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Abstract
In this project we study the concept of amenability of locally com-

pact groups, and how this can be described using convolution operators
arising from probability measures on the group. We will use the first
part of the project to introduce the notion of an amenable locally com-
pact group and from there on discuss a variety of equivalent statements
concerning such groups. This initial part will follow Greenleaf’s book
[5] on invariant means.

Once we have familiarised ourselves with amenable groups in the
locally compact setting, we will approach this concept in a more prob-
abilistic manner. This will follow an article of Furstenberg from 1972
[4] where the notion of µ-boundaries of a locally compact group G is
introduced, and the following conjecture was formulated:

G possesses a measure m whose support is all of G and for
which no nontrivial µ-boundaries exists iff G is amenable.

Furstenberg proved in [4] that existence of a measure µ with these
properties is sufficient to ensure amenability, and conjectured that is
also necessary. We will go through his proof.

The final part of the project concerns the proof of the necessity
condition in Furstenberg’s conjecture, as provided by Rosenblatt in
1981 in [9]. Rosenblatt’s proof links amenability of G to the existence
of an ergodic probability measure on the group with some additional
properties. This ergodic measure will then be used to construct a
measure with full support and no nontrivial µ-boundaries, thus proving
the conjecture.
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1 Introduction

In this paper we will introduce the notion of amenability for locally compact
groups and investigate various equivalent characterisations of this concept.
The initial part will follow Greenleaf’s book [5] on invariant means. After
introducing the concept of amenability, the main goal will be to link the
amenability of a group to the behavior of convolutions operators arising
from distributions of certain random walks on the groups, and properties of
associated µ-boundaries as defined by Furstenberg [4]. Therein he formulated
the following conjecture:

G possesses a measure µ whose support is all of G and for which
no nontrivial µ-boundaries exists iff G is amenable.

The sufficient condition (that is, existence of a probability measure µ on the
group with these properites implies amenability of the group) was proved by
Furstenberg, and we will discuss his proof. We will devote the remaining part
of the project to the proof provided by Rosenblatt in [9] that this condition
is also necessary In the process of going through Rosenblatt’s paper we will
also introduce the concepts of a measure being ergodic by convolutions and
mixing by convolutions.

The reader is assumed to have some knowledge of functional analysis and
of the Haar measure on a locally compact group. These topics can be found
in [3].

Throughout this paper we will use the following notation

• G is a locally compact group with identity e ∈ G.

• B(G) will be the Borel sets on G.

• λ is a fixed left Haar measure on a group G. If there is ambiguity, λG
will be used.

• ∆: G→ C will denote the modular function associated to λ.

• L1(G) will denote the set of λ-integrable functions from G to C.

• If f : G → C is some map and x ∈ G is given, we will let xf and fx
denote the maps

xf(t) = f(x−1t) and fx(t) = f(tx) for t ∈ G.
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• If f : G→ C is some map, we will let f̃ denote the map f̃(x) = f(x−1),
for x ∈ G.

When working with the left Haar measure on a group G, we should notice
that whenever f ∈ L1(G), then∫

f(t) dλ(t) =

∫
f(ts)∆(s) dλ(t),∫

f(t) dλ(t) =

∫
f(st) dλ(t),∫

f(t) dλ(t) =

∫
f(t−1)∆(t−1) dλ(t),

for all s ∈ G. These identities are very useful for integrating against the Haar
measure, and can be obtained from integrating simple functions and then
extending to all of L1(G). Combining these properties with the uniqueness
of the left Haar measure, we get the following useful statement.

Proposition 1.1. The following conditions are equivalent for a positive li-
near functional ϕ on L1(G):

1. ϕ(f) = c
∫
f dλ for some c > 0, for all f ∈ L1(G).

2. ϕ(xf) = ϕ(f), for all f ∈ L1(G) and x ∈ G.

3. ϕ(fx) = ∆(x−1)ϕ(f), for all f ∈ L1(G) and x ∈ G.

Proof. The implications 1. =⇒ 2. and 1. =⇒ 3. follow directly from the
properties of the Haar measure. The implication 2. =⇒ 1. is uniqueness of
the left Haar measure. For the final implication, let positive ϕ ∈ (L1(G))∗

be given satisfying 3. Let now µ be the positive, regular Borel measure
associated to ϕ via the Riesz Representation Theorem. Then for any f in
C0(G),∫

fx(t)∆(t−1) dµ(t) = ∆(x)

∫
f(tx)∆((tx)−1) dµ(t) = ∆(x)ϕ((f · ∆̃)x)

= ϕ(f · ∆̃) =

∫
f(t)∆(t−1) dµ(t),

so integrating against ∆(t−1) dµ(t) becomes a right invariant linear func-
tional on C0(G). By uniqueness of right Haar measure, there exists c > 0
such that c · ∆(t−1) dµ(t) = dλ(t−1). This behaviour resembles that of λ
itself and in fact

c ·∆(t−1) dµ(t) = dλ(t−1) = ∆(t−1) dλ(t).
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By integrating functions in Cc(G) against these measures we obtain c ·µ = λ
and thus

ϕ(f) = c

∫
f dλ for all f ∈ L1(G).

One of our primary tools when working with bounded regular Borel mea-
sures on G is the convolution operation connected with the multiplication in
G.

Definition 1.2. For two bounded regular Borel measures µ, ν on G we define
the convolution µ ∗ ν as the measure on G given by

µ ∗ ν(A) =

∫
1A(st) d(µ× ν)(s, t), for A ∈ B(G).

We will from here on let µ(n) denote the convolution of n consecutive
copies of µ. Since every f ∈ L1(G) can be identified with a bounded regular
Borel measure on G, we can extend Definition 1.2 to construct new elements
in L1(G) using a bounded regular Borel measure µ on G, and f, ϕ ∈ L1(G)
in the following way:

• µ ∗ f(s) =
∫
f(t−1s) dµ(t), for s ∈ G.

• f ∗ µ(s) =
∫
f(st−1)∆(t−1) dµ(t), for s ∈ G.

• f ∗ ϕ(s) =
∫
f(t)ϕ(t−1s) dλ(t), for s ∈ G.

Remark 1.3. If a measure µ is absolutely continuous with respect to λ
with density ϕ ∈ L1(G), then f ∗ µ = f ∗ ϕ. This can be seen through
straightforward calculations.

In each of the above cases we could let either f be an element in some
Lp(G) for some 1 ≤ p <∞, and obtain new elements in Lp(G). In the case
of p =∞, we can construct µ ∗ f and f ∗ ϕ, but f ∗ µ need not make sense.
All of these considerations follow from the proposition below.

Proposition 1.4. Let µ be a bounded, regular Borel measure on G and let
f ∈ Lp(G), where 1 ≤ p ≤ ∞. Then ‖µ ∗ f‖p ≤ ‖µ‖ · ‖f‖p.

Proof. In the case of p ∈ (1,∞), the proof will be an application of Hölder’s
inequality, but we should first recall the following inequality:∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f |d|µ|.
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Here |µ| denotes the total variation of µ and recall that |µ|(G) = ‖µ‖. We
will now let q be the dual exponent of p, i.e., 1/p+ 1/q = 1 and hence∫

|f | d|µ| =
∫
|f | · 1 d|µ|

≤
(∫
|f |p d|µ|

)1/p(∫
1 d|µ|

)1/q

=

(∫
|f |p d |µ|

)1/p

· ‖µ‖1/q,

for any f ∈ Lp(G) by Hölder’s inequality. From here we can now conclude

‖µ ∗ f‖pp =

∫
|(µ ∗ f)(s)|p dλ(s)

=

∫ ∣∣∣∣∫ f(t−1s) dµ(t)

∣∣∣∣p dλ(s)

≤
∫ (∫

|f(t−1s)|d|µ|(t)
)p

dλ(s)

≤ ‖µ‖p/q
∫ (∫

|f(t−1s)|p d|µ|(t)
)

dλ(s)

= ‖µ‖p/q
∫
‖f‖pp d|µ|(t) = ‖f‖pp · ‖µ‖p.

Hence ‖µ ∗ f‖p ≤ ‖µ‖ · ‖f‖p, as we intended to show. In the case of p = 1
we can not use Hölder in the same way, but instead we see∫

|µ ∗ f(s)| dλ(s) ≤
∫ ∫

|f(t−1s)| d|µ|(t) dλ(s)

=

∫ ∫
|f(s)| dλ(s) d|µ|(t)

=

∫
‖f‖1 d|µ|(t) = ‖f‖1 · ‖µ‖.

Finally, in the case of p =∞, any s ∈ G will give us

|µ ∗ f(s)| ≤
∫
|f(t−1s)|d|µ|(s) ≤ ‖f‖∞ · ‖µ‖,

and hence also ‖µ ∗ f‖∞ ≤ ‖f‖∞ · ‖µ‖. Note that for any p < ∞, the
inequality ‖f ∗ µ‖p ≤ ‖µ‖ · ‖f‖p is true, as well. The arguments for this are
analogous, as long as we handle the modular function with care.

4



Some useful examples of convolutions arises from one point measures as
x ∈ G and f ∈ Lp(G) gives us

f ∗ δx = ∆(x−1)fx−1 and δx ∗ f = xf.

These identities follow since integration agains a one point measure is simply
evaluation of the function in the given point.
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2 Amenability of locally compact groups

Our chosen approach to defining amenability of locally compact groups will
be based on studying certain functions spaces on the group G. The first four
of these spaces will be

i) L∞(G): The essentially bounded Borel functions on G. In this space
we will identify functions which only differ on a locally nullset and
equip the space with the norm

‖f‖∞ = ess sup {|f(t)| : t ∈ G}.

ii) CB(G): The bounded continuous functions on G equipped with the
usual supremum norm.

iii) UCBr(G): The bounded right uniformly continuous functions on G.
Here we say that a function f : G → C is right uniformly continuous,
if for any ε > 0 we can find an open neighbourhood U(ε) of e ∈ G such
that

|f(x)− f(yx)| < ε,

for all x ∈ G and y ∈ U(ε). We will in a completely similar manner
define UCB`(G) as the left uniformly continuous functions, where the
left uniform continuity is linked to the approximation

|f(x)− f(xy)| < ε.

iv) UCB(G): The bounded uniformly continuous functions on G. This
space is simply the intersection of UCBr(G) and UCB`(G).

The first desirable property of these spaces is that they are nested

UCB(G) ⊂ UCBr(G) ⊂ CB(G) ⊂ L∞(G)

as closed subspaces with respect to the supremum norm. Furthermore theses
spaces are closed under translations, i.e., if f is in one of the spaces, then
both xf and fx will be in the space, as well. The following proposition will
also give us an interesting family of uniformly continuous functions:

Proposition 2.1. Any function f in Cc(G) or C0(G) is both left and right
uniformly continuous.
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Proof. Assume first that f ∈ Cc(G). We will show right uniform continuity,
and the proof of left uniform continuity will be analogous. Let K denote
the support of f and let ε > 0 be given. For each x ∈ G pick an open
neighbourhood Ux of e ∈ G, such that

|f(x)− f(y)| < ε/2

for any y ∈ (Ux)x, or, in other terms |f(x)− f(yx)| < ε/2, for y ∈ Ux. For
each such Ux, pick an open symmetric neighbourhood V x of e ∈ G, such
that V xV x ⊂ Ux. By compactness of K, we can find x1, . . . , xn such that

K ⊂
n⋃
i=1

(V xi)xi

and we will use these to define V =
⋂n
i=1 V

xi . Our claim is now that this V
is the open neighbourhood we are searching for, so let x ∈ K be given with
x ∈ (V xi)xi ⊂ (Uxi)xi. Then xx−1

i ∈ V xi , so yx = y(xx−1
i )xi ∈ (Uxi)xi, for

any y ∈ V ⊂ V xi . By our choice of Uxi this allows us to conclude that

|f(yx)− f(x)| ≤ |f(yx)− f(xi)|+ |f(xi)− f(x)| < ε.

So f is right uniformly continuous on K. To show right uniform continuity
on all of G, let x ∈ G\K be given and y ∈ V . Our problem can now be split
up in two cases. One where yx ∈ G\K, and respectively where yx ∈ K.
In the first case both f(x) and f(yx) will be equal to zero, so we will have
|f(yx)− f(x)| = 0 < ε. In the second case we recall that y−1 ∈ V and hence

|f(yx)− f(x)| = |f(yx)− f(y−1(yx))| < ε,

by right uniform continuity onK. In conclusion we have shown that f is right
uniformly continuous on G. For left uniform continuity the left translates in
the definition of Ux should be replaced with right translates.

To obtain the results for f ∈ C0(G) we will repeat the argument with the
compact set K = f−1(B(0, ε/2)c), such that the cases of both x, xy ∈ G\K
will give us

|f(x)− f(yx)| ≤ |f(x)|+ f(yx)| < ε,

as we set out to show.

