! W between vector spaces over the same field K(= R or
C) is said to be affine if

f (λx+ (1− λ)y) = λf(x) + (1− λ)f(y) (2.1)

for all x, y ∈ V and all λ ∈ K. We denote by Aff(V ) the group of affine bijections on V .

Example 2.1.2. The following are two easy but important examples of affine maps on a
vector space V :

• Any linear map is affine. In particular, the set of affine bijections Aff(V ) contains the
general linear group of V .

• A translation on V is a map Tx0 on V of the form Tx0(x) = x + x0, for some fixed
vector x0 ∈ V . All translations are affine. Moreover, all translations are bijections
with T−1

x0
= T−x0 . ◦

Remark 2.1.3. We can, equivalently, define a map f : V ! W to be affine if the map
f0 : V !W given by

f0(x) = f(x)− f(0), for x ∈ V, (2.2)
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is linear. If f is affine, then f0 is called the linear part of f and the vector f(0) is called the
translation part of f . Clearly, an affine map is linear, if its translation part is zero.

Remark 2.1.4. An affine map is injective (respectively surjective), if and only if its linear
part is injective (respectively surjective).

Definition 2.1.5. A map f : V !W between normed vector spaces is called an isometry if

||f(x)− f(y)|| = ||x− y|| ,

for all x, y ∈ V . We denote by Isom(V ) the set of bijective isometries on V .

Remark 2.1.6. Isometries are always continuous and injective.

An affine map is an isometry if and only if its linear part is. Isometries, on the other
hand, need not be affine. However, a famous result due to S. Mazur and S. Ulam in [29] show
that bijective isometries between real vector spaces are always affine. We present below a
proof following [50].

Lemma 2.1.7. A map f : V !W between real vector spaces is affine if and only if

f (tx+ (1− t)y) = tf(x) + (1− t)f(y) (2.3)

for all x, y ∈ V and all t ∈ [0, 1].

Proof. We need only proof that, if equation (2.3) hold for all t ∈ [0, 1], it holds for all t ∈ R.
So let x, y ∈ V and let t ∈ R\[0, 1]. We may assume without loss of generality that t < 0
(otherwise, exchange the role of x and y). Then 1/(1− t) lies in [0, 1], and so,

f(y) = f

(
1

1− t
(
tx+ (1− t)y

)
+

(
1− 1

1− t

)
x

)
=

1

1− t
f(tx+ (1− t)y) +

(
1− 1

1− t

)
f(x).

equation (2.3) follows by rearrangement.

Lemma 2.1.8. Let V and W be normed real vector spaces. If f : V ! W is continuous,
then f is affine if and only if

f
(

1
2x+ 1

2y
)

= 1
2f(x) + 1

2f(y), (2.4)

for all x, y ∈ V .

Proof. Suppose the condition of equation (2.4) hold. We obtain equation (2.3), for all dyadic
rationals t in [0, 1] and all x, y ∈ V , by induction. Since the dyadic rationals are dense in
[0, 1], continuity of f implies that f is affine.

Let V be a real vector space. For each z ∈ V , we define the map rz : V ! V by
rz(x) = 2z − x. The map rz is called the reflection of V in z. It is an affine map, and it
clear that r2

z = idV . Thus, rz is bijective with r−1
z = rz. Moreover, z is a fixed point for rz,

and it is the only fixed point. If V is normed, the following equalities are direct from the
definition:

||rz(x)− z|| = ||x− z|| , ||rz(x)− x|| = 2 ||x− z|| , (2.5)

for all x ∈ V .

Theorem 2.1.9 (Mazur-Ulam). Every bijective isometry between real normed vector spaces
is affine.
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Proof. Let f : V ! W be a bijective isometry between real normed vector spaces. For
x, y ∈ V , set z = (x+ y)/2 ∈ V and z′ = (f(x) + f(y))/2. We show that f(z) = z′. This will
imply that f is affine by Lemma 2.1.8.

Let Isom(V ;x, y) denote the set of all bijective isometries on V keeping the points x and
y fixed. For each such map g, we have ||gz − x|| = ||gz − gx|| = ||z − x||, and so

||g(z)− z|| ≤ ||g(z)− x|| + ||x− z|| = 2 ||x− z|| .

Hence,

c = sup { ||g(z)− z|| | g ∈ Isom(V ;x, y) } <∞.

For g ∈ Isom(V ;x, y), let g̃ = rzg
−1rzg, where rz is the reflection of V in z. Then g̃ ∈

Isom(V ;x, y), as well, and so ||g̃(z)− z|| ≤ c. Using this together with the equalities in
equation (2.5) and the fact that g−1 is an isometry, we deduce that

2 ||g(z)− z|| =
∣∣∣∣rz(g(z)

)
− g(z)

∣∣∣∣ =
∣∣∣∣g−1rzg(z)− z

∣∣∣∣ = ||g̃(z)− z|| ≤ c.

Taking the supremum of the left hand side over all g ∈ Isom(V ;x, y), we obtain that 2c ≤ c.
As c is non-negative and finite, we must therefore have c = 0. Hence, z is a fixed point, for
all g ∈ Isom(V ;x, y).

Let rz′ be the reflection of W in z′. Then g = rzf
−1rz′f is in Isom(V ;x, y), and our

preparations above then implies that g(z) = z. It follows that rz′f(z) = f(z), so as z′ is the
only fixed point for rz′ , we conclude that f(z) = z′, as we wanted to show.

2.2 Affine actions and 1-cocycles

Definition 2.2.1. Let Γ be a discrete group and let V a vector space. An affine action of
Γ on V is a group homomorphism Γ ! Aff(V ).

Example 2.2.2. Let V be a vector space. We may reformulate Example 2.1.2 in the language
of affine actions:

• The inclusion GL(V ) ⊂ Aff(V ) is an affine action of GL(V ) on V .

• Any additive subgroup of V acts on V by translation. ◦

Let Γ be a discrete group and α : Γ ! Aff(V ) be an affine action. For each g ∈ Γ, let
π(g) : V ! V be the linear part of α(g), and b(g) be the translation part of α(g). Then π is
a representation of Γ on V , and b : Γ ! V satisfies the relation

b(gh) = b(g) + π(g)b(h), (2.6)

for all g, h ∈ Γ, because α is a homomorphism. This relation is called the 1-cocycle relation
(with respect to π). The representation π is called the linear part of α, and the map b is
called the translation part of α.

We shall change our perspective now and fix a representation π of Γ on a vector space V .

Definition 2.2.3. A map b : Γ ! V satisfying the 1-cocycle relation of equation (2.6) is
called a 1-cocycle with respect to π. The set of all 1-cocycles with respect to π is denoted
by Z1(Γ, π).

Remark 2.2.4. The set Z1(Γ, π) of 1-cocycles with respect to a fixed representation π has
the structure of a vector space with addition and scalar multiplication given pointwise.
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Proposition 2.2.5. Let Γ be a discrete group and (π, V ) a representation of Γ. An action
α of Γ on V is an affine action with linear part π if and only if there exists a 1-cocycle
b : Γ ! V with respect to π such that

α(g)x = π(g)x+ b(g), (2.7)

for all g ∈ Γ and all x ∈ V .

Proof. If α is an affine action with linear part π then the translation part of α has the
required properties. Conversely, suppose there exists a map b : Γ ! V satisfying the 1-
cocycle relation with respect to π and such that equation (2.7) hold, for all g ∈ Γ and all
x ∈ V . Then each map α(g) : V ! V , for g ∈ Γ, is affine, and the 1-cocycle relation ensures
that α is a homomorphism.

Remark 2.2.6. Given a representation π of a discrete group, Proposition 2.2.5 shows that
the set of affine actions with linear part π corresponds exactly to the set of 1-cocycles with
respect to π. For a 1-cocycle b ∈ Z1(Γ, π), the action α defined by equation (2.7) is referred
to as the affine action associated to π and b.

Lemma 2.2.7. Any 1-cocycle b ∈ Z1(Γ, π) has the following properties:

(i) b(e) = 0,

(ii) π(g)b(g−1) = −b(g), for all g ∈ Γ.

Proof. Since, for any representation π, π(e) = id, we have

b(e) = b(e2) = 2b(e).

We must therefore necessarily have b(e) = 0. Then, for all g ∈ Γ,

0 = b(e) = b(gg−1) = b(g) + π(g)b(g−1).

This finishes the proof.

The following is an important example of a 1-cocycle:

Example 2.2.8. Let π be a representation of the discrete group Γ on a vector space V , let
x0 ∈ V , and let b : Γ ! V be the map given by

b(g) = π(g)x0 − x0, for all g ∈ Γ. (2.8)

Then, for each g, h ∈ Γ,

b(gh) = π(gh)x0 − x0 = π(g)(π(h)x0 − x0) + π(g)x0 − x0 = π(g)b(h) + b(g).

Hence, b is a 1-cocycle with respect to π. Any 1-cocycle which has the form of equation (2.8),
for some vector x0, is called a 1-coboundary with respect to π. The set of all 1-coboundaries
with respect to π is denoted by B1(Γ, π). ◦

Remark 2.2.9. The set of 1-coboundaries, B1(Γ, π), is a subspace of the vector space of all
1-cocycles, Z1(Γ, π).

Definition 2.2.10. Let α be an affine action of the discrete group Γ on a vector space V .
A fixed point for α in V is a vector x ∈ V satisfying α(g)x = x, for all g ∈ Γ.

Lemma 2.2.11. Let Γ be a discrete group, V a vector space, and let α be an affine action
of Γ on V with linear part π and translation part b. The following are equivalent:
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(i) α has a fixed point in V ,

(ii) b is a 1-coboundary,

(iii) α is conjugate to π via a translation.

Proof. If −x0 ∈ V is a fixed point for α then

b(g) = α(g)(−x0)− π(g)(−x0) = π(g)x0 − x0.

That is, b is the 1-coboundary associated to x0. Further, if b is the 1-coboundary associated
to x0 ∈ V , then α has the following form:

α(g)x = π(g)x+ b(g) = π(g)(x+ x0)− x0 = T−1
x0
◦ π(g) ◦ Tx0x,

for all g ∈ Γ and x ∈ V . That is, α is conjugate to π via the translation Tx0 . Finally, if
α = T−1

x0
◦ π ◦ Tx0 , for some x0 ∈ V , then

α(g)(−x0) = T−1
x0
◦ π(g) ◦ Tx0(−x0) = T−1

x0
(0) = −x0.

Hence, −x0 is a fixed point for α.

2.3 1-cohomology

For a fixed representation π of a discrete group Γ on a vector space V , we define the first
cohomology of Γ with coefficients in π as the quotient vector space

H1(Γ, π) = Z1(Γ, π)/B1(Γ, π).

When all 1-cocycles with respect to π are 1-coboundaries, the first cohomology group van-
ishes. By Lemma 2.2.11, this vanishing therefore captures that all affine actions of Γ on V
with linear part π has a fixed point. We state this observation in Lemma 2.3.1 below.

Lemma 2.3.1. Let Γ be a discrete group and let π be a representation on a vector space V .
Then H1(Γ, π) = 0 if and only if all affine actions of Γ on V with linear part π has a fixed
point in V .

Proof. We have that H1(Γ, π) = 0 if and only if all 1-cocycles on V with respect to π are 1-
coboundaries. By Proposition 2.2.5, the affine actions with linear part π correspond exactly
to the 1-cocycles on V with respect to π. Hence, by Lemma 2.2.11, H1(Γ, π) = 0 if and only
if all affine actions with linear part π have a fixed point.

Let X be a topological vector space and let C(Γ, X) denote the set of all functions Γ ! X.
We say that a net (fi)i∈I in C(Γ, X) converges pointwise to f if fi(g) ! f(g) as a net in
X, for all g ∈ Γ. The defines a topology the C(Γ, X) known as the topology of pointwise
convergence. When the topology on X comes from a norm, the induced topology of pointwise
convergence on C(Γ, X) is generated by the separating family of seminorms {pg}g∈Γ, with
pg(f) = ||f(x)||, for all g ∈ Γ and f ∈ C(Γ, X). In particular, it is Hausdorff (see [19, Propo-
sition 5.16(a)]). If X is a Banach space, the topology of pointwise convergence on C(Γ, X) is
complete, as well. If X is normed and Γ is countable, the topology of pointwise convergence
on C(Γ, X) is metrizable with a translation invariant metric (see [19, Proposition 5.16(b)]).

Let π be a representation of the countable discrete group Γ on a normed vector space X.
The vector space of 1-cocycles, Z1(Γ, π), inherits the topology of pointwise convergence from
the inclusion Z1(Γ, π) ⊂ C(Γ, X). We show in the proposition below that, if X is Banach,
Z1(Γ, π) is complete. Recall that a Hausdorff topological vector space whose topology is
generated by a family of seminorms is called a Fréchet space if it is complete.
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Proposition 2.3.2. Let (π,X) be a representation of the countable discrete group Γ by linear
surjective isometries on a normed vector space X. If X is a Banach space then Z1(Γ, π) is
a Fréchet space in the topology of pointwise convergence.

Proof. We need only show that Z1(Γ, π) is closed in C(Γ, X). To show this, let (bn)n≥1 be

a sequence in Z1(Γ, π) converging to b in C(Γ, X). Then, for each pair of group elements
g, h ∈ Γ, bn(gh) ! b(gh). But also, bn(gh) = bn(g) + π(g)bn(h) ! b(g) + π(g)b(h). Since
the topology of pointwise convergence on C(Γ, X) is Hausdorff we deduce that b(gh) =
b(g) + π(g)b(h). Hence, b is a 1-cocycle.

Remark 2.3.3. In general, the set of 1-coboundaries need not be closed in the set of 1-
cocycles. If B1(Γ, π) is not closed in Z1(Γ, π) it follows, in particular, that H1(Γ, π) 6= 0.
Hence, by Lemma 2.3.1, showing that B1(Γ, π) is not closed provides a mean for showing
the existence of an affine action with linear part π which does not have any fixed points.
Loosely speaking, topologizing the vector space of 1-cocycles allows us to use analysis to
study fixed-point properties for group actions on Banach spaces.

We show in the proposition below that the closure ofB1(Γ, π) is connected to the existence
of almost invariant vectors for π.

Proposition 2.3.4. Let (π,X) be a representation of a countable discrete group Γ by linear
surjective isometries on a Banach space. Assume that π does not have any non-zero invariant
vectors. Then π has almost invariant vectors if and only if B1(Γ, π) is not closed in Z1(Γ, π)
with respect to the topology of pointwise convergence.

Proof. For each x ∈ X, denote by bx the 1-coboundary given by bx(g) = π(g)x−x, for g ∈ Γ.
By definition of B1(Γ, π), each 1-coboundary has this form. Define a map β : X ! B1(Γ, π)
by setting β(x) = bx. Then β is clearly a linear and surjective map. It is also clear that β is
continuous as, for each g ∈ Γ and each x, y ∈ B, pg(bx − by) ≤ 2 ||x− y||. Further, when π
has no non-zero invariant vectors, we see that β is injective.

Suppose that π does not have almost invariant vectors. Then there exists a group element
g0 ∈ Γ and an ε > 0 such that ||π(g0)x− x|| ≥ ε ||x||, for all x ∈ X. Let (xi)i∈I be a net in X
such that the corresponding net (bxi)i∈I in B1(Γ, π) converges pointwise to some b ∈ Z1(Γ, π).
We may then extract a subnet in the form of a sequence (xn)n≥1 such that pg0(bxn − b) ! 0.
For each n,m ∈ N, we see that

||xn − xm|| ≤ ε−1 ||π(g0)(xn − xm)− (xn − xm)||
≤ ε−1

(
||π(g0)xn − xn − b(g0)|| + ||π(g0)xm − xm − b(g0)||

)
= ε−1

(
pg0(bxn − b) + pg0(bxm − b)

)
.

Thus, (xn)n≥1 is Cauchy. Let x0 be the point of convergence. For each g ∈ Γ, pg(bxn−bx0) ≤
2 ||xn − x0||, and so, (bxn)n≥1 converges pointwise to bx0 . Further, for g ∈ Γ and ε > 0,
take n0 ∈ N such that pg(bxn − bx0) < ε/3, for all n ≥ n0, and take i0 ∈ I such that
pg(bxi − b) < ε/3, for all i < i0. Denote by φ : N ! I the index map defining (ξn)n≥1 as a
subnet and take n1 ∈ N such that φ(n) < i0, for every n ≥ n1. Let nε = max{n0, n1}. Then

pg(bxi − bx0) ≤ pg(bxi − b) + pg
(
b− bxφ(nε )

)
+ pg(bxnε − bx0) < ε,

for all i < i0. Since g ∈ Γ and ε > 0 was arbitrary, this shows that (bxi)i∈I converges to
bx0 . We deduce that b = bx0 , as the topology of pointwise convergence is Hausdorff. Hence,
B1(Γ, π) is closed in Z1(Γ, π).

Conversely, suppose B1(Γ, π) is closed in Z1(Γ, π). Then B1(Γ, π) is Fréchet by Proposi-
tion 2.3.2. Moreover, since Γ is countable, the topology of pointwise convergence is metriz-
able by a translation invariant metric. It follows by the open mapping theorem (for complete
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topological vector spaces whose topology is induced by a translation invariant metric) that
β is open (see [40, Corollary 2.12(a)]). In particular, the set

β(BX(0, 1)) =
{
bx ∈ B1(Γ, π)

∣∣ ||x|| < 1
}
,

where BX(0, 1) is the open unit ball in X, is open in B1(Γ, π). Hence, we can find a finite
subset F ⊂ Γ and an ε > 0 such that, whenever bx ∈ B1(Γ, π) satisfies supg∈F pg(bx) < ε,
then ||x|| < 1. For each non-zero x ∈ X, we deduce that

sup
g∈F
||π(g)x− x|| = ||x|| sup

g∈F

∣∣∣∣π(g)
(
x/ ||x||

)
−
(
x/ ||x||

)∣∣∣∣ = ||x|| sup
g∈F

pg(bx/||x||) ≥ ε ||x|| .

We conclude that (π,B) does not have almost invariant vectors.

Remark 2.3.5. The assumption that Γ is countable in Proposition 2.3.4 above is used to show
one of the implications of the proposition only: if π has almost invariant vectors then B1(Γ, π)
is not closed. Specifically, it is used in the application of the open mapping theorem. When Γ
is not countable, the topology of pointwise convergence on C(Γ, X) need not be metrizable,
and we do therefore not have the open mapping theorem, as stated in [40, Corollary 2.12(a)].

2.4 Positivity of functions on groups

When studying groups it is often useful to consider the set of complex valued functions
on the group of interest instead of looking at the group directly. In particular, studying
functions with certain positivity properties will proof to be a useful tool for us. We study
in the following two subsections functions of positive type and functions conditionally of
negative type. In Theorem 2.4.27, which is due to I. J. Schoenberg in [43], we show a
connection between the two notions. We show immediately hereafter a consequence of this
theorem allowing us to construct, from any affine action on a Banach space, a family unitary
representations on complex Hilbert spaces with a set of properties that might at first seem
technical, but that will later allow us to establish a connection between Kazhdan’s Property
(T ) (or its generalization to the Banach spaces setting) and a property regarding fixed points
for affine actions.

2.4.1 Functions of positive type

Definition 2.4.1. Let Γ be a discrete group. A function of positive type on Γ is a function
ϕ : Γ ! C satisfying

n∑
i,j=1

cicjϕ(g−1
j gi) ≥ 0, (2.9)

for all n ∈ N, g1, . . . , gn ∈ Γ and c1, . . . , cn ∈ C. We denote by P(Γ) the set of all functions
of positive type on Γ.

Remark 2.4.2. We remark that condition (2.9) is equivalent to requirering that all matrices
of the form 

ϕ(e) ϕ(g−1
2 g1) · · · ϕ(g−1

n g1)

ϕ(g−1
1 g2) ϕ(e) · · · ϕ(g−1

n g2)
...

...
. . .

...

ϕ(g−1
1 gn) ϕ(g−1

2 gn) · · · ϕ(e)

 ,

for g1, . . . , gn ∈ Γ, are positive semidefinite.
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Remark 2.4.3. We see directly from the definition of positive type that P(Γ) is a convex cone
with addition and scalar multiplication defined pointwise. That is, if ϕ and ψ are of positive
type, then so is ϕ+ ψ and tϕ, for all t ≥ 0.

Remark 2.4.4. When ϕ : Γ ! R is real-valued, it suffices for ϕ to be of positive type that
equation (2.9) hold for all g1, . . . , gn ∈ Γ and all collections of real numbers c1, . . . , cn ∈ R.

As a subset of the set of all complex valued functions on Γ, P(Γ) inherits the topology of
pointwise convergence. This topology is Hausdorff and, when Γ is countable, it is metrizable
with a translation invariant metric (see [19, Proposition 5.16]). Proposition 2.4.5 below shows
that P(Γ) is closed in the set of all complex valued functions on Γ.

Proposition 2.4.5. Let (ϕk)k≥1 be a sequence of functions of positive type on Γ. If the
sequence converges pointwise to a function ϕ : Γ ! C, then ϕ is of positive type, as well.

Proof. For each finite n ∈ N, and any collections c1, . . . , cn ∈ C and g1, . . . , gn ∈ Γ, we have

n∑
i,j=1

cicjϕ(g−1
j gi) =

n∑
i,j=1

cicj lim
k!∞

ϕk(g
−1
j gi) = lim

k!∞

n∑
i,j=1

cicjϕk(g
−1
j gi).

If (ϕk)k≥1 is a sequence of functions of positive type, the sum on the right-hand side is
non-negative, for each k ∈ N, and so, the limit is non-negative as well. Hence, if ϕ is the
pointwise limit of a sequence of functions of positive type, it is itself of positive type.

We shall give a few examples of functions of positive type in a moment. Before doing so,
we record the following easy observation:

Lemma 2.4.6. Let Γ be a discrete group and let ϕ ∈ P(Γ). For all g ∈ Γ, it holds that

(i) |ϕ(g)| ≤ ϕ(e),

(ii) ϕ(g−1) = ϕ(g).

Proof. Consider the 2× 2-matrix (
ϕ(e) ϕ(g)
ϕ(g−1) ϕ(e)

)
.

This is a positive matrix by the assumption that ϕ is of positive type. In particular, it is
hermitian and has a positive determinant.

Example 2.4.7. The function x 7! eiθx is of positive type on R as an additive group, for
any θ ∈ R. Indeed, for n ∈ N and x1, . . . , xn ∈ R, let v ∈ M1,n(C) be the row-vector
(e−iθx1 , . . . , e−iθxn). Then

(
eiθ(xj−xk)

)
j,k

= v∗v. By Remark 2.4.2, this shows the claim. ◦

Example 2.4.8. Let (π,H) be a unitary representation of the discrete group Γ and let
ξ ∈ H. The function 〈π( · )ξ , ξ〉 is of positive type. Indeed, for each choice of g1, . . . , gn ∈ Γ
and c1, . . . , cn ∈ C, we have

n∑
i,j=1

cicj
〈
π(g−1

j gi)ξ , ξ
〉

=

〈
n∑
i=1

ciπ(gi)ξ ,

n∑
j=1

cjπ(gj)ξ

〉
≥ 0.

Hence, 〈π( · )ξ , ξ〉 is of positive type. A function of this form is called a function of positive
type associated to π. We denote by Pπ(Γ) the set of all such functions. ◦

Our second example is of particular importance. It turns out that every function of
positive type on a discrete group is associated to some unitary representation through a
GNS-type construction.
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Theorem 2.4.9 (GNS construction for functions of positive type). Let ϕ be a function of
positive type on a discrete group Γ. There exists a unitary representation (πϕ, Hϕ) of Γ and
a cyclic unit vector ξϕ in Hϕ such that

ϕ(g) = 〈πϕ(g)ξϕ , ξϕ〉 , for all g ∈ Γ.

Moreover, the triplet (πϕ, Hϕ, ξϕ) is unique in the sense that, if (π,H, ξ) is any other such
triplet, then there exists a Hilbert space isomorphism T : Hϕ ! H intertwining πϕ and π
and which satisfies Tξϕ = ξ.

Proof. The case where ϕ is zero is trivial, so we may assume that this is not the case. For
each g ∈ Γ, define ϕg : Γ ! C by setting ϕg(h) = ϕ(h−1g), for all h ∈ Γ. Observe that

ϕg(h) = ϕ(h−1g) = ϕ(g−1h) = ϕh(g), (2.10)

for all g, h ∈ Γ, by Lemma 2.4.6. Set

V = spanC {ϕg | g ∈ Γ } .

This is a linear subspace of the vector space of all complex valued functions on Γ. For
ϕ =

∑n
i=1 aiϕgi and ψ =

∑m
j=1 bjϕhj in V , set

〈ϕ ,ψ〉 =

〈
n∑
i=1

aiϕgi ,
m∑
j=1

bjϕhj

〉
=

n∑
i=1

m∑
j=1

aibjϕgi(hj). (2.11)

By equation (2.10), we see that

〈ϕ ,ψ〉 =
m∑
j=1

bjϕ(hj) =
n∑
i=1

aiψ(gi).

Hence, 〈ϕ ,ψ〉 does not depend on the representation of ϕ and ψ in V , and 〈 · , · 〉 is therefore
well-defined. Moreover, it is clear that 〈 · , · 〉 is conjugate symmetric and linear in the first
entry. Further, since ϕ is of positive type, it is positive semi-definite. We show next that it
is, in fact, positive definite, and so defines an inner product on V .

For any g ∈ Γ, we have 〈ϕg , ϕg〉 = ϕ(e). By Lemma 2.4.6, this is non-zero because ϕ is
non-zero by assumption. Let ϕ ∈ V . For any g ∈ Γ, it follows from Cauchy-Schwarz that

|ϕ(g)|2 = | 〈ϕ ,ϕg〉 |2 ≤ 〈ϕg , ϕg〉 〈ϕ ,ϕ〉 = ϕ(e) 〈ϕ ,ϕ〉 .

Hence, if 〈ϕ ,ϕ〉 = 0, we must have ϕ = 0.
Let Hϕ be the completion of the pre-Hilbert space V with respect to 〈 · , · 〉. For each

g ∈ Γ, set πϕ(g)ϕh = ϕgh, for all h ∈ Γ, and extend linearly to V . It is a straight
forward computation to check that πϕ(g1)πϕ(g2) = πϕ(g1g2), that πϕ(e) = idV and that
πϕ(g)∗ = πϕ(g−1), for all g, g1, g2 ∈ Γ. It follows that πϕ(g) is well-defined and inner product
preserving, for all g ∈ Γ. Hence, πϕ(g) is bounded and may therefore be extended to a
unitary operator on Hϕ. Let ξϕ = ϕe ∈ Hϕ. It is clear that ξϕ is cyclic and that

ϕ(g) = 〈ϕg , ϕe〉 = 〈πϕ(g)ϕe , ϕe〉 , for all g ∈ Γ.

The triplet (πϕ, Hϕ, ξϕ) then has the desired properties.
Suppose (π,H, ξ) is another triplet with the given properties. Define T ′ : V ! H by

setting T ′(ϕg) = π(g)ξ and extending linearly. We have, for
∑

g agϕg ∈ V ,∣∣∣∣∣∣∣∣T ′(∑
g

agϕg

)∣∣∣∣∣∣∣∣2 =
∑
g,h

agah
〈
π(h−1g)ξ , ξ

〉
=
∑
g,h

agah
〈
πϕ(h−1g)ξ , ξ

〉
=

∣∣∣∣∣∣∣∣∑
g

agπϕ(g)ξϕ

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∑
g

agϕg

∣∣∣∣∣∣∣∣2.
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Hence, T ′ extends to a well-defined isometry T : Hϕ ! H. Moreover, since T (V ) =
span {π(g)ξ | g ∈ Γ }, which is dense in H, we see that T is onto. Hence, T is a Hilbert
space isomorphism. Finally, it is clear that Tξϕ = ξ, and it is straight forward to check that
T intertwines πϕ and π.

Remark 2.4.10. In the proof of Theorem 2.4.9, we see that, if ϕ is a real-valued function of
positive type, then (πϕ, Hϕ) is the comlexification of an orthogonal representation.

The next three propositions illustrate how one may construct new functions of positive
type from old ones.

Proposition 2.4.11. Let ϕ and ψ be functions of positive type on the discrete group Γ.
Then their entrywise product, ϕ · ψ, is a function of positive type on Γ, as well.

Proof. Recall that the Schur product of two positive semidefinite matrices is, again, positive
semidefinite. Hence, the statement is direct from Remark 2.4.2.

Alternatively, the statement can be proved from Theorem 2.4.9. Let (πϕ, Hϕ, ξϕ) and
(πψ, Hψ, ηψ) be the GNS constructions associated to ϕ and ψ, respectively. Let π be the
unitary representation of Γ on Hϕ ⊗Hψ given on elementary tensors by

π(g)(ξ ⊗ η) = πϕ(g)ξ ⊗ πψ(g)η, for all ξ ∈ Hϕ and η ∈ Hψ.

Then, for all g ∈ Γ,

ϕ · ψ(g) = ϕ(g)ψ(g) = 〈πϕ(g)ξϕ , ξϕ〉 〈πψ(g)ηψ , ηψ〉 = 〈π(g)(ξϕ ⊗ ηψ) , ξϕ ⊗ ηψ〉 .

Hence, ϕ · ψ is of positive type by Example 2.4.8.

Proposition 2.4.12. If ϕ : Γ ! C is a function of positive type, then so is eϕ+θ, for all real
numbers θ ∈ R.

Proof. For θ ∈ R, eθ is real. Thus, for any n ∈ N, c1, . . . , cn ∈ C and g1, . . . , gn ∈ Γ, we have

n∑
i,j=1

cicje
ϕ(g−1

j gi)+θ =
n∑

i,j=1

cie
θ/2cjeθ/2e

ϕ(g−1
j gi).

Hence, it is enough to show the statement for θ = 0.
Observe that eθ is the pointwise limit of the sequence (ϕn)n≥1 with ϕn =

∑n
k=1 ϕ

k/k!.

By inductive use of Proposition 2.4.11, we see that ϕk is a function of positive type, for each
k ∈ N. Since P(Γ) is a convex cone, it follows that ϕn is of positive type, for all n ∈ N, and
so, eθ is of positive type by Proposition 2.4.5.

Proposition 2.4.13. If ϕ : Γ ! C is a function of positive type, then so is Reϕ.

Proof. Let A be any positive semidefinite square matrix and denote by ReA its entrywise real
part. For any hermitian square matrix, entrywise complex conjugation amounts to applying
the transpose map. Hence, ReA = 1

2(A + AT ). Recall that both the identity map and the
transposition map are positive maps. Thus, ReA is a convex combination of two positive
semidefinite matrices, and therefore, it is itself positive semidefinite. The statement of the
lemma follows by Remark 2.4.2.

Example 2.4.14. Applying Proposition 2.4.13 to Example 2.4.7 yields that x 7! cos(θx) is
a function of positive type on the additive group of R, for any θ ∈ R. ◦
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2.4.2 A theorem by Schoenberg

Definition 2.4.15. Let Γ be a discrete group. A function ψ : Γ ! C is said to be condi-
tionally of negative type if it has the following properties:

(i) ψ(e) = 0,

(ii) ψ(g−1) = ψ(g), for all g ∈ Γ,

(iii) For any finite selection of elements g1, . . . , gn ∈ Γ and numbers c1, . . . , cn ∈ C with∑n
i=1 ci = 0, it holds that

n∑
i,j=1

cicjψ(g−1
j gi) ≤ 0. (2.12)

Remark 2.4.16. We see directly from the definition that the set of all functions conditionally
of negative type on a discrete group Γ is a convex cone.

Remark 2.4.17. As with functions of positive type, when ψ : Γ ! R is real-valued, it suffices
that equation (2.12) hold for all collections of real numbers c1, . . . , cn ∈ R summing to zero.

Example 2.4.18. Let ϕ : Γ ! C be a function of positive type on Γ, and consider the
function ψ : Γ ! C given by ψ(g) = ϕ(e) − ϕ(g), for g ∈ Γ. It is clear that ψ(e) = 0,
and further that ψ(g−1) = ψ(g), for all g ∈ Γ, by Lemma 2.4.6. Let g1, . . . , gn ∈ Γ and
c1, . . . , cn ∈ C with

∑n
i=1 ci = 0. We have

n∑
i,j=1

cicjψ(g−1
j gi) =

n∑
i,j=1

cicjϕ(e)−
n∑

i,j=1

cicjϕ(g−1
j gi) = −

n∑
i,j=1

cicjϕ(g−1
j gi) ≤ 0.

Hence, ψ is conditionally of negative type. ◦

Example 2.4.19. Let H be a real Hilbert space. Let ξ1, . . . , ξn ∈ H and let c1, . . . , cn ∈ R
with

∑n
i=1 ci = 0. We have

n∑
i,j=1

cicj ||ξi − ξj ||2 =
∑
i,j=1

cicj ||ξi||2 +
∑
i,j=1

cicj ||ξj || − 2
∑
i,j=1

cicj 〈ξi , ξj〉 = −2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ciξi

∣∣∣∣∣
∣∣∣∣∣
2

≤ 0.

Hence, || · ||2 is a function conditionally of negative type on the additive group of H. ◦

Proposition 2.4.20. Let (ψi)i∈I be a net of functions conditionally of negative type on the
discrete group Γ. If (ψi)i∈I converges pointwise to a function ψ : Γ ! C, then ψ is a function
conditionally of negative type on Γ.

Proof. Let g1, . . . , gn ∈ Γ and let c1, . . . , cn ∈ C with
∑n

j=1 cj = 0. Define,

x =

n∑
j,k=1

cjckψ(g−1
k gj), and xi =

n∑
j,k=1

cjckψi(g
−1
k gj), for each i ∈ I

Since ψi ! ψ and the above sums are finite, xi ! x. We have, by assumption, that (xi)i∈I
is a net in (−∞, 0], and therefore, x ≤ 0. Hence, ψ is conditionally of negative type.

Definition 2.4.21. A function Φ : Γ × Γ ! C is called a positive kernel on the (discrete)
group Γ if

n∑
i,j=1

cicjΦ(gi, gj) ≥ 0. (2.13)

for all g1, . . . , gn ∈ Γ and all c1, . . . , cn ∈ C.
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Remark 2.4.22. For a function Φ : Γ×Γ ! C and a selection of group elements g1, . . . , gn ∈ Γ,
let MΦ(g1, . . . , gj) denote the matrix whose (i, j)′th entry is Φ(gi, gj). Then Φ is a positive
kernel if and only if MΦ(g1, . . . , gn) is positive, for all choices of g1, . . . , gn ∈ Γ.

Example 2.4.23. For a complex valued function ϕ on a (discrete) group Γ, define a function
Φ : Γ× Γ ! C by setting Φ(g, h) = ϕ(h−1g), for all g, h ∈ Γ. If ϕ is of positive type then Φ
is a positive kernel. ◦

Proposition 2.4.24. Let Φ,Ψ : Γ×Γ ! C be positive kernels. Then their pointwise product
Φ ·Ψ : Γ× Γ ! C is a positive kernel, as well.

Proof. Take g1, . . . , gn ∈ Γ and write MΦ = MΦ(g1, . . . , gn) and MΨ = MΨ(g1, . . . , gn). By
Remark 2.4.22, MΦ is a positive matrix, and so, its corresponding Schur multiplier TMΦ

is
positive. Since, by assumption, MΨ is also positive, we deduce that MΦ·Ψ = TMΦ

(MΨ) is
positive. Then Φ ·Ψ is a positive kernel, by Remark 2.4.22.

