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Abstract
The main interest of this thesis is the study of the Poisson boundary of a

group G and its applications. The concept, originally introduced by Furstenberg
in 1963, is based on the idea of extending the boundary representation of har-
monic functions from the classical Dirichlet problem to a general group-theoretic
setting. The Poisson boundary itself is an abstractly defined probability space,
on which any harmonic function on G can be represented (using the Poisson
transform, appropriately defined) by a boundary function on it. The Poisson
boundary is associated to a random walk on the group, and the construction is
done both in a topological and a measurable setting, where in the latter case
two explicit realisations are provided.

We then investigate conditions ensuring triviality of the Poisson boundary
and show that this can, in many cases, be characterised by means of vanishing
of the Shannon entropy, a criteria due to Kaimanovich and Vershik. Further,
we study applications of the Poisson boundary to analytic properties of the
group, such as amenability, and discuss a related conjecture by Furstenberg.
Finally, we tie in the notion of amenable actions, as defined by Zimmer. While
an amenable group always acts amenably on any G-space, it is an important
feature that any group acts amenably on its Poisson boundary. This is a result
of Zimmer, which we discuss.

As an additional treat, we mention very recent surprising applications of the
Furstenberg boundary (which we also introduce) to the settling of a number of
long-standing open problems regarding group C*-algebras.
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1 INTRODUCTION

1 Introduction

In 1963 Harry Furstenberg published his paper [10], wherein he introduced the Pois-
son boundary for semi-simple Lie groups. The purpose of doing so was to extend the
boundary representation of harmonic functions known from the Dirichlet problem to
a more general setup. In order to do so he also defined both harmonic functions on a
group and the Poisson transform, the latter which serves as the group theoretic ana-
logue of the Poisson integral from the classical case. In the years following [10], all
of the above ideas was extended to locally compact groups, and in 1973 Furstenberg
published [11], wherein he defined the so-called µ-boundaries of a group G, a class of
G-spaces extending the ideas behind the Poisson boundary. The µ-boundaries can
be obtained as quotients of the Poisson boundary, and will also allow a boundary
representation of some of the harmonic functions on the group, whereas only the
Poisson boundary allows a boundary representation of all harmonic functions on G.

The Poisson boundary itself is a compact G-space equipped associated to a ran-
dom walk on the group, a random walk which also serves as a crucial component in
the construction of the Poisson boundary. Here, the random walk is used to equip
the space of bounded, left uniformly continuous, harmonic functions on the group
with the structure of a commutative, unital C∗-algebra, and the Poisson boundary
is defined to be the spectrum of this C∗-algebra. This gives an isomorphism between
the harmonic functions on the group and the continuous functions on the Poisson
boundary, an isomorphism which can be realised as a Poisson transform for a appro-
priately defined probability measure on the Poisson boundary. The construction can
also be carried out for measurable harmonic functions on the group, where the mea-
surable setup also allows some more explicit constructions of the Poisson boundary.
We will in this thesis present the constructions of the so-called Stationary boundary
and Exit boundary.

An important question in the context of µ-boundaries is whether the Poisson
boundary is trivial or not. If G is an abelian group the Poisson boundary is trivial,
whenever the semigroup generated by the support of µ is all of G, as any µ-harmonic
function in this cases is constant due to the Choquet-Deny theorem [5]. This result
was later extended to the class of nilpotent groups as seen in [22]. For general groups,
the question of triviality of the Poisson boundaries is more difficult to answer, but in
1983 (see [16]) Vadim Kaimanovich and Anatoly Vershik provided a characterisation
of boundary triviality for a big class of measures, using the information theoretic
concept of entropy, originally introduced by Claude Shannon [26]. Indeed, they
proved that under the assumption of µ having finite entropy, then boundary triviality
is equivalent to entropy of the pair (G,µ) being zero. This is called the entropy
criteria for triviality of the Poisson boundary. In order to determine whether this
entropy is zero or not, we apply the group theoretic concept of growth to characterise
a class of groups G and Borel probability measures µ on G, for which the pair (G,µ)
has zero entropy. In particular, any group with subexponential growth and measure
with either finite support or finite first moment, will give zero entropy of the pair
(G,µ). An examination of the above results can be found in Section 4. The main
results therein are found in the above mentioned paper of Kaimanovich and Vershik,
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1 INTRODUCTION

but for auxiliary results and additional details the Master’s thesis of Caǧri Sert [25]
has been of much use for the author.

Another application of the Poisson boundary arises in the theory of amenable
groups and amenable actions. The first of these relates to a conjecture by Harry
Furstenberg from his 1973 paper [11]. In here, he proved that any non-amenable
group admits a probability measure with full support and non-trivial Poisson bound-
ary. He then conjectured that the converse implication was true, as well, or in other
words that G possesses a measure µ whose support is all of G and for which no
nontrivial µ-boundaries exists if and only if G is amenable. The second implication
was later proved independently by Joseph Rosenblatt in [23] and Kaimanovich and
Vershik [16], and we will in Section 5 provide a short survey of the proof provided
by Rosenblatt. A more detailed examination can be found in the author’s Master’s
project [21]. The second major result is that a group G acts amenably on its Poisson
boundary whenever the corresponding measure is absolutely continuous with respect
to the Haar measure on the group. Amenable actions have been defined in two differ-
ent ways, but we will rely on the concept introduced by Robert Zimmer in [28], the
paper in which he also proved the above statement in the case of a discrete group.
The general result was proved in [1]. However, in this thesis, we will present the
proof from Chapter 7 in [2].

Finally, we take a quick look at another type of boundary of a group, the so-called
G-boundaries, which was also introduced by Furstenberg. The G-boundary is defined
in a way that somewhat resembles the µ-boundaries, but without the probabilistic
nature of the µ-boundary. The class of G-boundaries also admits a universal object,
in the sense of before, an object which is called the Furstenberg boundary. Very
recently history, the Furstenberg boundary has found surprising applications in the
theory of group C∗-algebras, where it has been used by Matthew Kennedy and
Mehrdad Kalantar first in [19], and later in collaboration with Emmanuel Breuillard
and Narutaka Ozawa in [18]. The Furstenberg boundary was used to provide new
characterisations of several classes of groups, most importantly the C∗-simple groups
and the groups with the unique trace property. This characterisations also led to
the proof that any C∗-simple group has the unique trace property, an open question
for many years. We will not provide any details regarding the Furstenberg boundary
and its applications, but Section 6 will include a list of important definitions and
results. The sections is only meant as an appetiser for the reader with an interest
in the theory of C∗-algebras and thus, the reader will need deeper knowledge of
C∗-algebras to understand the statements provided therein.

Notation used in the thesis

• N0 : the positive integers 0, 1, 2, . . . .

• B(x, r) : the open ball around x with radius r > 0.

• ∂B(x, r) : the boundary of B(x, r).

• Cn(Ω) : complex-valued functions on Ω, which are n times continuously dif-
ferentiable.
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1.1 The classical setup 1 INTRODUCTION

• Cn(Ω,R) : real-valued functions on Ω, which are n times continuously differ-
entiable.

• G is always a group and the identity will be denoted by e.

• C(X) : the continuous functions from a Hausdorff topological space X to C.

• Cc(X) : the compactly supported, continuous functions from a locally compact,
Hausdorff topological space X to C.

• Lp(X,µ) : the p-integrable functions from a measure space (X,µ) to C.

• P(X) : the set of Borel probability measures on a measurable space X.

1.1 The classical setup

Before delving into the main topics of the thesis and the world of groups, we start
out with a short survey on classical harmonic analysis. Herein we prove a couple of
results that will act as a motivation for constructions and terminology in the abstract
case. Given a simply connected domain Ω ⊂ Rn and u ∈ C2(Ω), we say that u is
harmonic on Ω if

∆u =
∂2

∂x2
1

u+ · · ·+ ∂2

∂x2
n

u = 0.

Here ∆ is the usual Laplace operator, so in other words u ∈ C2(Ω) is harmonic if
and only if it belongs to the kernel of ∆. We will now turn our attention to the
two-dimensional case, i.e., Ω ⊂ R2 where we identify R2 with C, whenever beneficial.
In this context, it is worth noticing that the Cauchy-Riemann equations ensure that
all holomorphic functions are harmonic, but also that the class of harmonic functions
exceeds the one of holomorphic functions. The latter statement follows from the fact
that both the real and imaginary part of a holomorphic function is harmonic, but it
is holomorphic only in the case where the original function is constant.

This latter connection between real-valued harmonic functions and holomorphic
functions turns out to be rather strong, as seen in the following proposition:

Proposition 1.1. Any real-valued harmonic function u on Ω is the real part of some
holomorphic function F on Ω.

Proof. It is well-known fact from classical two-dimensional analysis that the identity
∂2

∂xu = − ∂2

∂yu gives rise to a function v : Ω→ R such that

∂

∂x
v = − ∂

∂y
u and

∂

∂y
v =

∂

∂x
u.

From here we can consider the function F : Ω → C given by F = u + iv, which is
holomorphic due to the above identities, and clearly Re(F ) = u.

Such harmonic functions have a variety of interesting properties, but there are two
properties of certain appeal for our journey onwards. We start out by considering a
real-valued harmonic functions f on B(0, 1) and later extend the results to complex-
valued case.
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1.1 The classical setup 1 INTRODUCTION

1. The mean value property: For any x ∈ B(0, 1) and r > 0 such that
B(x, r) ⊂ B(0, 1), the following holds

f(x) =

∫
∂B(x,r)

f(z) dσr(z).

Here σr is the normalised Lebesgue measure on ∂B(x, r).

2. Boundary representation: There exists a unique f̂ ∈ C(∂B(0, 1)), such
that

f(reiθ) =

∫
∂B(0,1)

P (r, θ − t)f̂(t) dσ(t),

for all r ∈ [0, 1) and θ ∈ [−π, π], where σ is the Lebesgue measure on ∂B(0, 1).
Here P is the Poisson kernel, which we will describe in detail later.

The above properties will be our motivation for the group theoretic approach to
harmonic functions. The mean value property will give rise to the very definition
of harmonic functions, while the boundary representation will inspire the study of
boundaries for probability measures on a group. The concrete translations will be
saved for the introductory parts of Section 2 and 3, respectively.

Finally, we finish this section by going through the proofs of the above claims.
Let us start out with the mean value property, which also holds true in more general
cases, i.e., when the domain need not be the unit disc.

Theorem 1.2 (The mean-value property). Let f be a real-valued harmonic function
on a simply connected domain Ω ⊂ R2. For any open ball B(x, r) such that B(x, r)
is contained in Ω, we have the integral representation

f(x) =

∫
∂B(x,r)

f(z) dσr(z) =

∫
∂B(0,r)

f(x+ y) dσr(y).

Proof. The equality between the integrals is due to translation invariance of the
Lebesgue measure, so let us focus on the equality between f(x) and the latter integral.
For this, let R = sup{r ≥ 0 | B(x, r) ⊂ Ω} and consider the map ϕ : [0,∞) → R,
defined by

ϕ(r) =

∫
∂B(0,1)

f(x+ ry) dσ(y), r > 0,

where σ denotes the Lebesgue measure on ∂B(0, 1). Then ϕ is continuous on [0, R]
and differentiable in (0, R) with

ϕ′(r) =

∫
∂B(0,1)

∇f(x+ ry) · y dσ(y), 0 < r < R.

From here on, we can apply Green’s formula to obtain the equality

ϕ′(r) =

∫
∂B(0,1)

∇f(x+ ry) · y dσ(y) =

∫
B(x,r)

∆f(z) dz = 0,
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1.1 The classical setup 1 INTRODUCTION

for all r ∈ (0, R), since ∆f = 0 by assumption. With a derivative equal to zero, we
conclude that ϕ is constant, so by continuity of f we obtain

f(x) = ϕ(0) = ϕ(r) =

∫
∂B(0,r)

f(x+ y) dσr(y),

which was the desired result.

With the mean value property settled, we turn to the boundary representation,
for which we start out by considering harmonic functions on an area strictly larger
than B(0, 1). Let u : B(0, R) → R be a harmonic function, for some R > 1, and let
F : B(0, R)→ C be the associated holomorphic function, in the sense of Proposition
1.1. This allows us to express F in terms of its Taylor series, i.e.,

F (z) =

∞∑
n=0

cnz
n, |z| < R. (1)

As u = Re(F ), we know that u = (F + F )/2 and hence

u(reiθ) =
1

2

( ∞∑
n=0

ckr
keikθ +

∞∑
k=0

ckr
ke−ikθ

)
=

∞∑
k=−∞

akr
|k|eikθ,

whenever r < R and −π ≤ θ ≤ π. Taking a closer look at the coefficients above we
notice that a0 = Re(c0), ak = ck/2 for k > 0 and ak = c−k/2 for k < 0. In particular,

u(eiθ) =

∞∑
k=−∞

ake
ikθ, θ ∈ [−π, π],

and so the ak’s must be the Fourier coefficients for the map θ 7→ u(eiθ), i.e.,

ak =
1

2π

∫ π

−π
u(eit)e−ikt dt.

As the convergence in (1) is uniform on compact subsets of B(0, R), we can inter-
change the sum and the integral to obtain

u(reiθ) =
1

2π

∫ π

−π
u(eit)

( ∞∑
n=−∞

r|k|eik(θ−t)
)

dt, θ ∈ [−π, π], 0 ≤ r < R.

The infinite series appearing in this latter integral will be uniformly convergent for
r ∈ [0, 1), with limit

∞∑
n=−∞

r|k|eik(θ−t) =
1− r2

1 + r2 − 2r cos(θ − t)
=

1− r2

|1− rei(θ−t)|2
.

To ease notation further on, we define P : [0, 1)× [−π, π]→ R by

P (r, t) =
1− r2

|1− reit|2
,
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1.1 The classical setup 1 INTRODUCTION

such that the harmonic function u can be expressed as

u(reiθ) =
1

2π

∫ π

−π
P (r, θ − t) · u(eit) dt, (2)

for r ∈ [0, 1) and θ ∈ [−π, π], a formula that will serve as inspiration for the general
group theoretic definition. Note by the way that the above integral can be viewed as
the convolution of t 7→ u(eit) and P (r, ·), when considered as integrable functions on
[−π, π] equipped with the normalised Lebesgue measure. If we let f denote the map
t 7→ u(eit), we say that u is the Poisson integral of f and denote it by u = P (f).
Notice finally that even though we only considered real-valued functions so far, the
results also apply to complex-valued harmonic functions through linearity of the
integral. From here on the harmonic functions will be complex-valued.

In order to recognise the Fourier series above, the construction of this Poisson
integral relies heavily on R being strictly greater than 1, but we can use this idea to
obtain a similar result in the case, when R = 1. This is the solution of the Dirichlet
problem for the unit disc in R2.

Theorem 1.3. Let u be a harmonic function on B(0, 1) satisfying

sup
0≤r<1

∫ π

−π
|u(reit)|p dt <∞,

for some p > 1. Then there is a function f ∈ Lp([−π, π]) such that

u(reiθ) =
1

2π

∫ π

−π
P (r, θ − t)f(t) dt, r < 1, θ ∈ [−π, π].

In other words, u = P (f).

Proof. In order to use the original construction in this case of R = 1, let (rn) be an
increasing sequence in [0, 1) converging to 1. Let furthermore (fn) be a sequence in
Lp([−π, π]) given by

fn(t) = u(rne
it), t ∈ [−π, π]

By hypothesis on u, the sequence (fn)n≥1 is bounded in Lp([−π, π]), which we iden-
tify with Lq([−π, π])∗, where q is the dual exponent of p. As the closed balls
in this dual space are weak∗-compact, there is a subnet (fnα)α∈A converging to
f ∈ Lq([−π, π])∗ in the weak∗-topology, that is∫

g(t)fnα(t) dt→
∫
g(t)f(t) dt,

for all g ∈ Lq([−π, π]), and in particular for t 7→ P (r, θ − t), which is a continuous
map on a compact interval, whenever r < 1.

Next up, we notice that for each n ≥ 1, the map z 7→ u(rnz) is harmonic on
B(0, r−1

n ). By our choice of (rn)n≥1, the numbers r−1
n are all strictly greater than 1,

so by the previous discussion

u(rnre
iθ) =

1

2π

∫ π

−π
P (r, θ − t)fn(t) dt,

6



1.1 The classical setup 1 INTRODUCTION

for r < 1 and θ ∈ [−π, π]. Combining this with the weak∗-convergence, we get

u(reiθ) =
1

2π

∫ π

−π
P (r, θ − t)f(t) dt, r < 1, θ ∈ [−π, π],

as we had set out to prove.

This result can also be extended to the case p = ∞, or, in other words, where
supz∈B(0,1) |u(z)| < ∞. To see this, we identify L∞([−π, π]) with the dual of
L1([−π, π]) and repeat the proof above. The case when r = 1 does cause some
problems though, since L1([−π, π]) can not be identified with the dual of any such
Lp-space. However, we can embed L1([−π, π]) into the regular bounded Borel mea-
sures on [−π, π], which can be identified with the dual of C([−π, π]). Repeating the
previous proof once more in this new setup, will then give us the following corollary:

Corollary 1.4. Let u be a harmonic function on B(0, 1) such that

sup
0≤r<1

∫ π

−π
|u(reit)| dt <∞.

Then there is a bounded regular Borel measure on µ on [−π, π] such that,

u(reiθ) =
1

2π

∫ π

−π
P (r, θ − t) dµ(t).

We will let P (µ) denote this function and call it the Poisson integral of µ.

Through these results we have seen that for most harmonic functions on B(0, 1),
we can associate either some Lp-function or a Borel measure via the Poisson integral.
What we will see now is that this association also works the other way around.

Theorem 1.5. Let f ∈ Lp([−π, π]) for 1 ≤ p ≤ ∞, and let u be the Poisson integral
of f , i.e.,

ur(θ) := u(reiθ) =
1

2π

∫ π

−π
P (r, θ − t)f(t) dt, r < 1,−π ≤ θ ≤ π.

Then u is harmonic on B(0, 1), and sup0≤r<1 ‖ur‖p ≤ ‖f‖p.

Proof. Assume first that f is real-valued and let f(t) =
∑∞

k=−∞ ake
ikt, t ∈ [−π, π],

be the Fourier series of f . By arguments seen earlier, we have

u(reiθ) =

∞∑
k=−∞

akr
|k|eikθ, r < 1,−π ≤ θ ≤ π.

By the assumption of f being real-valued, we get a−k = ak, for all k ∈ Z, and hence

u(reiθ) =
∞∑

k=−∞
akr
|k|eikθ = a0 +

∞∑
k=1

rk(ake
ikθ + a−ke

−ikθ)

= a0 +

∞∑
k=1

rk Re(ake
ikθ) = Re

(
a0 +

∑
k=1

ak(re
iθ)k
)
.
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1.1 The classical setup 1 INTRODUCTION

This is the real part of a holomorphic function on B(0, 1), so u is harmonic on B(0, 1).
To obtain the inequality of the norms, one should notice that for r < 1, the integral

1

2π

∫ π

−π
|P (r, θ − t)|dt =

1

2π

∫ π

−π
P (r, θ − t) dt =

∞∑
k=−∞

r|k|
1

2π

∫ π

−π
eikt dt,

equals 1, using classical theory of Fourier series to see that the one, nonzero term in
the series corresponds to k = 0. To finish this part, we notice that ur can be written
as the convolution of P (r, ·) and f , and thus

‖ur‖p ≤ ‖P (r, ·)‖1 · ‖f‖p = ‖f‖p

for 1 ≤ p ≤ ∞. This latter fact can be found in Appendix A, and is generally
known as Young’s inequality for convolutions. For the general case, where f is
complex-valued, we can handle the real and imaginary parts individually and reach
the conclusion by linearity.

This result can also be extended to Borel measures on [−π, π], i.e., the Poisson
integral of such a measure is a harmonic function on B(0, 1). By identifying the
unit sphere ∂B(0, 1) as a quotient of [−π, π], we obtain a one-to-one correspondence
between bounded harmonic functions on B(0, 1) and bounded functions on ∂B(0, 1).
With f ∈ L∞(∂B(0, 1)) and u = P (f), we will in some sense view f as a boundary
description of the behaviour of u. This connection becomes even more clear, as

u(reit)→ f(t), as r →∞,

for almost every t ∈ [−π, π]. This result can be found as Theorem 11.23 in [24].
With this in mind, we can turn our attention back to Theorem 1.5 in the case of
p =∞ and realise that ‖f‖∞ = ‖P (f)‖∞, thus giving us an isometric identification.
For a final remark of this section, let us view a harmonic function f and its boundary
description as one function f̃ , i.e., given f ∈ L∞(∂B(0, 1)), we define f̃ : D → C by

f̃(reit) =

{
f(reit), r = 1
P (f)(reit), r < 1

The integral representation from before can then be rewritten as

f̃(reit) =
1

2π

∫ π

−π
P (r, t− θ)f̃(θ) dθ =

∫
∂B(0,1)

P (r, t− θ)f̃(θ) dσ(θ).

Note finally that since P (0, t) = 1, for all t ∈ [−π, π], it is clear that these two
integral representations coincide, whenever f is a harmonic function on a simply
connected domain Ω which contains the closed unit ball.
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2 HARMONIC FUNCTIONS

2 Harmonic functions

The purpose of this first section is to define the group theoretic notion of a harmonic
function, and also develop a series of tools needed in the construction of the bound-
aries to come. We will follow the first chapter of [2], and all results will be found in
there unless otherwise mentioned.

Let G be a locally compact group with countable basis. The group G will be
equipped with a right Haar measure λ. We will also let ∆ denote the modular
function corresponding to λ, i.e., λ(xA) = ∆(x)λ(A), for all Borel sets A ⊂ G and
x ∈ G. For more details on the Haar measure and the modular function, the reader
is referred to the first part of Appendix A. We will also use the notion of convolutions
from time to time, for which the reader may read the second part of Appendix A.

Definition 2.1. Let µ be a Borel probability measure on G be given. A µ-harmonic
function on G is a function f : G→ C such that

f(g) =

∫
G
f(gx) dµ(x), for all g ∈ G. (3)

The space of bounded µ-harmonic functions on G will be denoted by H∞(G,µ). In
order for (3) to make sense, we implicitly require each translate x−1f , x ∈ G, given
by g 7→ f(xg), to be an element of L1(G,µ).

We will also let H∞luc(G,µ) denote the space of left uniformly continuous functions
in H∞(G,µ), where left uniform continuity of a function f : G → C is defined as
follows. For every ε > 0, there exists an open neighbourhood U of the identity in G,
such that for all u ∈ U ,

sup
g∈G
|f(ug)− f(g)| < ε.

Note that left uniformly continuity in particular implies continuity.
In order to describe µ-harmonic functions in a different way, we introduce the

following notation.

Definition 2.2. For a Borel measure µ on G and f : G → C for which the integral
below makes sense, we define f ? µ ∈ L∞(G) by

(f ? µ)(g) =

∫
f(gx) dµ(x), for all g ∈ G.

In this way f ? µ = f ∗ µ̃, where µ̃ denotes the Borel probability measure on
G, defined as µ̃(A) = µ(A−1) for A ⊂ G Borel, and furthermore, f : G → C is
µ-harmonic if and only if f = f ? µ. It is also not difficult to see that ‖f ? µ‖∞ ≤
‖µ‖ · ‖f‖∞, and similarly, if f is in L1(G,λ), then ‖f ? µ‖1 ≤ ‖µ‖ · ‖f‖1.

2.1 Motivation

In order to understand the group theoretic description of harmonic functions, let us
consider the group

G =

{(
α β

β α

) ∣∣∣∣ α, β ∈ C, |α|2 − |β|2 = 1

}
.
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In resemblance with the usual Möbius transformations on the Riemann sphere, we
will identify each g ∈ G with a holomorphic bijection of the complex plane onto
itself. The identification goes as follows. The matrix

g =

(
α β

β α

)
∈ G,

is identified with holomorphic map g(z) = (αz + β)/(βz + α), z ∈ C. This gives
rise to an action of G on C, which furthermore preserves both B(0, 1) and ∂B(0, 1)
individually. We now investigate how this group action can be used to describe the
mean value property from the classical setup. Let f : B(0, 1) → C be a harmonic
function and r < 1 be given. The first thing to notice is that every z ∈ B(0, 1) can
be written as g(0), for some g ∈ G. For example, one could pick β = λz and α = λ,
with λ = (

√
1− |z|2)−1.

Through this identification, we define f : G → C by f(g) = f(g(0)) for g ∈ G.
From here on, we will once more let σr denote the normalised Lebesgue measure on
∂B(0, r) and σr denote the lift of σr to G using the identification above. In other
words

σr(B) = σr({g(0) ∈ ∂B(0, r) | g ∈ B})
for any measurable B ⊂ G. The mean-value property of f applied at zero can then
be expressed as follows

f(0) =

∫
∂B(0,r)

f(y) dσr(y) =

∫
G
f(h) dσr(h).