The study of these spaces will center upon the investigation of invariant
means on these spaces, so let us start out with a definition:
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Definition 2.2. Let X be any of the above four spaces. A linear functional
m ∈ X∗ is said to be a mean on X if m(f) ≥ 0, for any f ≥ 0 and m(1) = 1.
Furthermore, m is said to be

• a left invariant mean if m(xf) = m(f), for all f ∈ X and x ∈ G.

• a topological left invariant mean if m(ϕ ∗ f) = m(f), for all f ∈ X and
ϕ ∈ L1(G) such that ϕ ≥ 0 and

∫
ϕ dλ = 1.

To ease notation further on we will let Prob(G) denote the subspace in
L1(G) of positive functions f with 1-norm equal to one, i.e.,

∫
f(t) dλ(t) = 1

(Note that this notation is different from the one in [5]). In this way a
topological left invariant mean from Definition 2.2 satisfies

m(ϕ ∗ f) = m(f),

for all f ∈ X and ϕ ∈ Prob(G). The motivation for the name of the space is
that Prob(G) consists of the probability measures on G having density with
respect to λ. Let us now turn to a result regarding these two types of left
invariance.

Proposition 2.3. If m is a topological left invariant mean on L∞(G), then
m is also a left invariant mean on L∞(G).

Proof. Let m be a topological left invariant mean on L∞(G) and consider
ϕ ∈ Prob(G). Then

ϕ ∗ (xf) = ϕ ∗ δx ∗ f = ∆(x−1)ϕx−1 ∗ f.

Furthermore by handling the modular function carefully∫
∆(x−1)ϕx−1(t) dλ(t) = ∆(x−1)

∫
ϕ(tx−1) dλ(t)

= ∆(x−1)

∫
ϕ(t)∆(x) dλ(t) = 1,

so ∆(x−1)ϕx−1 ∈ Prob(G), for any x ∈ G. By topological left invariance of
m we get

m(xf) = m(ϕ ∗ (xf)) = m((∆(x−1)ϕx−1) ∗ f) = m(f),

concluding our proof.
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Note that this result also holds true if we replace L∞(G) with any of the
other three function spaces defined above, or if we substitute left invariance
with right invariance. Another useful property of the functions in Prob(G)
can be found in the following lemma which will be useful later.

Lemma 2.4. If f ∈ L∞(G) and ϕ ∈ Prob(G), then ϕ ∗ f ∈ UCBr(G) and
f ∗ ϕ̃ ∈ UCB`(G). Furthermore if g ∈ UCBr(G), then g ∗ ϕ̃ ∈ UCB(G) and
if g ∈ UCB`(G) then ϕ ∗ g ∈ UCB(G).

Proof. The proofs of these four implications are very similar, so we will only
proof the case of ϕ ∗ f ∈ UCBr(G) whenever f ∈ L∞(G) and ϕ ∈ Prob(G).
For this let such f ∈ L∞(G) and ϕ ∈ Prob(G) be given along with x, y ∈ G.
Then

|(ϕ ∗ f)(x)− (ϕ ∗ f)(yx)| =
∣∣∣∣ ∫ ϕ(t)f(t−1x) dλ(t)−

∫
ϕ(t)f(t−1yx) dλ(t)

∣∣∣∣
=

∣∣∣∣ ∫ ϕ(t)f(t−1x) dλ(t)−
∫
ϕ(yt)f(t−1x) dλ(t)

∣∣∣∣
≤
∫
|f(t−1x)| · |ϕ(t)− ϕ(yt)|dλ(t)

≤ ‖f‖∞
∫
|ϕ(t)− ϕ(yt)| dλ(t)

By hypothesis of f it remains to show that we can minimise the final integral
above by picking y sufficiently close to the identity e ∈ G. Let ε > 0 be given
and recall that Cc(G) is a dense subset of L1(G). This latter fact allows us to
pick g ∈ Cc(G) satisfying ‖ϕ−g‖1 < ε

3‖f‖∞ . Applying the triangle inequality
and left invariance of the Haar measure to the integral in question, we see
that

‖f‖∞
∫
|ϕ(t)− ϕ(yt)|dλ(t) ≤ ‖f‖∞

(
2ε

3‖f‖∞
+

∫
|g(t)− g(yt)| dλ(t)

)
leaving us with the task of minimising the latter integral above. If we let K
denote the support of g, we must necessarily obtain

supp(|g − (y−1g)|) ⊂ K ∪ (y−1K).

From here on we will let K ′ denote a compact neighborhood containing
K ∪ (y−1K). By proposition 2.1 we can pick an open neighborhood U of
e ∈ G, s.t.,

|g(s)− g(ys)| ≤ ε

3‖f‖∞λ(K ′)
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for all s ∈ G and y ∈ U . This inequality will extend to∫
|g(t)− g(yt)|dλ(t) <

ε

3‖f‖∞
,

finally giving us |(ϕ ∗ f)(x)− (ϕ ∗ f)(yx)| < ε for all x ∈ G and y ∈ U , and
hence ϕ ∗ f ∈ UCBr(G).

We will now turn to the first major result that will allow us to formulate
the definition of an amenable locally compact group:

Theorem 2.5. For a locally compact group G the following are equivalent:

1. There is a topological left invariant mean on L∞(G),

2. There is a left invariant mean on L∞(G),

3. There is a left invariant mean on CB(G),

4. There is a left invariant mean on UCBr(G),

5. There is a left invariant mean on UCB(G).

Proof. The implication 1. =⇒ 2. follows from Proposition 2.3 and the
implications 2. =⇒ 3. =⇒ 4. =⇒ 5. are clear by restricting the mean to
smaller closed subspaces. We are hence left with showing that a left invariant
mean on UCB(G) gives us a toplogical left invariant mean on L∞(G). For
this we will introduce a lemma that we will prove afterwards:

Lemma 2.6. If m is a left invariant mean on UCB(G), then m is a topo-
logical left invariant mean on UCB(G).

Proof of Theorem 2.5 continued. Let m be a topological left invariant mean
on UCB(G) and let E be a compact symmetric neighbourhood of the unit
in G. By letting ϕE ∈ Prob(G) be the normalised characteristic function on
E, we see that ϕE ∗ f ∗ ϕE ∈ UCB(G) for any f ∈ L∞(G). This allows us
to define a map m : L∞(G)→ C by

m(f) = m(ϕE ∗ f ∗ ϕE), for f ∈ L∞(G).

It is not difficult to see that m is a mean on L∞(G), so let us show that
it is a topological left invariant mean, as well. In order to do this we will
pick an approximate unit {ej} in L1(G) such that ej ∈ Prob(G) for each
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j, and let λ1, λ2 ∈ Prob(G) be given. For g ∈ UCB`(G) we will then have
ej ∗ g ∈ UCB(G), and using that {ej} is an approximate unit we get

‖λi ∗ ej ∗ g − λi ∗ g‖∞ → 0,

for i = 1, 2. As m is a topological left invariant mean this allows to see

m(ej ∗ g) = m(λ1 ∗ ej ∗ g)→ m(λ1 ∗ g),

m(ej ∗ g) = m(λ2 ∗ ej ∗ g)→ m(λ2 ∗ g),

and hence m(λ1 ∗ g) = m(λ2 ∗ g). As λ1, λ2 ∈ Prob(G) and g ∈ UCB`(G)
were arbitrary, this allows us to conclude that

m(ϕ ∗ f) = m((ϕE ∗ ϕ) ∗ (f ∗ ϕE)) = m(ϕE ∗ f ∗ ϕE) = m(f),

for all ϕ ∈ Prob(G) and f ∈ L∞(G), since ϕE ∗ ϕ,ϕE ∈ Prob(G) and
f ∗ ϕE ∈ UCB`(G). In conclusion m is a topological left invariant mean on
L∞(G).

Proof of Lemma 2.6. Let f ∈ UCB(G) and ϕ ∈ L1(G) be given. Then

m((xϕ) ∗ f) = m(x(ϕ ∗ f)) = m(ϕ ∗ f)

by left invariance of m and since ϕ ∗ f ∈ UCB(G). Then ϕ 7→ m(ϕ ∗ f) is a
left invariant mean on L1(G), and hence there exists k : UCB(G)→ C such
that

m(ϕ ∗ f) = k(f)

∫
ϕdλ(t).

This map k is obtained by using the Riesz Representation Theorem on the
bounded linear functional

ϕ 7→ m(ϕ ∗ f)

restricted to Cc(G), and then extending by continuity. Notice furthermore
that if ϕ ∈ Prob(G), then m(ϕ ∗ f) is simply equal to k(f). To finish the
proof, let {Uj} be an open neighbourhood basis for e ∈ G with λ(Uj) <∞,
considered as a net when ordered by reverse inclusion, and let ej ∈ Prob(G)
be the normalised characteristic function for Uj . If we now consider f in
UCB(G) and t ∈ G, then

|ej ∗ f(t)− f(t)| =
∣∣∣∣∫
G
ej(s)f(s−1t) dλ(s)− f(t)

∣∣∣∣
≤ 1

m(Uj)

∫
Uj

|f(s−1t)− f(t)|dλ(s)

≤ sup
s∈Uj

|f(s−1t)− f(t)|.
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Looking at all t ∈ G then gives us

‖ej ∗ f − f‖∞ ≤ sup
s∈Uj

sup
t∈G
|f(s−1t)− f(t)|

which lets us conclude that ‖ej ∗ f − f‖∞ → 0 when the Uj ’s get smaller by
right uniform continuity of f . As m is continuous, this allows us to see that
k(f) = m((ϕ ∗ ej) ∗ f) = m(ej ∗ f) converges to both m(ϕ ∗ f) and m(f),
and hence m is a topological left invariant mean on UCB(G).

This Theorem 2.5 will be the core result in defining the notion of amenabil-
ity for locally amenable groups, more precisely,

Definition 2.7. A locally compact group G is said to be amenable if one
and hence all of the conditions in Theorem 2.5 are satisfied.

We could also have chosen to define amenability using right invariant
means. The reason for not worrying about this ambiguity is that the exis-
tence of a left invariant mean on any of our spaces gives both right invariant
and two-sided invariant means on the space, as well. For the first claim
notice that if m is a left invariant mean on any of our spaces then we can
define a new mean m on the same space by

m(f) = m(f̃), for f in the given space.

In this way m becomes a right invariant mean. To get a two-sided invariant
mean, letm` be a left invariant mean on UCB(G) andmr be a right invariant
mean on CB(G). Given f ∈ UCB(G), define F : G→ C by F (x) = 〈m`, fx〉.
By uniform continuity of f , we see that xj → x0 ∈ G gives us ‖fxj − fx0‖∞
converging to 0, and thus F is continuous on G. F is also bounded, so we
can now define m : UCB(G) → C by m(f) = 〈mr, F 〉 for f ∈ UCB(G).
Then m is a two-sided invariant mean on UCB(G). By arguments similar
to those of the proofs above, we can use this m to obtain a two-sided version
of Theorem 2.5.

Before venturing further into the subject, we should at this point mention
that amenable locally compact groups do exist. For this let us consider a
series of theorems regarding types of amenable groups and how to construct
new amenable groups from known ones.

Theorem 2.8. The following are true for a locally compact group G

1. If G is compact, then G is amenable.

2. If G is abelian, then G is amenable.
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3. If G is amenable and π : G→ H is a continuous homomorphism onto
a locally compact group H, then H is amenable.

4. If G is amenable and H is closed subgroup of G, then H is amenable.

5. If N is a closed normal subgroup in G, such that both N and G/N are
amenable, then G is amenable.

6. If {Hα} is a directed system of closed subgroups in G where each Hα

is amenable, then G is amenable.

Here a directed system is a family {Hα}α∈A of subsets in G such that G is
equal to the union of all these sets, and for each α, β ∈ A there exists γ ∈ A
with Hα ∪Hβ ⊂ Hγ.
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3 Alternative characterisations of amenability

When working with amenability of locally compact groups and delving into
the many properties of these groups, one discovers that a lot of these proper-
ties are equivalent to our chosen definition of amenability. In other words, we
could define amenability of a locally compact groups in a number of different
ways. This section will investigate several of these characterisations.

3.1 The Method of Day

The first characterisation we will discuss is a result, which Greenleaf describes
as The celebrated method of Day concerning the existence of certain nets in
Prob(G). To get more specific, we will start out with a definition:

Definition 3.1. Let (ϕj) be a net in Prob(G). We say that

• ϕj is weakly convergent to left invariance, if (xϕj − ϕj)→ 0 weakly in
L1(G),

• ϕj is weakly convergent to topological left invariance, if (ϕ ∗ ϕj − ϕj)
converges weakly to 0 for all ϕ ∈ Prob(G),

• ϕj is strongly convergent to left invariance, if ‖xϕj − ϕj‖1 → 0,

• ϕj is strongly convergent to topological left invariance, if

‖ϕ ∗ ϕj − ϕj‖1 → 0

for all ϕ ∈ Prob(G).

From this definition it is not that difficult to see that strong convergence
in either way implies the corresponding weak convergence, hence justifying
the names. What might be more surprising is that we have a result giving a
variant of the converse implication.

