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Abstract

The thesis presents an exposition of the main existence and uniqueness theorems of Cho-
quet theory. First we introduce the concept of representing measures and establish their
fundamental properties. We then prove Choquet’s existence theorem for representing mea-
sures supported by the extreme points in the metrizable case. This is followed by a proof of the
more general Choquet-Bishop-de Leeuw existence theorem, which abandons the assumption
of metrizability for a slightly weaker conclusion. The theorem requires a further developing of
theoretical tools involving the notion of maximal measures.

After a brief introduction to vector lattices and the decomposition lemma, we introduce
the important idea of a Choquet simplex. We then prove some of its basic properties and
see some important examples. This, along with a revisiting of maximal measures and the
upper envelope, leads to a proof of the Choquet-Meyer uniqueness theorem for representing
measures. We then discuss different notions of simplices and conclude the thesis by applying
the established theorems to ergodic theory.
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Introduction

This bachelor’s thesis presents a survey and exposition of Choquet theory, which is the study of
how compact convex sets can be represented by its set of so called extreme points. The theory
rose out of potential theory and was intitally developed by Gustave Choquet in the 1950’s. It has
since then been heavily expanded upon by many others, both in its own theoretical depth and in
its applications to many other areas of analysis.

The thesis is divided into seven sections. After establishing the needed preliminaries in section
1, the language of representing measures along with some properties of the important resultant
map is developed in section 2. Section 3 introduces the concept of the upper envelope and proves
Choquet’s existence theorem for the metrizable case. In section 4 we introduce a certain ordering
on measures, allowing for a proof of the more general Choquet-Bishop-de Leeuw existence theorem.
In section 5 the notion of a Choquet simplex is developed, which is the key object in the Choquet-
Meyer uniqueness theorem for representing measures of section 6. The last section then explains
how all those theorems find applications in ergodic theory.

The theory is developed very thoroughly and in great detail. Assuming only an acquaintance
with classical theorems and concepts from functional analysis, the thesis takes a bottom-up ap-
proach and thus strives to be as self contained as possible while still maintaining a clear direction
through the material. It is therefore well-suited for an undergraduate student in the last year of
study or a more experienced reader seeking an easy introduction to the subject.

Choquet theory has many of the attributes usually ascribed to a good mathematical theory.
It is fundamentally about structure; it recognizes and studies how objects may be reconstructed
from fewer and more easily understood building blocks. It also showcases how abstraction can aid
in seeing the essential more clearly: By studying sets only by the property of being compact and
convex, one realizes how phenomena in many different areas of analysis can be seen as instantiations
of the same reconstruction process described by Choquet theory.

Of all the resources listed in the references, the author is especially indebted to the monograph
Lectures on Choquet’s theorem by Robert R. Phelps, originally published in 1966. It is difficult
to express enough appreciation for the clarity of presentation and wealth of content Phelps has
managed to contain in a very small book.

This bachelor’s thesis was written in the spring of 2020, a time in which the world was heavily
occupied by the breakout of the corona virus. The mathematical beauty of the subject proved
sufficient to distract the author from these chaotic times, and hopefully its beauty is presented
clearly enough to distract the reader as well.
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1 Preliminaries

In this section we gather useful definitions and results which are used frequently in the rest of the
thesis. We start with the usual definitions regarding convexity:

Definition 1.1. Let V be a vector space and let C be a subset of V . A function f : C → R is
convex if for all x1, x2 ∈ C and α ∈ (0, 1) we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

If the inequality is reversed, f is concave, and if equality holds, f is affine. Furthermore, if
the inequality is strict whenever x1 6= x2, f is strictly convex, and strict concavity is defined
analogously.

Remark. We immediately see that f is convex if and only if −f is concave and that f is affine if
and only if it is both convex and concave.

The central subject is integral representation of compact convex sets, and these sit naturally
inside topological vector spaces. To be able to develop the theory, it is of paramount importance
that we have sufficiently many linear functionals on our space to separate points and sets. The
general setting in which this is always the case is that of a Hausdorff locally convex topological
vector space, abbreviated as LCS.

Definition 1.2. A topological vector space E is locally convex if it exhibits a convex neighbourhood
base at 0.

The definition is quite short, but these spaces have many deep properties. It is worth noting
that the neighbourhood base at 0 completely determines the topology; as translations are home-
omorphishms, translates of the neighbourhood base at zero form neighbourhood bases at every
other point of E. One can show that a topological vector space is locally convex if and only if the
topology is generated by a family of seminorms.

This leads us to a brief discussion of weak and weak* topologies on Banach spaces:

Definition 1.3. Let Y be a Banach space and let Y ∗ denote the set of norm-continuous linear
functionals. The weak topology on Y is the initial topology with respect to the maps y 7→ |f(y)|,
one for each f ∈ Y ∗. Similiary, the weak* topology on Y ∗ is the initial topology with respect to
the maps f 7→ |f(y)|, one for each y ∈ Y .

Remark. A Banach space in the weak or weak* toplogy is a prime example of a locally convex
topological vector space. The toplogies are additionally Hausdorff, and it follows immediately from
the definitions that y 7→ f(y) is continuous in the weak topology while f 7→ f(y) is continuous in

the weak* topology. We usually denote these evaluation maps f̂ and ŷ, respectively.
A slightly more subtle fact is that a net {yα}α∈A ⊆ Y converges to y in the weak topology

if and only if f(yα) → f(y) for every f ∈ Y ∗ while a net {fα}α∈A ⊆ Y ∗ converges to f in the
weak* topology if and only if fα(y)→ f(y) for every y ∈ Y . Especially the latter will be used very
frequently, and we refer to it as the pointwise convergence characterisation of weak* convergence.
For an exposition of weak topologies we refer the reader to chapter V in [2].

For our purposes we will for the most part not be interested in the technical properties of these
spaces, but mainly invoke the following two quintessential theorems:

Theorem 1.4 (Hahn-Banach Extension Theorem). Let V be a vector space over R and let p :
V → R be a sublinear functional. Let M be a subspace of V and let f : M → R be a linear
functional which satisfies f(x) ≤ p(x) for all x ∈M . Then we may extend f to a linear functional
F : V → R which restricts to f and is dominated by p on V .

The Hahn-Banach extension theorem is fundamental for our endeavour and we shall use it quite
frequently. The theorem itself does not use convexity, in fact it does not even mention a topology.
But another theorem we apply even more frequently is the Hahn-Banach separation theorem.
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Theorem 1.5 (Hahn-Banach Separation Theorem). Let E be a real Hausdorff LCS and let A,B ⊆
E be disjoint, convex sets. If A is closed and B is compact, there exist a continuous linear functional
T : E → R and r ∈ R such that

supT (A) < r < inf T (B)

As the set H = {x ∈ E | f(x) = r} is a closed hyperplane in E, one can geometrically interpret
this theorem as establishing the existence of a closed hyperplane which strictly separates the two
sets.

There is, however, one technical lemma regarding the interaction of compactness and local
convexity, which will be useful from time to time:

Lemma 1.6. Let X be a compact convex subset of a real Hausdorff LCS E and let U ⊆ X be open
in X. Then every y ∈ U has a closed convex neighbourhood C such that C ⊆ U

Proof. It is a general fact of locally compact Hausdorff spaces that we may find an open set V
such that

y ∈ V ⊆ V ⊆ U.

As V is open, V = X ∩U for some open U ⊆ E. By local convexity we may find a neighbourhood
U ′ ⊆ U of y which is open and convex. Then

V ′ := X ∩ U ′ ⊆ V

is open and convex, so C := V ′ ⊆ U has all the desired properties.

Notation 1.7. For notational ease E will from now on always denote a real Hausdorff locally
convex topological vector space and X ⊆ E will always denote a compact convex subset of E. We
furthermore always assume that X is non-empty. If we repeat the assumptions on X, it is meant
as a reminder to the reader and a service in case the thesis is used as a reference.

For a set A ⊆ E we let co(A) denote the convex hull and co(A) denote the closed convex
hull of A. Since the vector space operations are continuous, the closure of a convex set is once
again convex. Therefore co(A) may freely be interpreted as either the smallest closed convex set
containing A or the closure of the convex hull of A.

We will also introduce the following notation for two important subsets of C(X):

A = {f ∈ C(X) | f is affine}, C = {f ∈ C(X) | f is convex}.

We note that we always consider C(X) equipped with the supremum norm. We also remark that
we adopt the convention from [3] that a neighbourhood of x contains x as an interior point, but
need not be open itself.

We are now ready to move on to the measure theoretic preliminaries. We will exclusively be
working with Radon measures, which we define in the following:

Definition 1.8. A Borel measure µ on a locally compact Hausdorff space Y is Radon if it satisfies

1. µ(K) <∞ for all compact K ⊆ Y

2. µ is outer regular, so for each B ∈ B(Y )

µ(B) = inf{µ(U) | U open, B ⊆ U}

3. µ is inner regular on open sets, so for open U

µ(U) = sup{µ(K) | K ⊆ U,K compact}

We denote the set of Radon measures on Y by M(Y ).

We will occasionally be using some of the many useful properties of Radon measures. We
collect a few of them in the following proposition:
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Proposition 1.9. Let Y be a locally compact Hausdorff space, let B(Y ) be the Borel σ-algebra on
Y and let µ be a σ-finite Radon measure on Y . Let A ∈ B(Y ) and f ∈ L1(µ) with f ≥ 0. Then

1. µ is inner regular on A.

2. The measure µA(B) := µ(A ∩B) for B ∈ B(Y ) is Radon.

3. The measure (f · µ)(B) :=
∫
B
fdµ for B ∈ B(Y ) is Radon.

We refer the reader to Proposition 7.5 and Exercises 7. and 8. on p. 220 in [3]. Since we
include regularity in the term probability measure, we define it explicitly:

Definition 1.10. A probability measure on a compact space K is a Radon measure µ which
satisfies µ(K) = 1. We denote the set of probability measures on K by M1(K) and note that
M1(K) is naturally embedded in C(K)∗ by identifying µ with the map f 7→

∫
K
fdµ.

We note that probability measures are in particular σ-finite Radon measures, so Proposition 1.9
applies.

We conclude this section by stating the Riesz representation theorem, which in conjunction
with the Hahn-Banach extension theorem will be our main tool for producing measures.

Theorem 1.11 (Riesz representation theorem). Let K be a compact Hausdorff topological space
and let I : C(K)→ R be a positive linear functional. Then there exists a unique Radon measure µ
such that for each f ∈ C(K),

I(f) =

∫
K

fdµ.

The Hahn-Banach theorems and the Riesz representation theorem will be the bread and butter
for achieving all results of this thesis. The proofs of these extraordinary theorems are beautiful
and we refer the reader to [3] for the extension and representation theorems, while a proof of the
separation theorem can be found on p. 130 in [10].
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2 Representing measures and their properties

In this section we introduce some of the concepts and language that will be studied throughout
the rest of the thesis. Many of the results can be found in chapter 1 of Phelps’ monograph [8].
In the following E will always be a real LCS, and X is always a compact convex subset of E.
Furthermore we let E∗ denote the set of real continuous linear functionals on E. We begin with
defining extreme points, which is the central concept of the thesis:

Definition 2.1. Let V be a vector space and let C be a convex subset of E. A point x ∈ C is an
extreme point of C if x = αy + (1− α)z with y, z ∈ C and α ∈ (0, 1) implies x = y = z.

When verifying that x is an extreme point, it actually suffices to check the case when α = 1/2.
Indeed, if α 6= 1/2, we may assume α < 1/2, and by defining y′ = z + 2α(y − z), it is easy to
verify that y′ ∈ C, y′ 6= x and x = 1/2(y′+ z). Thus the existence of a proper convex combination
representing x is equivalent to x being the midpoint of two distinct points. Although we will not
use this frequently, it can be a great convenience.

All subsequent developments can broadly be seen as trying to answer the question: In which
way can a compact convex set X be reconstructed from its extreme points? It is often helpful
to visualize compact convex sets in R2 or R3 when establishing theorems which seek to answer
this question. The truly interesting applications of Choquet theory, however, commonly arise in
inifinte-dimensional vector spaces. And many of these applications are in some way connected to
the following important example:

Example 2.2. Let K be a compact Hausdorff topological space and let C(K)∗ be equipped with
the weak* topology. Then set of probability measures on K, M1(K), is a compact convex subset
of C(K)∗ by the identification µ 7→ Iµ where Iµ(f) =

∫
K
fdµ for each f ∈ C(K).

Proof. It is well known that the Banach space C(K)∗ taken in its weak* topology is locally convex
and Hausdorff. By the Riesz representation theorem there is a bijective correspondence between
positive linear functionals I with I(1) = 1 and M1(K). Abusing notation, we write

M1(K) = {I ∈ C(K)∗ | I(1) = 1, I positive}.

Since evaluation at the constant function 1, 1̂, is weak∗ continuous, the set {I ∈ C(K)∗ | I(1) =
1} = 1̂−1({1}) is closed. Furthermore, by the characterisation of weak* convergence as pointwise
convergence, the property of being positive is preserved by weak* limits. Therefore M1(K) is the
intersection of two closed sets and hence closed itself. Since

|Iµ(f)| =
∣∣∣∣∫
K

fdµ

∣∣∣∣ ≤ ∫
K

|f |dµ ≤ ‖f‖∞ µ(K) = ‖f‖∞ ,

we see that ‖Iµ‖ ≤ 1. ThusM1(K) is a closed subset of the unit ball of C(K)∗, which is compact
in the weak* topology by the classical theorem of Banach-Alaoglu, a proof of which can be found
on p. 115 in [10]. We conclude that M1(K) is itself compact. Convexity of M1(K) is immediate
from the interpretation of µ as the positive linear functional Iµ.

We will return to the above example several times during the thesis, and we shall see later
that the extreme points of M1(K) are exactly the Dirac measures. Next we define representing
measures:

Definition 2.3. Let K be a compact subset of E. A probability measure µ on K is said to
represent x ∈ E if µ(f) :=

∫
K
fdµ = f(x) for all f ∈ E∗.

We also often say x is the resultant of µ and occassionally that x is the barycenter of µ. The notation
µ(f) may seem strange at first, but becomes natural with time and will be used ubiquitously in
the sequel.

Notice that we abuse notation in this definition: We integrate f , which is defined on E, against
µ, which is a measure on K. The most simple remedy for this technicality is to integrate the
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restriction f|K , which is continuous on K so the integral is well-defined. A slightly more compli-
cated, but also often very useful way to deal with it is the following: As K is a subspace of E,
it can easily be shown that the Borel σ-algebra B(K) generated by the subspace topology equals
the trace σ-algebra of the Borel σ-algebra on E. Put less confusingly, B(K) = B(E) ∩K. Thus
we may naturally extend µ to be a probability measure on E by defining µ(A) = µ(A ∩K) for all
A ∈ B(E). We shall often let these considerations remain implicit.

We will use the notion of representing measure to discuss how a compact convex set can be
reconstructed from its extreme points. Therefore we formalise what we mean when saying that a
measure is supported by some Borel set A:

Definition 2.4. Let Y be a topological space. A probability measure µ on Y is supported by the
Borel set A if µ(Y \A) = 0.

We frequently combine this definition with the method of extending the domain of a measure
described earlier: When K ⊆ K ′ ⊆ E with K, K ′ compact and µ a probability measure on K, we
may unreservedly regard it as a probability measure on K ′ supported by K. The most common
application of this is when K ′ is some compact set and K = Ext(K).

2.1 Properties of the resultant map

We are now ready to prove some basic properties of representing measures, which will later on
allow us the reformulate and generalise the classical theorem of Krein-Milman. We begin with the
fact that under fairly weak assumptions probability measures always have a resultant.

Proposition 2.5. Let K be a compact subset of E such that X = co(K) is compact. Then for
each µ ∈M1(K) there exists a unique x ∈ X such that x is represented by µ.

Proof. Let µ ∈ M1(K). For each f ∈ E∗ define Hf = {x ∈ E | f(x) = µ(f)}. The existence of a
resultant in X is then equivalent to the statement⋂

f∈E∗

Hf ∩X 6= ∅.

Since f is continuous and Hf = f−1({µ(f)}), we immediately see that each Hf is closed, implying
that {Hf ∩X}f∈E∗ is a collection of closed subsets of X. By compactness of X it then suffices to
show that this collection has the finite intersection property.

Therefore, let f1, . . . , fn ∈ E∗. We wish to show that
⋂n
i=1Hfi ∩X 6= ∅. To this end, define

T : E → Rn by y 7→ (f1(y), . . . , fn(y)). As each coordinate is linear and continuous, so is T . Since
continuous maps preserve compactness and linear maps preserve convexity, T (X) is both compact
and convex. The set in question is then non-empty if and only if the point p = (µ(f1), . . . , µ(fn))
is an element of T (X).

To show this, assume p 6∈ T (X). Since T (X) is compact and convex, we may by the Hahn-
Banach separation theorem find h ∈ (Rn)∗ such that h(p) > suph(T (X)). By the Riesz represen-
tation theorem for continuous linear functionals on a Hilbert space (Theorem 5.25 in [3]), we find
a ∈ Rn such that h = 〈a, ·〉.

To establish a contradiction, define g =
∑n
i=1 aifi, where ai are the coordinates of a. Then we

do the following calculation:

h(p) = 〈a, p〉 =

n∑
i=1

aipi =

n∑
i=1

aiµ(fi) =

∫
K

n∑
i=1

aifidµ =

∫
K

gdµ.

Furthermore, for each x ∈ X we have

h(Tx) = 〈a, Tx〉 =

n∑
i=1

aifi(x) = g(x).
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Thus we may reformulate h(p) > suph(T (X)) as
∫
K
gdµ > sup g(X). This is however impossible,

since
∫
K
gdµ ≤ sup g(K)µ(K) ≤ sup g(X) as K ⊆ X and µ(K) = 1. We conclude that p ∈ T (X),

{Hf ∩K}f∈E∗ has the finite intersection property and µ has a resultant.
Compared to existence, the uniqueness of the resultant is easy: Assume both x, y ∈ E are

represented by µ. Then f(x) =
∫
K
fdµ = f(y) for all f ∈ E∗. It is a consequence of the Hahn-

Banach extension theorem that the continuous linear functionals separate points, so x = y.

Now that we have established existence of the resultant of each µ ∈ M1(K), it is natural to
define the resultant map r : M1(K) → co(K) by mapping µ to its resultant. The proposition
above can then be seen as ensuring that this map is well defined.

