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It is well known that division is possible in the field R. By division I
mean that there is a multiplication "∗" on R and for all elements x 6= 0 ∈ R
there exists an element x−1 ∈ R such that x ∗ x−1 = 1, where 1 is the unit
element. x−1 is called the multiplicative inverse. It is also well known that
the complex numbers C satisfy the same condition and since C and R2 are
isomorphic the same holds for R2. So divison is also possible in the vector
field R2. The obvious question is now: Is division possible in R3 or in Rn for
some arbitrary n ∈ N ?

The Irish mathematician Hamilton (1805-1865) did a great effort during
his career to answer this question but did not succeed. Though while he was
working on constructing a multiplication on R3 he actually came up with
one on R4. This made it possible to show that division is possible in the
vector field R4 or rather in the isomorphic vector field now named the "Qua-
ternions". Later on it was discovered independently by John T. Graves and
Arthur Cayley that division is also possible in the so called "Octonions"that
are isomorphic to R8.

So now we know that the real numbers R, the complex numbers C, the
quarternions H and the octonions O are all vector fields over R where division
is possible. Since these vector fields are all algebras they are called "Real di-
vision algebras". One very important property of these are that they all have
a norm. This norm actually implies the existence of a multiplicative inverse.
So the real division algebras are also called "Normed division algebras".

Despite the fact that they are all real division algebras they are quite
different from each other. While R and C and H are all associative H and O
are not commutative in fact O is not even associative.

Well so far we know that if n = 1, 2, 4, 8 then Rn is a real division algebra,
but what about for an arbitrary n ∈ N? how should we proceed? Some clever
guys came up with the following idea: Why not, instead of trying to find
these rather complicated multiplications in some Rn for some n just prove
that they can not be found because they don’t exists unless n is 1,2,4 or 8.
In other words they proved that there are only four real division algebras
namely R , R2 , R4 , R8.I will now try to sketch out how this was done.

The proof is very demanding and takes a lot of pages so I am not going
to try to give a thorough description but just try to outline the basic ideas.
The fundamental part of the proof is
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Proposition If Rn is a real division algebra then Sn−1 is parallelizable.

Well well what does that mean? It means that if Sn−1 is not parallelizable
then Rn is not a real division algebra. But does that make it easier? I don’t
know but thats the way the problem has been solved, cause it is actually
possible to show that Sn−1 is only parallelizable if n = 1, 2, 4, 8 and hence
there exists only four real division algebras (up to isomorphism) namely the
four already mentioned.

Now I guess it would be appropriate to explain a few notions before I
proceed. First, Sn−1 is the unit sphere in Rn. Sn−1 is parallelizable if there
exists an (n-1)-frame on Sn−1. An (n-1)-frame on Sn−1 is a set of vector fields
such that

r1s1(x) + r2s2(x) + ...+ rn−1sn−1(x) = 0

if and only if r1, r2, ..., rn−1 = 0

where ri ∈ R and si is a function Sn−1 → Rn such that si(x) is a tan-
gent vector to Sn−1 for all x ∈ Sn−1. So the equation just states that this set
of vector fields is linearly independent for each x ∈ R.

So how do we prove the preceding proposition? The idea is to assume that
Rn is a real division algebra. Then we can construct a set of vector fields,
that are tangent to Sn−1, using an orthogonal basis for Rn. Then we use the
fact that a real division algebra possesses a norm , which makes it possible
to show that this set of vector fields is linearly independent and therefor it
is a (n-1)-frame to Sn−1.

So the next step of the proof is to show that Sn−1 is only parallelizable if
n = 1, 2, 4, 8. This was first done independently by Milner and Bott in 1958.
The proof was rather complicated but in 1962 a guy named J.F. Adams came
up with an easier way to prove it.

The trick here is to recognize that for Sn−1 to be parallelizable the span
of Sn−1 must be n − 1. Then we use that some clever people, Hurwitz and
Radon came up with a subtle function ρ that has the following property:
span{Sn−1} = ρ(n)− 1 . ρ(n) is called the Hurwitz-Radon number.

ρ(n) = 8a+ 2b and n = 24a+bk

k is an odd number and a and b are integers such that a ≥ 0 and 0 ≤ b ≤ 3
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Now the problem is reduced to finding the n’s that gives ρ(n) = n. Cau-
se it follows that Sn−1 is parallelizable if and only if ρ(n) = n.

So now we just need to solve the equation ρ(n) = n. By a bit of calculation
it can be shown that this equation is solved for n = 1, 2, 4, 8.

These were the headlines of the proof and by these steps it is shown that
Sn−1 is parallelizable if n = 1, 2, 4, 8 hence Rn is a real division algebra if and
only if n = 1, 2, 4, 8. So R ' R, R2 ' C, R4 ' H, R8 ' O are the only real
division algebras.
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