Theorem 3.2. The following statements are equivalent for any locally com-
pact group G:

1. There is a net in Prob(G) weakly convergent to left invariance.

2. There is a net in Prob(G) strongly convergent to left invariance.

The statements are also equivalent if we replace left invariance with topolog-
ical left invariance.

14



Proof. By the remark above it suffices to show that the existence of a net
(ϕj) weakly convergent to left invariance also gives us a net (ψj) strongly
convergent to left invariance. For this let (ϕj) be a net in Prob(G) weakly
convergent to left invariance, and let E =

∏
x∈G L

1(G) be equipped with the
weak topology. Consider now the map T : L1(G)→ E given by

Tf(x) = xf − f, x ∈ G, f ∈ L1(G)

As the weak topology on E coincides with the product of the weak topologies
on each L1(G) ([7], 17.13), the weak convergence of (ϕj) tells us that 0 is in
the weak closure of T (Prob(G)) ⊂ E. With T (Prob(G)) being a a convex
subset of a locally convex space, the weak and strong closures are equal, and
hence there is a net (ψj) in Prob(G) strongly convergent to left invariance.

In the proof of the topological version we will instead let E be the product
over all ϕ ∈ Prob(G) (instead of g ∈ G). We will also alter T to be

Tf(ϕ) = ϕ ∗ f − f, for f ∈ L1(G), ϕ ∈ Prob(G),

but from there on the proof is analogous.

The main result in relation to the Method of Day is that there is a
strong correlation between amenability of a locally compact group G and
these convergent nets. This correlation follows from the next theorem.

Theorem 3.3. A locally compact group G is amenable if and only if there
exists a net (ϕj) weakly convergent to either topological left invariance or left
invariance.

To prove this main theorem we will need the embedding of L1(G) into
(L∞(G))∗, and in particular the following lemma for which we will omit the
proof.

Lemma 3.4. The set Prob(G) can be identified with a w∗-dense subset of
the w∗-compact convex set of all means on L∞(G).

Proof of Theorem 3.3. We will start out by proving the non-topological ver-
sion. Assume first that (ϕj) is some net in Prob(G) weakly convergent to
left invariance. Then (ϕj) is contained in the w∗-compact set of all means
on L∞(G). By compactness, there exists a subnet (ϕi) and a mean m on
L∞(G), such that ϕi

w∗−→ m. To see that this mean must necessarily be left
invariant, we notice that for any f ∈ L∞(G) and x ∈ G,

ϕj(xf)− ϕj(f)→ m(xf)−m(f).
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At the same time weak convergence of (ϕj) will also give us

ϕj(xf)− ϕj(f) =

∫
(f(x−1t)− f(t))ϕj(t) dλ(t)

=

∫
f(t)(x−1ϕj(t)− ϕj(t)) dλ(t)→ 0.

By uniqueness of limits we have m(xf) = m(f), for all f ∈ L∞(G) and
x ∈ G. Then m is a left invariant mean on L∞(G) and hence G is amenable.
For the converse implication assume that G is amenable and let m be a left
invariant mean on L∞(G). From Lemma 3.4 we obtain a net (ϕj) in Prob(G)
w∗-convergent to m.

Left invariance of m will give us m(x−1f) = m(f) for any f ∈ L∞(G)
and x ∈ G, and hence

〈xϕj − ϕj , f〉 = 〈xϕj , f〉 − 〈ϕj , f〉 = 〈ϕj ,x−1 f〉 − 〈ϕj , f〉
= 〈ϕj ,x−1 f〉 − 〈m,x−1 f〉+ 〈m, f〉 − 〈ϕj , f〉 → 0,

by w∗-convergence of (ϕj). As this is true for all L∞(G) and x ∈ G we can
conclude that xϕj − ϕj → 0 weakly by identifying (L1(G))∗ with L∞(G).

The proof of the topological version is analogous using topological left
invariant means on L∞(G) instead of left invariant means.

Combining the results in this section tells us that amenability of G and
the existence of any type of net from Definition 3.1 are equivalent. In par-
ticular a net converging in one these ways will give nets converging in the
other three.

3.2 Reiter’s condition

The next characterisation of amenability is Reiter’s condition which is a
tool for construction functions with a certain level of left invariance. The
definition in question is as follows:

Definition 3.5. A locally compact group G is said to satisfy Reiter’s con-
dition (RC), if for any compact K ⊂ G and ε > 0, there exists ϕ ∈ Prob(G)
such that ‖xϕ− ϕ‖1 < ε, for all x ∈ K.

Staying true to the purpose of this section our main priority should be
to prove the following theorem:

Theorem 3.6. A locally compact group G is amenable if and only if it
satisfies Reiter’s condition.
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Proof. Assume first that G satisfies Reiter’s condition and consider the set

J = {(K, ε) ∈ P (G)× (0,∞) : K ⊂ G compact},

equipped J with the ordering ≺ defined by (K, ε) ≺ (K ′, ε′) if any only if
K ⊂ K ′ and ε′ < ε. Using Reiter’s condition to pick ϕj ∈ Prob(G) for each
j ∈ J satisfying

‖xϕj − ϕj‖1 < εj for all x ∈ Kj ,

will then give us a net strongly convergent to left invariance, and hence G
is amenable. For the other implication assume now that G is amenable and
pick a net (ϕj) in Prob(G) strongly convergent to topological left invariance.
To show that G satisfies Reiter’s condition let compact K ⊂ G and ε > 0
be given, and let furthermore β ∈ Prob(G) be some fixed function. To
continue from here we will need an approximation lemma that we will prove
afterwards:

Lemma 3.7. For any ϕ ∈ Prob(G) and ε > 0 there exists a compact neigh-
bourhood E of the unit in G such that

‖ϕE ∗ ϕ− ϕ‖1 < ε and ‖xϕ− ϕ‖1 < ε,

where ϕE is the normalised characteristic function on E and x ∈ E.

Applying the above lemma, we can now find a compact neighbourhood
E of the unit in G such that

‖ϕE ∗ β − β‖1 < ε/5 and ‖xβ − β‖1 < ε/5, for all x ∈ E

for all x ∈ E. By compactness of K there exists x1, . . . , xN in G such that

K ⊂
N⋃
k=1

xkE.

For k ∈ {1, . . . , N}, let ψk denote the normalised characteristic function
on xkE. By strong convergence of (ϕj) to topological left invariance, there
exists ϕj such that ‖β ∗ ϕj − ϕj‖1 < ε/5, and moreover

‖ψk ∗ ϕj − ϕj‖1 < ε/5 for k = 1, . . . , N.

Our claim is then that ϕ = β ∗ ϕj ∈ Prob(G) is our desired function. In
order to prove this we will need to apply all of our previous estimates, but
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let us first make two intermediate computations. First we notice that for
t ∈ E and i = 1, . . . , N ,

‖ϕxiE ∗ ϕ− xitϕ‖1 = ‖ϕE ∗ ϕ− tϕ‖1 ≤ ‖ϕE ∗ ϕ− ϕ‖1 + ‖ϕ− tϕ‖1
≤ ‖ϕE ∗ β − β‖1 + ‖β − tβ‖1 < (2ε)/5.

Secondly for i = 1, . . . , N we have

‖ϕxiE ∗ ϕ− ϕ‖1 = ‖ϕxiE ∗ β ∗ ϕj − β ∗ ϕj‖1
≤ ‖ϕxiE ∗ β ∗ ϕj − ϕxiE ∗ ϕj‖1 + ‖ϕxiE ∗ ϕj − ϕj‖1

+ ‖ϕj − β ∗ ϕj‖1
≤ ‖β ∗ ϕj − ϕj‖1 + ‖ϕxiE ∗ ϕj − ϕj‖1 + ‖ϕj − β ∗ ϕj‖1
< (3ε)/5.

Combining the two inequalities above gives us

‖xitϕ− ϕ‖1 ≤ ‖xitϕ− ϕxiE ∗ ϕ‖1 + ‖ϕxiE ∗ ϕ− ϕ‖1 < ε,

for any t ∈ E and i = 1, . . . , N . By the choice of x1, . . . , xN this will in
particular give us ‖xϕ− ϕ‖1 < ε, for any x ∈ K.

Proof of Lemma 3.7. Notice first that it suffices to show that there exists a
compact neighbourhood E of the unit in G such that

‖xϕ− ϕ‖1 < ε,

for all x ∈ E. The other condition will then follow since

(ϕE ∗ ϕ− ϕ)(s) =
1

λ(E)

∫
E
ϕ(t−1s)− ϕ(s) dλ(t).

So by integrating over all of G gives us

‖ϕE ∗ ϕ− ϕ‖1 =
1

λ(E)

∫
G

∣∣∣∣∫
E
ϕ(t−1s)− ϕ(s) dλ(t)

∣∣∣∣ dλ(s)

≤ 1

λ(E)

∫
G

∫
E
|ϕ(t−1s)− ϕ(s)| dλ(t) dλ(s)

=
1

λ(E)

∫
E

∫
G
|tϕ(s)− ϕ(s)| dλ(s) dλ(t)

=
1

λ(E)

∫
E
‖tϕ− ϕ‖1 dλ(t) < ε.
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Returning to the matter of hand, we should prove that we can find this
compact neighbourhood E with ‖xϕ − ϕ‖1 < ε, for all x ∈ E. Using the
density of Cc(G) in L1(G) we let ψ ∈ Cc(G) be given such that ‖ϕ− ψ‖1 is
stricly less than ε/3 and hence

‖xϕ− ϕ‖1 ≤ ‖xϕ−x ψ‖1 + ‖xψ − ψ‖1 + ‖ϕ− ψ‖1

≤ 2‖ϕ− ψ‖1 + ‖xψ − ψ‖1 <
2ε

3
+ ‖xψ − ψ‖1.

By this approximation we only need to worry about the behaviour of ψ. Let
K denote the support of ψ and let L be a compact neighbourhood of the
unit in G. Then supp(xψ) ⊂ xK and hence supp(xψ) ⊂ LK for any x ∈ L.
Using compactness of LK and uniform continuity of ψ there exists a compact
neighbourhood E ⊂ L of the unit in G such that

‖xψ − ψ‖∞ <
ε

3 · λ(KL)
, for all x ∈ E.

For any x ∈ E we then have supp(xψ − ψ) ⊂ LK and hence

‖xψ − ψ‖1 =

∫
G
|xψ(t)− ψ(t)|dλ(t) =

∫
LK
|xψ(t)− ψ(t)|dλ(t)

≤
∫
LK
‖xψ − ψ‖∞ dλ(t) <

ε

3
.

We then have the desired inequality ‖xϕ− ϕ‖1 < ε for all x ∈ E.

There is a natural generalisation of Reiter’s condition discussed above to
all Lq spaces. More precisely wee will for each 1 ≤ q ≤ ∞ introduce:

(Rq) For any compact K ⊂ G and ε > 0 there exists ϕ ∈ Lq(G) such that
ϕ ≥ 0, ‖ϕ‖q = 1 and ‖xϕ− ϕ‖q < ε for any x ∈ K.

In this way Reiter’s condition is simply (R1). It is clear that (R∞) is triv-
ially satisfied for any group G by picking ϕ ≡ 1, but what might be more
surprising is the following result.

Proposition 3.8. For any 1 ≤ q <∞, Reiter’s condition (R1) is equivalent
to (Rq).

Proof. The strategy of this proof is to show that (Rq) =⇒ (Rr) whenever
q ≤ r, and then show (R2q) =⇒ (Rq), which combined will give the desired
equivalence of all (Rq)’s. Let first q ≤ r be given along with a compact
set K ⊂ G and ε > 0. If we now assume that (Rq) is true, we can pick
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ϕ ∈ Lq(G) with ϕ positive, ‖ϕ‖q = 1 and ‖xϕ− ϕ‖q < εr/q, for any x ∈ K.
Then ψ = ϕq/r ∈ Lr(G), with ψ ≥ 0. Furthermore

‖ψ‖r/qr =

(∫
|ϕq/r|r dλ

)1/q

=

(∫
|ϕ|q dλ

)1/q

= 1,

so ‖ψ‖r = 1. Finally for any x ∈ K

‖xψ − ψ‖r/qr =

(∫
|xϕq/r − ϕq/r|r dλ

)1/q

≤
(∫
|xϕ− ϕ|q dλ

)1/q

< εr/q,

and hence ‖xψ−ψ‖r < ε. The first inequality above is due to the inequality
|α − β|t ≤ |αt − βt| for α, β ≥ 0 and t ≥ 1. To prove (R2q) =⇒ (Rq) let
1 ≤ q <∞ be given along with a compact set K ⊂ G and ε > 0. Use (R2q)
to pick ϕ ∈ L2q(G) with ϕ ≥ 0, ‖ϕ‖2q = 1 and ‖xϕ− ϕ‖2q < ε/2 for x ∈ K.
As before, put ψ = ϕ2 such that ψ ∈ Lq(G), ψ ≥ 0 and ‖ψ‖q = 1. To finish
the proof we can apply the Cauchy-Schwarz inequality to obtain

‖xψ − ψ‖q =

(∫
|xϕ2 − ϕ2|q dλ

)1/q

≤

((∫
|xϕ+ ϕ|2q dλ

)1/2(∫
|xϕ− ϕ|2q dλ

)1/2
)1/q

=

(∫
|xϕ+ ϕ|2q dλ

)1/2q (∫
|xϕ− ϕ|2q dλ

)1/2q

= ‖xϕ+ ϕ‖2q · ‖xϕ− ϕ‖2q ≤ 2‖ϕ‖2r · ‖xϕ− ϕ‖2r < ε.