This is not the exact description we are looking for, but let us look at the composition
f ◦ g, for some g ∈ G. As the composition of holomorphic functions is holomorphic
itself, we can apply Proposition 1.1 to conclude that f ◦g is also harmonic on B(0, 1).
As this holds true for all g ∈ G, we obtain

f(g) = f(g(0)) =

∫
∂B(0,r)

f(g(y)) dσr(y) =

∫
G
f(gh) dσr(h),

and thus, f is σr-harmonic, whenever f is harmonic on B(0, 1).

2.2 Basic properties

In the classical case we assumed the harmonic functions to be C2 and thus in par-
ticular, continuous. We did not make any such assumptions in the group theoretic
definition, but as the following two propositions show, continuity occurs rather often.

Proposition 2.3. Let µ be a Borel probability measure on G. If µ is absolutely
continuous with respect to λ, then f ? µ is right uniformly continuous (and hence
continuous), whenever f is bounded.

Proof. By analogy with the definition of left uniform continuity, we say that a func-
tion ϕ : G→ C is right uniformly continuous, if for every ε > 0 there exists an open
neighbourhood U of the identity e of G, such that

sup
g∈G
|ϕ(gt)− ϕ(g)| < ε, t ∈ U.

10
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Let ϕ ∈ L1(G,λ) be the density of µ with respect to λ, let K be a compact neigh-
bourhood of the identity and let ε > 0 be given. Then for g ∈ G, t ∈ K,

|(f ? µ)(gt)− (f ? µ)(g)| =
∣∣∣∣ ∫

G
f(gth)ϕ(h) dλ(h)−

∫
G
f(gh)ϕ(h) dλ(h)

∣∣∣∣
=

∣∣∣∣ ∫
G
f(gh)ϕ(t−1h)∆(t)−1 dλ(h)−

∫
G
f(gh)ϕ(h) dλ(h)

∣∣∣∣
≤ ‖f‖∞

∫
G
|ϕ(t−1h)∆(t)−1 − ϕ(h)| dλ(h).

These calculations show that it suffices to prove that the final integral above can be
made arbitrarily small. For this, pick ψ ∈ Cc(G) such that

‖ϕ− ψ‖1 < ε/(3‖f‖∞).

By double use of the triangle inequality, we obtain∫
G
|ϕ(t−1h)∆(t)−1 − ϕ(h)|dλ(h) ≤ 2

3‖f‖∞
+

∫
G
|ψ(t−1h)∆(t)−1 − ψ(h)|dλ(h).

The latter integrand will, for all t ∈ K, vanish outside some compact set, and hence
it suffices to make the integrand small in a uniform manner on this compact set.
First of, we insert yet another auxiliary term, and estimate for t ∈ K,h ∈ G,

|ψ(t−1h)∆(t)−1 − ψ(t)| ≤ |ψ(t−1h)∆(t)−1 − ψ(h)∆(t)|+ |ψ(h)∆(t)−1 − ψ(h)|
≤ ∆(t)−1|ψ(t−1h)− ψ(h)|+ ‖ψ‖∞ · |∆(t)−1 − 1|.

Looking at the first term in the sum above, we notice that continuity of ∆ gives
us an upper bound for ∆(t)−1. Furthermore any compactly supported continuous
function is uniformly continuous, so we can make this term arbitrarily small. For
the second term, we recall that ∆(e) = 1 and hence |∆(t)−1 − 1| → 0, as t tends to
e ∈ G. Combining these considerations, we can pick an open neighbourhood U of
e ∈ G, such that

sup
g∈G
|(f ? µ)(gt)− (f ? µ)(g)| < ε, t ∈ U,

and thus conclude that f ? µ is right uniformly continuous.

We should note that if f : G → C is µ-harmonic for some absolutely continuous
measure µ, then f must be right uniformly continuous by the above proposition, as
f = f ?µ. It turns out that this fact holds true more generally, where we can weaken
the assumption on µ, to the so-called spread-out measures. A Borel probability
measure µ on G is said to be spread-out if there exists some positive integer p such
that the measures µ∗p and λ are not mutually singular.

Proposition 2.4. Let µ be a spread-out Borel probability measure on G. Then
any bounded µ-harmonic function on G is right uniformly continuous (and hence
continuous).

11
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Proof. Let p > 1 be such that µ∗p and λ are not mutually singular. For any n ≥ 1,
we let µ∗np = αn · λ+ βn, with αn ∈ L1(G,λ), be the Lebesgue decomposition. The
choice of p ensures that none of the αn’s are constantly zero. By properties of the
convolution of measures, the total variation of βn tends to zero as n goes to infinity.
Thus, for any bounded µ-harmonic function f , we have

‖f − f ? (αn · λ)‖∞ = ‖f ? βn‖∞ ≤ ‖f‖∞‖βn‖

As the latter term above tends to zero, when n tends to infinitity we conclude that the
same is true for the first term above, and since uniform limits of continuous functions
are continuous, the above estimates conclude the proof. The uniform convergence
also implies that f is right uniformly continuous.

2.3 Random walks

One of the main tools used in this thesis is that of a random walk on a group G.
The reader may be familiar with this concept from classical probability theory, and
will meet no surprises in the translation into the group theoretic version. Given a
Borel probability measure µ on G, we consider the probability space (Ω,F ,P), where
Ω = GN0 and F ,P are the product σ-algebra and product measure corresponding
to the Borel sets in G and µ, respectively. If we let (Xn)n≥0 denote the coordinate
projections from Ω to G, we obtain a sequence of independent random variables
with common distribution µ. With these projections we define the right random walk
corresponding to µ as the sequence (Rn)n≥0, where R0 ≡ e and Rn = X0X1 · · ·Xn−1,
for n ≥ 1.

In the above construction we defined R0 to be constantly equal to e, but this
concept can easily be generalised. If now π ∈ P(G) is some Borel probability measure
on G, we could consider R0 as a random variable independent of each Xn and with
distribution π, i.e., R0(P) = π. This would allow us to construct the right random
walk associated to µ with initial distribution π denoted by (Rπn)n≥0, given as

Rπ0 = R0, Rn = R0X0X1 · · ·Xn−1, n ≥ 1.

In this way the original random walk (Rn)n≥0 was simply the random walk with
initial distribution δe. Note also that the random walk with initial law δg, g ∈ G

can be described as (R
δg
n )n≥0 = (gRn)n≥0. We now turn to the connection between

random walks and harmonic functions, where the theory of martingales plays a crucial
role. For more information on martingales, see Chapter 7 in [17].

Proposition 2.5. Let f be a bounded µ-harmonic function on G and (Rπn)n≥0 be
the right random walk associated to µ with initial law π, for some π ∈ P(G). Then
(f(Rπn))n≥0 is a bounded martingale with respect to the filtration (Fn)n≥0, where
F0 = σ(R0) and Fn = σ(R0, X0, . . . , Xn−1), n ≥ 1.

Proof. That the process (f(Rπn))n≥0 is bounded follows from the boundedness of f ,
so let us focus on showing that it is indeed a martingale. For this, let n ≥ 1 be given

12
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along with Y ∈ {R0, X0, . . . , Xn−1} and a Borel subset of B ⊂ C. We need to show
that ∫

Ω
1f−1(B)(Y )f(Rπn+1) dP =

∫
Ω

1f−1(B)(Y )f(Rπn) dP.

For this, we apply the abstract change of variable formula along with the indepen-
dence of Xn from Rπn and Y , respectively. Then∫

Ω
1f−1(B)(Y )f(RπnXn) dP =

∫
Ω

1f−1(B)(Y )

∫
G
f(Rπn · g) dXn(P)(g) dP

=

∫
Ω

1f−1(B)(Y )

∫
G
f(Rπn · g) dµ(g) dP

=

∫
Ω

1f−1(B)(Y )f(Rπn) dP,

which is the desired result.

By the martingale convergence theorem and the above proposition, we obtain an
almost sure limit of the process (f(Rπn))n≥0, regardless of the initial distribution. We
will use these limits to define a map Zf : G→ L∞(Ω,P) by

Zf (g) = lim
n→∞

f(gRn), g ∈ G,

which also gives us f(g) = E(Zf (g)). Here E(Zf (g)) denotes the expectation of
Zf (g) with respect to P, i.e., E(Zf (g)) =

∫
Ω Zf (g)(ω) dP(ω).

If we let T denote the shift on Ω, i.e., T (ω0, ω1, ω2, . . . ) = (ω1, ω2, ω3, . . . ), or
equivalently, T (ω) = (X1, X2, . . . )(ω), ω ∈ Ω, then for g ∈ G,

Zf (g)(ω) = lim
n→∞

f(gRn)(ω) = lim
n→∞

f(gX0(ω)Rn(T (ω))),

and hence Zf (g) = Zf (gX0) ◦ T P-almost surely. Now, this type of invariance will
be central in the following, so we let

I∞ =
{
Z : G→ L∞(Ω,P) | Z is bounded and Z(g) = Z(gX0) ◦ T P-a.s.

}
Combining the fact that f(g) = E(Zf (g)) for g ∈ G, with the definition of Zf , we
see that the map f 7→ Zf is an isometry from H∞(G,µ) to I∞, when both spaces
are equipped with the supremum norm. The relation between H∞(G,µ) and I∞

becomes even more clear with the following result.

Proposition 2.6. For any Z ∈ I∞, we obtain a bounded µ-harmonic function f on
G by setting f(g) = E(Z(g)), for g ∈ G.

Proof. The proof relies on the i.i.d. nature of the sequence of projections (Xn)n≥0,
which tells us that (X1, X2, . . . ) has distribution P as well. From here on it is once
again a matter of applying the abstract change of variable formula along with certain

13



2.3 Random walks 2 HARMONIC FUNCTIONS

independence properties. Namely, for any g ∈ G,

f(g) =

∫
Ω
Z(g)(ω) dP(ω) =

∫
Ω
Z(gX0(ω))(T (ω)) dP(ω)

=

∫
G

∫
Ω
Z(gx)(ω) d(X1, X2, . . . )(P)(ω) dX0(P)(x)

=

∫
G

∫
Ω
Z(gx)(ω) dP(ω) dµ(x)

=

∫
G
E(Z(gx)) dµ(x) =

∫
G
f(gx) dµ(x).

In other words, the function f is µ-harmonic.

If we, in addition, assume left uniformly continuity of f , then Zf is left uniformly
continuous, as well, and this also holds true the other way around. Here left uniform
continuity of a map Z : G → L∞(Ω,P) is to be interpreted naturally as follows.
Given ε > 0 there exists an open neighbourhood U of the identity in G, such that

sup
g∈G
‖Z(ug)− Z(g)‖∞ < ε

for any u ∈ U . In other wordsH∞luc(G,µ) can be identified with the left uniformly con-
tinuous maps in I∞, which we will denote by I∞luc. This identification of µ-harmonic
functions will become important later on, when we introduce the boundary the-
ory. Another application of this approach by random walks arises when we consider
abelian or to a greater extend, nilpotent groups. We will only prove the proposition
below for abelian groups, while a proof for the nilpotent case can be found in [22].

Proposition 2.7 ([27]). Let G be an abelian group, and let µ be a Borel probability
measure on G. If the semigroup generated by the support of µ is all of G, then every
function f ∈ H∞luc(G,µ) is constant.

Proof. With the notation introduced above, we have Zf (g) = limn→∞ f(g+Rn), for
g ∈ G. With the filtration (Fn)n≥0 as earlier, we obtain

E(Zf (g) | Fn) = lim
m→∞

E(f(g +Rm) | Fn) = f(g +Rn)

for all n ≥ 1. Since G is abelian, we can permute the ordering of the terms in Rn, and
thus Zf (g) is invariant under finite permutation of (Xn)n≥0. By the Hewitt-Savage
0-1 law (see Theorem B.3), we conclude that Zf (g) is constant P-a.s. and hence for
all g ∈ G,

Zf (g) = E(E(Zf (g) | Fn)) = E(f(g +Rn)) = f(g) P- a. s.,

where the last equality follows from µ-harmonicity of f . From here on, we conclude
that for all g ∈ G,

f(g +X0) = f(g +R1) = E(Zf (g) | F1) = Zf (g) = f(g) P- a. s.

As X0 has distribution µ, we have f(g + h) = f(g) for µ-a.e h ∈ G and g ∈ G. By
continuity of f , we also have f(g + h) = f(g) for all h ∈ supp(µ) and g ∈ G, so by
assumption on µ, the function f is constant.
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The assumption on µ in the above proposition will appear many times later in
the thesis, and the strengt of this property in combination with harmonic functions
can be seen in this above proof.

2.4 Different degrees of harmonicity

In the study of measurable functions on measure spaces it is common not to distin-
guish between functions that only differ on a null-set, and for this reason we would
like to extend our definition of harmonicity to equivalence classes of functions. To
do this, we introduce the Poisson transform Pµ associated to some Borel probability
measure µ on the group G. The basic version of the Poisson transform is a map
Pµ : L∞(G,λ)→ L∞(G,λ), defined by

Pµ(f)(g) =

∫
G
f(gx) dµ(x).

This map is well-defined, i.e., if f = f ′ λ-a.s. then Pµ(f) = Pµ(f ′) λ-a.s. This holds
true since the Haar measure λ is equivalent to any translate of itself.

A natural generalisation is to consider the map Pα : L∞(G, ν) → L∞(G,µ), for
three Borel probability measures µ, ν and α on G. This map need not be well-defined,
but there are certain assumptions on the measures which will make it all work. A
sufficient condition for Pα to preserve equivalence classes is that for all Borel sets A
in G and µ-a.e. g ∈ G, we have α(gA) = 0, whenever ν(A) = 0. This is equivalent to
the fact that µ∗α is absolutely continuous with respect ν. To prove this, we observe
that

µ ∗ α(A) =

∫
G

∫
G

1A(gh) dα(h) dµ(g) =

∫
G
α(g−1A) dµ(g),

which proves the statement.

Almost sure harmonicity

The first basic case above, i.e., the case where µ and ν are both equal to the Haar
measure λ is particularly simple as we do not need any assumptions on the last
measure. This allows us to define the map

Pµ : L∞(G,λ)→ L∞(G,λ)

for any Borel probability measure µ on G, and inspired by the similarity of Pµ(f)
and f ? µ, we introduce the following definition.

Definition 2.8. We say that an equivalence class [f ] ∈ L∞(G,λ) is an almost-sure
bounded µ-harmonic function if [Pµ(f)] = [f ]. The space of such equivalence classes
of functions will be denoted H∞a.s.(G,µ).

As the choice of representative in an equivalence class of H∞a.s.(G,µ) does not
matter, we will henceforth view elements of H∞a.s.(G,µ) as functions, just as we
usually do for measurable functions.
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Proposition 2.9. Any function f ∈ H∞a.s.(G,µ) is the almost sure limit of a sequence
(fn)n≥0 in H∞luc(G,µ).

Proof. Let f ∈ H∞a.s.(G,µ) be given. Let (αn)n≥0 be a sequnce of positive functions
in Cc(G), such that αn · λ converges to δe as n → ∞. To see that such a sequence
exists, we can use the countable basis of G to pick a sequence of open sets (An)n≥0,
satisfying the following conditions:

• A0 ⊂ K, for some compact set K ⊂ G,

• 0 < λ(An) <∞, for all n ∈ N,

• A0 ⊃ A1 ⊃ . . . ,

•
⋂∞
n=0An = {e}.

From here we define a sequence (α′n)n≥0 of positive functions in Cc(G) by

α′n = 1An ∗ 1An .

Each such map is continuous, has support in AnAn, and hence is integrable with
respect to λ. Finally, we define

αn =
1

‖α′n‖1
α′n,

where the 1-norm is calculated with respect to the Haar measure λ. For each n ≥ 0,
define fn : G→ C by

fn(x) =

∫
αn(g)f(gx) dλ(g), x ∈ G

Then each fn is continuous, and the sequence is converging to f almost surely. It
remains to show that each fn is in H∞luc(G,µ). Harmonicity of fn follows, as any
x ∈ G yields

fn(x) =

∫
G
αn(g)f(gx) dλ(g) =

∫
G
αn(g)Pµ(f)(gx) dλ(g)

=

∫
G

∫
G
αn(g)f(gxh) dµ(h) dλ(g)

=

∫
G

∫
G
αn(g)f(gxh) dλ(g) dµ(h) =

∫
G
fn(xh) dµ(h).

To see that each fn is left uniformly continuous, consider for u, x ∈ G the estimates,

|fn(ux)− fn(x)| =
∣∣∣∣ ∫

G
αn(g)f(gux) dλ(g)−

∫
G
αn(g)f(gx) dλ(g)

∣∣∣∣
=

∣∣∣∣ ∫
G
αn(gu−1)f(gx) dλ(g)−

∫
G
αn(g)f(gx) dλ(g)

∣∣∣∣
≤ ‖f‖∞

∫
G
|αn(gu−1)− αn(g)| dλ(g).

As αn is compactly supported, it is also right uniformly continuous and thus, the
above integral can be made arbitrarily small. This tells us that fn is left uniformly
continuous, thus completing the proof.
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Weak harmonicity

Another case of interest is the one where all three Borel probability measures are
equal to the same measure µ. In order for the Poisson transform to be well-defined,
we would need µ∗2 to be absolutely continuous with respect to µ. In general this is
not true, but let us look at an interesting construction. Given a Borel probability
measure µ, we define a new probability measure µ̃ by

µ̃ =
∞∑
n=0

2−(n+1)µ∗n.

Here, the zeroth power of µ is the Dirac measure at the identity e. The construction
of this new measure µ̃ may potentially give us an entirely new class of harmonic
functions, but as the following proposition shows, this is not the case.

Proposition 2.10. Let µ be a Borel probability measure on G, and let µ̃ be defined
as above. Then a function f : G→ C is µ-harmonic if and only if f is µ̃-harmonic.

Proof. Assume first that f is µ-harmonic. By applying harmonicity twice we obtain∫
G
f(xy) dµ∗2(y) =

∫
G

∫
G
f(xgh) dµ(h) dµ(g) =

∫
G
f(xg) dµ(g) = f(x),

for any x ∈ G and hence f is µ∗2-harmonic. Similarly f is µ∗n-harmonic, for any
n ≥ 1, and thus, for any x ∈ G.∫

G
f(xy) dµ̃(y) =

∞∑
n=0

2−(n+1)

∫
G
f(xy) dµ∗n(y) = f(x)

∞∑
n=0

2−(n+1) = f(x).

In conclusion f is µ̃-harmonic. For the other implication assume that f is µ̃-harmonic
and note that for any x ∈ G,

2f(x) = 2

∞∑
n=0

2−(n+1)

∫
G
f(xy) dµ∗n(y) = f(x) +

∞∑
n=1

2−n
∫
G
f(xy) dµ∗n(y).

For this latter infinite series, we can apply linearity of the convolution along with a
reindexing of the terms, and we end up with

∞∑
n=1

2−n
∫
G
f(xy) dµ∗n(y) =

∫
G

( ∞∑
n=0

2−(n+1)

∫
G
f(xgh) dµ∗n(h)

)
dµ(g)

=

∫
G

∫
G
f(xgh) dµ̃(h) dµ(g) =

∫
G
f(xg) dµ(g).

The combination of these calculations yields the desired µ-harmonicity of f .

Note that the measure µ̃ constructed above has the important property that µ̃∗2

is absolutely continuous with respect to µ̃, so we may consider the Poisson transform

Pµ̃ : L∞(G, µ̃)→ L∞(G, µ̃).

We will use this map to define a new class of µ-harmonic functions, whose rele-
vance will become apparent, when we start the explicit constructions of the Poisson
boundary.
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Definition 2.11. We say that [f ] ∈ L∞(G, µ̃) is weakly µ-harmonic if

[f ] = [Pµ̃(f)].

The space of these functions will be denoted by H∞w (G,µ).

2.5 Topological G-spaces

For yet another generalisation of the Poisson transform, we add an action of G to the
mix. A topological G-space is a topological space B along with a continuous action
of G on B. Recall that an action of G on B is a map from G×B into B denoted by
(g, b) 7→ g.b, such that e.b = b and for all g, h ∈ G and b ∈ B,

g.(h.b) = (gh).b.

Given a compact G-space B, we have a natural way of extending the action of G on
B to C(B) and P(B). For f ∈ C(B) and g, x ∈ G, we set g.f(x) = f(g−1x), and
for ν ∈ P(B) we set g.ν(f) = ν(g−1.f).

Given a Borel probability measure µ on G and a Borel probability measure ν on
B, we define the convolution of µ and ν to be the Borel probability measure µ ∗ ν
on B, given by

µ ∗ ν(ϕ) =

∫
G

∫
B
ϕ(g.b) dν(b) dµ(g), ϕ ∈ C(B).

Note that this definition coincides with the usual convolutions of measures, when G
itself is viewed as a G-space by left multiplication.

Definition 2.12. Let µ be a Borel probability measure on G and let B be a G-space.
A Borel probability measure ν on B is said to be µ-stationary if µ∗ν = ν. A G-space
B equipped with a µ-stationary measure ν will be called a (G,µ)-space.

Remark 2.13. If B is a compact space, then the set of Borel probability measures
on B will be a compact, convex subset of C(B)∗. By the Markov-Kakutani fixed
point theorem, the linear map ν 7→ µ ∗ ν will have a fixed point, i.e., a µ-stationary
measure on B. In other words, any compact G-space can be viewed as a (G,µ)-space.

In the following, we fix a Borel probability measure µ on G. Now, consider a
µ-stationary measure ν on a G-space B. We define the Poisson transform Pν from
the bounded functions B to the bounded functions on G, by

Pν(f)(g) =

∫
B
f(g.b) dν(b), g ∈ G.

When f is a bounded function on B, then Pν(f) is a bounded µ-harmonic function
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on G, as seen by the following calculations, where g ∈ G,

Pν(f)(g) =

∫
B
f(g.b) dν(b) =

∫
B
f(g.b) dµ ∗ ν(b)

=

∫
B

∫
G
f(g.(h.x)) dµ(h) dν(b)

=

∫
G

∫
B
f((gh).x) dν(b) dµ(h)

=

∫
G
Pν(f)(gh) dµ(h).

Our interest concerning bounded harmonic functions will shortly turn to the subspace
H∞luc(G,µ), and for this reason we could ask ourselves when Pν(f) ∈ H∞luc(G,µ). This
boils down to studying the behaviour of supb∈B |f(g.b)− f(b)|, for every g ∈ G, as

sup
h∈G
|Pν(f)(gh)− Pν(f)(h)| = sup

h∈G

∣∣∣∣ ∫
B
f(g.(h.b))− f(h.b) dν(b)

∣∣∣∣
≤ sup

b∈B
|f(g.b)− f(b)|.

Thus, if the latter term tends to zero as g approaches the identity e ∈ G, then
Pν(f) ∈ H∞luc(G,µ). If B is a compact space, then any f ∈ C(B) will have this
property and thus Pν : C(B)→ H∞luc(G,µ). In general this need not be the case, so
we are forced to look at the subspace

Cu(B) =

{
f ∈ C(B)

∣∣∣∣ sup
b∈B
|f(g.b)− f(b)| → 0, as g → e

}
.

Then Pν : Cu(B) → H∞luc(G,µ). Fortunately, most of the spaces we will encounter
are compact and hence, this latter complication is not that important. Extending
the Poisson transform to equivalence classes of functions, we recall the discussion in
Section 2.4, which allows us to define Pν : L∞(B, ν) → L∞(G,µ). The stationarity
of ν ensures that Pν only takes values in H∞w (G,µ), giving us a new meaning to the
notion of weak harmonicity.

2.6 Measurable G-spaces

A natural generalisation of a topological G-space is to loosen the restriction on
the action of G. Instead of requiring continuity of the action, we will only require
measurability. This leads to the following definition.

Definition 2.14. A measurable G-space B is a topological space on which G acts
in a measurable way. Here, both B and G are equipped with their standard Borel
structure. Let µ be a Borel probability measure on G. If ν is a µ-stationary Borel
probability measure on B, we say that (B, ν) is a weak measurable (G,µ)-space.

Sacrificing continuity of the action on a weak measurable G-space (B, ν) does not
alter any of the algebraic, nor measure theoretic considerations in Section 2.5, and
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hence most of the results can be applied to this case, as well. For instance, we are
able to define the Poisson transform Pν from L∞(B, ν) to H∞w (G,µ). However, it
is not the case that the Poisson transform automatically maps into H∞a.s.(G,µ). For
this, we need some additional restrictions.