Having endowedM1(K) with the weak* topology, it seems natural to ask whether the resultant
map is continuous with respect to this topology. This is indeed the case:

Lemma 2.6. Let K ⊆ E be compact such that co(K) is also compact. The resultant map r :
M1(K)→ co(K) is weak∗ continuous and affine.

Proof. Let {µα}α∈A be a net converging to the probability measure µ ∈ M1(K) in the weak*
topology. Letting r(µα) = xα and r(µ) = x, we wish to show that limα xα = x. We do this by
arguing that every subnet itself has a further subnet converging to x. Since M1(K) is compact,
every subnet will automatically have a converging subnet. As subnets of subnets are again subnets,
it suffices to show that every converging subnet converges to x.

So let {xβ}β∈B be a converging subnet with limβ xβ = y. Since limα µα = µ, the subnet
{µβ}β∈B also converges to µ. We establish x = y by showing r(µ) = y and appealing to the
resultant map being well-defined. Taking some f ∈ E∗, f|K ∈ C(K). By the characterization of
weak* convergence as pointwise convergence, µβ(f|K) converges to µ(f|K). But this implies

f(y) = f(lim
β
xβ) = lim

β
f(xβ) = lim

β
µβ(f|K) = µ(f|K) = µ(f).

Thus y = r(µ) = x, so r is in fact weak* continuous. That it is also affine follows immediately
from the fact that being a resultant is defined in terms of f ∈ E∗, which are linear on E so in
particular affine on K.

The following proposition establishes a bridge between the concept of the closed convex hull
and that of representing measures:

Proposition 2.7. Let K ⊆ E be compact. Then co(K) = r(M1(K)). That is, x is in the closed
convex hull of K if and only if x is represented by a probability measure on K.

Proof. Assume first that x is represented by a probability measure µ on K. Assume by con-
tradiction that x 6∈ co(K). But co(K) is closed, convex and disjoint from the compact con-
vex singleton {x}, so by the Hahn-Banach separation theorem we may find f ∈ E∗ such that
f(x) > sup f(co(K)). However, as x is represented by µ, we have

f(x) = µ(f) =

∫
K

fdµ ≤ sup f(K)µ(K) ≤ sup f(co(K)).

Since this violates the choice of f , we conclude x ∈ co(K).
Conversely, assume x ∈ co(K). Then there exists a net {xα}α∈A ⊆ co(K) which converges to

x. We may write each xα as xα =
∑nα
i=1 a

α
i y

α
i with

∑nα
i=1 a

α
i = 1 and aαi > 0.

The following calculation then shows that xα is represented by µα :=
∑n
i=1 a

α
i δyαi , where δyαi

is the Dirac measure of yαi . Letting f ∈ E∗,

µα(f) =

∫
K

fdµα =

n∑
i=1

aαi

∫
K

fdδyαi =

n∑
i=1

aαi f(yαi ) = f

(
n∑
i=1

aαi y
α
i

)
= f(xα).
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Hence we have a net {µα}α∈A ⊆ M1(K), which is weak* compact by Example 2.2. This
guarantees the existence of a converging subnet {µβ}β∈B whose limit we denote by µ. Just as we
argued in the preceding lemma, µ represents x: If f ∈ E∗, then

µ(f) = lim
β
µβ(f) = lim

β
f(xβ) = f(limxβ) = f(x).

Here we have used the fact that µβ represents xβ and that f is continuous.

Before we reformulate the Krein-Milman theorem, we translate one last concept from conven-
tional convex analysis to the language of representing measures:

Proposition 2.8 (Bauer). Let X be a compact convex set. Then x ∈ X is an extreme point if
and only if δx is the only probability measure on X representing x.

Proof. Assume first that x is not an extreme point of X. Then x = αy+(1−α)z for some y, z ∈ X
with x 6= y 6= z and α ∈ (0, 1). We note that δy and δz trivially represent y and z, respectively.
Defining µ = αδy +(1−α)δz and using the fact from Lemma 2.2 that the resultant map r is affine,
we immediately see that µ represents x. It is also obvious that µ 6= δx; the two measures differ on,
e.g, {x}.

Assume next that x is an extreme point of X and that µ is a probability measure on X which
represents it. We want to show that µ = δx. This is done by showing that µ is supported by {x},
since δx is the only probability measure on X satisfying this condition. To this end we use inner
regularity of µ.

Let K ⊆ X \ {x} be compact. To establish a contradiction, assume µ(K) > 0. First we show
that there exists y ∈ K such that µ(B) > 0 for every Borel neighbourhood B of y. If this were
not the case, we could for each y ∈ K find a Borel neighbourhood By such that µ(By) = 0. Then
{int(By)}y∈K is an open cover of K, so we may find a finite subcover indexed by y1, . . . , yn, which
yields

µ(K) ≤ µ

(
n⋃
i=1

int(Byi)

)
≤ µ

(
n⋃
i=1

Byi

)
≤

n∑
i=1

µ(Byi) = 0.

This however contradicts µ(K) > 0, so we are guaranteed the existence of such y.
By Lemma 1.6 we may find a closed convex neighbourhood C of y such that C ⊆ X \ {x}. By

our delicate choice of y we have µ(C) > 0. Furthermore µ(C) < 1, as we otherwise might regard
µ as a probability measure on C which is compact and convex, so by Proposition 2.7 its resultant
x is in C, contradicting C ⊆ X \ {x}.

Letting α := µ(C) ∈ (0, 1), we may define two new probability measures on X by µ1(B) =
α−1µ(B ∩C) and µ2(B) = (1− α)−1µ(B ∩ (X \C)) for each B ∈ B(X). These evidently measure
to 1 and are Radon by Proposition 1.9, and by construction we have µ = αµ1 + (1− α)µ2. Once
again using that the resultant map is affine, we finally obtain

x = r(µ) = r(αµ1 + (1− α)µ2) = αr(µ1) + (1− α)r(µ2).

Using Proposition 2.7 we see that r(µ1) ∈ C ⊆ X \ {x}, so x is expressed as a proper convex
combination, contradicting the fact that it is extreme. Thus we may finally conclude that our
assumption of µ(K) > 0 is false, and by inner regularity we see that µ(X \{x}) = 0. Hence µ = δx
as desired.

2.2 Reformulation of classical theorems

We are now ready to reformulate the Krein-Milman theorem in terms of representing measures.
We recall that the classical Krein-Milman theorem states that when X is a non-empty compact
convex set in a LCS, X = co(Ext(X)). We refer the reader to p. 142 in [2] for a proof.

Theorem 2.9 (Reformulated Krein-Milman). Let X ⊆ E be compact and convex. Then each
x ∈ X is represented by a probability measure supported by Ext(X).
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Proof. We show that this statement is equivalent to the usual formulation of the Krein-Milman the-
orem. Formally, the above theorem states X ⊆ r(M1(Ext(X))), but Proposition 2.7 implies that
equality holds. We also note that co(Ext(x)) = co(Ext(X)), which follows easily from co(Ext(X))
being a closed convex set containing Ext(X). We then have

co(Ext(X) = co(Ext(X) = r(M1(Ext(X))),

where we appeal to Proposition 2.7 for the second equality. Assuming the Krein-Milman theorem,
the left hand side equals X and we see that X = r(M1(Ext(X))), implying the statement of this
theorem. Conversely, assuming this theorem we have r(M1(Ext(X))) = X, implying the classical
Krein-Milman theorem.

In the course of this thesis we will prove three theorems establishing the existence of representing
measures which are in some sense supported by the extreme points. The reformulated Krein-
Milman theorem is the first and coarsest of the three; it establishes the existence of a measure
supported by the closure of the extreme points. In coarse topologies, such as the weak* topology
on a dual space, there are few closed sets and hence a lot of information can be lost by taking
closures. The following example originating from Example 9.5 in [11] illustrates this:

Example 2.10 (Unit ball in `2). Let X = B(0, 1) = {x ∈ `2(R) | ‖x‖ ≤ 1} be the closed unit ball
in the Hilbert space `2(R) equipped with the weak toplogy. X is convex by the triangle inequality,
and since the weak and weak* topologies coincide on a Hilbert space, the Banach-Alaoglu theorem
establishes compactness of X.

Any x ∈ X with ‖x‖ < 1 can be expressed as a proper convex combination of two antipodal
points, so we have Ext(X) ⊆ {x ∈ `2(R) | ‖x‖ = 1}. To see that equality holds, let x ∈ X
with ‖x‖ = 1 and x = 1/2(y + z) for y, z ∈ X with y 6= x. By the triangle inequality we have
‖x‖ ≤ 1/2 ‖y‖+ 1/2 ‖z‖, which forces ‖y‖ = ‖z‖ = 1. An application of the parallelogram identity
then yields

1 = ‖x‖2 = ‖y + z‖2 /4 = (2(‖y‖2 + ‖z‖2)− ‖y − z‖2)/4 = 1− ‖y − z‖2 .

From this we obtain y = z, i.e., x ∈ Ext(X).
We now have a compact convex set and have identified its extreme points, so we may apply

the reformulated Krein-Milman theorem. Thus for each x ∈ X there exists µ ∈ M1(X) which
represents x and is supported by Ext(X). This is, however, not very impressive: We have Ext(X) =
X. Indeed, letting x = (xk)k≥1 ∈ X, we may define a sequence (x(n))n≥1 ⊆ `2(R) by

x(n) = (x1, x2, . . . , xn,

√√√√1−
n∑
i=1

|xi|2, 0, . . .).

Then ∥∥∥x(n)∥∥∥2 =

n∑
i=1

|xi|2 + (1−
n∑
i=1

|xi|2) = 1,

establishing (x(n))n≥1 ⊆ Ext(X). Furthermore, by the Riesz representation theorem for continuous
linear functionals on a Hilbert space and usual characterisation of weak convergence, we may verify
x(n) → x by showing 〈x(n), y〉 → 〈x, y〉 for every y ∈ `2(R). But for y ∈ `2(R) we have

|〈x, y〉 − 〈xn, y〉| = |〈x− x(n), y〉| =

∣∣∣∣∣∣xn+1 −

√√√√1−
n∑
i=1

|xi|2

∣∣∣∣∣∣ |yn+1|+
∞∑

i=n+2

|xiyi|,

which goes to 0 as n→∞. Hence we could have simply chosen µ = δx as our representing measure
supported by Ext(X). We note that the argument above easily extends to `p(R) for 1 < p < ∞
by using strict convexity of the map R 3 x 7→ |x|p instead of the parallelogram identity.
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The tools we have constructed in this section give rise to a short and elegant proof of Milman’s
converse to the Krein-Milman theorem.

Theorem 2.11 (Milman). Let X ⊆ E be compact and convex. If Z satisfies X = co(Z), then
Ext(X) ⊆ Z.

Proof. Let x ∈ Ext(X). By the assumption on Z and Propostion 2.7, x is represented by a measure
supported by Z. Then by Proposition 2.8 this measure is in fact δx, and δx being supported by Z
implies x ∈ Z.

We conclude this section by returning to Example 2.2 from the beginning of the section. It turns
out that the Riesz representation theorem admits a nice interpretation in terms of representing
measures. We first prove that the extreme points of M1(K) are the Dirac measures, which is an
interesting result on its own:

Proposition 2.12. Let K be compact Hausdorff. Then Ext(M1(K)) = {δx | x ∈ K}, and the
embedding x 7→ δx is a homeomorphism onto Ext(M1(K)). In particular, Ext(M1(K)) is closed.

Proof. Assuming δx = αµ1+(1−α)µ2 for α ∈ (0, 1) and µ1, µ2 ∈M1(K), we have µi(K \{x}) = 0
for i ∈ {1, 2}. Since the µi’s are additionally probability measures, this entails δx = µ1 = µ2, from
which we deduce δx ∈ Ext(M1(K)).

To prove the reverse inclusion, we first note that if a probability measure µ only has one
point such that all open neighbourhoods of this point have positive measure, then µ is the Dirac
measure of the point. Indeed, denoting the point by x0 and choosing open neighbourhoods Ux with
µ(Ux) = 0 for every x ∈ K\{x0}, let C ⊆

⋃
x∈X\{x0} Ux be compact. Using compactness we obtain

a finite subcover, which implies µ(C) = 0. Inner regularity of µ then implies µ(K \ {x0}) = 0, and
therefore µ = δx0 . A similar argument shows that if µ has zero such points, µ = 0.

For the reverse inclusion suppose µ is not a Dirac measure. Then, by the above, there exist
x1, x2 ∈ K with x1 6= x2 such that all neighbourhoods of the two points have positive measure.
Separating x1 and x2 by open sets U and V , this implies 0 < µ(U) < 1, with the latter inequality
being a consequence of U c ⊇ V . We then define new probability measures on K by µ1(B) =
µ(U)−1µ(B ∩ U) and µ2(B) = µ(U c)−1µ(B ∩ U c) for B ∈ B(K). This implies µ = µ(U)µ1 +
µ(U)cµ2, showing that µ is not an extreme point of M1(K).

The map ϕ : K → Ext(M1(K)) defined by ϕ(x) = δx is surjective by the above and obviously
injective. Since K is compact and Ext(M1(K)) is Hausdorff, it is sufficient to argue that ϕ is
continuous to conclude that it is a homeomorphism. Letting {xα}α∈A be a net converging to
x ∈ K, we wish to prove {δxα}α∈A converges to δx. But by continuity of f ∈ C(K),

δx(f) = f(x) = lim
α
f(xα) = lim

α
δxα(f),

which yields the desired result by the usual characterisation of weak* convergence.

For the following corollary we recall that a discrete measure is a measure of the form
∑n
i=1 αiδxi

for αi ≥ 0 and
∑n
i=1 αi = 1. The discrete measures are exactly the convex hull of {δx | x ∈ K}.

Corollary 2.13. Let K be compact Hausdorff. Then the discrete measures are weak* dense in
M1(K). Equivalently, for each µ ∈ M1(K) there exists m ∈ M1(M1(K)) such that m({δx | x ∈
K}) = 1 and m(f̂) = µ(f) for all f ∈ C(K).

Proof. The two statements are applications of the classical and reformulated Krein-Milman the-
orems to the compact convex set X = M1(K). Since Ext(M1(K)) = {δx | x ∈ K}, the first
statement is a direct application.

For the second statement, we note that that the dual of C(K)∗ in the weak* topology consists
precisely of the evaluation maps. We refer the reader to Theorem 1.3 on p. 125 in [2] for a short
proof. Thus, for each µ ∈ M1(K), there exists m ∈ M1(M1(K)) which represents µ and is
supported by {δx | x ∈ K}. But m representing µ means that for each f ∈ C(K) we have

m(f̂) = f̂(µ) = µ(f),

which is the desired conclusion.
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Remark. It is interesting to note that the second part of the above corollary can be deduced
without the reformulated Krein-Milman theorem. Indeed, let µ̃ denote image measure of µ under
the homeomorphism ϕ mapping x 7→ δx. Then we have µ̃(f̂) = µ(f) by the following exercise in
evaluation maps:

f̂(ϕ(x)) = f̂(δx) = δx(f) = f(x).

So by identifying µ with µ̃ we may pick m to be µ itself!
Even more interestingly, emphasizing the interpretation of µ as a positive linear function Iµ,

any m supported by Ext(M1(K)) having resultant Iµ descends to a measure on K representing Iµ
in the sense of the Riesz representation theorem. Thus the uniqueness portion of Riesz’ theorem
essentially states that m = µ̃ is the only choice in the above corollary. It is quite satisfying that
by identification of µ with µ̃, the two notions of representing Iµ coincide.

We see that M1(K) has the interesting property that representing measures supported by the
extreme points are unique. While the next two sections are devoted to studying the question of
existence more thoroughly, we return to the question of uniqueness in sections 5 and 6. There
we shall give precise conditions for unique representing measures, and we will see how this is
intimately tied to the notion of a Choquet simplex, whichM1(K) is a prime example of. The idea
of having measures on M1(K) with certain properties is revisited in the last section, when we
study applications of Choquet theory to invariant and ergodic measures.

14



3 Existence in the metrizable case

In this section we seek to prove Choquet’s theorem, which is a sharpening of the reformulated
Krein-Milman theorem in the case when X is metrizable. The proof of the main theorem and most
of the auxiliary results originate from chapter 3 in [8]. The key idea in the proof is an application
of the Hahn-Banach extension theorem to a delicately chosen sublinear functional. This functional
is defined using the notion of an upper envelope, so we will introduce this concept and prove some
of its basic properties.

3.1 The upper envelope

We start with two definitions:

Definition 3.1. Let Y be a topological space. A function f : Y → R is upper semicontinuous if
f−1((−∞, r)) is open for all r ∈ R.

We note that any upper semicontinuous function is Borel measurable as the open rays generate
B(R). It turns out that the notion of upper semicontinuity coincides with the hypograph Hf =
{(x, r) ∈ E × R | f(x) ≥ r} being closed. We prove only one part of the equivalence, since this
suffices for our purposes:

Lemma 3.2. Let Y be a topological space and let f : Y → R be upper semicontinuous. Then the
hypograph of f is closed.

Proof. Let {(xα, rα)}α∈A ⊆ Hf with limα(xα, rα) = (x, r). To see that (x, r) ∈ Hf assume it is
not, i.e, f(x) < r. We may then find ε > 0 such that f(x) < r−ε. Since f is upper semicontinuous,
the set f−1((−∞, r − ε)) is open and contains x. By definition of the product topology we have
limα xα = x and limα rα = r, so {xα}α∈A is eventually in f−1((−∞, r − ε)) and {rα}α∈A is
eventually in (r − ε,∞). Finding an α0 such that both of these conditions are met, we see that
f(xα0

) < r − ε while rα0
> r − ε, contradicting that (xα0

, rα0
) ∈ Hf .

We are now ready to define the upper envelope itself. We recall that A denotes the set of
continuous affine functions on K.

Definition 3.3. Let K be a compact subset of E and let f : K → R be bounded. The upper
envelope of f is defined by f̄(x) := inf{h(x) | h ∈ A, h ≥ f}.

The upper envelope approximates a function locally by affine functions which are globally
greater than the function. We will later see that for strictly convex functions, this approximation
only attains equality on the extreme points of the domain. We want to provide the reader with
this very clear image of the upper envelope from Figure 28.4 in [1]:

Figure 1: From p. 162 in Lectures on Analysis by G. Choquet

Before we prove some useful properties of the upper envelope, we establish this helpful lemma:
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Lemma 3.4. Let K be a compact subset of E, let f : K → R be bounded and let g : K → R be
concave and upper semicontinuous with g ≥ f . Then g ≥ f̄ .