Hence ψ satisfies the requirements for (Rq).

3.3 Følner’s condition

The third characterisation of amenability we will investigate in this section
is Følner’s condition, which is a description on how compact subsets behave
under translations. To be more specific,

Definition 3.9. A locally compact group G is said to satisfy Følner’s con-
dition (FC) if for every compact K ⊂ G and ε > 0 there exists a Borel set
U such that 0 < λ(U) <∞ and λ((xU)∆U) < ελ(U), for all x ∈ K.

The first thing we should notice is that (FC) is equivalent to the existence
of a net (Uj) of Borel sets such that 0 < λ(Uj) <∞ and

λ(xUj∆Uj)

λ(Uj)
→ 0

20



for all x ∈ G. The proof of this follows the idea of the proof of Theorem
3.6. This description has the desirable property that we are allowed to
translate by every element in G instead of being restricted to some compact
set. Claiming that Følner’s condition is an alternative characterisation of
amenability, we should prove the following theorem:

Theorem 3.10. Let G be a locally compact group. Then G is amenable if
and only if it satisfies Følner’s condition, as follows:

Proof. To prove this theorem we will introduce the weak Følner’s condition
(FC∗):

• For any compact set K ⊂ G and ε, δ > 0 there exist Borel sets U ⊂ G
and N ⊂ K such that 0 < λ(U) <∞, λ(N) < δ and

λ((xU)∆U) < ελ(U), for all x ∈ K\N.

Our goal will the be to prove the following implications:

(FC) =⇒ amenability =⇒ (FC∗) =⇒ (FC).

Assume now that G satisfies (FC) and let (Uj) be a net of Borel sets in G
such that 0 < λ(Uj) <∞ and

λ((xUj)∆Uj)

λ(Uj)
→ 0

for all x ∈ G. Letting ϕj ∈ Prob(G) denote the normalised characteristic
function for Uj we obtain

‖xϕj − ϕj‖1 =
λ((xUj)∆Uj)

λ(Uj)
→ 0 for all x ∈ G

This is simply the statement that (ϕj) is strongly convergent to left invari-
ance, so by Section 3.1 G is amenable. For the next implication assume that
G is amenable and let a compact set K ⊂ G and ε, δ > 0 be given. First we
should notice that we can assume λ(K) > 0, since we could otherwise pick
N = K and be done. By Reiter’s condition for amenability, let ϕ ∈ Prob(G)
be given such that ‖xϕ− ϕ‖1 < (δε)/λ(K).

As the simple functions in L1(G) form a dense subset of L1(G) we can
assume that ϕ is simple, i.e. there exist Borel sets A1 ⊃ A2 ⊃ · · · ⊃ AN
with 0 < λ(Ai) <∞ and strictly positive constants λ1, . . . , λN such that

N∑
k=1

λk = 1 and ϕ =
N∑
k=1

λk
λ(Ak)

1Ak
.
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The nesting of the Ai’s ensures that

N∑
k=1

λk ·
λ((xAk)∆Ak)

λ(Ak)
= ‖xϕ− ϕ‖1,

and hence this sum is stricly smaller that (δε)/λ(K) for all x ∈ K. Integrat-
ing over all of K we will then obtain

N∑
k=1

λk

∫
K

λ((xAk)∆Ak)

λ(Ak)
dλ(x) < δε.

This means that at least one U = Ak satisfy.∫
K

λ((xU)∆U)

λ(U)
dλ(x) < δε.

Finally we can put N = {x ∈ K : λ((xU)∆U)/λ(U) ≥ ε} such that
λ(N) < δ and hence satisfying (FC∗). For the final implication assume that
G satisfies (FC∗) and let compactK ⊂ G and ε > 0 be given. Once again we
will assume λ(K) > 0, since we could otherwise replace K with a compact
neighbourhood of itself. Let now A = K ∪KK such that λ(kA∩A) ≥ λ(K)
for all k ∈ K and let δ = λ(K)/2. Any Borel set N ⊂ A satisfying
λ(A\N) < δ will for k ∈ K satisfy

2δ ≤ λ(K) ≤ λ(kA ∩A) ≤ λ(kN ∩N) + λ(A\N) + λ(k(A\N)),

< λ(kN ∩N) + 2δ,

and hence λ(kN ∩N) > 0. In particular, kN ∩N is a non-empty set. Rear-
ranging things a bit will then tell us that K ⊂ NN−1 whenever λ(A\N) < δ.
We will now apply (FC∗) to pick U ⊂ G andN ⊂ A such that λ(U) ∈ (0,∞),
λ(A\N) < δ and λ(nU∆U) < (ελ(U))/2, for all n ∈ N . To conclude the
proof we notice that for any n1, n2 ∈ N ,

λ((n1n
−1
2 U)∆U) ≤ λ(n−1

2 U∆U) + λ(U∆n−1
1 U)

= λ(n1U∆U) + λ(n2U∆U) < ελ(U),

so in particular λ(xU∆U) < ελ(U), for any x ∈ K ⊂ NN−1.

Remark 3.11. Extending this result it turns out that the Borel set U picked
with the use of Følner’s condition can be chosen to be compact and symmet-
ric. This was shown by Emerson [2].
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3.4 The Fixed Point Property

Let G be a locally compact group and X be a compact convex subset of a
locally convex space E. We say that G acts affinely on X if there exists a
continuous map T : G×X → X, such that Txy = Tx ◦ Ty and

Tx(λs0 + (1− λ)s1) = λTx(s0) + (1− λ)Tx(s1)

for all x, y ∈ G and s0, s1 ∈ X. Here Tx denotes the map s 7→ T (x, s). We
say that a group G has the fixed point property if any such affine action gives
rise to an element s0 ∈ X, such that Tx(s0) = s0 for all x ∈ G. We will state
and prove three lemmas before proving the equivalence of amenability and
the fixed point property.

Lemma 3.12. The convex hull of the point masses on G forms a dense
subset in the set of all means on CB(G). Such means will be called finite
means.

Proof. Let Σ be the set of all means on CB(G) and let

A =

{
n∑
i=1

λiδxi

∣∣∣∣∣ xi ∈ G,λi ≥ 0,
n∑
i=1

λi = 1

}
.

Assume in order to reach a contradiction that A is not dense in Σ. By
the Hahn-Banach Separation Theorem, there exists a mean m in Σ a real
number λ and f ∈ CB(G) such that Re(m(f)) > λ ≥ Re(ϕ(f)), for all ϕ in
the closure of A. As the point masses on G belong to A, this in particular
gives usm(Re(f)) = Re(m(f)) > λ ≥ Re(f(s)), for all s ∈ G. Here we notice
that m(Re(f)) = Re(m(f)), for any f ∈ CB(G). Let now c = ‖Re(f)‖∞
and notice that this gives us

m(Re(f)− c) = m(Re(f))−m(c) = m(Re(f))− c > 0,

contradicting the fact that m is positive. In conclusion A must be dense in
the set of all means.

Lemma 3.13. Let X be a compact convex subset of a locally convex set
E and let m be a mean on CB(G). If there exists g : G → X such that
ϕ ◦ g ∈ CB(G) for every ϕ ∈ E∗, then there exists a unique x0 ∈ X such
that ϕ(x0) = m(ϕ ◦ g), for all ϕ ∈ E∗. In the affirmative case we will say
that g is integrable and will let

∫
g dm denote this unique element.

23



Proof. Let g : G → X satisfy ϕ ◦ g ∈ CB(G), for all ϕ ∈ E∗. By Lemma
3.12 we will first assume that m is a finite mean, i.e., m =

∑n
i=1 λiδxi , for

some x1, . . . , xn ∈ G and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1. We will then let

x =

n∑
i=1

λig(xi) ∈ X.

Hence ϕ(x) = m(ϕ◦g), for all ϕ ∈ E∗. In the case wherem is not necessarily
a finite mean we can pick a net (mj) of finite means w∗-convergent to m.
For each mj we define xj ∈ X in the same way as above. As X is a compact
set there exists a convergent subnet (xi) of (xj) with some limit x0 ∈ X.
Then any ϕ ∈ E∗ will satisfy

m(ϕ ◦ g) = limmi(ϕ ◦ g) = limϕ(xi) = ϕ(x),

by w∗-convergence of the subnet (mi) and continuity of ϕ. The uniqueness
of x0, follows, since E∗ separates points in E.

Lemma 3.14. Let β : X → X be some affine, continuous map, let g : G→ X
be integrable and let m be a mean on CB(G). If β ◦ g is also integrable, then∫

(β ◦ g) dm = β

(∫
g dm

)
.

Proof. Let us begin with the case where m =
∑n

i=1 λiδxi , for x1, . . . , xn ∈ G
and λ1, . . . , λn ≥ 0 such that

∑n
i=1 λi = 1. Then

β

(∫
g dm

)
= β

(
n∑
i=1

λig(xi)

)
=

n∑
i=1

λi(β ◦ g)(xi) =

∫
(β ◦ g) dm,

by the arguments in the proof of the preceding lemma. In the general case
where m is not necessarily a finite mean, we can at least pick a net (mj) of
finite means w∗-convergent to m.

Let now τ denote the coarsest topology on X, making all ϕ|X continuous
where ϕ ∈ E∗. This topology will then satisfy xj

τ−→ x ∈ X if and only if
ϕ(xj)→ ϕ(x), for all ϕ ∈ E∗, and hence

∫
g dmj →

∫
g dm ∈ (X, τ). Since

the linear functionals on E also separate points in X, this new topological
space (X, τ) is Hausdorff and the identity from X to (X, τ) is continuous.
Recall now that a bijective, continuous map from a compact space to a
Hausdorff space is in fact a homeomorphism and thus∫

g dmj →
∫
g dm,
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in the ordinary topology on X. This will allow us to conclude

ϕ

(∫
(β ◦ g) dm

)
= m(ϕ ◦ β ◦ g) = limmj(ϕ ◦ β ◦ g)

= limϕ

(∫
(β ◦ g) dmj

)
= lim(ϕ ◦ β)

(∫
g dmj

)
= (ϕ ◦ β)

(∫
g dm

)
= ϕ

(
β

(∫
g dm

))
,

for all ϕ ∈ E∗, and hence
∫

(β ◦ g) dm = β(
∫
g dm).

Theorem 3.15. For a locally compact group G the following are equivalent:

1. G is amenable,

2. G has the fixed point property.

Proof: Assume first that G has the fixed point property and let Σ the set
of all means on UCBr(G). Then Σ is a compact convex set of the locally
convex space (UCBr(G))∗ equipped with the w∗-topology. Define now an
action T : G× Σ→ Σ by

〈T (x,m), f〉 = 〈m, x−1f〉.

We want to show that this is a continuous affine action. To show continuity
of T let (xj ,mj)j∈J be a net in G × Σ with limit (x,m) ∈ G × Σ. We now
wish to show that Txj (mj) → Tx(m) in the w∗-topology on the dual space
of UCBr(G), so let ε > 0 and f1, . . . , fn ∈ UCBr(G) be given. By the right
uniform continuity of each fk, there exists i0 ∈ J such that

‖x−1
i
fk − x−1fk‖∞ < ε/6

for each k = 1, . . . , n and i � i0, and hence ‖x−1
i
fk − x−1

i0

fk‖∞ < ε/3. By the
convergence mj → m we can also find i1 � i0 such that∣∣∣〈Txi0 (mi), fk〉 − 〈Txi0 (m), fk〉

∣∣∣ < ε/3.

for all k = 1, . . . , n and i � i1. Combining these inequalities will let us
conclude that

|〈Txi(mi), fk〉 − 〈Tx(m), fk〉| < ε,
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for all k = 1, . . . , n and i � i1, and hence T is continuous. Furthermore T is
clearly affine, so by the fixed point property of G there exists m0 ∈ Σ such
that Tx(m) = m for all x ∈ G, i.e.,

〈m, x−1f〉 = 〈m, f〉.

Then m is a left invariant mean on UCBr(G), so G is amenable. For the
converse implication, assume that G is amenable and letm be a left invariant
mean on CB(G). Assume now that T : G × X → X is some affine action,
where X is a compact, convex subset of some locally convex set E. Fix
x ∈ X and let ψx : G→ X denote that map ψx(t) = Tt(x).