Now, instead of finding an answer to this very specific problem, we will first
broaden the problem a bit. Recall that H∞a.s.(G,µ) denotes the subspace of L∞(G,λ),
where each equivalence class satisfies [f ] = [Pµ(f)]. This equality is well-defined due
to our opening discussion of Section 2.4. We also saw that this equality could make
sense in more general cases, e.g., if ρ is a Borel probability measure on G such that
ρ ∗ µ is absolutely continuous with respect to ρ. In such case, we let

H∞ρ (G,µ) =
{

[f ] ∈ L∞(G, ρ) | [f ] = [Pµ(f)]
}
.

By combining the discussion above with the opening discussion of Section 2.4, we
obtain the following lemma as an immediate consequence.

Lemma 2.15. Let (B, ν) be a weak measurable (G,µ)-space. For any Borel proba-
bility measure ρ on G such that ρ ∗ µ is absolutely continuous with respect to ρ, the
Poisson transform Pν extends to a map from L∞(B, ρ ∗ ν) into H∞ρ (G,µ). If ρ is
equivalent to λ, then Pν extends to a map from L∞(B, ρ ∗ ν) into H∞a.s.(G,µ).

Another setup we consider in this measurable setting is that of a strong mea-
surable space. Before doing so, we say that a Borel probability measure α on B is
G-quasi invariant, if α is equivalent to g.α, for all g ∈ G.

Definition 2.16. Let (B, ν) be a weak measurable (G,µ)-space. If α is a G-quasi-
invariant Borel probability measure on B such that ν is absolutely continuous with
respect to α, then (B, ν, α) is said to be a strong measurable (G,µ)-space.

The importance of strong measurable spaces may seem unclear at this point, but
they will reappear once we turn to the discussion of measurable boundaries in Section
3. For this reason, we will introduce a way of constructing a strong measurable
(G,µ)-space from a weak measurable (G,µ)-space under certain assumptions.

Proposition 2.17. Let µ be a spread-out Borel probability measure on G and (B, ν)
be a weak measurable (G,µ)-space. If ρ is Borel probability measure on G and ρ is
equivalent to λ, then (B, ν, ρ ∗ ν) is a strong measurable (G,µ)-space.

Proof. Notice that if ρ is equivalent to λ, then ρ is also equivalent to g.ρ for any
g ∈ G. To see that ρ ∗ ν is G-quasi-invariant, a simple calculation shows that
g.(ρ ∗ ν) = (g.ρ) ∗ ν, for all g ∈ G, and hence the G-quasi-invariance of ρ ∗ ν is
inherited from that of ρ. What remains to show is that ν is absolutely continuous
with respect to ρ ∗ ν.

As ν is spread-out there exists p ≥ 0, such that µ∗p and λ are not mutually
singular. From here we consider the Lebesgue decomposition of each µ∗np as αn+βn,
where αn is absolutely continuous with respect to λ, while βn and λ are mutually
singular. An immediate consequence hereof is that ‖βn‖ → 0, as n → ∞. By
µ-stationarity of ν, we now see that for n ≥ 1,

‖ν − αn ∗ ν‖ = ‖µ∗np ∗ ν − αn ∗ ν‖ = ‖βn ∗ ν‖ ≤ ‖βn‖,
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and hence αn ∗ ν converges to ν in total variation. By the assumption on ρ, the
measures αn will also be absolutely continuous with respect to ρ, and hence αn ∗ν is
absolutely continuous with respect to ρ ∗ ν, for all n ≥ 1. By the above established
convergence, we conclude that ν is absolutely continuous with respect to ρ ∗ ν, thus
concluding the proof.
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3 Boundaries

The next important topic of this thesis is that of boundaries associated to a group
G. In the classical setup we saw that there is a one-to-one correspondence be-
tween harmonic functions on B(0, 1) and continuous functions on ∂B(0, 1). This
correspondence is defined through the boundary representation, which we call the
Poisson integral. In Section 2.5, we defined the Poisson transform in relation to a
topological (G,µ)-space and saw how the Poisson transform gives rise to µ-harmonic
functions. Let us try to make a parallel between these ideas, as we did with harmonic
functions.

We let G be the group defined in Section 2.1 along with the associated action of
G on C. Let once more σ denote the Lebesgue measure on ∂B(0, 1), and consider
for ϕ ∈ L1(∂B(0, 1)) and g ∈ G, the integral∫

∂B(0,1)
ϕ(g(θ)) dσ(θ) =

∫
∂B(0,1)

ϕ(θ)|(g−1)′(θ)| dσ(θ)

=

∫
∂B(0,1)

ϕ(θ)P (r, t− θ) dσ(θ),

where g(0) = reit. This gives a connection between the natural action of G on C
and the classical Poisson integral. For r ∈ (0, 1), we equip G with the measure σr as
defined in Section 2.1, and let f be a harmonic function on B(0, 1). Then f : G→ C,
defined by f(g) = f(g(0)) is σr-harmonic. If we let f̃ : B(0, 1) → C denote the
continuous extension of f as defined in the very end of Section 1.1, then for g ∈ G
with g(0) = reit,

f(g) = f(g(0)) = f(reit) =

∫
∂B(0,1)

P (r, t− θ)f̃(θ) dσ(θ)

=

∫
∂B(0,1)

f̃(g(θ)) dσ(θ) = Pσ(f̃).

By the bijective correspondence between harmonic functions on B(0, 1) and conti-
nuous functions on ∂B(0, 1), we see that Pσ defines a map from C(∂B(0, 1)) into the
σr-harmonic functions on G.

The motivating idea behind defining an appropriate notion of boundaries of a
group G is to find compact (G,µ)-spaces for which the Poisson transform has certain
properties such as: being an isometric isomorphism, an isometry or being multi-
plicative. The remainder of this section will follow Chapter 2 and the beginning of
Chapter 3 in [2].

3.1 Poisson boundary

The idea behind the Poisson boundary is to create a topogical space B, such that
every function H∞luc(G,µ) can be uniquely represented by a continuous function on
B. This will mimic the integral representation from the classical case, with B repre-
senting the boundary of G, as seen in the example above. We will do this by equip-
ping H∞luc(G,µ) with a multiplication and involution, such that it becomes a unital
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commutative C∗-algebra. Then the space of left uniformly continuous µ-harmonic
functions on G will be isometrically isomorphic to the continuous functions on the
spectrum Πµ of this C∗-algebra.

The involution of choice is simply pointwise complex conjugation of the given
function f ∈ H∞luc(G,µ). The multiplication becomes a bit more tricky, as the
pointwise product of µ-harmonic functions need not be µ-harmonic itself. Instead,
we recall the isometric identification f 7→ Zf of H∞luc(G,µ) with I∞luc. The product �
is then be defined as follows

(f � g)(x) = E(Zf (x)Zg(x)), f, g ∈ H∞luc(G,µ), x ∈ G.

The fact that this product is even well-defined and actually gives rise to a unital
commutative C∗-algebra is seen in the following proposition.

Proposition 3.1. Let µ be a Borel probability measure on G. The operation � set
forth above defines a multiplication on H∞luc(G,µ), and pointwise complex conjugation
defines an involution on H∞luc(G,µ). Furthermore, the resulting ∗-algebra is a unital
commutative C∗-algebra with respect to the supremum norm.

Proof. To see that this product is even well-defined it suffices by Proposition 2.6
to show that I∞luc is closed under pointwise products. The invariance property of
functions in I∞luc is clearly inherited through products, and it is not difficult to see
that the product remains left uniformly continuous. For the latter statement, let
Z,Z ′ ∈ I∞luc be given. Then for u, g ∈ G,

‖ZZ ′(ug)− ZZ ′(g)‖∞ = ‖Z(ug)Z ′(ug)− Z(g)Z ′(g)‖∞
≤ ‖Z(ug)Z ′(ug)− Z(ug)Z ′(g)‖∞ + ‖Z(ug)Z ′(g)− Z(g)Z ′(g)‖∞
≤ ‖Z‖‖Z ′(ug)− Z ′(g)‖∞ + ‖Z ′‖‖Z(ug)− Z(g)‖∞,

which can be made arbitrarily small by applying left uniform continuity of both Z and
Z ′. That the product is distributive with respect to the pointwise addition follows
directly from the pointwise distributivity of summation. Hovewer, the associativity of
this product is non-trivial, but the above construction is a particularly nice version of
the Choi-Effros product, which is associative (see [4]). We are now left with showing
that ‖f � g‖∞ ≤ ‖f‖∞ · ‖g‖∞ and ‖f � f‖∞ = ‖f‖2∞ for any f, g ∈ H∞luc(G,µ). The
first inequality is not a big problem, as

‖f � g‖∞ = sup
x∈G

∣∣(f � g)(x)
∣∣ = sup

x∈G

∣∣E(Zf (x)Zg(x))
∣∣

≤ sup
x∈G

(
‖Zf (x)‖∞ · ‖Zg(x)‖∞

)
≤ sup

x∈G
‖Zf (x)‖∞ · sup

x∈G
‖Zg(x)‖∞ = ‖f‖∞ · ‖g‖∞.

To see that the C∗-identity is satisfied, we will introduce an alternative approach to
the product. Combining the convolution powers of µ and the random walk (Rgn)n≥0

it is evident that
(f ? µ∗n)(g) = Ef(gRn),
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for all n ∈ N and g ∈ G. In this way, we can characterise the product f � g as the
pointwise limit of (f · g) ? µ∗n, as n→∞. With this in mind it suffices to show that
‖|f |2 ? µ∗n‖ = ‖f‖2, for all n ∈ N. It is quite obvious that |f |2 ? µ∗n is uniformly
bounded by ‖f‖2, but for the reverse inequality we consider the case n = 1. We have

|f |2 =
∣∣f ? µ∣∣2 ≤ (|f | ? µ)2 ≤ |f |2 ? µ,

where the last bound is due to the Cauchy-Schwartz inequality. Applying supremum
on both sides gives us the desired inequality, and a standard induction argument
gives the general result.

Finally the commutativity of � is inherited through pointwise multiplication of
complex-valued functions, which all in all yields the desired conclusion.

Definition 3.2. Let µ be a Borel probability measure on G. The spectrum Πµ of
H∞luc(G,µ) is called the Poisson boundary of the pair (G,µ).

In the context of Section 2.5, we could ask ourselves if the above established
isomorphism could be realised as the Poisson transform of some Borel probability
measure on Πµ. This question leads to the following theorem.

Theorem 3.3. Let µ be a Borel probability measure on G and let Πµ be the corre-
sponding Poisson boundary. Then there exists a stationary measure ν on Πµ such
that that Pν is an isometric isomorphism from C(Πµ) to H∞luc(G,µ). This measure
will henceforth be denoted by ν.

Proof. Note first of all that the canonical ∗-isomorphism Φ: C(Πµ)→ H∞luc(G,µ) is
a G-equivariant map, with the natural actions as described in Section 2.5. From here
on, let L be a linear functional on C(Πµ) defined by

L(ϕ) = Φ(ϕ)(e), ϕ ∈ C(Πµ).

By the Riesz Representation Theorem there exists a probability measure ν on Πµ,
such that L(ϕ) =

∫
Πµ
ϕdν, for all ϕ ∈ C(Πµ). Then ν is µ-stationary as

µ ∗ ν(ϕ) =

∫
G

∫
Πµ

ϕ(g.b) dν(b) dµ(g) =

∫
G

∫
Πµ

g−1ϕ(b) dν(b) dµ(g)

=

∫
G
L(g−1ϕ) dµ(g) =

∫
Φ(ϕ)(g) dµ(g) = Φ(ϕ)(e) =

∫
Πµ

ϕdν,

for all ϕ ∈ C(Πµ). Furthermore, the Poisson transform Pν is equal to Φ. To see this,
let ϕ ∈ C(Πµ) be given. Then G-equivariance yields

Pν(ϕ)(g) =

∫
Πµ

ϕ(g.b) dν(b) =

∫
Πµ

g−1ϕ(b) dν(b) = L(g−1ϕ) = Φ(ϕ)(g),

for all g ∈ G.

Proposition 3.4. Assume that the semigroup generated by supp(µ) is all of G. Then
ν has full support in Pµ.
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Proof. Assume in order to reach a contradiction that supp(ν) is a proper subset of
Πµ. Let f ∈ C(Πµ) be given, with supp(f) ⊂ Πµ\ supp(ν) and ‖f‖∞ = 1. Then

0 =

∫
Πµ

f(x) dν(x) =

∫
G

∫
Πµ

f(g.x) dν(x) dµ(g) =

∫
G
Pν(f)(g) dµ(g),

and hence Pν(f)(g) = 0 for µ-a.e. g ∈ G. Applying µ-stationarity of ν multiple
times along with our assumptions on µ, gives us Pν(f) = 0 on a dense subset of G.
As Πµ is compact, Pν(f) is continuous and hence constantly equal to 0. But now Pν
is no longer an isometry and hence we have reached a contradiction. In conclusion
ν must have full support.

The assumption of supp(µ) generating all of G as a semigroup is another way of
saying that the random walk (Rn)n≥0 will hit any element of G almost surely, and
will appear later as an assumption in many of the coming results. Another notable
consequence of this criteria is that, whenever G is abelian, then Πµ is a singleton by
Proposition 2.7.

3.2 An example

Let us as an example consider F2, the free group of two generators a, b, and let
A ⊂ F2 denote the set {a, b, a−1, b−1}. As a probability measure on F2, we let µ
denote the equidistribution on A, i.e.,

µ =
1

4

(
δa + δb + δa−1 + δb−1

)
.

In this way, a bounded function f : F2 → C belongs to H∞luc(F2, µ) if and only if

f(γ) =
1

4

(
f(γa) + f(γb) + f(γa−1) + f(γb−1)

)
, for γ ∈ F2.

Our goal is now to identify the Poisson-boundary (Πµ, ν). With the classical case
and the name boundary in mind, a naive and intuitive approach would be to guess
that Πµ = B, where B denotes the space of infinite reduced words with letters from
A. Fortunately this turns out to be the case, so let us study this space.

First of all, B is a closed subset of AN, and hence compact. Secondly F2 acts on
B by adding γ ∈ F2 to the front of the infinite word and then reducing the obtained
word. For an infinite word γ ∈ B, we let γ|n ∈ F2 be the word consisting of the first
n letters of γ. Finally, for γ ∈ F2, we let [γ] ⊂ B be the set consisting of all infinite
words α, such that α||γ| = γ, where |γ| is the length of γ. That is, [γ] consists of all
infinite continuations of γ. We will now define a measure ν on B by

ν([γ]) =
1

4
·
(

1

3

)|γ|−1

, γ ∈ F2.

Note that ν is actually uniquely determined by its values on [γ] for γ ∈ F2 as these
sets comprise an intersection stable generator of the Borel sets in B. Our claim is
now that (B, ν) is the Poisson boundary of (G,µ).
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To prove this claim, we start out by adding B to F2 and thus compactifying
F2. The compactification is to be understood as follows. A sequence (γn)n≥0 in F2

converges to γ ∈ B if for any k ∈ N there exists Nk ∈ N such that n ≥ Nk implies
γn ∈ [γ|k]. The role of our proposed boundary can now be described through the
theory of random walks.

Consider a sequence (Xn)n≥0 of i.i.d. random variables with values in A and
common distribution µ. As in Section 2.3, these random variables will be defined as
coordinate projections from the sequence space Ω = AN0 equipped with the countable
product measure P =

⊗
n≥0 µ. From here we define the random walk (Rn)n≥0 by

R0 = e and Rn = X0X1 · · ·Xn−1 for n ≥ 1. The property of (Rn)n≥0 which interests
us the most is the average length of the words at each step, so let us define a sequence
of numbers (un)n≥0 by

un = E|Rn|, n ≥ 0,

where |Rn| denotes the length of the word Rn. It is clear that u0 = 0 and u1 = 1,
but from there on it gets a bit more complicated due to the possibility of cancella-
tions. However, dividing Ω into two disjoint subsets representing cancellation and
no cancellation, respectively, simplifies this problem. More precisely, for n ≥ 1,

un+1 = E|Rn+1| = E1{Xn=X−1
n−1}
|Rn+1|+ E1{Xn 6=X−1

n−1}
|Rn+1|

= E1{Xn=X−1
n−1}
|Rn − 1|+ E1{Xn 6=X−1

n−1}
|Rn + 1|

= E|Rn| − P(Xn = X−1
n−1) + P(Xn 6= X−1

n−1) = un + 1/2

In conclusion, u0 = 0 and un = (n+ 1)/2 for n ≥ 1. In particular (un/n)n≥1 will be
a decreasing sequence converging to 1/2. In order to use this convergence in mean,
we notice that the shift operator T on Ω preserves P and

|Rn+m(ω)| = |Rn(ω)Rm(Tn(ω))| ≤ |Rn(ω)|+ |Rm(Tn(ω))|.

Thus, (|Rn|)n≥0 is a subadditive process, so the limit limn→∞ |Rn|/n exists P-almost
surely and in mean by Kingman’s Subadditive Ergodic Theorem (see Theorem B.1).
Since limn→∞ un/n > 0, we conclude that |Rn| → ∞ P-a.s., as n → ∞, and hence
there exists z : Ω→ B, such that Rn(ω)→ z(ω), P-almost surely. To determine the
distribution of ν, let γ ∈ F2 be given and observe that

z(P)([γ]) = P(z ∈ [γ|) = P(z||γ| = γ) = P( lim
n→∞

Rn||γ| = γ) = P(R|γ| = γ).

As the Xn’s are independent and equidistributed on A, we see that z(P) is actually
equal to our previously defined measure ν. By stationarity of the process (Xn)n≥0,
we can also conclude that z and z ◦ T have the same distribution. Combining this
fact with the P-almost sure equality z(ω) = X0(ω).z(T (ω)), we conclude that the

26



3.3 General µ-boundaries 3 BOUNDARIES

measure ν is µ-stationary. This is true, since for any ϕ ∈ C(B),

ν(ϕ) =

∫
B
ϕ(γ) dν(γ) =

∫
Ω
ϕ(z(ω)) dP(ω)

=

∫
Ω
ϕ(X0(ω).z(T (ω))) dP(ω)

=

∫
B

∫
A
ϕ(α.γ) dX0(P)(α) d(z ◦ T )(P)(γ)

=

∫
B

∫
A
ϕ(α.γ) dµ(α) dν(γ) = µ ∗ ν(ϕ).

This shows that (B, ν) is actually an (F2, µ)-space. What remains to show is that
the Poisson transform Pν : C(B)→ H∞luc(F2, µ) is well-defined and a ∗-isomorphism.
From our previous discussion on harmonic functions applied to random walks, we
know that there exists an isometric, bijective correspondence between H∞luc(F2, µ)
and I∞luc, which for f ∈ H∞luc(F2, µ) and γ ∈ F2 is given by

• f(γRn(ω))→ Zf (γ)(ω), P-almost surely,

• E(Zf (γ)) = f(γ).

In order to translate this into a correspondence between C(B) and H∞luc(F2, µ), we
consider the behaviour of Zf (γ) for a given f ∈ H∞luc(F2, µ). For this, let ω, ω′ ∈ Ω be
given such that Rn converges in both ω and ω′, but also satisfying z(ω) = z(ω′). Then
there exist subsequences (nk)k≥0 and (mnk)k≥0 in N0, such that Rnk(ω) = Rmnk (ω′),
for all k ≥ 0. This tells us that Zf (γ)(ω) only depends on the value of γ.z(ω), so
there exists a map ϕ ∈ C(B) such that ϕ(γ.z(ω)) = Zf (γ)(ω).

The isometric correspondence between f and Zf will then extend to an isometric
correspondence between f and ϕ, so it remains to show that f arises as the Poisson
transformation of ϕ. That this is true is a consequence of our construction, as

f(γ) = EZf (γ) =

∫
Ω
Zf (γ)(ω) dP(ω) =

∫
Ω
ϕ(γ.z(ω)) dP(ω)

=

∫
B
ϕ(γ.α) dz(P)(α) =

∫
B
ϕ(γ.α) dν(α) = Pν(ϕ)(γ),

for every γ ∈ F2. In conclusion, (B, ν) is the Poisson boundary of (F2, µ).

3.3 General µ-boundaries

At this point we have shown that given a compact (G,µ)-space (B, ν), the Poisson
transform Pν is a map from C(B) into H∞luc(G,µ), and it is not difficult to see that
it is also norm decreasing. Furthermore, if the (G,µ)-space is the Poisson boundary
Πµ with the measure ν from Theorem 3.3, then Pν is an isometric isomorphism.

By the Banach-Stone theorem, no other compact (G,µ)-space (B, ν), up to home-
omorphism, will induce an isometric isomorphism, but there is no reason why the
Poisson transform could not be isometric nor a ∗-homomorphism. The question
regarding when this happens for compact (G,µ)-spaces is fully answered by the fol-
lowing proposition.
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Proposition 3.5. Let (B, ν) be a compact (G,µ)-space. The Poisson transform Pν
is an isometric embedding of C(B) into H∞luc(G,µ) if and only if

δB ⊂ {δg ∗ ν | g ∈ G}
w∗
.

Proof. Assume first that δB ⊂ {δg ∗ ν | g ∈ G}
w∗

, and let us show that Pν is an
isometry. As the Poisson transform Pν is always norm decreasing it suffices to show
that ‖f‖∞ ≤ ‖Pν(f)‖∞, for any f ∈ C(B). Let b ∈ B be given and use the
hypothesis to pick a net (gi)i∈I in G such that δgi ∗ ν

w∗−→ δb, i.e.,∫
B
f(x) d(δgi ∗ ν)(x)→

∫
B
f(x) dδb(x) = f(b),

for all f ∈ C(B). For any f ∈ C(B), we notice that∫
B
f(x) d(δgi ∗ ν)(x) = Pν(f)(gi) ≤ ‖Pν(f)‖∞,

and hence |f(b)| ≤ ‖Pν(f)‖∞. As b ∈ B was arbitrary we see that Pν is an isometry.
For the converse inclusion, assume that Pν is an isometry and let b ∈ B be given.

By Urysohn’s lemma we can consider the non-empty set

Fb = {f ∈ C(B) | 0 ≤ f ≤ 1, f(b) = 1}.

As ν is a probability measure, Pν preserves positive functions, and hence for any
f ∈ Fb and n ∈ N, the set

Af,n = {g ∈ G | Pν(f)(g) ≥ 1− 1
n},

is non-empty. Furthermore, if f, f ′ ∈ Fb then inf(f, f ′) ∈ Fb, so the inclusion

Af,n ∩Af ′,n ⊃ Ainf(f,f ′),sup(n,n′),

shows that the family (Af,n)f∈Fb,n∈N has the finite intersection property. Consider
now the family (Bf,n)f∈Fb,n∈N of subsets in P(B) defined by

Bf,n = {δg ∗ ν | g ∈ Af,n}.

This family will inherit the finite intersection property and since P(B) inherits com-
pactness from B, we can conclude that there exists some

τ ∈
⋂

f∈Fb,n∈N
Bf,n.

By construction of the family (Bf,n)f∈Fb,n∈N this τ will satisfy
∫
B f dτ = 1, for all

f ∈ Fb. As τ is a probability measure and f is bounded by one, this implies that
f = 1 on the support of τ . An important part of Urysohn’s lemma is that the
functions in Fb separate b from all other elements of B, and hence the support of τ
must be the singleton {b}. In conclusion, δb = τ ∈ {δg ∗ ν | g ∈ G}

w∗
.
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Definition 3.6. Let (B, ν) be a (G,µ)-space. If δB ⊂ {δg ∗ ν | g ∈ G}
w∗

, we say
that (B, ν) is a contractible (G,µ)-space.

The contractible (G,µ)-spaces will, due to the above proposition, induce an iso-
metric Poisson transform, but they are also related to the Poisson boundary, as seen
in the following theorem.

Theorem 3.7. Let (B, ν) be a compact contractible (G,µ)-space. Then there exists
a G-equivariant map q : (Πµ, ν)→ P(B) such that δB ⊂ q(Πµ).

Proof. We start out by looking at the map ϕ : C(B)→ C(Πµ) given by ϕ = P−1
ν ◦Pν .

As both P−1
ν and Pν are positive isometries, so is ϕ, and hence the adjoint map

ϕ∗ : C(Πµ)∗ → C(B)∗ is a positive isometry and maps P (Πµ) to P (B). We define
q : Πµ → P (B) by q(x) = ϕ∗(δx), for x ∈ G, giving a G-equivariant map. The proof
of the final claim will follow the same pattern as the second part of the proof of
Proposition 3.5. For b ∈ B, we consider the set

Fb = {f ∈ C(B) | 0 ≤ f ≤ 1, f(b) = 1}.