Proof. Assume that the conclusion is false, i.e., there exists x0 ∈ K such that g(x0) < f̄(x0). As
established in the previous lemma, g being upper semicontinuous implies that its hypograph Hg is
closed, while concavity ensures that it is convex. The product space E×R is also a real Hausdorff
LCS, so we may apply the Hahn-Banach separation theorem to the closed convex set Hg and the
compact set {(x0, f̄(x0))}, which are disjoint by hypothesis. Hence we find L ∈ (E × R)∗ and
λ ∈ R such that

supL(Hg) < λ < L(x0, f̄(x0)).

Note that in particular L(x0, g(x0)) < L(x0, f̄(x0)), which implies that

0 < L(0, f̄(x0)− g(x0)) = (f̄(x0)− g(x0))L(0, 1).

We conclude that L(0, 1) > 0 and define h : K → R by the equation L(x, h(x)) = λ. Rearranging
terms one obtains the more direct expression

h(x) =
λ− L(x, 0)

L(0, 1)
,

which immediately yields well-definedness and continuity of h. Since h is of the form T + r for
T linear and r ∈ R, we also see that it is affine. For any x ∈ K we have (x, g(x)) ∈ Hg, and
furthermore

0 < λ− L(x, g(x)) = L(x, h(x))− L(x, g(x)) = L(0, h(x)− g(x)) = (h(x)− g(x))L(0, 1).

We established earlier that L(0, 1) > 0, so this forces h(x) > g(x). The same argument establishes
that h(x0) < f̄(x0). Since h ≥ g ≥ f we have found a continuous affine function dominating f
with f̄(x0) > h(x0), yielding a contradiction.

The next proposition contains a handful of extremely useful properties of the upper envelope
which will be used very frequently in subsequent developments:

Proposition 3.5. Let K be a compact Hausdorff space and let f, g : K → R be bounded. Then
the upper envelopes of f and g enjoy the following properties:

1) f̄ is concave, bounded and upper semicontinuous

2) If f is concave and upper semicontinuous, f = f̄ .

3) f + g ≤ f̄ + ḡ and |f̄ − ḡ| ≤ ‖f − g‖∞
4) If furthermore g ∈ A and r ≥ 0, then f + g = f̄ + g and rf = rf̄

Proof. The proposition states many properties, many of which follow in a straightforward manner
from the definition of the upper envelope. We will adjust the level of detail in the proof accordingly.

Proof of 1) To prove f̄ is concave let x, y ∈ K and α ∈ (0, 1). We note that

{αh1(x) + (1− α)h2(y) | h1, h2 ∈ A, h1, h2 ≥ f} ⊇ {αh(x) + (1− α)h(y) | h ∈ A, h ≥ f}.

Since f̄(αx+ (1− α)y) is the infimum of the right hand side, we find

f̄(αx+ (1− α)y) ≥ inf{αh1(x) + (1− α)h2(y) | h1, h2 ∈ A, h1, h2 ≥ f}
= α inf{h1(x) | h1 ≥ f, h1 ∈ A}+ (1− α) inf{h2(y) | h2 ≥ f, h2 ∈ A}
= αf̄(x) + (1− α)f̄(y),

proving that f̄ is concave. As f is bounded, f ≤ C for some C > 0. The constant function C
is affine and continuous and therefore f̄ ≤ C. Since f ≤ f̄ by definition, f̄ is also bounded from
below.
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To prove f̄ is upper semicontinuous, let r ∈ R and x0 ∈ f̄−1((−∞, r)). By definition of f̄ we
can find h ∈ A with h ≥ f such that f̄(x0) < h(x0) < r. Since h is continuous, h−1((−∞, r)) is
open and x0 ∈ h−1((−∞, r)). Then, for any x ∈ h−1((−∞, r)),

f̄(x) ≤ h(x) < r,

which implies h−1((−∞, r)) ⊆ f̄−1((−∞, r)). Hence f̄ is indeed upper semicontinuous.
Proof of 2) When f is concave and upper semicontinuous, Lemma 3.4 applies to f itself, so

f ≥ f̄ . Since we also have f ≤ f̄ , this implies f = f̄ .
Proof of 3) f + g ≤ f̄ + ḡ is similar to concavity: We have

(f̄ + ḡ)(x) = inf{h1(x) | h1 ≥ f, h1 ∈ A}+ inf{h2(x) | h2 ≥ g, h2 ∈ A}
= inf{(h1 + h2)(x) | h1 ≥ f, h2 ≥ g, h1, h2 ∈ A}.

Since h1 ≥ f and h2 ≥ g, h1 + h2 ≥ f + g, which means that f + g is the infimum of a superset of
the set defining f̄ + ḡ, hence f + g ≤ f̄ + ḡ. Using this, we see that

f̄ = f − g + g ≤ f − g + ḡ.

Thus f̄ − ḡ ≤ f − g ≤ ‖f − g‖∞, where we use that the constant function ‖f − g‖∞ is continuous
and affine. Exchanging the roles of f and g yields

ḡ − f̄ = −(f̄ − ḡ) ≤ ‖g − f‖∞ = ‖f − g‖∞ ,

so |f̄ − ḡ| ≤ ‖f − g‖∞.
Proof of 4) Assume g ∈ A. Then g = ḡ by 2), and using 3) yields

f + g ≤ f̄ + ḡ = f̄ + g.

The other inequality follows from the fact that if h ∈ A and h ≥ f + g, then h − g ≥ f . This
implies f̄ ≤ h− g for all such h, so

f̄(x) ≤ inf{h(x)−g(x) | h ∈ A, h ≥ f+g} = inf{h(x) | h ∈ A, h ≥ f+g}−g(x) = f + g(x)−g(x).

The very last assertion might be the easiest: If r = 0 we have 0̄ = 0 by 2). Otherwise let r > 0.
Then for h ∈ A we have h ≥ rf if and only if h/r ≥ f , so f̄ = rf/r.

3.2 Choquet’s theorem (Existence)

The proof of Choquet’s theorem is built around the existence of a strictly convex continuous func-
tion on X. The following lemma establishes that such a function always exists, given metrizability:

Lemma 3.6. Let X be a compact convex metrizable subset of E. Then there exists a strictly
convex continuous function g : X → R.

Proof. Since X is compact Hausdorff, it is in particular completely regular which coupled with
metrizability implies C(X) being separable. The proof of this is slightly involved, and we refer the
reader to Theorem 6.6 on p. 140 in [2]. Since any subset of a separable metric space is separable,
the subset

A1 = {h ∈ C(X) | h ∈ A, ‖h‖∞ = 1}

is separable. It also separates points, since if x, y ∈ X with x 6= y, we can find f ∈ E∗ such that
f(x) 6= f(y). Then f ′ := f|X/

∥∥f|X∥∥∞ ∈ A1 and f ′(x) 6= f ′(y).

Now let {hn | n ∈ N} be a dense subset of A1. This will also separate points, since if hn(x) =
hn(y) for all n ∈ N, then for any f ∈ A1 we can find (hnk)k≥1 with limk→∞ hnk = f . This implies

f(x) = lim
k→∞

hnk(x) = lim
k→∞

hnk(y) = f(y).
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Since A1 separates points, we see that {hn | n ∈ N} does as well.
Now define g =

∑∞
n=1 2−nh2n. This uniform limit exists since C(X) is complete, and∥∥∥∥∥

M∑
n=N

2−nh2n

∥∥∥∥∥
∞

≤
M∑
n=N

2−n
∥∥h2n∥∥∞ =

M∑
n=N

2−n

when N ≤M , which implies the Cauchy criterion.
We furthermore claim that g is strictly convex. Let x, y ∈ X with x 6= y and α ∈ (0, 1). Then

hn0(x) 6= hn0(y) for some n0 ∈ N. Since the map t 7→ t2 from R→ R is strictly convex,

αh2n0
(x)+(1−α)h2n0

(y) > (αhn0
(x)+(1−α)hn0

(y))2 = (hn0
(αx+(1−α)y))2 = h2n0

(αx+(1−α)y).

This inequality produces an ε > 0 such that

2−n0h2n0
(αx+ (1− α)y) < 2−n0(αh2n0

(x) + (1− α)h2n0
(y))− ε.

Since h2n is convex for all other n ∈ N, this implies that for N > n0 we have

N∑
n=1

2−nh2n(αx+ (1− α)y) <

N∑
n=1

2−n(αh2n(x) + (1− α)h2n(y))− ε

= α

N∑
n=1

2−nh2n(x) + (1− α)

N∑
n=1

h2n(y)− ε.

Passing to the limit we see that g is strictly convex.

It is interesting to note that not only does metrizability entail the existence of a strictly convex
continuous function, it is actually equivalent to the existence of such a function. Therefore the proof
of Choquet’s theorem does not readily generalise to the non-metrizable case. It will, however, still
be useful in the general setting, as we shall see in the next section. For a proof of the equivalence
we refer the reader to Theorem 10.56 in [6].

We now turn to proving that when X is metrizable, the set of extreme points is Baire and
hence in particular Borel. Although there are several definitions of Baire sets in the literature,
they coincide when X is compact Hausdorff, which is the only case that interests us. Recalling
that Gδ sets are those that can be expressed as a countable intersection of open sets, we choose
the following:

Definition 3.7. The Baire σ-algebra is the σ-algebra generated by the compact Gδ-sets.

Since Gδ-sets are in particular Borel, the Baire σ-algebra is of course contained in B(X). The
following proof that Ext(X) is Baire is based on the proof of Theorem 10.7 in [11]:

Proposition 3.8. Let X be compact, convex and metrizable. Then Ext(X) is Baire.

Proof. Let g : X → R be a strictly convex continuous function, the existence of which was estab-
lished in the preceding lemma. For each n,m ∈ N define the set

Gn,m :=

{
x ∈ X | ∃y, z ∈ X : x =

1

2
(y + z), g(x) <

1

2
(g(y) + g(z))− 1

n
+

1

n+m

}
.

We argue that Gn,m is open. The function X ×X → R defined by

(y, z) 7→ g((y + z)/2)− (g(y) + g(z))/2

is continuous as the composition of continuous functions. Letting A denote the preimage of
(−∞,−1/n + 1/(n + m)), A is then open in X × X. Now let x ∈ Gn,m. Then there exists a
pair (y, z) ∈ A such that x = 1/2(y+z). Since A is open, we may find open sets U, V ⊆ X contain-
ing (y, z) such that U × V ⊆ A. Then 1/2(y′ + z′) ∈ Gn,m for any (y′, z′) ∈ U × V . Furthermore,
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since translations are homeomorphisms, U + V =
⋃
u∈U u + V is open, and hence 1/2(U + V ) is

open. Therefore 1/2(U+V ) is an open set containing x which is itself contained in Gn,m, implying
that x is an interior point. Thus each Gn,m is open, and the sets

Fn :=

∞⋂
m=1

Gn,m =

{
x ∈ X | ∃y, z ∈ X : x =

1

2
(y + z), g(x) ≤ 1

2
(g(y) + g(z))− 1

n

}
are therefore Gδ. Now let B be the preimage of (−∞,−1/n] of the above defined map. Once again
appealing to continuity, B is closed, and hence compact in X × X. Then the image of B under
the continuous map (y, z) 7→ 1/2(y+ z) is compact and exactly equal to Fn. We conclude each Fn
is compact Gδ and in particular Baire.

Now if x is not an extreme point, there exist y, z ∈ X with y 6= z such that x = 1/2(y+z). Since
g is strictly convex we have g(x) < 1/2(g(y) + g(z)), implying that x is in some Fn. Conversely, if
x ∈ Fn for some n ∈ N, we have

g(x) <
1

2
(g(y) + g(z))

for some y, z ∈ X with x = 1/2(y + z). Then we cannot have x = y = z, so x is not an extreme.
Hence

Ext(X)c =

∞⋃
n=1

Fn,

and we see that the extreme points are indeed Baire.

We are now ready to prove Choquet’s theorem:

Theorem 3.9 (Choquet). Let X be a compact, convex and metrizable subset of E. Then each
x ∈ X is represented by a measure supported by Ext(X).

Proof. Let x0 ∈ X and let g be a strictly convex function on X, the existence of which is guaranteed
by Lemma 3.6. We define a functional p on C(X) by p(f) = f̄(x0). Then p is subadditive since

p(f + f ′) = f + f ′(x0) ≤ f̄(x0) + f ′(x0) = p(x) + p(y),

where we have used Proposition 3.5 for the inequality. Since positive homogeneity follows imme-
diately from the same proposition, we infer that p is sublinear.

Furthermore we define a linear functional T : A+ Rg → R by T (h+ rg) = h(x0) + rḡ(x0). We
now claim that p dominates T . First, let r ≥ 0. Then

T (h+ rg) = (h+ rḡ)(x0) = h+ rg(x0) = p(h+ rg),

where we use both statements in part 4) of Proposition 3.5. Since g is convex, rg will be concave
when r < 0, so rg = rg. This yields

T (h+ rg) = h(x0) + rḡ(x0) ≤ h(x0) + rg(x0) = h(x0) + rg(x0) = h+ rg(x0) = p(h+ rg).

For the inequality we used the fact that g(x0) ≤ ḡ(x0), which implies rg(x0) ≥ rḡ(x0) when r < 0.
We also used parts 2) and 4) of the aforementioned proposition.

The Hahn-Banach extension theorem allows us to extend T to a linear functional L on all of
C(X) which restricts to T on A+ Rg. To show that L is positive, we show that it is non-positive
on non-positive functions. Let f ≤ 0. Then, since 0 ∈ A, f̄ ≤ 0. This implies

L(f) ≤ p(f) = f̄(x0) ≤ 0.

By the Riesz representation theorem there exists a Radon measure µ which satisfies L(f) =∫
X
fdµ for all f ∈ C(X). We claim that this is indeed a probability measure representing x0 which

is supported by Ext(X). We see that

µ(X) =

∫
X

1dµ = L(1) = T (1) = 1̄(x0) = 1,
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which means that µ is indeed a probability measure. Since the restriction of an f ∈ E∗ to X is in
A, we have

∫
X
fdµ = T (x0) = f(x0). Thus µ does indeed represent x0.

It remains to show that µ is supported by the extreme points of X. This is done by showing
that it is supported by E = {x ∈ X | g(x) = ḡ(x)}, i.e., the points of X where the strictly
convex function g equals its upper envelope. We note that this set is clearly Borel as ḡ and g are
measurable. Let us first show that E ⊆ Ext(X). Let x ∈ E and suppose x = αy + (1 − α)z for
some y 6= z and α ∈ (0, 1). Then

g(x) = g(αy + (1− α)z) < αg(y) + (1− α)g(z) ≤ αḡ(y) + (1− α)ḡ(z) ≤ ḡ(αy + (1− α)z) = ḡ(x),

where we use strict convexity of g, the fact that g ≤ ḡ and concavity of ḡ. This contradicts the
fact that x ∈ E , so E ⊆ Ext(X).

To complete the proof we must show that µ is supported by E . We do this by showing∫
X

(ḡ − g)dµ = 0,

since this implies that the non-negative function ḡ− g is 0 almost everywhere, i.e., µ(Ec) = 0. We
note that

∫
X
ḡ − gdµ = 0 is equivalent to µ(ḡ) = µ(g), and see that µ(ḡ) ≥ µ(g) as ḡ ≥ g.

The other inequality takes some consideration. As

µ(g) = T (g) = ḡ(x0),

we can show µ(g) ≥ µ(ḡ) by the definition of ḡ(x0). So let h ∈ A with h ≥ g. By construction
ḡ ≤ h, so

µ(ḡ) ≤ µ(h) = T (h) = h(x0).

Therefore, since ḡ(x0) is the infimum over all such h(x0),

µ(ḡ) ≤ ḡ(x0) = µ(g).

This lets us conclude that µ(Ec) = 0. Finally, since the set of extreme points is Borel by Proposition
3.8, µ is supported by Ext(X).

The upper envelope of a bounded function is always upper semicontinuous, and one may wonder
if it is always continuous. We conclude this section with an example showing that this is not the
case:

Example 3.10. Let X = B(0, 1) be the closed unit ball in `2(R) just as in Example 2.10. The
closed unit ball in a dual space is metrizable in the weak* topology if and only if its predual is
separable, which is the case with `2(R). We refer the reader to Theorem 5.1 on p. 134 in [2] for a
proof of this fact. Therefore X is compact, convex and metrizable, and Choquet’s theorem applies
to X and any of its closed convex subsets.

Now let g : X → R be a strictly convex continuous function on X. The upper envelope g is
then concave and upper semicontinuous by Proposition 3.5, and we know from Example 2.10 that
Ext(X) = X. As we shall see much later in Proposition 6.7, g and g coincide on Ext(X). Now let
x ∈ X and let (xn)n≥1 ⊆ Ext(X) be a sequence converging to x. Assuming g is continuous, we
see that

g(x) = lim
n→∞

g(xn) = lim
n→∞

g(xn) = g(x).

Hence g = g, and we see that g is both strictly convex and concave, which is clearly impossible.
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4 Existence in the general setting

In this section we will work towards and prove the Choquet-Bishop-de Leeuw theorem, which states
that every point of X has a representing measure which is supported by every Baire set containing
the extreme points. While the conclusion is clearly weaker than Choquet’s theorem, this theorem
does not assume metrizability, extending its scope of applicability.

Furthermore, since we no longer have a strictly convex function on X, we will need a new set
of ideas to solve this more general problem. Many of these revolve around an equivalence relation
on M1(X) and a partial order on M(X), and how these relate to the upper envelope. Before
we introduce the equivalence relation, we remind the reader that X always denotes a non-empty
compact convex set in a real Hausdorff LCS E, and that we let A and C denote the set of continuous
affine and convex functions on X, respectively. We refer the reader to chapter 4 of [8] as the source
of many of this section’s results.

4.1 Equivalence of measures

Definition 4.1. Let µ, ν ∈M1(X). Then µ ∼ ν if µ(f) = ν(f) for all f ∈ A

We note that linear maps are in particular affine, so µ ∼ ν implies that µ and ν have the same
resultant, i.e., r(µ) = r(ν), where r is the resultant map. One commonly thinks of continuous
affine functions as having the form f + c for some (continuous) linear f and c ∈ R. While there
exist affine functions which cannot be characterised this way, we have the following density result:

Proposition 4.2. The subspace E∗|X + R = {f|X + c | f ∈ E∗, c ∈ R} is uniformly dense in A.