For any ϕ ∈ E∗ the map ϕ ◦ ψx is continuous, and since (ϕ ◦ ψx)(G) ⊂
ϕ(X) is a compact set, the map is also bounded. This tells us that ψx is
integrable and hence gives the existence of the element

∫
ψx dm ∈ X. By

the same argument, any map Tg ◦ ψx is also integrable and hence

Tg

(∫
ψx dm

)
=

∫
(Tg ◦ ψx) dm

for all g ∈ G. For any ϕ ∈ E∗ and g ∈ G, we see that ϕ◦Tg ◦ψx = g−1(ϕ◦ψx)
and hence

(ϕ ◦ Tg)
(∫

ψx dm

)
= ϕ

(∫
(Tg ◦ ψx) dm

)
= m(ϕ ◦ Tg ◦ ψx)

= m(g−1(ϕ ◦ ψx)) = m(ϕ ◦ ψx) = ϕ

(∫
ψx dm

)
.

As this holds true for all ϕ ∈ E∗, we can conclude Tg
(∫
ψx dm

)
=
(∫
ψx dm

)
and thus

∫
ψx dm is a fixed point for the action T .

3.5 Norms of convolution operators on Lp(G)

The final thing we will study in this section is how amenability of the group
is linked to the norm of the convolution operators on different Lp spaces.

Definition 3.16. Let G be a locally compact group. For any bounded
regular Borel measure µ on G and 1 ≤ p ≤ ∞, we define λµ,p as the linear
operator on Lp(G) defined by λµ,p(f) = µ ∗ f.

These convolution operators will satisfy ‖λµ,p‖ ≤ ‖µ‖, regardless of the
choice of 1 ≤ p ≤ ∞. This follows from the inequality ‖µ ∗ f‖p ≤ ‖µ‖ · ‖f‖p
where µ is a bounded regular Borel measure on G and f ∈ Lp(G). In details,

‖λµ,p‖ = sup{‖µ ∗ f‖p : ‖f‖p = 1}
≤ sup{‖µ‖ · ‖f‖p : ‖f‖p = 1} = ‖µ‖.
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Proposition 3.17. For a positive bounded regular Borel measure µ we have

‖λµ,1‖ = ‖µ‖ and ‖λµ,∞‖ = ‖µ‖.

Proof. By the remark above, it suffices to show that ‖λµ,1‖ ≥ ‖µ‖, so let
ε > 0 be given. As µ is inner regular, there exists a compact set K ⊂ G,
such that

µ(K) ≥ µ(G)− ε = ‖µ‖ − ε.

We can then apply Urysohn’s lemma to pick f ∈ Cc(G) such that 1K ≤
f ≤ 1G, and hence

∫
f dµ ≥ µ(K) ≥ ‖µ‖ − ε. Let now (Uj) be an open

neighbourhood base of e ∈ G, with λ(Uj) <∞, ordered by reverse inclusion
and let (ϕj) be the corresponding net of normalised characteristic functions.
We will now for each j define the map gj : G→ C by

gj(t) =

∫
ϕj(x)f(tx) dλ(x), for t ∈ G.

These functions might seem strange at first, but they appear natural once
we consider the convolution µ ∗ ϕj as an element in (C0(G))∗. We have

〈µ ∗ ϕj , f〉 =

∫
µ ∗ ϕj(x)f(x) dλ(x)

=

∫ ∫
ϕj(t

−1x)f(x) dµ(t) dλ(x)

=

∫ ∫
ϕj(t

−1x)f(x) dλ(x) dµ(t)

=

∫ ∫
ϕj(x)f(tx) dλ(x) dµ(t)

=

∫
gj(t) dµ(t).

By left uniform continuity of f , pick j0 such that |f(tx) − f(t)| < ε, for all
t ∈ G and x ∈ Ujo . Then

|gj0(t)− f(t)| =
∣∣∣∣∫ ϕj0(x)f(tx) dλ(x)− f(t)

∣∣∣∣
≤ 1

λ(Uj0)

∫
Uj0

|f(tx)− f(t)| dλ(x) < ε.

By integrating over all of G with respect to µ we get∣∣∣∣〈µ ∗ ϕj0 , f〉 − ∫ f dµ

∣∣∣∣ ≤ ∫ |gj0(t)− f(t)| dµ(t) < ε‖µ‖.
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From this, we can apply the triangle inequality to obtain a lower bound on
|〈µ∗ϕj0 , f〉| given by ‖µ‖−ε(‖µ‖+1). To finish the argument, we will recall
Hölder’s inequality |〈µ ∗ϕj0 , f〉| ≤ ‖µ ∗ϕj0‖1 · ‖f‖∞ ≤ ‖µ ∗ϕj0‖1, and hence

‖λµ,1‖ ≥ ‖µ ∗ ϕj0‖1 ≥ |〈µ ∗ ϕj0 , f〉| ≥ ‖µ‖ − ε(‖µ‖+ 1).

As ε > 0 was arbitrary, we can conclude that ‖λµ,1‖ ≥ ‖µ‖.
In the case of p =∞, let f ∈ C0(G) be given. We will first show that µ∗f

is continuous, so let s ∈ G and ε > 0 be given. As C0(G) ⊂ UCB(G) we can
pick an open neighbourhood U of e ∈ G such that |f(x) − f(xy)| < ε/‖µ‖
for all x ∈ G and y ∈ U . For every t ∈ sU we will have s−1t ∈ U , and thus

|µ ∗ f(s)− µ ∗ f(t)| ≤
∫
|f(x−1s)− f(x−1t)|dµ(x)

=

∫
|f(x−1s)− f(x−1s(s−1t))|dµ(x)

<

∫
ε/‖µ‖ dµ(x) ≤ ε.

This lets us conclude that µ ∗ f is continuous in s, and since s was arbitrary,
µ ∗ f is continuous on all of G. We can now use continuity of µ ∗ f to obtain

‖µ ∗ f‖∞ ≥ |µ ∗ f(e)| =
∣∣∣∣∫ f(t−1) dµ(t)

∣∣∣∣ = | < µ, f̃ > |.

Notice that ‖f‖∞ = ‖f̃‖∞, for f ∈ C0(G), and thus

‖λµ,∞‖ = sup{‖µ ∗ f‖∞ | f ∈ L∞(G), ‖f‖∞ = 1}
≥ sup{‖µ ∗ f‖∞ | f ∈ C0(G), ‖f‖∞ = 1}
≥ sup{|〈µ, f〉| | f ∈ C0(G), ‖f‖∞ = 1} = ‖µ‖,

the inequality we were looking for.

Theorem 3.18. Let G be an amenable locally compact group. Then ‖λµ,p‖
is equal to ‖µ‖ for all positive bounded regular Borel measure on G and
1 ≤ p ≤ ∞.

Proof. Assume first that G is amenable and let positive µ ∈ (C0(G))∗ and
p ∈ (1,∞) be given. We can assume that ‖µ‖ = 1 and furthermore that
µ has compact support, since these measures are dense in these of regular
Borel measures on G.

Let K denote the support of µ and let ε > 0 be given. By the generalised
version of Reiter’s condition, we can pick positive ϕ ∈ Lp(G) with norm 1
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and satisfying ‖xϕ − ϕ‖p < ε, for all x ∈ K. Identify now Lp(G) with
(Lq(G))∗ for q > 1 such that 1/p+ 1/q and let g ∈ Lq(G) be given. Then

|〈µ ∗ ϕ− ϕ, g〉| = |〈µ ∗ ϕ, g〉 − 〈ϕ, g〉|

=

∣∣∣∣∫ ∫ ϕ(t−1x)g(x) dx dµ(t)−
∫ ∫

ϕ(x)g(x) dλ(x) dµ(t)

∣∣∣∣
≤
∫ ∫

|ϕ(t−1x)− ϕ(x)| · |g(x)| dλ(x) dµ(t)

=

∫ ∫
|tϕ(x)− ϕ(x)| · |g(x)| dλ(x) dµ(t)

≤
∫
K
‖xϕ− ϕ‖p · ‖g‖q dµ(t) < ε · ‖g‖q.

Taking the supremum over all g ∈ Lq(G) with ‖g‖q = 1 in the above in-
equality will then give us ‖µ ∗ ϕ− ϕ‖p < ε. By the triangle inequality, this
tells us ‖λµ,p‖ ≥ ‖µ ∗ ϕ‖p ≥ 1− ε. As ε > 0 was arbitrary, we can conclude
‖λµ,p‖ ≥ 1 = ‖µ‖, and hence amenability of G gives us ‖λµ,p‖ = ‖µ‖, for all
1 ≤ p ≤ ∞.

The converse result is also true. That is, if ‖λµ,p‖ = ‖µ‖, for all 1 ≤
p ≤ ∞ and positive bounded regular Borel measures µ, then G is amenable.
The proof of this can be found in [8]. Notice also that by Riesz convexity
theorem ([1], VI.10.8), the map α 7→ ‖λµ,1/α‖ is convex for α ∈ (0, 1), and
hence it suffices to show ‖λµ,p‖ = ‖µ‖ for one 1 < p <∞.
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4 Furstenberg’s conjecture

After discussing different characterisations of amenability for a while, we will
now turn our attention to the characterisation that Furstenberg conjectured
in [4]:

G possesses a measure µ whose support is all of G and for which no
nontrivial µ-boundary exists iff G is amenable.

We will use this section to develop the machinery for understanding the
above conjecture and also prove that if G is not amenable, then all measures
on G with full support will give rise to a nontrivial µ-boundary.

4.1 The world of Furstenberg

In the following we will only consider σ-compact locally compact groups G
and investigate how such groups act on topological spaces. Recall that a
group is σ-compact, if we can find compact sets K1,K2, . . . in G such that
G =

⋃∞
n=1Kn.

Definition 4.1. A locally compact space X is said to be a G-space if G acts
on X in a continuous manner.

As in Section 3.4 we will commonly use T : G×X → X to denote such an
action and for each g ∈ G let Tg : X → X denote the map Tg(x) = T (g, x).
We will also use the notation g.x for Tg(x) from time to time. Given two
G-spaces X and X ′, we say that a continuous map ϕ : X → X ′ is equivariant
if

T ′g(ϕ(x)) = ϕ(Tg(x)),

i.e., ϕ respects the actions on X and X ′. For a G-space X we let P(X)
denote the set of regular Borel probability measures on X, such that the
action on X induces an action on P(X), given by

Tg(µ)(A) = µ(gA).

Here we will view P(X) as a compact convex subset of means in (C0(X))∗,
and when endowed with the w∗-topology, the action above will be continuous
by arguments similar to those of Theorem 3.15. We are now ready for the
first result of this section.

Proposition 4.2. Let G be a σ-compact locally compact group. Then G
is amenable if and only if any compact G-space X admits a G-invariant
measure µ ∈ P(X).
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Proof. Assume first that G is amenable and let X be a compact G-space.
By the remarks above, this gives us a continuous action of G on P(X). This
action is affine as well, and since P(X) is a compact convex subset of a locally
convex vector space, the fixed point property of G will give us a G-invariant
measure in P(X).

For the other implication, assume now that any compact G-space X
admits a G-invariant measure in P(X). Let β(G) denote the Stone-C̆ech
compactification of G. Hence CB(G) = C(β(G)). Left multiplication in G
can be viewed as a continuous function from G to G ⊂ β(G) and hence it
extends to a continuous action on β(G). By assumption this allows us to find
a G-invariant measure µ ∈ P(β(G)). Integrating with respect to this µ will
then be a G-invariant mean on C(β(G)), which when viewed as a mean on
CB(G) will simply be a left invariant mean, and hence G is amenable.

When dealing with these G-spaces we can extend our definition of the
convolution of two measures. If X is a G-space and µ ∈ P(G), ν ∈ P(X),
we let µ ∗ ν ∈ P(X) denote the measure

µ ∗ ν(A) =

∫
1A(g.x) dµ(g) dν(x), for A ∈ B(X),

or, when viewed as a linear functional on C0(X),∫
X
f(x) dµ ∗ ν(x) =

∫
X

∫
G
f(g.y) dµ(g) dν(y).

Notice that this definition is consistent with our previous definition when
viewing G itself as a G-space by left multiplication.

4.2 A probabilistic approach

With the notion of G-spaces in place, we are now ready to approach the
notion of a µ-boundary, and for this we will delve into the world of probability
theory. A random variable on a G-space X will be a function f from some
background probability space (Ω,F , P ) into X, such that f is measurable
with respect to the Borel sets on X. The measurability of f will then let us
define a probability measure f(P ) on X by

f(P )(A) = P (f ∈ A), A ∈ B(X),

where (f ∈ A) denotes the preimage f−1(A). We say that f(P ) is the
distribution of f . The next important concept with random variables is that
of independence.
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Definition 4.3. We say that a family of random variables (fα) with values
in Xα are independent, if any finite subfamily fα1 , . . . , fαn and Ak ∈ Xαk

satisfies

P

(
n⋂
k=1

(fαk
∈ Ak)

)
=

n∏
k=1

P (fαk
∈ Ak).

Such random variables have a very strong connection with our convolu-
tion operation as seen in the following propositions.

Proposition 4.4. If f, h are independent random variables from a common
probability space into measurable spaces X and Y , respectively, then (f, h)(P )
and f(P )× g(P ) agrees as measures on X × Y .