Proposition 2.4.25. Let (Φi)i∈I be a net of positive kernels on the discrete group Γ. If
(Φi)i∈I converges pointwise to a function Φ : Γ× Γ ! C, then Φ is a positive kernel.

Proof. For g1, . . . , gn ∈ Γ and c1, . . . , cn ∈ C, define,

x =
n∑

j,k=1

cjckΦ(gj , gk), and xi =
n∑

j,k=1

cjckΦi(gj , gk), for each i ∈ I

Since Φi ! Φ and the above sums are finite, xi ! x. We have, by assumption, that (xi)i∈I
is a net in [0,∞), and therefore, x ≥ 0. Hence, Φ is a positive kernel.

Lemma 2.4.26. Let Γ be a discrete group and ψ : Γ ! C be a function with ψ(e) = 0 and
ψ(g−1) = ψ(g), for all g ∈ Γ. Then ψ is conditionally of negative type if and only if, for
each g0 ∈ Γ, the function Φ : Γ× Γ ! C given by

Φ(g, h) = −ψ(h−1g) + ψ(g−1
0 g) + ψ(h−1g0), for all g, h ∈ Γ,

is a positive kernel.

Proof. Fix g0 ∈ Γ. Suppose first that Φ satisfies equation (2.13). For g1, . . . , gn ∈ Γ and
c1, . . . , cn ∈ C with

∑n
i=1 ci = 0, we have

0 ≤
n∑

i,j=1

cicjΦ(gi, gj) = −
n∑

i,j=1

cicjψ(g−1
j gi).

Hence, ψ is conditionally of negative type.
Conversely, suppose ψ is conditionally of negative type. Fix g0 ∈ Γ. For g1, . . . , gn ∈ Γ

and c1, . . . , cn ∈ C, set c0 = −
∑n

i=1 ci. Then

0 ≥
n∑

i,j=0

cicjψ(g−1
j gi)

=
n∑

i,j=1

cicjψ(g−1
j gi) + c0

n∑
i=1

ciψ(g−1
0 gi) + c0

n∑
j=1

cjψ(g−1
j g0)

=
n∑

i,j=1

cicj
(
ψ(g−1

j gi)− ψ(g−1
0 gi)− ψ(g−1

j g0)
)

= −
n∑

i,j=1

cicjΦ(gi, gj).

Hence, the function Φ corresponding to g0 satisfies equation (2.13). Since g0 ∈ Γ was
arbitrary, this finishes the proof.
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Theorem 2.4.27 (Schoenberg). Let ψ : Γ ! C be a function on the discrete group Γ with
ψ(e) = 0 and ψ(g−1) = ψ(g), for all g ∈ Γ. Then ψ is conditionally of negative type if and
only if, for every t ≥ 0, the function e−tψ : Γ ! C is of positive type.

Proof. Assume that e−tψ is of positive type, for all t ≥ 0. By Example 2.4.18, the function
g 7! 1 − e−tψ(g) is conditionally of negative type, and then so is g 7! (1 − e−tψ(g))/t, by
Remark 2.4.16. This holds for all t > 0, and so, the pointwise limit

ψ = lim
t!0+

1− e−tψ

t

is conditionally of negative type, as well, by Proposition 2.4.20.
Conversely, assume that ψ is conditionally of negative type. Since the set of functions

conditionally of negative type is a convex cone, it suffices to show that e−ψ is of positive
type. Consider the function Φ : Γ× Γ ! R given by

Φ(g, h) = −ψ(h−1g) + ψ(g) + ψ(h−1), for all g, h ∈ Γ,

This is a positive kernel by Lemma 2.4.26. Then Φn is a positive kernel, for all n ∈ N, by
Proposition 2.4.24, and so, eΦ is a positive kernel, by Proposition 2.4.25. For g1, . . . , gn ∈ Γ
and c1, . . . , cn ∈ C, it follows that

n∑
i,j=1

cicje
−ψ(g−1

j gi) =
n∑

i,j=1

cicje
Φ(gi,gj)−ψ(gi)−ψ(g−1

j ) =
n∑

i,j=1

cie
−ψ(gi)cje−ψ(gj)eΦ(gi,gj) ≥ 0.

This shows that e−ψ is of positive type.

2.4.3 A consequence of Schoenberg’s theorem

Definition 2.4.28. Let V be a vector space. A function ϕ : V ! C is said to be of
positive type (respectively, conditionally of negative type) if it is a function of positive type
(respectively, conditionally of negative type) on the additive group of V .

Lemma 2.4.29. Let Γ be a discrete group and let ρ be a linear isometric representation of
Γ on a Banach space X. If || · ||p is conditionally of negative type on X, for some p ≥ 1, and
if b : Γ ! X is a 1-cocycle, then the map g 7! ||b(g)||pp is conditionally of negative type.

Proof. Since ρ is an isometric representation, we have, for g, h ∈ Γ,∣∣∣∣b(h−1g)
∣∣∣∣ =

∣∣∣∣b(h−1) + ρ(h−1)b(g)
∣∣∣∣ =

∣∣∣∣ρ(h)b(h−1) + b(g)
∣∣∣∣
p

= ||b(g)− b(h)|| .

Here, the last equality follows from Lemma 2.2.7. It follows directly that g 7! ||b(g)||p is
conditionally of negative type.

Proposition 2.4.30. Let Γ be a discrete group. Let X be a Banach space and assume
that || · ||p is conditionally of negative type on X, for some fixed p ≥ 1. Let (ρ,X) be a
representation by linear surjective isometries of Γ on X, and let α be an affine isometric
action of Γ on X with linear part ρ. For each t > 0, there exists a unitary representation
(πt, Ht) of Γ on a complex Hilbert space, and a continuous map Φt from X to the unit sphere
of Ht such that the following properties hold:

(i) 〈Φt(x) ,Φt(y)〉 = e−t||x−y||
p

, for all x, y ∈ X,

(ii) πt(g)Φt(x) = Φt(α(g)x), for all g ∈ Γ and x ∈ X,

(iii) the linear span of Φt(X) is dense in Ht.
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Moreover, the pair (πt, Ht) is unique up to isomorphism.

Proof. Consider the semidirect product X o Γ of the additive group of X with Γ. Recall
that the group operation is given by

(x, g)(y, h) = (ρ(g)y + x, gh), for x, y ∈ X, g, h ∈ Γ.

Let ρ̃ be the representation of X o Γ by linear surjective isometries given by

ρ̃(x, g) = ρ(g), for (x, h) ∈ X o Γ.

Let b be the translation part of α and define a map b̃ : X o Γ ! X by setting

b̃(x, g) = b(g) + x, for (x, h) ∈ X o Γ.

For x, y ∈ X and g, h ∈ Γ, we have

b̃
(
(x, g)(y, h)

)
= b̃(ρ(g)y + x, gh) = b(gh) + ρ(g)y + x = b(g) + x+ ρ(g)(b(h) + y)

= b̃(x, g) + ρ̃(x, g)b̃(y, h).

Hence, b̃ is a 1-cocycle on X o Γ with respect to ρ̃. Define ψ : X o Γ ! R by

ψ(x, g) =
∣∣∣∣b̃(x, g)

∣∣∣∣p = ||b(g) + x||p , for (x, g) ∈ X o Γ.

Then ψ is conditionally of negative type, by Lemma 2.4.29. By Schoenberg’s theorem,
Theorem 2.4.27, the function e−tψ on X o Γ is of positive type, for each t > 0. Fix t > 0
and let (Ht,Πt, ξt) be the GNS triple associated to e−tψ (see Theorem 2.4.9). Since Γ sits
inside X oΓ via the embedding g 7! (0, g), we obtain a unitary representation πt of Γ on Ht

by restriction of Πt to Γ. Define Φt : X ! Ht by

Φt(x) = Πt(x, e)ξt, for x ∈ X.

We claim that the triple (πt, Ht,Φt) has the desired properties.

Property (i) is direct from our construction. Indeed, for x, y ∈ X, we have

〈Φt(x) ,Φt(y)〉 = 〈Πt(x, e)ξt ,Πt(y, e)ξt〉
=
〈
Πt(y, e)

−1Πt(x, e)ξt , ξt
〉

= 〈Πt(x− y, e)ξt , ξt〉
= e−tψ(x−y,e)

= e−t||x−y||
p

.

For the last equality, we use that b(e) = 0, as shown in Lemma 2.2.7.

For g ∈ Γ, observe that

〈Φt(b(g)) , πt(g)ξt〉 = 〈Πt(b(g), e)ξt ,Πt(0, g)ξt〉 =
〈
Πt(ρ(g−1)b(g), g−1)ξt , ξt

〉
=
〈
Πt(−b(g−1), g−1)ξt , ξt

〉
= e−tψ(−b(g−1),g−1) = 1.

Since Φt(b(g)) and πt(g)ξt are unit vectors, we obtain that ||Φt(b(g))− πt(g)ξt|| = 0. Hence,

Πt(b(g), e)ξt = Φt(b(g)) = πt(g)ξt, (2.14)
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for all g ∈ Γ. Using this, we deduce, for g ∈ Γ and x ∈ X, that

πt(g)Φt(x) = πt(g)Πt(x, e)ξt = Πt(ρ(g)x, e)πt(g)ξt

= Πt(ρ(g)x, e)Πt(b(g), e)ξt = Πt(ρ(g)x+ b(g), e)ξt

= Φ(α(g)ξ).

This shows property (ii).

Using equation (2.14) again, we derive, for each g ∈ Γ and each x ∈ X, that

Πt(x, g)ξt = Πt(x, e)πt(g)ξt = Πt(x, e)Πt(b(g), e)ξt = Πt(b(g) + x, e)ξt = Φt(b(g) + x)

Property (iii) follows directly, as ξt is cyclic for Πt.

Suppose (ρt,Kt,Ψt) is another triplet satisfying the properties (i)–(iii). Going backwards
through our calculations, we see that (ρt,Kt,Ψt(0)) is a GNS triplet for e−tψ. Uniqueness
of the representation (πt, Ht) then follows from uniqueness of the GNS construction.

Remark 2.4.31. Since the unitary representation (πt, Ht) in Proposition 2.4.30 is (a restric-
tion) of the GNS representation associated to a real-valued function of positive type, it follows
from Remark 2.4.10 that it is the complexification of an orthogonal representation.

Proposition 2.4.32. Let (ρ,X) be representation of the discrete group Γ by linear surjective
isometries on a Banach space X and suppose that p ≥ 1 is such that || · ||p is conditionally of
negative type. Let α be an affine isometric action of Γ with linear part ρ, let t > 0 and let
(πt, Ht,Φt) be the associated triple from Proposition 2.4.30. If (xn)n≥1 is a sequence in X
diverging in norm to infinity then (Φt(ξn))n≥1 tends weakly to zero in Ht.

Proof. Let (xn)n≥1 be a sequence in X such that ||xn|| ! ∞ as n tends to infinity. By
Proposition 2.4.30(i), we have, for every x ∈ X and every n ∈ N,

〈Φt(xn) ,Φt(x)〉 = e−t||xn−x||
p

.

Hence, 〈Φt(xn) ,Φt(x)〉 ! 0 as n tends to infinity, because t > 0. Let ζ ∈ Ht and let ε > 0.
Since span {Φt(x) | x ∈ X } is dense in Ht, by Proposition 2.4.30(iii), we may find x ∈ X
such that ||ζ − Φt(x)|| < ε/2. Take nε ∈ N such that 〈Φt(xn) ,Φt(x)〉 < ε/2, for all n ≥ nε.
Then, as ||Φt(xn)|| = 1, for all n ∈ N, we have

|〈Φt(xn) , ζ〉| ≤ 〈Φt(xn) ,Φt(x)〉+ ||ζ − Φt(x)|| < ε,

by Cauchy-Schwarz. Hence, 〈Φt(ξn) , ζ〉! 0 as n tends to infinity, for all ζ ∈ Ht.

Proposition 2.4.33. Let α be an affine isometric action of the discrete group Γ on a Banach
space X and suppose that p ≥ 1 is such that || · ||p is conditionally of negative type. For each
t > 0, let (πt, Ht,Φt) be the triple from Proposition 2.4.30 associated to α. If (tn)n≥1 is a
sequence of strictly positive real numbers tending to zero, then

⊕
n πtn weakly contains the

trivial representation.

Proof. For each n ∈ N, let ξn = Φtn(0) ∈ Htn . Then ||ξn|| = 1, by Proposition 2.4.30(i).
Further, by Proposition 2.4.30(ii),

||πtn(g)ξn − ξn||2Htn = ||Φtn(α(g)0)− Φtn(0)||2Htn = 2− 2e−tn||α(g)0||p .

Hence, for each g ∈ Γ, ||πtn(g)ξn − ξn||2 ! 0 as n tends to infinity. Let H =
⊕

nHtn be the
Hilbert space direct sum and let π =

⊕
n πtn . Each Htn embeds canonically into H, and

so, we may view each ξn as a vector in H. Note that π(g)ξn = πtn(g)ξn, for all g ∈ Γ and
all n ∈ N. Hence, (ξn)n≥1 is a sequence of almost Γ-invariant vectors for π. By Proposition
1.3.5, this implies that π weakly contains 1Γ.
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2.5 Affine isometric actions on Hilbert spaces

Let Γ be a discrete group. An isometric action, respectively, an affine isometric action of Γ
on a vector space V is a group homomorphism of Γ into Isom(V ), respectively Aff Isom(V ).
We remark that, if V is a real vector space, any isometric action on V is automatically an
affine action, by the Mazur-Ulam theorem, Theorem 2.1.9.

Definition 2.5.1. A discrete group Γ has property (FH) if every affine isometric action of
Γ on a real Hilbert space has a fixed point.

We have seen already in Lemma 2.3.1 that the existence of a fixed point, for all affine
actions of a discrete group Γ with the same orthogonal (or unitary) representation π as
linear part, is captured by the vanishing of the first cohomology group with coefficients in π.
It will therefore be no surprise to the reader that Property (FH), as defined above, can be
reformulated in terms of the vanishing of all the first cohomology groups of Γ with coefficients
in some orthogonal representation of Γ on a real Hilbert space.

Proposition 2.5.2. A discrete group Γ has Property (FH) if and only if H1(Γ, π) = 0, for
every orthogonal representation π of Γ on a real Hilbert space.

Proof. By Lemma 2.3.1, Γ has Property (FH) if and only if H1(Γ, π) = 0, for all orthog-
onal representations π which is the linear part of any affine isometric action of Γ on a real
Hilbert space. Since an affine action is isometric if and only if its linear part is an isometric
representation, the statement of the proposition follows.

Our aim is to show that Property (FH) is equivalent to Property (T ). First, we show in
the next two propositions two characterizations of the affine isometric actions on real Hilbert
spaces that have fixed points.

Proposition 2.5.3. Let α be an affine isometric action of the discrete group Γ on a Hilbert
space H and let b be its translation part. The following are equivalent:

(i) The action α has a fixed point in H,

(ii) b is a 1-coboundary.

(iii) b is bounded,

(iv) All orbits of α are bounded,

(v) Some orbit of α is bounded,

Proof. The equivalence of (i) and (ii) is proven in Lemma 2.2.11. Suppose b is a 1-coboundary
and take ξ such that b(g) = π(g)ξ−ξ, for all g ∈ Γ. Then ||b(g)|| ≤ 2 ||ξ||, and so, b is bounded.
This proves (ii)⇒ (iii). Further, for ξ ∈ H, we have that

||α(g)ξ|| = ||π(g)ξ + b(g)|| ≤ ||ξ|| + ||b(g)|| .

Thus, if b is bounded then all orbits of α are bounded. This shows (iii) ⇒ (iv). The
implication (iv)⇒ (v) is trivial. Finally, assume that ξ ∈ H is such that the orbit

Oξ = {α(g)ξ | g ∈ Γ }

is bounded. Let ζ ∈ H be the unique circumcenter of Oξ from Lemma 1.2.13. For each
g ∈ Γ, the center of α(g)Oξ is α(g)ζ, because α is an isometry. But clearly α(g)Oξ = Oξ,
and so, uniqueness of the center yields that α(g)ζ = ζ. That is, ζ is a fixed point for α. This
establishes the implication (v)⇒ (i).
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Recall from Example 2.4.19 that, when H is a real Hilbert space, || · ||2 is a function
conditionally of negative type on the additive group of H. Hence, given an affine isometric
action on a real Hilbert space, we may apply Proposition 2.4.30.

Proposition 2.5.4. Let α be an affine isometric action of the discrete group Γ on a real
Hilbert space H. For each t > 0, let (πt, Ht) be the unitary representation from Proposition
2.4.30 associated to α. The following are equivalent:

(i) The action α has a fixed point in H,

(ii) For all t > 0, (πt, Ht) has a non-zero invariant vector,

(iii) For some t > 0, (πt, Ht) has a non-zero invariant vector,

Proof. Suppose α has a fixed point ξ ∈ H. It follows directly from Proposition 2.4.30(ii)
that, for each t > 0, Φt(ξ) is an invariant vector for πt. Suppose instead that α does not have
any fixed points in H. Fix t > 0 and suppose that ζ ∈ Ht is an invariant vector for πt. By
Proposition 2.5.3, all orbits of α are unbounded. Hence, for ξ ∈ H, we may find a sequence
(gn)n≥1 in Γ such that ||α(gn)ξ|| diverges to infinity. Then (Φt(α(gn)ξ))n≥1 converges weakly
to 0 , by Proposition 2.4.32. Since ζ is invariant, we have, for all n ∈ N,

〈Φt(ξ) , ζ〉 =
〈
Φt(ξ) , π(g−1

n )ζ
〉

= 〈π(gn)Φt(ξ) , ζ〉 = 〈Φt(α(gn)ξ) , ζ〉 .

The last equality is direct from Proposition 2.4.30(ii). We have that 〈Φt(α(gn)ξ) , ζ〉 ! 0,
and so, we deduce that 〈Φt(ξ) , ζ〉 = 0. As the vector ξ ∈ H was arbitrary, we see that ζ is
orthogonal to the set Φt(H). By Proposition 2.4.30(iii), the linear span of Φt(H) is dense in
Ht, and so, we may conclude that ζ = 0. This finishes the proof.

With these preparations, we are ready to proof the equivalence between Property (T )
and Property (FH) for countable groups. The implication (T ) ⇒ (FH) was proven by P.
Delorme in [15, Théorème V.1]. The other implication (FH)⇒ (T ) is due to A. Guichardet
in [20, Théorème 1].

Theorem 2.5.5 (Delorme-Guichardet). A countable discrete group Γ has property (T ) if
and only if it has property (FH).

Proof. Assume that Γ does not have Property (FH) and let α be an affine isometric action
on a Hilbert space H without fixed points. For each t > 0, let (πt, Ht) be the unitary
representation from Proposition 2.4.30 associated to α and t. By Proposition 2.5.4, it holds
for all t > 0, that (πt, Ht) has no non-zero invariant vectors. Set

π =

∞⊕
n=1

π1/n

By Proposition 1.1.14, π has no non-zero invariant vectors. However, by Proposition 2.4.33,
π does have almost invariant vectors, and so, Γ does not have Property (T ).

Assume instead that Γ does not have Property (T ). Then we may find a unitary rep-
resentation (π,H) with almost invariant vectors but no non-zero Γ-invariant vectors. The
orthogonal representation (πR, HR) defined in Subsection 1.1.1 is then also a representation
with almost invariant vectors but no non-zero invariant vector. Proposition 2.3.4 implies
that B1(Γ, πR) is not closed. As discussed in Remark 2.3.3, it follows that H1(Γ, πR) 6= 0,
and so, Γ does not have Property (FH), by Proposition 2.5.2.

Remark 2.5.6. The assumption that Γ is countable in Theorem 2.5.5 is needed for the im-
plication (FH) ⇒ (T ) only. The above proof of this relies on the implication from Propo-
sition 2.3.4 that the existence of almost invariant vectors implies non-closure of the set of
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1-coboundaries – for the use of countability in the proof of this implication, see Remark
2.3.5. When Γ is not countable, Property (FH) need not imply Property (T ). Examples of
uncountable discrete groups with Property (FH) but without Property (T ) where provided
by Y. de Cornulier in [12].

We end this chapter with yet another characterization of Property (T ), which the equiv-
alence with Property (FH) allows us to show. Recall from Corollary 1.3.6 that Property
(T ) can be rephrased as the property that any representation weakly containing the triv-
ial representation contains the trivial representation. A seemingly weaker property is, that
weak containment of the trivial representation implies containment of some finite dimensional
representation. For countable discrete groups, this is equivalent with Property (T ).

Lemma 2.5.7. Let α be an affine action of the discrete group Γ on a real Hilbert space
H. Let ∆(α) be the associated diagonal affine action of Γ on H ⊕ H. For each t > 0, let
(πt, Ht) and (ρt,Kt) be the unitary representations from Proposition 2.4.30 associated to α
and ∆(α), respectively. Then ρt is unitarily equivalent to πt ⊗ πt.

Proof. Fix t > 0, let Φt : H ! Ht be as in Proposition 2.4.30 and let Ψt : H ⊕H ! Ht⊗Ht

be given by

Ψt(ξ, ξ
′) = Φt(ξ)⊗ Φt(ξ

′), for ξ, ξ′ ∈ H.

We show that the triplet (πt ⊗ πt, Ht ⊗Ht,Ψt) has the properties of Proposition 2.4.30 with
respect to ∆(α). First, since the linear span of Φt(H) is dense in Ht, it is clear that the linear
span of Ψt(H ⊕H) is dense in Ht ⊗Ht. Property (i) is easily derived using the definitions
of norms on tensor products and direct sums. Indeed, for all g ∈ Γ and all ξ, ξ′, η, η′ ∈ H,
we have 〈

Ψt(ξ, ξ
′) ,Ψt(η, η

′)
〉

= e−t||ξ−η||
2

e−t||ξ
′−η′||2 = e−t||(ξ,ξ

′)−(η,η′)||2 .

Finally, for all g ∈ Γ and all ξ, ξ′, η, η′ ∈ H,

Ψt(∆(α)(g)(ξ, ξ′)) = Ψt(α(g)ξ, α(gξ′)) = Φt(α(g)ξ)⊗ Φt(α(g)ξ′)

= πt(g)Φt(ξ)⊗ πt(g)Φt(ξ
′) = (πt ⊗ πt)(g)Ψt(ξ, ξ

′).

This shows that property (ii) holds for the triplet (πt ⊗ πt, Ht ⊗ Ht,Ψt). The uniqueness
statement of Proposition 2.4.30 then implies that ρt and πt⊗πt are unitarily equivalent.

Theorem 2.5.8. Let Γ be a countable discrete group. Then Γ has Property (T ) if and only
if any unitary representation of Γ weakly containing the trivial representation contains a
non-zero finite dimensional subrepresentation.

Proof. The ‘only if’ statement is direct from Corollary 1.3.6. Conversely, suppose that any
unitary representation of Γ weakly containing the trivial representation contains a non-zero
finite dimensional subrepresentation. We show that Γ has Property (FH), which, by the
Delorme-Guichardet theorem, Theorem 2.5.5, implies that Γ has Property (T ).

Let α be an affine isometric action of Γ on a real Hilbert space H. For each t > 0, let
(πt, Ht,Φt) be the triplet from Proposition 2.4.30 associated to α. Let (tn)n≥1 be a sequence
in (0,∞) converging to 0. To ease notation we will write πn instead of πtn , for n ∈ N. The
representation π =

⊕
n πn weakly contains 1Γ, by Proposition 2.4.33. By assumption, this

implies that π contains a non-zero finite dimensional representation, and so, π⊗π contains 1Γ,
by Proposition 1.1.17. We have π⊗π =

⊕
n1,n2

πn1⊗πn2 , and so, 1Γ is contained in πn1⊗πn2 ,
for some n1, n2 ∈ N, by Proposition 1.1.14. Applying Proposition 1.1.17 again, we deduce
that πn1 contains a finite dimensional representation. Since πn1 is the complexification of an
orthogonal representation (see Remark 2.4.31), Lemma 1.1.11 implies that the same finite
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dimensional representation is contained in πn1 . Applying Proposition 1.1.17 once more, we
deduce that 1Γ is contained in πn1 ⊗ πn1 . By Lemma 2.5.7, πn1 ⊗ πn1 is unitarily equivalent
to the representation (ρtn ,Ktn) from Proposition 2.4.30 associated to the diagonal action
∆(α) on H⊕H. Hence, ρtn has a Γ-invariant vector. By Proposition 2.5.3, we conclude that
∆(α) has a fixed point in H ⊕H, and so, α has a fixed point in H. Thus, Γ has property
(FH), which was what we aimed to show.

2.6 Literature

Section 2.1, Section 2.2, Section 2.3 and Section 2.5 are all based on [5, Chapter 2] and
Section 2.4 is based on [5, Appendix C]. In Proposition 2.4.11 and Proposition 2.4.24 we use
that the Schur product of two positive semidefinite matrices is, again, positive semidefinite.
This is a well-known result attributed to I. Schur in [44, Theorem VII]. For a different proof,
see [21, Proposition 2.6]. The consequence of Schoenberg’s theorem stated in Proposition
2.4.30 and its proof can be found in [5, Proposition 2.11.1].
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Chapter 3

Property (T ) and ergodic actions

We present in Theorem 3.3.1 a characterization of Property (T ) in terms of how a group
acts on probability spaces. Central to this characterization is understanding the connection
between orthogonal representations and actions on probability spaces. We investigate this
connection in Section 3.2. First, we present two properties of actions on probability spaces:
ergodicity and strong ergodicity. We show in Proposition 3.1.8 that ergodicity is equiva-
lent with that a certain representation does not contain the trivial representation, and in
Proposition 3.1.15 that strong ergodicity is equivalent with this representation not weakly
containing the trivial representation.

3.1 Actions on measure spaces and ergodicity

Let Γ be a discrete group and let Ω be a measurable space. An action of Γ on Ω as a set is
a group homomorphism from Γ to the group of bijections of Ω. We say that an action of Γ
on Ω is measurable if the map

Γ× Ω Ω

(g, x) gx

is measurable, when Γ is equipped with the power set σ-algebra. We denote by Γ y Ω that Γ
acts measurably on Ω. When Ω is equipped with a measure µ, we shall also use the notation
Γ y (Ω, µ) for an action of Γ on Ω.

Let Ω and Ω′ be measurable spaces. For a measurable map θ : Ω ! Ω′ and a meaure µ
on Ω, we define the image measure θ∗µ on Ω′ as follows:

θ∗µ(B) = µ(θ−1(B)), for all measurable B ⊂ Ω′.

Let (Ω, µ) and (Ω′, µ′) be measure spaces. A measurable map θ : Ω ! Ω′ is said to be
(µ, µ′)-measure preserving if θ∗µ = µ′. Whenever the measures are understood from context,
we shall simple say that θ is measure preserving. If θ is a measure preserving transformation
on (Ω, µ), we say that µ is invariant under θ.

Lemma 3.1.1. Let (Ω, µ) and (Ω′, µ′) be a measure spaces, and let θ : Ω ! Ω′ be a measure
preserving map. If f : Ω′ ! R is integrable then so is f ◦ θ : Ω ! R, and∫

Ω
f ◦ θ dµ =

∫
Ω′
f dµ′

Proof. It is enough to show the lemma for simple functions. But this is clear as 1B′ ◦ θ =
1θ−1(B′), for any measurable subset B′ ⊂ Ω′.
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Definition 3.1.2. A measure preserving transformation of the measure space (Ω, µ) is a
measure preserving bijective map θ : Ω ! Ω with measurable inverse.

Remark 3.1.3. If θ is a measure preserving transformation on some measure space then its
inverse is also measure preserving.

Suppose Γ acts measurably on a measurable space Ω and let µ be a measure on Ω. For
each g ∈ Γ, we denote by g.µ the image measure of µ on Ω under the transformation ω 7! g.ω.
That is, g.µ(B) = µ(g−1B), for each measurable subset B ⊂ Ω. This defines an action on
the set of all measures on Ω. Indeed, e.µ = µ trivially, and, for each g, h ∈ Γ and each
measurable set B ⊂ Ω,

(gh).µ(B) = µ((gh)−1B) = µ(h−1g−1B) = h.µ(g−1B) = g.(h.µ)(B).

We say that the measure µ is Γ-invariant if µ is a fixed point for this action. In that case,
the action Γ y (Ω, µ) is said to be measure preserving. If µ is a probability measure we
say that the action is probability measure preserving, or, p.m.p. in short. Put differently, a
measure preserving action of Γ on a measure space (Ω, µ) is a group homomorphism from Γ
to the group of measure preserving transformations of Ω.

3.1.1 Ergodicity and invariant vectors

A measurable subset B ⊂ Ω is said to be Γ-invariant for the action Γ y Ω if gB ⊂ B, for
all g ∈ Γ.

Definition 3.1.4. A measurable action of a discrete group Γ on a probability space (Ω, µ)
is said to be ergodic if all Γ-invariant subsets B ⊂ Ω are trivial in the sense that µ(B) = 0
or µ(B) = 1.

Let (Ω, µ) be a probability space and denote by L2(Ω, µ) the Hilbert space of square
integrable complex valued functions on Ω. For a p.m.p. action of a discrete group Γ on Ω,
define a unitary representation πµ of Γ on L2(Ω, µ) by setting

πµ(g)f(x) = f(g−1x), for f ∈ L2(Ω, µ), g ∈ Γ, and x ∈ Ω. (3.1)

It follows from Lemma 3.1.1 that π(g), for each g ∈ Γ, is an isometry, and it is then clear
that (πµ, L

2(Ω, µ)) is a unitary representation.

Remark 3.1.5. Let L2(Ω, µ;R) denote the Hilbert space of all square integrable real valued
functions on Ω. The restriction of πµ to this subspace is an orthogonal representation.
Moreover, πµ is the complexification of this restriction.

We say that a function f ∈ L2(Ω, µ) is Γ-invariant if πµ(g)f = f a.e., for all g ∈ Γ.
Equivalently, f is Γ-invariant if, for each g ∈ Γ, there exists a null-set Ng ⊂ Ω such that
f(gx) = f(x), for all x ∈ Ω\Ng. The set of all such functions is denoted by L2(Ω, µ)πµ

Lemma 3.1.6. For each Γ-invariant function f ∈ L2(Ω, µ)πµ there exists a measurable
function f̃ with f̃ = f a.e., and such that f̃(gx) = f̃(x), for all g ∈ Γ and all x ∈ Ω.

Proof. For each g ∈ Γ, set Ng = {x ∈ Ω | f(gx) 6= f(x) }. This is a measurable set with
µ(Ng) = 0, by assumption. Set N =

⋃
g∈ΓNg. Suppose x ∈ N but that gx /∈ N . In

particular, gx /∈ Ng−1 , and so f(x) = f
(
g−1(gx)

)
= f(gx). Take h ∈ Γ such that x ∈ Nh.

Then f((hg−1)gx) = f(hx) 6= f(x) = f(gx). But this shows that gx ∈ Nhg−1 , which is a

contradiction. Therefore, if x ∈ N then so is gx, for all g ∈ Γ. The function f̃ = f1Ω\N
satisfies the required properties.

Remark 3.1.7. In the proof of Lemma 3.1.6 above, it is only important that f is measurable
and not that it is square-integrable.

42



Let L2
0(Ω, µ) be the subspace of L2(Ω, µ) consisting of all functions with zero mean, i.e.,

L2
0(Ω, µ) =

{
f ∈ L2(Ω, µ)

∣∣∣∣ ∫
Ω
f dµ = 0

}
.

This is a closed Γ-invariant subspace. Since µ is a finite measure, all constant functions
belong to L2(Ω, µ), and we see that L2

0(Ω, µ) is the orthogonal complement to 1Ω. Denote
by π0

µ the restriction of πµ to L2
0(Ω, µ).

Proposition 3.1.8. Let Γ be a discrete group and (Ω, µ) a probability space. An action of Γ
on Ω is ergodic if and only if the unitary representation π0

µ has no non-zero invariant vectors.

Proof. Suppose f ∈ L2
0(Ω, µ) is Γ-invariant. By Lemma 3.1.6, we may assume that f(gx) =

f(x), for all g ∈ Γ and all x ∈ Ω. Let Ox denote the orbit of x. For ε > 0, n ∈ N0 and
m ∈ {0, 1, . . . , n− 1}, let

An,m,ε =
{
rei2πθ

∣∣∣ r ∈ [nε, (n+ 1)ε), θ ∈
[
m
n ,

m+1
n

)}
.

Since f is constant on the orbits, each preimage f−1(An,m,ε) is the union of a collection of
orbits. Hence, f−1(An,m,ε) is Γ-invariant. Further, note that, for a fixed ε > 0, the family
(An,m,ε)n,m is a partition of C, and so

(
f−1(An,m,ε)

)
n,m

is a partition of Ω.

If the action of Γ on Ω is ergodic, we must, for each ε > 0, have µ
(
f−1(An0,m0,ε)

)
= 1,

for some n0 ∈ N0 and m0 ∈ {0, 1, . . . , n0 − 1}, and µ
(
f−1(An,m,ε)

)
= 0, for all (n,m) 6=

(n0,m0). For k ∈ N, let εk = ε/2k and take nk ∈ N0 and mk ∈ {0, 1, . . . , nk − 1} such that
µ
(
f−1(Ank,mk,εk)

)
= 1. Then (Ank,mk,εk)k≥1 is a decreasing sequence of sets of Lebesgue

measure tending to zero. Hence
⋂
k≥1Ank,mk,εk = {z}, for some z ∈ C. By continuity of

measures from above,

µ
(
f−1

(
{z}
))

= inf
k≥1

µ
(
f−1

(
Ank,mk,εk

))
= 1.

Hence, f is constant almost everywhere. As f has mean zero, f is equivalent to 0.
Conversely, if f not equivalent to 0, it must take at least two distinct values on non-null-

sets, because it has mean zero. Hence, we can find an ε > 0 and two pairs of non-negative
integers (n1,m1) 6= (n2,m2) with m1 < n1 and m2 < n2 such that f−1(An1,m1,ε) > 0 and
f−1(An2,m2,ε) > 0. But then the action cannot be ergodic.

3.1.2 Diagonal actions and ergodicity

If Γ acts on Ω, we define the associated diagonal action on Ω× Ω by

Γ× (Ω× Ω) Ω× Ω(
g, (x, y)

)
(gx, gy)

If α is the action of Γ on Ω, its associated diagonal action is denoted by ∆(α). Observe that
if α is measurable, then so is ∆(α).

Remark 3.1.9. A diagonal action, ∆(α), induces a unitary representation πµ⊗µ on L2(Ω ×
Ω, µ⊗ µ), as defined in equation (3.7). This representation is given by

πµ⊗µ(g)f(x, y) = f(g−1x, g−1y),

for f ∈ L2(Ω×Ω, µ⊗µ), g ∈ Γ and x, y ∈ Ω. We remark that L2(Ω×Ω, µ⊗µ) is isometrically
isomorphic to L2(Ω, µ)⊗2 and that πµ⊗µ is unitarily equivalent to π⊗2

µ with this isomorphism
as an intertwiner.
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Definition 3.1.10. We say that a measurable action of a discrete group Γ on a probability
space (Ω, µ) is weakly mixing if the diagonal action of Γ on the product measure space
(Ω× Ω, µ⊗ µ) is ergodic.

Proposition 3.1.11. Let Γ be a discrete group and (Ω, µ) a probability space. An action of
Γ on Ω is weakly mixing if and only if the unitary representation (π0

µ)⊗2 on L2
0(Ω, µ)⊗2 has

no non-zero invariant vectors.

Proof. This follows directly from Proposition 3.1.8 and Remark 3.1.9.

Corollary 3.1.12. Every weakly mixing action is ergodic.