Proof. Since pointwise limits of affine functions are affine, uniform limits of affine functions are
a fortiori affine. As being contiuous is also preserved by uniform limits, we conclude that A is
uniformly closed. Now let h ∈ A and ε > 0. It is straightforward to check that the two sets

K1 = {(x, c) ∈ X × R | c = h(x)}, K2 = {(x, c) ∈ X × R | c = h(x) + ε}

are compact, convex and disjoint in E×R, so we may apply the Hahn-Banach separation theorem
to find L ∈ (E × R)∗ such that

supL(K1) < λ < inf L(K2).

Following the line of reasoning in Lemma 3.4, we define g : E → R by the equation L(x, g(x)) = λ,
which is equivalent to

g(x) = −L(x, 0)

L(0, 1)
+

λ

L(0, 1)
.

This is well defined, since for any x ∈ X we have

0 < L(x, g(x)) + ε)− L(x, g(x)) = L(0, ε) = εL(0, 1),

from which we infer that L(0, 1) > 0. For any x ∈ X we then have

0 < L(x, g(x))− L(x, h(x)) = L(0, g(x)− h(x)) = L(0, 1)(g(x)− h(x)),

which implies g(x) > h(x). The same argument yields g(x) < h(x) + ε. By identifying g with its
restriction to X we have found g ∈ E∗|X + R which satisfies ‖g − h‖∞ < ε, as desired.

This proposition gives rise to a perhaps more intuitive interpretation of µ ∼ λ:

Corollary 4.3. Let µ, λ ∈M1(X). Then µ ∼ λ if and only if r(µ) = r(λ).

Proof. We have already remarked on the only if part. Assume then that r(µ) = r(λ) = x. Then,
for any f + c ∈ E∗|X + R, we have

µ(f + c) = µ(f) + c = f(x) + c = λ(f) + c = λ(f + c).

By the above proposition, these functions are dense in A, and since µ and λ are continuous linear
functionals on C(X), we conclude that µ(h) = λ(h) for any h ∈ A, i.e., µ ∼ λ.
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The equivalence relation provides a useful characterisation of the upper envelope:

Proposition 4.4. Let f ∈ C(X). Then, for every x ∈ X,

f̄(x) = sup{µ(f) | µ ∼ δx}.

Proof. We define g(x) = sup{µ(f) | µ ∼ δx} and want to show f̄ = g. To this end we first
establish that g is concave and upper semicontinuous and apply Lemma 3.4. So let r ∈ R and
{xα}α∈A ⊆ g−1([r,∞)) be a converging net with x = limα xα. As g(xα) ≥ r we may for any fixed
ε > 0 and for each α ∈ A by definition of g find µα ∼ δxα such that

µα(f) > g(xα)− ε ≥ r − ε.

Then {µα}α∈A is a net in M1(X), which is weak* compact by Example 2.2 and hence has a
converging subnet {µβ}β∈B . Letting µ = limβ µβ , we see that for any h ∈ A we have

µ(h) = lim
β
µβ(h) = lim

β
δxβ (h) = lim

β
h(xβ) = h(x) = δx(h).

Here we use the fact that µβ ∼ δxβ for the second equality and continuity of h for the second to
last equality. This establishes µ ∼ δx, which in turn yields

g(x) ≥ µ(f) = lim
β
µβ(f) ≥ r − ε

by choice of µβ . Since ε was arbitrary we conclude g is upper semicontinuous. To see that g is
concave we let x1, x2 ∈ X and α ∈ (0, 1). Then

αg(x1) + (1− α)g(x2) = sup{αµ1(f) + (1− α)µ2(f) | µ1 ∼ δx1
, µ2 ∼ δx2

}
= sup{

(
αµ1 + (1− α)µ2

)
(f) | µ1 ∼ δx1 , µ2 ∼ δx2}.

Since the resultant map is affine, µ1 ∼ δx1 and µ2 ∼ δx2 implies αµ1 + (1− α)µ2 ∼ δαx1+(1−α)x2
,

and therefore the above set is a subset of the set defining g(αx1 + (1− α)x2). Hence g is concave,
and by applying Lemma 3.4 we see that f̄ ≤ g.

To see that g ≤ f̄ let x ∈ X and h ∈ A with h ≥ f . We want to show that h(x) ≥ g(x), so let
µ be any measure with µ ∼ δx. Then, by monotonicity,

µ(f) ≤ µ(h) = δx(h) = h(x).

By definition of g this implies g(x) ≤ h(x), and since f̄(x) is the infimum over all such h(x), we
see that f̄(x) ≥ g(x).

4.2 Ordering of measures

We now define a partial order on M(X):

Definition 4.5. Let µ, ν ∈M(X). Then µ � ν if µ(f) ≥ ν(f) for all f ∈ C.

The intuition behind this definition is that convex functions attain their largest values on the
extreme points of X, and the partial order then measures to what degree the support of a measure
is concentrated at the extreme points. The following proposition contains some basic properties of
the ordering:

Proposition 4.6. The relation � is a partial ordering. Furthermore, it has the properties:

1) If µ, ν ∈M1(X) and µ � ν, then µ ∼ ν.

2) If µ ∼ δx, then µ � δx
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Proof. Since the relation is defined by inequalities, it is obviously reflexive and transitive. For
antisymmetry assume µ � ν and ν � µ. Then, for any f − g ∈ C − C, we have

µ(f − g) = µ(f)− µ(g) = ν(f)− ν(g) = ν(f − g).

Thus the two measures coincide on C − C. We shall see in the next section that C − C is a vector
lattice. It also contains the constant functions, and and since A ⊆ C − C, it separates the points
of X. Therefore C − C is uniformly dense in C(X) by the lattice version of the Stone-Weierstrass
theorem. This is also sometimes called the Kakutani-Krein theorem, and we refer the reader to
Theorem IV.12 in [10] for a proof. As µ and ν are continuous linear functionals on C(X), this
implies they coincide on every f ∈ C(X), so by the uniqueness of the Riesz representation theorem,
µ = ν. Hence � is antisymmetric.

Proof of 1). Let µ � ν and h ∈ A. Then both h and −h are convex, which yields µ(h) = ν(h),
i.e., µ ∼ ν.

Proof of 2). Let µ ∼ δx and f ∈ C. Then −f is concave and continuous, which by Proposition
3.5 implies that −f = −f . This, along with Proposition 4.4 applied to −f , implies that

δx(−f) = −f(x) = −f(x) ≥ µ(−f),

which lets us conclude that µ � δx.

In the Choquet-Bishop-de Leeuw theorem we will produce the desired measure by choosing a
measure µ ∼ δx which is maximal with respect to the above order. To do this, we need to ensure
that such a measure always exists. Since this is a statement concerning maximal elements of a
partial order, the key step in the proof will of course be Zorn’s lemma:

Lemma 4.7. Let µ ∈M(X). Then there exists a maximal ν ∈M(X) such that ν � µ.

Proof. Regard the set F = {ν ∈ M(X) | ν � µ}, partially ordered by �. We first argue why it is
sufficient to find a maximal element of F . Let ν be maximal in F and λ ∈ M(X). If λ � ν we
have λ � µ by transitivity, so λ ∈ F . Maximality then implies ν = λ, so ν is in fact maximal in
all of M(X).

To apply Zorn’s lemma to F , we immediately see that it is non-empty as µ ∈ F . Let Z be a
chain in F . Since ν � µ implies that ν and µ coincide on affine functions, we have, in particular,
ν(X) = µ(X). We see that

F ⊆ {ν ∈M(X) | ν(X) = µ(X)} = µ(X)M1(X).

Since scaling is weak* continuous, the latter is compact as the continuous image of a compact set.
We may now regard the elements of Z as a linearly ordered net in µ(X)M1(X), indexed by Z

itself. This is well defined since Z being a chain is stronger than being a directed set. Denoting Z
by {νν}ν∈Z , it must have a converging subnet {νβ}β∈B by compactness of µ(X)M1(X). Defining
ν := limβ νβ , we claim that this is the desired upper bound.

Indeed, let νν ∈ Z. Then we may find β0 ∈ B such that νβ0
� νν . We now claim that ν � νβ0

,
which will prove the claim. Suppose that this is not the case, i.e., ν(f) < νβ0

(f) for some f ∈ C.
Since Z is linearly ordered, this means that for every β ≥ β0 we have νβ � νβ0

, so in particular
νβ(f) ≥ νβ0(f). Regarding weak* convergence as pointwise convergence, this implies

ν(f) = lim
β
νβ(f) ≥ νβ0

(f) > ν(f),

which is a contradiction.
This establishes ν � νβ0

� νν and therefore ν is an upper bound for Z. Transitivity implies
ν ∈ F , and Zorn’s lemma then gives us the desired result.

It will be a core idea in the following developments that the notion of maximality is intimately
tied to the subset of X where f(x) = f̄(x) for every f ∈ C(X). We shall see much later that this
is in fact a characterisation of Ext(X). Therefore the following proposition relates, albeit in an
indirect way, the notion of maximality to the extreme points:
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Proposition 4.8. Let µ ∈M1(X) be maximal. Then µ(f) = µ(f̄) for every f ∈ C(X).

Proof. Let f ∈ C(X) and define the functional T : Rf → R by rf 7→ rµ(f̄). We claim that T is
dominated by the sublinear functional p : C(X)→ R defined by g 7→ µ(ḡ). Proposition 3.5 ensures
sublinearity of p as rg = rg when r ≥ 0 and g1 + g2 ≤ g1 +g2. This also shows that p(rf) = T (rf)
when r ≥ 0. When r < 0 we get

0 = rf + (−rf) ≤ rf +−rf,

which implies −µ(−rf) ≤ µ(rf). From this we see that

T (rf) = −T (−rf) = −µ(−rf̄) = −µ(−rf) ≤ µ(rf) = p(rf).

We conclude that p does indeed dominate T and immediately extend T to a linear functional
L : C(X)→ R which is dominated by p and restricts to T . Following the usual line of reasoning,
we argue that L is positive: If g ≤ 0, we have ḡ ≤ 0 since the zero function is affine continuous.
This then yields

L(g) ≤ p(g) = µ(ḡ) ≤ 0,

which implies L is non-positive on non-positive functions. As this is equivalent to being positive,
we conclude L is positive linear and apply the Riesz representation theorem to produce ν ∈M(X)
satisfying L(g) =

∫
X
gdν for every g ∈ C(X). Then ν has the important property

ν(f) = L(f) = T (f) = µ(f̄).

Furthermore, if g ∈ C, −g is concave and continuous, so by Proposition 3.5, −g = −g. This permits
the following:

ν(−g) = L(−g) ≤ p(−g) = µ(−g) = µ(−g).

From this we infer that ν(g) ≥ µ(g) for all g ∈ C, i.e., ν � µ. But due to maximality this implies
ν = µ and in particular µ(f) = ν(f) = µ(f̄), as desired.

4.3 The Choquet-Bishop-de Leeuw theorem

In order to prove that a maximal measure is supported by every Baire set containing the extreme
points of X, we have to establish a few technical lemmas. The first relies on X being metrizable,
while the second generalizes the first by dropping this assumption. During the remainder of this
section we surpress the index n→∞, as it otherwise clutters up the notation.

Lemma 4.9. Let X be compact, convex and metrizable. Let (fn)n≥1 be a sequence of bounded,
concave, upper semicontinuous functions on X such that the whole sequence is bounded from below
and lim inf fn(x) ≥ 0 for every x ∈ Ext(X). Then lim inf fn(x) ≥ 0 for every x ∈ X.

Proof. Let x0 ∈ X. By Choquet’s theorem we can find a probability measure µ on X which is
supported by Ext(X) and represents x0. By choice of µ we now have lim inf fn(x) ≥ 0 µ-a.e, which
implies µ(lim inf fn) ≥ 0. Finding a constant C ∈ R such that fn ≥ C for all n ∈ N, we apply
Fatou’s lemma to the non-negative measurable functions fn − C and infer that

µ(lim inf(fn − C)) ≤ lim inf µ(fn − C).

This and non-negativity implies

0 ≤ µ(lim inf fn) ≤ lim inf µ(fn).

To finish the argument we note that by Corollary 4.3, µ representing x0 is equivalent to µ ∼ δx0
.

Since fn is concave and upper semicontinuous, it equals its upper envelope. Invoking Proposition
4.4, we see that

fn(x0) = fn(x0) = sup{λ(fn) | λ ∼ δx0
},

from which we infer fn(x0) ≥ µ(fn). Combining the pieces we find

lim inf fn(x0) ≥ lim inf µ(fn) ≥ 0.

Since x0 ∈ X was arbitrary, this yields the desired conclusion.
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We now prove the exact same lemma, removing the assumption that X is metrizable. In the
proof we need that for a bounded sequence (an)n≥1 we have lim inf an = lim inf(an + 1/n). This
is essentially a consequence of the fact that if an → a, bn → b and an − bn → 0, then a = b.

We will also need the fact that RN equipped with the product topology is a metrizable real
Hausdorff LCS. Metrizability of RN is a classical theorem of point-set topology, and we refer the
reader to Theorem 20.5 in [7]. It is not difficult to show that it also inherits all relevant properties
from R; one can for example verify that sets of the form · · · × R × B(0, ε) × R × · · · constitute a
convex neighbourhood subbase of 0.

Lemma 4.10. Let X be compact and convex. Let (fn)n≥1 be a sequence of bounded, concave,
upper semicontinuous functions on X such that the whole sequence is bounded from below and
lim inf fn(x) ≥ 0 for every x ∈ Ext(X). Then lim inf fn(x) ≥ 0 for every x ∈ X.

Proof. Let x0 ∈ X and for each n ∈ N find hn ≥ fn with hn ∈ A such that

hn(x0) < f̄n(x0) + 1/n = fn(x0) + 1/n,

which is possible by the definition of the upper envelope. We also once again use that fn being
concave and upper semicontinuous implies fn = fn. By the comments preceding the lemma, and
since fn(x0) ≤ hn(x0) ≤ fn(x0) + 1/n, we see that lim inf fn(x0) = lim inf hn(x0).

We then define the n’th coordinate of ϕ : X → RN by (ϕ(x))n = hn(x). Since each coordinate
of ϕ is continuous and affine, so is ϕ itself. Therefore ϕ(X) is a compact convex subset of the
metrizable space RN. Since each coordinate projection, πn : RN → R, is linear and continuous, it is
in particular bounded, concave and upper semicontinuous on ϕ(X). Furthermore, for each x ∈ X,

fn(x) ≤ hn(x) = πn(ϕ(x)),

implying that boundedness from below of (fn)n≥1 is inherited by the restrictions of (πn)n≥1 to
ϕ(X). If we can justify that lim inf πn(y′) ≥ 0 for each y′ ∈ Ext(ϕ(X)), we can apply the previous
lemma to reach the desired conclusion.

To this end let y ∈ Ext(ϕ(X)). By continuity of ϕ, the set ϕ−1(y) is closed in X and therefore
compact. Since it is also non-empty, the classical Krein-Milman theorem establishes the existence
of an extreme point x ∈ Ext(ϕ−1(y)). We claim that x must also be extreme in X. Indeed, letting
x = αx1 + (1− α)x2 for x1, x2 ∈ X and α ∈ (0, 1), we see that

y = ϕ(x) = αϕ(x2) + (1− α)ϕ(x2).

Since y is an extreme point of ϕ(X), this implies y = ϕ(x1) = ϕ(x2). Hence x1, x2 ∈ ϕ−1(y), in
which x is extreme, finally yielding x1 = x2 = x. Thus x ∈ Ext(X), so by hypothesis lim inf fn(x) ≥
0. Since we also have hn ≥ fn, we see that

lim inf πn(y) = lim inf πn(ϕ(x)) = lim inf hn(x) ≥ lim inf fn(x) ≥ 0.

We now apply the previous lemma, establishing lim inf πn(y) ≥ 0 for all y ∈ ϕ(X), not just the
extreme points. Thus, for the specific x0 from which we constructed (hn)n≥1,

lim inf fn(x0) = lim inf hn(x0) = lim inf πn(ϕ(x0)) ≥ 0,

giving the conclusion.

The two preceding lemmas allow a short proof of the following:

Lemma 4.11. Let (fn)n≥1 be a non-decreasing sequence of functions in C(X) with −1 ≤ fn ≤ 0
and lim fn(x) = 0 for all x ∈ Ext(X), and let µ be a maximal probability measure on X. Then
limµ(fn) = 0.
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Proof. As −1 ≤ fn ≤ 0, the sequence (fn)n≥1 will also be bounded by −1 and 0. Furthermore,
by Proposition 3.5, each fn is concave and upper semicontinuous. Since fn+1 ≥ fn follows from

fn+1 ≥ fn, (fn)n≥1 is also a bounded monotone sequence, and hence its pointwise limit exists. In
particular, as fn ≥ fn, we see that for x ∈ Ext(X) we have

lim inf fn(x) = lim fn(x) = lim fn(x) = 0,

the last equality stemming from the hypothesis. Appealing to the preceding lemma, we see that
for any x ∈ X,

lim fn(x) = lim inf fn(x) ≥ 0,

implying that lim fn(x) = 0. Since µ is maximal, we have µ(fn) = µ(fn) by Proposition 4.8. By
boundedness of (fn)n≥1 we may then invoke the Lebesgue dominated convergence theorem to see
that

limµ(fn) = limµ(fn) = µ(lim fn) = 0,

yielding the conclusion.

As a last stepping stone we need a technical lemma regarding regularity on Baire sets, which
states that Baire sets may be approximated by Gδ and Fσ sets.

Lemma 4.12. Let µ ∈ M1(X) and let B be Baire. Then for any ε > 0 there exists a Gδ set G
and Fσ set F such that G ⊆ B ⊆ F and µ(F \G) < ε. In particular, if µ(K) = 0 for any compact
K ⊆ G ⊆ B where G is Gδ, then µ(B) = 0.

Proof. First define E to be the Borel sets which have the approximation property described above.
We show that E is a σ-algebra which contains the compact Gδ sets.

Obviously X ∈ E since we may pick G = X = F . Let A ∈ E and ε > 0. We then find
G ⊆ A ⊆ F such that G is Gδ and F is Fσ and µ(F \G) < ε. Then F c ⊆ Ac ⊆ Gc and F c is Gδ
while Gc is Fσ. Since F \G = Gc \ F c we have µ(Gc \ F c) < ε.