Proof. This results follows from the fact that the family

A = {A×B | A ∈ B(X), B ∈ B(Y )}

is an intersection-stable generator for B(X × Y ).

Proposition 4.5. Let X be a G-space and let f, h be independent random
variables from a common background space with values in G and X, respec-
tively. Then f.h is a random variable with values in X and

(f.h)(P ) = f(P ) ∗ h(P ).

Proof. For any Borel set A in X,

(f.h)(P )(A) =

∫
1A(g.x) d(f.h)(P )(g, x) =

∫
1A(g.x) df(P )(g) dh(P )(x)

=

∫
1A(y) df(P ) ∗ h(P )(y) = f(P ) ∗ h(P )(A),

proving the statement

The point of considering such random variables is to describe different
probability measures only through the language of distributions of random
variables. The fact that this is even possible follows from this important
theorem in probability theory, for which we will omit the proof.

Theorem 4.6. Let (Xα) be a family of topological spaces with corresponding
measures µα ∈ P(Xα), then there exists a probability space (Ω,F , P ) and
a family of independent random variables (fα), such that fα : Ω → Xα and
fα(P ) = µα.
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Our next goal will now be to construct a so-called µ-process on X, where
X is a G-space and µ ∈ P(G). The first thing to do is to let (fn)n≥1 be
a sequence of independent random variables with values in G and common
distribution µ. By independence, the partial products f1 · · · fn will have
distribution µ(n). If now (Ω,F , P ) is the background space of (fn)n≥1 we
can define Ω′ = M × Ω and equip this space with the measure P ′ = ν × P ,
where ν is some measure in P(M).

We can now let h0 : Ω → X be the projection onto X, such that h0 is
a random variable independent of (fn)n≥1 and h0(P ′) = ν. Finally we will
define a sequence (hn)n≥1 of random variables from Ω to X by

hn(x, ω) = fn(ω)fn−1(ω) · · · f1(ω).h0(x, ω),

with hn(P ′) = µ(n) ∗ ν. This constuction justifies the following definition:

Definition 4.7. A µ-process on a G-space X is a sequence of random vari-
ables (fn+1, hn)n≥1 from (Ω,F , P ) with values in G×X such that

1. fn(P ) = µ,

2. hn+1 = fn+1hn,

3. fn+1 is independent of {fn, . . . , f1, hn, . . . , h1}.

As an example of such a µ-process, let’s look at the case where G itself is
considered as a G-space by left multiplication and ν = δe. By letting (fn)n≥1

be a sequence of independent and identically distributed random variables
with values in G and common distribution µ we obtain a sequence (hn)n≥1

of random variables on G defined as

hn = fn · · · f1,

such that hn(P ) = µ(n). We will call (hn)n≥1 the left-handed random walk
associated to µ and similarly let

h′n = f1 · · · fn

be the right-handed random walk associated to µ. The next thing we will
investigate are the notions of a stationary measure on a G-space and a (G,µ)-
space.

Definition 4.8. Let µ ∈ P(G) be given and X be a G-space. We say that
ν ∈ P(X) is stationary with respect to µ, if µ ∗ ν = ν. If the measure µ in
question is clear from the context, we will simply say that ν is stationary.
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Definition 4.9. Let µ ∈ P(G) be given. A G-space X equipped with a
measure ν ∈ P(X) is said to be a (G,µ)-space if ν is stationary with respect
to µ.

It might not be clear that such (G,µ)-spaces exist for all µ ∈ P(G),
but the following proposition gives us a setup that allows us to construct
(G,µ)-spaces.

Proposition 4.10. Let X be a compact G-space and µ ∈ P(G) be given.
Then there exists ν ∈ P(X) such that (X, ν) is a (G,µ)-space.

Proof. To prove this proposition we should find a stationary ν ∈ P(X). For
this consider the map T : P(X)→ P(X) given by

T (ν) = µ ∗ ν.

Then T will be a continuous affine map on a compact convex subset of
the locally convex vector space (C0(X))∗. Thus, T will have a fixed point
ν ∈ P(X), that will be our stationary measure on X.

We are now ready to introduce the notion of a µ-boundary as defined by
Furstenberg.

Definition 4.11. Let (X, ν) be a (G,µ)-space. We say that (M,ν) is a
µ-boundary if f1 · · · fn.ν converges to a point measure with probability one,
where (fn)n≥1 is a sequence of independent random variables with values in
G and common distribution µ.

To prove the stated connection between µ-boundaries and amenability
of G, we will look at the right-handed random walk (hn)n≥1 and say that
(hn)n≥1 is transient if hn → ∞ as n → ∞ with probability one. Here
hn → ∞ is to be interpreted as (hn)n≥1 leaving any compact set at some
point. Connected with this concept are the following results:

Theorem 4.12. If (G,µ) has a µ-boundary (M,ν) such that ν is not a one
point measure, then (hn) is transient.

Proof. Assume that (M,ν) is a µ-boundary, i.e., hn.ν converges to a point
measure with probability one. Assume now that (hn) is not transient, such
that it has a subsequence (hnk

) contained in some compact K with a strictly
positive probability. This gives us a further subsequence (h′m) ⊂ (hnk

)
converging to some random variable h on more than a null-set, and hence
h′n.ν → h.ν. By our initial convergence of hn.ν, we can conclude that h.ν is
a one point measure on more than a null-set, which happens if and only if ν
is a one point measure.
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Theorem 4.13. If (X, ν) is a (G,µ)-space such that there exists a g in the
support of µ with g.ν 6= ν, then (hn) transient.

This is Theorem 9.2 of [4], for which we will omit the proof.

Corollary 4.14. Assume that G is not amenable, and let µ ∈ P(G) be given
such that supp(µ) generates all of G. Then (hn) is transient

Proof. If G is not amenable, let X be a compact G-space with no G-invariant
measures in P(X). By Proposition 4.10 we can still find ν ∈ P(X) such that
ν is stationary with respect to µ. Then (X, ν) is a (G,µ)-space and since ν
is not G-invariant, we can by Theorem 4.13 conclude that the right-handed
random walk (hn) is transient.

Theorem 4.15. Assume that G is not amenable and let µ ∈ P(G) be a
measure will full support. Then there exists a nontrivial µ-boundary.

Proof. First we should notice that by Corollary 4.14, the right-handed ran-
dom walk (hn) associated to µ is transient, i.e., hn → ∞ with probability
one. Let now G′ = G ∪ {∞} denote the one-point compactification of G.
Then both hn → ∞ ∈ G′ and h−1

n → ∞ ∈ G′ almost surely. We can now
define an action of G on G′ by left multiplication with the special case of
g · ∞ = ∞, for all g ∈ G. Then G′ becomes a compact G-space, with
hn.t, h

−1
n .t→∞ almost surely, for all t ∈ G′. By compactness we can find a

stationary ν ∈ P(G′) making (G′, ν) a (G,µ)-space.
Our claim is now that (G′, ν) is a µ-boundary. This will follow from the

convergence hn.ν → δ∞, which is a one-point measure on G′. To see this let
f ∈ C0(G′) be given. Then

〈hn.ν, f〉 =

∫
G′
f(h−1

n .t) dν(t)→
∫
G′
f(∞) dν(t) = f(∞) = 〈δ∞, f〉

on the set where hn →∞, and thus with probability one. The above conver-
gence can be obtain by dominated convergence, where ‖f‖∞ is an integrable
upper bound. This proves that (G′, ν) is a µ-boundary.
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5 Rosenblatt’s approach

In this section we aim to prove the remaining implication of Furstenberg’s
conjecture, and for this we will go through the proof that Joseph Rosenblatt
provided in [9]. This proof introduces the notions of a measure µ ∈ P (G)
being ergodic and mixing by convolutions To understand these concepts we
will introduce L1

0(G) as the functions f in L1(G) such that
∫
f dλ = 0.

Definition 5.1. Let µ be a regular Borel probability measure on G. We say
that

• µ is ergodic by convolutions if∥∥∥∥∥f ∗ 1

N

N∑
n=1

µ(n)

∥∥∥∥∥
1

→ 0, as n→∞, for all f ∈ L1
0(G).

• µ is mixing by convolutions if ‖f ∗ µ(n)‖ → 0, as n → ∞, for all
f ∈ L1

0(G).

After this definition we will discuss a couple of results concerning these
definitions.

Lemma 5.2. Let µ be a regular Borel probability measure on G. If µ is
mixing by convolutions then µ is also ergodic by convolutions.

Proof. Assume that µ is mixing by convolutions and let ε > 0, f ∈ L1
0(G) be

given. Pick N ∈ N such that ‖f ∗ µn‖ < ε/2 for all n ≥ N . For any n ≥ N
we have ∥∥∥∥∥f ∗

(
1

n

n∑
k=1

µ(k)

)∥∥∥∥∥ ≤ 1

n

(
n∑
k=1

‖f ∗ µ(k)‖

)

<
1

n

(
N−1∑
k=1

‖f ∗ µ(k)‖+

n∑
k=N

ε

2

)

=
1

n

N−1∑
k=1

‖f ∗ µ(k)‖+
ε

2
.

Picking n ≥ N large enough will give us
∥∥f ∗ ( 1

n

∑n
k=1 µ

(k)
)∥∥ < ε, and hence

µ is ergodic by convolutions.

Proposition 5.3. Let µ be a regular Borel probability measure on G and A
be the convex hull of {µ(k) : k ≥ 1}. The following are equivalent:
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1. µ is ergodic by convolutions.

2. there exists a sequence (νn)n≥1 in A such that ‖f ∗ νn‖ → 0, for all f
in L1

0(G).

3. for all f ∈ L1
0(G), there exists a sequence (νn)n≥1 in A such that

‖f ∗ νn‖ converges to zero, as n→∞.

4. for all f ∈ L1
0(G) and H ∈ L∞(G), there exists a sequence (νn)n≥1 in

A such that
∫

(f ∗ νn)H dλ→ 0.

5. if µ∗H = H for some H ∈ L∞(G), then H is constant λ almost surely.

6. if µ ∗H = H for some continuous H ∈ L∞(G), then H is constant.

Proof. The implications 1. =⇒ 2., 2. =⇒ 3., 3. =⇒ 4. and 5. =⇒ 6.
are clear. For 4. =⇒ 5. assume that H ∈ L∞(G) satisfies µ ∗H = H. For
a fixed f ∈ L1

0(G), pick (νn) in A such that
∫

(f ∗ νn)H̃ dλ→ 0. Then∫
(f ∗ νn)H̃ dλ = (f ∗ νn) ∗H(e) = f ∗ (νn ∗H)(e)

= f ∗H(e) =

∫
fH̃ dλ,

and hence
∫
fH̃ dλ = 0. As f ∈ L1

0(G) was arbitrary we can conclude that H̃
is constant λ almost surely and so is H. We will omit the proof of 6. =⇒ 1.
in this project.

We will now turn to the connection between ergodic measures and the
conjecture in question. Following the previous section, we need to show that
if G is amenable, then there exists a measure with full support and only
trivial µ-boundaries. For this let us consider the relation between amenabil-
ity of a group and the existence of an ergodic measure, as established by
Rosenblatt ([9], Theorem 1.10). This is the main result of the section.

Theorem 5.4. Let G be a σ-compact amenable locally compact group. Then
there exists an probability measure µ on G which is mixing by convolutions.
Furthermore µ is absolutely continuous with respect to λ, and the correspond-
ing density is symmetric.

Before proving this theorem we introduce a small lemma. This lemma will
give us a way of characterising whether a measure is mixing by convolutions
or not. We will say that a measure µ is spread-out if there exists n ≥ 1 such
that µ(n) and λ are not mutually singular.
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Lemma 5.5. If µ is a regular spread-out Borel probability measure on G,
then µ is mixing by convolutions if and only if

‖δg ∗ µ(n) − µ(n)‖1 → 0 as n→∞ for all g ∈ G

Proof. Assume that ‖δg ∗ µ(n) − µ(n)‖1 → 0 as n → ∞, for all g ∈ G. If
f ∈ L1(G) and h = f ∗ δg − f for some g ∈ G, then

‖h ∗ µ(n)‖1 ≤ ‖f‖1 · ‖δg ∗ µ(n) − µ(n)‖1,

so by assumption we can conclude ‖h ∗µ(n)‖1 → 0 as n→∞. To prove that
µ is mixing by convolutions, it suffices to show that

A = {f ∗ δg − f | f ∈ L1(G), g ∈ G}

spans a dense subset of L1
0(G). Notice first that H := span{A} ⊂ L1

0(G) and
assume now in order to reach a contradiction that there exists f0 ∈ L1

0(G),
but not in the closure of H. By the Hahn-Banach Theorem there exists
positive bounded linear functional Φ : L1(G)→ C such that Φ(f0) = 1 and Φ
is constantly zero on H. This will in particular give us Φ(f) = ∆(x−1)Φ(fx),
for all f ∈ L1(G) and x ∈ G. By Proposition 1.1, there exists c > 0, such
that

Φ(f) = c ·
∫
f dλ,

for all f ∈ L1(G), contradicting Φ(f0) = 1. In conclusion, H is dense in
L1

0(G) and thus µ is mixing by convolutions.
For the converse implication assume that µ is mixing by convolutions

and let ε > 0 and g ∈ G be given. For each n ∈ N let µ(n) = αn · λ+ βn be
the Lebesgue decomposition of µ(n). As µ is spread-out, we can find n ≥ 1
such that µ(n) and λ are not mutually singular. From here on, we see that
‖βmn‖ → 0 as m→∞, and hence also ‖βn‖ → 0 as n→∞. Let now n0 ∈ N
be given such that ‖µ(n) − αn‖1 < ε/3 for n ≥ n0 and let n1 ≥ n0 be given
such that ‖(δg ∗ αn0 − αn0) ∗ µ(nn0)‖1 < ε/3 for n ≥ n1. For n ≥ n1 we now
have

‖δg∗µ(nn0+n0) − µ(nn0+n0)‖1
= ‖(δg ∗ (αn0 + µ(n0) − αn0)− (αn0 + µ(n0) − αn0)) ∗ µ(nn0)‖1
≤ ‖(δg ∗ αn0 − αn0) ∗ µ(nn0)‖1 + 2‖µ(n0) − αn0‖1‖µ(nn0)‖
< ε.
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For any k ≥ (n1 + 1)n0 we then obtain ‖δg ∗ µ(k) − µ(k)‖1 < ε, and thus

‖δg ∗ µ(n) − µ(n)‖1 → 0 as n→∞.