Proof. Let Γ y Ω be a non-ergodic action. Then π0
µ contains 1Γ, by Proposition 3.1.8.

Since π0
µ is the complexification of an orthogonal representation (see Remark 3.1.5), its

contragredient representation π0
µ contains 1Γ, as well. Hence, (π0

µ)⊗2 also contains 1Γ, by
Proposition 1.1.17. It follows from Proposition 3.1.11 that Γ y Ω is not weakly mixing.

3.1.3 Strong ergodicity and almost invariant vectors

Let Γ y (Ω, µ) be a p.m.p. action. A sequence (Bn)n≥1 of subsets of Ω is said to be
asymptotically invariant if

lim
n!∞

µ(gBn4Bn) = 0.

Note that µ(gB4B) ≤ µ(gB)+µ(B) = 2µ(B) and µ(gB4B) ≤ µ
(
B{
)
+µ
(
(gB){

)
= 2µ

(
B{
)
,

for all measurable subsets B ⊂ Ω and all g ∈ Γ. Hence, if either µ(Bn) ! 0 or µ(Bn) ! 1,
as n tends to infinity, then (Bn)n≥1 is trivially asymptotically invariant. If (Bn)n≥1 is an
asymptotically invariant sequence, we say that (Bn)n≥1 is non-trivial if

lim inf
n∈N

µ(Bn)µ
(
B{n
)
> 0.

Definition 3.1.13. A p.m.p. action is said to be strongly ergodic if there are no non-trivial
asymptotically invariant sequences.

Remark 3.1.14. Suppose Γ y (Ω, µ) is a p.m.p. action on the probability space (Ω, µ). If
B ⊂ Ω is Γ-invariant, then the constant sequence (B)n≥1 is asymptotically invariant. Hence,
if Γ y (Ω, µ) is strongly ergodic then (B)n≥1 cannot be non-trivial, and so either µ(B) = 0
or µ(B) = 1. That is, any strongly ergodic action is ergodic.

Proposition 3.1.15. Let Γ be a discrete group, (Ω, µ) a probability space and Γ y (Ω, µ) a
p.m.p. action. If Γ y (Ω, µ) is not strongly ergodic then 1Γ ≺ π0

µ.

Proof. Suppose (Bn)n≥1 is an asymptotically invariant sequence in (Ω, µ). We may assume

that µ(Bn)µ
(
B{n
)
> 0, for all n ∈ N. Otherwise, remove the finitely many sets from the

sequence which do not satisfy this. For each n ∈ N, define the function fn : Ω ! R by

fn = 1Bn − µ(Bn)1Ω.

It is straight forward to compute that fn ∈ L2
0(Ω, µ), and that

||fn||2 =

∫
Bn

(
1− µ(Bn)

)2
dµ+

∫
B{
n

µ(Bn)2 dµ = µ(Bn)µ
(
B{n
)
.
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Further,〈
π0
µ(g)fn , fn

〉
=

∫
Ω
fn(g−1x)f(x) dµ(x)

= µ(gBn4Bn)
(
1− µ(Bn)

)(
−µ(Bn)

)
+ µ(gBn ∩Bn)

(
1− µ(Bn)

)2
+
(
1− µ(gBn ∪Bn)

)
µ(Bn)2

Since µ is Γ-invariant, we have the equalities:

µ(gBn4Bn) + µ(gBn ∩Bn) = µ(gBn ∪Bn) = 2µ(Bn)− µ(gBn ∩Bn).

Using these, we derive that〈
π0
µ(g)fn , fn

〉
= −µ(gBn4Bn)

(
1− µ(Bn)

)
µ(Bn) +

(
µ(Bn)− 1

2µ(gBn4Bn)
)(

1− µ(Bn)
)2

+
(
1− µ(Bn) + 1

2µ(gBn4Bn)− µ(gBn4Bn)
)
µ(Bn)2

= −µ(gBn4Bn)µ(Bn)− 1
2µ(gBn4Bn)

(
1− 2µ(Bn)

)
+
(
1− µ(Bn)

)
µ(Bn)

= −1
2µ(gBn4Bn) + µ(Bn)µ

(
B{n
)
.

From this, we deduce that that∣∣∣∣π0
µ(g)fn − fn

∣∣∣∣2 = 2 ||fn||2 − 2
〈
π0
µ(g)fn , fn

〉
= µ(gBn4Bn).

For each n ∈ N, let f̃n = fn/ ||fn||. Then
(
f̃n
)
n≥1

is a sequence of almost invariant vectors

for π0
µ. It follows by Proposition 1.3.5 that 1Γ is weakly contained in π0

µ.

Remark 3.1.16. The converse of the above statement is not true. An example of a strongly
ergodic p.m.p. action of the free F3 where the associated representation π0

µ has almost
invariant vectors were provided by K. Schmidt in [42, Example 2.7].

3.2 Orthogonal representations and actions on measure spaces

We present here a way to construct, from any orthogonal representation π of a discrete group,
a p.m.p. action with the property that the associated unitary representation, as defined in
equation (3.7), is equivalent with the extension of π to the symmetric Fock space, which we
define in Subsection 3.2.2 below. Our first step towards establishing this connection between
arbitrary orthogonal representations and actions on probability spaces is to show that any
real Hilbert space is isometrically isomorphic to a subspace of an L2-space. This is the
content of Lemma 3.2.9.

3.2.1 Gaussian Hilbert spaces

We recall very briefly a few definitions and basic facts from probability theory that we shall
need. Let (Ω, µ) be a probability space. A (real-valued) random variable on Ω is a measurable
function on Ω with values in R. The distribution of a random variable X : Ω ! R is the
image measure µX on R given by

µX(B) = µ(X−1(B)), for all Borel subsets B ⊂ R.

If there exists a measurable function fX : R ! R such that, for all Borel subsets B ⊂ R,

µX(B) =

∫
B
fX dλ,
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where λ is the Lebesgue measure, we say that X has density and refer to fX as the density
function for X. If X is integrable or positive valued, we define its expectation value as

E[X] =

∫
Ω
X dµ =

∫
R
x dµX(x).

If E[X] = 0, we say that X is centered. If X ∈ L2(Ω, µ;R), the variance of X is the number

V[X] = E[(X − E[X])2] = E[X2]− E[X]2.

We define its characteristic function, ϕX : R ! C, of a random variable X by

ϕX(t) = E[e−itX ], for t ∈ R.

Remark 3.2.1. A random variable is uniquely characterized by its characteristic function (see
[25, Theorem 14.1]).

Two random variables X and Y are said to be independent if the probability of the event
that X ∈ A and Y ∈ B equals the product of the probability of the individual events, for all
Borel sets A,B ⊂ R.

A real-valued random variable X is said to be Gaussian if it is either constant or has a
density function of the form

fX(x) =
1

σ
√

2π
e−(x−m)2/2σ2

, (3.2)

for some real numbers σ > 0 and m ∈ R. If X is Gaussian with density as in equation
(3.2) then E[X] = m and V[X] = σ2. The standard Gaussian distribution is the Gaussian
distribution with m = 0 and σ = 1.

Remark 3.2.2. If X and Y are independent Gaussian random variables on the same prob-
ability space with mean and variance (mX , σ

2
X) and (mY , σ

2
Y ), respectively, then their sum

is again a Gaussian random variable with mean and variance (mX +mY , σ
2
X + σ2

Y ). In par-
ticular, the sum of two independent centered Gaussian random variables is also a centered
Gaussian random variable.

Lemma 3.2.3. The L2-limit of a sequence of centered Gaussian random variables is a cen-
tered Gaussian random variable.

Proof. Let (Xn)n≥1 be a sequence of centered Gaussian random variables on a probability

space (Ω, µ), and let, for each n ∈ N, νn be the distribution of Xn and let σ2
n = V[Xn].

Suppose that (Xn)n≥1 converges in L2(Ω, µ;R) to a random variable X. Then clearly (σ2
n)n≥1

is a converging sequence with limit σ2 = V[X]. As (Ω, µ) is a finite measure space, || · ||1 ≤
|| · ||2, and so, E[X] = limn E[Xn] = 0. Then V[X] = ||X||22, and so, if V[X] = 0 then X = 0.
Otherwise, the Lebesgue Dominated Convergence theorem implies that, for every f ∈ Cc(R),∫

R
f dν = lim

n!∞

∫
R
f dνn = lim

n!∞

1

σn
√

2π

∫
R
e−x

2/2σ2
nf(x) dx =

1

σ
√

2π

∫
R
e−x

2/2σ2
f(x) dx,

where ν is the distribution of X. Hence, ν has density x 7! 1
σ
√

2π
e−x

2/2σ2
.

Definition 3.2.4. A Gaussian Hilbert space is a closed subspace of L2(Ω, µ;R), for some
probability space (Ω, µ), consisting of centered Gaussian random variables.

Remark 3.2.5. Let (Xi)i∈I be a family of pairwise independent Gaussian random variables
on some probability space (Ω, µ). The closed linear span spanR {Xi | i ∈ I } is a Hilbert
subspace of L2(Ω, µ;R). By Remark 3.2.2 and Lemma 3.2.3, this is a Gaussian Hilbert
space. We refer to this space as the Gaussian Hilbert space generated by the family (Xi)i∈I .
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Definition 3.2.6. A measurable space (Ω,B) is said to be standard Borel if there exists a
metric d on Ω such that (Ω, d) is a complete separable metric space and such that B is the
Borel σ-algebra associated to d.

Definition 3.2.7. Let Ω be a measurable space. A measure µ on Ω is said to be non-atomic
if µ({ω}) = 0, for all ω ∈ Ω.

Definition 3.2.8. Let Ω be a topological space equipped with a σ-algebra. A measure µ on
Ω is said to be outer regular if

µ(B) = inf {µ(U) | B ⊂ U, U open and measurable } ,

for all measurable sets B ⊂ Ω.

Lemma 3.2.9. Any real Hilbert space is isometrically isomorphic to a Gaussian Hilbert sub-
space of L2(Ω, µ;R), for a standard Borel space Ω and a non-atomic outer regular probability
measure µ.

Proof. Let H be a real Hilbert space and let (ei)i∈I be an orthonormal basis. Denote by ν
the standard Gaussian distribution and by B1 the Borel σ-algebra on R. Let Ω =

∏
i∈I R.

We equip Ω with the product σ-algebra B =
⊗

i∈I B1 and the product measure µ = ⊗i∈Iν.
For each i ∈ I, let Xi : Ω ! R be the canonical i’th projection, i.e., Xi((ωj)j∈I) = ωi.
Then each Xi is a standard Gaussian random variable and the family (Xi)i∈I is pairwise
independent and form an orthonormal set in L2(Ω, µ;R). Let K = span {Xi | i ∈ I } be the
Gaussian Hilbert space generated by the family (Xi)i∈I (see Remark 3.2.5). Then (Xi)i∈I
is an orthonormal basis of K and the map H ! K given by ei 7! Xi is an isometric
isomorphism.

Let Ω be a set, Ω′ a measurable set and let (Xi)i∈I be a family of maps Ω ! Ω′. The
σ-algebra generated by (Xi)i∈I is the smallest σ-algebra on Ω containing all sets of the form
T−1
i (B), where i ∈ I and B ⊂ Ω′ is measurable. We denote this σ-algebra by σ(Xi : i ∈ I).

If (Ω,B) is a measurable space, we say that the family (Xi)i∈I generates the σ-algebra on Ω
if σ(Xi : i ∈ I) = B.

Remark 3.2.10. Let K be a Gaussian Hilbert space in L2(Ω,B, µ). If BK denotes the σ-
algebra generated be the members of K then K ⊂ L2(Ω,BK , µ;R) ⊂ L2(Ω,B, µ;R). If K is
generated by the family (Xi)i∈I then BK = σ(Xi : i ∈ I).

Lemma 3.2.11. Let X ∈ L2(Ω, µ;R) be a centered Gaussian random variable with variance
σ2 = E[X2] > 0. Then eX ∈ L2(Ω, µ;R) and

E
[
eX
]

= e
1
2
E[X2]. (3.3)

Proof. Note first, that as x 7! ex is continuous, eX is a measurable map on Ω. For a, b ∈ R,∫ ∞
−∞

ebxe−ax
2

dx =

∫ ∞
−∞

e−a(x−b/2a)2
e−b

2/4a dx =

√
π

a
e−b

2/4a,

where the last equality follows from the change of variables y = x− b/2a. We deduce that

1

σ
√

2π

∫ ∞
−∞

exe−x
2/2σ2

dx = eσ
2/2

This is exactly equation (3.3).

Lemma 3.2.12. Let K be a Gaussian Hilbert space in L2(Ω, µ;R). If K generates the
σ-algebra on Ω then the linear span of the set

{
eX
∣∣ X ∈ K } is dense in L2(Ω, µ;R).
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Proof. Let Y ∈ L2(Ω, µ;R) be orthogonal to
{
eX
∣∣ X ∈ K }. We show that then Y is

necessarily zero. The set map ν̃ given by

ν̃(B) =

∫
B
Y dµ, for all measurable B ⊂ Ω,

is a bounded signed measure on Ω. Let (Xi)i∈I be an orthonormal basis of K. For a finite
subset {i1, . . . , in} ⊂ I, let ν be the image measure of ν̃ under the map Ω ! Rn given by

ω 7! (Xi1(ω), . . . , Xin(ω)).

For each a = (a1, . . . , an)T ∈ Rn, the random variable a1Xi1 + · · ·+ anXin is in K, and so,∫
Rn
e〈x ,a〉 dν(x) =

∫
Ω
ea1Xi1 (ω)+···+anXin (ω) dν̃(ω)

=

∫
Ω
ea1Xi1 (ω)+···+anXin (ω)Y (ω) dµ(ω) = 0.

Further, for each a = (a1, . . . , an)T ∈ Cn,
∣∣∫

Rn e
〈x ,a〉 dν(x)

∣∣ ≤ ∫Rn e〈x ,Re a〉 dν(x) = 0. Hence,
ν is the distribution of a random variable with characteristic function equal to zero. Since
random variables are characterized by their characteristic functions, we deduce ν = 0. By
construction of ν, this implies that ν̃ vanishes on the σ-algebra generated by {Xi1 , . . . , Xin}.

Let D be the union of all σ(Xi1 , . . . , Xin) over all finite subsets {i1, . . . , in} ⊂ I of indices.
Then D is stable under finite intersections and

σ(D) = σ(Xi : i ∈ I) = σ(X : X ∈ K).

What we have showed is that ν̃ vanishes on D, or, equivalently, that the non-negative mea-
sures ν̃+ and ν̃− associated to the positive, respectively, negative parts of Y agree on all sets
of D. Therefore, by uniqueness of measures (see [41, Theorem 5.7]), ν̃+ and ν̃− agree on
the σ-algebra generated by K. By the assumption that K generates the σ-algebra on Ω, it
follows that ν̃ = 0 on all measurable subsets of Ω. Hence, Y = 0, as we wanted to show.

3.2.2 The symmetric Fock space

Let H be a Hilbert space. For each n ∈ N, we denote by Sn the symmetric group on
{1, . . . , n}. Each σ ∈ Sn induces an operator Tσ on H⊗n defined on elementary tensors by

Tσ(ξ1 ⊗ · · · ⊗ ξn) = ξσ(1) ⊗ · · · ⊗ ξσ(n), for ξ1, . . . , ξn ∈ H.

Note that Tσ is a surjective isometry and that Tσ ◦ Tτ = Tσ◦τ , for all σ, τ ∈ Sn.

The n´th symmetric tensor power of H is the closed subspace of H⊗n defined by

Sn(H) =
{
ξ ∈ H⊗n

∣∣ Tσξ = ξ for all σ ∈ Sn
}
.

The orthogonal projection Pn : H⊗n ! Sn(H) is given by

Pn =
1

n!

∑
σ∈Sn

Tσ.

For ξ1, . . . , ξn ∈ H, we denote by ξ1 � · · · � ξn the image of ξ1 ⊗ · · · ⊗ ξn under Pn.

Set S0(H) = R if H is real and C if H is complex.
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Definition 3.2.13. The symmetric Fock space of H is the Hilbert space direct sum:

S(H) =
⊕
n≥0

Sn(H).

Let T : H ! H be a linear map. We define the n’th tensor power of T as the map
T⊗n : H⊗n ! H⊗n given by T⊗n(ξ1 ⊗ · · · ⊗ ξn) = Tξ1 ⊗ · · · ⊗ Tξn. We get a canonical
extension of T to the symmetric Fock space by taking the direct sum of (the restrictions
of) all tensor powers of T . We denote this extension by S(T ). Note that if T is injective,
surjective or an isometry, then so is T⊗n, for all n, and therefore so is S(T ).

Define the map Exp : H ! S(H) by

Exp(ξ) =

∞∑
n=0

1√
n!
ξ�n, for all ξ ∈ H.

Remark 3.2.14. For all ξ, η ∈ H, it holds that

〈Exp(ξ) ,Exp(η)〉 =
∞∑
n=0

1

n!
〈ξ , η〉n = e〈ξ ,η〉 (3.4)

Lemma 3.2.15. The set {Exp(ξ) | ξ ∈ H } is linearly independent and its linear span is
dense in the symmetric Fock space, S(H).

Proof. We start by proving linear independence. We denote by K either R or C depending
on whether H is real or complex. Suppose there exists a finite collection of distinct vec-
tors ξ1, . . . ξn ∈ H, and, for these vectors, a collection of scalars λ1, . . . , λn ∈ K such that∑n

i=1 λi Exp(ξi) = 0. Consider the sets

Ei,j = { η ∈ H | 〈ξi − ξj , η〉 6= 0 } ,

where 1 ≤ i, j ≤ n and i 6= j. These are open and dense sets in H. Hence,
⋂
i 6=j Ei,j is dense

in H, by the Baire Category Theorem. In particular, this intersection is non-empty, and so,
we may find η ∈ H such that 〈ξi , η〉 6= 〈ξj , η〉, whenever i 6= j. Then, for all z ∈ C,

0 =

〈
n∑
i=1

λi Exp(ξi) ,Exp(zη)

〉
=

n∑
i=1

λie
z〈ξi ,η〉.

Linear independence of the set {Exp(ξ) | ξ ∈ H } then follows from linear independence of
the set of functions of the form z 7! eθz on C.

We proceed to show that span {Exp(ξ) | ξ ∈ H } is dense in S(H). For each ξ ∈ H,
define a function fξ : R ! S(H) by fξ(t) = Exp(tξ). For each n ∈ N, it is straight forward
to check that the n’th derivative of f in zero is

f
(n)
ξ (0) =

√
n! ξ�n.

Since fξ(t) ∈ span {Exp(ξ) | ξ ∈ H }, for all t ∈ R and any vector ξ ∈ H, it follows that ξ�n ∈
span {Exp(ξ) | ξ ∈ H }, for all ξ ∈ H and all n ≥ 0. We conclude that span {Exp(ξ) | ξ ∈ H }
equals the direct sum of all the n’th symmetric tensor powers of H as vector spaces. Hence,
span {Exp(ξ) | ξ ∈ H } is dense in S(H).
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3.2.3 Measure preserving transformations and isometries of L2-spaces

For a measure preserving transformation θ of the measure space (Ω, µ), we define a linear
map θ∗ : L2(Ω, µ;R) ! L2(Ω, µ;R) by setting

θ∗(f) = f ◦ θ−1, for f ∈ L2(Ω, µ;R).

By Lemma 3.1.1, this is a surjective isometry, and we see that (θ∗)−1 = (θ−1)∗.
The induced surjective isometry θ∗ has the following property: For every pair of measur-

able subsets A,B ⊂ Ω,

θ∗(1A1B) = θ∗(1A∩B) = 1A∩B ◦ θ−1 = (1A ◦ θ−1)(1B ◦ θ−1) = θ∗(1A)θ∗(1B).

Moreover, since (θ∗)−1 = (θ−1)∗, the similar equality follows for (θ∗)−1. We shall see in
Lemma 3.2.21 that the converse is true when Ω is a standard Borel space and µ is an outer
regular non-atomic probability measure.

Lemma 3.2.16. If a measure preserving transformation θ on a finite measure space (Ω, µ)
is equal to the identity transformation of Ω almost everywhere then θ∗(1B) = 1B, for all
measurable B ⊂ Ω. If Ω is standard Borel, the converse is also true.

Proof. We have, for any measurable B ⊂ Ω, the following equality in L2(Ω, µ):

θ∗(1B) = 1B ◦ θ−1 = 1θ(B).

Hence, θ∗(1B) = 1B if and only if the measurable set

B̃ =
{
ω ∈ Ω

∣∣ 1B(ω) 6= 1θ(B)(ω)
}

= B4θ(B)

has measure zero. Further, θ is equal almost everywhere to the identity transformation if
and only if the measurable set A = {θ(ω) 6= ω} has measure zero.

For a subset B ⊂ Ω, if ω ∈ B4θ(B), we have, in particular, that ω 6= θ−1(ω). Hence,
for any subset B ⊂ Ω, the symmetric difference B4θ(B) is contained in A. Therefore, if
µ(B4θ(B)) > 0, for some measurable subset B ⊂ Ω, then A has strictly positive measure,
as well. This shows the first statement of the lemma.

Assume that Ω is a standard Borel space, let (ωi)i∈I be a countable dense set and denote
by d the metric on Ω inducing the Borel σ-algebra on Ω. Suppose θ is not equal almost
everywhere to the identity transformation so that A has strictly positive measure. Then
we can find an a ∈ A with the property that, for each ε > 0 there exists an i ∈ I with
a ∈ B(ωi, ε) such that µ(B(ωi, ε)) > 0. Since Ω is Hausdorff and θ(a) 6= a, we may find an
open neighborhood a ∈ V ⊂ Ω such that V ∩ θ(V ) = ∅. Take ε > 0 such that B(a, ε) ⊂ V .
Take i0 ∈ I such that a ∈ B(ωi, ε/2) and µ(B(ωi, ε/2)) > 0. If ω ∈ B(ωi, ε/2), then
d(ω, a) ≤ d(ω, ωi) + d(ωi, a) < ε. Hence, B(ωi, ε/2) ⊂ V . We conclude that V is a set of
strictly positive measure. Since V also have the property that V ∩ θ(V ) = ∅, it follows that
1V 6= 1θ(V ). This shows the second statement of the lemma.

Remark 3.2.17. It follows directly from the above lemma that two measure preserving trans-
formations θ1 and θ2 of the same finite standard Borel measure space are equal almost
everywhere if and only if θ∗1(1B) = θ∗2(1B), for all measurable B ⊂ Ω. Indeed, this is clear
using the easy observation that (θ1 ◦ θ2)∗ = θ∗1 ◦ θ∗2.

Let (Ω,B, µ) be a measure space. We define an equivalence relation on B by setting
A ∼ B whenever µ(A4B) = 0.
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Remark 3.2.18. For any pair of measurable sets A,B ∈ B, their indicator functions 1A and
1B are equal in L2(Ω, µ;R) if and only if A ∼ B.

Denote by B̃ the quotient of B with this relation, and by B̃ the equivalence class of a
set B ⊂ Ω. For A,B ∈ B with A ∼ B, we have 0 ≤ µ(A\(A ∩ B)) ≤ µ(A4B) = 0, and
so, µ(A) = µ(A ∩ B). By symmetry, it follows that µ(A) = µ(B). We may therefore define
an induced measure µ̃ on B̃ by setting µ̃(B̃) = µ(B), for each set B ⊂ Ω. The pair (B̃, µ̃)
is called the measure algebra associated to the measure space (Ω,B, µ).The operations of
complementation, intersections and countable unions of the elements of B̃ are defined in the
natural way:

B̃{ = B̃{, for B ∈ B,

Ã ∩ B̃ = Ã ∩B, for A,B ∈ B,⋃
i∈I

B̃i =
⋃̃
i∈I

Bi, for I countable and (Bi)i∈i ⊂ B.

Definition 3.2.19. A measure algebra automorphism of (B̃, µ̃) is a measure preserving bi-
jection B̃ ! B̃ which preserves complements and countable unions.

Let (Ω,B, µ) be a measure space. A measure preserving transformation θ : Ω ! Ω
induces in a natural way a measure algebra automorphism as follows: We may define a set
map Θ : B ! B by setting Θ(B) = θ(B), for B ∈ B. Note that this is well-defined by
the requirement that θ is a bijection with measurable inverse. For any map η : Ω ! Ω,
we have the set inclusion η(A)4η(B) ⊂ η(A4B), and, if η is a bijection, the inclusion is
an equality. Hence, if A ∼ B, we see that µ(θ(A)4θ(B)) = µ(θ(A4B)) = µ(A4B) = 0,
so that θ(A) ∼ θ(B). Therefore, Θ descends to a well-defined map Θ̃ : B̃ ! B̃ given by

Θ̃(B̃) = θ̃(B). By the assumption that θ is bijective, it is clear that Θ̃ is a measure algebra
automorphism of (B̃, µ̃).

For standard Borel spaces with σ-finite outer regular non-atomic measures, the converse
is also true. That is, any measure algebra automorphism is induced by a measure preserving
transformation as described above. This result is due to J. von Neumann in [51], and we
state it below without proof.

Proposition 3.2.20. Let (Ω,B, µ) be a standard Borel space equipped with a σ-finite outer
regular non-atomic measure, and let Θ : B̃ ! B̃ be a measure algebra automorphism. There

exists a measure preserving transformation θ : Ω ! Ω such that Θ(B̃) = θ̃(B), for all B ∈ B.

We are now ready to state and proof the announced result characterizing the surjective
isometries on a given L2-space coming from a measure preserving transformation.

Lemma 3.2.21. Let (Ω,B, µ) be a standard Borel space equipped with a non-atomic outer
regular probability measure. If T : L2(Ω, µ;R) ! L2(Ω, µ;R) is a surjective isometry satisfy-
ing the equalities

T (1A1B) = T (1A)T (1B) and T−1(1A1B) = T−1(1A)T−1(1B),

for all pairs of measurable subsets A,B ⊂ Ω, then there exists a measure preserving trans-
formation θ of Ω such that T = θ∗.

Proof. For B ∈ B, we have T (1B)2 = T (12
B) = T (1B), by assumption. Hence, T (1B) takes

values in {0, 1}, and so, there exists B′ ∈ B such that T (1B) = 1B′ . For each B ∈ B, we
make such a choice, and wefine a map Θ : B̃ ! B̃ by setting

Θ(B̃) = B̃′, for B ∈ B.
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By Remark 3.2.18, this map is well-defined. We claim that it is a measure algebra automor-
phism. First, it is clear that Θ is measure preserving because T is an isometry. Let B ∈ B.
Using linearity of T , we see that

T (1Ω) = T (1B) + T (1B{) = 1B′ + 1(B{)′ = 1B′∪(B{)′ + 1B′∩(B{)′ ,

Since T is an isometry T (1Ω) = 1Ω′ , for some set Ω′ of measure 1. Hence, µ(B′ ∩ (B{)′) = 0
and µ(B′ ∪ (B{)′) = 1. Using the easy fact that A∆(C{) = (A∆C){, it follows that

0 ≤ µ((B′){ ∩ (B{)′) = 1− µ(B′ ∩ (B{)′) ≤ 1− µ(B′ ∪ (B{)′) = 0.

This shows that (B′){ ∼ (B{)′, and so, Θ preserves complements. Finally, let (Bi)i∈I be a
countable family of pairwise disjoint sets in B. By linearity and continuity of T , we have

∑
i∈I

1B′i =
∑
i∈I

T (1Bi) = T

(∑
i∈I

1Bi

)
= T

(
1⋃

i∈I Bi

)
= 1(⋃

i∈I Bi
)′ .

Since the right-hand side is an indicator function, we can find a set A ∈ B of measure 1 such
that the sets (Bi ∩A)i∈I are pairwise disjoint, and we have

1⋃
i∈I B

′
i

= 1⋃
i∈I(B′i∩A) = 1(⋃

i∈I Bi
)′ ,

in L2(Ω, µ;R). By Remark 3.2.18, this shows that Θ preserves countable unions. Thus, Θ is
a measure algebra automorphism. By Proposition 3.2.20, there exists a measure preserving

transformation θ of Ω such that Θ(B̃) = θ̃(B), for all B ∈ B. Hence, for any B ∈ B,
θ(B) ∼ B′. By Remark 3.2.18, this is equivalent to

θ∗1B = 1θ(B) = 1B′ = T (1B).

Hence, θ∗ and T agree on all simple functions, and therefore on all measurable functions.

3.2.4 Construction of a p.m.p. action from an orthogonal representation

Theorem 3.2.22. Let H be a separable real Hilbert space and let (Ω, µ) be a standard Borel
probability space such that µ is non-atomic. Let K ⊂ L2(Ω, µ;R) be a Gaussian Hilbert
space generating the σ-algebra on Ω. Let Φ : H ! K be an isometric isomorphism. Then
Φ extends to an isometric isomorphism Φ̃ : S(H) ! L2(Ω, µ;R) with the property that, for
every surjective isometry T : H ! H, there exists a measure preserving transformation θT
of (Ω, µ) such that Φ̃ ◦ S(T ) = θ∗T ◦ Φ̃. Moreover, θT is unique up to null-sets.

Proof. Let ξ, η ∈ H and set X = Φ(ξ) and Y = Φ(η). By Lemma 3.2.11, the random
variables eX , eY and eX+Y are in L2(Ω, µ;R), and we have〈

eX−
1
2 E[X2] , eY−

1
2 E[Y 2]

〉
=

∫
Ω
eX−

1
2 E[X2]eY−

1
2 E[Y 2] dµ

= e−
1
2 (E[X2]+E[Y 2]) E

[
eX+Y

]
= e−

1
2 (E[X2]+E[Y 2])e

1
2 E[(X+Y )2]

= eE[XY ] = e〈X ,Y 〉 = e〈Φ(ξ) ,Φ(η)〉.

Further, using that Φ is an isometry together with Remark 3.2.14 we deduce that〈
eX−

1
2 E[X2] , eY−

1
2 E[Y 2]

〉
= e〈ξ ,η〉 = 〈Exp(ξ) ,Exp(η)〉 . (3.5)
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Define a map Φ̃ : {Exp(ξ) | ξ ∈ H }! L2(Ω, µ;R) by

Φ̃(Exp(ξ)) = eΦ(ξ)−1
2 E[Φ(ξ)2], for ξ ∈ H.

By equation (3.5), Φ̃ is an isometry on {Exp(ξ) | ξ ∈ H }. Hence, Φ̃ extends to an isometric
linear map S(H) ! L2(Ω, µ;R), by Lemma 3.2.15, which we also denote by Φ̃. By Lemma
3.2.12, this extension is surjective.

Let T : H ! H be a surjective isometry. Then its canonical extension, S(T ), to the
symmetric Fock space of H is a surjective isometry, as well. Therefore, R = Φ̃ ◦ S(T ) ◦ Φ̃−1

is a surjective isometry on L2(Ω, µ;R). For any ζ ∈ H, we have,

R
(
Φ̃
(
Exp(ζ)

))
= Φ̃

(
S(T )

(
Exp(ζ)

))
= Φ̃(Exp(Tζ)) = eΦ(Tζ)−1

2 E[Φ(Tζ)2]. (3.6)

Let ξ, η ∈ H and set X = Φ̃(Exp(ξ)) and Y = Φ̃(Exp(η)). We have, by definition of Φ̃,

XY = eΦ(ξ)−1
2 E[Φ(ξ)2]eΦ(η)−1

2 E[Φ(η)2]

= eΦ(ξ+η)−1
2 E[Φ(ξ+η)2]eE[Φ(ξ)Φ(η)]

= eE[Φ(ξ)Φ(η)]Φ̃(Exp(ξ + η)).

Hence, XY lies in L2(Ω, µ;R). By equation (3.6), we see that

R(X) = eΦ(Tξ)−1
2 E[Φ(Tξ)2],

R(Y ) = eΦ(Tη)−1
2 E[Φ(Tη)2],

and that

R(XY ) = eE[Φ(ξ)Φ(η)]eΦ(T (ξ+η))−1
2 E[Φ(T (ξ+η))2]

= eΦ(T (ξ+η))−1
2

(
E[Φ(Tξ)2]+E[Φ(Tη)2]

)
eE[Φ(ξ)Φ(η)]−E[Φ(Tξ)Φ(Tη)].

Since Φ and T are isometries, we have

E[Φ(ξ)Φ(η)] = 〈ξ , η〉 = 〈Tξ , Tη〉 = E[Φ(Tξ)Φ(Tη)].

Together with our above derivations, we deduce that

R(XY ) = R(X)R(Y ).

By continuity, this equality holds for all X and Y in L2(Ω, µ;R). In particular, for any
pair of indicator functions 1A and 1B with A and B measurable. Further, as T was any
surjective isometry and since R−1 = Φ̃ ◦ S(T−1) ◦ Φ̃−1, the same equality holds for R−1.
Hence, by Lemma 3.2.21, there exists a measure preserving transformation θT of (Ω, µ) such
that R = θ∗T . This finishes the proof of the theorem.

Remark 3.2.23. Let H, K ⊂ L2(Ω, µ;R) and Φ : H ! K be as in Theorem 3.2.22 above.
Consider the 1-dimensional subspace S0(H) of the symmetric Fock space ofH. It is clear from
Lemma 3.2.15 that this is the subspace spanned by the vector Exp(0), where 0 is the zero-
vector in H. By definition of Φ̃ in the proof of Theorem 3.2.22, we see that Φ̃(Exp(0)) = 1Ω.
Hence, Φ̃(S0(H)) = R1Ω. Since Φ̃ is an isometric isomorphism, it follows that the restriction
of Φ̃ to the orthogonal complement of S0(H) is an isometry onto L2

0(Ω, µ;R) = 1⊥Ω .
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Let (π,H) be an orthogonal representation of the discrete group Γ on a real Hilbert
space. For each n ∈ N, let π⊗n be the representation of Γ on H⊗n given on elementary
tensors by π⊗n(g)(ξ1 ⊗ · · · ⊗ ξn) = π(g)ξ1 ⊗ · · · ⊗ π(g)ξn. Clearly, the n’th symmetric
tensor power of H, Sn(H), is a Γ-invariant subspace of H⊗n. The restriction of π⊗n to
Sn(H) is called the n’th symmetric tensor power of π and is denoted by Sn(π). For n = 0,
let S0(π) be the trivial representation on R. The representation (π,H) then induces in
a canonical way a representation on the symmetric Fock space of H by taking the direct
sum S(π) =

⊕∞
n=0 S

n(π) of all n’th symmetric tensor powers of π. Precisely, S(π) is the
representation on S(H) given by S(π)(g) = S(π(g)), for each g ∈ Γ.

Remark 3.2.24. For any pair of non-negative integers k, l ∈ N0, and any real Hilbert space
H,, we have the inclusion Sk+l(H) ⊂ Sk(H) ⊗ Sl(H). In particular, for a representation π
of a discrete group Γ on H, Sk+l(π) is a subrepresentation of Sk(π)⊗ Sl(π).

Corollary 3.2.25. Let (π,H) be an orthogonal representation of the countable discrete group
Γ on a real and separable Hilbert space. There exists a probability space (Ω, µ) and a measure
preserving action of Γ on Ω such that the associated representation of Γ on L2(Ω, µ;R) is
equivalent with the representation of Γ on the symmetric Fock space of H induced by π.