Now let (An)n≥1 ⊆ E and let ε > 0. For each n ∈ N choose Gn ⊆ An ⊆ Fn such that Gn is Gδ,
Fn is Fσ and µ(Fn \ Gn) < 2−nε. Since the countable union of countable unions of sets is once
again countable, F :=

⋃
n∈N Fn is once again Fσ. Furthermore, by distributivity of ∪ over ∩, the

finite union of Gδ sets is once again Gδ. Finding N ∈ N such that

µ

( ∞⋃
n=1

Gn \
N⋃
n=1

Gn

)
= µ

( ∞⋃
n=N+1

Gn

)
< ε,

we see that G := G1 ∪ · · · ∪GN is again Gδ. Since

F \G ⊆

(
F \

∞⋃
n=1

Gn

)
∪

( ∞⋃
n=N+1

Gn

)
⊆

( ∞⋃
n=1

Fn \Gn

)
∪

( ∞⋃
n=N+1

Gn

)
,

we see that

µ(F \G) ≤
∞∑
n=1

µ(Fn \Gn) + µ

( ∞⋃
n=N+1

Gn

)
≤ 2ε.

Since G ⊆
⋃
n∈NAn ⊆ F , we see that E is a σ-algebra. Now, if G is compact Gδ, it is also closed

and therefore Fσ, so obivously G ∈ E . Since the compact Gδ sets generate the Baire σ-algebra,
all Baire sets are in E . The last statement of the lemma is then a simple combination of this
approximation property and inner regularity of µ.

We have now paved the way for a relatively short proof of this chapter’s main theorem:

Theorem 4.13 (Choquet-Bishop-de Leeuw). Let X be a compact and convex subset of E. For
every x ∈ X there exists a probability measure µ on X which represents x and is supported by
every Baire set containing the extreme points of X.
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Proof. Let x0 ∈ X and let µ be a maximal probability measure with µ ∼ δx0 , the existence of
which is the statement of Lemma 4.7. By Corollary 4.3 this implies µ represents x0, so we need
only show that µ is supported by every Baire set containing Ext(X). If B is such a Baire set, let
G ⊆ Bc be Gδ and let K ⊆ G be compact. Then Gc is Fσ, so

Ext(X) ⊆ Gc =

∞⋃
k=1

Fk

for some closed sets Fk. Then, for any n ∈ N, the set Cn :=
⋃n
k=1 Fk is closed and disjoint from

K. Since X is compact Hausdorff and translation by −1 is continuous, we may apply Urysohn’s
lemma to find fn : X → [−1, 0] such that fn(K) = −1 and fn(Cn) = 0 for all n ∈ N. Defining
g1 = f1 and gn = max{fn, gn−1}, the sequence (gn)n≥1 is continuous and non-decreasing on X
and still satisfies gn(K) = −1 and gn(Cn) = 0 for each n ∈ N. Furthermore, for x ∈ Ext(X) we
eventually have x ∈ Cn, implying lim gn(x) = 0.

We are now in the situation of Lemma 4.11 which lets us conclude limµ(gn) = 0. Assuming
µ(K) > 0, we see that

µ(gn) =

∫
X

gndµ =

∫
K

gndµ+

∫
Kc

gndµ = −µ(K) +

∫
Kc

gndµ ≤ −µ(K),

using that gn ≤ 0 for the last inequality. This violates limµ(gn) = 0, so we conclude µ(K) = 0.
Then, by the preceding lemma, µ is indeed supported by every Baire set containing Ext(X).

This concludes our survey of theorems regarding the existence of representing measures sup-
ported by the extreme points. In many ways Choquet’s theorem provided exactly what we wanted;
representing measures supported by just the extreme points. But this relied heavily on the exis-
tence of a strictly convex function and the extreme points being Baire, properties which are not
guaranteed in the general situation. The Choquet-Bishop-de Leeuw theorem then improves the
reformulated Krein-Milman in the sense that the produced representing measure is supported by
every Baire set containing the extreme points, not just its closure.

We saw in Example 2.10 that being supported by the closure of the extreme points can be very
different from being supported by the extreme points themselves. In the same vein there exist
pathological examples of measures supported by every Baire set containing the extreme points
which still measure the extreme points themselves to 0. One such example is due to Mokobodzki
and is detailed on p. 60 in [8].
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5 Vector lattices and Choquet simplices

In this section we will introduce the concepts of lattices and Choquet simplices, as these are the
natural framework for discussing uniqueness of representing measures. The material in this and
the next section is based on the content of chapter 10 in [8]. We start by defining vector lattices
in general and then turn to applying the concept in the setting of compact convex sets in a locally
convex space. We begin with the definition:

Definition 5.1. A partially ordered real vector space (V,≤) is a vector lattice if for all x, y, z ∈ V
the following conditions hold:

1. If x ≤ y, then x+ z ≤ y + z.

2. If x ≤ y and α ≥ 0, then αx ≥ αy.

3. For any x, y ∈ V there exists a least upper bound denoted by x ∨ y.

We will usually refer to the first property as translation invariance and to the second as positive
homogeneity, while x ∨ y is called the join of x and y. We shall see that any x, y ∈ V also have
a greatest lower bound x ∧ y, called the meet of x and y. Vector lattices are also often referred
to as Riesz spaces in the literature. As is commonplace after defining a mathematical structure,
there are a handful of easily obtained properties which follow in a straightforward manner from
the definition. We record those that will be useful to us:

Proposition 5.2. Let V be a vector lattice and let x, y, z, w ∈ V .

1. If x ≤ y and z ≤ w, then x+ z ≤ y + w. Furthermore, x ≥ y ⇔ −x ≤ −y.

2. x ∧ y = −(−x ∨ −y) and x ∨ y = −(−x ∧ −y).

3. (x ∧ y) + z = (x+ z) ∧ (y + z) and (x ∨ y) + z = (x+ z) ∨ (y + z).

4. If x ≤ 0, y ≤ 0 and z ≤ 0, then (x+ y) ∧ z ≤ (x ∧ z) + (y ∧ z).

Proof. The first two statements follow immediately from the definition. Let us prove the third.
As x ∧ y ≤ x and x ∧ y ≤ y, we get (x ∧ y) + z ≤ x + z and (x ∧ y) + z ≤ y + z by translation
invariance, so (x ∧ y) + z is in fact a lower bound for (x+ z) and (y + z).

Now let w be a lower bound for (x+ z) and (y + z). Then w ≤ x+ z, which means w− z ≤ x.
Similarly w − z ≤ y, so w − z ≤ x ∧ y. Thus w ≤ (x ∧ y) + z as desired. The second statement is
similar.

To prove 4. let u := (x+ y)∧ z. Then u ≤ x+ y and u ≤ z as it is the greatest lower bound of
the two. The latter implies, together with 0 ≤ x, that 0 + u = u ≤ x+ z. This however, together
with u ≤ x+ y, gives us

u ≤ (x+ y) ∧ (x+ z) = x+ (y ∧ z)

by part 3. As both y and z are non-negative, 0 ≤ y ∧ z. Combining this with u ≤ z, we see that
u ≤ z + (y ∧ z). Using the two inequalities and distributivity of + once again, we see that

u ≤ (x+ (y ∧ z)) ∧ (z + (y ∧ z)) = (x ∧ z) + (y ∧ z),

finishing the proof.

We notice for later use that the second statement implies that one may equivalently check the
greatest lower bound property when verifying that a given object is a vector lattice. We have
previously used the fact that the subspace C − C is a vector lattice, so it is about time that we
prove it. For this we need the following lemma:

Lemma 5.3. If f, g ∈ C, then max(f, g) ∈ C. Similarly, if f, g ∈ −C, then min(f, g) ∈ −C.

Since the proof is quite straightforward, we omit it.
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Proposition 5.4. The set C − C = {f − g | f, g ∈ C} is a vector lattice under pointwise ordering
and pointwise maximum as the join operation.

Proof. Convexity is stable under addition and positive scaling, implying that C − C is a subspace
of C(X). Furthermore, if f, g ∈ C, then max(f, g) ∈ C by the preceding lemma. The conclusion
then follows from the fact that for f1 − g1, g2 − g2 ∈ C − C we have

max(f1 − g1, f2 − g2) = max(f1 + g2, f2 + g1)− (g1 + g2).

This is most easily seen by distinguishing between two entirely symmetric cases. For a fixed x ∈ X
assume (f1 − g1)(x) ≥ (f2 − g2)(x), i.e., f1(x) + g2(x) ≥ f2(x) + g1(x). The right hand side of the
above equation then reads

max(f1 + g2, f2 + g1)(x)− (g1 + g2)(x) = f1(x)− g1(x),

which is exactly what the left hans side equates to. Similiarly the identity also holds when (f1 −
g1)(x) ≤ (f2 − g2)(x).

Since max(f1 + g2, f2 + g1) and g1 + g2 are elements of C, max(f1 − g1, f2 − g2) ∈ C − C, and
therefore C −C does indeed have the least upper bound property. Since translation invariance and
positive homogeneity are immediate, we conclude that C − C is in fact a vector lattice.

5.1 The Decomposition lemma

There is one lemma from lattice theory which will be absolutely crucial in proving the uniqueness
theorem for representing measures. This is the so called Decomposition lemma:

Lemma 5.5 (Decomposition lemma). Let V be a vector lattice and let {xi | i ∈ I} and {yj | j ∈ J}
be finite sets of non-negative elements of V such that

∑
i∈I xi =

∑
j∈J yj. Then there exists a set

{zij ∈ V | (i, j) ∈ I × J} with zij ≥ 0 such that for every i ∈ I and j ∈ J we have

xi =
∑
j∈J

zij and yj =
∑
i∈I

zij .

Proof. One quickly realizes that there is little to show when either |I| = 1 or |J | = 1. We show
that the lemma holds for |I| = |J | = 2 and reduce the general statement to this by induction. We
assume without loss of generality that I = J = {1, 2}. Let xi ≥ 0 and yj ≥ 0 for i, j ∈ {1, 2} with
x1 + x2 = y1 + y2. To prove the statement we seek elements zij ≥ 0 to fill out the matrix

z11 z12 x1
z21 z22 x2
y1 y2 S

where S denotes the common sum and each xi is the sum of the row it appears in and similarly
each yj is the sum of the column it appears in.

We start by defining z11 = x1 ∧ y1, which is non-negative as x1 and y1 are non-negative. This
forces us to define z12 = x1 − z11 and z21 = y1 − z11, which by construction are also both non-
negative. Finally let z22 = x2 − z21. For the lemma to hold, this must equal y2 − z12. Indeed,
inserting the different definitions and using that y1 = x1 + x2 − y2, we have

x2 − z21 = x2 − y1 + z11 = x2 − (x1 + x2 − y2) + z11 = y2 − x1 + z11 = y2 − z12.

Then x2 = z21 + z22 and y2 = z12 + z22, so all the required identities hold. We still need to argue
that z22 ≥ 0. Since z21 ≤ z21 and 0 ≤ y2 we have z21 ≤ z21 + y2 = x2 + z12. Thus z21 is a lower
bound for z21 and x2 + z12. Now if u is some other lower bound for the two we obviously have
u ≤ z21, from which we infer that z21 = z21 ∧ (x2 + z12). By definition of z21 and z12 we have

z21 ∧ z12 = (x1 − z11) ∧ (y1 − z11) = (x1 ∧ y1)− z11 = 0,
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using distributivity of +. Putting the different pieces together and using part 4. of Proposition
5.2 yields

z21 = z21 ∧ (z12 + x2) ≤ (z21 ∧ z12) + (z21 ∧ x2) = z21 ∧ x2.

From this we see that z21 ≤ x2, and therefore z22 = x2 − z21 ≥ 0.
Thus we have proven the lemma when |I| = |J | = 2. Let us generalise to the case when |I| = n

and |J | = 2, which is actually the case we will be using later. We do this by induction, so let n > 2
and assume the lemma is true for n′ ≤ n− 1. Let {xi | i ∈ I} and y1, y2 be non-negative such that

n∑
i=1

xi = y1 + y2 = (x1 + x2) +

n∑
i=3

xi

By the induction hypothesis we may then find zij ≥ 0 such that we get the sums indicated in the
following matrix:

z11 z12 x1 + x2
...

...
...

z(n−1,1) z(n−1,2) xn
y1 y2 S

The first row implies z11 +z12 = x1 +x2, so we may use the base case shown earlier to find wij ≥ 0
and the sums represented by the matrix

w11 w12 x1
w21 w22 x2
z11 z12

As a final step we concatenate the two matrices to get the desired non-negative elements and sums:

w11 w12 x1
w21 w22 x2
z21 z22 x3
...

...
...

z(n−1,1) z(n−1,2) xn
y1 y2 S

To finish the argument one applies the exact same idea to the case when m ∈ N is arbitrary. The
only difference is that it is even worse notationally!

5.2 Cones and simplices

After this rather technical lemma we return to some definitions, namely those of a cone and of a
Choquet simplex.

Definition 5.6. Let V a real vector space. A non-empty subset P ⊆ V is a convex cone if x, y ∈ P
and α, β ≥ 0 implies αx+ βy ∈ P . A convex set B ⊆ P is a base for P if B = H ∩ P for a closed
hyperplane H missing the origin and B generates P , that is, B̃ := {αx | α ≥ 0, x ∈ B} = P .

We can always find a continuous linear functional such that H = L−1(1). From this it follows
that the representation of non-zero elements of P is unique, i.e., if α1x1 = α2x2 for α > 0 and
x1, x2 ∈ B we have α1 = α2 and x1 = x2. Since H misses the origin, αx = 0 at least implies α = 0.
We will use this very frequently in the following developments.

A convex cone with base B gives rise to a partial order on E, as we shall see in the following
proposition:

Proposition 5.7. Let V be a real vector space and P ⊆ V a cone with base B. Then P induces
a translation invariant and homogenous partial order ≥ on V by x ≥ y ⇔ x− y ∈ P .
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Proof. Reflexivity is obvious. For antisymmetry it suffices to show that P ∩ (−P ) = {0}. If
y ∈ P ∩ (−P ), then y = α1x1 = −α2x2 for some α1, α2 ≥ 0 and x1, x2 ∈ B. Assuming α2 6= 0,
we get P 3 x2 = −α1

α2
x1. From the uniqueness of representation discussed earlier, it follows that

1 = −α1

α2
, a contradiction. Hence α2 = 0 and thus y = 0. Transitivity, translation invariance and

homogeneity are also immediate.

Since we are interested in studying any compact convex subset of a locally convex space E, it is
an important question to ask whether we can always find a cone P such that X is its base. While
this is not true in general, it is true to the extent we care about: X is affinely homeomorphic to
X×{1} ⊆ E×R through the map ϕ(x) = (x, 1). Then ϕ(X) is a compact convex set contained in

a hyperplane missing the origin in the LCS E × R, and hence ϕ(X) is a base for ϕ̃(X). To avoid
carrying around a homeomorphism and a trivial second coordinate, we will simply assume without
loss of generality that X is contained in a closed hyperplane missing the origin. For such an X it
is straightforward to check that X̃ is indeed a convex cone with base X.

Next we define the notion of a Choquet simplex:

Definition 5.8. Let B be a base for a convex cone P . Then B is a Choquet simplex if P −P is a
vector lattice in the ordering induced by P .

This is most definitely not the usual definition of a simplex and does not immediately lend itself
to any intuition about why sets satisfying this should resemble triangles. We shall, however, see in
the sequel that it is a quite handy definition which extends well the finite-dimensional notion to
the general setting. Note that P − P is a subspace and is equipped with the translation invariant
homogenous partial order induced by P . Thus, when verifying that B is a Choquet simplex, the
only criteria to be checked is the least upper (or greatest lower) bound property of P − P .

Since we are only interested in properties of compact convex sets invariant under affine home-
omorphisms, we argue that being a Choquet simplex is an intrinsic property:

Proposition 5.9. Let B ⊆ E, B′ ⊆ E′ be convex sets and let ϕ : B → B′ be an affine bijection.
Then ϕ extends to an additive and order-preserving map ϕ̄ : B̃ → B̃′. In particular, B is a Choquet
simplex if and only if B′ is.

Proof. We naturally define ϕ̄(αx) = αϕ(x), which is well-defined by the uniqueness of representa-
tion. To see that ϕ̄ additive, let α1x1, α2x2 ∈ B̃ with one αi non-zero. We then have

ϕ̄(α1x1 + α2x2) = ϕ̄

(
(α1 + α2)

(
α1

α1 + α2
x1 +

α2

α1 + α2
x2

))
= (α1 + α2)

(
α1

α1 + α2
ϕ(x1) +

α2

α1 + α2
ϕ(x2)

)
= α1ϕ(x1) + α2ϕ(x2) = ϕ̄(α1x1) + ϕ̄(α2x2).

Here we used ϕ being affine in the second line. It then follows in a straightforward manner from
the definitions that ϕ̄ is order-preserving and that B̃′ has the least upper bound property if B̃
does. Since the inverse of an affine bijection is once again affine, the converse also holds.

While it is often more convenient to work with the vector lattice P − P , it is also sometimes
useful to work with just P . The content of the next proposition is that one of these has the least
upper bound property if and only if the other does, i.e., P − P is a vector lattice if and only if P
is a lattice:

Proposition 5.10. Let B be a base for a convex cone P . In the ordering induced by P , P − P is
a vector lattice if and only if P is a lattice.

Proof. If P −P is a lattice and x, y ∈ P , we only need to show that x∨y ∈ P . But as x∨y ≥ x, we
see that (x∨y)−x = βz for some β ≥ 0, z ∈ X. Writing x = αx′, we see that x∨y = βz+αx′ ∈ P .

Assume P is a lattice and let x = x1 − x2, y = y1 − y2 be arbitrary elements of P − P . Define

z = ((x1 + y2) ∨ (y1 + x2))− (x2 + y2).
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We then see that

z − x = ((x1 + y2) ∨ (y1 + x2))− (x2 + y2)− (x1 − x2) = ((x1 + y2) ∨ (y1 + x2))− (x1 + y2),

which is an element of P and thus z ≥ x. Similiary z ≥ y, so z is an upper bound for x and y.
Next let w ∈ P −P be another upper bound for the two. Writing w = w1−w2, we see that w ≥ x
implies that w1 + x2 ≥ x1 + w2. Using translation invariance yields w1 + x2 + y2 ≥ w2 + x1 + y2.
By swapping the roles of x and y we get the symmetric statement w1 + y2 + x2 ≥ w2 + y1 + x2.
Having these two in mind we do the following calculation:

w − z = w1 − w2 − ((x1 + y2) ∨ (y1 + x2)− (x2 + y2))

= w1 + x2 + y2 − (w2 + ((x1 + y2) ∨ (y1 + x2))

= w1 + x2 + y2 − ((w2 + x1 + y2) ∨ (w2 + y1 + x2)) ∈ P.

Here we used distributivity of + and the two prior inequalities. This implies w ≥ z and hence z is
in fact a least upper bound in P − P .