As g ∈ G was arbitrary, this lets us conclude the desired result.

Proof of Theorem 5.4. The strategy is to construct a symmetric positive
function f ∈ L1(G) such that

∫
f dλ = 1 and ‖δg ∗ f (n) − f (n)‖1 → 0 as

n→∞ for all g ∈ G. The proof will include some technical details, both in
the construction of f and in the proof of the convergence.

Preliminary considerations: Before we start on the construction of f , let
us first investigate some consequences of the amenability of G. Since G is
amenable, we know that G satisfies Følner’s condition, that is, for any ε > 0
and compact set K ⊂ G, there exists a symmetric compact set S ⊂ G with
strictly positive measure such that λ(gS∆S) < λ(S)ε, for all g ∈ K. That
S can be picked to be compact and symmetric follows from Remark 3.11.

Consider now α, ε > 0 and K ⊂ G compact. As explained above choose
a compact and symmetric set S ⊂ G, such that λ(gS∆S) < (λ(S) · ε)/α, for
all g ∈ K and define

µk = α1K/λ(K), µS = 1S/λ(S).

Calculating the norm of µK ∗ µS − αµS will then give us

‖µK ∗ µS − αµS‖1

=

∫ ∣∣∣∣∫ α

λ(K)λ(S)
1S(t−1s)1K(t) dλ(t)− α

λ(S)
1S(s)

∣∣∣∣ dλ(s)

=

∫ ∣∣∣∣∫
K

α

λ(K)λ(S)
1S(t−1s)− 1S(s) dλ(t)

∣∣∣∣dλ(s)

≤
∫ ∫

K

α

λ(K)λ(S)
|1tS(s)− 1S(s)|dλ(t) dλ(s)

=

∫
K

∫
α

λ(K)λ(S)
1tS∆S(s) dλ(s) dλ(t)

<

∫
K

ε

λ(K)
dt = ε.

A similar argument can be applied to any number of compact setsK1, . . . ,Kn

and α1, . . . , αn, ε > 0, i.e., there exists a compact set S ⊂ G with

‖µK1 ∗ · · · ∗ µKn ∗ µS − α1 . . . αnµS‖1 < ε,
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where µKi and µS are defined as before. To do this apply Følner’s condition
to the compact set K1K2 · · ·Kn, with ε/(α1 · · ·αn) as the bound. That this
suffices comes from the inequality

‖µK1 ∗ · · · ∗ µKn ∗ µS − α1 · · · anµS‖

≤
n∏
i=1

αi
λ(Ki)

∫
G

∫
K1

· · ·
∫
Kn

|µ(g−1
n · · · g−1

1 s)− µ(s)| dλ(gn) · · · dλ(g1) dλ(s),

so if
∫
|µ(t−1s)− µ(s)| dλ(s) < ε/(α1 · · ·αn), for all t ∈ K1 · · ·Kn, then the

integral above is less that ε.
The construction of the function: For the construction, let (εn), (γn)

be sequences of strictly positive real numbers such that
∑∞

n=1 εn = 1 and∑∞
n=1 γn <∞ and use σ-compactness of G to pick compact subsets

F1 ⊂ F2 ⊂ F3 ⊂ . . .

of G with
⋃
Fn = G. Notice that for any k ≥ 1 we have

∑k
n=1 εn < 1, so we

are able to pick a strictly increasing sequence (pm) in N such that

m−1∑
k=2

(
k∑

n=1

εl

)pm
→ 0 as m→∞.

Our next step will be to choose a sequence (Sm) of symmetric, compact sub-
sets in G with strictly positive measure satisfying some desirable properties.
To describe these properties we will for a short while pretend that these sets
are chosen and then return to the process of choice later on. For each m ∈ N
let µm = εm1Sm/λ(Sm). For r ≥ 2 and m ∈ N consider the set

Πr,m = {µi1 ∗ · · · ∗ µir | µil ∈ {µ1, . . . , µm}, ∃1 ≤ l ≤ r : µil = µm},

i.e., the collection of products of r elements from {µ1, . . . , µm}, with at least
one of the terms being µm. For each such π ∈ Πr,m let j(π) < r denote the
number of terms in π not equal to µm and J(π) < r be equal to the number
of terms in π before the first occurrence of µm. We will use j, J respectively
when π is understood. In this way, for any π ∈ Πr,m we have

π−

(
J∏
t=1

εit

)
µm ∗

r∏
t=J+2

µit = (µi1 ∗ · · · ∗µiJ ∗µm− εi1 · · · εiJµm) ∗
r∏

t=J+2

µit ,

so by integration over G we obtain∥∥∥∥∥π −
(

J∏
t=1

εit

)
µm ∗

r∏
t=J+2

µit

∥∥∥∥∥
1

≤ ‖µi1 ∗ · · · ∗µiJ ∗µm− εi1 · · · εiJµm‖1. (1)
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It is now time to pick the sequence of Sm’s, so start out by letting S1 be
some symmetric, compact subset of G with λ(S1) > 0. The remaining sets
will be picked inductively in the following way. Given {S1, . . . , Sm−1} we
will pick a compact and symmetric set Sm such that for all π ∈ Πr,m∥∥∥∥∥π −

(
J∏
t=1

εit

)
µm ∗

r∏
t=J+2

µit

∥∥∥∥∥
1

<
γm
mpm

,

where 2 ≤ r ≤ pm. We will also want this Sm to satisfy

λ(gSm∆Sm) < λ(Sm) · γm.

To do this we will once again apply Følner’s condition, but first we should
find an appropriate compact set Km and an upper bound εm. For the first
requirement on Sm, for each π ∈ Πr,m given as π = µi1 ∗ · · · ∗ µin , we let

Kπ = Ki1 · · ·KiJ ,

i.e., the product of the compact sets appearing on the right hand side of (1).
With these Kπ’s chosen we will define

Km = Fm ∪
pm⋃
r=2

⋃
π∈Πr,m

Kπ,

and apply Følner’s condition to this compact set with εm = γm/m
pm . In

this way our set Sm will satisfy λ(gSm∆Sm) < λ(Sm) · γm, for all g ∈ Fm,
but also ∥∥∥∥∥π −

(
J∏
t=1

εit

)
µm ∗

r∏
t=J+2

µit

∥∥∥∥∥
1

<
εi1 · · · εiJγm

mpm
<

γm
mpm

for all π ∈ Πr,m with 2 ≤ r ≤ pm. Notice furthermore that the Fm’s are
increasing, so we will also have

λ(gSm∆Sm) < γm · λ(Sm),

for all g ∈ Fn, whenever m ≥ n.
With these sets in mind, we will now define f ∈ L1(G) by f =

∑∞
n=1 µn

and claim that this is the desired function. The function f inherits positivity
and symmetry directly from the µk’s and by our way of choosing (εk) we also
get

∫
f dλG = 1. We are now left with showing

‖δg ∗ f (n) − f (n)‖1 = ‖(δg − δe) ∗ f (n)‖1 → 0
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for all g ∈ G. For this, let g ∈ G be given and m0 ∈ N be such that g ∈ Fm0

and thus in Fm for any m ≥ m0. Let furthermore r ≥ 2 be given, such that
using our notation from above

(δg − δe) ∗ f (r) = (δg − δe) ∗ µ(r)
1 +

∞∑
k=2

∑
π∈Πr,k

(δg − δe) ∗ π.

For a fixed m ≥ m0 we will now split up the above sum into two sums
∞∑
k=2

∑
π∈Πr,k

(δg − δe) ∗ π =
m−1∑
k=2

∑
π∈Πr,k

(δg − δe) ∗ π +
∞∑
k=m

∑
π∈Πr,k

(δg − δe) ∗ π,

which we will denote by Σ1 and Σ2, respectively. Let us now try and find
some useful upper bounds for these sums. Given π ∈ Πr,k either π = µ

(r)
k ,

such that ‖π‖1 ≤ ‖µk‖r1 or else j > 0 and then ‖π‖1 ≤ ‖µil1‖1 · · · ‖µilj ‖1‖µk‖
r−j .

With this in mind a quick count of possible combinations in Πr,k reveals that

∑
π∈Πr,k

‖π‖1 ≤
r−1∑
k=0

(
r

j

)(k−1∑
l=1

‖µl‖1

)j
‖µk‖r−j1

≤

(
k∑
l=1

‖µl‖1

)r
=

(
k∑
l=1

εl

)r
.

Next we notice that ‖(δg − δe) ∗ π‖1 ≤ ‖δg ∗ π‖1 + ‖π‖1 = 2‖π‖1, and hence

‖Σ1‖1 ≤ 2
m−1∑
k=1

(
k∑
l=1

εl

)r
.

For the bound of ‖Σ2‖1 let k ≥ m be given and assume furthermore that
our fixed r satisfy 2 ≤ r ≤ Pk. From our choice of the sequence (Sm) we get∥∥∥∥∥π −

J∏
t0

εitµk ∗
r∏

t=J+2

µit

∥∥∥∥∥
1

< γk/k
Pk ,

so by combining these results we see that∥∥∥∥∥∥
∑

π∈Πr,k

(δg − δe) ∗ π

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑

π∈Πr,k

(δg − δe) ∗
∏
t=0

εitµk ∗
r∏

t=J+2

µit

∥∥∥∥∥∥
1

+ 2
∑

π∈Πr,k

γk/k
Pk .
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Since k ≥ m we also get ‖(δg − δe) ∗ µk‖1 < γk‖µk‖1 from our discussion
before, and using ‖µi‖1 = εi we obtain∥∥∥∥∥∥

∑
π∈Πr,k

(δg − δe) ∗ π

∥∥∥∥∥∥
1

≤
∑

π∈Πr,k

γk‖µil1‖1 · · · ‖µilj ‖1‖µk‖
r−j
1 + 2γk.

By the same combinatorial argument from before we then get

‖Σ2‖1 ≤
∞∑
k=m

(
γk

(
k∑
l=1

εl

)r
+ 2γk

)
≤ 3

∞∑
k=m

γk.

Combining these arguments we will have for m ≥ m0 and 2 ≤ r ≤ pm

‖(δg − δe) ∗ f (r)‖1 ≤ 2εr1 + 2

m−1∑
k=2

(
k∑
l=1

εl

)r
+ 2

∞∑
k=m

γk.

So if we let r = pm every time, we get limm→∞ ‖(δg−δe)∗f (pm)‖1 = 0. From
here we only need ‖f‖1 ≤ 1 to obtain ‖(δg − δe) ∗ f (n)‖1 → 0 as n→∞, but
‖f‖1 =

∫
|f |dλ =

∫
f dλ = 1 so this is not an issue.

To finish the proof, we will now let µ be the probability measure on G,
having f as density with respect to λ. Then µ is clearly absolutely continuous
with respect to λ and with symmetric density. By absolute continuity, µ is
also spread-out, and since

δg ∗ µ(n) − µ(n) = δg ∗ f (n) − f (n),

for all g ∈ G, we can use Lemma 5.5 and the convergence above to conclude
that µ is mixing by convolutions.

The above theorem will now be the starting point of the series of ar-
guments leading to the proof of the necessity condition in Furstenberg’s
conjecture. That is, if G is amenable there exists a measure µ on G with
full support and only trivial µ-boundaries. The first thing we will do is to
introduce, the so-called µ-harmonic functions and then connect this concept
to the measure obtained in Theorem 5.4.