Proof. By Lemma 3.2.9, we may find a Gaussian Hilbert space K ⊂ L2(Ω, µ;R), where
Ω is a standard Borel space and µ is a non-atomic probability measure, and an isometric
isomorphism Φ : H ! K. Further, by Remark 3.2.10, we may assume that K induces the
σ-algebra on Ω. Then, Theorem 3.2.22 implies that Φ extends to an isometric isomorphism
Φ̃ : S(H) ! L2(Ω, µ;R). Moreover, for each g ∈ Γ, π(g) is a surjective isometry of H,
and so induces a measure preserving transformation θg of (Ω, µ) with the property that

Φ̃ ◦S(π(g)) = θ∗g ◦ Φ̃. In particular, for g = e, we see that θ∗e = idL2(Ω,µ;R). Further, for every
g, h ∈ Γ, we have

θ∗gh = Φ̃ ◦ S(π(gh)) ◦ Φ̃−1 = Φ̃ ◦ S(π(g)) ◦ Φ̃−1 ◦ Φ̃ ◦ S(π(h)) ◦ Φ̃−1 = θ∗g ◦ θ∗h.

Hence, by Lemma 3.2.16 and Remark 3.2.17, θe = idΩ a.e., and θg ◦ θh = θgh a.e., for all
g, h ∈ Γ. Define

Ω0 =
⋂
g∈Γ

{ω ∈ Ω | θe(θg(ω)) = θg(ω) } .

Then Ω0 is a Γ-invariant set of measure 1. We equip Ω0 with the trace σ-algebra. Define
an action α of Γ on Ω0 by setting α(g, ω) = θg(ω), for all g ∈ Γ and ω ∈ Ω0. For each
measurable B ⊂ Ω0, we see that

α−1(B) = { (g, ω) ∈ Γ× Ω0 | θg(ω) ∈ B } =
⋃
g∈Γ

{g} × θ−1
g (B).

Hence, α is a measurable action. The unitary representation of Γ on L2(Ω0, µ;R) ∼= L2(Ω, µ;R)
associated to this action is given by

πµ(g)f = f ◦ θg−1 = θ∗g(f), (3.7)

for f ∈ L2(Ω0, µ;R) and g ∈ Γ. Thus, it is clear that Φ̃ intertwines
⊕∞

n=0 S
n(π) and πµ.

3.3 The Connes-Weiss characterisation

With the preparations of the two previous sections, we are ready to state and proof a char-
acterization of Property (T ) in terms of ergodicity of actions on measure spaces. This
characterization is due to A. Connes and B. Weiss in [11]. We follow the proof presented in
[5, Theorem 6.3.4].
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Theorem 3.3.1 (Connes-Weiss). Let Γ be a discrete group. The following are equivalent:

(i) Γ has property (T ),

(ii) every p.m.p. ergodic action of Γ is strongly ergodic,

(iii) every p.m.p. weakly mixing action of Γ is strongly ergodic.

Proof. If Γ y (Ω, µ) is a p.m.p. ergodic action then π0
µ does not contain 1Γ, by Proposition

3.1.8. Therefore, if Γ has (T ), then π0
µ does not weakly contain 1Γ, and it follows from Propo-

sition 3.1.15 that Γ y (Ω, µ) is strongly ergodic. This shows (i) ⇒ (ii). The implication
(ii)⇒ (iii) is direct from Corollary 3.1.12. We proceed to show the implication (iii)⇒ (i).

Assume that Γ does not have (T ) and let (π,H) be a unitary representation with almost
invariant vectors but no non-zero invariant vector. Note that H must then necessarily be
infinite dimensional, as otherwise its unit ball would be compact. By Theorem 2.5.8, we
may assume that (π,H) contains no non-zero finite dimensional representations. Moreover,
it is clear from the proof of Theorem 2.5.8 and Remark 2.4.31 that we can also assume
this representation to be the complexification of an orthogonal representation. That is,
H = H ′⊗C, for some real Hilbert space H ′, and π = π′C, for some orthogonal representation
π′ of Γ on H ′.

By Corollary 3.2.25, we may find a probability space (Ω, µ) and a p.m.p. action on Ω
such that the associated representation π′µ on L2(Ω, µ;R) is equivalent to the representa-
tion

⊕∞
n=0 S

n(π′) of Γ on the symmetric Fock space of H ′ induced by π′. This equivalence
naturally lifts to the complexifications πµ on L2(Ω, µ) and

⊕∞
n=0 S

n(π) on S(H). Using Re-
mark 3.2.23, we obtain the following isometric isomorphisms intertwining the corresponding
subrepresentations:

∞⊕
n=1

Sn(H) ∼= L2
0(Ω, µ).

Suppose
⊕∞

n=1 S
n(π) contains a finite dimensional subrepresentation, ρ. We may as-

sume that ρ is irreducible, as any finite dimensional representation contains an irreducible
one. By Proposition 1.1.14, we may find an n ∈ N such that Sn(π) contains ρ. Since
π is the complexification of an orthogonal representation, then so is Sn(π). Therefore,
Proposition 1.1.17 implies that Sn(π)⊗Sn(π) contains the trivial representation. Therefore,
S1(π) ⊗

(
Sn−1(π) ⊗ Sn(π)

)
contains the trivial representation, by Remark 3.2.24. Observ-

ing that S1(π) = π and applying Proposition 1.1.17 to π ⊗
(
Sn−1(π) ⊗ Sn(π)

)
then yields

that (π,H) contains a finite dimensional subrepresentation. But this is a contradiction.
Hence,

⊕∞
n=1 S

n(π) contains no finite dimensional subrepresentation, and so neither does
π0
µ. Recalling that π0

µ is the complexification of an orthogonal representation and applying
Proposition 1.1.17 and Proposition 3.1.11 to π0

µ, we deduce that the action of Γ on (Ω, µ) is
weakly mixing.

Let (ξn)n≥1 be a sequence of almost invariant (unit) vectors for (π,H). We may assume
that each ξn lies in the real Hilbert space H ′. Then, for each g ∈ Γ and each n ∈ N,
||π(g)ξn − ξn||2 = 2(1− 〈π(g)ξn , ξn〉). As ||π(g)ξn − ξn|| ! 0, we see that

lim
n!∞

〈π(g)ξn , ξn〉 = 1,

for all g ∈ Γ. By Cauchy-Schwarz, we have 〈π(g)ξn , ξn〉 ∈ [−1, 1]. Define αn(g) ∈ [0, 1] by

〈π(g)ξn , ξn〉 = cos(αn(g)π).

Note that as 〈π(g)ξn , ξn〉! 1, we have

lim
n!∞

αn(g) = 0.
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In particular, αn(g) ∈ [0, 1/2], for n large enough.
Let Φ̃ : S(H ′) ! L2(Ω, µ;R) be the isometric isomorphism from Theorem 3.2.22 and

Corollary 3.2.25 intertwining
⊕∞

n=0 S
n(π′) and π′µ. For each n ∈ N and each g ∈ Γ, set

Xn = Φ̃(ξn) and Xg
n = π′µ(g)Xn.

Since Φ̃ extends an isometric isomorphism of H ′ onto a Gaussian Hilbert space in L2(Ω, µ;R),
we see directly that each Xn is a centered Gaussian random variable. Further, for each
n ∈ N, each g ∈ Γ and each Borel set B ⊂ R, we see that ω ∈ (Xg

n)−1(B) if and only if
g−1ω ∈ X−1(B). Thus, (Xg

n)−1(B) = gX−1(B). Since the action of Γ on (Ω, µ) is measure
preserving, this implies that the distribution of Xg

n is the same as the distribution of Xn, for
each g ∈ Γ. Hence, each Xg

n is a centered Gaussian random variable on Ω. The variance of
each of these random variables is given by ||Xg

n||2 =
∣∣∣∣π′µ(g)Φ̃(ξn)

∣∣∣∣
2

= ||ξn|| = 1.
Fix n ∈ N and g ∈ Γ, and write Xg

n in its orthogonal decomposition with respect to the
subspace spanned by Xn:

Xg
n = 〈Xg

n , Xn〉Xn + Zn = cos(αn(g)π)Xn + Zn,

with Zn ∈ X⊥n . If αn(g) = 0, then Xg
n = Xn and Zn = 0. Otherwise, Xn and Zn are

independent Gaussian random variables (see [25, Corollary 16.1]). In the latter case, set

Yn =
1

sin(αn(g)π)
Zn.

Then Yn is a centered Gaussian random variable with variance 1. Moreover, Xn and Yn are
independent and Xg

n = cos(αn(g)π)Xn + sin(αn(g)π)Yn. We see that the joint distribution
m of Xn and Yn on R2 is the standard Gaussian measure.

Set

An = {ω ∈ Ω | Xn(ω) ≥ 0 } .

Observe that gAn = {ω ∈ Ω | Xg
n(ω) ≥ 0 }, for all g ∈ Γ. Since the distribution of each Xg

n is
centered and symmetric, we see that µ(gAn) = 1/2, for each n ∈ N and each g ∈ Γ. Further,
we see immediately that

gAn4An = {Xg
n ≥ 0 and Xn < 0} ∪ {Xg

n < 0 and Xn ≥ 0}.

For each n ∈ N and g ∈ Γ, let Bn,g be the subset of R2 given by

Bn,g =
{

(x, y) ∈ R2
∣∣ cos(αn(g)π)x+ sin(αn(g)π)y ≥ 0 and x < 0

}
∪
{

(x, y) ∈ R2
∣∣ cos(αn(g)π)x+ sin(αn(g)π)y < 0 and x ≥ 0

}
.

By the abstract change of variables formula, we see immediately that µ(gAn4An) = m(Bn,g).
Rearranging, obtain the following expression for the set Bn,g:

Bn,g =

{
(x, y) ∈ R2

∣∣∣∣ y ≥ − 1

tan(α(g)π)
x and x < 0

}
∪
{

(x, y) ∈ R2

∣∣∣∣ y < − 1

tan(α(g)π)
x and x ≥ 0

}
.

Since m is rotation invariant, a simple geometric consideration yields that m(Bn,g) = αn(g).
But αn(g) ! 0, for each g ∈ Γ, as n tends to infinity. Hence, (An)n≥1 is a non-trivial
asymptotically invariant sequence in Ω.

3.4 Literature

This chapter is based on [5, Section 6.3 and A.7].
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Chapter 4

Kazhdan type rigidity properties
for actions on Banach spaces

After our survey on Kazhdan’s Property (T ) in its different forms, we proceed to study
this type of rigidity property in the more general setting of actions on Banach spaces. We
shall study two such properties: Property (TX), which generalizes Property (T ) as stated in
Proposition 1.2.7, and Property (FX) with generalizes Serre’s Property (FH). Both gener-
alizations are due to U. Bader, A. Furman, T. Gelander and N. Monod in [2]. We define
these properties in Section 4.1 where we also discuss their relations. In Section 4.2 we dis-
cuss Property (TX) in the setting where X is a superreflexive Banach space. Superreflexive
Banach spaces, which includes the Lp-spaces, is a class of Banach spaces with very nice prop-
erties. For example, we shall see that for isometric representations on superreflexive Banach
spaces, the subspace of invariant vectors is complemented. We provide a brief introduction
to superreflexivity in Appendix A. In Section 4.3, we study affine actions on superreflexive
Banach spaces. We show that, for this class of Banach spaces, all bounded subsets have a
unique circumcenter, and this allows us to show that the existence of a fixed point is equiv-
alent with all orbits being bounded. We remark that these two properties of superreflexive
Banach spaces – complementation of the subspace of invariant vectors and the existence of
a unique circumcenter – will allow us to use some of the tools we developed in the previous
chapters when studying Property (T ) in the Hilbert space setting. We end the chapter by
discussing, in Section 4.4, the relations between Property (T ), (TX) and (FX) when X is
an Lp-space. We remark that, for actions on Lp-spaces, the consequence of Schoenberg’s
theorem discussed in Subsection 2.4.3 applies.

4.1 Property (T ) in the Banach space setting

4.1.1 Property (TX)

For a Banach space X, we denote by O(X) the set of linear surjective isometries on X.
Note that for a real Hilbert space, H, O(H) is the set of orthogonal operators (justifying
the notation), and for a complex Hilbert space, it is the set of unitary operators. A linear
isometric representation of a discrete group Γ is then a tuble (ρ,X) consisting of a Banach
space X and a group homomorphism ρ : Γ ! O(X).

The notions of Γ-invariant and almost Γ-invariant from Definition 1.2.1 carries over di-
rectly to the setting of linear isometric representations on Banach spaces. For a linear
isometric representation (ρ,X) of a group Γ, let Xρ(Γ) denote the set of Γ-invariant vectors:

Xρ(Γ) = {x ∈ X | ρ(g)x = x, for all g ∈ Γ } .

This is a closed linear subspace of X invariant under the action of Γ through ρ.
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Definition 4.1.1. Let Γ be a discrete group and let B be a class of Banach spaces. We say
that Γ has property (TB) if, for all linear isometric representations (ρ,X) with X ∈ B, the
induced representation of Γ on X/Xρ(Γ) does not have almost invariant vectors. When B
consists of only one Banach space X, we write property (TX) instead of (TB).

Remark 4.1.2. For the class H of all Hilbert spaces, Proposition 1.2.7 states that Property
(TH ), as defined above, is equivalent to property (T ).

4.1.2 Property (FX)

Let X be a Banach space and let Γ be a discrete group. As in Chapter 2, Aff Isom(X)
denotes the set of affine isometries on X, and an affine isometric action of Γ on X is a group
homomorphism Γ ! Aff Isom(X).

Definition 4.1.3. Let Γ be a discrete group and let B be a class of Banach spaces. We say
that Γ has property (FB) if all affine isometric actions of Γ on any X ∈ B has a fixed point.
When B consists of only one Banach space, X, we write (FX) instead of (FB).

Remark 4.1.4. When B is the class of all real Hilbert spaces, we recover Serre’s Property
(FH) (see Definition 2.5.1).

We saw in Proposition 2.5.2 that property (FH) is equivalent to the vanishing of the first
cohomology group with coefficients in an orthogonal representation. The proof relies on our
analysis in Section 2.2 of affine actions on general vector spaces, and so, generalizes easily to
the Banach space setting.

Proposition 4.1.5. Let X be a Banach space. A discrete group Γ has property (FX) if and
only if H1(Γ, ρ) = {0}, for all linear isometric representations ρ of Γ on X.

Proof. For a linear isometric representation ρ of Γ on X, we have, as in the proof of Propo-
sition 2.5.2, that H1(Γ, ρ) = 0 if and only if all affine actions with linear part ρ have a fixed
point. Moreover, we remark that the affine isometric actions on X are in 1-to-1 correspon-
dence to the 1-cocycles with respect to the linear isometric representations on B. Therefore,
H1(Γ, ρ) = 0, for all linear isometric representations ρ of Γ on X if and only if all affine
isometric actions of Γ on X has a fixed point.

4.1.3 Relations between Kazhdan type rigidity properties

In the Hilbert space setting, we have seen that Property (T ) and Property (FH) are equiv-
alent (for discrete groups) – this is the content of the Theorem 2.5.5 by P. Delorme and
A. Guichardet. In the general setting, where we consider actions on the members of any
specified class of Banach spaces B, only one implication remains true: Property (FB) is, in
general, stronger than Property (TB). The proof of this is a straight forward generalization
of the proof for the case where B = H is the class of all Hilbert spaces.

Theorem 4.1.6. For any Banach space X, Property (FX) implies Property (TX).

Proof. Let Γ be a discrete group, let X be a Banach space, and assume that Γ does not have
property (TX). We may then find an isometric representation (ρ,X) of Γ on X such that
the induced representation on X/Xρ(Γ) has almost invariant vectors. By Proposition 2.3.4,
B1(Γ, ρ) is not closed. By Remark 2.3.3 and Proposition 4.1.5, this implies that Γ does not
have Property (FX).

We illustrate the failure of the opposite implication in the example below, which is taken
from [2, Example 2.22]. We remark that we don’t need to look outside the class of Hilbert
spaces for an example.
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Example 4.1.7 ((TX) ; (FX)). Consider the Banach space R with the usual Euclidean
norm. On this space, we have only two linear isometries: the identity map and the antipodal
map x 7! −x. Composing the antipodal map with itself yields the identity map, and so, we
see that O(R) is isomorphic to Z/2Z as a group. If Γ is any discrete group acting on R by
linear surjective isometries then either the action is trivial, in which case all vectors in R are
fixed, or there exists a g ∈ Γ for which g.x = −x, for all x ∈ R. In the latter case, the action
has no non-zero fixed points, but neither does it have almost invariant vectors. Hence, all
discrete groups have property (TR). Let Γ ⊂ R be a non-zero additive subgroup of R, e.g.,
Γ = Z or R, and consider the affine isometric action of Γ on R by translation (see Example
2.2.2). Clearly, such an action has no fixed-points, and so, Γ constitutes an example of a
group with Property (TR) but without Property (FR). ◦

We proceed to discuss the relations of the classical Property (T ) with Property (TX),
respectively Property (FX), for a given Banach space X. In general, the existence of fixed
points for any affine action on a given fixed Banach space X, or the property that, for any
linear isometric representation ρ on X, the induced representation on X/Xρ does not have
almost invariant vectors, does not say anything about how a group may act on other Banach
spaces. In particular, Property (TX) and (FX) do not, in general, imply Property (T ). The
example below, which can be found in [2, Example 2.25] and in [13, Examples 2.5], show
that (T ) is also not stronger that (TX).

Example 4.1.8 ((T ) ; (TX)). Let Γ be any finitely generated infinite discrete group and
let c0(Γ) be the subspace of `∞(Γ) consisting of complex valued functions on Γ tending to
zero. Consider the left regular representation of Γ on `∞(Γ), i.e.,

g.a(h) = a(g−1h), a ∈ `∞(Γ), g, h ∈ Γ.

It is straight forward to verify that this is an action by linear surjective isometries. If
a ∈ `∞(Γ) is invariant under this action, then a(g) = g−1.a(e) = a(e), for all g ∈ Γ. That
is, any invariant function is a constant function. Hence, the left regular representation on
c0(Γ) has no non-zero invariant vectors. It does, however, have almost invariant vectors. To
see this, let F1 be a finite generating set containing the identity, and set, for each k ∈ N,
Fk = F k1 . This gives us an increasing sequence F1 ⊂ F2 ⊂ · · · of finite sets in Γ such that
Γ =

⋃
k∈N Fk. For notational convenience we set F0 = ∅. Define a sequence of functions

(an)n≥1 in c0(Γ) by setting, for each h ∈ Γ,

an(h) =
1

k1/n
, if h ∈ Fk\Fk−1, k ≥ 1.

We claim that (an)n≥1 is a sequence of almost invariant vectors. For g ∈ Γ, let `(g) be the
word length of g with respect to F1. We have

||g.an − an||∞ = sup
h∈Γ
|g.an(h)− an(h)|

≤ sup
h∈F`(g)

|g.an(h)− an(h)|+ sup
h/∈F`(g)

|g.an(h)− an(h)|

Given ε > 0, pick nε ∈ N such that 1 − 1/k1/nε < ε/3, for all k ≤ 2`(g). If h ∈ F`(g) then
g−1h ∈ F2`(g), and so, we see that the first term in the above inequality is bounded by 2ε/3.
Turning our attention to the latter term, suppose h ∈ Fk\Fk−1, for some k > `(g). Then

|g.an(h)− an(h)| ≤ max

{∣∣∣∣∣ 1

k1/n
− 1(

k − `(g)
)1/n

∣∣∣∣∣ ,
∣∣∣∣∣ 1

k1/n
− 1(

k + `(g)
)1/n

∣∣∣∣∣
}
.
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Consider the function 1/x1/n − 1/(x + r)1/n on [1,∞) for a fixed r > 0. The differential
quotient is negative on the entire interval (1,∞). Hence, the maximum of this function is
attained at x = 1. From this we deduce that

|g.an(h)− an(h)| ≤ 1− 1(
1 + `(g)

)1/n ,
for all h /∈ F`(g). Hence, ||g.an − an||∞ < 2ε/3 + ε/3 = ε, for all n ≥ nε. As g ∈ Γ and ε > 0
were arbitrary, we deduce that (an)n≥1 is, indeed, a sequence of almost invariant vectors.

We have now shown that, for any finitely generated infinite discrete group Γ, the left-
regular representation on c0(Γ) has almost invariant vectors but no non-zero invariant vectors.
Hence, no such group can have Property (Tc0(Γ)). However, finitely generated infinite discrete
groups with Property (T ) do exist: SL3(Z) is a well-known such example. ◦

Since (FX) ⇒ (TX), this also show that (T ) is not stronger that (FX). A more direct
example is given in [53] – see also [13, Example 2.7].

When X is an Lp-space, there is more to say about the relation between Property (T ) and
its Banach space relatives. We shall use the notation (TLp) and (FLp) for a fixed 1 ≤ p ≤ ∞,
to mean that a group has Property (TX), respectively (FX), for any Lp-space X. The aim
of the rest of this chapter is to establish the following implications for a discrete group Γ:

• If Γ has Property (T ) then Γ has Property (FLp), for all 1 ≤ p ≤ 2.

• Γ has Property (T ) if and only if it has Property (TLp), for all 1 ≤ p <∞.

4.2 Property (TX) for superreflexive spaces

4.2.1 The dual representation

Let Γ be a discrete group. We associate to each linear isometric representation (ρ,X) of Γ
a dual representation ρ∗ of Γ on X∗ by setting

(ρ∗(g)λ)(x) = λ(ρ(g−1)x), g ∈ Γ, λ ∈ X∗, x ∈ X. (4.1)

Proposition 4.2.1. Let (ρ,X) be a linear isometric representation of the discrete group Γ.
The dual representation ρ∗, as defined in equation (4.1), is a linear isometric representation
of Γ on X∗.

Proof. For each g ∈ Γ and each λ ∈ X∗, it is clear that ρ∗(g)λ is a linear functional on X.
Furthermore, it is bounded, as verified by the following straight forward computation:

||ρ∗(g)λ|| = sup { |(ρ∗(g)λ)(x)| | x ∈ X, ||x|| = 1 }
= sup

{ ∣∣λ(ρ(g−1)x)
∣∣ ∣∣ x ∈ X, ||x|| = 1

}
≤ sup

{
||λ||
∣∣∣∣ρ(g−1)x)

∣∣∣∣ ∣∣ x ∈ X, ||x|| = 1
}

= ||λ|| . (4.2)

Hence, ρ∗(g) is a well-defined map on X∗. Moreover, it is clear that ρ∗(g) is linear.
To see that ρ∗(g) is an isometry, let ε > 0 and take x ∈ X with ||x|| = 1 such that

|λ(x)| > ||λ|| − ε. Then

||ρ∗(g)λ|| ≥ |(ρ∗(g)λ)(ρ(g)x)| = |λ(x)| > ||λ|| − ε.

Since ε > 0 was arbitrary, we deduce that ||ρ∗(g)λ|| ≥ ||λ||. This together with the inequality
of (4.2) implies that ρ∗(g) is an isometry.
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Finally, we show that ρ∗ is a group homomorphism Γ ! O(X∗). Unitality follows directly
from unitality of ρ, and so, it remains to show that ρ∗ is multiplicative. For g, h ∈ Γ, λ ∈ X∗
and x ∈ X, we have

(ρ∗(gh)λ)(x) = λ
(
ρ(h−1g−1)x

)
= λ

(
(ρ(h−1) ◦ ρ(g−1))x

)
=
(
(ρ∗(g) ◦ ρ∗(h))λ

)
(x)

Hence, ρ∗(gh) = ρ∗(g) ◦ ρ∗(h), as we wanted to show.

Let (ρ,X) be a linear isometric representation. Write ρ∗∗ for the double dual represen-
tation (ρ∗)∗ on X∗∗. For each x ∈ X, denote by x̂ the corresponding element of X∗∗. Then,
for g ∈ Γ, λ ∈ X∗ and x ∈ X, we have

(ρ∗∗(g)x̂)(λ) = x̂(ρ∗(g−1)λ) = (ρ∗(g−1)λ)(x) = λ(ρ(g)x) = (ρ(g)x)̂ (λ).

Hence, when restricted to X (viewed as a subspace of X∗∗), ρ∗∗(g) agrees with ρ(g). In
particular, when X is reflexive, ρ∗∗ = ρ.

Remark 4.2.2. When X is a reflexive Banach space, it follows from the above discussion that
there is a 1-1 correspondence between the set of linear isometric representations on X and
the set of linear isometric representations on its dual X∗.

4.2.2 Splitting off of the invariant vectors

Definition 4.2.3. A closed subspace M of a Banach space X is said to be complemented if
there exists another closed subspace N of X such that X = M +N and M ∩N = {0}.

A very convenient property of Hilbert spaces is that all closed subspaces are comple-
mented. In more general Banach spaces, this need not be true. In fact, J. Lindenstrauss
and L. Tsafriri showed in [27] that there exists a non-complemented closed subspace in any
infinite dimensional Banach space not isomorphic to a Hilbert space. This lack of guaran-
tee poses a challenge when moving from the Hilbert space setting to the general setting of
Banach spaces.

Let X be a Banach space, let Γ be a discrete group and let (ρ,X) be a linear isometric
representation of Γ on X. We aim to show that, when X is superreflexive, the closed subspace
of Γ-invariant vectors is complemented.

Proposition 4.2.4. Let (ρ,X) be a linear isometric representation of the discrete group Γ
on a superreflexive Banach space X. For each x ∈ X, respectively λ ∈ X∗, be non-zero, and
denote by x∗, respectively λ∗, the unique functional of Proposition A.2.5.

(i) If x ∈ Xρ(Γ) then x∗ ∈ (X∗)ρ
∗(Γ).

(ii) If λ ∈ (X∗)ρ
∗(Γ) then λ∗ ∈ Xρ(Γ).

Proof. Suppose x ∈ Xρ(Γ) is Γ-invariant. For each g ∈ Γ, ρ∗(g)x∗ is a linear functional on X
with ||ρ∗(g)x∗|| = ||x∗|| = 1. Moreover, Γ-invariance of x implies that

(ρ∗(g)x∗)(x) = x∗(ρ(g−1)x) = x∗(x) = ||x|| .

By uniqueness of the linear functional associated to x in Proposition A.2.5, we deduce that
ρ∗(g)x∗ = x∗. As g ∈ Γ was arbitrary, this shows (i). The proof of (ii) is analogous.

For a subset M of X, the annihilator of M is the subset of X∗ given by

M⊥ = { f ∈ X∗ |M ⊂ ker f } .
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For a subset N ⊂ X∗, the pre-annihilator of N is the subset of X given by

N⊥ = {x ∈ X | N ⊂ ker x̂ } .

We remark that, if X is reflexive, the pre-annihilator of any subset N ⊂ X∗ coincides with
the annihilator under the identification of X with X∗∗.

We denote by X ′(ρ) the pre-annihilator of (X∗)ρ
∗(Γ), i.e.,

X ′(ρ) = (X∗)
ρ∗(Γ)
⊥ =

{
x ∈ X

∣∣∣ λ(x) = 0, for all λ ∈ (X∗)ρ
∗(Γ)

}
.

This is a closed linear subspace of X (see [30, Proposition 1.10.15(a)]). Further, it is clear
that X ′(ρ) is invariant under the action of Γ through ρ.

Lemma 4.2.5. Let (ρ,X) be a linear isometric representation of the group Γ on a super-
reflexive Banach space. For all x ∈ Xρ(Γ), dist(x,X ′(ρ)) ≥ ||x||.

Proof. Let x ∈ Xρ(Γ) be non-zero and let x∗ be the unique linear functional of Proposition
A.2.5. By Proposition 4.2.4, x∗ ∈ (X∗)ρ

∗(Γ), and so, for every y ∈ X ′(ρ), x∗(y) = 0.
Therefore,

||x|| = x∗(x) = x∗(x− y) ≤ ||z − y|| .

The statement of the lemma follows by taking the infimum over all y ∈ X ′(ρ).

Lemma 4.2.6. If X is reflexive and if λ ∈ X∗ vanishes on X ′(ρ) then λ is invariant for ρ∗.

Proof. Let λ0 ∈ X∗ and suppose that λ0 is not invariant for ρ∗. As (X∗)ρ
∗(Γ) is a closed

subspace of X∗, the Hahn-Banach Theorem (see [19, Theorem 5.8(a)]) yields the existence
of an element x ∈ X∗∗ such that x(λ0) 6= 0 and x(λ) = 0, for all λ ∈ (X∗)ρ

∗(Γ). As X is
reflexive, we may view x as an element of X. Then x ∈ X ′(ρ) and we see that λ0|X′(ρ) is not
equal to zero.

Proposition 4.2.7. Let (ρ,X) be a linear isometric representation of the discrete group Γ.
If X is superreflexive then

X = Xρ(Γ) ⊕X ′(ρ).

In particular, the subspace of Γ-invariant vectors is complemented.

Proof. We start by showing that the intersection of the two subspaces Xρ(Γ) and X ′(ρ) is
zero. So let x ∈ Xρ(Γ)∩X ′(ρ). Since x ∈ Xρ(Γ), Lemma 4.2.5 yields that ||x|| ≤ dist(x,X ′(ρ)).
But as x ∈ X ′(ρ), as well, the distance on the right-hand side of this inequality is zero. Thus,
x = 0, and we conclude that Xρ(Γ) ∩X ′(ρ) = {0}.

We proceed to show that Xρ(Γ) + X ′(ρ) is a closed subspace. It is clear that it is a
subspace, so we need only show that it is closed. Let (xn)n≥1 be a sequence in Xρ(Γ) and
(yn)n≥1 a sequence in X ′(ρ) such that xn + yn ! z, as n tends to infinity, for some z ∈ X.
We claim that the sequence (xn)n≥1 is Cauchy. Indeed, for every n,m ∈ N, Lemma 4.2.5
implies that

||xn − xm|| ≤ dist(xn − xm, X ′(ρ)) ≤ ||(xn − xm)− (yn − ym)||
≤ ||(xn − yn)− z|| + ||(xm − ym)− z|| .

It follows that (xn)n≥1 is Cauchy using convergence of (xn + yn)n≥1 to z. Let x be point

of convergence for (xn)n≥1. Since Xρ(Γ) is closed, x ∈ Xρ(Γ). The sequence (yn)n≥1 then
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converges to z − x, and so, z − x ∈ X ′(ρ), as this subspace is also closed. We conclude that
Xρ(Γ) +X ′(ρ) is closed, as well.

Finally, we show that Xρ(Γ) +X ′(ρ) equals all of X. Assume for contradiction that this
is not the case. By the Hahn-Banach Theorem (see [19, Theorem 5.8(a)]), there exists a
linear functional λ ∈ X∗ with ||λ|| = 1 and such that λ|Xρ(Γ)+X′(ρ) = 0. Let λ∗ ∈ X∗∗ = X

be the unique linear functional of Proposition A.2.5 with ||λ∗|| = 1 and λ∗(λ) = ||λ|| = 1.
We have, in particular, λ|X′(ρ) = 0, and so, λ ∈ (X∗)ρ

∗(Γ), by Lemma 4.2.6. Proposition

4.2.4 then implies that λ∗ ∈ Xρ(Γ). But this contradicts that λ|Xρ(Γ) = 0. We conclude that

Xρ(Γ) +X ′(ρ) = X. This finishes the proof.

Remark 4.2.8. As a direct consequence of Proposition 4.2.7 above, we see that, when X is a
superreflexive Banach space, a discrete group Γ has property (TX) if and only if, for every
linear isometric representation ρ on X, the restriction of ρ to X ′(ρ) does not have almost
invariant vectors.

4.2.3 Property (TB) and the dual space

Lemma 4.2.9. Let (ρ,X) be a linear isometric representation of the group Γ. If X is
superreflexive then

ρ∗(g)x∗ = (ρ(g)x)∗,

for all x ∈ X and all g ∈ Γ.

Proof. For each g ∈ Γ, we see that ||ρ∗(g)x∗|| = ||x∗|| = 1 and, further, that

ρ∗(g)x∗(ρ(g)x) = x∗
(
ρ(g−1)(ρ(g)x)

)
= x∗(x) = ||x|| = ||ρ(g)x|| .

The claim follows by the uniqueness part of Proposition A.2.5.

Proposition 4.2.10. Let (ρ,X) be a linear isometric representation on a superreflexive
Banach space. The dual representation ρ∗ has almost invariant vectors if and only if ρ does.

Proof. It suffices to show one direction as ρ∗∗ may be identified with ρ, for any linear isometric
representation on a reflexive Banach space. Recall that, since X is superreflexive, it has an
equivalent uniformly smooth norm. The norm on X∗ with respect to this equivalent norm is
then uniformly convex. Let (xn)n≥1 be a sequence of almost invariant vectors for ρ. Uniform
continuity of ( · )∗ : X ! X∗ on the unit sphere of X (see Proposition A.2.7) together with
Lemma 4.2.9 implies that (x∗n)n≥1 is a sequence of almost invariant vectors for ρ∗.

Theorem 4.2.11. Let X be a Banach space and let M ⊂ X be a closed subspace.

(i) (X/M)∗ is isometrically isomorphic to M⊥.

(ii) M∗ is isometrically isomorphic to X∗/M⊥.

Proof. (i): Let π : X ! X/M denote the quotient map. For each f ∈ (X/M)∗, f ◦ π ∈ X∗
and we have, for each x ∈ M , f ◦ π(x) = f([0]) = 0. Hence, f ◦ π ∈ M⊥. Therefore,
π∗ : (X/M)∗ ! M⊥ given by π∗(f) = f ◦ π, for f ∈ (X/M)∗, is a well-defined map. If
g ∈ X∗ is such that M ⊂ ker g, then g factors through X/M , by the universal property of
the universal property of the quotient. We see directly from this that π∗ is surjective. Since
the quotient map is a contraction, we have ||π∗(f)|| ≤ ||f ||, for all f ∈ (X/M)∗. For the
opposite inequality, let (xn)n≥1 be a sequence in X with ||[xn]|| < 1, for each n ∈ N, and
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such that |f([xn])|! ||f ||. By definition of the norm on the quotient X/M , we may, for each
n ∈ N, find yn ∈M such that ||xn − yn|| < 1. It follows that

||π∗(f)|| ≥ sup
n∈N
|π∗(f)(xn − yn)| = sup

n∈N
|f([xn])| = ||f || .

Hence, π∗ is a linear isometry of (X/M)∗ onto M⊥.
(ii): For each f ∈ M∗, the Hahn-Banach extension theorem ensures the existence of a

linear functional F ∈ X∗ such that F |M = f – we may even choose F with ||F || = ||f ||. We
remark that if F and F ′ are both extensions of f , then (F − F ′)(x) = 0, for all x ∈M , and
so, F − F ′ ∈M⊥. Hence, the map Φ : M∗ ! X∗/M⊥ given by

Φ(f) = F +M⊥, for f ∈M∗,

does not depend on the choice of extension F ∈ B∗ of f . Linearity of Φ is immediate from
this independence. Since, for every F ∈ X∗, F extends F |M ∈ M

∗ to all of X, it is clear
that Φ is surjective. Finally, for f ∈M∗, let F ∈ X∗ be an extension with ||F || = ||f ||. Then∣∣∣∣F +M⊥

∣∣∣∣ = inf
{ ∣∣∣∣F ′∣∣∣∣ ∣∣ F − F ′ ∈M⊥ } ≤ ||F || = ||f || .

Further, if F ′ is any extension of f , then F ′ = F +G, for some G ∈M⊥, and we have that∣∣∣∣F ′∣∣∣∣ = ||F +G|| = sup { ||(F +G)(x)|| | x ∈ X, ||x|| = 1 }
≥ sup { ||(F +G)(x)|| | x ∈M, ||x|| = 1 }
= sup { ||f(x)|| | x ∈M, ||x|| = 1 } = ||f || .

It follows that Φ is an isometry. This finishes the proof.

Proposition 4.2.12. Let (ρ,X) be a linear isometric representation of the discrete group
Γ on a superreflexive Banach space X. Then there exists an isometric isomorphism between
(X ′(ρ))∗ and (X∗)′(ρ∗) intertwining the associated subrepresentations of ρ and ρ∗.