The above proposition lends itself to a nice geometrical interpretation of being a Choquet
simplex. To see this, note that for x ∈ P we have {z ∈ P | z ≥ x} = x+P . Therefore, if z = x∨y,
we must have (x+ P ) ∩ (y + P ) = z + P . And conversely, if (x+ P ) ∩ (y + P ) = z + P for some
z ∈ P , it is easy to verify that z must be the least upper bound of x and y. Therefore P is a
lattice exactly if the intersection of any two translated cones in P is again a translated cone. The
image from p. 159 in [1] illustrates extremely clearly how a circle is not a Choquet simlex, while
a triangle is.

Figure 2: From Figure 28.3 in Lectures on Analysis by G. Choquet

In the proof of uniqueness of maximal representing measures it will be crucial that the set of
maximal probability measures is a lattice. For this we define the notion of a hereditary subcone:

Definition 5.11. Let V be a real vector space, let P1, P2 ⊆ V be convex cones with P1 ⊆ P2

and denote the two induced orderings by ≤1, ≤2, respectively. P1 is a hereditary subcone of P2 if
x ∈ P1, y ∈ P2 and y ≤2 x implies y ∈ P1.

While the notion of a hereditary subcone may be difficult to visualise, we shall see that the
maximal measures form a hereditary subcone of all measures. We prove the following short lemma:

Lemma 5.12. Let V be a real vector space and let P1 be a hereditary subcone of P2. If P2 is a
lattice in its own ordering, P1 is also a lattice in its own ordering.
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Proof. Let x, y ∈ P1 and define z = x ∧2 y, where ∧2 denotes the meet in P2. Then z ≤2 x, so
by the definition of a hereditary subcone z ∈ P1. Since x − z = w for some w ∈ P2, we see that
x − w = z ∈ P2, so x ≥2 w, which once again implies that w ∈ P1. From this we obtain z ≤1 x
and similarly z ≤1 y, so z is in fact a lower bound in the ordering induced by P1.

Now let w ∈ P1 be a lower bound for x and y. Then, as P1 ⊆ P2, w ≤2 x and w ≤2 y, from
which we gather w ≤2 z or z − w ∈ P2. Futhermore, as w ∈ P2, we have 0 ≤2 w, and hence
0 ≥2 −w. From this we infer that z − w ≤2 z. We argued earlier that z ∈ P1, so by the property
of being hereditary, we see that z − w ∈ P1. From this we obtain z ≥1 w as desired.

Before we apply the lemma to maximal measures, we shall see our first example of a Choquet
simplex:

Proposition 5.13. The set of probability measures M1(X) is a Choquet simplex.

Proof. We have already seen thatM1(X) is compact and convex in the weak* topology of C(X)∗

and contained in the closed hyperplane 1̂−1(1). Furthermore, emphasizing the interpretation of
Radon measures as positive linear functionals,M(X) is easily seen to be a convex cone generated
byM1(X). Using Proposition 5.10, we then show thatM(X) is a lattice in its own ordering. We
note that for ρ, µ ∈M(X) we have

ρ ≤ µ ⇔ µ− ρ ∈M(X) ⇔ µ− ρ positive linear.

We will also use that if f1 ≥ f2 are non-negative measurable, then f1 · µ − f2 · µ = (f1 − f2) · µ.
This follows from

f1 · µ = ((f1 − f2) + f2) · µ = (f1 − f2)µ+ f2µ.

Now let µ, λ ∈M(X). Defining ν = µ+λ, we see that both µ and λ are absolutely continuous
with respect to ν. By the Lebesgue-Radon-Nikodym theorem (Theorem 3.8 in [3]), there exist
non-negative measurable functions f1 and f2 such that µ = f1 · ν and λ = f2 · ν. Defining
g = min(f1, f2), we claim that µ∧λ = g · ν. In the following we will repeatedly and silently appeal
to Proposition 1.9 to know that the measures constructed are in fact Radon.

We see that g · ν is a lower bound for µ, as

µ− g · ν = f1 · ν − g · ν = (f1 − g) · ν ∈M(X).

Substituting λ for µ of course yields g · ν ≤ λ. Hence g · ν is a lower bound for µ and λ.
Now let ρ be a lower bound for µ and λ. Then µ − ρ ∈ M(X), which implies ρ is absolutely

continuous w.r.t µ and hence also w.r.t ν. Thus ρ = f3 · ν for some non-negative measurable f3.
Then

µ− ρ = f1 · ν − f3 · ν ∈M(X).

From this it follows that f1 ≥ f3 ν-a.e., so we might as well assume f1 ≥ f3, since the fi’s are only
defined ν-a.e to begin with. Swapping the roles of µ and λ yields f2 ≥ f3, which implies f3 ≤ g.
This in turn yields ρ ≤ g · ν as desired.

When proving that having unique maximal measures implies being a Choquet simplex, it will be
of essence that the maximal probability measures are a Choquet simplex themselves. We conclude
this section by proving this fact, using the lemma concerning hereditary subcones:

Lemma 5.14. Let Q := {µ ∈ M(X) | µ maximal} and let Q1 be the set of maximal probability
measures. Then Q is a subcone of M(X) with base Q1. Furthermore, Q1 is a Choquet simplex.

Proof. We first show that Q is a subcone. Letting µ, λ ∈ Q, α, β ≥ 0 and f ∈ C(X), we see that

αµ(f) + βλ(f) = αµ(f̄) + βλ(f̄) = (αµ+ βλ)(f̄).

This is actually equivalent to αµ + βλ ∈ Q, the proof of which we delay until Proposition 6.3 in
the next section. This also shows that µ/µ(1) is maximal, so Q = Q̃1. Furthermore, Q1 is convex
and contained in 1̂−1(1), so we conclude that Q̃1 is in fact a base for Q.
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To show that Q1 is a Choquet simplex, we show that Q is a lattice in its own ordering. We just
proved that M1(X) is a Choquet simplex, and therefore by Lemma 5.12, it suffices to establish
that Q is a hereditary subcone of M(X). To this end let µ ∈ Q, λ ∈ M(X) and λ ≤ µ in the
ordering induced byM(X), i.e., µ− λ ∈M(X). We claim that λ is maximal. Indeed, if ν � λ we
get

ν + (µ− λ) � λ+ (µ− λ) = µ.

Along with using µ−λ ∈M(X) we have also used the fact that � is stable under addition, which
is obvious from the definition. Then µ being maximal implies ν + (µ− λ) = µ, from which we get
ν = λ as desired. Hence λ ∈ Q, so Q1 is a Choquet simplex.
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6 Uniqueness

In this section we prove the long awaited uniqueness theorem for representing measures, which
states that maximal representing measures are unique if and only if the compact convex set of
interest is a Choquet simplex. Before we plunge into the proof of the theorem itself, we prove a
number of lemmas and propositions which will help us later. Many of these are refinements or
converses of earlier results, so one may regard the next couple of pages as a sharpening of the tools
already at hand.

6.1 Maximality revisited

The purpose of this section is to give a very useful equivalent characterisation of maximality using
upper envelopes. We first establish a couple of auxiliary results. To moderate the length of
individual proofs, we begin with this purely measure theoretic lemma:

Lemma 6.1. Let µ ∈ M(X) and f ∈ L1 with f(x) = inf{g(x) | g ∈ G} for some G ⊆ C(X)
which is directed downwards, i.e., for each g1, g2 ∈ G there exists g3 ∈ G such that g3 ≤ g1 and
g3 ≤ g2 in the pointwise ordering. We then have

µ(f) = inf{µ(g) | g ∈ G}.

Proof. Defining β = inf{µ(g) | g ∈ G} we seek to prove µ(f) = β. To this end we find a sequence
(g′n)n≥1 ⊆ G for which we have limn→∞ µ(g′n) = β. Letting L(g1, g2) denote the set of lower bounds
for g1 and g2 in G, we define g1 = g′1 and choose gn ∈ L(g′n, gn−1) for all n ∈ N, invoking the
axiom of choice. Notice that we can’t simply choose min(g′n, gn−1), since we have not assumed G
to be stable under minimums. Then (gn)n≥1 ⊆ G is monotonically decreasing while monotonicity
of the integral ensures that limn→∞ µ(gn) = β.

By hypothesis gn(x) ≥ f(x) for all x ∈ X and n ∈ N. Thus (gn)n≥1 is bounded from below,
so it will converge pointwise to a measurable function g for which it holds that g1 ≥ g ≥ f . Then
f, g1 ∈ L1 implies g ∈ L1. By applying the monotone convergence theorem we then obtain

µ(g) = lim
n→∞

µ(gn) = β.

From g ≥ f and monotonicity we conclude β ≥ µ(f).
Letting A = {x ∈ X | g(x) > f(x)} it sufficient to prove µ(A) = 0 to infer β = µ(g) = µ(f).

Assume that this is not the case, i.e., µ(A) > 0. We may then find r ∈ R, ε > 0 such that
B := {x ∈ X | g(x) > r, f(x) < r − ε} has positive measure. Indeed, if this were not the case, we
would have

µ

⋃
q∈Q

⋃
n∈N
{x ∈ X | g(x) > q, f(x) < q − 1/n}

 = 0.

But this set contains A, which under present assumptions has positive measure. Thus µ(B) > 0.
We noted in the preliminaries that Radon probability measures are in fact inner regular on all

Borel sets, not just open ones. Hence there exists a compact set K ⊆ B such that µ(K) > 0. For
each x ∈ K we have f(x) < r − ε, and since f(x) = inf{h(x) | h ∈ G}, we may find hx ∈ G such
that hx(x) < r − ε. Then

K ⊆
⋃
x∈K

h−1x ((−∞, r − ε)),

which by continuity of hx is an open cover. Finding h1, . . . , hn which yield a finite subcover,
we define a sequence (fk)k≥1 by choosing fk ∈ L(gk, h1, . . . , hn). We see that (fk)k≥1 ⊆ G and
limk→∞ µ(fk) = β by monotonicity. Now, for x ∈ K we have

fk(x) < r − ε < g(x)− ε ≤ gk(x)− ε,
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where the first inequality follows from the fact that x ∈ h−1i ((∞, r−ε)) for some i while the second
is a consequence of K ⊆ B. For x ∈ X \K we furthermore have fk(x) ≤ gk(x). We may now reap
the harvest of our hard work, since this yields

β ≤ µ(fk) =

∫
K

fkdµ+

∫
X\K

fkdµ ≤
∫
K

gk − εdµ+

∫
X\K

gkdµ = µ(gk)− µ(K)ε.

Hence β < β + µ(K)ε ≤ limk→∞ µ(gk) = β, a contradiction.

This lemma helps us establish a different perspective on the upper envelope:

Lemma 6.2. Let f ∈ C(X) and define Gf = {g ∈ −C | g > f}. Then f̄(x) = inf{g(x) | g ∈ Gf}
for each x ∈ X. Furthermore, Gf is directed downwards by pointwise minimum and µ(f̄) =
inf{µ(g) | g ∈ Gf} for each µ ∈M(X).

Proof. Let x ∈ X and define f ′(x) = inf{g(x) | g ∈ Gf}. Since A ⊆ −C, it is not hard to show
that f̄(x) ≥ f ′(x). For the reverse inequality let ε > 0. By definition of f ′ we may find g ∈ Gf
such that g(x) < f ′(x) + ε/2. Furthermore, as g is concave and continuous, Proposition 3.5 tells
us that g = ḡ. Hence we may find h ∈ A, h ≥ g such that

h(x) < ḡ(x) + ε/2 = g(x) + ε/2.

Combining the two estimates and using that h ≥ g > f yields

f̄(x) ≤ h(x) < g(x) + ε/2 < f ′(x) + ε.

From this we conclude f̄ = f ′ as desired.
Gf is directed downwards as g1, g2 ∈ Gf implies min(g1, g2) ∈ Gf , which is an immediate

consequence of Lemma 5.3. The last statement follows from the preceding lemma: f̄ is L1 since it
is bounded and measurable, and we obviously have Gf ⊆ C(X).

This rather technical lemma permits a short proof of the converse to Proposition 4.8, originally
due to Mokobodzki:

Proposition 6.3 (Mokobodzki). Let µ ∈ M(X). Then µ is maximal if and only if µ(f) = µ(f̄)
for all f ∈ C if and only if µ(f) = µ(f̄) for all f ∈ C(X).

Proof. Proposition 4.8 states that µ being maximal implies the two other statements, so we prove
the converse. So let µ(f) = µ(f̄) for all f ∈ C. To show that µ is maximal, let λ ∈ M(X) be
maximal with λ � µ, the existence of which is ensured by Proposition 4.7.

For g ∈ −C we of course have −g ∈ C, which implies λ(g) ≤ µ(g) since λ � µ. For any f ∈ C
we then have

λ(f) = λ(f̄) = inf{λ(g) | g ∈ Gf} ≤ inf{µ(g) | g ∈ Gf} = µ(f̄) = µ(f).

Here we used Proposition 4.8 for the first equality, the preceding lemma for the second and second
to last and the hypothesis for the last one. This is exactly the definition of λ ≺ µ, from which we
by maximality obtain λ = µ. Here we assumed that λ is maximal, but if ν is any measure with
ν � µ, we may find a maximal measure λ � ν. By transitivity λ � µ and by what has been show
µ = λ, hence ν = µ as desired.

6.2 Towards uniqueness

The next lemma is a modification of Proposition 4.4. We recall that a measure µ ∈ M1(X) is
discrete if µ =

∑n
i=1 αiδxi for xi ∈ X and αi ≥ 0 with

∑n
i=1 αi = 1.

Lemma 6.4. Let f ∈ C(X) and x ∈ X. Then f̄(x) = sup{µ(f) | µ ∼ δx, µ discrete}.
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Proof. Let f ∈ C(X), x ∈ X and ε > 0. In view of Proposition 4.4 it suffices to show that for each
µ ∼ δx there exists a discrete probability measure λ ∼ µ ∼ δx such that λ(f) ≥ µ(f)− ε. The idea
of the proof is to partition X into finitely many regions using compactness and then replace the
restrictions of µ to these regions with the Dirac measures of their resultants.

For any y ∈ X we have y ∈ Uy := f−1(B(f(y), ε/4)), which is open by continuity of f . For any
y1, y2 ∈ Uy we then have

|f(y1)− f(y2)| ≤ |f(y1)− f(y)|+ |f(y)− f(y2)| < ε/4 + ε/4 = ε/2.

By Lemma 1.6 we may then find a compact convex neighbourhood C ′y ⊆ Uy of y. Using compact-
ness of X we find finitely many C ′yi covering X and define C1 = C ′y1 and

Ci = C ′yi \
i−1⋃
j=1

Ci.

We now assume all Ci have positive measure, since if this is not the case one may simply discard
those of measure 0 and renumber. As all Ci are Borel we may for any B ∈ B(X) define

µi(B) = µ(Ci)
−1µ(Ci ∩B).

These are probability measures on Ci, which are subsets of the compact convex sets C ′yi . Hence
r(µi) = xi ∈ C ′i by Proposition 2.7. We then define the discrete measure

λ =

n∑
i=1

µ(Ci)δxi .

To conclude the proof we need to show λ ∼ δx and µ(f) − λ(f) < ε. The first claim is painless
because of Corollary 4.3: It suffices to consider g ∈ E∗|X . For these we have

λ(g) =

n∑
i=1

µ(Ci)δxi(g) =

n∑
i=1

µ(Ci)µi(g) =

n∑
i=1

∫
Ci

gdµ = µ(g).

Here we used that r(δxi) = r(µi) for the first equality, the fact that µi = µ(Ci)
−1µ|Ci for the

second and that the Ci partition X (except possibly a set of measure 0) for the last. Hence λ ∼ µ,
and λ ∼ δx by transitivity.

The second claim requires a slightly longer, but also straightforward computation. Keeping in
mind that Ci ⊆ C ′yi and |f(y1)− f(y2)| < ε/2 for all y1, y2 ∈ C ′yi , we see that

µ(f)− λ(f) =

n∑
i=1

µ(Ci)

∫
Ci

fdµi −
n∑
i=1

µ(Ci)δxi(f) =

n∑
i=1

µ(Ci)

(∫
Ci

fdµi − f(xi)

)

=

n∑
i=1

µ(Ci)

(∫
Ci

f(y)− f(xi)dµi(y)

)
≤

n∑
i=1

µ(Ci)

∫
Ci

ε/2dµi

=
ε

2

n∑
i=1

µ(Ci)µi(Ci) =
ε

2
.

This finishes the proof.

We saw in Corollary 4.3 that if µ and λ coincide on E∗|X , they coincide on all continuous affine
functions. As a very last stepping stone towards the uniqueness theorem, we prove that if one of
them is a Dirac measure, the assumption of continuity can be weakened to upper semicontinuity:

Lemma 6.5. Let f : X → R be affine and upper semicontinuous and let x ∈ X. If µ ∈ M1(X)
and µ ∼ δx, then µ(f) = f(x).
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Proof. Let µ ∈M1(X) with µ ∼ δx. We want to invoke Lemma 6.1 with G = {h ∈ A | h > f}, as
this implies

µ(f) = inf{µ(h) | h ∈ G} = inf{h(x) | h ∈ G} = f(x),

where the first equality is provided by the lemma and the inner stems from µ ∼ δx. Hence we
argue that the assumptions of the lemma hold.

As a first step we note that f ∈ L1. Indeed, since f is upper semicontinuous the preimage
f−1((−∞, n)) is open inX for any n ∈ N, and compactness ofX supplies a finite subcover, implying
boundedness of f . We also remind ourselves that upper semicontinuity implies measurability.

Elements of G are of course continuous, so we need to argue that f(x) = inf{h(x) | h ∈ G} and
that G is directed downwards. We start with the latter statement. Letting h1, h2 ∈ G, we denote
their graphs in E × R by J1 and J2, respectively. Since h1 and h2 are continuous and affine, J1
and J2 are compact and convex. Using convexity of Ji, it is not difficult to see that co(J1 ∪ J2) is
the image of the continuous map Φ : J1 × J2 × [0, 1]→ E × R defined by

(x, y, α) 7→ αx+ (1− α)y,

which implies compactness of co(J1 ∪J2). Furthermore, co(J1 ∪J2) is disjoint from the hypograph
Hf of f , since for any αi ≥ 0 with

∑n
i=1 αi = 1 we have

n∑
i=1

αihi(xi) >

n∑
i=1

αif(xi) = f

(
n∑
i=1

αixi

)
,

using f being affine. This means that the element
∑n
i=1 αi(xi, hi(xi)) ∈ co(J1 ∪ J2) lies strictly

above the graph of f .
Since f is upper semicontinuous and concave, its hypograph is closed and convex. We may

therefore use the Hahn-Banach separation theorem to separate Hf and and co(J1 ∪ J2), i.e., find
L ∈ (E × R)∗ and λ ∈ R such that

supL(Hf ) < λ < inf L(co(J1 ∪ J2)).