As ϕ is a positive isometry, the sets Af,n, for f ∈ Fb and n ∈ N, given by

Af,n =
{
x ∈ Πµ | ϕ(f)(x) ≥ 1− 1

n

}
,

are all non-empty and the family (Af,n)f∈Fb,n∈N has the finite intersection property.
We can then consider the family (Bf,n)f∈Fb,n∈N of subsets in P(B) given by

Bf,n = {ϕ∗(δx) | x ∈ Af,n}.

This family inherits the finite intersection property and thus, there exists τ in⋂
f∈Fb,n∈NBf,n. By construction of (Bf,n)f∈Fb,n∈N, the measure τ must be equal

to δb, and hence δb ∈ q(Πµ).

We will now see how the random walk from Section 2.3 can be used to describe
other types of (G,µ)-spaces.

Lemma 3.8. Let (B, ν) be a compact (G,µ)-space with countable basis. Then there
exists a map V : Ω→ P(B), such that

gRn(ω).ν → g.V(ω), P- a. s.

for all g ∈ G, where (Ω,P) is the probability space from Section 2.3. Furthermore
the map g 7→ g.V is left uniformly continuous for P-a.s., and EV = ν. Here EV is
defined as the probability measure on B, given as

EV(ϕ) =

∫
Ω
V(ω)(ϕ) dP(ω), ϕ ∈ C(B).
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Proof. The action of G on ν is the action induced from B, when viewing ν as a
linear functional on C(B). Let ϕ ∈ C(B) be given and let f = Pν(ϕ) ∈ H∞luc(G,µ).
Then gRn(ω).ν(ϕ) = f(gRn(ω)), for ω ∈ Ω, g ∈ G and thus gRn(ω).ν(ϕ) converges
P-almost surely to Zf (g)(ω), as seen in Section 2.3. The countable basis of B ensures
separability of C(B), and thus gRn(ω).ν converges P-almost surely.

Defining V : Ω→ P(B) to be this almost sure limit, will then give us the desired
result. Left uniform continuity is inherited from that of gRn(ω).ν and the expectation
formula follows from the Lebesgue dominated convergence theorem, as

E(g.V(ϕ)) = lim
n→∞

E(gRn.ν(ϕ)) = E(g.ν(ϕ)) = g.ν(ϕ), ϕ ∈ C(B).

The second equality above is a consequence of the stationarity of ν.

It is worth pointing out that the above construction implies that ZPν(ϕ)(g) is equal
to g.V(ϕ) P-almost surely. This identification will come in handy in the following
proposition, in which we apply the above theorem to the Poisson boundary.

Proposition 3.9. Let µ be a probability measure on G, and assume that the Poisson
boundary (Πµ, ν) is second countable. Then V takes its values in δΠµ, i.e., there
exists a measurable map z : Ω→ Πµ such that

V(ω) = δz(ω), P- a. s.

Proof. As Pν : C(Πµ) → H∞luc(G,µ) is a ∗-homomorphism, we see by the remark
above that any ϕ ∈ C(Πµ) satisfies

g.V(ω)(ϕ2) = ZPν(ϕ2)(g)(ω) = (ZPν(ϕ)(G,ω))2 = (g.V(ω)(ϕ))2,

where ω ∈ Ω, g ∈ G. By Jensen’s inequality this only happens if ϕ is constant on
the support of g.V(ω), and since it holds true for all ϕ ∈ C(Πµ), we conclude that
g.V(ω) and hence V(ω) is a one-point measure P-almost surely. From there on it is
a matter of defining z : Ω→ Πµ to represent these points.

We know that (Πµ, ν) is the only (G,µ)-space for which the Poisson transform Pν
is a ∗-isomorphism, but the above proof only required a ∗-homomorphism. With this
in mind it is natural to ask which (G,µ)-spaces give rise to a ∗-homomorphism. A
necessary condition, by the above proposition, is that V takes values in the one-point
measures, but a simple computation shows that this is also a sufficient condition. In
other words, for any second countable (G,µ)-space (B, ν), the Poisson transformation
Pν : C(B)→ H∞luc(G,µ) is a ∗-homomorphism if and only if

gRn(ω).ν → g.δz(ω) P- a. s.,

for some measurable map z : Ω→ B. This leads to the definition of a µ-boundary.

Definition 3.10. A second countable (G,µ)-space (B, ν) is said to be a µ-boundary
if there exists a measurable map z : Ω → B, such that Rn(ω).ν converges to δz(ω),
for P-almost any ω ∈ Ω.
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As the properties of a µ-boundary (B, ν) solely rely on the measure ν and the
action of G, we will always assume that B has no proper G-invariant subset contain-
ing supp(ν). This precaution gives us control of the set B, which otherwise could
be made arbitrarily large and wild outside the reach of supp(ν) and its G-translates.
The following proposition shows that any compact, second countable G-space gives
rise to a µ-boundary, a result for which we omit the proof.

Proposition 3.11 (2.12, [9]). Let B be a second countable, compact G space, and let
µ be a Borel probability measure on G, for which the semigroup generated by supp(µ)
is all of G. Then P(B) contains a µ-boundary.

We will also introduce a small proposition regarding the map z : Ω → B corre-
sponding to the µ-boundary (B, ν).

Proposition 3.12. Let (B, ν) be a µ-boundary, with z : Ω→ B, such that Rn(ω).ν
converges to δz(ω), for ω ∈ Ω. Then ν is the distribution of the random variable z.

Proof. Let f ∈ C(B) be given. Then an application of the abstract change of variable
formula yields

z(P)(f) =

∫
Ω
f(z(ω)) dP(ω) =

∫
Ω

∫
B
f(x) dδz(ω)(x) dP(ω)

= lim
n→∞

∫
Ω

∫
B
f(Rn(ω).x) dν(x) dP(ω)

= lim
n→∞

∫
Ω

∫
B
f(g.x) dν(x) dRn(P)(g)

= lim
n→∞

∫
Ω

∫
B
f(g.x) dν(x) dµ∗n(g)

= lim
n→∞

µ∗n ∗ ν(f) = ν(f),

which proves the claim.

A consequence of this proposition is that any µ-boundary (B, ν) for which ν has
full support will also be contractible, as z(Ω) will be dense in B.

3.4 Universality of Πµ.

Besides being an example of a µ-boundary, the Poisson boundary also turns out to
be the largest amongst µ-boundaries, whenever the support of µ is sufficiently large.
By this, we mean that any µ-boundary can be obtained as an equivariant image of
Πµ. Throughout this section, we assume that the semigroup generated by µ is all of
G. The interest in this assumption is a consequence of the following proposition.

Proposition 3.13 ([9]). Let (B, ν) be a compact (G,µ)-space. Then supp(ν) is an
invariant set under the action of G.
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Proof. As each g ∈ G gives rise to an automorphism of B it suffices to show that
A = B\ supp(ν) isG-invariant. Let x ∈ A be given and pick an open set U containing
x and with ν(U) = 0. By µ-stationarity of ν we see that

0 = ν(U) = µ ∗ ν(U) =

∫
G
ν(g−1U) dµ(g).

Then ν(g−1U) = 0 for any g ∈ supp(µ), which again implies that g−1x ∈ A for all
g ∈ supp(µ). The first conclusion is that A is invariant under the action of supp(µ)−1.
For a general g ∈ G, we use our assumption on µ to pick g1, . . . , gn ∈ supp(µ) such
that g−1 = g1 · · · gn. Applying our first conclusion n times to an element x ∈ A, we
see that

gx = g−1
n .g−1

n−1 . . . g
−1
1 .x ∈ A.

In conclusion A and hence supp(ν) is G-invariant.

Thus, when the semigroup generated by supp(µ) is all of G, we will only consider
µ-boundaries where the measure has full support. Note that due to Proposition 3.4
this does not change the Poisson boundary Πµ. We are now ready for the main result
in the theory of the topological Poisson boundary

Theorem 3.14 ([9]). Assume that the semigroup generated by the support of µ is
all of G, and let (B, ν) be a µ-boundary. Then there exists a continuous, surjective,
G-equivariant map ϕ : Πµ → B, such that ϕ(ν) = ν.

Proof. As supp(ν) = B, the µ-boundary (B, ν) is also contractive and hence, the
Poisson transform Pν : C(B)→ H∞luc(G,µ) is an isometric, multiplicative embedding.
Then Φ: C(B) → C(Πµ), defined by Φ = P−1

ν ◦ Pν is an injective, multiplicative
map. With this in mind, consider Ψ: C(Πµ)∗ → C(B)∗ defined by

Ψ(ν)(f) = ν(Φ(f)), ν ∈ C(Πµ)∗, f ∈ C(B).

For any x ∈ Πµ, the multiplicative linear functional δx is mapped to a multiplicative
linear functional on C(B), since for x ∈ Πµ and f, g ∈ C(B),

Ψ(δx)(fg) = Φ(fg)(x) = (Φ(f)Φ(g))(x) = Φ(f)(x)Φ(g)(x) = Ψ(δx)(f)Ψ(δx)(g).

The C∗-algebra C(B) is commutative, so we know that for each x ∈ Πµ there exists
a unique y ∈ B such that Ψ(δx) = δy. By this argument, we define ϕ : Πµ → B,
such that Ψ(δx) = δϕ(x). To see that ϕ is continuous, let (xα)α∈A be a net in Πµ

converging to some x ∈ Πµ. Then for all f ∈ C(B),

f(ϕ(xα)) = Ψ(δxα)(f) = Φ(f)(xα)→ Φ(f)(x) = Ψ(δx)(f) = f(ϕ(x)),

and hence ϕ(xα) → ϕ(x). To show that ϕ is onto, assume in order to reach a
contradiction that is it not, and pick y0 ∈ B\ϕ(Πµ). By Urysohn’s Lemma, there
exists f ∈ C(B) such that f(y0) = 1 and f(y) = 0, for all y ∈ ϕ(Πµ) and hence

Φ(f)(x) = Ψ(δx)(f) = δϕ(x)(f) = f(ϕ(x)) = 0, x ∈ Πµ,
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i.e., Φ(f) = 0. As f by construction is non-zero and Φ is an isometry, this is a
contradiction, and thus, ϕ is onto.

Finally, it remains to prove that ϕ(ν) = ν, so let f ∈ C(B) be given. Then

ϕ(ν)(f) =

∫
Πµ

f(ϕ(x)) dν(x) =

∫
Πµ

δϕ(x)(f) dν(x)

=

∫
Πµ

Ψ(δx)(f) dν(x) =

∫
Πµ

Φ(f)(x) dν(x)

= Pν(Φ(f))(e) = Pν(f)(e) = ν(f).

As f ∈ C(B) was arbitrary, we conclude that ϕ(ν) = ν.

3.5 Measurable boundaries

In this section, we focus on measurable G-spaces and discuss constructions hereon,
which are analogous to the ones from the topological setting. Without a continu-
ous action from G on the space B, it no longer makes sense to consider the space
H∞luc(G,µ), but we will instead focus on H∞ρ (G,µ), for some Borel probability mea-
sure ρ on G equivalent to the Haar measure λ. This ensures that ρ, ρ ∗ τ and τ ∗ ρ
are equivalent for all τ ∈ P(G). Thus, for the remainder of this section, ρ will be
such a measure on G. Note that this also implies H∞ρ (G,µ) ∼= H∞a.s.(G,µ).

Just as for f ∈ H∞luc(G,µ) in the topological case, every f ∈ H∞ρ (G,µ) gives rise
to a bounded martingale (f(Rn))n≥1 with respect to the filtration (Fn)n≥1, where
Fn = σ(X0, X1, . . . , Xn−1), n ≥ 1. In fact, there is an isometric bijection from
H∞ρ (G,µ) to the set

I∞ρ := {Z ∈ L∞(G× Ω, ρ⊗ P) | Z(g, ω) = Z(gX0(ω), T (ω)), ρ⊗ P− a.s.}.

The argument here is identical to that of Section 2.3, but we can no longer be sure
to identify µ-harmonic functions pointwise, only ρ-almost surely.

The first approach to defining a measurable Poisson boundary mimics the one in
the topological case. Here it is known that L∞(G× Ω, ρ⊗ P) is a commutative von
Neumann algebra in the weak∗-topology, when viewed as the dual of L1(G×Ω, ρ⊗P).
The next step is to show that I∞ρ is a weak∗-closed subset of L∞(G×Ω, ρ⊗P), such
that itself becomes a von Neumann algebra. For this let (Zα)α∈A be a net in I∞ρ
converging to some Z in L∞(G×Ω, ρ⊗ P), with respect to the weak∗-topology, i.e.,∫

G×Ω
|Zα − Z| · |f |dρ⊗ P→ 0,

for all f ∈ L1(G × Ω, ρ ⊗ P). To ease notation let θ̃ : G × Ω → G × Ω denote the
map θ̃(g, ω) = (gX0(ω), T (ω)), with (g, ω) ∈ G × Ω. We are left with showing that
Z = Z ◦ θ̃, ρ⊗ P-a.s. For any α ∈ A, we have∫

|Z − Z ◦ θ̃|dρ⊗ P ≤
∫
|Z − Zα| dρ⊗ P +

∫
|(Z − Zα) ◦ θ̃|dρ⊗ P

=

∫
|Z − Zα| dρ⊗ P +

∫
|Z − Zα|dθ̃(ρ⊗ P).
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The first of these integrals converges to zero, since the constant function 1 lies in
L1(G ⊗ Ω, ρ ⊗ P). For the second integral, we notice that θ̃(ρ ⊗ P) = (ρ ∗ µ) ⊗ P,
which by assumption on ρ must be absolutely continuous with respect to ρ⊗P. This
gives us a map ϕ ∈ L1(G × Ω, ρ ⊗ P), such that ϕ is the density of θ̃(ρ ⊗ P) with
respect to ρ⊗P. Applying the weak∗-convergence of (Zα)α∈A to the second integral
above, this will also converge to zero and hence Z ∈ I∞ρ .

In particular, I∞ρ is a commutative von Neumann algebra, and hence it is iso-
morphic to L∞(Πρ

µ, νρ) for some probability space (Πρ
µ, νρ). The space (Πρ

µ, νρ) is
called the measurable Poisson boundary. Not also that Proposition 2.7 also applies
to H∞a.s.(G,µ), and hence if G is abelian and the semigroup generated by supp(µ) is
all of G, then Πρ

µ is a singleton.

Even though we have proved the existence of the measurable Poisson boundary
(Πρ

µ, νρ), we would prefer a more explicit realisation of this abstractly constructed
probability space. All along, the requirement is that the bounded measurable func-
tions on it coincides with I∞ρ . In order to compare such spaces of bounded measurable
functions on different probability spaces, we will introduce a series of lemmas, the
first of which is a basic measure theoretic tool to characterise functions that are
almost surely equal.

Lemma 3.15. Let (X,F , µ) be a probability space and let f, g : X → C be two
measurable functions. Then f = g µ-a.e. if and only if

µ(f−1(A)∆g−1(A)) = 0,

for all Borel sets A ⊂ C.

Proof. Assume first that f = g µ-a.e. and consider A ⊂ C Borel. Then

µ(f−1(A)∆g−1(A)) =

∫
X
|1A(f(x))− 1A(g(x))|dµ(x)

=

∫
{f=g}

|1A(f(x))− 1A(g(x))| dµ(x) = 0.

For the converse, assume that f and g are not equal µ-a.e., and pick k ∈ N so that

Nk = {x ∈ X | |f(x)− g(x)| > 1/k}

has strictly positive measure. As C is a separable metric space, we can construct a
sequence (Aj)j≥1 of pairwise disjoint Borel sets in C, with diam(Aj) < 1/k for all
j ∈ N and whose union is all of C. Simply pick the balls of radius 1/(2k) around each
point in a countable dense subset and make them disjoint in your favorite measure
theoretic manner. Then (Nk ∩ f−1(Aj))j≥1 constitutes a countable partition of Nk,
so pick j0 such that µ(Nk ∩ f−1(Aj0)) > 0. As |f(x)− g(x)| > 1/k for every x ∈ Nk,
it is easy to see that x ∈ Nk ∩ f−1(Aj0) implies x /∈ g−1(Aj0) and hence

Nk ∩ f−1(Aj0) = Nk ∩ (f−1(Aj0)\g−1(Aj0)).
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From here on it is a matter of applying monotonicity of µ, to obtain

0 < µ(Nk ∩ f−1(Aj0)) = µ(Nk ∩ (f−1(Aj0)\g−1(Aj0)))

≤ µ(Nk ∩ (f−1(Aj0)∆g−1(Aj0))) ≤ µ(f−1(Aj0)∆g−1(Aj0)),

which, by contraposition proves the claim.

The next result revolves around the question of when two sub-σ-algebras on a
probability space generate the same bounded measurable functions. We start out by
considering a probability space (X,F , µ), with G,H ⊂ F . We say that G and H are
equal µ-a.e. if for every A ∈ G there exists B ∈ H with µ(A∆B) = 0 and vice versa.

Lemma 3.16. Let (X,F , µ) be a probability space with G,H ⊂ F . If G = H µ-a.e.
then

L∞(X,G, µ) = L∞(X,H, µ).

Proof. This proof follows the classical three step strategy of going through char-
acteristic functions, simple functions and finally measurable functions in general.
For A ∈ G and B ∈ H with µ(A∆B) = 0, it is evident by the previous lemma
that 1A and 1B are equal µ-a.s. In addition, if B,B′ ∈ H are given such that
µ(A∆B) = µ(A∆B′) = 0, then

0 ≤ µ(B∆B′) = µ((B∆A)∆(A∆B′)) ≤ µ(B∆A) + µ(A∆B′) = 0,

and hence, 1B = 1B′ µ-a.s. These considerations give rise to a bijective corre-
spondence between the characteristic functions in L∞(X,G, µ) and L∞(X,H, µ) re-
spectively. From here we obtain a natural isometric isomorphism between the sim-
ple functions in these two spaces, which extends to an isometric isomorphism from
L∞(X,G, µ) to L∞(X,H, µ) as desired.

Realisations of the measurable Poisson boundary

Going back to the definition of I∞ρ , we start out by considering the space G×Ω
equipped with the natural Borel product σ-algebra A and the probability measure
ρ ⊗ P, where P =

⊗∞
i=0 µ. This measure represents an initial distribution of ρ and

the i.i.d. distributions for the construction of the random walk. We can now consider
the completion of A, denoted by A, instead of A, as this, due to Proposition 3.16,
will not change the measurable functions. Consider now the map S : G×Ω→ G×Ω
given by

S(g, ω) = (g, gω0, gω0ω1, . . . ), g ∈ G,ω = (ω0, ω1, . . . ) ∈ Ω,

describing the paths of the random walk. Furthermore, we let Pρ denote the image
measure S(ρ⊗ P), i.e., Pρ is the distribution of the random walk (Rρn)n≥0. Similarly
we let Pg denote the measure S(δg⊗P). Before moving on to the specific construction,
one should note that S is a bijection with inverse function

S−1(h, η) = (h, h−1η0, η
−1
0 η1, η

−1
1 η2, . . . ), h ∈ G, η = (η0, η1, . . . ) ∈ Ω.

35



3.5 Measurable boundaries 3 BOUNDARIES

Stationary boundary

The first goal is to identify I∞ρ with the measurable functions on G×Ω with respect to
a certain σ-algebra. For this we introduce the transformations T, θ̃ : G×Ω→ G×Ω,
given by T (g, ω0, ω1, . . . ) = (ω0, ω1, . . . ) and θ̃(g, ω0, ω1, . . . ) = (gω0, ω1, ω2, . . . ),
respectively. In this way, Z ∈ I∞ρ if it belongs to L∞(G × Ω, ρ ⊗ P) and satisfies
Z = Z ◦ θ̃. Notice also that T = S ◦ θ̃ ◦S−1, so if Z ∈ I∞ρ , then the map Z̃ = Z ◦S−1

satisfies Z̃ = Z̃ ◦ T . Indeed,

Z̃ ◦ T = Z ◦ S−1 ◦ T = Z ◦ θ̃ ◦ S−1 = Z ◦ S−1 = Z̃.

Finally, notice that T (Pρ) = Pρ∗µ, so Pρ is T -quasi invariant and hence I∞ρ is iso-
morphic to the function space L∞(G× Ω,AT ,Pρ), where AT consists of the sets in
A ∈ A, such that Pρ(A∆T−1(A)). Equivalently, we could use the σ-algebra

IT = {A ∈ A | A = T−1(A)},

as these σ-algebras are equal Pρ-a.e. We could stop the construction at this point,
but the σ-algebra AT is somewhat unnaturally small for the set G×Ω, in the sense
that it will most likely not even separate points of G× Ω. We can not hope to find
a larger σ-algebra equal to AT modulo Pρ, but we can find a smaller space instead.

We start out by defining an equivalence relation ∼ on G × Ω by x ∼ x′ if and
only if there exists n, n′ ≥ 0 such that Tnx = Tn

′
x′. This allows us to construct the

quotient space S = (G × Ω)/ ∼, which will be our space of interest. As G acts on
G×Ω by multiplying from the left on each coordinate, it is clear that x ∼ x′ if and
only if g.x ∼ g.x′, for all g ∈ G, so it induces an action of G on S by g.[x]∼ = [g.x]∼,
where [x]∼ denotes the equivalence class containing x and g is an element of G.

We also want to equip S with the structure of a probability space, so let π denote
the projection from G×Ω to S, i.e., the map π(x) = [x]∼. We define a σ-algebra F
on S by A ∈ F if and only if π−1(A) ∈ IT . Note that each equivalence class [a]∼ ∈ S
belongs to IT , as Tx ∼ x for all x ∈ G× Ω, so

x ∈ [a]∼ ⇐⇒ x ∼ a ⇐⇒ Tx ∼ a ⇐⇒ Tx ∈ [a] ⇐⇒ x ∈ T−1([a]∼),

and hence F separates points in S. On the other hand, let x ∼ x′ in G × Ω be
given and let n,m ≥ 0 be such that Tnx = Tmx′. If x 6= x′, we can without loss
of generality assume that n = m+ k for some k ≥ 1 and hence Tnx′ = T k(Tm(x)).
From here it follows that if x ∈ A for A ∈ IT , then x′ ∈ A. Then any A ∈ IT can
be written as a disjoint union of equivalence classes of ∼, so there is a one-to-one
correspondence between IT and F , through π. Equipping (S,F) with the image
measure αρ = π(Pρ), we obtain an isomorphism

L∞(G× Ω, IT ,Pρ) ∼= L∞(S,F , αρ).

Indeed, we showed that the sets in IT do not separate equivalence classes of ∼, so
every measurable functions must be constant on each equivalence class Pρ-a.s. and
thus induces a unique map in L∞(S,F , αρ).

Note that the space (S,F , αρ) has the same properties fulfilled by (Πρ
µ, νρ). We

will call (S, αρ) the stationary boundary.

36



3.5 Measurable boundaries 3 BOUNDARIES

Exit boundary

A similar approach is to consider the σ-algebra A∞ on G× Ω, given by

A∞ =
∞⋂
n=1

σ(Rn, Rn+1, . . . ).

This σ-algebra is sometimes referred to as the tail σ-algebra of the random walk
(Rn)n≥0. Let us investigate the sets in here, so let A ∈ A∞. By definition of Pρ, we
know that Pρ-a.e. x ∈ A is on the form

x = (g, gR0(ω), gR1(ω), gR2(ω), . . . ),

for some g ∈ G and ω ∈ Ω. The fact that A ∈ σ(Rn, Rn+1, . . . ) will then ensure the
existence of Borel sets A1, A2, . . . in G, such that

A = G× · · ·G×A1 ×A2 × · · ·

with n + 1 copies of G in the beginning of the above product. This is the same as
the existence of a B ∈ A with T−(n+1)(B) = A. Thus, the σ-algebra{

A ⊂ G× Ω Borel set
∣∣ ∃(An)n≥1 in A such that T−n(An) = A

}
will coincide with A∞ modulo Pρ, i.e., they generate the same bounded measurable
functions. The following proposition shows that A∞ also coincides with IT modulo
Pρ, and hence we have the isomorphism

L∞(G× Ω, IT ,Pρ) ∼= L∞(G× Ω,A∞,Pρ).

Proposition 3.17. The σ-algebras A∞ and IT are equal Pρ-a.e.

Proof. It is clear that IT is contained in A∞, as any A ∈ IT satisfy A = T−n(A) for
all n ∈ N, so we may just pick the sequence (An)n≥1 to be constantly equal to A.
Let us now focus on the other implication. As these constructions solely depend on
whether certain functions are µ-harmonic or not, we can without loss of generality
assume that µ and µ∗2 are not mutually singular due to Proposition 2.10, or in other
words that

‖µ− µ∗2‖ < 2.