Proof. Recall that X ′(ρ) is a closed subspaces of X. Hence, by Theorem 4.2.11, (X ′(ρ))∗ is
isometrically isomorphic to X∗/X ′(ρ)⊥. Since (X∗)ρ

∗(Γ) is a closed subspace of X∗ in the
weak∗-topology, [40, Theorem 4.7(b)] implies that

X ′(ρ)⊥ = ((X∗)
ρ∗(Γ)
⊥ )⊥ = (X∗)ρ

∗(Γ).

Hence, (X ′(ρ))∗ is isometrically isomorphic to X∗/(X∗)ρ
∗(Γ). As X∗ is superreflexive, it

decomposes into the direct sum (X∗)ρ
∗(Γ) ⊕ (X∗)′(ρ∗), by Proposition 4.2.7. Hence, the

quotient X∗/(X∗)ρ
∗(Γ) is isometrically isomorphic to (X∗)′(ρ∗).

It remains to show that the isometric isomorphism described above intertwines the actions
of Γ on (X ′(ρ))∗ and (X∗)′(ρ∗), respectively. Let Φ : (X ′(ρ))∗ ! (X∗)′(ρ∗) denote this
isometric isomorphism. Let f ∈ (X ′(ρ))∗. If F0 ∈ X∗ is any extension of f , then Φ(f) is the
part of F0 which lies in (X∗)′(ρ∗). Precisely, F0 decomposes (uniquely) as F0 = F + F ′, for
some F ∈ (X∗)′(ρ∗) and F ′ ∈ (X∗)ρ

∗(Γ), and we have Φ(f) = F . For each g ∈ Γ, it is clear
that ρ∗(g)F0 is an extension of (ρ|X′(ρ))

∗(g)f , because X ′(ρ) is Γ-invariant. Further ρ∗(g)F0

decomposes as ρ∗(g)F + F ′, where ρ∗(g)F ∈ (X∗)′(ρ∗). Hence

Φ
(
(ρ|X′(ρ))

∗(g)f
)

= ρ∗(g)F = ρ∗|(X∗)′(ρ∗)(g)Φ(f)

This holds for all f ∈ (X ′(ρ))∗, and so we may conclude that Φ ◦
(
ρ|X′(ρ)

)∗
= ρ∗|(X∗)′(ρ∗) ◦Φ.

This concludes the proof.

Corollary 4.2.13. Let X be a superreflexive Banach space and let Γ be a discrete group.
Then Γ has Property (TX) if and only if it has Property (TX∗).
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Proof. Recall from Remark 4.2.8 that Γ has Property (TX) if and only if, for any linear
isometric representation ρ on X, the restriction of ρ to X ′(ρ) does not have almost invariant
vectors. By Proposition 4.2.10 and Proposition 4.2.12, we see that ρ|X′(ρ) has almost invariant

vectors if and only if ρ∗|(X∗)′(ρ∗) does. So, as the dual map is a 1-1-correspondence between

representations on a given reflexive Banach space and its dual (see Remark 4.2.2), we may
deduce that Γ has Property (TX) if and only it has Property (TX∗).

4.3 Affine isometric actions on superreflexive spaces

For affine actions in the setting of Hilbert spaces, we saw in Proposition 2.5.3 that having
a fixed point is equivalent to all orbits being bounded. We show in Proposition 4.3.2 below
that this result holds more generally for all superreflexive Banach spaces.

For a Banach space X and a non-empty bounded subset S ⊂ X, we define the radius of
S to be the number

rad(S) = inf
{
r > 0

∣∣ S ⊂ B(x, r), for some x ∈ X
}
.

An element x ∈ X is called a circumcenter of S if S ⊂ B
(
x, rad(S)

)
.

Lemma 4.3.1. If X is a reflexive Banach space then any non-empty bounded subset has a
circumcenter. If, moreover, X is uniformly convex, then the circumcenter is unique.

Proof. Assume that X is reflexive so that each closed ball of X is weakly compact (see [17,
Theorem 3.31]). For each n ∈ N, take xn ∈ X such that S ⊂ B

(
xn, rad(S) + 1

n

)
. Fix y0 ∈ S.

Then (xn)n≥1 is a sequence in the weakly compact set B
(
y0, rad(S)+1

)
. Hence, there exists

a point x ∈ X and a subsequence (xnk)k≥1 converging weakly to x. We show that this x is a

circumcenter of S. Let y ∈ S. If y = x, y trivially lies in B
(
x, rad(S)

)
. Therefore, suppose

y 6= x. By Hahn-Banach’s Theorem (see, e.g., [19, Theorem 5.8]), there exists f ∈ X∗ with
||f || = 1 such that f(y − x) = ||y − x||. For ε > 0, take nε ∈ N such that |f(xn − x)| < ε/2,
for all n ≥ nε, and such that 1/nε < ε/2. Then, for all n ≥ nε,

||y − x|| = f(y − x) ≤ |f(y − xn)|+ |f(xn − x)| < ||y − xn|| + ε/2 < rad(S) + ε.

Since, ε > 0 was arbitrary, we deduce that ||y − x|| ≤ rad(S). Hence, S ⊂ B
(
x, rad(S)

)
,

which is exactly what it means for x to be a circumcenter.
Assume now that X is uniformly convex and suppose x and x′ are two different circum-

centers of S. Set ε = ||x− x′|| > 0. By uniform convexity (see Lemma A.2.3), we may
find a δ > 0 such that, whenever y, y′ ∈ X are such that ||y|| , ||y′|| ≤ rad(S) and such that
||y − y′|| ≥ ε, then ||(y + y′)/2|| ≤ rad(S)− δ. For each y ∈ S, ||x− y|| and ||x′ − y|| are both
bounded by rad(S) while ||(x− y)− (x′ − y)|| = ||x− x′|| = ε. Thus,∣∣∣∣∣∣∣∣x+ x′

2
− y
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣(x− y) + (x′ − y)

2

∣∣∣∣∣∣∣∣ ≤ rad(S)− δ.

We deduce that S is contained in B
(
(x+ x′)/2, rad(S)− δ

)
. But this contradicts the mini-

mality of rad(S), and so, we must have x = x′.

Lemma 4.3.2. Let α be an affine isometric action of a discrete group Γ on a superreflexive
Banach space X and let b be its translation part. The following are equivalent:

(i) The action α has a fixed point in X,

(ii) b is a 1-coboundary.
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(iii) b is bounded,

(iv) All orbits of α are bounded,

(v) Some orbit of α is bounded,

Proof. The proof of Lemma 2.5.3 generalizes directly to this setting replacing Lemma 1.2.13
with Lemma 4.3.1 and using that X has an equivalent uniformly convex norm.

4.4 Kazhdan type rigidity properties for Lp-spaces

We are now ready to show the announced relations between Property (T ), (TLp) and (FLp).
We show in Theorem 4.4.4 that Property (T ) implies Property (FLp), for 1 ≤ p ≤ 2. The
proof of this implication follows the same lines as the proof of the implication (T )⇒ (FH) in
Theorem 2.5.5. Recall that this proof is based on the consequence of Schoenberg’s theorem
presented in Proposition 2.4.30. To apply this proposition in the same way, we need to show
that, for any Lp-space with 1 ≤ p ≤ 2, || · ||pp is a function conditionally of negative type.

Theorem 4.4.1. The function e−t| · |
α

is positive definite on R, for 0 ≤ α ≤ 2 and t > 0.

Proof. For 0 < α < 2 and for any fixed x ∈ R, the integral∫ ∞
−∞

1− cosxs

|s|1+α ds

is convergent. Indeed, α > 0 ensures convergence over the domain away from zero while α < 2
ensures convergence around zero. The substitution h(s) = xs together with a symmetry
observation yields ∫ 1

0

1− cosxs

|s|1+α ds = 2 |x|α
∫ ∞

0

1− cos s

s1+α
ds.

The integral on the right-hand side depends only on α. We let

Cα =
1

2

(∫ ∞
0

1− cos s

s1+α
ds

)−1

,

so that

− |x|α = Cα

∫ ∞
−∞

cosxs− 1

|s|1+α ds (4.3)

Fix 0 < α < 2 for a moment, let t > 0 and define, for each n ∈ N, a function ϕn on R by

ϕn(x) = tCα

∫
|s|≥1/n

cosxs− 1

|s|1+α ds = tCα

∫
|s|≥1/n

cosxs

|s|1+α ds− tCα
∫
|s|≥1/n

1

|s|1+α ds

Observe that the removal of a neighborhood around zero ensures that the two integrals on the
right-hand side of the last equality converge. The latter of these is a number independent of x.
Recall from Example 2.4.14 that cos is positive definite on R. Linearity and monotonicity of
the integral then implies that x 7!

∫
|s|≥1/n cosxs/ |s|1+α ds is positive definite. We deduce

by Proposition 2.4.12 that eϕn is positive definite, as well. By the Lebesgue Dominated
Convergence Theorem and by equation (4.3), ϕn(x) converges to −t |x|α, for each x ∈ R.
Hence, eϕn converges pointwise to e−t| · |

α
, by continuity of the exponential function. Hence,

e−t| · |
α

is positive definite, by Proposition 2.4.5. Using Proposition 2.4.5 and continuity once
more gives us the statement for α = 0 and α = 2, as well.
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Remark 4.4.2. For α > 2, the function ϕ = e−| · |
α

is not positive definite on R – see [52,
Corollary 4.11].

Corollary 4.4.3. The function e−t|| · ||
p
p on `pn, `p(N) respectively on Lp(Ω, µ), is positive

definite, for 1 ≤ p ≤ 2 and for all t > 0.

Proof. Fix 1 ≤ p ≤ 2 and t > 0. Consider first e−t|| · ||
p
p a function on `pn, for some n ∈ N. For

each n-tuble x = (x1, . . . , xn) ∈ `pn, we have

e−t||x||
p
p =

n∏
i=1

e−t|xi|
p

.

Hence, positive definiteness of e−|| · ||
p
p as a function on `pn follows directly from Theorem 4.4.1

and Proposition 2.4.11.
Next, consider e−t|| · ||

p
p a function on `p(N). For each n ∈ N, define ϕn : `p(N) ! R by

ϕn(x) =
n∏
i=1

e−t|xi|
p

, x = (xi)i≥1 ∈ `
p(N).

Then ϕn is positive definite by the same argument as above. Clearly, (ϕn)n≥1 converges

pointwise to e−t|| · ||
p
p , which is therefore positive definite, by Proposition 2.4.5.

Finally, consider e−t|| · ||
p
p a function on Lp(Ω, µ). For a finite collection of simple functions

f1, . . . , fn ∈ Lp(Ω, µ), we may pick a finite collection of pairwise disjoint subsets A1, . . . , Am
of Ω such that each of the simple functions can be written as fi =

∑m
k=1 ai,kAk, for numbers

ai,1, . . . , ai,m ∈ C. For each 1 ≤ i ≤ n, set xi = (µ(A1)1/pai,1, . . . , µ(Am)1/pai,m). Then each
xi lies in `pm, and

||fi − fj ||pp =

∫
Ω
|fi(ω)− fj(ω)|p dµ =

m∑
k=1

|ai,k − aj,k|p µ(Ak)

=

m∑
k=1

∣∣∣µ(Ak)
1/pai,k − aj,kµ(Ak)

1/p
∣∣∣p = ||xi − xj ||p`pm .

Hence, for any collection c1, . . . , cn ∈ R,

n∑
i,j=1

cicje
−t||fi−fj ||pp =

n∑
i,j=1

cicje
−t||xi−xj ||p

`
p
m ≥ 0,

because e−t|| · ||
p
p is a positive definite function on `pm. Since the simple functions are dense in

any Lp-space, and since the norm and the exponential function are continuous functions, it
follows that e−t|| · ||

p
p is positive definite as a function on Lp(Ω, µ).

Theorem 4.4.4. Property (T ) implies Property (FLp), for all 1 ≤ p ≤ 2.

Proof. Assume that Γ does not have Property (FLp(µ)), for some 1 ≤ p ≤ 2, and let α be an
affine isometric action of Γ on Lp(µ) without fixed points. By Corollary 4.4.3 and Theorem
2.4.27, || · ||pp is conditionally of negative type on Lp(µ), and so, we may apply Theorem 2.4.30.
For each t > 0, let (πt, Ht) be the unitary representation from Proposition 2.4.30 associated
to α and t. By Proposition 2.5.4, it holds for all t > 0, that (πt, Ht) has no non-zero invariant
vectors. Set

π =

∞⊕
n=1

π1/n

By Proposition 1.1.14, π has no non-zero invariant vectors. But by Proposition 2.4.33, π
does have almost invariant vectors, and so, Γ does not have Property (T ).

67



We end the chapter by showing that Property (T ) and Property (TLp) are equivalent.
The proof of the implication (T )⇒ (TLp) is based on Theorem 4.4.4 together with a duality
argument. The implication (TLp) ⇒ (T ) is based on the Connes-Weiss characterization
presented in Theorem 3.3.1.

Let Γ be a discrete group. Given a p.m.p. action of Γ on a probability space (Ω, µ) we get
in a canonical way an induced isometric representation of Γ on the Banach space Lp(Ω, µ)
of complex-valued p-integrable functions, for each 1 ≤ p ≤ ∞, by setting

ρµ(g)f(x) = f(g−1x), for f ∈ Lp(Ω, µ), g ∈ Γ, and x ∈ Ω.

Lemma 3.1.1 ensures that ρµ(g) is an isometry, for each g ∈ Γ, and it is then clear that
(ρµ, L

p(Ω, µ)) is an isometric representation. Notice that for the case p = 2, we recover the
definition of equation (3.7). The closed subspace of fixed points for the representation ρµ is
denoted by Lp(Ω, µ)ρµ . Further, let Lp0(Ω, µ) be the subspace of Lp(Ω, µ) consisting of all
functions with zero mean, i.e.,

Lp0(Ω, µ) =

{
f ∈ Lp(Ω, µ)

∣∣∣∣ ∫
Ω
f dµ = 0

}
.

This is a closed Γ-invariant subspace. Since µ is a finite measure, all constant functions
belong to Lp(Ω, µ). Denote by ρ0

µ the restriction of ρµ to Lp0(Ω, µ).

Lemma 4.4.5. Let Γ be a discrete group acting on a probability space (Ω, µ), let 1 ≤ p ≤ ∞
and let ρµ denote the induced representation on Lp(Ω, µ). If the action is ergodic then the
set of fixed points for ρµ equals the set of constant functions.

Proof. It is clear that all constant functions are fixed points for ρµ. Conversely, if Γ y (Ω, µ)
is ergodic we may find x0 ∈ Ω such that the measure of its orbit Ox0 is 1. Let f ∈ Lp(Ω, µ)ρµ

be a fixed point. By Lemma 3.1.6 and Remark 3.1.7, f is a.e. equal to a function which is
constant on the orbits, and, in particular, which is constant on Ox0 . Hence, f is a.e. equal
to a constant function.

Theorem 4.4.6. Let Γ be a discrete group. Then Γ has Property (T ) if and only if it has
Property (TLp), for some and hence for all 1 ≤ p <∞.

Proof. If Γ has Property (T ) then Γ has Property (FLp), for all 1 ≤ p ≤ 2, by Theorem 4.4.4.
Since any Lp-space with 2 < p < ∞ is the dual of an Lq-space with 1 < q < 2, it follows
from Corollary 4.2.13 that Γ has Property (TLp), for 2 < p <∞, as well.

Suppose Γ does not have property (T ). By Theorem 3.3.1, there exists a probability
space (Ω, µ) and a p.m.p. action of Γ on (Ω, µ) which is ergodic but not strongly ergodic.
Let (Bn)n≥1 be a non-trivial asymptotically invariant sequence of measurable subsets of Ω.
By the proof of Theorem 3.3.1, we may take this sequence such that µ(Bn) = 1/2. For each
n ∈ N, define fn : Ω ! C by

fn = 21Bn − 1.

Observe that |fn| = 1Ω, and so, fn lies in Lp(Ω, µ), for all 1 ≤ p < ∞ with ||fn||p = 1.

Moreover, each fn satisfies that
∫

Ω fn dµ = 0.
Fix 1 ≤ p <∞ and consider the canonical representation ρµ of Γ on Lp(Ω, µ) induced by

the action Γ y (Ω, µ). Since this action is ergodic, Lp(Ω, µ)ρµ = C1Ω, by Lemma 4.4.5. The
set of constant functions is complemented in Lp(Ω, µ), and its canonical complement is

Lp0(Ω, µ) =

{
f ∈ Lp(Ω, µ)

∣∣∣∣ ∫
Ω
f dµ = 0

}
.
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Hence, Lp(Ω, µ)/Lp(Ω, µ)ρµ ∼= Lp0(Ω, µ). As already mentioned, (fn)n≥1 is a sequence in
Lp0(Ω, µ). For each g ∈ Γ, ρµ(g)fn − fn = 2(ρµ(g)1Bn − 1Bn) = 2(1gBn − 1Bn), and so

||ρµ(g)fn − fn||pp = 2p
∫

Ω
|1gBn − 1Bn | dµ = 2pµ(gBn4Bn).

As (Bn)n≥1 is asymptotically invariant, we see directly that ||ρµ(g)fn − fn||p ! 0. Hence,
(fn)n≥1 is a sequence of almost invariant vectors, and so, Γ does not have (TLp).

4.5 Literature

This chapter is based on the paper Property (T) and rigidity for actions on Banach spaces by
U. Bader, A. Furman, T. Gelander and N. Monod [2], and all results regarding the relations
between Property (T ), (TX) and (FX) that we present are first published in this paper. We
remark that the implication (T ) ⇒ (FLp) can also be proved without considering Property
(FLp) (see [2, Section 4.a])- A reference for circumcenters in Banach spaces can be found
in [6, p. 26-27]. The proof that the p-norm is conditionally of negative type (see Corollary
4.4.3) can be found in [52, Theorem 4.10].
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Chapter 5

Spectral conditions

We present in Section 5.2 a sufficient condition for Property (T ) due to A. Żuk in terms of
the spectral properties of a certain graph associated to a generating set. In Section 5.1 we
give a brief introduction to graphs and their spectrum. In Section 5.3, we present a sufficient
condition for Property (FLp) of the same flavor as Żuk’s condition. This result is due to
T. de Laat and M. de la Salle in [14], and we follow the proof of their paper. A central
tool in their proof is complex interpolation. A brief overview of the needed results from this
theory is given in Appendix B.

5.1 Graphs

We give here a short introduction to graphs and their spectrum, the main purpose of which
is to fix notation and terminology.

5.1.1 Basic definitions

Definition 5.1.1. A graph G is an ordered pair (V,E) consisting of a set V of vertices and a
set E of edges equipped with two maps s, r : E ! V referred to as the source and the range
map, respectively.

Unless we have explicitly named the vertex and the edge set of a graph G, we shall use
the notation V (G), respectively, E(G) to refer to these. A graph is said to be finite if the
size of its vertex and edge sets are finite.

Let G = (V,E) be a graph. An edge e ∈ E with s(e) = s and r(e) = t is interpreted as
a (directed) edge from vertex s to vertex t, and s and t are called the source respectively
the range of e. We shall often write (s, t) for an edge in E from s to t. The edge (s, t) is a
multiple edge if it occurs more than once in E. The graph G has no multiple edges if the map
E ! V × V given by e 7! (s(e), r(e)) is injective. We remark that if a graph has multiple
edges, writing (s, t) is ambiguous. For the purpose of this thesis, we are only interested in
graphs with no multiple edges. If s(e) = r(e) we say that e is a loop.

Definition 5.1.2. A graph with no multiple edges and no loops is said to be simple.

Definition 5.1.3. A graph G = (V,E) is said to be undirected if whenever (s, t) ∈ E then
(t, s) ∈ E as well, and if, in that case, (s, t) and (t, s) occurs equally many times in E. A
graph is directed if it is not undirected. A directed graph is said to be oriented if it has no
symmetric edges, i.e., if whenever (s, t) ∈ E it follows that (t, s) /∈ E.

Remark 5.1.4. A graph G may be graphically represented by drawing a point for every vertex
and an arrow from vertex s to vertex t if (s, t) is an edge of G. An undirected graph is then,
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by our definition, a graph where the arrows come in pairs. Alternatively, one may define an
undirected graph by letting the edges be unordered pairs instead of ordered tuples. In this
picture an undirected graph is represented by connecting two vertices with a line whenever
there is an edge between them. The two pictures are, of course, equivalent.

Definition 5.1.5. Let G = (V,E) be a simple undirected graph. An orientation of G is a

simple oriented graph
⇀

G = (V,
⇀

E) obtained from G by assigning an orientation to each edge.

Let s and t be two vertices in a graph G = (V,E). If (s, t) ∈ E we say that t is a direct
successor of s, and that s is a direct predecessor of t. If t is a direct successor of s, we write
t ∼ s. Two vertices are said to be adjacent if one is the direct successor of the other.

Definition 5.1.6. Let G = (V,E) be a graph. For a vertex s ∈ V we define the neighborhood
of s to be the set Ns of all its direct successors, i.e., Ns = {t ∈ V | (s, t) ∈ E}.

Definition 5.1.7. Let G = (V,E) be a graph. The degree of a vertex s ∈ V is the number
degG(s) = |Ns|. The map degG : V ! N0 is referred to as the degree function. If the graph
is clear from context, we shall omit it from the notation and write deg instead of degG . If all
vertices in a graph have the same degree, we say that the graph is regular, or, more explicitly,
d-regular when the degree is d.

Definition 5.1.8. A path in a graph is a finite or infinite list of edges e1e2 · · · such that
r(ei) = s(ei+1), for all i. A graph G is said to be connected if there is a path between any
two distinct vertices of G. A maximal connected subgraph of G is called a component of G.

5.1.2 The spectrum of a finite graph

For a set S, we denote by CS the set of complex valued functions on S.

Definition 5.1.9. Let G be a finite simple graph. The (discrete) Laplace operator on G is
the operator ∆ on CV (G) given by

∆f(s) = f(s)− 1

deg(s)

∑
t∼s

f(t), s ∈ V,

for all f ∈ CV (G).

Remark 5.1.10. The canonical representation of ∆ as a matrix is referred to as the discrete
Laplacian matrix. Its entries are given by

∆s,t =


− 1

deg(s) , if (s, t) ∈ E,
1, if s = t,

0, otherwise

.

Definition 5.1.11. The spectrum of a finite simple graph G is the spectrum of the discrete
Laplace operator. We denote this spectrum by σ(G).

For a finite graph G on n vertices, the adjacency matrix AG = (ast) is the n× n-matrix
with the (s, t)’th entry equal to the number of edges from vertex s to vertex t. We remark
that the sum of the entries of the s’th row of AG equals the degree of vertex s. If G is an
undirected graph, then AG is a symmetric matrix. If G is simple, AG consists of zeros and
ones, and its diagonal entries are zero.

The degree matrix DG = diag(deg(1), . . . ,deg(n)) is the diagonal matrix containing in-
formation on the degree of each vertex. The normalized adjacency matrix is the matrix

MG = D−1
G AG .
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All rows of MG sum up to 1. If G is an undirected graph, then MG is self-adjoint with respect
to the inner product on CV (G) weighted by the degree matrix. Considered an operator on
CV (G), we refer to MG as the Markov operator. We denote by 1n the n× n identity matrix.
By Remark 5.1.10, we see directly that the discrete Laplacian matrix is given by

∆ = 1n −MG .

Lemma 5.1.12 (Gershgorin’s circle theorem). Let A = (aij) be a complex n × n matrix.
For each i ∈ {1, . . . , n}, let Ri =

∑
j 6=i |aij |. If λ is an eigenvalue of A then there is an

i ∈ {1, . . . , n} such that λ ∈ B(aii, Ri). The closed ball B(aii, Ri) is called a Gershgorin disc.

Proof. Suppose λ is an eigenvalue of A and let v be a corresponding eigenvector. We may
choose v such that one of its entries equal 1, say vi = 1, and such that |vj | ≤ 1, for 1 ≤ j ≤ n.
Otherwise, divide v by the entry which is numerically largest. We have that

λ = λvi = (Av)i =
n∑
j=1

aijvj = aii +
∑
j 6=i

aijvj .

Rearringing, taking the absolute value and applying the triangle inequality, it follows imme-
diately that |λ− aii| ≤

∑
j 6=i |aij | = Ri. Hence, λ ∈ B(aii, Ri), as we wanted to show.

Remark 5.1.13. Let G be a finite graph. If G is simple, the s’th Gershgorin disc associated
to the adjacency matrix AG is centered with radius equal to the degree at vertex s. Hence,
all Gershgorin discs of MG are equal to the closed unit ball in C.

Corollary 5.1.14. Let G = (V,E) be a simple finite graph. The spectrum of G is contained
in B(1, 1). If, moreover, G is undirected, its spectrum is contained in [0, 2].

Proof. Since 1n and MG trivially commutes, we have σ(∆) ⊂ 1 − σ(MG). It is then direct
from Lemma 5.1.12 together with Remark 5.1.13 that σ(G) = σ(∆) ⊂ B(1, 1).

For the second statement, observe that

D
1/2
G ∆D

−1/2
G = 1n −D−1/2

G AGD
−1/2
G .

If G is undirected, the matrix on the right-hand side is symmetric. Being similar to a real
symmetric matrix, we deduce that the discrete Laplacian matrix has real eigenvalues.

Definition 5.1.15. The gradient on G is the operator ∇ : CV (G) ! CE(G) given by

∇f(s, t) = f(s)− f(t), (s, t) ∈ E(G),

for all f ∈ CV (G).

Lemma 5.1.16. Let G be a finite simple undirected graph. For each f ∈ CV (G), it holds that

2
∑

s∈V (G)

f(s)∆f(s) deg(s) =
∑

(s,t)∈E(G)

|∇f(s, t)|2 .

Proof. Let f ∈ CV (G). The assumption that G is undirected ensures the following equality:∑
(s,t)∈E(G)

f(t)f(s) =
∑

(s,t)∈E(G)

f(s)f(t).
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In particular, the above sum is real. Further, since there is a bijective set correspondence
between E(G) and

⋃
s∈S{s} ×Ns, we see that∑

(s,t)∈E(G)

|∇f(s, t)|2 =
∑

(s,t)∈E(G)

|f(s)− f(t)|2 = 2
∑

(s,t)∈E(G)

|f(s)|2 − 2
∑

(s,t)∈E(G)

f(s)f(t)

= 2
∑
s∈S
|f(s)|2 deg(s)− 2

∑
s∈S

∑
t∼s

f(s)f(t)

= 2
∑
s∈S

(
|f(s)|2 − 1

deg(s)

∑
t∼s

f(s)f(t)

)
deg(s)

= 2
∑

s∈V (G)

f(s)∆f(s) deg(s).

This proves the claimed equality.

Corollary 5.1.17. Let G be a finite simple undirected graph. Then the kernel of ∆ consists
of all functions that are constant on the components of G. In particular, if G is connected,
then ker(∆) = C1V (G).

Proof. It is straight forward to verify using the definition of ∆ that ker(∆) contains all
functions which are constant on the components of G. The other inclusion follows directly
from Lemma 5.1.16.

Definition 5.1.18. The smallest non-zero eigenvalue of a finite simple undirected graph G
is referred to as the spectral gap of G and is denoted by λ1(G).

5.2 A spectral condition for Property (T )

5.2.1 A spectral characterization

Let Γ be a discrete group and let S ⊂ Γ be a finite subset. For a unitary representation
(π,H), we define an operator hπ ∈ B(H) by

hπ =
1

|d|
∑
s∈S

d(s)π(s), (5.1)

where d : S ! R is a strictly positive function and |d| =
∑

s∈S d(s). One can view hπ as
the average of the representation over the subset S with respect to the weight given by the
function d. We proof in Proposition 5.2.6 a characterization of Property (T ) for finitely
generated groups in terms of the spectrum of an operator of this form.

Remark 5.2.1. Let H be a Hilbert space, let ξ1, . . . , ξn ∈ H be a finite collection of unit
vectors and let ξ =

∑n
i=1 aiξi be a convex combination. For each unit vector η ∈ H, the

Cauchy-Schwarz inequality gives us the estimate

n∑
i=1

||η − ξi||2 = 2− 2 Re 〈η , ξ〉 = 2 Re 〈η , η − ξ〉 ≤ ||η − ξ|| .

Hence, if ||η − ξ|| < ε, for some unit vector η ∈ H and some ε > 0, then ||η − ξi|| <
√

2ε/ai,
for each 1 ≤ i ≤ n. Loosely speaking, if ξ is close to a unit vector η, then all ξi are close to
η, as well.
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Lemma 5.2.2. Let Γ be a finitely generated discrete group and let S be a finite symmetric
generating set. Let d : S ! R be a strictly positive symmetric function and set |d| =∑

s∈S d(s). Then hπ, as defined in equation (5.1), is a self-adjoint operator with spectrum
σ(hπ) ⊂ [−1, 1]. Moreover, a non-zero vector ξ ∈ H is invariant for (π,H) if and only if ξ
is a an eigenvector for hπ with eigenvalue 1, and a net (ξi)i∈I in H is almost invariant for
(π,H) if and only if 〈hπξi , ξi〉 converges to 1 in C.

Proof. Since (π,H) is unitary, S is a symmetric set and d is a symmetric function, we see
directly that hπ is self-adjoint. Further, being a convex combination of unitaries, hπ has
norm bounded by 1, and since its spectrum is real, it follows that σ(hπ) ⊂ [−1, 1].

If ξ ∈ H is a non-zero invariant vector, we see directly that ξ must be an eigenvector for
hπ with eigenvalue 1. Conversely, if ξ ∈ H is any unit vector, Remark 5.2.1 yields that

1

|d|
∑
s∈S

d(s) ||π(s)ξ − ξ||2 = 2
(
1− Re 〈ξ , hξ〉

)
≤ ||hξ − ξ|| . (5.2)

Hence, if ξ is a unit eigenvector for hπ with eigenvalue 1, then ||π(s)ξ − ξ|| = 0, for all s ∈ Γ.
Since S is a generating set for Γ, it follows that ξ is invariant. The general case for non-unit
eigenvectors of hπ with eigenvalue 1 follows by rescaling.

The statement regarding nets of almost invariant vectors follows directly from the first
equality in equation (5.2) using that S is a finite set and that S generates Γ.

Definition 5.2.3. Let Γ be a discrete group. A unitary representation (π,H) of Γ is said
to be universal if it weakly contains all other unitary representations.

Remark 5.2.4. Universal representations always exist. Take, for instance, the direct sum of
all GNS-representations (see Theorem 2.4.9) corresponding to functions of positive type on
the group.

Remark 5.2.5. Suppose (π,H) is a universal representation of the discrete groups Γ, and
let (ρ,K) be any other unitary representation of Γ. Since ρ ≺ π, we have a well-defined
∗-homomorphism Φ : π̂(C∗(Γ)) ! ρ̂(C∗(Γ)) given by Φ(π̂(x)) = ρ̂(x), for all x ∈ C∗(Γ).
If Γ has a finite symmetric generating set S and if d : S ! R is a fixed strictly positive
symmetric function, let hπ and hρ denote the operators from Lemma 5.2.2 belonging to
(π,H) and (ρ,K), respectively. Then hρ = Φ(hπ). In particular, we have the inclusion
σ(hρ) ⊂ σ(hπ) (see, e.g., [54, Proposition 9.1]).

Proposition 5.2.6. Let Γ be a finitely generated discrete group and let S be a finite sym-
metric generating set. Let (π,H) be a universal representation and let h = hπ ∈ B(H) be
as in equation (5.1), for some strictly positive symmetric function d : S ! R. Then Γ has
Property (T ) if and only if 1 is an isolated point in σ(h). Moreover, if σ(h) ⊂ [−1, 1−ε]∪{1},
for some 0 < ε < 1, then (S,

√
2ε) is a Kazhdan pair for Γ.

Proof. Suppose Γ has property (T ). Since (π,H) is universal, 1Γ ≺ π, so as Γ has Property
(T ), we deduce that 1Γ ≤ π (see Corollary 1.3.6). Then π has a non-zero invariant vector, by
Proposition 1.3.1, and so, Lemma 5.2.2 yields that 1 is in the spectrum of h. We must show
that 1 is isolated. Because h is a finite linear combination of operators of the form π(s), for
s ∈ Γ, any Γ-invariant subspace of H is reducing for h (see Remark 1.1.5). In particular,
Hπ is a reducing subspace for h, and we may therefore consider h a direct sum of the its
restrictions to Hπ and its compliment. Thus,

σ(h) = σ
(
h|Hπ

)
∪ σ
(
h|(Hπ)⊥

)
.

By Lemma 5.2.2, h|Hπ is the identity operator on Hπ, and so, σ
(
h|Hπ

)
= {1}. Since σ(h)

is a compact subset of [−1, 1], it therefore suffices to show that 1 /∈ σ
(
h|(Hπ)⊥

)
. Suppose
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for contradiction that 1 is contained in the spectrum of h|(Hπ)⊥ so that h|(Hπ)⊥ − 1 is not
invertible. Since this is a normal operator, it follows that there exists a sequence of unit
vectors (ξn)n≥1 in (Hπ)⊥ such that ||(h− 1)ξn|| ! 0 (see [40, Theorem 12.12(c)]). By Cauchy-
Schwarz, we see that 〈hξn , ξn〉! 1. But then (ξn)n≥1 is a sequence of almost invariant vectors

for (π,H), by Lemma 5.2.2. Since (ξn)n≥1 lies in (Hπ)⊥, this contradicts Proposition 1.2.7.
Suppose now that the spectrum of h is contained in [−1, 1− ε]∪{1}, for some 0 < ε < 1.

Let (ρ,K) be any unitary representation of Γ and let hρ be as in Lemma 5.2.2. Then
σ(hρ) ⊂ [−1, 1− ε] ∪ {1}, by Remark 5.2.5. Let P be the spectral projection of hρ onto the
spectral subset {1}. Notice that P coincides with the projection onto Kρ, by Lemma 5.2.2.
By the spectral theorem, hρ has a spectral decomposition hρ = P +

∑
i λiPi, where each

λi ∈ [−1, 1− ε]. Clearly,
∑

i Pi ≤ 1− P , and so,

(1− hρ)− ε(1− P ) = (1− ε)(1− P )−
∑
i

λiPi ≥ (1− ε)
(

(1− P )−
∑
i

Pi

)
≥ 0.

Hence, ε(1− P ) ≤ 1− hρ. It follows, for each ξ ∈ K, that

2ε ||(1− P )ξ||2 = 2 〈ε(1− P )ξ , ξ〉 ≤ 2 〈(1− hρ)ξ , ξ〉 =
1

|d|
∑
s∈S

d(s)
(
||ξ||2 − Re 〈ρ(s)ξ , ξ〉

)
=

1

|d|
∑
s∈S

d(s) ||ρ(s)ξ − ξ||2 ≤ max
s∈S
||ρ(s)ξ − ξ||2 .

Thus, if ξ is a (S,
√

2ε)-invariant vector for (ρ,K), then ||(1− P )ξ|| < ||ξ||. This implies that
P is a non-zero projection so that Kρ is non-trivial. As (ρ,K) was an arbitrary unitary
representation, we may conclude that (S,

√
2ε) is a Kazhdan pair for Γ.

5.2.2 `2-spaces on finite graphs

Let G be a finite simple undirected graph. The degree function induces a finite discrete
measure on the vertex set of G by assigning a subset of vertices, S ⊂ V (G), the measure∑

s∈S deg(s). Observe that ∑
s∈V (G)

deg(s) = |E(G)| .