Following the line of reasoning in Lemma 3.4, we may now define a new continuous affine function
h3 on X by the equation L(x, h3(x)) = λ. By construction we will then have h3 > f and h3 < hi
for i ∈ {1, 2}. Hence G is in fact directed downwards.

The proof that f(x) = inf{h(x) | h ∈ G} is similar to the one above and in fact almost identical
to the proof of Lemma 3.4: Defining f ′ to be the right hand side we have f ≤ f ′ by construction.
Assuming f(x0) < f ′(x0) for some x0, we may separate Hf and the point (x0, f

′(x0)) ∈ E × R
with a continuous linear functional L; the resulting affine function h will satisfy both h ∈ G and
h(x0) < f ′(x0), a contradiction.

We have now argued that Lemma 6.1 does indeed apply, finishing the proof.

6.3 The Choquet-Meyer theorem

After this large amount of preparatory work we have finally paved the way for proving the desired
uniqueness result:

Theorem 6.6 (Choquet-Meyer). Let X be a non-empty, compact and convex subset of a Hausdorff
LCS, Q1 the set of maximal probability measures on X and C the set of continuous convex functions
on X. Then the following are equivalent:

1. X is a Choquet simplex

2. For each f ∈ C, f̄ is affine on X

3. If µ ∈ Q1 with x = r(µ) and f ∈ C, then f̄(x) = µ(f)

4. For all f, g ∈ C, f + g = f̄ + ḡ.
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5. For each x ∈ X there is a unique µx ∈ Q1 such that r(µx) = x

Proof. 1. =⇒ 2. Assume X is a Choquet simplex and let f ∈ C. We know that f̄ is concave, so
we only need to show that it is also convex. Let x1, x2 ∈ X, α1 ∈ (0, 1) and α2 = 1−α1. Defining
z = α1x1 + α2x2 we want to show

f̄(z) = f̄(α1x1 + α2x2) ≤ α1f̄(x1) + α2f̄(x2).

For this step we will use two lemmas we have established earlier: The decomposition lemma for
vector lattices and Lemma 6.4. Due to the second lemma it suffices to show that the right hand
side of the above inequality is an upper bound for for {µ(f) | µ ∼ δz, µ discrete}.

Now let µ ∈ M1(X) be discrete with µ ∼ δz. Then µ =
∑n
j=1 βjδyj some yj ∈ X and βj ≥ 0

with
∑n
j=1 βj = 1. We assume without loss of generality that βj > 0 for all j. Since the resultant

map is affine, we get

r(µ) = z =

n∑
j=1

βjr(δyj ) =

n∑
j=1

βjyj .

This means we have

α1x1 + α2x2 = z =

n∑
j=1

βjyj .

Since X is a Choquet simplex, X̃ − X̃ is a vector lattice in the ordering induced by X̃, so the
decomposition lemma holds. Furthermore, for any w ∈ X̃ − X̃ we have w ≥ 0 if and only if
w ∈ X̃. This implies αixi ≥ 0 and βjyj ≥ 0, so from the lemma we obtain z′ij ∈ X̃ such that

αixi =
∑n
j=1 z

′
ij and βjyj = z′1j + z′2j . Using the definition of X̃ we may write z′ij = γijzij for

γij ≥ 0 and zij ∈ X. We then have

xi = α−1i

n∑
j=1

γijzij =

n∑
j=1

α−1i γijzij .

Since X ⊆ L−1(1) for some L ∈ E∗, we see that

1 = L(xi) =

n∑
j=1

α−1i γijL(zij) =

n∑
j=1

α−1i γij ,

implying that
∑n
j=1 α

−1
i γij = 1. This leads us to defining the discrete measures

µi =

n∑
j=1

α−1i γijδzij ,

which satisfy r(µi) = xi. By Corollary 4.3 this means µi ∼ δxi , and once again using Lemma 6.4
we see that

f̄(xi) ≥ µi(f) =

n∑
j=1

α−1i γijf(zij).

On the other hand we have yj = β−1j γ1jz1j+β−1j γ2jz2j , where we similarly have β−1j γ1j+β−1j γ2j =
1. Convexity of f then implies

f(yj) = f(β−1j γ1jz1j + β−1j γ2jz2j) ≤ β−1j γ1jf(z1j) + β−1j γ2jf(z2j).

Combining the estimates we finally see that

µ(f) =

n∑
j=1

βjδyj (f) =

n∑
j=1

βjf(yj) ≤
n∑
j=1

γ1jf(z1j) + γ2jf(z2j)

= α1

n∑
j=1

α−11 γ1jf(z1j) + α2

n∑
j=1

α−12 γ2jf(z2j) = α1µ1(f) + α2µ2(f)

≤ α1f̄(x1) + α2f̄(x2).
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Since µ was an arbitrary discrete measure with µ ∼ δz, we see that

f̄(α1x1 + α2x2) = f̄(z) = sup{µ(f) | µ ∼ δz, µ discrete} ≤ α1f̄(x1) + α2f̄(x2),

so f̄ is convex and hence affine.
2. =⇒ 3. Let µ ∈ Q1 and f ∈ C. Then f̄ is upper semicontinuous by Proposition 3.5 and

affine by hypothesis. Since r(µ) = x is equivalent to µ ∼ δx, we see by Lemma 6.5 that

f̄(x) = µ(f̄) = µ(f),

where we use maximality of µ for the last equality.
3. =⇒ 4. Let f, g ∈ C and let x ∈ X. By Lemma 4.7 there exists a maximal measure µ such

that µ � δx, which in particular means µ ∼ δx and hence r(µ) = x. Using the hypothesis twice we
see that

(f + g)(x) = µ(f + g) = µ(f) + µ(g) = f̄(x) + ḡ(x).

4. =⇒ 5. Let x0 ∈ X. Defining T ′ : C → R by f 7→ f̄(x0), we know from Proposition 3.5
that T ′ is positive homogenous, and it is additive by hypothesis. We may therefore extend T ′ to
T : C − C → R by T (f − g) = T ′(f)− T ′(g). It is both straightforward and uninteresting to verify
that T ′ being additive and positive homogenous ensures T being linear.

Using property 3. of Proposition 3.5, we see immediately that

|T (f − g)| = |f̄(x)− ḡ(x)| ≤ ‖f − g‖∞ ,

from which we deduce that T is bounded with ‖T‖∞ ≤ 1. As we have used several times before,
the subspace C − C is dense in C(X) by the lattice version of the Stone-Weierstrass theorem, so
we may extend T by continuity to a linear functional L ∈ C(X)∗ with ‖L‖∞ ≤ 1.

As per usual when we produce a measure, we want to invoke Riesz’ representation theorem. It
is obvious that L(1) = T (1) = 1̄(x0) = 1, so the measure would in fact be a probability measure.
We still need to argue that L is positive. We note that if C − C 3 g1 − g2 ≥ 0, we also have
L(g1 − g2) ≥ 0 since the upper envelope is monotone.

Now for an arbitrary f ∈ C(X) with f ≥ 0 it is not a priori obvious that f may be approximated
by non-negative elements of C−C. But for any ε > 0 we may approximate f with a strictly positive
function, say f + 1

N for sufficiently large N ∈ N. By the definition of the ∞−norm and since C −C
is dense, we may find strictly positive g1 − g2 ∈ C − C with ‖f + 1/N − (g1 − g2)‖∞ < ε, which by
the triangle inequality is sufficiently close to f . Thus f may indeed be approximated by positive
g1 − g2 for which L(g1 − g2) ≥ 0, and by continuity we infer L(f) ≥ 0.

Hence L is in fact a positive linear functional on C(X), for which we find ν ∈ M1(X) such
that L(f) =

∫
X
fdν for all f ∈ C(X). Then, for each f ∈ C, we have

ν(f) = L(f) = f̄(x0).

By Proposition 4.4 we see that

ν(f) = sup{µ(f) | µ ∼ δx0}.

Since µ � δx0 if and only if µ ∼ δx0 , any maximal λ with λ ∼ δx0 satisfies ν(f) ≥ λ(f). As this
holds for any f ∈ C, we see that ν � λ, which by maximality of λ implies ν = λ. Hence ν is the
unique maximal probability measure with ν ∼ δx0

, i.e., r(ν) = x0.
5. =⇒ 1. We know from Lemma 2.6 that the resultant map r : M1(X) → X is affine, and

therefore its restriction to Q1 also is. Furthermore, the existence of a maximal µ � δx implies that
it is surjective, and the hypothesis now yields that it is also injective. Hence we have an affine
bijection between Q1 and X, and from Lemma 5.14 we know that the former is a Choquet simplex.
By Lemma 5.9 this affine bijection will extend to an additive, order preserving bijection between
Q̃1 and X̃, carrying with it the property of being a lattice. Hence X is in fact a Choquet simplex,
and we conclude the proof.
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Since maximal measures are characterised by the property that µ(f) = µ(f) for each f ∈ C(X),
they are supported by the sets {x ∈ X | f(x) = f(x)}. The following proposition illuminates how
this is intimately connected to the extreme points of X:

Proposition 6.7. Let X be compact convex. Then Ext(X) =
⋂
f∈C(X){x ∈ X | f(x) = f(x)}.

Proof. Let x ∈ Ext(X). Then, by Proposition 2.8, the only measure representing x is δx. Further-
more, for any f ∈ C(X) we have

f(x) = sup{µ(f) | µ ∼ δx}

by Proposition 4.4. Since µ representing x and µ ∼ δx are equivalent, we see f(x) = f(x).
Conversely, assume f(x) = f(x) for every f ∈ C(X) and x = αy+ (1−α)z for some α ∈ (0, 1)

and y, z ∈ X. Then, for each f ∈ C, we have

f(x) ≤ αf(y) + (1− α)f(z) ≤ αf(y) + (1− α)f(z) ≤ f(x),

using concavity of f for the last inequality. Since f(x) = f(x), we must have equality in all of
the above. In particular this entails f(x) = αf(y) + (1− α)f(z) for every f ∈ C. Multiplying the
equation by −1 it also holds for every f ∈ −C, and by linearity this extends to all g ∈ C −C. Since
this set is uniformly dense in C(X) and the vector space operations are continuous, this identity
actually holds for every f ∈ C(X).

With this identity in hand we can easily see that x must be extreme in X. Indeed, if x 6= y,
we can apply Urysohn’s lemma to find a continuous f : X → [0, 1] with f(x) = 1 and f(y) = 0.
Using the identity we see that

1 = (1− α)f(z),

which is impossible since the right hand side is strictly smaller than 1.

We are now ready to prove an interesting consequence of the Choquet-Meyer theorem, which
is Choquet’s original uniqueness theorem for metrizable X. We begin with the following corollary:

Corollary 6.8. Let X be a Choquet simplex such that Ext(X) is Baire. Then for each x ∈ X
there exists a unique probability measure µ which represents x and is supported by Ext(X).

Proof. Let x0 ∈ X. By (the proof of) the Choquet-Bishop-De Leeuw theorem, there exists a
maximal probability measure µ representing x0 which is supported by every Baire set containing
Ext(X). Since Ext(X) is assumed Baire, this means in particular that µ is supported by Ext(X).

For uniqueness assume λ also represents x0 and λ(Ext(X)) = 1. By the above proposition we
have Ext(X) ⊆ {x ∈ X | f(x) = f(x)} for each f ∈ C(X), implying that

λ({x ∈ X | f(x) 6= f(x)}) = 0.

From this we may infer λ(f) = λ(f), which by Proposition 6.3 is equivalent to λ being maximal.
Then by the Choquet-Meyer theorem we have λ = µ.

Remark. It is worth noting that we also proved that if µ(Ext(X)) = 1 for a probability measure
µ, then µ is maximal.

Choquet’s uniqueness theorem is then simply a special case of the above:

Theorem 6.9 (Choquet). Let X be compact, convex and metrizable. Then X is a Choquet simplex
if and only if each x ∈ X is represented by a unique probability measure supported by the extreme
points of X.

Proof. Assume X is a Choquet simplex. Then the result follows from the above corollary, since
Ext(X) is Baire by Proposition 3.8. Conversely, assume for any x0 ∈ X there exists a unique
µ ∈ M1(X) with µ(Ext(X)) = 1 which represents x0. Let λ be a maximal probability measure
with λ ∼ δx0 . Then, once again appealing to the proof of the Choquet-Bishop-De Leeuw theorem,
λ(Ext(X)) = 1. Thus λ = µ, and we infer that X is a Choquet simplex by the Choquet-Meyer
theorem.
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6.4 Different notions of simplices

In the following example we describe an important class of Choquet simplices:

Example 6.10 (Bauer simplices). A Choquet simplex X is a Bauer simplex if Ext(X) is closed.
We have already seen in Proposition 5.13 that if K is compact Hausdorff, M1(K) is a Choquet
simplex. In Proposition 2.12 we proved that Ext(M1(K)) = {δx | x ∈ K}, and furthermore that
the embedding x 7→ δx is a homeomorphism. Therefore M1(K) is always a Bauer simplex.

Even more interestingly, the above example is in a certain sense universal. Indeed, if X is a
compact Bauer simplex, Ext(X) is closed and hence compact. Furthermore, the resultant map
r : M1(Ext(X)) → X is affine and continuous. By the reformulated Krein-Milman theorem, we
know that there exists a representing measure supported by Ext(X), so r is also surjective. Then,
by the remark following Corollary 6.8 and the Choquet-Meyer theorem, the representing measure
is also unique. Thus r is furthermore injective, so by the usual compact-Hausdorff argument, r is
an affine homeomorphism ofM1(Ext(X)) onto X. In particular, X may be identified withM1(K)
for K = Ext(X).

There exists a plethora of theoretical applications in other areas of analysis of compact convex
sets with closed extreme points, some of which are Bauer simplices. Examples of applications in-
clude representations of positive harmonic functions, completely monotonic functions and positive
definite functions on abelian groups. We refer the reader to chapter 14 in [6] for a survey.

We also want to supply the reader with another very intuitive characterisation of Choquet
simplices. For this we note that a+αX for a ∈ E and α > 0 is a homothetic image of X. We then
have the following:

Theorem 6.11. Let X be compact and convex. Then X is a Choquet simplex if and only if the
intersection of any two homothetic images of X is either empty, a point or once again a homothetic
image of X.

This characterisation is probably the one that is most easily visualised. It also emphasizes the
relation to self-similarity even more than the characterisation using intersections of cones discussed
in section 5. We refer the reader to Theorem 3.2 in [4] for one direction of the proof and further
references.

We conclude this section by proving that this new notion of a Choquet simplex coincides with
the usual notion in finite dimensional spaces. A common definition of an n-dimensional simplex is
that X is the convex hull of n+ 1 affinely independent points. We will need the following theorem
attributed to Minkowski, a proof of which can be found on p. 8 in [6]:

Theorem 6.12. Let X be a compact convex subset of a finite-dimensional LCS E. Then X =
co(Ext(X)).

The proof referenced above technically only applies to subsets of Rn, but by Theorem 3.7 in [11],
any finite-dimensional topological vector space is linearly homeomorphic to Rn for some n ∈ N.
Thus X is affinely homeomorphic to a compact convex subset of Rn. We turn to the mentioned
theorem:

Theorem 6.13. Let X be compact convex such that E = X̃ − X̃ has dimension n. Then X is the
convex hull of n affinely independent points if and only if X is a Choquet simplex.

Proof. Throughout the proof we assume that n ≥ 2, since n = 1 implies that X is just a point,
for which the result is trivial. Assume first that X is the convex hull of n affinely independent
points x1, . . . , xn. Since X is contained in a closed hyperplane missing the origin, say L−1(1) for
a suitable L ∈ E∗, the points are in fact also linearly independent. Indeed, if

∑n
i=1 λixi = 0, then∑n

i=1 λi = 0 by applying L to both sides of the equation. Thus λ1 = −
∑n
i=2 λi, from which we

deduce

0 =

n∑
i=1

λixi =

n∑
i=2

λixi −
n∑
i=2

λix1 =

n∑
i=2

λi(xi − x1).
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Affine independence then yields λi = 0 for all i ∈ {2, . . . , n}, which also implies λ1 = 0. Thus
x1, . . . , xn are indeed also linearly independent.

Since x1, . . . , xn are linearly independent and span X̃ − X̃ = E, they form a basis. We can
then define T : E → Rn by xi 7→ ei, where e1, . . . en is the canonical basis of Rn. Since T is a
linear isomorphism, it is in particular an affine bijection from X onto its image. Furthermore, by

construction of T , T̃ (X) consists of the elements of Rn which have non-negative coordinates. This

is obviously a convex cone with base T (X), and if y, y′ ∈ T̃ (X), it is easy to verify that taking the

maximum of each coordinate yields a least upper bound in the ordering induced by T̃ (X). Hence
T (X) is a Choquet simplex, and since T is an affine bijection, we appeal to Proposition 5.9 to
conclude that X is a Choquet simplex as well.

Conversely, assume that X is a Choquet simplex. By Minkowski’s theorem, X is the convex hull
of its extreme points. Then the extreme points span E, so we can find x1, . . . , xn ∈ Ext(X) which
are a basis for E. Since being linearly independent is stronger than being affinely independent,
X will be the convex hull of n affinely independent points if we can show that there are no more
extreme points.

To this end assume there is one more extreme point xn+1. Then all extreme points cannot
be linearly independent, i.e, there exist coefficients λi ∈ R such that

∑n+1
i=1 λixi = 0 and not all

coefficients are 0. By multiplying with −1 if need be, we may assume there exists a strictly positive
coefficient. We then partition the indices into those having negative and non-negative coefficients,
that is, let

P = {i ∈ {1, . . . n+ 1} | λi ≥ 0} and N = {i ∈ {1, . . . n+ 1} | λi < 0}.

Then λ :=
∑
i∈P λi > 0 and since X ⊆ L−1(1), we have

L

(
n+1∑
i=1

λixi

)
=

n+1∑
i=1

λi = 0,

which implies
∑
i∈N λi = −λ. We then define x =

∑
i∈P λ

−1λixi. This is a convex combination
of extreme points, as

1 = L(x) =
∑
i∈P

λ−1λi.

Since
∑
i∈P λixi +

∑
i∈N λixi = 0, we have

x = λ−1

(∑
i∈N
−λixi

)
.