Using the zero-two law (Theorem B.2), we are allowed to conclude that

‖µ∗p − µ∗(p+1)‖ → 0,

when p→∞, a fact that will come in handy later. Let now A ∈ A∞ be given, with
(An)n≥1 in A such that A = T−n(An) for all n ∈ N. Note that this also gives us
T−1(An+1) = An for all n ∈ N. Next, we define a family of maps (fn)n≥1, such that
fn : G→ R is given by

fn(g) = Eg(1An),

where Eg denotes the expectation with respect to the measure Pg. We could instead
have written fn(g) = Pg(An), but the approach using expectations will be more
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useful in a moment. It is not difficult to see, that |fn(g)| ≤ 1 for all n ∈ N, g ∈ G,
but what is more important, each fn turns out to be µ-harmonic. To prove this, we
will first of all show that fn = Pµ(fn+1), so let g ∈ G be given. Then

fn(g) = Eg(1An) = Eg(1An+1 ◦ T ) =

∫
G×Ω

1An+1 dT (Pg).

As seen earlier T (Pg) = Pδg∗µ, which may also be written as g.(µ ∗ Pe) and hence,

fn(g) =

∫
G×Ω

1An+1(gh, gω) dµ ∗ Pe(h, ω)

=

∫
G×Ω

∫
G×Ω

1An+1(gω0, gω0ω
′) dPe(h, ω′) dµ(ω0)

=

∫
G×Ω

∫
G×Ω

1An+1(gω0h, gω0ω
′) dPe(h, ω′) dµ(ω0)

=

∫
G×Ω

∫
G×Ω

1An+1(gω0h, gω0ω
′) dPe(h, ω′) dPe(h′, ω)

=

∫
G×Ω

∫
G×Ω

1An+1(gR1(h′, ω)h, gR1(h′, ω)ω′) dPe(h, ω′) dPe(h′, ω)

=

∫
G×Ω

∫
G×Ω

1An+1(h, ω′) dPR1(g,ω)(h, ω
′) dPg(h′, ω)

= Eg(ER1(1An+1)) = Eg(fn+1(R1))

=

∫
G×Ω

fn+1(gR1(ω)) dPe(ω) =

∫
G
fn+1(gx) dµ(x) = Pµ(fn+1)(g)

This is not quite enough, but taking our application of the zero-two law into play,
we will for each g ∈ G have

|fn+1(g)− fn(g)| ≤ ‖P pµ(fn+p+1)− P p+1
µ (fn+p+1)‖ ≤ ‖µ∗p − µ∗(p+1)‖.

As the latter norm above tends to zero as p→∞, we conclude that fn = fn+1 for each
n ∈ N. If we let f0 denote this common function, then f0(g) = Eg(1A). Furthermore
f0 will be an element of H∞ρ (G,µ) and thus give rise to a unique Z ∈ I∞ρ such that
f0(g) = E(Z(g, ·)) ρ-almost surely. We may then consider Z̃ ∈ L∞(G × Ω,AT ),
defined as Z̃ = Z ◦ S−1, and see that

f0(g) = E(Z(g, ·)) =

∫
Ω
Z(g, ω) dP(ω)

=

∫
G×Ω

Z(h, ω) dδg ⊗ P(h, ω)

=

∫
G×Ω

Z̃(h, ω) dS(δg ⊗ P)(h, ω)

=

∫
G×Ω

Z̃(h, ω) dPg(h, ω) = Eg(Z̃).

By uniqueness of Z, we must then have 1A = Z̃, Pρ-almost surely or in other words
1A ∈ L∞(G× Ω,AT ). This happens if and only if Pρ(A∆T−1(A)), thus completing
the proof.
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Once again, A∞ is a very small σ-algebra on G × Ω, so we seek to construct a
more useful quotient space generating the same bounded measurable functions. For
this we consider the equivalence relation ≈ on G× Ω given by x ≈ x′ if and only if
there exists n ≥ 0, such that Tnx = Tnx′. Let E denote the quotient (G × Ω)/ ≈
along with a projection πE : G× Ω→ E .

As with the stationary boundary, we equip E with the σ-algebra FE of sets with
preimages in A∞ through πE and the image measure αρ,E = πE(Pρ). Our aim in this
setting is to show that [x]≈ ∈ A∞ for any x ∈ G × Ω and that every A ∈ A∞ is a
disjoint union of equivalence classes under ≈. This will give us a probability space
with a σ-algebra that separates points and whose bounded measurable functions
coincide with the ones of the measurable Poisson boundary. For the first property
let x ∈ G× Ω be given. Then

[x]≈ = {x′ ∈ G× Ω | ∃n ≥ 0 : Tnx = Tnx′},

and thus, [x]≈ = T−n(An) for any n ≥ 0, with

An = {x′ ∈ G× Ω | ∃k ≥ n : T kx = T kx′}.

For the second part, i.e., to prove that A ∈ A∞ is a disjoint union of equivalence
classes, it suffices to show that x ∈ A implies [x]≈ ⊂ A. For this consider x ∈ A and
x′ ∈ [x]≈, with n ≥ 1 such that Tnx = Tnx′. With A = T−n(An) for some Borel
set An, we see that Tnx′ ∈ An, i.e. x′ ∈ T−n(An) = A. This gives a one-to-one
correspondence between A∞ and FE and hence

L∞(E ,FE , αρ,E) ∼= L∞(G× Ω,A∞,Pρ).

The probability space (E , αρ,E) is called the exit boundary of (G,µ).

Strongly approximatively transitive measures

After studying the measurable Poisson boundary, we could also try to extend the
notion of a contractible (G,µ)-space and µ-boundaries to the measurable setting.
In the topological case, a contractible (G,µ)-space (B, ν) was characterised by the
Poisson transform Pν : C(B)→ H∞luc(G,µ) being an isometry. It is at this point that
the strong measurable spaces, a notion developed in Section 2.6, comes into play

Proposition 3.18. Let (B, ν, α) be a strong measurable space (G,µ). Then the
following are equivalent

1. The convex hull of G.ν is dense in the space of the Borel probability measures
on B, who are absolutely continuous with respect to α.

2. For each Borel set A ⊂ B with α(A) > 0 and each ε > 0, there exists g ∈ G,
such that ν(g.A) > 1− ε.

3. Pν is an isometry from L∞(B,α) into H∞a.s.(G,µ).
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Proof. Let us start out by assuming that the convex hull of G.ν is dense in the set of
Borel probability measures on B which are absolutely continuous with respect to α.
We wish to show that (2) is satisfied, so let A be a Borel subset of B with α(A) > 0,
and let ε > 0 be given. Let β denote the normalised restriction of α to A, that is
the measure with density ϕ ∈ L(B,α) given by

ϕ(b) = α(A)−11A(b), b ∈ B.

By assumption there exists a convex combination
∑n

i=1 pigi.ν, i.e., g1, . . . , gn ∈ G
and p1, . . . , pn ∈ (0, 1) satisfying

∑n
i=1 pi = 1, such that∥∥∥∥β − n∑
i=1

pigi.ν

∥∥∥∥ < ε.

By definition of β we conclude that

1−
n∑
i=1

piν(gi.A) = β(A)−
n∑
i=1

pigi.ν(A) < ε,

and hence ν(gi.A) > 1− ε for some i ∈ {1, . . . , n}. For the next implication assume
that 2. holds true, and let us show that Pν : L∞(B,α) → L∞(G,µ) is an isometry.
This argument will follow the traditional measure theoretic form, by considering
characteristic functions, then simple functions and finally extending to all measurable
functions.

For a Borel set A in B with α(A) > 0, we know that ‖1A‖∞ = 1, when 1A is
viewed as function in L∞(B,α). By 2., we see that

‖Pν(1A)‖∞ = sup
g∈G

∫
B

1A(g.b) dν(b) = sup
g∈G

ν(g−1.A) = 1,

and hence Pν acts as an isometry on the characteristic functions. To continue from
here let ϕ =

∑n
i=1 αi1Ai be a simple function in L∞(B,α). We can without loss

of generality assume that A1, . . . , An are disjoint sets with α(Ai) > 0, α1 = 1 and
max1≤i≤n |αi| ≤ 1. Note that this also implies ‖ϕ‖ = 1.

Let ε > 0 be given and pick g ∈ G, such that ν(g.A1) > 1 − ε and hence also∑n
i=2 ν(g.Ai) ≤ ε. Then

Pν(ϕ)(g−1) = ν(g.A1) +
n∑
i=2

αiν(g.Ai) ≥ ν(g.A1) +
n∑
i=2

ν(g.Ai) > 1− 2ε.

As ε > 0 was arbitrary, we see that ‖Pν(ϕ)‖∞ = 1, so Pν acts as an isometry on the
simple functions in L∞(B,α). By density of the simple functions in L∞(B,α), we
conclude that Pν is an isometry from L∞(B,α) to L∞(G,λ).

In order to prove that 3. implies 1. we start out by looking at the convex hull of
G.ν. First of all, the quasi-invariance of α ensures that g.ν is absolutely continuous
with respect to α, so 1. makes sense. To ease notation, we let L1

1(B,α) denote the
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set of such measures. For a g ∈ G, the measure g.ν can also be written as δg ∗ ν, so
the convex hull of G.ν can be written as the set

{β ∗ ν | β is a convex combination of Dirac measures in G},

which we will denote by M . In order to reach a contradiction, we will now assume
that M is not dense in and pick ρ ∈ L1

1(B,α)\M . By the Hahn-Banach theorem,
there exists f ∈ L∞(B,α) and ε > 0 such that

β ∗ ν(f) ≤ ρ(f)− ε ≤ ‖f‖∞ − ε,

for all β in the convex hull of δG. In particular, δg ∗ ν(f) ≤ ‖f‖∞ − ε for all g ∈ G,
and since δg ∗ν(f) = g.ν(f) = Pν(f)(g), we conclude that ‖Pν(f)‖∞ < ‖f‖∞, which
contradicts Pν being an isometry.

We say that a measure ν on a measurable G-space is strongly approximately tran-
sitive, abbreviated as SAT, if it satisfies one of the equivalent conditions in Proposi-
tion 3.18. In this way a strongly measurable space (B, ν, α) gives rise to an isometric
Poisson transform Pν : L∞(B,α)→ L∞(G,µ) if and only if ν is SAT .

Measurable µ-boundaries

The motivation for µ-boundaries in the topological case were to ensure that the
Poisson transform was a ∗-homomorphism. Namely, we showed that this was the
case if and only if there exists a map z : Ω→ B, such that Rn(ω).ν → δz(ω) for P-a.e.
ω ∈ Ω. It is this latter property that we will imitate in the measurable case. As
we have moved to the measurable case, we will have to account for the measure ρ,
which is still a probability measure on G equivalent to λ.

Definition 3.19. Let (B, ν) be a weak measurable (G,µ) space. Then (B,µ) is a
measurable µ-boundary if there exists a measurable map z : (Ω,P) → (B, ν) such
that gRn(ω).ν(ϕ)→ ϕ(g.z(ω)), for ρ⊗ P-a.e (g, ω) ∈ G× Ω and all ϕ ∈ (B, ν).

There are two results regarding measurable µ-boundaries that we want to show
in this section. First of all, we want to show that the Poisson boundary is a µ-
boundary, thus justifying the generalisation, but also that any other measurable µ-
boundary is a G-equivariant image of the Poisson boundary. That the first assertion
is true follows analogous from the topological case and in addition, by considering
the stationary boundary (S, αρ) as a realisation of the Poisson boundary, the only
choice of z : (Ω,P)→ (S, αρ) is z(ω) = [(e, (Rn(ω)n≥0))]∼. Secondly, the measurable
Poisson boundary is universal among measurable µ-boundaries, as seen below.

Proposition 3.20. Let (B, ν) be a measurable µ-boundary. Then there exists a G-
equivariant map from the stationary Poisson boundary (S, αρ) to B, which maps αρ
to ν.

Proof. Let z : (Ω,P)→ B be the map corresponding to (B, ν). Define Z : G×Ω→ B,
by Z(g, ω) = g.z(ω). Then Z is θ̃-invariant, where θ̃ : G × Ω → G × Ω is the map
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defined earlier by θ̃(g, ω) = (gω0, T (ω)). Indeed for any ϕ in L∞(B, ν), we may used
the assumed convergence to obtain

ϕ(Z ◦ θ̃(g, ω)) = ϕ(Z(gω0, T (ω))) = ϕ(gω0.z(T (ω)))

= lim
n→∞

∫
B
ϕ(gω0Rn(T (ω)).x) dν(x)

= lim
n→∞

∫
B
ϕ(gRn(ω).x) dν(x) = ϕ(g.z(ω)) = ϕ(Z(g, ω)),

and hence Z◦ θ̃(g, ω) = Z(g, ω) almost surely. From here on, we use the construction
of the stationary boundary, to obtain an induced map Z̃ : (S, αρ) → (B, ν). More
precisely, Z̃ is defined by Z̃([(h, y)]∼) = Z ◦ S−1(h, y) for (h, y) ∈ G × Ω. Since
Pρ-a.e. (h, y) ∈ G × Ω is on the form (h, hω0, hω0ω1, . . . ), for some ω ∈ Ω, we get
the desired G-equivariance, as

g.Z̃([(h, y)]∼) = g.(Z ◦ S−1)(h, y) = g.Z((h, ω)) = gh.z(ω)

= Z(gh, ω) = Z ◦ S−1((gh, gy)) = Z̃(g.[(h, y)]∼),

holds true for any g ∈ G. Analogous to the topological case, the distribution of the
map z is exactly ν, so for the final part, it suffices to show that z = Z̃(z′), where
z′ : (Ω,P)→ (S, αρ) is defined as z′(ω) = [(e, (Rn(ω))n≥0)]∼. Fortunately this is not
very difficult, as

Z̃(z′(ω)) = Z̃([(e, (Rn(ω)))]∼) = Z((e, ω)) = z(ω),

for any ω ∈ Ω, thus proving the claim.
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4 Entropy

The purpose of this section is to apply the information theoretic concept of entropy
both to probability measures, and to partitions of a probability space, and see how
this relate to the behaviour of the measurable Poisson boundary. This type of entropy
is sometimes referred to as the Shannon entropy, in order to distinguish it from the
thermodynamical notion of entropy. The theory covered here can be found in [16],
and in more details in [25]. We will throughout this section assume that our group
G is discrete and countable. In order to ease notation, given a probability measure
µ on G and x ∈ G, we let µ(x) denote the measure of the singleton {x}.

In order to understand the concept of entropy, we first need to discuss the notion
of information. The idea here is to play a game of two persons. Let (X,F , µ) be
a probability space and assume that the first player knows the probability of each
set in F . The second player will now pick an element x ∈ X and then inform the
first player of a set A ∈ F which contains x. The question at hand is how much the
first player learns about the element x through the mentioning of A. The following
requirements seems justifiable:

• The information should always be positive.

• If the surrounding event A has full measure, we do not get any information
about the element.

• If the element is contained in two independent events, the information corre-
sponding to this intersection should correspond to the the sum of the respective
amounts of information.

In order to turn these ideas into a formal setting, we aim to define a map
I : [0, 1]→ R, such that I(µ(A)) represents the information obtained from the set A.
The properties above can then be describes as follows:

• I ≥ 0, i.e., I(µ(A)) ≥ 0 for all A ∈ F .

• I(1) = 0, i.e., I(µ(A)) = 0 for A ∈ F with µ(A) = 1.

• I(p1p2) = I(p1) + I(p2) for p1, p2 ∈ [0, 1], i.e., for every pair of independent
events A and B, we have I(µ(A ∩B)) = I(µ(A)) + I(µ(B)).

The customary choice of this function is I(t) = − log(t) for t ∈ (0, 1] and the
value zero in t = 0. As alternative choices one could have multiplied I with any
positive number, but we stick with the customary choice. We are now ready to
define the entropy of a measure µ, denoted by H(µ).

Definition 4.1. The entropy of a probability measure µ on a measurable space
(X,F) is defined as the average amount of information, where the average is to be
thought of as the expected value of information given by the measure µ.

In the case when µ ∈ P(G), the average of information can be expressed as
follows H(µ) = −

∑
g∈G µ(g) log(µ(g)), with the convention that 0 · log(0) = 0. This

quantity might be finite, but it could just as well be infinite.
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Remark 4.2. The existence of a measure on G with infinite entropy is a non-trivial
fact. If we go through our favorite discrete distributions on N, they will probably all
have finite entropy, but let us look at an example of a measure with infinite entropy.
Following [3], we let g1, g2, . . . be an enumeration of our countable, discrete group
G, and consider the Borel probability measure µ on G, defined by

µ(gn) =
1

log2(n+ 1)
− 1

log2(n+ 2)
, n ≥ 1,

where log2 denotes the logarithm with base 2. This is indeed a probability mea-
sure, as the infinite series

∑∞
n=1 µ(gn) is a telescoping sum leaving only the term

1/ log2(2) = 1. Then H(µ) =∞.

The first result regarding the entropy is the fact that H(µ⊗µ′) = H(µ) +H(µ′),
for µ, µ′ ∈ P(G). Indeed,

H(µ⊗ µ′) = −
∑

(x,x′)∈G×G

µ⊗ µ′(x, x′) log(µ⊗ µ′(x, x′))

= −
∑
x∈G

∑
x′∈G

µ(x)µ′(x′) log(µ(x)µ′(x′))

= −
∑
x′∈G

∑
x∈G

µ′(x′)µ(x) log(µ(x))−
∑
x∈G

∑
x′∈G

µ(x)µ′(x′) log(µ′(x′))

= −
∑
x∈G

µ(x) log(µ(x))−
∑
x′∈G

µ′(x′) log(µ′(x′)) = H(µ) +H(µ′).

After multiplying two elements of G, we are unable to retrieve the original el-
ements and thus, we expect that the information of a convolution is less than the
information of the product measure. This is indeed the case.

Proposition 4.3. Let µ, µ′ be probability measures on G with finite entropy. Then
H(µ ∗ µ′) is less than or equal to H(µ) +H(µ′).

Proof. This proof is not particularly deep, but merely a series of calculations using
that µ, µ′ are probability measures and that the logarithm is an increasing function.
More precisely,

H(µ ∗ µ′)−H(µ) = −
∑
g∈G

µ ∗ µ′(g) log(µ ∗ µ′(g))−
∑
g∈G

µ′(g)H(µ)

= −
∑
g∈G

∑
h∈G

µ(h)µ′(h−1g) log

( ∑
h′∈G

µ(h′)µ′(h′−1g)

)
+
∑
g∈G

∑
h∈G

µ′(g) log(µ(h))µ(h)

≤ −
∑
g∈G

∑
h∈G

µ(h)µ′(h−1g) log(µ(h)µ′(h−1g))

+
∑
g∈G

∑
h∈G

µ′(g) log(µ(h))µ(h)
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= −
∑
g∈G

∑
h∈G

µ(h)µ′(h−1g)
[

log(µ(h)) + log(µ′(h−1g))
]

+
∑
g∈G

∑
h∈G

µ′(g) log(µ(h))µ(h)

= −
∑
g∈G

∑
h∈G

µ(h) log(µ(h))
[
µ′(h−1g)− µ′(g)

]
+
∑
h∈G

∑
g∈G

µ(h)µ′(h−1g) log(µ′(h−1g))

= −
∑
g∈G

∑
h∈G

µ(h) log(µ(h))

[∑
g∈G

µ′(h−1g)−
∑
g∈G

µ′(g)

]
−
∑
h∈G

∑
g∈G

µ(h)µ′(g) log(µ′(g)).

As µ′ is a probability measure the first term in the final line above equals zero,
and since µ is a probability measure the second term is simply equal to H(µ′), thus
completing the proof.

With this result, the sequence (hn)n≥1 given by hn = H(µ∗n) is subadditive, i.e.,
hn+m ≤ hn + hm for n,m ≥ 1, and hence the limit

h(G,µ) := lim
n→∞

hn
n

exists. The quantity h(G,µ) is called the entropy of the pair (G,µ). The main goal
of this section is to prove that under the assumption that µ ∈ P(G) has finite en-
tropy, the condition h(G,µ) = 0 is equivalent to triviality of the measurable Poisson
boundary. This is called the entropy criteria for triviality of the Poisson boundary.
The proof of this uses the realisation of the Poisson boundary as the exit boundary,
through the study of partitions and entropy.

4.1 Entropy of partitions

In the following, we will perform a lot of work with partitions of sets, so let us first
settle some basic notation and constructions. If ξ is a partition of a set X, we let
ξ(x) denote the atom of ξ which contains x ∈ X, that is, ξ(x) is the equivalence
class of x with respect to ξ. We will also consider a partial ordering ≤ of partitions,
defined as follows:

ξ ≤ ξ′ if ξ(x) ⊃ ξ′(x) for any x ∈ X.

Given two partitions ξ, η of the same set X, we define their greatest lower bound ξ∧η
to be the largest partition of X which is coarser than both ξ and η. Similarly, we let
ξ∨η denote the smallest upper bound of ξ, η, which is the partition (ξ(x)∩η(x))x∈X ,
or the coarsest partition of X which is finer than both ξ and η. Extending these
notions, given an ascending chain ξ1 ≤ ξ2 ≤ . . . of partitions of X, we let

∨∞
n=1 ξn

denote the smallest upper bound of the sequence (ξn)n≥1, and analogously,
∧∞
n=1 ηn

denotes the greatest lower bound of a descending chain η1 ≥ η2 ≥ . . . . In the
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first case, we say that ξn ↗ ξ :=
∨∞
i=1 ξi, and in the second case, we say that

ηn ↘ η :=
∧∞
i=1 ηi.

Another important construction regarding partitions arises when we consider a
partition ξ of a set X and a subset B ⊂ X. Then ξB denotes the partition of B
induced by ξ, i.e., ξB(x) = ξ(x) ∩ B for all x ∈ X. When looking at partitions of a
set X, we always have two canonical partitions at each end of the hierarchy induced
by our ordering. We have the trivial partition consisting only of the atom X, which
we denote by Ξmin, but also the discrete partition of the space into singletons, which
we will denote by Ξmax. The mindful reader may at this point guess that the purpose
of this section is to show that the partition ≈ from the exit boundary is equal to
Ξmin if and only if h(G,µ) = 0. This is, indeed, the case.

To do so we focus our attention on partitions of a complete probability space
(X,F , µ). More precisely, we consider the so-called measurable partitions. A parti-
tion ξ of X is said to be measurable, if there exists a countable family (Bn)n≥1 of
subsets in ξ, i.e., each Bn is a union of atoms from ξ, such that for every A,B ∈ ξ
there exists n ≥ 1 satisfying

A ∈ Bn, B /∈ Bn or A /∈ Bn, B ∈ B.

The sets B1, B2, . . . are said to be a basis for ξ. Clearly, any countable partition is
measurable, but measurable partitions will in general be larger. They are however
not arbitrarily large, and will for example appear as limits of finite partitions.

Let ξ be a measurable partition ofX, and let B1, B2, . . . be a basis for ξ. Consider
for each n ≥ 1 the partition βn of X consisting of the atoms Bn and Bc

n. We define
a new sequence of partitions (ξn)n≥1 by ξn =

∨n
i=1 βi, i.e., any atom A ∈ ξn is on

the form
A = C1 ∩ · · · ∩ Cn,

where Ck ∈ {Bk, Bc
k}. The sequence (ξn)n≥1 is increasing and its limit is ξ.

We will also say that two partitions ξ, η are equal µ-a.s. if µ(ξ(x)∆η(x)) = 0,
for all x ∈ X. By the discussion from Section 3.5, we will not distinguish between
two partitions that are almost equal and thus we will simply view them as the same
partition. We are now ready for the definition of entropy in the setting of partitions:

Definition 4.4. Let ξ be a measurable partition of a complete probability space
(X,F , µ), and let C1, C2, . . . be the atoms of ξ with strictly positive measure. Note
that there are at most countably many such atoms. We define the entropy of ξ,
denoted by H(ξ), to be the quantity

H(ξ) =

{
−
∑∞

n=1 µ(Cn) log(µ(Cn)), µ
(
X\
⋃
n≥1Cn

)
= 0

∞ otherwise

This definition is a generalisation of the one of entropy of a measure on G, since
if µ ∈ P(G), then H(µ) is equal to H(Ξmax). Also, any partition with finite entropy
must necessarily be countable modulo µ. For another way of describing this entropy,
we introduce the function m(·, ξ) : X → [0,∞), given by m(x, ξ) = µ(ξ(x)), x ∈ X.
Then

H(ξ) = −
∫
X

log(m(x, ξ)) dµ(x).
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Before going into more details, we will start out by stating and proving a handfuld
of basic properties arising from this definition.