We shall in the following consider any finite graph G a probability space equipped with
the normalized measure induced by the degree function. We denote by `2(G) the `2-space
of complex valued functions on the vertices of G equipped with inner product and norm
obtained using the described probability measure. Notice that `2(G) equals CV (G) as a
vector space because G is finite – the notation therefore merely indicates the additional inner
product structure. For a complex Hilbert space H, we denote by `2(G;H) the tensor product
`2(G)⊗H. As a set, `2(G;H) consists of all functions on the vertices of G with values in H.
We see that `2(G;H) is, again, a Hilbert space with inner product given by

1

|E(G)|
∑

s∈V (G)

〈f(s) , g(s)〉 deg(s),

for all f, g ∈ `2(G;H), where 〈 · , · 〉 denotes the inner product in H.

We have an isometric inclusion of H into `2(G;H) given by ξ 7! 1V (G)⊗ξ, where 1V (G)⊗ξ
is the function that takes the value ξ everywhere. To ease notation we shall in the following
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identify the subspace of constant functions with H and simply write ξ instead of 1V (G) ⊗ ξ.
For each f ∈ `2(G;H), we denote by

E(f) =
1

|E(G)|
∑

s∈V (G)

f(s) deg(s)

the mean of f . Then E is a map `2(G;H) ! H. With the identification of the subspace of
constant functions and H, we may also consider E an operator on `2(G;H).

Lemma 5.2.7. Let G be a finite simple undirected and connected graph, and let H be a
complex Hilbert space. Considered an operator on `2(G;H), the mean, E, is the orthogonal
projection onto the subspace of constant functions.

Proof. Let f ∈ `2(G;H). For each ξ ∈ H, we have

〈f − E(f) , ξ〉`2(G)⊗H =
1

|E(G)|
∑

s∈V (G)

〈
f(s)− 1

|E(G)|
∑
t∈V

f(t) deg(t) , ξ

〉
deg(s)

=
1

|E(G)|
∑

s∈V (G)

〈f(s) , ξ〉 deg(s)− 1

|E(G)|2
∑

s∈V (G)

〈∑
t∈V

f(t) deg(t) , ξ

〉
deg(s)

= 0.

Hence, E(f) is, indeed, the orthogonal projection of f onto the subspace of constant functions
on G with values in H (see, e.g., [41, Theorem 21.5]).

Remark 5.2.8. By the Pythagoras theorem, the equality

||f − E(f)||2`2(G;H) = ||f ||2`2(G;H) − ||E(f)||2

holds, for all f ∈ `2(G;H).

It is sometimes interesting to consider spaces of functions on the edges of a graph instead
of the vertices. For a finite graph G, we make E(G) into a probability space by equipping
it with the normalized uniform discrete measure. We denote by `2(E(G)) the `2-space of
complex valued functions on the edges of G equipped with the 2-norm associated to this
probability measure. For a Hilbert space H, we denote by `2(E(G);H) the tensor product
`2(E(G))⊗H. This is, again, a Hilbert space with inner product given by

1

|E(G)|
∑

(s,t)∈V (G)

〈f(s, t) , g(s, t)〉 .

for all f, g ∈ `2(E(G);H), where 〈 · , · 〉 denotes the inner product in H.

For a Hilbert space H with identity operator IH , we define the discrete Laplace operator
on `2(G;H) as the tensor product ∆⊗IH , and the gradient operator `2(G;H) ! `2(E(G);H)
as the tensor product ∇ ⊗ IH . We remark that, for any probability spaces Ω and Ω′, and
any bounded linear operator T : L2(Ω) ! L2(Ω′), the tensor product operator T ⊗ IH is a
bounded linear operator L2(Ω;H) ! L2(Ω′;H) with norm ||T ⊗ IH || = ||T || and spectrum
σ(T ⊗ IH) = σ(T ). These observations hold, in particular, for the discrete Laplace operator
and the gradient operator. Whenever the context admits it, we shall omit ⊗IH from the
notation. Lemma 5.1.16 generalizes to this setting as follows:
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Lemma 5.2.9. Let G be a finite simple undirected graph and let H be a complex Hilbert
space. For each f ∈ `2(G;H), it holds that

2 〈∆f , f〉`2(G;H) = ||∇f(s, t)||2`2(E(G);H) .

Proof. Let f ∈ `2(G;H). Since G is undirected, we have∑
(s,t)∈E(S)

〈f(t) , f(s)〉 =
∑

(s,t)∈E(S)

〈f(s) , f(t)〉 .

In particular, this implies that the above sum is real. Since there is a bijective set correspon-
dence between E(G) and

⋃
s∈V (G){s} ×Ns, we see that∑

(s,t)∈E(G)

||∇f(s, t)||2 =
∑

(s,t)∈E(G)

〈f(s)− f(t) , f(s)− f(t)〉

= 2
∑

(s,t)∈E(G)

〈f(s) , f(s)〉 − 2
∑

(s,t)∈E(G)

〈f(t) , f(s)〉

= 2
∑

s∈V (G)

〈f(s) , f(s)〉 deg(s)− 2
∑

s∈V (G)

∑
t∼s
〈f(t) , f(s)〉

= 2
∑

s∈V (G)

(
〈f(s) , f(s)〉 − 1

deg(s)

∑
t∼s
〈f(t) , f(s)〉

)
deg(s)

= 2
∑

s∈V (G)

〈∆f(s) , f(s)〉 deg(s)

= 2 |E(G)| 〈∆f , f〉`2(S,π,deg)

This proves the claimed equality.

Proposition 5.2.10. Let G be a finite simple undirected and connected graph, and let H be
a complex Hilbert space. For each f : V (G) ! H, it holds that

λ1(G) ||f − E(f)||2`2(G;H) ≤
1

2 |E(G)|
∑

(s,t)∈E(G)

||∇f(s, t)||2 . (5.3)

Proof. Denote by IH the identity operator on H and by IG the identity operator on `2(G). Let
P be the orthogonal projection in B(`2(G)) onto the subspace C1V (G) of constant functions
on G. Then E = P ⊗ IH . By Lemma 5.1.17 and by the assumption that G is connected, P is
the spectral projection of ∆ onto the simple eigenvalue 0. Hence, the spectral decomposition
of ∆ has the form ∆ =

∑n
i=1 λiPi, for some 1 ≤ n < |V (G)|, where P +

∑n
i=1 Pi = IG and

where the eigenvalues 0 < λ1(G) = λ1 ≤ · · · ≤ λn ≤ 2 are ordered non-decreasingly. It
follows that

∆⊗ IH =

n∑
i=1

λiPi ⊗ IH ≥ λ1(G)

n∑
i=1

Pi ⊗ IH = λ1(G)(IG − P )⊗ IH .

From this, we deduce that

λ1(G) ||f − E(f)||2`2(G;H) = λ1(G) ||f − (P ⊗ IH)f ||2`2(G;H)

= λ1(G) 〈(IG ⊗ IH − P ⊗ IH)f , f〉`2(G;H)

≤ 〈(∆⊗ IH)f , f〉`2(G;H) .

Equation (5.3) then follows from Lemma 5.2.9.
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5.2.3 Żuk’s condition for Property (T )

For a group Γ and a subset S ⊂ Γ, the link graph associated to S, denoted by L(S), is the
graph defined as follows:

• The vertices of L(S) are the elements of S.

• The edges of L(S) are the ordered pairs (s, t) ∈ S × S satisfying s−1t ∈ S.

We denote by V (S) and E(S) the set of vertices, respectively, edges of L(S). By definition,
the graph L(S) is finite if and only if S is. In this case, observe that∑

s∈S
deg(s) = |E(S)|.

If S contains the identity element, e, then all vertices have self-loops. Otherwise, no vertices
do. If S is symmetric then L(S) is undirected. Moreover, in this case the degree function
is symmetric, i.e., deg(s) = deg(s−1), for each s ∈ V (S). If L(S) is connected the degree
function is strictly positive.

Assume that Γ is finitely generated, and let S be a finite symmetric generating set not
containing the identity, so that L(S) is a finite simple undirected graph. We may assume
that L(S) is connected. Otherwise, (S ∪ S2)\{e} is another generating set with the stated
properties and such that the associated link graph is connected. In [55], A. Żuk proved a
sufficient condition for Property (T ) in terms of the spectrum of the link graph. We state
and proof this condition in Theorem 5.2.11 below following [9, Theorem 12.1.15].

Theorem 5.2.11 (Żuk’s condition). Let Γ be a discrete finitely generated group, and let S be
a finite symmetric generating set not containing the identity and such that L(S) is connected.
Let λ1 = λ1(L(S)). If λ1 > 1/2 then(

S,
√

2
(
2− λ−1

1

) )
is a Kazhdan pair for Γ.

Proof. Let (π,H) be a universal representation of Γ and let h = hπ be as in Lemma 5.2.2 using
the degree function as the strictly positive symmetric function on S. Set d =

∑
s∈S deg(s).

By Proposition 5.2.6, it suffices to show that

σ(h) ⊂ [−1, λ−1
1 − 1] ∪ {1}.

Fix ξ ∈ H and define f : S ! H by f(s) = π(s)ξ. As an element of `2(S, deg), f has mean
is equal to hξ and norm ||f ||`2(S,deg) = ||ξ||. Proposition 5.2.10 yields the inequality

λ1

(
||ξ||2 − ||hξ||2

)
= λ1

(
||f ||2`2(S,deg) − ||E(f)||2

)
≤ 1

2d

∑
(s,t)∈E(S)

||f(t)− f(s)||2

=
1

2d

∑
(s,t)∈E(S)

∣∣∣∣ξ − π(s−1t)ξ
∣∣∣∣2 =

1

2d

∑
s∈S
||ξ − π(s)ξ||2 deg(s)

= ||ξ||2 − 1

d

∑
s∈S
〈π(s)ξ , ξ〉 deg(s) = ||ξ||2 − 〈hξ , ξ〉 .

Or, using that h is self-adjoint, λ1

〈
(IH − h2)ξ , ξ

〉
≤ 〈(IH − h)ξ , ξ〉, for any vector ξ ∈ H. If

λ is any eigenvalue of h, we see directly that λ1(1− λ2) ≤ 1− λ. Further, since h is normal,
all points in its spectrum are approximate eigenvalues (see, e.g., [40, Theorem 12.12(c)]), and
so, this inequality holds for all λ ∈ σ(h). The roots of the polynomial x 7! −λ1x

2 +x+λ1−1
are 1 and 1− λ−1

1 . Thus, σ(h) ∩ (λ−1
1 − 1, 1) = ∅, which was what we aimed to show.
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5.3 A spectral condition for Property (FLp)

Żuk’s condition states that a sufficiently large spectral gap of a link graph associated to a
(nice) generating set ensures property (T ). We discuss in this section a condition of this
flavor which ensures Property (FLp). This condition is due to T. de Laat and M. de la Salle
in [14].

5.3.1 `p-spaces on finite graphs

For finite set S equipped with a probability measure ν on its power set, a 1 ≤ p ≤ ∞ and
a normed space X, we denote by `p(S, ν;X) the tensor product `p(S, ν)⊗X equipped with
the p-norm

||f ||p(S,ν;X) =
∑
s∈S
||f ||p ν({s}),

for f ∈ `p(S, ν;X), if p <∞. For p =∞, the norm is given by ||f ||`∞(S;X) = maxs∈S ||f(s)||.
Since S is finite, it is straight forward to verify that, wheneverX is a Banach space, `p(S, ν;X)
is, again, a Banach space. Whenever the measure is clear from context, we shall omit it from
the notation.

Let G be a finite graph. As before, we consider G (or rather, the vertex set of G) a
probability space equipped with the normalized measure induced by the degree function.
For each 1 ≤ p < ∞ and each Banach space X, `p(G;X), as defined above, is the Banach
space of X-valued functions on the vertices of G with norm given by

||f ||p`p(G;X) =
1

|E(G)|
∑

s∈V (G)

||f(s)||p deg(s),

for all f ∈ `p(G;X). As we have equipped G with a probability measure, the map x 7! 1G⊗x
is an isometric embedding of X into `p(G;X), and we shall, as in the Hilbert space setting,
identify X with the subspace 1G ⊗ X of constant X-valued functions on V (G). With this
identification in mind, we write x instead of 1G ⊗ x for the function which is equal to x
everywhere.

We shall keep the notation from the Hilbert space setting and denote by E the operator
on `p(G;X) given by

E(f) =
1

|E(G)|
∑

s∈V (G)

f(s) deg(s),

for all f ∈ `p(G;X). We denote by `p0(G;X) the kernel of E, i.e.,

`p0(G;X) =

{
f ∈ `p(G;X)

∣∣∣∣ ∑
s∈V (G)

f(s) deg(s) = 0

}
.

It is easy to see that E is continuous, and so, `p0(G;X) is a closed subspace of `p(G;X).
Moreover, `p0(G;X) is complemented. Specifically, the complement is the closed subspace of
constant functions, 1G ⊗X, and we have a vector space isomorphism

`p(G;X) `p0(G;X)⊕ (1G ⊗X)

f (f − E(f),E(f))
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Hence, as a vector space, `p0(G;X) is isomorphic to the quotient of `p(G;X) by the constant
functions. There are therefore two norms which are natural to put on `p0(G;X): The subspace
norm and the quotient norm. In general, they are related by

inf
x∈X
||f − x||`p(G;X) ≤ ||f − E(f)||`p(G;X) . (5.4)

Recall that when p = 2 and X is a Hilbert space, E is the orthogonal projection onto the
subspace of constant functions. In particular, equation (5.4) is an equality.

Another class of function spaces associated to a finite graph G that is of interest to us are
the `p-spaces of Banach space valued functions on the edges of the graph. As in the Hilbert
space setting, we equip E(G) with the uniform probability measure. For a Banach space X,
`p(E(G);X) is the `p-space of X-valued functions on E(G) with norm given by

||f ||p`p(E(G);X) =
1

|E(G)|
∑

(s,t)∈E(G)

||f(s, t)||p .

For Banach spaces X and Y , we denote by L(X,Y ) the space of bounded linear operators
from X to Y . When X = Y , we write L(X) = L(X,X). Unlike in the Hilbert space setting,
for Banach spaces X,Y,X ′ and Y ′, the operator norm on L(X,Y )⊗L(X ′, Y ′) inherited from
L(X ⊗ X ′, Y ⊗ Y ′) need not be a cross norm. That is, for T : X ! Y and S : X ′ ! Y ′,
||T ⊗ S|| need not be equal to ||T || ||S||.

Definition 5.3.1. Let S and S′ be finite sets equipped with probability measures on their
power sets. An operator T : `p(S) ! `p(S′) is called regular if

||T ||reg = sup
{
||T ⊗ idX ||`p(S;X)!`p(S′;X)

∣∣∣ X is a Banach space
}
<∞.

In that case, the number ||T ||reg is referred to as the regular norm of T .

We show in Lemma 5.3.2 below that, for operators on an `2-space of a finite set, the
supremum in the above definition is attained at an `∞-space. For each 1 ≤ p ≤ ∞, denote
by `pn = `p({1, . . . , n}) the `p-space on n points. For a bounded linear operator A ∈ B(`2n),
we denote by (Ai,j)

n
i,j=1 ∈Mn(C) its canonical matrix representation.

Lemma 5.3.2. For any n ∈ N and bounded linear operator A on `2n, it holds that

||A||reg =
∣∣∣∣A⊗ id`∞n

∣∣∣∣
L(`2n⊗`∞n )

=
∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣.
Proof. Let X be a Banach space and let x1, . . . , xn ∈ X be such that

∑n
j=1 ||xj ||

2 ≤ 1. By
the triangle inequality,

||A⊗ idX x||2`2n⊗X =
n∑
i=1

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Ai,jxj

∣∣∣∣∣
∣∣∣∣∣
2

≤
n∑
i=1

∣∣∣∣∣
n∑
j=1

|Ai,j | ||xj ||

∣∣∣∣∣
2

≤ sup
v∈`2n

n∑
i=1

∣∣∣∣∣
n∑
j=1

|Ai,j | vj

∣∣∣∣∣
2

=
∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣.
Taking first the supremum over all x ∈ `2n⊗X with norm 1 and then over all Banach spaces
X, it follows that

||A||reg = sup
{
||A⊗ idX ||L(`2n⊗X)

∣∣∣ X is a Banach space
}
≤
∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣. (5.5)
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For x = (x1, . . . , xn) ∈ `2n ⊗ `∞n , write xj = (x1
j , . . . , x

n
j ) ∈ `∞n , for 1 ≤ j ≤ n. We have

∣∣∣∣A⊗ id`∞n x
∣∣∣∣2 =

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Ai,jxj

∣∣∣∣∣
∣∣∣∣∣
2

`∞n

=

n∑
i=1

max
k=1,...,n

∣∣∣∣∣
n∑
j=1

Ai,jx
k
j

∣∣∣∣∣
2

. (5.6)

Take v = (v1, . . . , vn) ∈ `2n with ||v||`2n = 1 such that

∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣2 =
∣∣∣∣∣∣(|Ai,j |)ni,j=1

v
∣∣∣∣∣∣2
`2n

=
n∑
i=1

∣∣∣∣∣
n∑
j=1

|Ai,j | vj

∣∣∣∣∣
2

. (5.7)

For each pair of indices 1 ≤ i, j ≤ n, choose θi,j ∈ R such that Ai,j = eiθi,j |Ai,j |. Then,
for each pair of indices 1 ≤ j, k ≤ n, set xkj = e−iθk,jvj . Then x = (x1, . . . , xn) with

xj = (x1
j , . . . , x

n
j ), for 1 ≤ j ≤ n, defines a vector in `2n ⊗ `∞n with

||x||2`2n⊗`∞n =
n∑
j=1

max
k=1,...,n

∣∣xkj ∣∣2 =
n∑
j=1

|vj |2 = ||v||2`2n = 1.

For each fixed 1 ≤ i ≤ n,

max
k=1,...,n

∣∣∣∣∣
n∑
j=1

Ai,jx
k
j

∣∣∣∣∣ ≥
∣∣∣∣∣
n∑
j=1

Ai,jx
i
j

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

|Ai,j | vj

∣∣∣∣∣
2

.

Summing over i, inserting equations (5.6) and (5.7) and taking the square root yields the
inequality

∣∣∣∣A⊗ id`∞n x
∣∣∣∣ ≥ ∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣. Because x ∈ `2n ⊗ `∞n has norm 1, it follows that∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣ ≤ ∣∣∣∣A⊗ id`∞n
∣∣∣∣
L(`2n⊗`∞n )

. (5.8)

Putting together the inequalities (5.5) and (5.8), we have showed that

||A||reg ≤
∣∣∣∣(|Ai,j |)ni,j=1

∣∣∣∣ ≤ ∣∣∣∣A⊗ id`∞n
∣∣∣∣
L(`2n⊗`∞n )

≤ ||A||reg ,

where the last inequality is trivial. Hence, all inequalities are equalities, which is what we
aimed to show.

For a fixed Banach space X, we define, for each ε ∈ [0, 1], a number

∆fin
X (ε) = sup

{
||T ⊗ idX ||L(`2(S;X))

∣∣∣ S finite, ||T ||L(`2(S)) ≤ ε, ||T ||reg ≤ 1
}
. (5.9)

Then ∆fin
X is a non-decreasing function on [0, 1].

Lemma 5.3.3. Let X be an Lp-space with p ≥ 2. Then

∆fin
X (ε) ≤ ε2/p, (5.10)

for all ε ∈ [0, 1].

Proof. Let X = Lp(µ) be an Lp-space with p ≥ 2. Then X is 2/p-interpolation space between
L2(µ) and L∞(µ). Let S be any finite set equipped with a probability measure on its power
set and let T be a bounded linear operator on `2(S) with ||T || ≤ ε, for some ε > 0 and
||T ||reg ≤ 1. We have

∣∣∣∣T ⊗ idL2(µ)

∣∣∣∣ = ||T || ≤ ε, since `2(S;L2(µ)) is a Hilbert space, and
||T ⊗ idL∞(µ) || ≤ ||T ||reg ≤ 1, by definition of the regular norm. equation (5.10) then follows
directly from the Riesz-Thorin theorem for Bochner spaces, Theorem B.3.2.
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5.3.2 Poincaré type inequalities and fixed points

For a Banach space X and for 1 ≤ p ≤ ∞, we define the discrete Laplace operator on
`p(G;X) as the tensor product ∆⊗ idX , and the gradient operator `p(G;X) ! `p(E(G);X)
as the tensor product ∇⊗ idX . A central part of the proof of Theorem 5.2.11 is the validity
of the inequality (5.3) of Proposition 5.2.10. This is a so called Poincaré type inequality.
More generally, for 1 ≤ p ≤ ∞, a p-Poincaré inequality associated to a finite graph G and a
Banach space X, is an inequality of the form

inf
x∈X
||f − x||`p(G;X) ≤ C ||∇f ||`p(E(G);X) , (5.11)

for some constant C > 0, which holds for all f ∈ `p(G;X). Rearranging equation (5.3), we see
that this is, indeed, a 2-poincaré inequality with constant C = 1/

√
2λ1(G). We remark here

that this constant is strictly less than one if and only if λ1(G) > 1/2. Hence, the criterion in
Żuk’s theorem that a group Γ admits a (nice) link graph with spectral gap strictly greater
than 1/2 exactly ensures the validity of a 2-poincaré inequality with constant strictly less
than 1. With this in mind, we show in Theorem 5.3.4 below how one can construct a fixed
point of an action on a Banach space from a p-Poincaré inequality on the `p-space of the link
graph with a constant strictly less than one.

Theorem 5.3.4. Let Γ be a discrete finitely generated group, and let S be a finite symmetric
generating set not containing the identity and such that L(S) is connected. Let X be a
Banach space. If, for some 1 < p <∞, there exists a constant 0 < C < 1 such that

inf
x∈X
||f − x||`p(L(S);X) ≤ C ||∇f ||`p(E(S);X) , (5.12)

for all f : S ! X, then Γ has Property (FX).

Proof. Suppose 1 < p < ∞ and 0 < C < 1 are such that equation (5.12) hold, for all
f : S ! X, and let Γ y X be an action by affine isometries. Let E be the set of all functions
Γ ! X satisfying t.f(s) = f(ts), for all s, t ∈ Γ. Observe that E is a convex set. For each
x ∈ X, denote by fx : Γ ! X the function fx(s) = s.x, for all s ∈ Γ. It is clear that E
contains all functions of this form. In particular, E is non-trivial.

We may regard any f ∈ E as an element of `p(L(S);X) by restriction of its domain.
Since X is a Banach space and S is finite, `p(L(S);X) is a Banach space, as well. Denote
be d the metric on `p(L(S);X) induced by the norm, i.e., for any f, f ′ ∈ E ,

d(f, f ′) =
∣∣∣∣f − f ′∣∣∣∣

`p(L(S);X)
=

(
1

d

∑
s∈S

∣∣∣∣f(s)− f ′(s)
∣∣∣∣p deg(s)

)1/p

.

For any two functions f, f ′ : S ! X, we define

E(f, f ′) =

1

d

∑
(s,t)∈E(S)

∣∣∣∣f(s)− f ′(t)
∣∣∣∣p1/p

.

To simplify notation, we shall write E(f) = E(f, f). Notice that E(f) = ||∇f ||`p(E(S);X). In
particular, the map `p(L(S);X) ! R given by f 7! E(f) is continuous. Furthermore, we
remark that E is symmetric as a map XS ×XS ! R. This is because S is symmetric, by
assumption.

Fix a constant c ∈ (C, 1). For any non-zero function f ∈ E , we may pick x ∈ X such that

||f − x||`p(L(S);X) ≤ c ||∇f ||`p(E(S);X) . (5.13)
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Then

E(f, fx)p =
1

d

∑
(s,t)∈E(S)

||f(s)− t.x||p =
1

d

∑
(s,t)∈E(S)

∣∣∣∣f(t−1s)− x
∣∣∣∣p

=
1

d

∑
s∈S
||f(s)− x||p deg(s) = ||f − x||p`p(L(S);X) .

Hence, E(f, fx) ≤ cE(f). Further, by the Minkowsky inequality on `p(E(S);X),

E

(
f + fx

2

)
=

1

2

1

d

∑
(s,t)∈E(S)

||f(s)− t.x+ s.x− f(t)||p
1/p

≤ 1

2

1

d

∑
(s,t)∈E(S)

||f(s)− t.x||p
1/p

+
1

2

1

d

∑
(s,t)∈E(S)

||s.x− f(t)||p
1/p

=
1

2
E(f, fx) +

1

2
E(fx, f) = E(f, fx).

Summerizing, we have established the following inequalities:

E

(
f + fx

2

)
≤ E(f, fx) ≤ cE(f), (5.14)

for any f ∈ E and with x chosen such that equation (5.13) is satisfied. Furthermore,

d

(
f,
f + fx

2

)
=

1

2
||f − fx||`p(L(S);X) =

1

2

(
1

d

∑
t∈S
||f(t)− t.x||p deg(t)

)1/p

=
1

2

1

d

∑
(s,t)∈E(S)

||f(t)− f(s) + f(s)− t.x||p
1/p

≤ 1

2

1

d

∑
(s,t)∈E(S)

||f(t)− f(s)||p
1/p

+
1

2

1

d

∑
(s,t)∈E(S)

||f(s)− t.x||p
1/p

=
1

2
||∇f ||`p(E(S);X) +

1

2
E(f, fx) < E(f). (5.15)

Here, the inequality in the third line is Minkowsky’s inequality on `p(E(S);X), and the last
inequality follows from equation (5.14) using that c < 1.

Pick any non-zero function f0 ∈ E . As E is a convex set, we obtain a sequence (fn)n≥1

in E by inductively defining

fn+1 =
fn + fxn

2
,

for each n ∈ N0, where xn is chosen such that equation (5.13) is satisfied with fn and xn in
place of f and x. By equation (5.14), this sequence satisfies, for each n ∈ N,

E(fn) ≤ cE(fn−1) ≤ · · · ≤ cnE(f0). (5.16)

Together with equation (5.15), it follows that d(fn, fn+1) ≤ E(fn) ≤ cnE(f0). As 0 < c < 1,
this implies that (fn)n≥1 is Cauchy when considered a sequence in `p(L(S);X). Let f∞
denote its limit in `p(L(S);X). Moreover, as 0 < c < 1, we see from equation (5.16)
that (E(fn))n≥0 is a strictly decreasing sequence in [0,∞), so as E : `p(L(S);X) ! R is
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continuous, we have E(f∞) = limn!∞E(fn) = 0. Hence, ||f∞(s)− f∞(t)|| = 0, for all pairs
(s, t) ∈ E(S). As L(S) is connected, we deduce that f∞ is constant. Let x ∈ X be the
constant value of f∞. Because no vertex of L(S) is isolated, and because S is symmetric, we
may, for each s ∈ S, find a t ∈ S such that st ∈ S. Then, for all n ∈ N,

||s.x− x|| = ||s.f∞(t)− f∞(st)||
≤ ||s.f∞(t)− s.fn(t)|| + ||fn(st)− f∞(st)||
≤ 2 ||f∞ − fn||`p(L(S);X) ,

and it follows that x is fixed by S. Since S is a generating set, we conclude that x is a fixed
point for the action by Γ. Hence, Γ has Property (FX).

5.3.3 From small Markov operators to p-Poincaré inequalities for Lp-spaces

To obtain a spectral condition for Property (FX) from Theorem 5.3.4 with the same flavor as
that of Żuk’s criterion, what we need is a condition on the spectrum of the link graph which
ensures the validity of inequality (5.12) with a constant strictly less than one. Recall that the
spectrum of a finite graph G is closely related to that of its Markov operator – we saw in the
proof of Corollary 5.1.14 that σ(G) ⊂ 1−σ(MG). With the assumption that G is undirected,
the spectrum of MG is real and contained in [−1, 1]. If, moreover, G is connected then 1
is a simple eigenvalue and the eigenspace in `p(G;X) is the subspace of constant functions.
It is clear that a spectral gap of G strictly greater than δ is ensured by the condition that
σ(MG) ⊂ [−1, 1 − δ) ∪ {1}. A stronger condition is to require that the restriction of the
Markov operator to `p0(G;X) has norm bounded by some 0 < ε < 1, or, equivalently, that its
spectrum away from the simple eigenvalue 1 is contained in [−ε, ε]. Such a condition leads
to a 2-sided spectral gap of the Laplace operator. When X is p-uniformly convex, which we
define in a moment, we shall see in Theorem 5.3.14 that a (large enough) 2-sided spectral
gap leads to the validity of a p-Poincaré inequality with constant strictly less than one. With
this discussion in mind, consider the following lemma:

Lemma 5.3.5. Let G be a finite graph and let X be a Banach space. If the restriction of the
Markov operator to `p0(G;X) has norm bounded by 0 < ε < 1 then

||f ||`p(G;X) ≤
1

1− ε
||∆f ||`p(G;X) , (5.17)

for all f ∈ `p0(G;X).

Proof. Let f ∈ `p0(G;X). Recall that ∆ = IG −MG . By the triangle inequality,

||f ||`p(G;X) ≤ ||∆f ||`p(G;X) + ||MGf ||`p(G;X) ≤ ||∆f ||`p(G;X) + ε ||f ||`p(G;X) .

The claimed inequality follows by rearrangement.

Recalling equations (5.4) and (5.11), we see that a bound on the norm of ∆f in terms of
the norm of ∇f will turn equation (5.17) into a Poincaré type inequality. In fact, we always
have such a bound: Let f ∈ `p(G;X). For any fixed s ∈ V (G), the triangle inequality yields∣∣∣∣∣∣∣∣f(s)− 1

deg(s)

∑
t∼s

f(t)

∣∣∣∣∣∣∣∣ ≤ 1

deg(s)

∑
t∼s
||f(s)− f(t)||.
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This together with Hölder’s inequality on `1(E(G);X) yields

|E(G)|1/p ||∆f ||`p(G;X) ≤
∑

s∈V (G)

∣∣∣∣∣∣∣∣f(s)− 1

deg(s)

∑
t∼s

f(t)

∣∣∣∣∣∣∣∣ deg(s)1/p

≤
∑

s∈V (G)

∑
t∼s
||f(s)− f(t)|| deg(s)1/p−1

≤ |E(G)| ||∇f ||`1(E(G);X) ≤ |E(G)| ||∇f ||`1(E(G);X) .

Since |E(G)| ≥ 1, it follows that ||∆f ||`p(G;X) ≤ ||∇f ||`p(G;X). This, however, is not strong
enough, because we need a p-Poincaré inequality with constant strictly less than one. We
shall see in Proposition 5.3.12 that an improvement of this inequality is possible when X is
a p-uniformly convex Banach space. For a Banach space X, denote by δX : (0, 2] ! [0, 1]
the modulus of convexity as defined in equation (A.2).

Definition 5.3.6. A uniformly convex Banach space X is said to be p-uniformly convex, for
a fixed 2 ≤ p <∞, if there exists a constant c > 0 such that δX(ε) ≥ cεp.

Remark 5.3.7. There is nothing preventing us from defining p-uniform convexity for p be-
tween 1 and 2. However, this definition would be empty as no p-uniformly convex spaces
exist, for 1 < p < 2.

Example 5.3.8. The Lp-spaces are p-uniformly convex, for p ≥ 2. ◦

The following useful reformulation of p-uniform convexity is due to [3, Proposition 7].
We state it here without proof.

Lemma 5.3.9. A uniformly convex Banach space X is p-uniformly convex, for a fixed 2 ≤
p <∞, if and only if there exists a constant K ≥ 1 such that

||x||p +
1

Kp
||y||p ≤

||x+ y||p + ||x− y||p

2
, (5.18)

for all x, y ∈ X. The infimum over all K ≥ 1 such that equation (5.18) holds, for all
x, y ∈ X, is denoted by Kp(X).

The improvement of the inequality ||∆f ||`p(G;X) ≤ ||∇f ||`p(G;X) for p-uniformly convex
Banach spaces is based on an improvement of the inequality ||E(f)|| ≤ ||f ||`p(G;X). We state
and proof the improvement of this basic inequality of the Bochner integral in the setting of
Banach space valued functions on a general probability space (Ω, ν). Here, the mean is given
by the integral E(f) =

∫
Ω f dν. The proof is due to G. Pisier in [35, Proposition 2.4]. We

follow the proof in [31, Lemma 6.5].

Proposition 5.3.10. Let X be a p-uniformly convex Banach space, for p ≥ 2, and let (Ω, ν)
be a probability space. There exists a C > 0 such that, for every f ∈ Lp(Ω, ν;X),

||E(f)||p + C ||f − E(f)||pp ≤ ||f ||
p
p . (5.19)

Proof. Define a constant C depending only on p and X by

C = inf

{
||f ||pp − ||E(f)||p

||f − E(f)||pp

∣∣∣∣∣ f ∈ Lp(Ω, ν;X), ||f − E(f)||pp > 0

}
.

Then C is non-negative by Jensen’s inequality. Fix C ′ > C and take f ∈ Lp(Ω, ν;X) with
||f − E(f)||pp > 0 such that

C ′ ||f − E(f)||pp > ||f ||
p
p − ||E f ||

p .
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Fix K > Kp(X). Inserting the vectors 1
2(f + E(f)) and 1

2(f − E(f)) into equation (5.18)
yields the inequality

21−p ||f + E(f)||p +
21−p

Kp
||f − E(f)||p ≤ ||f ||p + ||E(f)||p .

Putting these inequalities together, we derive that

C ′ ||f − E(f)||pp >
∫ (

21−p ||f + E(f)||p +
21−p

Kp
||f − E(f)||p − 2 ||E(f)||p

)
dν

= 21−p
(
||f + E(f)||pp − ||2E(f)||p

)
+

21−p

Kp
||f − E(f)||pp .

Further, by definition of C, we have

||f + E(f)||pp − ||2E(f)||p = ||f + E(f)||pp −
∣∣∣∣∣∣∣∣∫ (f + E(f)) dν

∣∣∣∣∣∣∣∣p ≥ C ||f − E(f)||pp .

Inserting this into the inequality above, we get

C ′ ||f − E(f)||pp > 21−p
(
C +

1

Kp

)
||f − E(f)||pp .

By assumption on f , it follows that C ′ > 21−p(C+ 1/Kp). As K > Kp(X) and C ′ > C were
arbitrary, we may replace K with Kp(X) and C ′ with C. Rearranging, it follows that

C >
1

(2p−1 − 1)Kp(X)p
.

In particular, C > 0, and it is clear by construction that equation (5.19) is satisfied with this
constant, for all f ∈ Lp(Ω, ν;X).

Proposition 5.3.10 holds, in particular, when X is an Lp-space, for p ≥ 2. In this case, one
can proof inequality (5.19) using interpolation theory. This yields a more explicit constant
than what we obtained for general p-uniformly convex spaces.

Proposition 5.3.11. Let p ≥ 2, let Lp(µ) be an Lp-space, and let (Ω, ν) be a probability
space. Then equation (5.19) holds, for all f ∈ Lp(Ω, ν;Lp(µ)), with C = 22−p.

Proof. Consider the sum space L∞(µ) + L2(µ), and recall from Proposition B.1.1 that this
is a Banach space. Define, for each z ∈ S, an operator

Tz : L1(Ω, ν;L∞(µ) + L2(µ))
(
L∞(µ) + L2(µ)

)
⊕ L1

(
Ω, ν;L∞(µ) + L2(µ)

)
by setting

Tz(f) =
(
E(f) , 2z−1

(
f − E(f)

))
.

The direct sum in the codomain of Tz is, a priori, algebraic. We may equip this direct sum
with any p-norm to consider Tz an operator between normed spaces; we shall decorate the
symbol ⊕ accordingly. Regardless of the chosen norm, it is clear that the resulting operators
(Tz)z∈S will constitute an admissible family of bounded linear operators.