This is also a convex combination as λ = −
∑
i∈N λi and −λi ≥ 0 when i ∈ N . Since all xi

are distinct, the two discrete measures
∑
i∈P λ

−1λiδxi and
∑
i∈N λ

−1(−λi)δxi are distinct and
represent x. As they both measure a subset of Ext(X) to 1, we may by the exact same argument
used for uniqueness in Corollary 6.8 deduce that they must be maximal. But this violates the
Choquet-Meyer theorem.
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7 Applications to ergodic theory

In this section we will apply the Choquet-Bishop-DeLeeuw and Choquet-Meyer theorems to the
study of ergodic measures. Compared to many other applications of Choquet theory, this one is
particularly interesting to us, since the set in question need not be metrizable and the extreme
points need not be closed. Therefore we need the full strength provided by the generality of the two
aforementioned theorems. Most results of this section can be found in chapter 12 of [8], although
we have preferred the use of Radon measures over that of Baire measures. Letting T (µ) denote the
image measure of µ under a measurable map T , we begin with a few definitions that are central
in ergodic theory:

Definition 7.1. Let (K,A) be a measureable space and let (Ti)i∈I : K → K be a family of
measurable maps. A measure µ on K is invariant if µ = Ti(µ) for all i ∈ I.

Invariant measures preserve, unsurprisingly, the measure of a set when taking preimages under
Ti. It is also useful to formalize the notion of the set itself being preserved, not just its size:

Definition 7.2. Let µ be a measure on (K,A). A set A ∈ A is invariant (mod µ) if µ(A4T−1i A) =
0 for all i ∈ I. Furthermore, let Aµ denote the set of sets which are invariant (mod µ).

Remark. Using the two set identities

A4B = Ac4Bc and

( ∞⋃
n=1

An

)
4

( ∞⋃
n=1

Bn

)
⊆
∞⋃
n=1

An4Bn

it is straightforward to prove that Aµ is a σ-algebra.

Next we define the notion of ergodic measures, a special type of invariant measures. There
are several equivalent definitions in the literature, and we will be working with the formulation
involving Aµ:

Definition 7.3. Let (K,A) be a measureable space and let (Ti)i∈I : K → K be a family of
measurable maps. An invariant measure µ is ergodic if µ(A) ∈ {0, 1} for all A ∈ Aµ.

In the following we will see that the ergodic measures are exactly the extreme points in the set
of invariant measures. Before we focus on a specific topological space, we need a couple of measure
theoretic lemmas. The first lemma relates the property of being invariant to a property of the
Radon-Nikodym derivative. While the proof is quite elegant, we omit it and refer the reader to
Lemma 12.1 in [8].

Lemma 7.4. Let µ and ν be measures on (K,A) such that ν is invariant and µ is absolutely
coontinuous with respect to ν. Futhermore, let f denote the Radon-Nikodym derivative of µ with
respect to ν. Then µ is invariant if and only if f = f ◦ Ti ν-a.e. for all i ∈ I.

The next lemma will help us prove that the ergodic measures are extreme points:

Lemma 7.5. Let (K,A) be a measureable space and let (Ti)i∈I : K → K be a family of measurable
maps. Let µ and ν be invariant finite measures on K which coincide on Aµ+ν . Then µ = ν.

Proof. Let µ and ν have Radon-Nikodym derivatives f and g with respect to µ+ν. We prove that
these are equal (µ+ ν)−a.e, from which the conclusion follows. We note for later use that since µ
and ν are finite, f, g ∈ L1(µ+ ν).

To be able to use the hypothesis, we first claim that f and g are Aµ+ν measurable. Indeed, for
r ∈ R let Ir = (∞, r), the collection of which generates B(R). Then

f−1(Ir)4T−1i (f−1(Ir)) ⊆ {x ∈ K | f(x) 6= f(Ti(x))},

since if x ∈ f−1(Ir) \ T−1i (f−1(Ir)) then f(x) < r while f(Ti(x)) ≥ r and vice versa. Since
both µ and ν are invariant, µ + ν is as well. Lemma 7.4 then implies that f = f ◦ Ti a.e., so
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f−1(Ir)4T−1(f−1(Ir) is contained in a µ + ν null set. As this is true for all i ∈ I, we see that
f−1(Ir) ∈ Aµ+ν . Interchanging f and g we see that they are both Aµ+ν measureable.

To finish the proof let A = {x ∈ K | f(x) > g(x)}. By the above we have A ∈ Aµ+ν , so
applying the hypothesis yields∫

A

fd(µ+ ν) = µ(A) = ν(A) =

∫
A

gd(µ+ ν),

from which we deduce that the non-negative function 1A(f − g) integrates to 0. But then it
must be 0 almost everywhere, i.e, (µ + ν)(A) = 0. Since the same line of reasoning applies to
B = {x ∈ K | g(x) > f(x)}, we conclude that f equals g (µ+ ν)-a.e.

We will now turn our attention to the more specific case where K is a compact Hausdorff
topological space and the measures in question are Radon. Let I(K) denote the set of invariant
Radon measures and I1(K) the set of invariant probability measures. The next proposition shows
that we are in the setting of Choquet theory:

Proposition 7.6. Let K be compact Hausdorff and let (Ti)i∈I : K → K be a family of continuous
maps which commute with respect to composition. Then the set of invariant probability measures
I1(K) is non-empty, compact and convex in the LCS E = C(K)∗ equipped with the weak* topology.

Proof. Since the property of being an invariant probability measure is preserved by convex combi-
nations, I1(K) is convex. For each i ∈ I define T ∗i :M1(K) →M1(K) by µ 7→ Ti(µ). We argue
that T ∗i is weak* continuous. In general, by the change of variables formula for image measures,
we have

(Ti(µ))(f) =

∫
K

fd(Ti(µ)) =

∫
T−1
i (K)

f ◦ Tidµ = µ(f ◦ Ti)

for any f ∈ C(K). Now let µα → µ and f ∈ C(K). Using continuity of Ti and the usual
characterisation of weak* convergence,

(T ∗i µ)(f) = (Ti(µ))(f) = µ(f ◦ Ti) = lim
α
µα(f ◦ Ti) = lim

α
(Ti(µα))(f) = lim

α
(T ∗i µα)(f),

from which we deduce that T ∗i is indeed continuous. Since

I1(K) = {µ ∈M1(K) | ∀i ∈ I : T ∗i (µ) = µ},

we see that the invariant probability measures are exactly the fixed points of (T ∗i )i∈I . As the set
of fixed points of a family of continuous maps is closed, we conlude that I1(K) is closed inM1(K)
and thus compact. It is not difficult to show that each T ∗i is also affine, so by the Markov-Kakutani
fixed point theorem (see Theorem V.20 on p. 152 in [10]), I1(K) 6= ∅.

In addition to being non-empty, compact and convex, I1(K) is also a Choquet simplex:

Proposition 7.7. Let K be compact Hausdorff and let (Ti)i∈I : K → K be a family of continuous
maps which commute with respect to composition. Then I1(K) is a Choquet simplex.

Proof. The proof mirrors the proof of Proposition 5.13. Of course I(K) is a convex cone with base
I1(K). We show that I(K) has the greatest lower bound property and appeal to Proposition 5.10.
Let µ, ν ∈ I(K) and let f and g denote the Radon-Nikodym derivatives with respect to µ + ν.
Defining h = min(f, g) and λ = h · (µ + ν), we claim that λ is the least upper bound of µ and
ν. We already saw that λ is Radon, and we furthermore claim it is invariant. Using invariance of
µ+ ν and applying Lemma 7.4, we see that f = f ◦ Ti and g = g ◦ Ti, forcing h = h ◦ Ti for each
i ∈ I. Applying the lemma once more we see that λ is invariant.

Since f ≥ h, we have

µ− λ = f · (µ+ ν)− h · (µ+ ν) = (f − h) · (µ+ ν),

that is, µ−λ has density with respect to µ+ ν. By the previous argument and since (f −h) ◦Ti =
f ◦ Ti − h ◦ Ti, we also have µ− λ ∈ I(K). Therefore λ ≤ µ in the ordering induced by I(K), and
similarly λ ≤ ν.

The fact that it is also the greatest lower bound follows from the same argument.
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We are now almost ready to apply the existence and uniqueness theorems established in earlier
sections. The only thing remaining is characterising Ext(I1(K)).

Proposition 7.8. Let K be compact Hausdorff and let (Ti)i∈I : K → K be a family of continuous
maps which commute with respect to composition. Then

E := {µ ∈ I1(K) | µ ergodic} = Ext(I1(K))

Proof. First assume µ 6∈ E . Then there exists some A ∈ Aµ such that 0 < µ(A) < 1. We decompose
µ to probability measures µ1 and µ2 supported by A and Ac, respectively: Let B ∈ B(K) and
define

µ1(B) = µ(A)−1µ(B ∩A), µ2(B) = µ(Ac)−1(B ∩Ac).
We then see that µ = µ(A)µ1 + (1 − µ(A))µ2 is a proper convex combination. Thus, if we argue
that µi ∈ I1(K), we may infer that µ is not extreme.

Since we know that µ1 is Radon, it suffices to show to it is also invariant. By invariance of µ
we see that µ(B∩A) = µ(T−1(B)∩T−1(A)), so we just need to show that µ(T−1(B)∩T−1(A)) =
µ(T−1(B) ∩A). As intersections distribute over symmetric differences, we see that(

T−1(B) ∩ T−1(A)
)
4
(
T−1(B) ∩A

)
= T−1(B) ∩ (T−1(A)4A).

Since A ∈ Aµ, this implies that the symmetric difference of the sets in question has measure 0.
Now, it is a general fact that sets whose symmetric difference measures to zero have the same
measure. Indeed, if we for sets C and D have µ(C4D) = 0, we obtain

µ(C ∪D) = µ(C4D) + µ(C ∩D) = µ(C ∩D).

As both C and D are squeezed in between C ∪ D and C ∩ D, we see that their measures must
coincide. Thus µ1 is invariant, and since A is invariant (mod µ) if and only if Ac is, the same
argument shows µ2 is invariant.

Now suppose µ is ergodic and µ = αµ1 + (1 − α)µ2 for α ∈ (0, 1) and µi ∈ I1(K). We claim
that µ and µi coincide on Aµ. Indeed, if A ∈ Aµ, µ(A) ∈ {0, 1}. Since Ext([0, 1]) = {0, 1}, we see
that

µ(A) = αµ1(A) + (1− α)µ2(A)

forces µ(A) = µ1(A) = µ2(A).
To finish the argument we note that if (µ + µ1)(A4T−1(A)) = 0, then µ(A4T−1(A)) = 0.

Thus Aµ+µ1
⊆ Aµ, on which µ and µ1 coincide. By Lemma 7.5 we conclude µ = µ1, and since the

same line of reasoning applies to µ and µ2, we see that µ ∈ Ext(I1(K)).

We are now ready to apply the two main theorems of the thesis:

Theorem 7.9. Let K be compact Hausdorff and let (Ti)i∈I : K → K be a family of commuting
continuous maps. Then I1(K) 6= ∅, and for each µ ∈ I1(K) there exists a m ∈ M1(I1(K)) such
that m is supported by every Baire set containing the ergodic measures and for each f ∈ C(K),

µ(f) =

∫
I1(K)

ν(f)dm(ν).

If, additionally, the ergodic measures form a Baire subset of I1(K), m is unique.

Proof. The preceding propositions establish exactly the conditions needed to apply the Choquet-
Bishop-De Leeuw and Choquet-Meyer theorems, which give the conclusion of the theorem by the
characterisation of Ext(I1(K)) as the ergodic measures. In particular, since the dual of C(K)∗ in
the weak* topology consists of the evaluation maps (see Theorem IV.20 in [10]), m representing µ
means that for every f ∈ C(K),

µ(f) = f̂(µ) =

∫
I1(K)

f̂(ν)dm(ν) =

∫
I1(K)

ν(f)dm(ν),

where f̂ denotes evaluation at f . For the uniqueness part we appeal to Corollary 6.8.
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The formulation of the above becomes even more elegant when K is also metrizable:

Theorem 7.10. Let K be compact and metrizable and let (Ti)i∈I : K → K be a family of
commuting continuous maps. Then I1(K) 6= ∅, and for each µ ∈ I1(K) there exists a unique
m ∈M1(I1(K)) such that m is supported by the ergodic measures and for each f ∈ C(K),

µ(f) =

∫
E
ν(f)dm(ν),

where E denotes the set of ergodic measures.

Proof. Just as in the proof of Lemma 3.6, Theorem 6.6 on p. 140 in [2] implies that C(K) is
separable. Furthermore, a Banach space is separable if and only if the closed unit ball of its dual is
metrizable in the weak* topology. For a proof of this theorem we refer the reader to Theorem 5.1
on p. 134 of the same reference. Thus the closed unit ball in C(K)∗ is metrizable, and therefore
the subset I1(K) is also metrizable.

Since the compact convex set in question is now also metrizable, Choquet’s existence and
uniqueness theorems (Theorems 3.9 and 6.9) apply, yielding the conclusion.

7.1 Concrete examples

The following example is originally due to Choquet and outlined on p. 77 in [8]:

Example 7.11. Invariant measures give rise to an easy construction of a Choquet simplex whose
extreme points are not closed. Let K = I × S1 where I is the unit interval and S1 is the unit
circle, realized as {z ∈ C | |z| = 1}. For notational ease, we will temporarily adopt the convention
that exp(·) = e2πi·. Furthermore let λ[0,1] be the Lebesgue measure on the unit interval and let
T : K → K be defined by (t, exp(s)) 7→ (t, exp(s+ t)).

Since I and S1 are both compact and metrizable, so is K. Furthermore, it is not very difficult
to see that T is continuous and bijective, so by the usual compact-Hausdorff argument, T is a
homeomorphism. The theorem above then states that there exist invariant measures, and to each
µ ∈ I1(K) there exists m ∈ M1(I1(K)) such that m is supported by the ergodic measures and
m represents µ. Since K is metrizable, m is unique. We argue that in this case Ext(I1(K)) is not
closed, which is quite unintuitive when comparing to finite-dimensional simplices. It also showcases
that Choquet’s theorem is an improvement over the reformulated Krein-Milman theorem.

We define probability measures µn on K by µn =
∑n−1
k=0 1/nδ(1/n,exp(k/n). Since T is a bijection

of the set {(1/n, exp(k/n)) | 0 ≤ k ≤ n−1} onto itself and T (δx) = δT (x), we see that µn is invariant
for every n ∈ N. To show that µn is ergodic, let A ∈ Aµn . Then, since µn(A4T−1(A)) = 0 and µn
is discrete, each (1/n, exp(k/n)) must be in either none or both of A and T−1(A). If none of them
are in A, µn(A) = 0. If one is in A, say for k0, we also have (1/n, exp(k0/n)) ∈ T−1(A). But then

T (1/n, exp(k0/n)) = (1/n, exp((k0 + 1)/n)) ∈ A ∩ T−1(A),

which in turn implies (1/n, exp((k0 + 2)/n) ∈ A ∩ T−1(A) and so forth. Therefore they must all
be in A ∩ T−1(A), that is, µn(A) = 1. We conclude µn is ergodic and hence extreme in I1(K).

We now claim µn → λ0 in the weak* topology where λ0 is the image measure on {0} × S1

defined by the map [0, 1] 3 t 7→ (0, exp(t)). Note that λ0 is Radon as it coincides with the Haar
measure on {0}×S1. We refer the reader to Chapter 11.1 in [3] for an exposition on Haar measures.
By the usual characterisation of weak* convergence, we let f ∈ C(K) and see that

|µn(f)− λ0(f)| =

∣∣∣∣∣
n−1∑
k=0

1

n
f(1/n, exp(k/n))−

∫
[0,1]

fdλ0

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

∫
[0,1/n]

f(1/n, exp(k/n))− f(0, exp(k/n+ t))dt

∣∣∣∣∣
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≤
n−1∑
k=0

∫
[0,1/n]

|f(1/n, exp(k/n))− f(0, exp(k/n+ t))|dt

≤
n−1∑
k=0

1

n
sup

t∈[0,1/n]
{|f(1/n, exp(k/n))− f(0, exp(k/n+ t))|}.

Since K is compact metrizable, f is uniformly continuous on K. Thus for large enough n ∈ N
and independent of k, the above supremums can be made arbitrarily small. We conclude µn → λ0
in the weak* topology.

It is then easy to see that λ0 is not extreme. Indeed, if we let A be some Borel subset with
λ0(A) = 1/2, we may define probability measures µ1(B) = 2λ0(B ∩ A) and µ2(B) = 2λ0(B ∩ Ac)
for B ∈ B({0} × S1). But T restricted to {0} × S1 is just the identity, so of course µ1 and µ2 are
invariant. Since µ1 6= λ0 and λ0 = 1/2(µ1 + µ2), λ0 is not extreme.

While the above example showcased the even for Choquet simplices the set of extreme points
need not have nice topological properties, the idea of non-closed extreme points has been taken
even further. We conclude the thesis by mentioning the Poulsen simplex, which is is an extremely
extraordinary simplex whose extreme points are actually dense. To fully appreciate its properties,
we recall that a face F of a compact convex set X is a generalized exmtreme point, that is, if x ∈ F
and x = αy + (1− α)z for α ∈ (0, 1) and y, z ∈ X, then y, z ∈ F .

Example 7.12. Let K = {0, 1}Z be the set of doubly-infinite binary sequences and let T : K → K
be the shift operator, that is, if x = (xk)∞k=−∞ ∈ K, T maps xk to xk+1. Then the set of invariant
probability measures, S = I1(K), is a realization of the Poulsen simplex. The Poulsen simplex
has the following remarkable properties:

• Up to affine homeomorphism, S is the unique metrizable simplex such that Ext(S) = S.

• Any metrizable simplex X is affinely homeomorphic to a face of S.

• If F1 and F2 are closed proper faces of S and ϕ : F1 → F2 is an affine homeomorphism, then
ϕ extends to an affine homeomorphism ϕ̄ of S onto itself.

The first and third property are contained in Theorem 2.3 in [5] while the second property and its
proof is Theorem 2.5 in the same reference. The Poulsen simplex was first constructed by Ebbe T.
Poulsen using `2, and we refer the reader to the original 1961 paper [9]. A proof of the fact that
I1(K) is a realization of the Poulsen simplex can be found on pages 618-619 in [4]. Theorem 3.9
in the same article states the fascinating fact that any compact metrizable simplex can be realized
as I1(K) for a compact metric space K and homeomorphism T : K → K, a theorem originally
due to T. Downarowicz.
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