Proposition 4.5. Let ξ, η and (ξn)n≥1 be measurable partitions of a complete prob-
ability space (X,F , µ). Then

1. H(ξ) ≥ 0, and H(ξ) = 0 if and only if ξ = Ξmin.

2. If ξ ≤ η, then H(ξ) ≤ H(η). If ξ ≤ η and H(ξ) = H(η) <∞, then ξ = η.

3. If ξn ↗ ξ, then H(ξn)↗ H(ξ).

4. If ξn ↘ ξ and H(ξn) is finite for some n ∈ N, then H(ξn)↘ H(ξ).

5. If ξ is a finite partition of n atoms, then H(ξ) ≤ log(n). The inequality is
strict unless each atom has probability 1/n.

6. H(ξ ∨ η) ≤ H(ξ) +H(η). Moreover, if both partitions have finite entropy, then
the above is an equality if and only if ξ and η are independent. Here, ξ and η
are independent if µ(ξ(x) ∩ η(x)) = µ(ξ(x))µ(η(x)) for all x ∈ X.

Proof. 1. Positivity of the entropy comes from positivity of − log on (0, 1]. For the
second claim, we notice that the entropy of a partition is zero if and only if one atom
has full measure and the rest are null-sets. Then ξ = Ξmin µ-almost surely.

2. The relation ξ ≤ η is defined as ξ(x) ⊃ η(x) and hence m(x, ξ) ≥ m(x, η),
for all x ∈ X. In the case of H(ξ) = ∞ it follows that H(η) = ∞, as well. If
H(ξ) is finite, then it becomes clear from our integral representation of entropy that
H(ξ) ≤ H(η). Assume now that H(ξ) = H(η) <∞. Then

0 = |H(η)−H(ξ)| = H(η)−H(ξ) =

∫
X
−(log(m(x, ξ)− log(m(x, η))) dµ(x)

By the previous discussion, the integrand above is non-negative and hence it must
be zero µ-a.s.. In other words, ξ = η µ-a.s.

3. If ξn ↗ ξ, then − log(m(x, ξn)) ↗ − log(m(x, ξ)), for all x ∈ X, so by the
monotone convergence theorem, H(ξn)↗ H(ξ).

4. The assumption ξn ↘ ξ ensures that − log(m(x, ξn))↘ − log(m(x, ξ)), while
the existence of n ∈ N, such that H(ξn) < ∞ gives us an integrable upper bound
for the tail of this sequence. Hence, the Lebesgue dominated convergence theorem
yields the desired convergence.

5. We start out by noting that x 7→ −x log(x) is a strictly concave function on
the closed unit interval. Let now C1, . . . , Cn be the n atoms of ξ. Then

H(ξ) = −
n∑
i=1

µ(Ci) log(µ(Ci)) = −n ·

(
1

n

n∑
i=1

µ(Ci) log(µ(Ci))

)

≤ −n

(
1

n

n∑
i=1

µ(Ci)

)
· log

(
1

n

n∑
i=1

µ(Ci)

)

= −
n∑
i=1

µ(Ci) log

(
n∑
i=1

µ(Ci)

)
+ log(n)

n∑
i=1

µ(Ci) = log(n),
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where the inequality sign therein is due to Jensen’s inequality. From there it also
follows that we have an equality if and only if µ(Ci) = c, for all i = 1, . . . , n, and
some constant c or in other words that each Ci has probability 1/n.

6. If either ξ or η has infinite entropy, then the inequality is clear from 2. Suppose
now that ξ, η both have finite entropy and let (Ai)i≥1 and (Bj)j≥1 denote the atoms
of ξ, respectively η, with positive measure. For each j ∈ N, we let Ij denote the set
of natural numbers i such that µ(Ai ∩Bj) > 0. This will, in particularly, give us

µ(Bj) =
∑
i≥1

µ(Ai ∩Bj) =
∑
i∈Ij

µ(Ai ∩Bj),

for each j ∈ N. From here on the proof is a series of manipulations with a single
application of Jensen’s inequality. Namely,

H(ξ ∨ η)−H(ξ) = −
∑
i,j∈N

µ(Ai ∩Bj) log(µ(Ai ∩Bj)) +
∑
i∈N

µ(Ai) log(µ(Ai))

=
∑
i,j∈N

µ(Ai ∩Bj)
[
µ(Ai)− log(µ(Ai ∩Bj))

]
=
∑
j∈N

∑
i∈Ij

µ(Ai ∩Bj) log

(
µ(Ai)

µ(Ai ∩Bj)

)

=
∑
j∈N

µ(Bj)
∑
i∈Ij

µ(Ai ∩Bj)
µ(Bj)

log

(
µ(Ai)

µ(Ai ∩Bj)

)
.

At this point we apply Jensen’s inequality to the interior sums, to obtain

H(ξ ∨ η)−H(ξ) ≤
∑
j∈N

µ(Bj) log

(∑
i∈Ij

µ(Ai ∩Bj)
µ(Bj)

µ(Ai)

µ(Ai ∩Bj)

)

=
∑
j∈N

µ(Bj) log

(
1

µ(Bj)

∑
i∈Ij

µ(Ai)

)

=
∑
j∈N

µ(Bj) log

(∑
i∈Ij

µ(Ai)

)
−
∑
j∈N

µ(Bj) log(µ(Bj)

≤
∑
j∈N

µ(Bj) log(µ(Bj)) = H(η).

In order to determine when this inequality is in fact an equality, we have to consider
each of the two above inequalities. In the application of Jensen’s inequality, we have
an equality if and only if µ(Ai)

µ(Ai∩Bj) = cj , for all i ∈ Ij and j ≥ 1, where cj is some
constant. The other inequality is an equality if and only if

∑
i∈Ij µ(Ai) = 1, for all

j ≥ 1. If both these conditions are satisfied, it is evident that

1

cj
=
∑
i∈Ij

µ(Ai)

cj
=
∑
i∈Ij

µ(Ai ∩Bj) = µ(Bj),

and hence µ(Ai ∩ Bj) = µ(Ai)µ(Bj) for all i, j ≥ 1, i.e., ξ and η are independent.
The other implication follows from the same argument.
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4.2 Conditional entropy of partitions

So far we discussed entropy of a single measurable partition, but the tools which
will be of most use are the so-called conditional entropies. For this consider two
measurable partitions, ξ and η of a complete probability space (X,F , µ). If we let
πη denote the projection from X onto X/η, we may define the measure µη on X/η as
the image measure of µ under πη. Before moving on to conditional entropy, we will
start out with a small proposition providing an alternative approach to integration
over a partition.

Proposition 4.6. Let ξ be a measurable partition of a probability space (X,F , µ).
Then there exists µB ∈ P(B) for µξ-a.e. B ∈ ξ, such that∫

X
f(x) dµ =

∫
X/ξ

∫
B
f |B(x) dµB(x) dµξ(B),

for any f ∈ L1(X,F , µ).

Proof. Consider the Hilbert space L2(X) = L2(X,F , µ) and consider the subspace
L2(X, ξ) consisting of the functions which are constant on each atom of ξ. Then
L2(X, ξ) is a closed subspace of L2(X) and hence, there exists a projection pξ from
L2(X) to L2(X, ξ). Note also that L2(X, ξ) is naturally isomorphic to the space
L2(X/ξ).

Let now B ∈ ξ be given, and consider f ∈ Cc(B). Then f extends to a map
f̃ ∈ L2(X) by setting f̃ equal to 0 outside of B. Applying pξ to f̃ will then give us
a map pξ(f̃) which is constant on B and zero outside of B, so by identifying pξ(f̃)
with the constant f |B, we obtain a Borel probability measure µC on C, through the
means of the Riesz Representation Theorem.

From here on, the projection pξ and the theory of conditional expectations hands
us the desired result, that is,∫

X
f(x) dµ(x) =

∫
X
pξ(f) dµ(x) =

∫
X/η

pξ(f)(B) dµη(B)

=

∫
X/η

∫
B
f(x) dµB(x) dµη(B)

Note also that if µ(B) > 0, then µB is simply the conditional measure given knowl-
edge of B, i.e., µB(A ∩B) = µ(A ∩B)/µ(B) for all A ∈ F .

To define the conditional entropy of ξ given η, we will for µη-a.e. B ∈ η consider
the partition ξB of the probability space (B,µB). From here, we define the entropy
H(ξB) as in Definition 4.4, with respect to the probability space (B,µB). This gives
us a map B 7→ H(ξB), which is well-defined µη-a.e. and hence the integral∫

M/η
H(ξB) dµη(B)

makes sense. We will let H(ξ | η) denote this integral, and this quantity will be the
conditional entropy of ξ given η. The following proposition gives us a more concrete
way of representing this quantity, through the conditional measures from above.
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Proposition 4.7. For x ∈ X, let m(x, ξ | η) denote the conditional measure of the
set ξ(x) restricted to η(x), i.e., m(x, ξ | η) = µη(x)(ξ(x) ∩ η(x)). Then

H(ξ | η) = −
∫
X

log(m(x, ξ | η)) dµ(x).

Proof. Consider B ∈ η and y ∈ B. Then m(y, ξB) = m(y, ξ | η), and hence

−
∫
X

log(m(x, ξ | η)) dµ = −
∫
X/η

∫
B
m(x, ξB) dµB(x) dµη(B)

=

∫
X/η

H(ξB) dµη(B),

which is what we wanted to show.

We have now defined the tools needed to prove the main result of this section,
but let us start out with some properties of the conditional entropy, which will be
established through the use of Proposition 4.5.

Proposition 4.8. Let ξ, η, ζ and (ξn)n≥1, (ηn)n≥1 be measurable partitions of a com-
plete probability space (X,F , µ). Then

1. H(ξ | Ξmin) = H(ξ).

2. If ζ ≤ η, then
H(ξ ∨ ζ | η) = H(ξ | η).

3. H(ξ | η) ≥ 0 and H(ξ | η) = 0 if and only if ξ ≤ η.

4. If ξ ≤ ζ, then H(ξ | η) ≤ H(ζ | η). If in addition H(ξ | η) = H(ζ | η) < ∞,
then ξ ∨ η = ζ ∨ η.

5. H(ξ ∨ η | ζ) ≤ H(ξ | ζ) + H(η | ζ). If in addition H(ξ | ζ) and H(η | ζ) are
finite, then the inequality in question is an equality if and only if ξ and η are
independent with respect to ζ.

6. If ξn ↗ ξ, then H(ξn | η) ↗ H(ξ | η). If ξn ↘ ξ and there exists m ∈ N such
that H(ξm | η) <∞, then H(ξn | η) converges downwards to H(ξ | η).

7. H(ξ ∨ η | ζ) = H(ξ | ζ) +H(η | ξ ∨ ζ).

8. H(ξ | η ∨ ζ) ≤ H(ξ | ζ). If, in addition, H(ξ | ζ), H(η | ζ) < ∞, the above is
an equality if and only if ξ and η are independent with respect to ζ, that is, ξB
and ηB are independent with respect to µB, for µζ-a.e. B ∈ ζ.

9. If ηn ↗ η and that there exists n ∈ N with H(ξ | ηn) < ∞. Then H(ξ | ηn)
converges downwards to H(ξ | η).

10. If ηn ↘ η, then H(ξ | ηn)↗ H(ξ | η).
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Proof. 1. The first statement follows quite easily from Proposition 4.7 as

m(x, ξ | Ξmin) = µΞmin(x)(ξ(x) ∩ Ξmin(x)) = µX(ξ ∩X) = µ(ξ) = m(x, ξ),

for all x ∈ X, and hence H(ξ) = H(ξ | Ξmin).
2. If ζ ≤ η, then ζ(x) ∩ η(x) = η(x), for any x ∈ X and hence (ξ ∨ ζ)B = ξB

for any µη-a.e. B ∈ η. From there on, it is a matter of applying this result together
with the definition of conditional entropy, i.e.,

H(ξ ∨ ζ | η) =

∫
X/η

H((ξ ∨ ζ)B) dµη(B) =

∫
X/η

H(ξB) dµη(B) = H(ξ | η).

3. As H(ξB) is positive for any B ∈ η, it is clear that H(ξ | η) is positive. For
the second part of the statement, we note that H(ξ | η) = 0 if and only if H(ξB) = 0
for µη-a.e. B ∈ η. This happens if and only if ξB is the trivial partition of B, and
thus ξ(x) ∩B = B for all x ∈ B, i.e., ξ ≤ η.

4. If ξ ≤ η, then ξB ≤ ζB for all B ∈ η. From here H(ξB) ≤ H(ζB) for µη-a.e.
B ∈ η and hence H(ξ | η) ≤ H(ζ | η). If furthermore both H(ξ | η) and H(ζ | η)
are finite, then H(ξ | η) = H(ζ | η) if and only if H(ξB) = H(ζB) for µη-a.e. B ∈ η,
which, as seen previously, happens if and only if ξB and ζB are equal for µη-a.e.
B ∈ η, or, phrased another way ξ ∨ η = ζ ∨ η.

5. This result follows fairly easily from the non-conditional case, once we establish
the equality (ξ ∨ η)B = ξB ∨ ηB for all B ∈ ζ. Fortunately, this is not a problem, as
for any x ∈ X,

(ξ ∨ η)B(x) = (ξ ∨ η)(x) ∩B = (ξ(x) ∩ η(x)) ∩B = (ξ(x) ∩B) ∩ (η(x) ∩B)

= ξB(x) ∩ ηB(x) = (ξB ∨ ηB)(x),

6. If ξn ↗ ξ, then (ξn)B ↗ ξB for all B ∈ η and hence H((ξn)B) ↗ H(ξB). By
the monotone convergence theorem, we conclude that H(ξn | η)↗ H(ξ | η). Assume
now that ξn ↘ ξ and that there exists m ∈ N such that H(ξm | η) < ∞. Then also
H((ξm)B) < ∞ for µη-a.e. B ∈ η and hence H((ξn)B) ↘ H(ξB), as (ξn)B ↘ ξB.
The desired conclusion will now follow the Lebesgue dominated convergence theorem
using the map B 7→ H((ξm)B) as an integrable upper bound.

7. Let us first consider the case when ζ is the trivial partition Ξmin. The equality
in question here is merely

H(ξ ∨ η) = H(ξ) +H(η | ξ).

In the case when H(ξ) = ∞, this follows from 4. If now H(ξ) < ∞, but H(η) is
infinite, we need to show that H(η | ξ) =∞. If this is not the case, then H(ηB) <∞
for µξ-a.e. B ∈ ξ, which gives a countable partition of X, which is larger than both
η and ξ and having full measure. As notation, let (Bi)i≥1 be the sets of positive
measure in ξ, and (Ai,j)j≥1 be the sets of positive measure in ηBi . Then (Aj)j≥1,
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defined as Aj =
⋃
iAi,j will be the sets of positive measure in η. We deduce

H(η | ξ) =
∑
i

H(ηBi)µ(Bi) = −
∑
i,j

µ(Bi)µBi(Ai,j ∩Bi) log(µBi(Ai,j ∩Bi))

= −
∑
i,j

µ(Ai,j ∩Bi)
(

log(µ(Ai,j ∩Bi))− log(µ(Bi))
)

= −
∑
i,j

µ(Ai,j ∩Bi) log(µ(Ai,j ∩Bi)) +
∑
i,j

µ(Ai,j ∩Bi) log(µ(Bi))

≥ −
∑
i,j

µ(Ai,j ∩Bi) log

(∑
k

µ(Ak,j ∩Bk)
)
−H(ξ)

= −
∑
i,j

µ(Ai,j ∩Bi) log(µ(Aj))−H(ξ) = H(η)−H(ξ).

As H(ξ) was assumed to be finite, we must have H(η | ξ) = ∞, whenever H(η)
is infinite. Let us finally consider the case, where both H(ξ) and H(η) are finite,
and let (An)n≥1 and (Bn)n≥1 denote the respective sequences of sets with positive
measure. Then

H(ξ ∨ η) = −
∑
i,j

µ(Ai ∩Bj) log(µ(Ai ∩Bj))

H(ξ) = −
∑
j

µ(Bj) log(µ(Bj)) = −
∑
i,j

µ(Ai ∩Bj) log(µ(Bj)

H(η | ξ) = −
∑
i,j

µ(Ai ∩Bj)
(

log(µ(Ai ∩Bj)− log(Bj)
)
.

Adding these relations up, gives us the desired result. The reason for this interme-
diate step is to see that we immediately have

H(ξB ∨ ηB) = H(ξB) +H(ηB | ξB),

for all B ∈ ζ. From here it remains to show that∫
X/ζ

H(ηB | ξB) dµζ(B) = H(η | ξ ∨ ζ).

As the partition ξ ∨ ζ of X can be viewed as first partitioning X with respect to ζ
and afterwards partitioning each atom of ζ with respect to ξ, it is evident that for
any B ∈ ζ, the equality m(x, ηB | ξB) = m(x, η | ξ ∨ ζ) holds true for any x ∈ B.
From there, an application of Proposition 4.7 gives us the desired result.

8. If H(ξ | ζ) =∞, then there is nothing to prove, and the case of H(η | ζ) <∞
does not cause much trouble, since by 5. and 7.,

H(ξ | η ∨ ζ) +H(η | ζ) = H(ξ ∨ η | ζ) ≤ H(ξ | ζ) +H(η | ζ).

If, in addition, H(ξ | ζ) <∞, then the second part of the statement is a consequence
of the second part of 5. The third and most difficult case is the one where the

52



4.2 Conditional entropy of partitions 4 ENTROPY

quantity H(ξ | ζ) is finite, but H(η | ζ) =∞. The proof of this case will also prove
certain parts of 9. Assume first that ξ is a finite partition of X, and let A1, . . . , Am
denote its atoms. Let now (ηn)n≥1 be an ascending chain of partitions converging to
η, and let fi,n, fi : X → [0, 1] for 1 ≤ i ≤ m,n ≥ 1, be defined as follows for x ∈ X,

fi,n(x) = µηn(x)(Ai ∩ ηn(x)), fi(x) = µη(x)(Ai ∩ η(x)).

By the construction, we obtain fi,n
L2

→ fi as n → ∞ for all 1 ≤ i ≤ m, and hence
converges also in probability. As ξ was finite, so is each ξηn(x) and ξη(x), and thus

H(ξηn(x)) = −
m∑
i=1

fi,n(x) log(fi,n(x)), H(ξη(x)) = −
m∑
i=1

fi(x) log(fi(x)).

As convergence in probability is preserved by continuous transformations, we con-
clude that H(ξηn(x)) → H(ξη(x)) in probability. Furthermore each ξηn(x) consists
of at most m atoms, and hence H(ξηn(x)) is less than or equal to log(m) for all
x ∈ X,n ≥ 1. This gives convergence in L1, or in other words H(ξ | ηn)→ H(ξ | η).
Note that this is a actually a particular case of 9. Assume now that each ηn is finite,
which is possible by our discussion on measurable partitions. Then H(ηn | ζ) < ∞
for each n ≥ 1, and also

H(ξ | ηn ∨ ζ) ≤ H(ξ | ζ).

By the convergence established above, we conclude that H(ξ | η∨ ζ) ≤ H(ξ | ζ). For
the general case when ξ is not necessarily finite, we can pick an ascending sequence
(ξn)n≥1 such that ξn ↗ ξ. Then H(ξn | η ∨ ζ) ≤ H(ξn | ζ), for all n ≥ 1, and by 6.
we conclude that H(ξ | η ∨ ζ) ≤ H(ξ | ζ).

9. We have already shown the convergence in the case where ξ is a finite partition,
but let us prove it for an arbitrary measurable partition as well. For this let δ > 0
be given and pick a finite partition ξ′ ≤ ξ such that

|H(ξ′ | η)−H(ξ | η)| < δ/3, |H(ξ′ | η1)−H(ξ | η1)| < δ/3.

By the above comment, there exists N ∈ N such that |H(ξ′ | η)−H(ξ′ | ηn)| < δ/3,
whenever n ≥ N . From there on, we have for n ≥ 1,

H(ξ | ηn)−H(ξ′ | ηn) = H(ξ ∨ ξδ | ηn)−H(ξδ | η)

= H(ξ | ξδ ∨ ηn) = H(ξ | ξδ ∨ ηn ∨ η1)

≤ H(ξ | ξδ ∨ η1)

= H(ξ | η1)−H(ξδ | η1) < δ/3.

For n ≥ N , we can now conclude that |H(ξ | ηn) − H(ξ | η)| < δ by applying the
triangle inequality twice along with the estimates above. This gives us the desired
convergence.

10. If ξ is a finite partition, the proof is analogous to the finite case of 9., so we
will move on to the general case. First of, we consider the case when H(ξ | η) = 0,
for which the result is clear due to 3. Assume now that H(ξ | η) > 0 and let
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0 < c < H(ξ | η) be given. Note that H(ξ | ηn) ≤ H(ξ | η) for all n ≥ 1, so it
suffices to show that H(ξ | ηn) > c from a certain point on. For this we pick a finite
partition ξ′ ≤ ξ such that c < H(ξ′ | η) ≤ H(ξ | η). By the comment above, we
may pick N ∈ N such that c < H(ξ′ | ηn) ≤ H(ξ′ | η), for all n ≥ N and thus, also
c < H(ξ′ | ηn) ≤ H(ξ | ηn). In conclusion H(ξ | ηn)↗ H(ξ | η), as n→∞.

4.3 The entropy criteria for triviality of the Poisson boundary

We are now ready to relate these concepts of entropy to triviality of the Poisson
boundary. We return to our probability space Ω from the construction of the Poisson
boundary, equipped with the restriction of Pe to this space, for now denoted PΩ.
We associate two sequences of measurable partitions of Ω denoted by (αn)n≥0 and
(ηn)n≥0. For n ≥ 0 and ω, ω′ ∈ Ω, we define these partitions as the equivalence
classes for the following equivalence relations.

ω
ηn∼ ω′ if and only if ωk = ω′k for all k ≥ n

ω
αn∼ ω′ if and only if ωk = ω′k for all k ≤ n

We will in the following not distinguish between equivalence relations and partitions.
The sequence (αn)n≥0 is an ascending chain of partitions with limit Ξmax. The
sequence (ηn)n≥0 is descending with limit η∞ defined as follows

ω
η∞∼ ω′ if and only if there exists n ≥ 0 such that ωk = ω′k for all k ≥ n.

The partition η∞ looks very much like the partition associated to ≈ defined for the
exit boundary. Note that this latter partition does not care for the first coordinate,
i.e. the coordinate corresponding to the initial distribution of the random walk. In
other words each atom in this partition can be written as G×A, with A ∈ η∞, and
hence we only need to study η∞.

Lemma 4.9. Assume that µ has finite entropy and let 0 ≤ k ≤ n <∞. Then

H(αk | ηn) = (k + 1)H(µ) +H(µ∗(n−k))−H(µ∗n).

Proof. By Proposition 4.7, we may write

H(αk | ηn) = −
∫

Ω
log(m(ω, αk | ηn)) dPΩ(ω).

As PΩ-a.e. x ∈ Ω is of the form

x = (ω0, ω0ω1, ω0ω1ω2, . . . )

for ω = (ω0, ω1, . . . ) ∈ Ω, the quantity m(x, αk | ηn) measures the probability of an
element in ηn(x) agreeing with x on the first k coordinates, i.e.

PΩ(Rm = xm, m ≤ k | Rn = xn).
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These elements may not coincide with x on the coordinates between k and n, but
the intermediate steps will create a path from xk to xn, or in other words, such an
x′ will satisfy ω′k+1ω

′
k+2 · · ·ω′n = x−1

k xn. This translates to the fact that

m(x, αk | ηn) =
µ(ω0) · · ·µ(ωk)µ

∗(n−k)(x−1
k xn)

µ∗n(xn)

where x = (x0, x1, . . . ) = (ω0, ω0ω1, . . . ). Inserting this into our formula for the
conditional entropy, we obtain

H(αk | ηn) = −
k∑
i=0

∫
Ω
µ(ωi) dPΩ(ω)−

∫
Ω

log(µ∗(n−k)(x−1
k xn) dPΩ(ω)

+

∫
Ω

log(µ∗n(xn)) dPΩ(ω).

To see that this expression is in fact the one we are looking for, we apply a suitable
version of the abstract change of variable formula. Then for any n ≥ 0,

−
∫

Ω
log(µ∗n(xn)) dPΩ(ω) = −

∫
Ω

log(µ∗n(Rn(ω)) dPΩ(ω)

= −
∫
G

log(µ∗n(g)) dRn(PΩ)(g)

= −
∑
g∈G

log(µ∗n(g))µ∗n(g) = H(µ∗n) = hn.

Applied to our above result, we obtain the desired conclusion.