Definition 5.6. Let µ be a bounded, regular measure Borel measure on G.
We say that f ∈ L∞(G) is µ-harmonic if

f(x) =

∫
f(xt) dµ(t), for all x ∈ G
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In view of Theorem 5.4 we will in the following focus on measures µ ∈
P(G) that are absolutely continuous with respect to λ. Such a measure µ will
have density ϕ ∈ Prob(G). We will also focus on measures with a symmetric
density ϕ, i.e., ϕ = ϕ̃.

Proposition 5.7. Let µ ∈ P(G) be absolutely continuous with respect to λ
and with symmetric density ϕ ∈ Prob(G). Then for f ∈ L∞ the following
are equivalent

1. µ ∗ h̃ = h̃

2. h ∗ µ = h

3. h is µ-harmonic

Proof. The equivalence of h ∗ µ = h and h being µ-harmonic follows since

(h ∗ µ)(s) = (h ∗ ϕ)(s) = (h ∗ ϕ̃)(s)

=

∫
h(t)ϕ̃(t−1s) dλ(t)

=

∫
h(t)ϕ(s−1t) dλ(t)

=

∫
h(st)ϕ(t) dλ(t) =

∫
h(st) dµ(t)

for any s ∈ G. That µ ∗ h̃ = h̃ and h ∗ µ = h are equivalent can be obtained
through the identities

µ ∗ h̃ = ϕ ∗ h̃ = ϕ̃ ∗ h̃ = h̃ ∗ ϕ = h̃ ∗ µ.

which can be easily checked.

Remark 5.8. We note that if µ ∈ P(G) satisfies the hypothesis of Proposi-
tion 5.7, then a function h ∈ L∞(G), which is µ-harmonic will automatically
belong to UCB`(G) by Lemma 2.4.

From here we will now link the µ-harmonic functions in UCB`(G) to the
µ-boundaries. This will be done through a certain (G,µ)-space called the
universal µ-boundary, also defined in [4].

Definition 5.9. Let µ ∈ P(G) be given. We say that a (G,µ)-space (X, ν)
is a universal µ-boundary if any other µ-boundary can be obtained as an
equivariant image of (X, ν).
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It is proved in [4] (see Thm 10.1) that for each pair (G,µ), there exists
a universal µ-boundary and if, moreover, this satisfies a certain minimality
condition, then it is unique up to isomorphism. We omit the details of the
proof.

It is clear from the definition that if the universal µ-boundary is trivial,
then so is any other µ-boundary.

The importance of the concept of universal µ-boundary arises in con-
nection with the Poisson representation of bounded µ-harmonic functions
on G. Namely, it is proved in Theorem 12.2 in [4] that for a σ-compact
locally compact group G, there is a one-to-one correspondence between µ-
harmonic functions in UCB`(G) and continuous functions on the universal
µ-boundary. As a consequence is all µ-harmonic functions in UCB`(G) are
constant, then the universal µ-boundary is trivial.

Combining these deep results with Proposition 5.7 will now give us the
following desired result:

Proposition 5.10. Let µ ∈ P(G) be absolutely continuous with respect to λ
with symmetric density ϕ ∈ Prob(G). If µ is ergodic by convolutions, then
all µ-boundaries are trivial.

Proof. Assume that µ is ergodic by convolutions. If f ∈ L∞(G) is µ-
harmonic which by Remark 5.8 will automatically belong to UCB`(G), then
µ ∗ h̃ = h̃. By the implication 1. =⇒ 6. of Proposition 5.3 we can now
conclude that h̃ and hence also h are constant. By the arguments above,
this implies that the universal µ-boundary is trivial and hence so is any
µ-boundary.

We have now established that the measure obtained from Theorem 5.4
will admit only trivial µ-boundaries, but it need not have full support. What
we will do though is to construct a new measure from µ with full support
and no non-trivial µ-boundaries. For this we will introduce some terminology
regarding regular Borel probability measures on G.

Definition 5.11. Let µ ∈ P(G). We say that

• µ is balanced if µ(A) = µ(A−1) for all A ∈ B(G).

• µ is adapted if the subgroup generated by supp(µ) is dense in G.

• µ is faithful if supp(µ) = G.

If we let µ̃ denote the measure µ̃(A) = µ(A−1), for A ∈ B(G), we could
say that µ is balanced if µ = µ̃. Our goal is now to find a way of obtaining
a faithful measure.
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Remark 5.12. It is stated (without proof) in [9] that whenever µ ∈ P(G)
is ergodic by convolutions, then µ is adapted. A proof of this result can be
found in [6] (see Corollary 4.2.6.), using the theory of a Poisson boundary on
µ, which corresponds to the universal µ-boundary in the measure theoretic
setting.

Hence, we now know that the ergodic measure we obtained from the
amenability of G is adapted, so let us see how this can be used to construct
a faithful measure.

Proposition 5.13. Let µ be a regular Borel probability measure on G and
set ν =

∑∞
n=1 2−nµ(n).

1. If µ is balanced, then
⋃∞
n=1 supp

(
µ(n)

)
is a subgroup of G.

2. If µ is adapted and balanced, then ν is faithful.

Proof. 1. We start out by noticing that supp(µ̃) = supp(µ)−1, so if µ is
balanced, then supp(µ) = supp(µ) ∪ supp(µ)−1 is a symmetric subset of G.
Note also that if µ is balanced then µ(n) is balanced, for all n ≥ 1. To
finish the proof we want to show that supp(µ)2 ⊂ supp(µ(2)), and in general
supp(µ1) · supp(µ2) ⊂ supp(µ1 ∗ µ2). Let first U, V be Borel sets in G and
notice that

µ(U) · ν(V ) =

∫
U×V

1UV (xy) dµ(x) dν(y)

≤
∫

1UV (xy) dµ(x) dν(y) = (µ ∗ ν)(UV ).

Let now x ∈ supp(µ1) and y ∈ supp(µ2) be given and choose an open
neighbourhood W of xy ∈ G. We can now pick open neighbourhoods x ∈ U
and y ∈ V such that UV ⊂W and hence

0 < µ1(U)µ2(V ) ≤ (µ1 ∗ µ2)(UV ) ≤ (µ1 ∗ µ2)(W ),

so xy ∈ supp(µ1 ∗ µ2). Combining these properties of supp(µ) will let us
conclude that

⋃
n=1 supp(µ(n)) is a subgroup of G.

2. For this part notice first that supp(ν) is closed and

∞⋃
n=1

supp(µn) ⊂ supp(ν).

Since µ is adapted and balanced, supp(ν) must be equal to G.
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Now this result concerns balanced measures, but the measure µ obtained
in Theorem 5.4 is not necessarily balanced. If ϕ ∈ Prob(G) is the symmetric
density of µ with respect to λ, we see by integration that

dµ̃(x) = ϕ(x)∆(x−1) dλ(x) = ∆(x−1) dµ(x), for x ∈ G.

Here we have used that dλ̃(x) = ∆(x−1) dλ(x) for x ∈ G, which can be
found in [3] (see Proposition 11.14). Since ∆ > 0 we see that µ̃ and µ agree
on null-sets, so we still have supp(µ) = supp(µ̃). Repeating the proof above
will then tell us that the results in Proposition 5.13 hold true for µ, as well.

At this point we have shown that the measure µ we constructed in The-
orem 5.4 gives rise to a measure ν =

∑∞
k=1 2−kµ(k) with full support. To

finish the prove of Furstenberg’s conjecture, we should proof that ν only
admits trivial ν-boundaries. In accordance to the results proved earlier in
this section it suffices to show that ν is absolutely continuous with respect
λ, has a symmetric density and is mixing by convolutions.

Proposition 5.14. Let µ ∈ P(G) be given, such that µ is absolutely contin-
uous with respect to λ, has symmetric density and is mixing by convolutions.
Then ν ∈ P(G) defined by ν =

∑∞
k=1 2−kµ(k) will inherit all of these prop-

erties as well.

Proof. Let us start out by showing that ν is absolutely continuous with
respect to λ. To do this we should notice that if τ, τ ′ are both absolutely
continuous with respect to λ and ϕ,ϕ′, are the respective densities, then
τ ∗ τ ′ is absolutely continuous with respect to λ, and has density ϕ∗ϕ′. This
correlation between convolutions of measures and convolution of densities
will let us conclude that ν is absolutely continuous with respect to λ. The
density of ν will furthermore be given by

g =
∞∑
k=1

2−kf (k),

where f is the density of µ. That this density is symmetric follows from the
identity ϕ̃ ∗ ψ̃ = ψ̃ ∗ ϕ and since f commutes with itself

g̃ =
∞∑
k=1

2−k
(
f̃
)(k)

=

∞∑
k=1

2−kf (k) = g.

Finally we should show that ν is mixing by convolutions, so let f ∈ L1
0(G)

be given. As µ was mixing by convolutions we know that ‖f ∗ µ(n)‖ → 0, as
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n→∞. The next thing to notice is that

µ ∗
∞∑
k=1

2−kµ(k−1) = ν =

( ∞∑
k=1

2−kµ(k−1)

)
∗ µ,

so when raised to the power n we get

ν(n) = µ(n) ∗

( ∞∑
k=1

2−kµ(k−1)

)n
.

The measure multiplied onto µ(n) above is a probability measure, so we can
add f into the equation and obtain

‖f ∗ ν(n)‖ =

∥∥∥∥∥f ∗ µ(n) ∗

( ∞∑
k=1

2−kµ(k−1)

)n∥∥∥∥∥ ≤ ‖f ∗ µ(n)‖,

where µ(0) = δe. Letting n→∞ will then give us ‖f ∗ ν(n)‖ → ∞ and hence
ν is mixing by convolutions.

We have now seen that amenability of G will give us a measure ν ∈ P(G)
with full support that only admits trivial ν-boundaries, so we have proved
the remaining part of Furstenberg’s conjecture.

As a final remark in this project we wish to show that the converse statement
of Theorem 5.4 is true, as well. It turns out that if µ ∈ P(G) is absolutely
continuous with respect to λ, has symmetric density and is mixing by convo-
lutions then G is both amenable and σ-compact. Showing that the existence
of such a probability measure ensures amenability of the group is a matter
of combining ergodicity with strong left invariance of a a certain net.

Proposition 5.15. Assume that there exists a regular Borel probability mea-
sure µ on G such that µ is ergodic by convolutions. Then G is amenable.

Proof. Let f ∈ Prob(G) be given and define νn = f ∗
(

1
n

∑n
k=1 µ

(k)
)
for all

n ≥ 1 . Then νn ∈ L1(G) and νn ≥ 0. Furthermore for any g ∈ Prob(G),∫
g ∗ µ(s) dλ(s) =

∫ ∫
g(t−1s) dµ(t) dλ(s) =

∫ ∫
g(t−1s) dλ(s) dµ(t)

=

∫ ∫
f(s) dλ(s) dµ(t) =

∫
1 dµ(t) = 1,
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and hence νn ∈ Prob(G) for all n ∈ N. For any g ∈ G the function δg ∗ f − f
belongs to L1

0(G) by left invariance of λ and hence ‖δg ∗ νn − νn‖1 → 0 as
n tends to infinity. Then (νn)n≥1 converges strongly to left invariance and
hence G is amenable.

That the group G will also be σ-compact will follow from the adaptedness
of the measure µ, as discussed in Remark 5.12. The arguments are as follows.

Proposition 5.16. Let µ be a faithful regular Borel probability measure on
G. Then every open subgroup H of G has countable index.

Proof. Assume that H is an open subgroup of G and let I ⊂ G be a transver-
sal set for H, i.e., G is a disjoint union of the sets tH, for t ∈ I. Since each
tH is open and non-empty we have µ(tH) > 0 by faithfulness of µ. Then∑

t∈I
µ(tH) = sup

{∑
t∈J

µ(tH) : J ⊂ I finite

}

= sup

{
µ

(⋃
t∈J

tH

)
: J ⊂ I finite

}
≤ µ(G) = 1

This gives us a convergent sum with strictly positive terms, so there can be
at most countably many terms. In conclusion I is countable, and hence H
has countable index in G.

Proposition 5.17. Let µ be a regular Borel probability measure on G. If µ
is adapted then G is σ-compact.

Proof. Let ρ be the measure defined by ρ = 1
2(µ + µ̃). Then ρ is adapted

and balanced so let ν be the measure defined by ν =
∑∞

n=1 2−nρ(n). Then
ν is faithful. Let now U be a precompact open neighbourhoood of e ∈ G.
Then H :=

⋃∞
n=1 U

n is an open subgroup of G and hence

G =
⋃
t∈I

∞⋃
n=1

tUn

is a countable union. By the choice of U , K = U is compact, so tKn is
compact, for all t ∈ I and n ≥ 1. This allows us to write G as a countable
union of compact sets namely

G =
⋃
t∈I

⋃
n≥1

tKn,

so G is σ-compact.
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In conclusion this will allows us reformulate Theorem 5.4 as an if and
only if statement. More precisely we have shown that

If G is a locally compact group, then there exists an absolutely
continuous measure µ ∈ P(B) with symmetric density which
is ergodic by convolutions if and only if G is σ-compact and
amenable.
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