For any 2 ≤ q ≤ ∞, Proposition B.1.6 and Theorem B.2.1 implies that Lq(µ) is embedded
continuously into L∞(µ) + L2(µ). Since (Ω, ν) is a probability space, it follows that

Lq(Ω, ν;Lq(µ)) ↪! L1
(
Ω, ν;L∞(µ) + L2(µ)

)
,
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where the embedding is continuous. We may therefore consider Tz as an operator on any
of the Bochner spaces on the left-hand side above. Observe that, for 2 ≤ q ≤ ∞ and
f ∈ Lq

(
Ω, ν;Lq(µ)

)
, Hölder’s inequality yields the following bound on the norm of the

Bochner integral of f :

||E(f)||Lq(Ω,ν;Lq(µ)) = ||E(f)||Lq(µ) ≤
∫
||f(ω)||Lq(µ) dν(ω) ≤ ||f ||Lq(Ω,ν;Lq(µ)) . (5.20)

It follows that the codomain of Tz, as an operator on Lq
(
Ω, ν;Lq(µ)

)
may be restricted to

Lq(µ)⊕q Lq
(
Ω, ν;Lq(µ)

)
.

By Theorem B.2.1, we have the following isometric isomorphisms:

[L∞
(
Ω, ν;L∞(µ)

)
, L2
(
Ω, ν;L2(µ)

)
]2/p ∼= Lp

(
Ω, ν;Lp(µ)

)
,

[L∞(µ)⊕∞ L∞
(
Ω, ν;L∞(µ)

)
, L2(µ)⊕2 L

2
(
Ω, ν;L2(µ)

)
]2/p ∼= Lp(µ)⊕p Lp

(
Ω, ν;Lp(µ)

)
.

For Re(z) = 0, consider Tz an operator on L∞
(
Ω, ν;L∞(µ)

)
. For each t ∈ R and each

f ∈ L∞
(
Ω, ν;L∞(µ)

)
, we derive from equation (5.20) that

||Titf ||L∞(µ)⊕L∞(Ω,ν;L∞(µ)) = max

{
||E(f)||L∞(µ) ,

1

2
ess sup
ω∈Ω

||f(ω)− E(f)||L∞(µ)

}
≤ max

{
||E(f)||L∞(µ) ,

1

2
||f ||L∞(Ω,ν;L∞(µ)) +

1

2
||E(f)||L∞(µ)

}
≤ ||f ||L∞(Ω,ν;L∞(µ)) .

Hence, for all t ∈ R,

||Tit||L∞(Ω,ν;L∞(µ))!L∞(µ)⊕L∞(Ω,ν;L∞(µ)) ≤ 1.

For Re(z) = 1, consider Tz an operator on the Hilbert space L2
(
Ω, ν;L2(µ)

)
. For each

f ∈ L2
(
Ω, ν;L2(µ)

)
, it is straight forward to verify that f and f − E(f) are orthogonal. An

application of Pythagoras then yields that

||Tit+1f ||2L2(µ)⊕L2(Ω,ν;L2(µ)) = ||E(f)||2L2(µ) + ||f − E(f)||2L2(Ω,ν;L2(µ))

= ||E(f)||2L2(Ω,ν;L2(µ)) + ||f − E(f)||2L2(Ω,ν;L2(µ))

= ||f ||2L2(Ω,ν;L2(µ)) .

Hence, for all t ∈ R,

||Tit+1||L2(Ω,ν;L2(µ))!L2(µ)⊕L2(Ω,ν;L2(µ)) = 1.

All requirements for Stein’s interpolation theorem, Theorem B.2.4, are then fulfilled, and
we deduce that T2/p is bounded as an operator on Lp

(
Ω, ν;Lp(µ)

)
! Lp(µ)⊕Lp

(
Ω, ν;Lp(µ)

)
.

Going through the proof of Theorem B.2.4, we see that∣∣∣∣T2/p

∣∣∣∣
Lp(Ω,ν;Lp(µ))!Lp(µ)⊕Lp(Ω,ν;Lp(µ))

≤ 1. (5.21)

For each f ∈ Lp
(
Ω, ν;Lp(µ)

)
, we have∣∣∣∣T2/pf

∣∣∣∣p
Lp(µ)⊕Lp(Ω,ν;Lp(µ))

= ||E(f)||pLp(µ) +
∣∣∣∣∣∣22/p−1

(
f − E(f)

)∣∣∣∣∣∣p
Lp(Ω,ν;Lp(µ))

= ||E(f)||pLp(µ) + 22−p
∫
||f − E(f)||pLp(µ) dν.

Hence, inequality (5.21) is exactly the inequality of equation (5.19) with C = 22−p.
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Proposition 5.3.12. Let p ≥ 2 and let X be a p-uniformly convex Banach space. Let G be
a finite simple unoriented graph. There exists a C > 0 such that, for every f ∈ `p0(G;X),

||∆f ||p`p(G;X) ≤ ||∇f ||
p
`p(E(G);X) −

C

|E(G)|
∑

(s,t)∈E(G)

||f(s)−MGf(t)||p. (5.22)

Proof. Let f ∈ `p0(G;X). For each fixed t ∈ V (G), we may consider the function ∇f( · , t) an
element of `p(Nt;X) – the `p-space of X-valued functions on Nt with Nt equipped with the
uniform probability measure. Denote by E the mean operator on `p(Nt;X). Then

E(∇f( · , t)) =
1

deg(t)

∑
s∼t
∇f(s, t) = f(t)− 1

deg(t)

∑
s∼t

f(s) = f(t)−MGf(t) = ∆f(t),

and

||∇f( · , t)− E(∇f( · , t))||p`p(Nt;X) =
1

deg(t)

∑
s∼t

∣∣∣∣∇f(s, t)−
(
f(t)−MGf(t)

)∣∣∣∣p
=

1

deg(t)

∑
s∼t
||MGf(t)− f(s)||p .

Since V (G) is finite, we can take C > 0 such that equation (5.19) of Proposition 5.3.10 holds
on `p(Nt;X), for all t ∈ V (G). Then

||E(∇f( · , t))||p + C ||∇f( · , t)− E(∇f( · , t))||p`p(Nt;X) ≤ ||∇f( · , t)||p`p(Nt;X) .

Inserting our above preparations, this inequality reads,

||∆f(t)||p +
C

deg(t)

∑
s∼t
||f(s)−MGf(t)||p ≤ 1

deg(t)

∑
s∼t
||∇f(s, t)||p . (5.23)

Each term in this inequality is a function of t, and may, as such, be viewed as elements of
`p(G). We integrate each term over t separately:

1

|E(G)|
∑

t∈V (G)

||∆f(t)||p deg(t) = ||∆f ||p`p(G;X) ,

1

|E(G)|
∑

t∈V (G)

(
1

deg(t)

∑
s∼t
||f(s)−MGf(t)||p

)
deg(t) =

1

|E(G)|
∑

(s,t)∈E(G)

||f(s)−MGf(t)||p ,

1

|E(G)|
∑

t∈V (G)

(
1

deg(t)

∑
s∼t
||∇f(s, t)||p

)
deg(t) = ||∇f ||p`p(E(G;X)) .

Inserting this into equation (5.23) and rearranging yields equation (5.22).

Remark 5.3.13. Let G and X be as in Proposition 5.3.12 above. Denote by πk : E(G) ! V (G)
the k’th projection, for k = 1, 2. For each function f ∈ `p(G;X), the composition f ◦ πk
lies in `p(E(G);X) and has norm equal to the norm of f . An application of the triangle
inequality on `p(E(G);X) yields that 1

|E(G)|
∑

(s,t)∈E(G)

||f(s)−MGf(t)||p
1/p

= ||f ◦ π1 −MGf ◦ π2||`p(E(G);X)

≥ ||f ||`p(G;X) − ||MGf ||`p(G;X) .

Inserting this into equation (5.22) gives us the inequality

||∆f ||pp ≤ ||∇f ||
p
p − C

(
||f ||`p(G;X) − ||MGf ||`p(G;X)

)p
. (5.24)
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Theorem 5.3.14. Let X be a p-uniformly convex Banach space, for p ≥ 2. There exist
ε, δ > 0 (depending on X) such that the following holds: If G is a finite simple undirected
and connected graph with ||MG ||B(`p0(G;X)) ≤ ε then

||f ||`p(G;X) ≤ (1− δ) ||∇f ||`p(E(G);X) , (5.25)

for all f ∈ `p0(G;X).

Proof. Suppose the norm of MG restricted to `p0(G;X) is bounded by some 0 < ε < 1. Let
f ∈ `p0(G;X). By Lemma 5.3.5, Proposition 5.3.12, and Remark 5.3.13, we have that

||f ||p`p(G;X) ≤
1

(1− ε)p
||∆f ||p`p(G;X) ≤

1

(1− ε)p
||∇f ||p`p(E(G);X) − C ||f ||

p
`p(G;X) ,

where C > 0 is a constant depending only on p and X. Rearranging and taking the p’th
root, we obtain the inequality

||f ||`p(G;X) ≤
1

(1− ε)(1 + C)1/p
||∇f ||`p(E(G);X) . (5.26)

If ε < 1 − 1
(1+C)1/p , the constant in the above inequality is strictly smaller than 1. The

theorem then follows with δ = 1− 1
(1−ε)(1+C)1/p .

Remark 5.3.15. Recall from Proposition 5.3.11 that, when X is an Lp-space, we may choose
C = 22−p. Hence, any ε < 1− 1

(1+22−p)1/p will suffice in Theorem 5.3.14. We remark further

that the strict inequality 2
p2p < 1 − 1

(1+22−p)1/p holds, for all p ≥ 2. Hence, we may use any

ε ≤ 2/(p2p) in Theorem 5.3.14 when X is an Lp-space with p ≥ 2.

Lemma 5.3.16. Let Γ be a discrete finitely generated group, and let S be a finite symmetric
generating set not containing the identity and such that the associated link graph, L(S), is
connected. Let 2 ≤ p <∞. If, for any Lp-space X,

||MS ⊗ idX ||B(`p0(L(S);X)) ≤ 2/(p2p)

then Γ has Property (FLp).

Proof. Fix p ≥ 2 and suppose Γ admits a finite generating set with the stated properties
and such that ||MS ||B(`p0(L(S);X)) ≤ 2/(p2p), for any Lp-space X. By Theorem 5.3.14 and

Remark 5.3.15, we may find a δ > 0 such that equation (5.25) holds. We obtain from this
the p-poincaré inequality

inf
x∈X
||f − x||`p(L(S);X) ≤ ||f − E(f)||`p(L(S);X) ≤ (1− δ) ||∇f ||`p(E(S);X) ,

which holds for all f ∈ `p(L(S);X). Since X is any Lp-space, it follows from Theorem 5.3.4
that Γ has Property (FLp).

Lemma 5.3.17. Let G be a finite simple undirected graph and let X be a Banach space. If
||MG ||B(`20(G)) ≤ ε, for some ε > 0, then

||MG ⊗ idX ||B(`20(G;X)) ≤ 2∆X (ε/2) .

Proof. Denote by P the orthogonal projection onto `20(G) and consider the operator MGP
on `2(G). By assumption,

||MGP ||B(`2(G)) = ||MG ||B(`20(G)) ≤ ε.
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Further, recall that P is given by Pf = f − E(f), for all f ∈ `2(G), so as the constant
functions are invariant for MG , we see that MGP = MG − E. Both MG and E are operators
on `2(G) with operator norm equal to 1, and their canonical matrix representations have all
non-negative entries. Thus, by the triangle inequality and by Lemma 5.3.2,

||MGP ||reg ≤ ||MG ||reg + ||E||reg = ||MG ||B(`2(G)) + ||E||B(`2(G)) = 2.

It follows directly from the definition of ∆X that

||MG ⊗ idX ||B(`20(G;X)) = ||MGP ⊗ idX ||B(`2(G;X)) ≤ 2∆X (ε/2) ,

as we wanted to show.

Theorem 5.3.18. Let Γ be a discrete finitely generated group, and let S be a finite symmetric
generating set not containing the identity and such that the associated link graph, L(S), is
connected. Let 2 ≤ p <∞. If

||MS ||B(`20(L(S))) ≤
2

pp2/42p3/4

then Γ has Property (FLp).

Proof. For each q ≥ 2, we denote by P the projection onto `q0(L(S)) along the subspace of
constant functions, i.e., Pf = f − E(f), for all f ∈ `q(L(S)). Let X be an Lp-space. If
||MS ||B(`20(L(S))) ≤ ε, for some ε > 0, Lemma 5.3.17 and Lemma 5.3.3 gives us that

||MSP ⊗ idX ||B(`2(L(S);X)) = ||MS ⊗ idX ||B(`20(L(S);X)) ≤ 2 (ε/2)2/p = ε2/p21−2/p.

As the constant functions are invariant for MS , we see that MSP = MS − E. One easily
verifies that MS ⊗ idX and E⊗ idX both have norm 1 as operators on `∞(L(S);X) (without
any assumptions on X). Hence,

||MSP ⊗ idX ||B(`∞(L(S);X)) ≤ ||MS ⊗ idX ||B(`∞(L(S);X)) + ||E⊗ idX ||B(`∞(L(S);X)) = 2.

By complex interpolation of Bochner space, Theorem B.3.1 and by the Riesz-Thorin theorem
for Bochner spaces, Theorem B.3.2, we deduce that MSP ⊗ idX is bounded as an operator
on `p(L(S);X), and we have the following bound on the norm:

||MSP ⊗ idX ||B(`p(L(S);X)) ≤ ||MSP ⊗ idX ||2/pB(`2(L(S);X))
||MSP ⊗ idX ||1−2/p

B(`∞(L(S);X))

≤ ε4/p2
22/p−4/p2

21−2/p = ε4/p2
21−4/p2

For ε = 2/(pp
2/42p

3/4), we obtain the bound

||MS ⊗ idX ||B(`p0(L(S);X)) = ||MSP ⊗ idX ||B(`p(L(S);X)) ≤
2

p2p
.

The theorem therefore follows from Lemma 5.3.16.

5.4 Literature

The proof of Żuk’s condition for Property (T ) presented in Theorem 5.2.11 can be found in
[9, Theorem 12.1.15]. Section 5.3 follows the paper by T. de Laat and M. de la Salle [14].
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Appendix A

Geometry of Banach spaces

We assume the reader is familiar with ultrapowers. We shall use U to denote a free ultrafilter
on some (infinite) index set.

A.1 Superreflexivity

Definition A.1.1. A Banach space is said to be superreflexive if every ultrapower is reflexive.

Remark A.1.2. Superreflexive Banach spaces are, in particular, reflexive. To see this, note
that the principal filter on the one-point set is an ultrafilter, and that the ultrapower of any
Banach space with respect to this filter equals itself.

We state and proof below some permanence properties of superreflexive Banach spaces.
Later, in Theorem A.4.4, we shall present a different characterization of superreflexive Banach
spaces in terms of certain properties of the norm.

Proposition A.1.3. Let X be a superreflexive Banach space. Then any Banach space
isomorphic to a closed subspace of X is superreflexive, as well.

Proof. Let M be a closed subspace of B and let MU be an ultrapower of M . Then MU is
a closed subspace of XU . Since X is superreflexive, MU is reflexive, and we deduce that M
is superreflexive. The statement follows for any Banach space isomorphic to M , as Banach
space isomorphisms lift to ultrapowers and as reflexivity is an isomorphism invariant.

Theorem A.1.4. Let X be a Banach space over K(= R or C), I an index set and U a free
ultrafilter on I. The map j : (X∗)U ! (XU )∗ given by

j([(fi)i∈I ])([(xi)i∈I ]) = lim
U
fi(xi), for [(fi)i∈I ] ∈ (X∗)U and [(xi)i∈I ] ∈ XU ,

is a well-defined isometric embedding of (X∗)U into (XU )∗. If, moreover, the ultrapower XU
is reflexive, then j is surjective.

Proof. Let [(xi)i∈I ] ∈ BU and [(fi)i∈I ] ∈ (X∗)U . For every i ∈ I,

|fi(xi)| ≤ ||fi|| ||xi|| ≤
(

sup
i∈I
||fi||

)(
sup
i∈I
||xi||

)
<∞.

Hence, the net (fi(xi))i∈I is contained in BK(0,M), for M = || (fi)i∈I ||∞ · || (xi)i∈I ||∞. As
BK(0,M) is compact, the limit limU fi(xi) exists, and a K is Hausdorff it is unique.

Define a map j : (X∗)U ! (XU )∗ by setting

j([(fi)i∈I ])([(xi)i∈I ]) = lim
U
fi(xi),
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for every [(fi)i∈I ] ∈ (X∗)U and [(xi)i∈I ] ∈ XU . It is direct from the linearity of the ultralimit
that j([(fi)i∈I ]) is a linear map. To see that j([(fi)i∈I ]) is bounded, note that | · | : K ! R is
continuous, and so, |limU fi(xi)| = limU |fi(xi)|. Further, multiplicativity and monotonicity
of the ultralimit ensures that∣∣j([(fi)i∈I ])([(xi)i∈I ])∣∣ =

∣∣∣lim
U
fi(xi)

∣∣∣ = lim
U
|fi(xi)| ≤ lim

U
||fi|| ||xi||

= lim
U
||fi|| lim

U
||xi|| =

∣∣∣∣[(fi)i∈I ]∣∣∣∣U ∣∣∣∣[(xi)i∈I ]∣∣∣∣U .
Hence,

∣∣∣∣j([(fi)i∈I ])∣∣∣∣ ≤ ∣∣∣∣[(fi)i∈I ]∣∣∣∣U .
We proceed to show that j is an isometry. Let ε > 0. For every i ∈ I, take xi ∈ X

with ||xi|| = 1 such that |fi(xi)| ≥ ||fi|| − ε. Then (xi)i∈I ∈ `∞(I,X) and
∣∣∣∣[(xi)i∈I ]∣∣∣∣U =

limU ||xi|| = 1. We may assume that fi(xi) is real and positive, for each i ∈ I, (otherwise,
multiply xi with the appropriate phase). Then∣∣∣∣j([(fi)i∈I ])∣∣∣∣ ≥ ∣∣j([(fi)i∈I ])([(xi)i∈I ])∣∣ =

∣∣lim
U
fi(xi)

∣∣ = lim
U
fi(xi)

≥ lim
U

(||fi|| − ε) =
∣∣∣∣[(fi)i∈I ]∣∣∣∣U − ε.

It follows that
∣∣∣∣j([(fi)i∈I ])∣∣∣∣ ≥ ∣∣∣∣[(fi)i∈I ]∣∣∣∣U . Hence, j is an isometry.

Assume now that XU is reflexive, and suppose for contradiction that j((X∗)U ) is a proper
closed subspace of (XU )∗. By the Hahn-Banach Theorem (see [19, Theorem 5.8(a)]), we may
find ϕ ∈ (XU )∗∗ with ||ϕ|| = 1 such that the restriction of ϕ to j((X∗)U ) equals zero. If XU
is reflexive, then ϕ = x̂, for some x ∈ XU with ||x||U = ||ϕ|| = 1. Let (xi)i∈I ∈ `∞(I,X)
be a representative of x. Invoking the Hahn-Banach Theorem once more (see [19, Theorem
5.8(b)]), we find a net (fi)i∈I in (X∗)U with ||fi|| = 1 and fi(xi) = ||xi||, for each i ∈ I.
Then f = [(fi)i∈I ] is an element of (X∗)U with ||f ||U = limU ||fi|| = 1, and we arrive at the
contradiction

0 = x̂(j(f)) = j(f)(x) = lim
U
fi(xi) = lim

U
||xi|| = ||x||U = 1.

Hence, we must have that j is surjective.

Corollary A.1.5. A Banach space is superreflexive if and only if its dual is, as well.

Proof. SupposeX is a superreflexive Banach space. Then (X∗)U is (isometrically) isomorphic
to (XU )∗, for any ultrafilter U , by Theorem A.1.4. Since reflexivity is an isomorphism
invariant, we deduce that X∗ is superreflexive, as well. Conversely, if X∗ is superreflexive,
then X∗∗ is superreflexive, by the above argument. Since superreflexive Banach spaces are,
in particular, reflexive (see Remark A.1.2), we may deduce by Proposition A.1.3 that X is
superreflexive.

A.2 Uniform convexity

Definition A.2.1. A Banach space X is said to be uniformly convex if, for every ε > 0 there
exists a δ(ε) > 0 such that, for all elements x, y ∈ X with ||x|| = ||y|| = 1 and ||x− y|| ≥ ε, it
holds that ∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ≤ 1− δ(ε). (A.1)

Observe that if δ ≥ 0 is such that inequality (A.1) is satisfied for two given elements
x, y ∈ X of norm 1, then any smaller δ′ ≥ 0 also satisfies this inequality for these elements,
and the biggest δ ≥ 0 can be is 1 − ||(x+ y)/2||. This leads us to define the modulus of
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convexity as the biggest δ(ε) satisfying inequality (A.1) for all norm 1 elements of X at least
ε apart:

δX(ε) = inf

{
1−

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ∣∣∣∣ ||x|| = ||y|| = 1, ||x− y|| ≥ ε
}
. (A.2)

Remark A.2.2. The modulus of convexity is a monotonically increasing function in ε > 0.
Indeed, as ε increases, the infimum is taken over a smaller set. Further, we remark that X
is uniformly convex if and only if the modulus of convexity is strictly positive, for all ε > 0.

Lemma A.2.3. Let X be a Banach space. Then X is uniformly convex if and only if, for
all r > 0 and for every ε > 0 there exists a δ(ε) > 0 such that, whenever x, y ∈ X with
||x|| , ||y|| ≤ r are such that ||x− y|| ≥ ε, it holds that∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ≤ r − δ(ε).
Proof. It is clear that the stated condition implies that X is uniformly convex. Suppose, con-
versely, that X is uniformly convex. Set r = 1 and fix ε > 0. Put ε0 = min{ε/4, 1

2δX(ε/2), 1}.
Then ε− 2ε0 ≥ ε/2 so that δX(ε− 2ε0) ≥ δX(ε/2) > ε0. Set

δ(ε) = min{ε0/2, δX(ε− 2ε0)− ε0}.

Then 0 < δ(ε) < 1. Let x, y ∈ X elements with ||x|| , ||y|| ≤ 1 and such that ||x− y|| ≤ ε. If
either ||x|| ≤ 1− ε0 or ||y|| ≤ 1− ε0 (or both) then∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ≤ 1− ε0

2
≤ 1− δ(ε).

Suppose therefore that x, y ∈ X are such that 1 − ε0 ≤ ||x|| , ||y|| ≤ 1. Set x′ = x/ ||x|| and
y′ = y/ ||y||. We have ||x′ − x|| = 1− ||x|| ≤ ε0, and similarly for y. Hence,∣∣∣∣x′ − y′∣∣∣∣ ≥ ||x− y|| − ∣∣∣∣x′ − x∣∣∣∣ − ∣∣∣∣y′ − y∣∣∣∣ ≥ ε− 2ε0.

By construction, ε − 2ε0 > 0, and so, uniform convexity implies that ||(x′ + y′)/2|| ≤ 1 −
δX(ε− 2ε0). It follows that∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ≤ 1

2

(∣∣∣∣x− x′∣∣∣∣ +
∣∣∣∣x′ − y′∣∣∣∣ +

∣∣∣∣y′ + y
∣∣∣∣) ≤ 1−

(
δX(ε− 2ε0)− ε0

)
≤ 1− δ(ε).

We conclude that the stated condition holds for r = 1. Finally, let r > 0 be arbitrary. For
ε > 0, let x, y ∈ B be such that ||x|| , ||y|| ≤ r and such that ||x− y|| ≥ ε. Set x′ = x/r and
y′ = y/r, then ||x′|| , ||y′|| ≤ 1 and ||x′ − y′|| ≥ ε/r. By our above derivations, this implies that∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ = r

∣∣∣∣∣∣∣∣x′ + y′

2

∣∣∣∣∣∣∣∣ ≤ r − rδ(ε/r),
where δ(ε) is as constructed above. Hence, the stated condition holds for all r > 0.

A.2.1 The duality map

Recall from the Hahn-Banach Theorem (see [19, Theorem 5.8(b)]) that, for each element x
of a Banach space X, there exists a linear functional x∗ ∈ X∗ with ||x∗|| = 1 and x∗(x) = ||x||.
A useful fact in uniformly convex Banach spaces, which we show in Proposition A.2.5 below,
is that this functional is unique with these properties. In fact, this result is true in the larger
class of strictly convex Banach spaces defined below.
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Definition A.2.4. A Banach space X is said to be strictly convex if, whenever x, y ∈ X
with ||x|| = ||y|| = 1 are distinct elements, then ||(x+ y)/2|| < 1.

Proposition A.2.5. Let X be a Banach space with a strictly convex dual. For every non-zero
x ∈ X there exists a unique linear functional x∗ ∈ X∗ with ||x∗|| = 1 and x∗(x) = ||x||.

Proof. The existence of such a functional is ensured by the Hahn-Banach Theorem (see [19,
Theorem 5.8(b)]). To show uniqueness, assume that ||x|| = 1 and suppose λ, λ′ ∈ X∗ are
both functionals with ||λ|| = ||λ′|| = 1 and λ(x) = λ′(x) = ||x|| = 1. Then∣∣∣∣∣∣∣∣λ+ λ′

2

∣∣∣∣∣∣∣∣ ≥ λ+ λ′

2
(x) =

1

2
λ(x) +

1

2
λ′(x) = 1.

Thus, if X∗ is strictly convex, we must have λ = λ′. Finally, if x ∈ X is any non-zero
element and λ is a linear functional with ||λ|| = 1 and λ(x) = ||x||, then λ(x/ ||x||) = 1.
Hence, uniqueness of the functional associated to x follows from uniqueness of the functionals
associated to the unit elements.

For a strictly convex Banach space X, we shall refer to the map ∗( · ) : X ! X∗ which
maps each element x ∈ X to the unique functional x∗ ∈ X∗ with ||x∗|| = 1 and x∗(x) = ||x||
as the duality map. We remark that this map may be defined for all Banach spaces; only
in general it is a set-valued map. Returning to uniformly convex Banach spaces, we shall
end our short discussion on this map by showing a useful continuity property in Proposition
A.2.7 below.

Lemma A.2.6. Let X be a Banach space, let x, y ∈ X and let x∗, y∗ ∈ X∗ denote functionals
with ||x∗|| = ||y∗|| = 1, x∗(x) = ||x|| and y∗(y) = ||y||. If ||x|| = ||y|| = 1 then

||x∗ + y∗|| + ||x− y|| ≥ 2. (A.3)

Proof. For any x, y ∈ X, we have

(x∗ + y∗)(x+ y) + (x∗ − y∗)(x− y) = 2(||x|| + ||y||).

Therefore, if ||x|| = ||y|| = 1, we see that

4 = (x∗ + y∗)(x+ y) + (x∗ − y∗)(x− y)

≤ ||x∗ + y∗|| ||x+ y|| + ||x∗ − y∗|| ||x− y||
≤ 2 ||x∗ + y∗|| + 2 ||x− y|| .

Inequality (A.3) follows by rearrangement.

Proposition A.2.7. Let X be a Banach space. If X∗ is uniformly convex, the duality map
∗( · ) : X ! X∗ is uniformly continuous on the unit sphere of X.

Proof. Let ε > 0. Since X∗ is uniformly convex, we may take δ > 0 such that, whenever
f, f ′ ∈ X∗ with ||f || = ||f ′|| = 1 are such that ||f + f ′|| > 2 − δ then ||f − f ′|| < ε. For each
pair of elements x, y ∈ X with ||x|| , ||y|| = 1 such that ||x− y|| < δ, Lemma A.2.6 yields that

||x∗ + y∗|| ≥ 2− ||x− y|| > 2− δ. (A.4)

By the choice of δ > 0, this implies that ||x∗ − y∗|| < ε. Hence, the duality map is uniformly
continuous on the unit sphere of X.
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A.3 Uniform smoothness

Uniform convexity is not preserved under taking duals, but it does have a dual property:
uniform smoothness. We define this property below and proof that uniform convexity and
uniform smoothness are, indeed, duals of each other.

Definition A.3.1. Let X be a Banach space. The modulus of smoothness of X is the
function ρB : (0,∞) ! [0,∞) defined, for each t > 0, by

ρB(t) = 1
2 sup { ||x+ ty|| + ||x− ty|| − 2 | ||x|| = ||y|| = 1 } .

The Banach space X is said to be uniformly smooth if ρX(t)/t! 0, as t! 0.

Remark A.3.2. The definition of the modulus of smoothness is equivalent to the following:

ρX(t) = 1
2 sup { ||x+ ty|| + ||x− ty|| − 2 | ||x|| = 1, ||y|| ≤ 1 } .

In particular, it follows that ρX is a monotonously increasing function. Further, ρX is
bounded above by the identity function on (0,∞), and so, or every t > 0, ρX(t)/t lies in the
interval [0, 1].

The following lemma, which can be found in [4, Lemma 3, p. 208], establishes a connec-
tion between the modulus of smoothness of a Banach space and the modulus of convexity of
its dual.

Lemma A.3.3. Let X be a Banach space. For every t > 0, the following equalities hold:

ρX∗(t) = sup
0<ε≤2

(
tε

2
− δX(ε)

)
, (A.5)

ρX(t) = sup
0<ε≤2

(
tε

2
− δX∗(ε)

)
. (A.6)

Proof. Fix t > 0. Let ε > 0 and let x, y ∈ X with ||x|| = ||y|| = 1 be such that ||x− y|| ≥ ε
and such that x 6= −y. By the Hahn-Banach Theorem [19, Theorem 5.8(b)], we may find
f, g ∈ X∗ with ||f || = ||g|| = 1 such that f(x+ y) = ||x+ y|| and g(x− y) = ||x− y||. Then

2ρX∗(t) ≥ ||f + tg|| + ||f − tg|| − 2 ≥ |(f + tg)(x)|+ |(f − tg)(y)| − 2

≥ |f(x+ y) + tg(x− y)| − 2 ≥ ||x+ y|| + tε− 2.

Rearranging, it follows that ρX∗(t) ≥ tε/2 + ||x+ y|| /2 − 1. Since x, y ∈ X were arbitrary
unit elements at least ε apart, we deduce that ρX∗(t) ≥ tε/2− δX(ε). Taking the supremum
over 0 < ε ≤ 2 then yields that

ρX∗(t) ≥ sup
0<ε≤2

(
tε

2
− δX(ε)

)
.

To show the converse inequality, take f, g ∈ X∗ with ||f || = ||g|| = 1. Let η > 0. We may find
x, y ∈ X with ||x|| = ||y|| = 1 such that (f+tg)(x) ≥ ||f + tg||−η and (f−tg)(y) ≥ ||f − tg||−η.
Then we see that

||f + tg|| + ||f − tg|| ≤ (f + tg)(x) + (f − tg)(y) + 2η ≤ ||x+ y|| + t ||x− y|| + 2η.

Assume that x 6= y and set ε = ||x− y||. Then 2− ||x+ y|| ≥ 2δX(ε). Inserting this into the
above inequality, we get

||f + tg|| + ||f − tg|| ≤ 2− 2δB(ε) + tε+ 2η ≤ 2 + 2 sup
0<ε≤2

(
tε

2
− δB(ε)

)
+ 2η.
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By definition of the modulus of smoothness, and since η > 0 was arbitrary, we deduce that

ρX∗(t) ≤ sup
0<ε≤2

(
tε

2
− δX(ε)

)
.

The desired equality (A.5) follows.
We proceed to show equation (A.6). Observe first that, since X embeds isometrically

into X∗∗, ρX(t) ≤ ρX∗∗(t), for all t > 0. Hence, we need only show that the left-hand side of
(A.6) is greater than or equal to the right-hand side. For this, let ε > 0 and take f, g ∈ X∗
with ||f || = ||g|| = 1 and ||f − g|| ≥ ε. Let η > 0 and take x, y ∈ X with ||x|| = ||y|| = 1 and
such that (f + g)(x) ≥ ||f + g|| − η and (f − g)(y) ≥ ||f − g|| − η. Then

2ρX(t) ≥ ||x+ ty|| + ||x− ty|| − 2 ≥ |f(x+ ty)|+ |g(x− ty)| − 2

≥ |(f + g)(x) + t(f − g)(y)| − 2 ≥ ||f + g|| + tε− 2η − 2.

Rearranging and recalling that η > 0 was arbitrary, it follows that ρX(t) ≥ tε/2+||f + g|| /2−
1. As f, g ∈ X∗ were arbitrary unit elements at least ε apart, we deduce that ρX(t) ≥
tε/2− δX∗(ε). Taking the supremum over 0 < ε ≤ 2 then yields that

ρX(t) ≥ sup
0<ε≤2

(
tε

2
− δX∗(ε)

)
.

Equation (A.6) follows.

Theorem A.3.4. A Banach space is uniformly convex (uniformly smooth) if and only if its
dual is uniformly smooth (uniformly convex).

Proof. Let X be a uniformly convex Banach space and suppose, for contradiction, that X∗ is
not uniformly smooth. Then we may find a decreasing sequence of positive numbers (tn)n≥1

converging to zero and such that the sequence (ρX∗(tn)/tn)n≥1 converges to a number a > 0.
By Lemma A.3.3, it follows that

sup
0<ε≤2

(
ε

2
− δX(ε)

tn

)
! a as n!∞.

Take N ∈ N such that sup0<ε≤2(ε/2 − δX(ε)/tn) > a/2, for all n ≥ N . We may then,
for each n ≥ N , take 0 < εn ≤ 2 such that εn − a > 2δX(εn)/tn. Since X is uniformly
convex, δX(εn) > 0, and so εn > a, for all n ≥ N . On the other hand, we see that
tn(εn − a) > 2δX(εn), by construction of εn. The left-hand side of this inequality clearly
tends to zero, as n tends to infinity, and then so does the right-hand side. But as δX is a
monotonously increasing function, it follows that δX(ε) = 0, for ε ∈ (0, a). This contradicts
that X is uniformly convex. Hence, we conclude that X∗ is uniformly smooth.

Let now X be any Banach space such that X∗ is not uniformly convex. Then we may
find an 0 < ε0 ≤ 2 such that δX∗(ε0) = 0. By Lemma A.3.3, it follows that

ρX(t)

t
= sup

0<ε≤2

(
ε

2
− δX∗(ε)

t

)
≥ ε0

2
− δX∗(ε0)

t
=
ε0

2
.

This holds for all t > 0, and so, ρX(t)/t does not converge to zero. Hence, B is not uniformly
smooth, and we conclude that uniform smoothness implies uniform convexity of the dual.
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A.4 Renormings of superreflexive Banach spaces

Uniform convex, respectively uniformly smooth, Banach spaces form a subclass of the class
of superreflexive Banach spaces. We start by considering the former. Theorem A.4.1 below,
stating that uniform convexity implies reflexivity, was proven independently by D. Milman
[32] and B. J. Pettis [33]. We follow the shorter proof given by J. R. Ringrose in [39]. That
uniformly convex spaces are, furthermore, superreflexive, is a corollary to this.

Theorem A.4.1 (Milman-Pettis). Every uniformly convex Banach space is reflexive.