Lemma 4.10. Assume that µ has finite entropy. Then (hn+1−hn)n≥0 is a decreasing
sequence with limit h(G,µ), where hn = H(µ∗n) for n ≥ 1.

Proof. Let n ≥ 0 be given. By Lemma 4.9 we may consider the difference

h(α1 | ηn+1)− h(α1 | ηn) = (hn − hn+1)− (hn−1 − hn),

which by the properties of conditional expectations is strictly positive, and hence
the sequence in question is decreasing. The sequence (hn+1 − hn)n≥0 must also be
non-negative, since otherwise

hm =

m−1∑
i=0

hi+1 − hi,

would eventually become negative, and which is impossible. Thus the limit of the
sequence (hn+1 − hn)n≥0 exists. This limit will then coincide with the limit of the
averages

1

n

n−1∑
i=0

(hi+1 − hi) =
hn
n

+
h0

n
=
hn
n
,

where we recall that the degenerate measure µ∗0 has zero entropy. By the very
definition of h(G,µ), this gives us (hn+1 − hn)→ h(G,µ) as n→∞.
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Theorem 4.11. Let µ be a probability measure on G with finite entropy. Then
h(G,µ) = 0 if and only if the Poisson boundary is trivial.

Proof. We only need to prove that the exit boundary (E , αρ) is trivial. We start out
by estimating for 0 ≤ k ≤ n <∞,

H(αk | ηn) = (k + 1)h1 + hn−k − hn

= (k + 1)h1 −
k∑
i=0

(hn−k+i+1 − hn−k+i),

Thus, H(αk | η∞) = limn→∞H(αk | ηn) = kh1 − (k + 1)h(G,µ). Recall that the
partition αk only cares about the first k + 1 coordinates of the sequences in Ω, but
on those first coordinates it is a discrete partition. In other words Ω/αk ∼= Gk+1,
and hence H(αk) = H(µ ⊗ · · · ⊗ µ) = (k + 1)h1. By an application of Proposition
4.8 is evident that h(G,µ) = 0 if and only if αk and η∞ are independent for all
k ≥ 1. As (αk)k≥1 converges to Ξmax this happens if and only if η∞ is equal to Ξmin.
Combined with earlier arguments, we conclude that the partition of G×Ω associated
to ≈ consists of a single atom as well and hence

E = (G× Ω)/≈

is a singleton, which was the desired result.

In this entropy criteria, the assumption of finite entropy was crucial. Let us see
what might go wrong, if we allow infinite entropy. We consider an abelian group G
equipped with a Borel probability measure µ of full support, such that H(µ) = ∞.
The existence of such a measure was discusses in Remark 4.2. By an application of
Jensen’s inequality, we also have H(µ∗n) =∞, for all n ≥ 1 and thus h(G,µ) =∞.
However, as µ has full support, the Poisson boundary is trivial, which shows that
Theorem 4.11 does not hold true for arbitrary measures.

4.4 Growth and entropy

In this section, we introduce the concept of growth of a finitely generated group,
and establish how certain types of growth allow us to conclude that well-behaved
measures on such groups have zero entropy.

Consider now a finitely generated group G, and a finite symmetric generating set
S with identity. We define a function γGS : N0 → N0, by γS(n) = |Sn|, i.e., γS(n)
is the number of elements which can be constructed by at most n elements from S.
Such a function will be called a growth function. Next, we define an ordering � of
growth functions as follows:

γGS � γG
′

S′ if there exists k ∈ N such that γGS (n) ≤ k γG′S′ (kn), for all n ∈ N.

One can easily check that this is a partial order and thus inducing a equivalence ∼
of growth functions, i.e., γGS ∼ γG

′
S′ if both γ

G
S � γG

′
S′ and γ

G′
S′ � γGS . Now, we would

like to talk about the growth of a group, so it would be desirable that the growth
did not depend on the choice of finite generating set. Fortunately, this problem is
solved by the following proposition.
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Proposition 4.12. Let G be a finitely generated group, and let S, S′ be finite sym-
metric generating sets of G. Then γGS ∼ γGS′ .

Proof. With only finitely many elements in S′, there exists some k ∈ N, such that
S′ ⊂ Sk. Then γGS′(n) ≤ γGS (kn) ≤ k · γGS (kn), and hence γGS′ � γGS . The converse
inequality can be shown in the exact same manner.

With this proposition in mind, we let γG denote the equivalence class of the
growth functions for G, and call this function the growth of G. We next spend a bit
of time investigating the possible types of growth.

• The first types of growth functions we will consider are the exponential ones,
i.e., functions of the form n 7→ an for some a > 1. As it turns out, all expo-
nential functions are equivalent in the sense defined above and to prove this,
let a, b > 1 be given, with a ≤ b. Clearly an � bn and for the other inequality
let k be an integer greater than b/a. Then

bn ≤ (ka)n ≤ k · (ka)n

and hence bn � an. From here on, we let exp(n) denote the equivalence class
of exponential functions. Groups with growth exp(n) will be said to have
exponential growth.

Examples of groups with exponential growth are the free groups. For example,
if G = F2 = 〈a, b〉, with a symmetric generating set S = {e, a, b, a−1, b−1}, it is
not difficult to see that γF2

S (n) = 4 · 3n−1.

• The second interesting type of growth is the polynomial one, i.e., n 7→ nd for
some d ∈ N. It is clear that c ≤ d implies nc � nd, but the converse inequality
does not hold. Indeed, if d > c and k ∈ N is given, such that nd ≤ k · (kn)b for
all n ∈ N, then nd−b ≤ kb+1 for all n ∈ N, which is clearly a contradiction.

Note that, these types of growth are sufficient to describe any kind of polyno-
mial growth function. Indeed, it is well-known that a polynomial of degree d
will behave like nd, when n gets big enough. In other words, if γ(n) is on the
form

∑d
k=0 αkn

k, with α0, . . . , αd ∈ R, then γ ∼ nd.
We should note that any finitely generated abelian group has polynomial
growth. Indeed, given a finitely generated group G, with a finite symmetric
generating set S = {s1, . . . , sk}, the set Sn is contained in the set

{sn1
1 · · · s

nk
k | n1, . . . , nk ≤ n},

and hence γGS (n) ≤ nk.

• After introducing the two important types of growth above, we notice that
exponential growth is always strictly greater than any polynomial growth. To
see that nd � exp(n) for any d ∈ N, notice that nde−n → 0, as n → ∞, and
hence there exists some integer c, such that nd ≤ c exp(n) ≤ c exp(cn), for all
n ∈ N, which by definition is nd � exp(n). To see that the inequality is strict,
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assume that there exists some integers c, d ∈ N, such that exp(n) ≤ c · (cn)d

for all n ∈ N. Then enn−d ≤ cd+1, for all n ∈ N, which contradicts the fact
that the sequence (enn−d)n≥1 is unbounded.

• Given a finite generating set S, it is evident that Sn = {s1 · · · sn | si ∈ S},
which contains at most |S|n elements, representing the words without any
cancellations. In other words, γG � exp(n) and hence, any finitely generated
group has at most exponential growth. This gives us an upper bound for the
growth of a group, so let us investigate a possible lower bound. If G is a finite
group, then γG(n) ≤ |G| · 1 for all n ∈ N, and hence γG ∼ 1, which we will call
constant growth. If G is an infinite group, then

S ( S2 ( · · ·

and hence γGS (n) + 1 ≤ γGS (n+ 1) for any n ∈ N. Then γG � n, i.e. G has at
least linear growth. It is now clear that any infinite, finitely generated group
has growth somewhere between linear and exponential growth.

• Any group not of exponential growth will be said to have subexponential
growth. Alternatively, G has subexponential growth if

(
γG(n)

)1/n → 1 as
n → ∞. Furthermore, if γG ∼ nd for some d ∈ N, we say that G has polyno-
mial growth. The degree of the polynomial is usually not that important, so it
makes sense to bundle all these groups together.

If G is a group, neither of polynomial growth nor of exponential growth, we say
that G has intermediate growth. The existence of such groups was a long-time
open question, but settled by Rostislav Grigorchuk in 1984 [13].

We are now ready to see, how we can use the growth of the given group to
establish if the entropy for certain types of measures is zero.

Proposition 4.13. Let G be a finitely generated group of subexponential growth, and
let µ be a probability measure on G with finite support. Then h(G,µ) = 0.

Proof. Let K denote the support of µ, and let S be some finite symmetric generating
set for G, containing the identity and also K. Then |Kn| ≤ γGS (n), for all n ∈ N. As
µ∗n is the image measure of the n-fold product of elements in K, it is not difficult
to see that supp(µ∗n) ⊂ Kn. Finally, by arguments similar to those of proof of
Proposition 4.5, part 5., we have H(µ∗n) ≤ log(|Kn|), and hence

H(µ∗n)

n
≤ log(|Kn|)

n
= log

(
|Kn|1/n

)
≤ log

(
γGS (n)1/n

)
.

By assumption of subexponential growth, we may conclude that the entropy h(G,µ),
is equal to the logarithm of 1, which is zero.

Note that combining this result with the previously established entropy criteria
and the example in Section 3.2, actually provides an alternative proof for the fact that
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F2 has exponential growth. However, this argument is infinitely more complicated
than the direct one.

The next goal is to show that we can replace the requirement of µ having finite
support with the weaker condition of finite first moment. In order to talk about
a measure µ on the group G having a first moment, we will have to find a way of
assigning a numerical value to each group element. The idea is to assign each group
element with a length, so let S be a finite, symmetric generating set for G containing
the identity. We then define a map `GS : G→ R, by

`GS (g) = inf{n ∈ N0 | ∃s1, . . . , sn ∈ S : g = s1 · · · sn}, g ∈ G,

that is, `GS (g) is the minimal number of elements in S required produce g. In this
way, we could alternatively have defined γGS (n) to be the number of elements with
length less than or equal to n, with respect to S. As with the growth functions, it
is desirable that we could ignore the generating set S, so let us see how the length
functions for two generating sets relate.

Proposition 4.14. Let S1, S2 be two finite, symmetric generators for G, both con-
taining the identity. Then there exists C,C ′ > 0 such that

1

C ′
`GS1

(g) ≤ `GS2
(g) ≤ C`GS1

(g), g ∈ G.

Proof. As both S1 and S2 are finite generating sets, let C denote the number

max{`GS2
(s) | s ∈ S1},

which is finite. Then `GS2
(g) ≤ C`GS1(g) for all g, as any generator in S1 can be build up

from at most C generators from S2. Similarly we define C ′ = max{`GS1
(s) | s ∈ S2},

to get the other inclusion.

This result tells us that the length functions are all equal up to multiplication by
some constant. This constant will not have any effect on the results to come, so for
the remainder of this section, we consider some fixed finite, symmetric generating
set S and denote the length function by `G. We are now ready to define the first
moment of a probability measure on G.

Definition 4.15. Let µ be a probability measure on a finitely generated group G.
We define the first moment of µ, denoted by L(µ), to be the quantity∑

g∈G
`G(g)µ(g).

If this is finite, we say that µ has finite first moment.

Since having finite entropy was crucial for the entropy criteria, we start out by
showing that finite first moment automatically gives us finite entropy. To do this,
we first rewrite the the first moment, as

L(µ) =
∑
k≥0

∑
g∈Sk

kµ(g),
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where Sk = {g ∈ G | `G(g) = k}. As (Sk)k≥0 is a partition of G, we may write

H(µ) = −
∑
k≥0

∑
g∈Sk

log(µ(g))µ(g).

For any k ≥ 0 with µ(Sk) > 0 we rewrite the inner sums as follows

−
∑
g∈Sk

µ(g) log(µ(g)) = µ(Sk)

(
−
∑
g∈Sk

µ(g)

µ(Sk)
log(µ(g))

)

= µ(Sk)

(
−
∑
g∈Sk

[
µ(g)

µ(Sk)
log(µ(g))

]
+ log(µ(Sk)

)
− log(µ(Sk))µ(Sk)

= µ(Sk)

(
−
∑
g∈Sk

µ(g)

µ(Sk)
log

(
µ(g)

µ(Sk)

))
− log(µ(Sk))µ(Sk).

The sum above is now representing the entropy of the normalisation of µ to the finite
set Sk and is thus less than or equal to log(|Sk|), as seen in Proposition 4.5. Moving
on from here, we see that

H(µ) ≤
∑
k≥0

(
µ(Sk) log(|Sk|)− µ(Sk) log(µ(Sk))

)
≤
∑
k≥0

(
kµ(Sk) log(|S|)− µ(Sk) log(µ(Sk))

)
= L(µ) log(|S|)−

∑
k≥0

µ(Sk) log(µ(Sk)).

In the second equality, we have applied the fact that Sk ⊂ Sk, to obtain the inequality
|Sk| ≤ |Sk| ≤ |S|k. Let now N = {k ≥ 0 | µ(Sk) < e−k} and recall that t 7→ −t log(t)
is an increasing function on [0, e−1]. Then∑

k≥0

−µ(Sk) log(µ(Sk)) =
∑
k∈N
−µ(Sk) log(µ(Sk)) +

∑
k∈Nc

−µ(Sk) log(µ(Sk))

≤
∑
k∈N

ke−k +
∑
k∈Nc

kµ(Sk) ≤
∑
k≥0

ke−k +
∑
k≥0

kµ(Sk),

where the first sum is a convergent infinite series and the second sum is simply L(µ).
All in all, we have shown that H(µ) is finite, whenever L(µ) is finite. This however,
is not the result we were looking for, but merely a short step along the way. We now
consider a small lemma.

Lemma 4.16. Let ε > 0 be given, and let (Bn)n≥1 be a sequence of finite subsets of
G such that |Bn| < e(h(G,µ)+ε)n, eventually. Then Rn /∈ Bn eventually.

Proof. Assume in order to reach a contradiction that Rn ∈ Bn infinitely often.
Then µ∗n would be a probability measure on Bn for any such n ∈ N, and hence
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H(µ∗n) ≤ log(|Bn|). However, as the numbers H(µ∗n)/n eventually drop below
h(G,µ) + ε, we must also have

log(|Bn|) ≥ H(µ∗n)n > (h(G,µ) + ε)n,

from some n onwards. With two contradicting inequalities happening infinitely often
and eventually, we are left with a contradiction, which proves the claim.

Theorem 4.17. Let G be a group with subexponential growth and let µ be a proba-
bility measure on G with finite first moment. Then h(G,µ) = 0.

Proof. Let us first consider the number c = lim supn→∞ log(γG(n))/n, which as
noted earlier will be equal to zero, whenever the group has sub-exponential growth.
The goal is now to prove that h(G,µ) is bounded by c multiplied by some finite
constant, whenever µ has finite entropy. To find this constant, we recall that

Rn+m(ω) = Rn(ω) · · ·Rm(Tn(ω)),

for all n,m ≥ 0 and ω ∈ Ω, where T : Ω→ Ω again denotes the shift map. Looking
at the definition of `G, it is not difficult to see that

`G(Rn+m(ω)) ≤ `G(Rn(ω)) + `G(Rm(Tn(ω))),

and hence `G(Rn+m) ≤ `G(Rn) + `G(Rm) ◦Tn. In order to apply Kingman’s Subad-
ditive Ergodic Theorem (see Theorem B.1), we still need to show that E

(
`G(Rn)

)
is

finite for all n ≥ 1, where the expectation is respect to the measure P introduced in
Section 3.2. To do this, we start out by noticing that

E
(
`G(R1)

)
=

∫
Ω
`G(R1) dP =

∫
G
`G(g) dR1(g) =

∑
g∈G

`G(g)µ(g) = L(µ).

Furthermore, we recall that T is P-measure preserving, and hence

E
(
`G(Rn+1)

)
≤ E

(
`G(Rn)

)
+ E

(
`G(R1) ◦ T

)
= E

(
`G(Rn)

)
+ L(µ),

for any n ≥ 0. From here on it follows by induction that E
(
`G(Rn)

)
< ∞, for all

n ≥ 0. All in all, this lets us define the number `(G,µ) as

`(G,µ) = lim
n→∞

E

(
`G(Rn)

n

)
The goal is now to prove that h(G,µ) ≤ c·`(G,µ). To do this, let ε > 0 be given, and
consider the subsets (An)n≥1 of G, given by An = S(`(G,µ)+ε)n. From the definition
of c, we must have log(γG(n)) ≤ (c+ ε)n eventually, and thus

log |An| ≤ (`(G,µ) + ε) log(γG(n)) ≤ n(`(G,µ) + ε)(c+ ε),

eventually. Applying the exponential function on both sides, will eventually give us
the inequality

|An| ≤ exp(n(`(G,µ) + ε)(c+ ε)).
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On the other hand, the choice of An gives us Rn ∈ An eventually, so by the above
lemma, we may conclude that |An| ≥ e(h(G,µ)+ε)n, infinitely often. In particular we
can conclude that (h(G,µ) + ε) ≤ (c+ ε)(`(G,µ) + ε), which after letting ε tend to
zero will result in h(G,µ) ≤ c · `(G,µ). As c = 0, whenever G has subexpontential
growth the proof is complete.

To finish off this section, we should note that the above results do not provide
a complete description of boundary triviality. The following theorem of interest is
mentioned in [7]:

Theorem 4.18.

1. There exist groups of subexponential growth, which admit Borel probability mea-
sures with non-trivial Poisson boundary.

2. There exist groups G of subexponential growth, which admit Borel probability
measures µ with finite entropy, but with h(G,µ) > 0.

62



5 AMENABILITY

5 Amenability

This section is devoted to investigating two connections between µ-boundaries and
amenability. The first one is a alternative way of defining amenability of a second
countable, locally compact groups, solely by the appearance of the µ-boundaries.
Harry Furstenberg proved in 1973 [11] that any non-amenable group admits a prob-
ability measure with full support and non-trivial boundary, whereafter he conjectured
that the converse implication was true as well. The second half of the statement was
later proved to be true as well. this was later proved by Joseph Rosenblatt in 1981
in [23], and independently by Kaimanovich-Vershik in [16]. We will not go into tech-
nical details in the part, but rather give a brief survey of the important results. A
thorough discussion of the proofs can be found in [21].

Another approach to amenability is that of amenable actions. The idea behind
this concept is to extend the notion of an amenable groups to a more general case
of a G-space. This can be done in two different ways, where we follow the definition
of Robert Zimmer, who also proved that any group G acts amenably on its Poisson
boundary, whenever the measure µ is absolutely continuous with respect to the Haar
measure λ. We will, however, provide a different proof for this result, a proof which
can be found in [2].

Before starting all this, we give a brief introduction to amenable locally compact
groups, as well as a list of equivalent ways to characterise amenability of a group.
Again, this will be done without many details, but the curious reader can look at
[21], [12] for more explanations.

Definition 5.1. A locally compact group G is said to be amenable if there exists
a right invariant mean m on L∞(G,λ), i.e. m is a positive linear functional on
L∞(G,λ), such that m(1) = 1 and m(g.f) = f for any g ∈ G and f ∈ L∞(G,λ).

As mentioned, this is not the only way of defining amenability for locally compact
groups, as we have a wide range of different ways to do this. We see a number of
these in the proposition below, which bundles together a series of results, whose
proofs can be found in [21]. We also introduce the following notation,

Prob(G) = {f ∈ L1(G,λ) | f ≥ 0, ‖f‖1}

Proposition 5.2. Let G be a locally compact group. Then the following are equiva-
lent.

1. G is amenable.

2. Følner’s condition: For every compact set F ⊂ G and ε > 0, there exists
compact set K ⊂ G such that λ(K∆(xK)) < ελ(K) for any x ∈ F .

3. Reiter’s condition: For every compact set F ⊂ G and ε > 0, there exists
ϕ ∈ Prob(G), such that ‖ϕx − ϕ‖ < ε for all x ∈ F .

4. Fixed point property: For any affine action G y X, where X is a convex
compact subset of a locally convex space E, there exists x ∈ X such that g.x = x,
for all g ∈ G.
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5. If G acts continuously on a compact set X, then there exists a G-invariant
probability measure ν on X.

6. There exists a net (ϕj)j∈I in Prob(G), such that ((ϕj)x − ϕj)→ 0 weakly, for
all x ∈ G.

7. There exists a net (ϕj)j∈I in Prob(G), such that ‖(ϕj)x − ϕj‖1 → 0, for all
x ∈ G.

Note that the proof provided in [21] for the equivalence of 5. to the others (cf.
Proposition 4.2 therein) is formulated only for σ-compact groups. However, the
additional assumption of σ-compactness is not used anywhere in the proof and thus,
the statement holds true in general.

5.1 Furstenberg’s conjecture

For the paper in question, Furstenberg had his attention on σ-compact locally com-
pact groups and it was in this setting, that he proposed the following conjecture:

G possesses a measure µ whose support is all of G and for which no
nontrivial µ-boundaries exists iff G is amenable.

To fully understand this statement, we notice the following. The measure µ is
of course a probability measure on G, and triviality of a µ-boundary (B, ν) is to be
understood as ν = δb, for some b ∈ B. It is also worth noticing that Furstenberg
focused on the topological µ-boundaries.

In his paper from 1973 [11], Furstenberg proved that for a non-amenable group,
any µ ∈ P(G) with full support admit a non-trivial µ-boundary. His proof uses a
compact G-space with no G-invariant measure to describe the limit behaviour of the
random walk associated to µ. In this thesis, we will present a different proof from
[2], which relies on the Poisson boundary and the µ-harmonic functions.

Proposition 5.3. Let G be an non-amenable locally compact group and let µ ∈ P(G)
be given, such that the semigroup generated by supp(µ) is all of G. Then (Πµ, ν) is
non-trivial.

Proof. Let K be a compact space, with no G-invariant probability measure and
let ν be a stationary measure on K. Let g ∈ G and A ⊂ K be given such that
ν(A) 6= ν(g.A). Define f ∈ L∞(K, ν), by f = 1A. Then Pν(f)(g) is not equal
to Pν(f)(e), and by density of C(K) in L1(K, ν) we may pick ϕ ∈ C(K), such
that Pν(ϕ)(g) 6= Pν(ϕ)(e). As ϕ is continuous Pν(ϕ) is a non constant function in
H∞luc(G,µ), so (Πµ, ν) is not a singleton. By assumption on µ and Proposition 3.4,
the measure ν is not a one-point measure, thus concluding the proof.

The converse implication was left as an open question, hence only presented as
a conjecture. The conjecture has since been confirmed, and we will now present the
main ideas of the proof provided by Joseph Rosenblatt in [23]. Rosenblatt’s argument
can be found in more details in [21]. He proved the result in the setting, where λ is a
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left Haar measure, so for the remaining part of this section, we adopt this notation.
His idea includes the notion of a measure being ergodic by convolutions, so let us
start out with a definition.

Definition 5.4. Let G be a locally compact group and let µ ∈ P(G) be given. We
say that

• µ is ergodic by convolutions if ‖f ∗ 1
N

∑N
n=1 µ

∗n‖ → 0 as n → ∞, for every f
in L1(G,λ), with

∫
f dλ = 0.

• µ is mixing by convolutions if ‖f ∗µ∗n‖ → 0 as n→∞, for every f ∈ L1(G,λ),
with

∫
f dλ = 0.

These concepts turns out to be equivalent, but we only need the easy implication
of mixing measures being ergodic as well. The next step in the proof is to show
that if µ ∈ P(G) is a measure which is absolutely continuous with respect to λ, has
symmetric density and is ergodic by convolutions, then every continuous µ-harmonic
function on G is constant. This is Proposition 1.2 in [23], in conjunction with the
appearance of µ-harmonic functions, when µ has a symmetric density with respect
to λ. From there, we move on to the main theorem, which yields the existence of
such a measure.

Theorem 5.5 (Theorem 1.10, [23]). Let G be a σ-compact amenable locally compact
group. Then there exists µ ∈ P(G), such that µ is mixing by convolutions, absolutely
continuous with respect to λ and has a symmetric density.

The proof os this theorem is rather technical and involved, so we will only briefly
sketch the main ideas: We apply Følner’s criteria for amenability to pick a sequence
(Fn)n≥1 of symmetric compact subsets of G, and define f ∈ L1(G) by

f =
∞∑
n=1

εn
λ(Fn)

1Fn ,

where (ε)n≥1 is a sequence of positive numbers with a sum of one. From here we
define a measure µ = f · λ, and show that the choice of (Fn)n≥1 gives us

‖δg ∗ µ∗n − µ∗n‖ → 0, n→∞,

for all g ∈ G. This argument is fairly combinatorial and relies heavily on the clever
way of picking the sequence (Fn)n≥1. Finally, we apply Lemma 1.11 in [23], which
states that the above convergence is equivalent to µ being mixing by convolutions.

