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THERE ARE MANY PRIMES

Prime numbers

Definition:  An integer n is called prime if n > 1 and if the only positive divisors of n are 1 and n. 

(If n > 1 and if n is not prime, then n is called composite. A composite number is a product of prime numbers )

EXAMPLES: The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19,23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

Theorem:

There are infinitely many primes.

There are many proofs that there are infinitely many primes. The oldest known proof for the statement that there are infinitely many primes is Euclid’s. But now I will show the Kummer’s restatement of Euclid’s proof. Kummer gave a more elegant version of this proof

Proof:

Suppose that there exist only finitely many primes p1 < p2 < ... < pr. 

Let N = p1.p2.....pr.   The integer N-1, being a product of primes, has a prime divisor pi in common with N; 

so, pi divides N - (N-1) =1, which is absurd!

Primes in arithmetic progression

The arithmetic progression of odd numbers 1, 3, 5, . . . ,2n + 1, . . . contains infinitely many primes. It is natural to ask whether other arithmetic progressions have this property.
Dirichlet’s theorem for primes of the form  4n-1  and  4n+1

Theorem: There are infinitely many primes of the form 4n-1

Proof:  

We argue by contradiction. Assume there are only a finite number of such primes, 

let p be the largest, and consider the integer

N = 2.2 . 3. 5.7.. . p - 1.

The product 3 .5 . . . p contains all the odd primes  < p+1 as factors. 

Since N is of the form 4n - 1 it cannot be prime because N > p. 

No prime ≤ p divides N, so all the prime factors of N must exceed p. 

But all of the prime factors of N cannot be of the form 4n + 1 because the product of two such numbers is again of the same form. 

Hence some prime factor of N must be of the form 4n - 1. 

This is a contradiction.  

Theorem: There are infinitely many primes of the form 4n+1
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Simple arguments like those just given for primes of the form 4n – 1 and 4n + 1 can also be adapted to treat other special arithmetic progressions, such as 5n - 1,8n - 1,8n - 3 and 8n + 3

But there is a theorem which is much harder than the cases above since it works for the general progression  k.n+h

Theorem: (Dirichlet)

If k > 0 and (h, k) = 1 there are infinitely many primes in the arithmetic progression nk + h  ,  n = 0, 1, 2, . . .  

     The first major progress on arithmetic progressions in the primes was made by van der Corput, who proved in 1939 that the primes contain infinitely many arithmetic progressions of length 3. 

     Further progress was made only in 1981,when Heath-Brown showed that there are infinitely many arithmetic progressions of length 4 consisting of three primes and an almost prime, meaning either a prime or a product of two primes.

     In a slightly different direction are the elegant results of Balog on patterns in the primes. For example, he shows that for any positive integer k, there exist infinitely many k-tuples of distinct primes p1 < p2 < . . . < pk such that (pi+pj)/2 is prime for all i, j in {1, . . . , k}. For k = 2 this implies, in particular, that the primes contain infinitely many arithmetic progressions of length 3.

     Computational mathematicians have also worked on the problem of finding long arithmetic progressions in the primes. In 1995, Moran, Pritchard and Thyssen found a progression of length 22 in the primes. This record was finally broken in 2004, when Frind, Jobling and Underwood found a progression of length 23 starting with the prime 56211383760397 and with common difference 44546738095860.

In 2004, Ben Green and Terence Tao announced a major breakthrough, with a

proof of the general case: 

Theorem:(Green and Tao 2004)

For every integer k ≥ 1, the prime numbers contain an arithmetic progression of length k

Then, Green and Tao prove a stronger statement than that given theorem above. They

show that not only do the primes contain arbitrarily long arithmetic progressions, but so does any sufficiently dense subset of the primes:

Theorem:(Green and Tao) (stronger)

If A is a subset of prime numbers with lim sup  |A ∩ {1, . . .,N}| / π(N)  > 0 ,

                                                              N→∞
where π(N) is the number of primes in {1, . . .,N}, then for every integer k ≥ 1, 

A contains an arithmetic progression of length k.


     Substituting the set of all integers for the set of primes in this Theorem, one obtains Szemeredi’s Theorem. 

Now I state an equivalent finite version of this theorem:

Theorem: ( Finite Szemeredi )

Let 0 < δ ≤ 1 be a real number and let k ≥ 1 be an integer. 

There exists No (δ, k) such that if N >No (δ, k) and A is a subset of {1, . . .,N} with |A| ≥ δN, then A contains an arithmetic progression of length k.


In fact what Green and Tao did was to take a mix of many proofs of Szemeredi's theorem and showing that this mix could be adapted to work for primes instead of all integers.