Proof. Let X be a uniformly convex Banach space, and suppose, for contradiction, that X
is not reflexive. Let SX and SX∗∗ denote the closed unit spheres in X and X∗∗, respectively.
Denote by ŜX the image of SX in X∗∗ and recall that ŜX is closed in norm. If X is not
reflexive, we may find ϕ ∈ X∗∗ with ||ϕ|| = 1 and ε > 0 such that ϕ is at a distance of at

least 2ε from ŜX . By Goldstine’s theorem, any element of SX∗∗ is in the weak∗-closure of
ŜX . Therefore, if ϕ ∈ V ⊂ X∗∗ is any weak∗-neighborhood of ϕ, we see that ϕ is in the
weak∗-closure of ŜX ∩ V . In particular ŜX ∩ V is non-empty.

Let δ = δX(ε) be the modulus of convexity of X at ε. We may find f ∈ X∗ such that
|ϕ(f)− 1| < δ. Define V = {ψ ∈ X∗∗ | |ψ(f)− 1| < δ }. Then V is a weak∗-neighborhood
of ϕ, and so, it has non-empty intersection with ŜX . Observe now that any ψ ∈ V must, in
particular, satisfy ψ(f) > 1−δ. Thus, if ψ and ψ′ are both in V , we see that |ψ(f) + ψ′(f)| >
2(1 − δ), and therefore, ||(ψ + ψ′)/2|| > 1 − δ. As X is uniformly convex, this implies that

||ψ − ψ′|| < ε. Hence, ŜX ∩ V ⊂ ϕ + εSX∗∗ . But, as the former set is non-empty, this

contradicts that ϕ is at a distance of at least 2ε from ŜX . Hence, we must have that X is
reflexive.

Corollary A.4.2. Every uniformly convex Banach space is superreflexive.

Proof. Let X be a uniformly convex Banach space. Then X is reflexive, by Theorem A.4.1,
and then so is X∗. Let U be an ultrafilter on some index set. We aim to show that the
ultrapower XU is reflexive. Note first that isomorphisms lift to ultrapowers, and so, we have
a canonical isomorphism XU ∼= (X∗∗)U . Let j : (X∗)U ! (XU )∗ and k : (X∗∗)U ! ((X∗)U )∗

be the isometric isomorphisms of Theorem A.1.4 applied to X and X∗, respectively. Note
that the adjoint of j is an isometric isomorphism j∗ : (XU )∗∗ ! ((X∗)U )∗. As usual, we
have an isometric embedding of XU into its double dual. Now, one can easily check that the
following diagram commutes:

XU (XU )∗∗

(X∗∗)U ((X∗)U )∗
ˆ j∗

k

Hence, the canonical isometric embedding XU ↪! (XU )∗∗ is an isometric isomorphism.

As a corollary to the above corollary, we obtain that uniformly smooth Banach spaces
are superreflexive, as well.

Corollary A.4.3. Every uniformly smooth Banach space is superreflexive.

Proof. LetX be a uniformly smooth Banach space. Then the dualX∗ is uniformly convex, by
Theorem A.3.4. Hence, X∗ is superreflexive, by Corollary A.4.2, and so, X is superreflexive,
by Corollary A.1.5.
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Superreflexive Banach spaces are not, in general, uniformly convex. Indeed, if super-
reflexivity implied uniform convexity, the class of superreflexive Banach spaces would be
nothing but the class of reflexive Banach spaces, which is not the case. A counterexample
is given by the closure of the direct sum

⊕
n∈N `

1
n in the 2-norm. Superreflexive Banach

spaces are not, in general, uniformly smooth either. This is because uniform smoothness and
uniform convexity are duals of each other. However, a deep result due to Enflo and Pisier,
which we present below without proof, shows that superreflexivity can be characterized by
having an equivalent norm which is uniformly convex and uniformly smooth.

Theorem A.4.4. Let X be a Banach space. The following are equivalent:

(i) X is superreflexive,

(ii) There is an equivalent uniformly convex norm on X,

(iii) There is an equivalent uniformly smooth norm on X,

(iv) There is an equivalent uniformly convex and uniformly smooth norm on X.

A.5 Superreflexivity of Lp

Lemma A.5.1. Let a, b ∈ R.

(i) For every 1 ≤ p ≤ 2, it holds that

|a+ b|p + |a− b|p ≥ 2p−1
(
|a|p + |b|p

)
. (A.7)

(ii) For every 2 ≤ p <∞, it holds that

|a+ b|p + |a− b|p ≤ 2p−1
(
|a|p + |b|p

)
. (A.8)

Proof. We start by remarking, that for p = 2, equations (A.7) and (A.8), with the left- and
right-hand side being equal, is the parallelogram identity for the Hilbert space R.

For each x, y ≥ 0 and each 0 < α ≤ 1, we claim that the following inequality hold:

(x+ y)α ≤ xα + yα. (A.9)

The case for α = 1 is trivial, so assume 0 < α < 1. Pulling the larger of x and y out of the
parenthesis, we see that it suffices to proof this claim for y = 1 and 0 ≤ x ≤ 1. Consider the
function f(x) = 1 + xα − (1 + x)α, for 0 ≤ x ≤ 1. The requirement that 0 < α < 1 ensures
that the derivative of f is positive, and so, inequality (A.9) follows as f(0) = 0.

For any 1 ≤ q ≤ p <∞ and any x, y ∈ R, it follows from inequality (A.9) that(
|x|p + |y|p

)1/p
=
(
|x|p + |y|p

)q/pq ≤ (|x|q + |y|q
)1/q

. (A.10)

For 1 ≤ p < 2, the parallelogram identity on R together with equation (A.10) yields(
|a+ b|p + |a− b|p

)1/p ≥ (|a+ b|2 + |a− b|2
)1/2

= 21/2
(
|a|2 + |b|2

)1/2
.

Further, Hölders inequality for the space `
2/p
2 and its conjugate yields

|a|p + |b|p ≤ 21−p/2(|a|2 + |b|2
)p/2

.

Putting this together and taking the p’th power yields inequality (A.7).
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For p ≥ 2, use Hölders inequality for the space `
p/2
2 and its conjugate to derive

|a|2 + |b|2 ≤ 21−2/p
(
|a|p + |b|p

)2/p
.

Inequality (A.8) is then obtained analogously to inequality (A.7) using equation (A.10) and
the parallelogram identity on R.

Using monotonicity of the integral, we obtain the following inequalities, named after J.A.
Clarkson, as an immediate corollary to Lemma A.5.1.

Corollary A.5.2 (Clarkson’s inequality). Let f, g ∈ Lp(µ).

(i) For 1 ≤ p ≤ 2, it holds that

||f + g||pp + ||f − g||pp ≥ 2p−1
(
||f ||pp + ||g||pp

)
. (A.11)

(ii) For 2 ≤ p <∞, it holds that

||f + g||pp + ||f − g||pp ≤ 2p−1
(
||f ||pp + ||g||pp

)
. (A.12)

Theorem A.5.3. For any 2 ≤ p <∞, the space Lp(µ) is uniformly convex.

Proof. We aim to show that, for f, g ∈ Lp(µ) with ||f ||p = ||g||p = 1 and ||f − g||p ≥ ε, it
holds that ||f + g||p ≤ 2 − δ(ε), for some δ(ε) > 0 depending only on ε > 0. Let 0 < ε ≤ 2.
For f, g ∈ Lp(µ) with the stated properties, we derive from Corollary A.5.2 the following
inequality:

||f + g||pp ≤ 2p − ||f − g||pp ≤ 2p − εp.

Set δ(ε) = 2− (2p − εp)1/p. Then ||f + g||p ≤ 2− δ(ε), as wanted.

Corollary A.5.4. The Lp-spaces are superreflexive, for all 1 < p <∞.

Proof. For 2 ≤ p < ∞, superreflexivity is a consequence of Theorem A.5.3 together with
Corollary A.4.2. Superreflexivity for 1 < p < 2 follows from Corollary A.1.5.

Remark A.5.5. It can also be shown that all Lp-spaces with 1 < p < 2 are uniformly convex
(see [10] and [23]). With this result at hand, superreflexivity of the Lp-spaces follows directly
from Corollary A.4.2, for all 1 < p <∞.
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Appendix B

Complex interpolation

We give in this appendix a brief overview of basics of the theory of complex interpolation.
It is not our intention that this appendix constitutes a self-sustained introduction. Instead
we merely aim to provide the tools needed in Section 5.3. Most proofs are omitted and
the reader is referred to [7] and [28] for more thorough introductions, and to [24] for an
introduction to complex interpolation of Bochner spaces.

B.1 Complex interpolation

Let (X0, || · ||X0
) and (X1, || · ||X1

) be Banach spaces over C. The pair (X0, X1) is called
compatible if there exists a Hausdorff topological vector space V and C-linear continuous
embeddings ιj : Xj ↪! V , j = 0, 1. We may in this case view X0 and X1 as vector subspaces
of V by identifying them with the images of their respective embeddings. For a compatible
pair of Banach spaces (X0, X1), we define their intersection space, respectively, their sum
space as the vector supspaces of V given by

X0 ∩X1 := ι0(X0) ∩ ι1(X1),

X0 +X1 := ι0(X0) + ι1(X1).

We equip these vector spaces with the following norms:

||x||X0∩X1
= max{||x||X0

, ||x||X1
},

||y||X0+X1
= inf

{
||a0||X0

+ ||a1||X1

∣∣ y = ι0(a0) + ι1(a1)
}
,

for each x ∈ X0 ∩X1 and each y ∈ X0 +X1.

Proposition B.1.1. The sum space and the intersection space of two compatible Banach
spaces are Banach spaces.

B.1.1 Analytic functions on the strip

Denote by S the strip in the complex plane, i.e., S = { z ∈ C | 0 ≤ Re(z) ≤ 1 }, and by S◦ its
interior. A central tool in the complex interpolation method, which we present in a moment,
is the three lines lemma attributed to J. Hadamard in [22]. Following [1], we shall proof the
three lines lemma as a corollary to a generalisation of the maximum-modulus principle due
to E. Phragmén and E. Lindelöf in [34].

Theorem B.1.2 (Phragmén-Lindelöf). Let X be a complex Banach space and suppose that
f : S ! X is continuous and bounded on S and analytic on S◦. Then

sup
z∈S
||f(z)||X ≤ max

{
sup
t∈R
||f(it)||X , sup

t∈R
||f(1 + it)||X

}
. (B.1)
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Proof. Suppose that X = C and assume that f(z) ! 0 as Im(z) tends to plus or minus
infinity. Let h : S ! C be the map given by

h(z) =
eiπz − i
eiπz + i

, z ∈ S.

Note that h is the composition of the analytic map z 7! eiπz with the Cayley transformation.
The map z 7! eiπz maps S bijectively to the closed upper half plane excluding {0} (the
interior of the strip is mapped to the open upper half plane). Hence, h maps S bijectively to
D = BC(0, 1)\{±1}. The composition g = f ◦ h−1 is therefore bounded and continuous on
D and analytic on the interior of D. Further, the assumption on the asymptotic properties
of f ensures us that limz!±1 g(z) = 0. We may therefore extend g continuously to BC(0, 1).
The maximum modulus principle then yields that g attains its maximum modulus on the
boundary of its domain. Unless g is equal zero, the maximum modulus is not attained at
±1. The remaining boundary of D corresponds exactly to the boundary of S under the
transformation h. Hence, for each z ∈ S,

|f(z)| ≤ sup
z∈D
|g(z)| = max

|z|=1
|g(z)| = max

{
sup
t∈R
|f(it)| , sup

t∈R
|f(1 + it)|

}
.

Next, let f : S ! C be any function satisfying the assumptions of the theorem. For fixed
z0 ∈ S◦ and δ > 0, let fz0,δ : S ! C be the function given by fz0,δ(z) = eδ(z−z0)2

f(z), for all
z ∈ S. For each z ∈ S, we may write z− z0 = a+ ib, for some a ∈ [−1, 1] and some b ∈ R. In

terms of a and b, we see that
∣∣∣eδ(z−z0)2

∣∣∣ = eδ(a
2−b2). Thus, fz0,δ(z) ! 0 as Im(z) tends to plus

or minus infinity. Moreover, it is clear that
∣∣eδ(z − z0)2

∣∣ ≤ eδ, so that |fz0,δ(z)| = eδ |f(z)|.
It then follows from the above preparations that

|f(z0)| = |fδ,z0(z0)| ≤ max

{
sup
t∈R
|fδ,z0(it)| , sup

t∈R
|fδ,z0(1 + it)|

}
≤ eδ max

{
sup
t∈R
|f(it)| , sup

t∈R
|f(1 + it)|

}
.

For each z0 ∈ S◦, this inequality holds for all δ > 0, and so, letting δ ! 0, we obtain
inequality (B.1) in the case where A = C.

Finally, let X be any Banach space and let f : S ! X be as in the assumptions. For
z0 ∈ S0 such that f(z0) 6= 0, we may, by the Hahn-Banach theorem, find x∗ ∈ X∗ with
||x∗|| = 1 such that ||f(z0)|| = |x∗(f(z0))|. Applying our above preparations to x∗ ◦ f yields

||f(z0)|| = |x∗ ◦ f(z0)| ≤ max

{
sup
t∈R
|x∗ ◦ f(it)| , sup

t∈R
|x∗ ◦ f(1 + it)|

}
≤ max

{
sup
t∈R
||f(it)||X , sup

t∈R
||f(1 + it)||X

}
.

Since z0 ∈ S0 was arbitrary, this ends the proof of the theorem.

Lemma B.1.3 (Hadamard’s three lines lemma). Let X be a complex Banach space and
suppose that f : S ! X is continuous and bounded on S and analytic on S◦. For each
0 ≤ θ ≤ 1, let Mθ = supt∈R ||f(θ + it)||X . Then

Mθ ≤M1−θ
0 M θ

1 , (B.2)

for all 0 ≤ θ ≤ 1.
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Proof. For λ ∈ R, define Fλ : S ! X by setting Fλ(z) = eλzf(z), for each z ∈ S. Then

||Fz(z)||A ≤ max{M0, e
λM1},

by Theorem B.1.2. Hence,

||f(θ + it)||X = e−λθ ||Fλ(θ + it)||X ≤ max{e−λθM0, e
λ(1−θ)M1},

for all t ∈ R. For λ = log(M0/M1), this is equation (B.2).

B.1.2 The complex interpolation method

Let (X0, X1) be a compatible pair of Banach spaces. We denote by F the set of functions
f : S ! X0+X1 that are continuous and bounded on S, analytic on S◦, and which, moreover,
satisfy the following conditions:

• f(it) ∈ X0 and f(1 + it) ∈ X1, for all t ∈ R,

• f(it) and f(1 + it) converges to 0 as |t| tends to infinity.

The set F is a vector space over C with addition and scalar multiplication given pointwise.

Proposition B.1.4. For any compatible pair of Banach spaces (X0, X1), the associated
function space F is a Banach space under the norm

||f ||F = max

{
sup
t∈R
||f(it)||X0

, sup
t∈R
||f(1 + it)||X1

}
, f ∈ F . (B.3)

Definition B.1.5. Let 0 ≤ θ ≤ 1. The complex interpolation space (of exponent θ) between
compatible Banach spaces X0 and X1 is the complex vector space

[X0, X1]θ = {x ∈ X0 +X1 | x = f(θ), for some f ∈ F } ,

equipped with the norm

||x||θ = inf { ||f ||F | x = f(θ), f ∈ F } .

Proposition B.1.6. For a compatible pair of Banach spaces, (X0, X1), we have the following
continuous inclusions:

X0 ∩X1 ⊂ [X0, X1]θ ⊂ X0 +X1.

Proposition B.1.7. The complex interpolation space of any exponent between two compat-
ible Banach spaces is itself a Banach space.

B.1.3 Properties of interpolation spaces

Proposition B.1.8. Any Banach space X is compatible with itself. Moreover, [X,X]θ = X,
for any exponent 0 ≤ θ ≤ 1.

Proposition B.1.9. Let (X0, X1) be a pair of compatible Banach spaces. Their complex
interpolation spaces have the following properties:

(i) [X0, X1]θ = [X1, X0]1−θ, for all 0 ≤ θ ≤ 0.

(ii) If X0 ⊂ X1, then [X0, X1]θ0 ⊂ [X0, X1]θ1, whenever θ0 < θ1.

Proposition B.1.10. The intersection space X0 ∩X1 of a pair (X0, X1) of compatible Ba-
nach spaces is dense in their complex interpolation space [X0, X1]θ of any exponent 0 ≤ θ ≤ 1.

Theorem B.1.11 (The duality theorem). If at least one of the compatible Banach spaces
X0 and X1 is reflexive, then (

[X0, X1]θ
)∗ ∼= [X∗0 , X

∗
1 ]θ,

for all 0 ≤ θ ≤ 1, where the isomorphism is isometric.
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B.2 Interpolation of Lp-spaces

For a measure space (Ω, µ), let Mµ(Ω;C) denote the set of all (equivalence classes of) mea-
surable complex valued functions. We say that a sequence (fn)n≥1 in Mµ(Ω;C) converges
in measure to f ∈Mµ(Ω;C) if, for each ε > 0,

lim
n!∞

µ ({ω ∈ Ω | |fn(ω)− f(ω)| ≥ ε }) = 0.

This induces a topology onMµ(Ω;C): the topology of convergence in measure. Observe that,
for any 1 ≤ p ≤ ∞, convergence in p-norm implies convergence in measure. Hence, every Lp-
space embeds continuously into the corresponding topological vector space of all measurable
functions. Any pair of Lp-spaces on the same measure space are therefore compatible.

Theorem B.2.1. Let 1 ≤ p1 < p0 ≤ ∞, let (Ω, µ) be a measure space with a σ-finite
measure, and consider the compatible pair of Banach spaces Lp0(Ω, µ) and Lp1(Ω, µ). For
each exponent 0 < θ < 1,

[Lp0(Ω, µ), Lp1(Ω, µ)]θ ∼= Lpθ(Ω, µ), for
1

pθ
=

1− θ
p0

+
θ

p1
,

where the isomorphism is isometric.

We state and proof in Theorem B.2.3 a celebrated result in the theory of complex in-
terpolation concerning interpolation of operators on Lp-spaces. The theorem was originally
stated by M. Riesz in [38] when pj ≥ qj and proved using results from convexity theorems for
bilinear forms. It was then extended by G. O. Thorin in [49] to hold for all 1 ≤ q0, q1 ≤ ∞.
The modern proof, which we present below, uses Hadamard’s three lines lemma and is due
to J. D. Tamarkin, and A. Zygmund in [48].

Lemma B.2.2. Let (Ω, µ) be a measure space. Let 1 ≤ q0, q1 ≤ ∞ with q0 6= q1 and define,
for each 0 < θ < 1,

1

qθ
=

1− θ
q0

+
θ

q1
.

Then Lq0(Ω, µ) ∩ Lq1(Ω, µ) ⊂ Lqθ(Ω, µ), and the following norm-inequality holds:

||f ||qθ ≤ ||f ||
1−θ
q0
||f ||θq1 ,

for all f ∈ Lq0(Ω, µ) ∩ Lq1(Ω, µ).

Theorem B.2.3 (Riesz-Thorin). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let (Ω, µ) and (Ω′, µ′) be
measure spaces. Suppose that T : Lpj (Ω, µ) ! Lqj (Ω′, µ′) is bounded and linear, for j = 0, 1.
Then, for each 0 < θ < 1, T : Lpθ(Ω, µ) ! Lqθ(Ω′, µ′) is bounded and linear, where

1

pθ
=

1− θ
p0

+
θ

p1
, and

1

qθ
=

1− θ
q0

+
θ

q1
. (B.4)

Moreover, the following norm-inequality holds:

||T ||Lpθ (Ω,µ)!Lqθ (Ω′,µ′) ≤ ||T ||
1−θ
Lp0 (Ω,µ)!Lq0 (Ω′,µ′) ||T ||

θ
Lp1 (Ω,µ)!Lq1 (Ω′,µ′) . (B.5)

Proof. Assume that p0 = p1 = p. If also q0 = q1, there is nothing to show, so assume this is
not the case. Let f ∈ Lp(Ω, µ). By Lemma B.2.2, Tf ∈ Lqθ(Ω, µ), and we have that

||Tf ||qθ ≤ ||Tf ||
1−θ
q0
||Tf ||θq1

≤ ||T ||1−θLp(Ω,µ)!Lq0 (Ω′,µ′) ||T ||
θ
Lp(Ω,µ)!Lq1 (Ω′,µ′) ||f ||p .
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The statement for the case when p0 = p1 follows.
Assume that p0 6= p1. Then pθ < ∞, and so, the simple functions, S(Ω), are dense in

Lpθ(Ω, µ). For each number 1 ≤ q ≤ ∞, we shall denote by q′ its conjugate. Recall that, for
every a ∈ Lpθ(Ω, µ),

||Ta||qθ = sup

{ ∣∣∣∣∫
Ω′

(Ta)bdµ′
∣∣∣∣ ∣∣∣∣ b ∈ S(Ω′), ||b||q′θ = 1

}
,

It therefore suffices to proof that∣∣∣∣∫
Ω′

(Ta)bdµ′
∣∣∣∣ ≤ ||T ||1−θLp0 (Ω,µ)!Lq0 (Ω′,µ′) ||T ||

θ
Lp1 (Ω,µ)!Lq1 (Ω′,µ′) ||a||pθ ,

for all a ∈ Lpθ(Ω, µ) and all b ∈ S(Ω′) with ||b||q′θ = 1. By renormalization and by density of

the simple functions in Lpθ(Ω, µ), it even suffices to proof this for a ∈ S(Ω) with ||a||pθ = 1.
Let a ∈ S(Ω) with ||a||pθ = 1 and b ∈ S(Ω′) with ||b||q′θ = 1. Define two functions

α, β : S ! C by

α(z) =
1− z
p0

+
z

p1
, and β(z) =

1− z
q′0

+
z

q′1
.

Further, define f : S ! Lp0(Ω, µ) ∩ Lp1(Ω, µ) by

f(z)(ω) =

{
|a(ω)|pθα(z) a(ω)

|a(ω)| if a(ω) 6= 0,

0, if a(ω) = 0
.

If q′θ 6=∞, define g : S ! Lq
′
0(Ω′, µ′) ∩ Lq′1(Ω′, µ′) by

g(z)(ω) =

{
|b(ω)|q

′
θβ(z) b(ω)

|b(ω)| if b(ω) 6= 0,

0, if b(ω) = 0
.

As a and b are simple, it is clear that f(z) lie in Lr(Ω, µ) and and g(z) lie in Lr(Ω′, µ′), for
all z ∈ S and all 1 ≤ r ≤ ∞. Hence, f and g are well-defined. Let Φ : S ! C be given by

Φ(z) =

∫
Ω′
Tf(z)g(z) dµ′,

and observe that Φ(θ) is the integral we wish to estimate. By Hölder’s inequality, Φ is
well-defined and we have, for j = 0, 1, that

|Φ(z)| ≤ ||Tf(z)||qj ||g(z)||q′j , (B.6)

Since a and b are simple, one easily checks that Φ is bounded and continuous on S and
holomorphic on S◦. Hence, the three lines lemma, Lemma B.1.3, applies, and we obtain that∣∣∣∣∫

Ω
(Ta)bdµ

∣∣∣∣ = |Φ(θ)| ≤ sup
t∈R
|Φ(it)|1−θ sup

t∈R
|Φ(1 + it)|θ . (B.7)

Note that, putting together equations (B.6) and (B.7), we are already quite close to the
norm-inequality we aim to show. We need only a few more norm estimations.

For each t, r ∈ R and j = 0, 1, we have

||f(it+ r)||pjpj =

∫
Ω

∣∣∣∣|a|pθ( 1−it−r
p0

+ it+r
p1

)∣∣∣∣pj dµ =

∫
Ω
|a|pθpj

(
1−r
p0

+ r
p1

)
dµ,

||g(it+ r)||
q′j
q′j

=

∫
Ω

∣∣∣∣∣|b|q′θ
(

1−it−r
q′0

+ it+r
q′1

)∣∣∣∣∣
q′j

dµ =

∫
Ω
|b|
q′θq
′
j

(
1−r
q′0

+ r
q′1

)
dµ.

104



From this, we see that

||f(it)||p0
= ||a||pθ/p0

pθ
,

||f(it+ 1)||p1
= ||a||pθ/p1

pθ
,

||g(it)||q′0 = ||b||q
′
θ/q
′
0

q′θ
,

||g(it+ 1)||q′1 = ||b||q
′
θ/q
′
1

q′θ
.

By assumption on a and b, these norms all equals 1. Plugging this into equation (B.6) yields
the following bounds:

|Φ(it)| ≤ ||T ||Lp0 (Ω,µ)!Lq0 (Ω′,µ′)

|Φ(it+ 1)| ≤ ||T ||Lp1 (Ω,µ)!Lq1 (Ω′,µ′) .

equation (B.5) follows directly from equation (B.7) using the above estimates.
Finally, if q′θ = ∞, i.e., if q0 = q1 = 1, define g(z) = b. Then ||g(z)||q′j = ||b||q′θ = 1, for

j = 0, 1 and for all z ∈ S. We obtain equation (B.5) by the same argument as above.

The Riesz-Thorin theorem was extended to families of operators by E. Stein in [46]. We
present Stein’s result in Theorem B.2.4 below. Let (Ω, µ) and (Ω′, µ′) be measure spaces.
A family (Tz)z∈S of bounded and linear operators from the set of simple functions on Ω to
the set of measurable functions on Ω′ called admissible if, for every pair of simple functions
a ∈ S(Ω) and b ∈ S(Ω′), the map S ! C given by

z 7!

∫
Ω′

(Tza)bdµ′

is continuous on S, analytic on S◦, and if there exists a constant k < π, which does not
depend on a and b, such that

sup
z∈S

e−k|Im z| log

∣∣∣∣∫
Ω′

(Tza)bdµ′
∣∣∣∣ <∞.

Theorem B.2.4 (Stein’s Interpolation Theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let (Ω, µ)
and (Ω′, µ′) be measure spaces. Suppose that (Tz)z∈S is an admissible family of linear oper-
ators S(Ω) !M(Ω′) satisfying

||Tita||q0 ≤M0(t) ||a||p0
and ||Tit+1a||q1 ≤M1(t) ||a||p1

,

for all simple functions a ∈ S(Ω) and where Mj(t) > 0 are independent of a, for j = 0, 1,
and satisfy

sup
t∈R

e−kt logMj(t) <∞,

for some k < π. Then, for each 0 < θ < 1, there exists a constant Mθ > 0 such that

||Tθa||qθ ≤Mθ ||a||pθ , (B.8)

for every simple function a ∈ S(Ω), where

1

pθ
=

1− θ
p0

+
θ

p1
, and

1

qθ
=

1− θ
q0

+
θ

q1
.

To proof Stein’s interpolation theorem, we shall need the following extension of Hadamard’s
three lines lemma due to I. Hirschman. For a proof, we refer the reader to [47, Lemma 4.2].
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Lemma B.2.5 (Hirschman). Let Φ : S ! C be a continuous function and suppose that Φ is
analytic on S◦ and satisfies that

sup
z∈S

e−k|Im z| log |Φ(z)| <∞,

for some konstant k < π. Then

log |Φ(θ)| ≤ sinπθ

2

∫ ∞
−∞

log |Φ(it)|
coshπt− cosπθ

+
log |Φ(it+ 1)|

coshπt+ cosπθ
dt,

for all 0 < θ < 1.

Proof of Theorem B.2.4. As in the proof of the Riesz-Thorin interpolation theorem, it suf-
fices to proof the existence of a constant Mθ > 0 such that∣∣∣∣∫

Ω′
(Tθa)bdµ′

∣∣∣∣ ≤Mθ (B.9)

for all a ∈ S(Ω) with ||a||pθ = 1 and all b ∈ S(Ω′) with ||b||q′θ = 1. So let a and b be such

functions, and define α, β : S ! C and f : S ! S(Ω) and g : S ! S(Ω′) as in the proof of
the Riesz-Thorin theorem. Let Φ : S ! C be given by

Φ(z) =

∫
Ω′

(
Tzf(z)

)
g(z) dµ′.

Observe that Φ(θ) is the integral we aim to bound. As (Tz)z∈S is assumed to be an admissible
family, the function Φ is continuous on S and analytic on S◦. Moreover, there exists a
constant m < π such that

sup
z∈S

e−m|Im z| log |Φ(z)| <∞.

We may then apply Lemma B.2.5 to obtain the following bound:

log

∣∣∣∣∫
Ω′

(Tθa)bdµ′
∣∣∣∣ ≤ sinπθ

2

∫ ∞
−∞

log |Φ(it)|
coshπt− cosπθ

+
log |Φ(it+ 1)|

coshπt+ cosπθ
dt (B.10)

For each 1 ≤ r ≤ ∞, denote by r′ its conjugate. We obtain the following bounds from
Hölder’s inequality together with our assumptions:

|Φ(it)| ≤ ||Titf(it)||q0 ||g(it)||q′0 ≤M0(t) ||f(it)||p0
||g(it)||q′0 ,

|Φ(it+ 1)| ≤ ||Tit+1f(it+ 1)||q1 ||g(it+ 1)||q′1 ≤M1(t) ||f(it+ 1)||p1
||g(it+ 1)||q′1 .

As in the proof of the Riesz-Thorin theorem, we have

||f(it)||p0
= ||g(it)||q′0 = ||f(it+ 1)||p1

= ||g(it+ 1)||q′1 = 1.

So the above bounds reduces to |Φ(it)| ≤M0(t) and |Φ(it+ 1)| ≤M1(t). Set, for j = 0, 1,

Mj = sup
t∈R

e−kt logMj(t) <∞.

From our estimates on Φ(it) and Φ(it+ 1), we obtain the following bounds:∫ ∞
−∞

log |Φ(it)|
coshπt− cosπθ

dt ≤
∫ ∞
−∞

logM0(t)

coshπt− cosπθ
dt

≤M0

∫ ∞
−∞

ekt

coshπt− cosπθ
dt∫ ∞

−∞

log |Φ(it+ 1)|
coshπt+ cosπθ

dt ≤
∫ ∞
−∞

logM1(t)

coshπt+ cosπθ
dt

≤M1

∫ ∞
−∞

ekt

coshπt+ cosπθ
dt
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These integrals converge, and so, the constant Mθ > 0 defined by

logMθ =
sinπθ

2

∫ ∞
−∞

M0e
kt

coshπt− cosπθ
+

M1e
kt

coshπt+ cosπθ
dt

is finite, and logMθ provides a bound on the integral on the right-hand side of equation
(B.10). Equation (B.9) follows directly.

B.3 Interpolation of Bochner spaces

In the previous section, we discussed a few classical results for interpolation of Lp-spaces.
These results apply, more generally, to Bochner spaces. The proofs are analogous to the ones
in the classical setting. We refer the interested reader to [24, Section 2.2] for details. For a
thorough introduction to Bochner spaces, see [24, Chapter 1].

Theorem B.3.1 (Complex interpolation of Bochner spaces). Let 1 ≤ p1 < p0 ≤ ∞ and
let (Ω, µ) be a measure space with a σ-finite measure. For a compatible pair of Banach
spaces (X0, X1), the Banach spaces Lp0(Ω, µ;X0) and Lp1(Ω, µ;X1) are compatible, as well.
Moreover, for each exponent 0 < θ < 1,

[Lp0(Ω, µ;X0), Lp1(Ω, µ;X1)]θ ∼= Lpθ(Ω, µ; [X0, X1]θ), for
1

pθ
=

1− θ
p0

+
θ

p1
,

where the isomorphism is isometric.

Theorem B.3.2 (Riesz-Thorin for Bochner spaces). Let 1 ≤ p0, p1, q0, q1 ≤ ∞, let (Ω, µ)
and (Ω′, µ′) be measure spaces and let (X0, X1) and (Y0, Y1) be compatible pairs of Banach
spaces. Suppose that T : Lpj (Ω, µ;Xj) ! Lqj (Ω′, µ′;Yj) is bounded and linear, for j = 0, 1.
Then, for each 0 < θ < 1, T : Lpθ(Ω, µ; [X0, X1]θ) ! Lqθ(Ω′, µ′; [Y0, Y1]θ) is bounded and
linear, where

1

pθ
=

1− θ
p0

+
θ

p1
, and

1

qθ
=

1− θ
q0

+
θ

q1
.

Moreover, the following norm-inequality holds:

||T ||Lpθ (Ω,µ;[X0,X1]θ)!Lqθ (Ω′,µ′;[Y0,Y1]θ) ≤ ||T ||
1−θ
Lp0 (Ω,µ;X0)!Lq0 (Ω′,µ′;Y0) ||T ||

θ
Lp1 (Ω,µ;X1)!Lq1 (Ω′,µ′;Y1) .

(B.11)

Theorem B.3.3 (Stein’s Interpolation Theorem for Bochner spaces). Let 1 ≤ p0, p1, q0, q1 ≤
∞, let (Ω, µ) and (Ω′, µ′) be measure spaces and let X and Y be Banach spaces. Suppose
that (Tz)z∈S is an admissible family of linear operators S(Ω;X) !Mµ(Ω′;Y ) satisfying

||Tita||q0 ≤M0(t) ||a||p0
and ||Tit+1a||q1 ≤M1(t) ||a||p1

,

for all simple functions a ∈ S(Ω;X) and where Mj(t) > 0 are independent of a, for j = 0, 1,
and satisfy

sup
t∈R

e−kt logMj(t) <∞,

for some k < π. Then, for each 0 < θ < 1, there exists a constant Mθ > 0 such that

||Tθa||qθ ≤Mθ ||a||pθ , (B.12)

for every simple function a ∈ S(Ω;X), where

1

pθ
=

1− θ
p0

+
θ

p1
, and

1

qθ
=

1− θ
q0

+
θ

q1
.
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tiques de l’Ecole polytechnique, 1972.

[21] Uffe Haagerup and Magdalena Musat. Factorization and dilation problems for com-
pletely positive maps on von Neumann algebras. Comm. Math. Phys., 303:555–594,
2011.

[22] Jacques Hadamard. Sur les fonctions entières. Bull. Soc. Math. France, 24:186–187,
1896.

[23] Harald Hanche-Olsen. On the uniform convexity of lp. Proceedings of the American
Mathematical Society, pages 2359–2362, 2006.

[24] Tuomas Hytönen, Jan Van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach
spaces, volume 12. Springer, 2016.

[25] Jean Jacod and Philip Protter. Probability essentials. Springer Science & Business
Media, 2012.

[26] David A. Kazhdan. Connection of the dual space of a group with the structure of its
closed subgroups. Functional analysis and its applications, 1(1):63–65, 1967.

[27] Joram Lindenstrauss and Lior Tzafriri. On the complemented subspaces problem. Israel
Journal of Mathematics, 9(2):263–269, 1971.

[28] Alessandra Lunardi. Interpolation theory, volume 16. Springer, 2018.

[29] Stanis law Mazur and Stanis law Ulam. Sur les transformations isométriques d’espaces
vectoriels normés. CR Acad. Sci. Paris, 194(946-948):116, 1932.

[30] Robert E Megginson. An introduction to Banach space theory, volume 183. Springer
Science & Business Media, 2012.

[31] Manor Mendel and Assaf Naor. Nonlinear spectral calculus and super-expanders. Pub-
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[41] René L. Schilling. Measures, integrals and martingales. Cambridge University Press,
Cambridge New York, 2005.

[42] Klaus Schmidt. Amenability, kazhdan’s property t, strong ergodicity and invariant
means for ergodic group-actions. Ergodic Theory and Dynamical Systems, 1(2):223–
236, 1981.

[43] Isaac J Schoenberg. Metric spaces and positive definite functions. Transactions of the
American Mathematical Society, 44(3):522–536, 1938.

[44] Issai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich
vielen veränderlichen. Journal für die reine und Angewandte Mathematik, 140:1–28,
1911.

[45] Yehuda Shalom. Bounded generation and Kazhdan’s property (T). Publications Math-
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