The construction above does not ensure that µ has full support, but it is shown
in [15] that any measure which is ergodic by convolutions has the property that its
support generates a dense subgroup in G. From here on, it is a matter of showing
that the associated measure µ̃ as defined in Section 2.4 has full support and inherits
all the desired properties from µ. These arguments can be found in [21].
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5.2 Amenable actions

As mentioned earlier, we should be cautioned when dealing with amenable actions,
since there are two very different ways of defining an amenable action. In one case,
we say that a group G acts amenably on a space X, if there exists a G-invariant
probability measure on X. This is the definition, which relates to the Banach-Tarski
paradox, where the group of rotations in R3 acts non-amenably on the unit sphere.
It is, however, the second definition that we will consider in the thesis. This notion
was originally introduced by Robert Zimmer in [28]. We start out by proving that
in this context an amenable group will always act amenably on any space, and
that only amenable groups acts amenably on a singleton. This should provide a
relation between amenability and amenable actions. From here, we prove that any
group G acts amenably on the Poisson boundary associated to any measure, which
is absolutely continuous with respect to the Haar measure. This latter result was
originally proved by Zimmer in the discrete case, and later in the locally compact
case by Scot Adams, George Elliot and Thierry Giordano in [1]. We will follow the
definition and prove found in [2].

Definition 5.6. Let G be a locally compact group, and let (X,µ) be a probability
space on which G acts in a measurable manner. The action of G on X is said to be
measurably amenable if there exists aG-equivariant projection from L∞(G×X,λ⊗µ)
onto L∞(X,µ), with norm one.

In order for such a projection to even make sense, we need to view L∞(X,µ) as
a subspace of L∞(G × X,λ ⊗ µ). To do so, we will simply identify f ∈ L∞(X,µ),
with the map f̃ : G ×X → C given by f̃(g, x) = f(x), for all x ∈ X and g ∈ G. In
other words we can identify L∞(X,µ) with the space of functions from G×X → C
that are measurable, once we equip G with the trivial σ-algebra {∅, G}. In this way,
the projection in question is a conditional expectation. Furthermore, the action of
G on L∞(G ×X,λ ⊗ µ) and L∞(X, ν), is the action inherited from G ×X and X
respectively, where G acts on G × X by g.(h, x) = (gh, g.x) for all g, h ∈ G and
x ∈ X.

If X is a singleton, then L∞(G × X,λ ⊗ µ) ∼= L∞(G,λ) and L∞(X,µ) ∼= C,
and hence a projection as in the definition above is merely a left-invariant mean on
L∞(G,λ). In other words, amenability of the action of G on a singleton is sim-
ply amenability of G. Another connection between amenable groups and amenable
actions can be found in the proposition below.

Proposition 5.7. Let G be an locally compact amenable group. Then G acts ame-
nably on any G-space X.

Proof. Let m be a left invariant mean on L∞(G,λ) and let (X, ν) be a G-space. For
f ∈ L∞(G ×X,λ ⊗ ν) and x ∈ X, let fx : G → C denote the map fx(g) = f(g, x).
We will now set out to prove that the map

P : L∞(G×X,λ⊗ ν)→ L∞(X, ν),

defined as P (f)(x) = m(fx), is a projection with norm one. The map P is clearly
linear and to see that it is a projection pick f ∈ L∞(X, ν). Then fx is constantly
equal to f(x), and thus P (f)(x) = m(fx) = f(x).
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To see that the P has norm equal to one, we should first notice that P (1) = 1
and hence ‖P‖ ≥ 1. On the other hand, if f ∈ L∞(G×X,λ⊗ ν) is given, then

‖P (f)‖∞ = sup
x∈X
|m(fx)| ≤ sup

x∈X
‖fx‖∞ = sup

x∈X
sup
g∈G
|fx(g)| = ‖f‖∞

and hence ‖P‖ ≤ 1. For G-equivariance of P , let f ∈ L∞(G×X,λ⊗ ν) and g ∈ G
be given. For g, h ∈ G and x ∈ X, we see that g.(fg−1.x)(h) = (g.f)x(h) and thus

g.P (f)(x) = P (f)(g−1.x) = m(fg−1.x) = m(g.(fg−1.x)) = m((g.f)x) = P (g.f)(x),

by left invariance of m. In conclusion, P is the desired G-equivariant projection with
norm one.

The main result of this section is to prove that any group acts amenably on
the Poisson boundary, under certain assumptions on the corresponding probability
measure µ ∈ P(G). Note that the previous comment, along with Furstenberg’s
conjecture, require a certain caution when dealing with non-amenable groups. Before
proving this result, we start out with a couple of lemmas.

Lemma 5.8. Let X,Y be Banach spaces, and let B(X,Y ∗) denote the space of linear
maps from X to Y ∗. Then, the unit ball of B(X,Y ∗) is compact in the point-weak∗

topology. We recall Tα → T in the point-weak∗ topology, if Tαx converges to Tx in
the weak∗-topology on Y ∗, for all x ∈ X.

Proof. For r ≥ 0, we let (Y ∗)r denote the set {ϕ ∈ Y ∗ | ‖ϕ‖ ≤ r}, which is compact
by the Banach-Alaoglu theorem. By Tychonoff’s theorem, the product

∏
x∈X(Y ∗)‖x‖

is compact in the product topology corresponding to the weak∗-topology on each
copy of Y ∗. As convergence in the product topology is equivalent to convergence in
each coordinate, we consider the embedding Φ from (B(X,Y ∗))1 to

∏
x∈X(Y ∗)‖x‖,

defined as
Φ(T ) = (T (x))x∈X .

We will check that this in fact an embedding, i.e., Φ is injective, continuous and
open. The injectivity follows from the fact that the (B(X,Y ∗))1 separates points
in X, and for the rest pick a net (Tα)α∈A and an element T in B(X,Y ∗). Then
Tα converges to T in the point-weak∗ topology if and only if Tα(x)

w∗−→ T (x) for all
x ∈ X, which again happens if and only if (Tα(x))x∈X → (T (x))x∈X , or in other
words, Φ(Tα)→ Φ(T ). All in all, this implies that (B(X,Y ∗))1 is homeomorphic to
a closed subset of

∏
x∈X(Y ∗)‖x‖ and thus also compact.

Lemma 5.9. Let (fα)α∈A and f be in L∞(G,λ), and assume that fα
w∗−→ f when

viewed as elements of (L1(G,λ))∗. Then fα ∗ ϕ converges pointwise to f ∗ ϕ for any
ϕ ∈ L1(G,λ).

Proof. This proof relies heavily on computations with the Haar measure, so let ϕ be
an element in L1(G,λ). Then for any g ∈ G, the map t 7→ ϕ(t−1g)∆(t−1), t ∈ G will
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also belong to L1(G,λ). Indeed, for any g ∈ G,∫
G
|ϕ(t−1g)|∆(t−1) dλ(t) = ∆(g)

∫
G
|ϕ(t−1)|∆(t−1) dλ(t)

= ∆(g)

∫
G
|ϕ(t)|dλ(t) = ∆(g)‖ϕ‖1 <∞.

From there on, we notice that for any ψ ∈ L∞(G,λ), ϕ ∈ L1(G,λ) and g ∈ G,

(ψ ∗ ϕ)(g) =

∫
G
ψ(gt−1)ϕ(t) dλ(t) =

∫
G
ψ(t−1)ϕ(tg) dλ(t)

=

∫
G
ψ(t)ϕ(t−1g)∆(t−1) dλ(t),

so by applying the weak∗ convergence of (fα)α∈A to f , the proof is complete.

Theorem 5.10. Let µ be a Borel probability measure on G, which is absolutely
continuous with respect to λ, and let (X, ν) be some version of the corresponding
measurable Poisson boundary. Then G acts amenably on (X, ν).

Proof. For any n ≥ 1, we define µn := n−1
∑n

k=1 µ
∗k. Then ‖(µ − δe) ∗ µn‖1 → 0,

when viewing µ and its convolution powers as L1 functions. Let furthermore α be a
Borel probability measure on G×X, which is absolutely continuous with respect to
λ⊗ ν. For n ≥ 1, we define Hn : L∞(G×X)→ L∞(G) by

Hn(ψ)(g) = (δg ∗ µn ∗ ρ)(ψ), ψ ∈ L∞(G×X), g ∈ G.

Then Hn is a positive, contractive, linear operator that satisfies H(1) = 1 and
thus also an element in B(L∞(G × X), L∞(G)). Furthermore, for g, t ∈ G and
ψ ∈ L∞(G×X),

t.Hn(ψ)(g) = Hn(ψ)(t−1g) = (δt−1g ∗ µn ∗ ρ)(ψ) = (δt−1 ∗ δg ∗ µn ∗ ρ)(ψ)

= (δg ∗ µn ∗ ρ)(t.ψ) = Hn(t.ψ)(g),

and thus Hn is G-equivariant. Furthermore, for all g ∈ G and ψ ∈ L∞(G×X), we
see that

Hn(ψ) ? (µ− δe)(g) =

∫
G
Hn(ψ)(gt) d(µ− δe)(t)

=

∫
G

(δgt ∗ µn ∗ ρ)(ψ) d(µ− δe)(t)

=

∫
G

(δg ∗ δt ∗ µn ∗ ρ)(ψ) d(µ− δe)(t)

= (δg ∗ (µ− δe) ∗ µn ∗ ρ)(ψ).

For here on it follows that |Hn(ψ) ? (µ − δe)(g)| ≤ ‖(µ − δe) ∗ µn)‖1‖ψ‖∞, for
all g ∈ G, and hence |Hn(ψ) ? (µ − δe)(g)| → 0 as n → ∞ for all g ∈ G. For
the next part of the proof, we identify L∞(G) with the dual of L1(G) and apply
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Lemma 5.8 to pick a subnet (Hni)i∈I of (Hn)n≥1, which converges towards some
H ∈ B(L∞(G×X), L∞(G)) in the point-weak∗ topology.

The claim will now be that Hψ is µ-harmonic for all ψ ∈ L∞(G × X), so let
ψ ∈ L∞(G × X) be given. By the remark in connection to Definition 2.2, for any
ϕ ∈ L1(G) and i ∈ I, we see that

Hni(ψ) ? (µ− δe) ∗ ϕ = Hi(ψ) ∗ (µ̃− δe) ∗ ϕ.

Since (µ̃−δe)∗ϕ ∈ L1(G), we conclude that Hni(ψ)?(µ−δe)∗ϕ converges pointwise
toH(ψ)?(µ̃−δe)∗ϕ on G. On the other hand, the convergence of ‖Hni(ψ)?(µ−δe)‖∞
to 0 will also give us that Hni(ψ)? (µ− δe)∗ϕ→ 0 pointwise on G, so by uniqueness
of limits, we must have H(ψ) ? (µ − δe) ∗ ϕ(g) = 0 for all g ∈ G. We would now
like to show that H(ψ) ? (µ − δe) = 0 almost surely, and for this it suffices to show
that the equality holds true almost surely on all compact subsets of G. Let K ⊂ G
be compact and define ϕ ∈ L1(G) by ϕ(t) = H(ψ) ? (µ− δe)(t−1) · 1K . The result
above can then be written as

0 = H(ψ) ? (µ− δ) ∗ ϕ(e) =

∫
K
|H(ψ) ? (µ− δe)(t−1)|2 dλ(t)

=

∫
K
|H(ψ) ? (µ− δe)(t)|2∆(t−1) dλ(t),

which happens if and only if H(ψ) ? (µ − δe) = 0 almost surely on K. From there
on we conclude that H(ψ) ? (µ − δe) = 0 almost surely, or in other words that
H(ψ) ∈ H∞a.s.(G,µ), for any ψ ∈ L∞(G×X).

As (X, ν) is the measurable Poisson boundary, we can for any ψ ∈ L∞(G ×X)
find a unique ψ̃ ∈ L∞(X) such that H(ψ) = Pν(ψ̃). If we define a map M from
L∞(G×X) to L∞(X), by M(ψ) = ψ̃ for any ψ ∈ L∞(G×X, then M is a positive
contraction with M(1) = 1. To show that M is a projection, we will now assume
that α = β ⊗ ν, for some Borel probability measure β on G, which is absolutely
continuous with respect to λ. For ϕ ∈ L∞(X), where we view L∞(X) ⊂ L∞(G×X)
as above, we use the µ-stationarity of ν to see that Hn(ϕ)(g) = g.ν(ψ) = Pν(ϕ)(g),
for all g ∈ G and n ≥ 1. Then also H(ϕ)(g) = Pν(ϕ)(g), which implies M(ϕ) = ϕ,
as we set out prove.

Note that the above theorem along with the discussion on groups acting amenably
on a singleton actually provides an alternative proof of Proposition 5.3. Indeed, if the
Poisson boundary is trivial and G is acting amenably on this singleton, G must be
amenable itself or in other words, any non-amenable group gives rise to a non-trivial
Poisson boundary.
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6 G-boundaries and recent applications

This final section will serve as an appetiser for a different kind of group theoretic
boundary, and some very recent applications in the field of C∗-algebras. We will
not provide any proofs and ’a deeper understanding and working knowledge of C*-
algebras will be assumed throughout this section. For details, see [19], [18]. The
type of boundaries we will discuss are the so-called G-boundaries and we will work
in the setting of a discrete, countable group G.

Definition 6.1. A compact, topological G-space B is said to be a G-boundary if
the following is satisfied:

• B is minimal, i.e., there are no proper G-invariant subset of B.

• For every ν ∈ P(B), the w∗-closure of {g.ν | g ∈ G} contains δB.

We notice that there are some similarities between the definition of a G-boundary
and a µ-boundary, but there are no natural way of comparing the two. However,
they do share some of the same properties. For instance, every group G gives rise to
a universal G-boundary.

Proposition 6.2. There exists a G-boundary B, such that every other G-boundary
is an equivariant image of B. This G-boundary is called the Furstenberg boundary,
and is denoted by ∂FG. Furthermore, the Furstenberg boundary is unique up to
homeomorphism.

If we consider the case of G = F2, the Furstenberg boundary ∂FF2 actually
coincides with the Poisson boundary constructed in Section 3.2, i.e. ∂FF2 is the
space of infinite, reduced words in the generators of F2. Furthermore, there is a
result for G-boundaries, which somewhat resembles Furstenberg’s conjecture.

Proposition 6.3 (Kennedy and Kalantar, [19]). The Furstenberg boundary ∂FG is
a singleton if and only if G is amenable. In fact, ∂FG is non-metrisable if G is not
amenable.

As mentioned earlier, the Furstenberg boundary has recently been used to answer
a series of questions in the theory of C∗-algebras. More specifically, it has been used
to characterise groups for which the reduced group C∗-algebra is simple, the so-called
C∗-simple groups or has a unique tracial state, in which case we say that the group
has the unique trace property. Furthermore, it has been an open question whether
C∗-simplicity and the unique trace property are equivalent, and here the Furstenberg
boundary was used to prove that C∗-simple groups have the unique trace property.
The converse implication is officially still an open question, but rumor has it that
a counterexample has been discovered, thus leaving it a one-way implication. This
proof of C∗-simplicity implying the unique trace property involves an object called
the injective envelope, so for this we introduce a handful of definitions.
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Definition 6.4. Let G be a countable, discrete group.

1. A self-adjoint, unital, linear subspace of a unital C∗-algebra is called an oper-
ator system.

2. An operator system S is said to be a G-operator system, if G acts on S by
completely positive isomorphisms.

3. An operator system S is said to be G-injective if for every unital, completely
isometric, G-equivariant map ι : E → F and every unital, completely positive,
G-equivariant map ϕ : E → S, there exists a unital, completely positive, G-
equivariant map ψ : F → S such that ψ ◦ ι = ϕ.

4. A G-extension of a G-operator system S is a pair (T , ι), where T is a G-
operator system and ι : S → T is a completely isometric, G-equivariant map.
The extension is said to be G-injective if T is G-injective. The extension is
said to be G-essential, if for every unital, completely positive, G-equivariant
map ϕ : T → E , such that ϕ ◦ ι is completely isometric, then ϕ is completely
isometric.

In 1985, Masamichi Hamana provided a proof (see [14]) for existence and unique-
ness of a G-injective and G-essential extension of any operator system S. This
extension is called the G-injective envelope of S, and is denoted by IG(S). Later, it
was proved that IG(C) ∼= C(∂FG) for any discrete group G, and it is this identifica-
tion, which is used in the recent results mentioned earlier. However, before looking
at those, we start out with yet another definition

Definition 6.5. Let G be a discrete group, and let X be a G-space.

• We say that G acts topologically free on X, if the set {x ∈ X | s.x 6= x} is
dense in X for every s ∈ G\{e}.

• We say that G acts faithfully on X, if for any g 6= h in G there exists x ∈ X
such that g.x 6= h.x.

We are now ready to state the three recent results, for which the Furstenberg
boundary has found applications in the theory of C∗-algebras.

Theorem 6.6 (Kennedy and Kalantar, [19]). Let G be a discrete group, and let
∂FG denote its Furstenberg boundary. Then G is C∗-simple if and only if G acts
topologically free on ∂FG.

Theorem 6.7 (Kennedy and Kalatar, [19]). A group G acts amenably on ∂FG if
and only if G is exact, i.e. the reduced group C∗-algebra C∗r (G) is exact.

Theorem 6.8 (Kennedy, Kalantar, Breuillard and Ozawa, [18]). Let G be a discrete
group, and let ∂FG denote its Furstenberg boundary. Then G has the unique trace
property if and only if G acts faithfully on ∂FG.
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A The Haar measure and convolutions

This appendix will serve as a short survey of the existence and the basic properties of
the right Haar measure on a locally compact group, and how we use the Haar measure
to define a series of convolutions. The goal is to provide the tools needed for reading
through the thesis at hand. For proofs, details regarding the Haar measure can be
found in Chapter 11 in [8], while details on convolutions can be found in Chapter 8
in [8] and in [12]. Let us first recall the following definition.

Definition A.1. Let X be a locally compact Hausdorff space. A Radon measure µ
on X is a Borel measure with the following properties

• µ(K) <∞ for all compact subsets K ⊂ X.

• µ(E) = inf{µ(U) | U ⊂ X open , E ⊂ U}, for any Borel set E ⊂ X.

• µ(U) = sup{µ(K) | K ⊂ X compact ,K ⊂ U}, for any open set U ⊂ X

We are now ready to define the right Haar measure, using a theorem which is
proved by the means of a number of Functional Analysis result, including Urysohn’s
Lemma, the Riesz Representation Theorem and Caratheodory’s Theorem.

Theorem A.2. Let G be a locally compact group. Then there exists a right invariant
Radon measure µ on G, where right invariance means µ(A) = µ(Ag) for all g ∈ G
and A ⊂ G Borel. Furthermore, this measure λ is unique up to multiplication with a
strictly positive constant.

For a locally compact group G, we will let λG denote one of these measures and
we call it the right Haar measure. If there is no ambiguity, we will omit the subscript
and simply write λ. We will in general not worry about which right Haar measure
we choose, but there are certain exceptions.

• If G is a compact group, λ is a finite measure and thus, we choose the version,
which is also a probability measure.

• If G is the real line with addition, the Lebesgue measure is a right Haar measure
and it will be our canonical choice.

• If G is an infinite, discrete group, then λ is the counting measure on G and
thus, we choose the version which gives each singleton measure one.

Even though we do not worry about the choice of right Haar measure, there is
a certain relation between these measures. The idea here is that every left translate
of a right Haar measure, is a right Haar measure and thus they are all equal up to
multiplication by some positive constant.

Proposition A.3. Let G be a locally compact group and let λ be the right Haar
measure. Then there exists a continuous function ∆: G→ (0,∞) satisfying

1. λ(xA) = ∆(x)λ(A), for all x ∈ G, and A ⊂ G Borel,
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2. ∆(xy) = ∆(x)∆(y),

3. ∆ is independent of the choice of λ.

The point of the modular function is in some sense to measure, how close our
right Haar measure is to being left-invariant as well. There are certain cases where
∆ is constantly equal to 1 and such groups will be called unimodular. It is clear
that abelian groups are unimodular, but it is true for types of groups as well. If
G is a compact group, then ∆(G) is a compact subgroup of (R, ·), which is only
possible when ∆(G) = {1}. The modular function ∆ will also give us some tools
for integrating against λ. Here we have the following identities for any function
f : G→ R, for which the integrals make sense

•
∫
f(gh) dλ(g) =

∫
f(g) dλ(g), h ∈ G.

•
∫
f(hg) dλ(g) =

∫
f(g)∆(h−1) dλ(g), h ∈ G.

•
∫
f(g−1) dλ(g) =

∫
f(g)∆(g−1) dλ(g).

Convolutions

The convolution of two Borel probability measures µ, ν on a group G is the image
of the product measure µ⊗ ν with respect to the product on G. In other words, the
convolution of µ and ν, denoted by µ ∗ ν is defined as

µ ∗ ν(ϕ) =

∫
G

∫
G
ϕ(gh) dµ(g) dν(h), ϕ ∈ Cc(G).

We will also let µ∗n denote the convolution of n copies of a measure µ. By having a
canonical measure on G, the Haar measure lets us extend the definition of convolu-
tions as follows. For a probability measure µ on G and a function f ∈ L1(G,λ), we
want to define integrable functions f ∗µ, µ∗f : G→ R, such that (f ·λ)∗µ = (f ∗µ)·λ
and µ ∗ (f · λ) = (µ ∗ f) · λ. These functions must necessarily be defined as follows

(µ ∗ f)(g) =

∫
G
f(t−1g)∆(t) dµ(t)

(f ∗ µ)(g) =

∫
G
f(gt−1) dµ(t)

This construction also works for functions in Lp(G,λ) for any 1 ≤ p ≤ ∞, and the
inequalities ‖µ ∗ f‖ ≤ ‖µ‖ · ‖f‖p, ‖f ∗ µ‖ ≤ ‖f‖p‖µ‖ holds true for any f ∈ Lp(G,λ)
and Borel propability measure µ on G, where ‖µ‖ denotes the total variation of µ.
We can extend this even further to the case, where µ = ϕ · λ for some ϕ ∈ L1(G,λ).
Then f ∗ ϕ : G→ R is defined as

(f ∗ ϕ)(g) =

∫
G
f(gt−1)ϕ(t) dλ(t), g ∈ G.

If the reader is familiar with traditional convolutions of functions f, g : R → R or
ϕ,ψ ∈ `1(G) for some countable discrete group G, then it is not difficult to check
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that these definitions are special cases of with the general one above. Lastly, for
f ∈ L∞(G) and ϕ ∈ L1(G) the convolution f ∗ ϕ as above will give us a function in
L1(G), and this function will in fact be continuous. As a final remark to this section,
we should note that the above discussion and concrete formulas only concerned the
right Haar measure. Any locally compact group will also admit a left invariant Radon
measure, the left Haar measure, for which all the tools above can be constructed in
an analogous way, but the concrete formulas for integration and convolutions will
have to be changed appropriately.

B Miscellaneous results

This appendix will serve as a catalogue of different results that will be used but not
proven in the thesis. The first theorem is a result from ergodic theory, which come
in handy, when dealing with random walks and the like.

Theorem B.1 (Kingman’s Subadditive Ergodic Theorem, [20]). Let (Ω,P) be a
probability space, and let θ : Ω → Ω be a measure preserving transformation. Let
(Xn)n≥0 be a sequence of real-valued stochastic variables on Ω, satisfying

• EXn <∞, for all n ≥ 0.

• EXn ≥ −An, for all n ≥ 1 and some constant A.

• Xn+m(ω) ≤ Xn(ω) +Xm(θn(ω)), for all n,m ≥ 0 and ω ∈ Ω.

Then Xn/n converges almost surely and in L1 to some random variable X.

The next theorem is a result describing the possible behaviour of convolution
powers of a probability measure.

Theorem B.2 (The zero-two law, [6]). Let µ be a probability measure on a locally
compact group G. Then limn→∞ ‖µ∗(n+1)−µ∗n‖ exists, and is either zero or two. In
particular, if ‖µ∗2 − µ‖ < 2, then limn→∞ ‖µ∗(n+1) − µ∗n‖ = 0.

Note that the last claim follows directly from the first, when remembering that
P(G) is a Banach algebra with respect to the convolution. The zero-two law can
be formulated in the much more general setting of Markov processes, but the above
version is the one we need for this thesis. Finally, we have a result, which is of great
use once we consider random walks on an abelian group.

Theorem B.3 (Hewitt-Savage 0-1 law, [17]). Let (Xn)n≥1 be a sequence of in-
dependent, identically distributed random variables with values in some measurable
space X, and let P denote the distribution of (Xn)n≥1 on the sequence space XN. If
ϕ : XN → X is a function of (Xn)n≥1, which is invariant under any finite permuta-
tion of (Xn)n≥1 P-a.s., then ϕ is constant P-a.s.
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