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1. Introduction
Linear programming deals with problems such as (see [4], [5]): to maximize a linear

functiong(x) _ cixi of n real variables xi,... , x,, (forming a vector x) con-
strained by m + n linear inequalities,

fh (X) =_ bh -I a'hiXi >_-°, Xi >_ °, h = 1,. .., m; i= 1,. .., n.

This problem can be transformed as follows into an equivalent saddle value (min-
imax) problem by an adaptation of the calculus method customarily applied to con-
straining equations [3, pp. 199-201]. Form the Lagrangian function

4)(x, u) g(x) + Uhfh(x)-

Then, a particular vector x° maximnizes g(x) subject to the m + n constraints if,
and only if, there is some vector u° with nonnegative components such that

4 (x, u°) < 4 (x°, u°) < 4) (xO, u) for all nonnegative x, u .

Such a saddle point (xO, u°) provides a solution for a related zero sum two person
game [8], [9], [12]. The bilinear symmetry of +(x, u) in x and u yields the charac-
teristic duality of linear programming (see section 5, below).

This paper formulates necessary and sufficient conditions for a saddle value of
any differentiable function 4)(x, u) of nonnegative arguments (in section 2) and
applies them, through a Lagrangian 4(x, u), to a maximum for a differentiable
function g(x) constrained by inequalities involving differentiable functions fa(x)
mildly qualified (in section 3). Then, it is shown (in section 4) that the above equiva-
lence between an inequality constrained maximum for g(x) and a saddle value for
the Lagrangian +(x, u) holds when g(x) and the fa(x) are merely required to be
concave (differentiable) functions for nonnegative x. (A function is concave if linear
interpolation between its values at any two points of definition yields a value not
greater than its actual value at the point of interpolation; such a function is the
negative of a convex function-which would appear in a corresponding minimum
problem.) For example, g(x) and the f,,(x) can be quadratic polynomials in which
the pure quadratic terms are negative semidefinite (as described in section 5).

In terms of activity analysis [11], x can be interpreted as an activity vector, g(x)
as the resulting output of a desired commodity, and the fh(x) as unused balances
of primary commodities. Then the Lagrange multipliers u can be interpreted as a
price vector [13, chap. 8] corresponding to a unit price for the desired commodity,
and the Lagrangian function 4)(x, u) as the combined worth of the output of the de-
sired commodity and the unused balances of the primary commodities. These
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price interpretations seem to relate closely to the price theory in the contemporary
paper of K. J. Arrow [1].
A "vector" maximum-of T. C. Koopmans'efficient point type [11]-for several

concave functions gi(x), . . ., g,(x) can be transfonned into a "scalar" maximum
for g(x) _ V2k(x) by suitable choice of positiveconstants v: (as described in
section 6). These positive constants can be interpreted as prices to be assigned (for
efficient production) to several desired commodities withoutputs gk(X) produced
by the activity vector x.

Likewise, a maximum for min [gi(x), ... , g,(x)] can be transformedinto a
maximum for g(x) - vZgk(x) by suitable choice of nonnegative constantsvk with
unit sum (as described in section 7). Such a maximum of a minimum component,

example, is the objective of the first player in a zero sum two person game [12].
Modifications resulting from changes in the m + n basic constraints are also

considered (in section 8).
Throughout this paper it is assumed that the functions occurring are differen-

tiable. But it seems to be an interesting consequence of the directional derivative
properties of general convex (or concave) functions [2, pp. 18-21] that the equiva-
lence between an inequality constrained maximum for g(x) and a saddle value for
the Lagrangian +(x, u) still holds when the assumption of differentiability is
dropped. Then proofs would involve the properties (of linear sum, intersection,
and polar) of general closed convex "cones" rather than those of the polyhedral
convex "cones" [71, [14] that occur implicitly in this paper through homogeneous
linear differential inequalities. However, to assure finite directional derivatives
at boundary points of the orthant of npnnegative x, one needs some mild require-
ment. For this purpose, it is certainly sufficient to assume that the functions are
convex (or concave) in some open region containing the orthant of nonnegative x.

NOTATION. Vectors, denoted usually by lower case roman letters, will be treated
as one column matrices, unless transposed by an accent ' into one row matrices.
Vector inequalities or equations stand for systems of such inequalities or equations,
one for each component. Thus x > 0 means that all the components of the vector x
are nonnegative. Rectangular matrices and mapping operators will be denoted by
capital letters.

2. Necessary and sufficient conditions for a saddle value
Let +5(x, u) be a differentiable function of an n-vector x with components

xi > 0 and an m-vector u with components uh _ 0. Taking partial derivatives,
evaluated at a particular point x°, u°, let

- lj- al0 lh~
Here 00 is an n-vector and 00 an m-vector.

SADDLE VALUE PROBLEM. Tofind nonnegative vectors x° and u° such that

q(x, u°) _ 4W(x, u°) _ 44x0, u) for all x _ 0, u > 0.

LEMMA 1. The conditions
(1) 4°O_ O b'x<= °' x =O
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(2) qb: _ 0, 4Vuo= o, uo > 0

are necessary that x°, u° provide a solution for the saddle value problem.
PROOF. The components of 4), and 4)0 must vanish except possibly when the

corresponding components of x° and u° vanish, in which case they must be non-
positive and nonnegative, respectively. Hence (1) and (2) must hold.
LEMMA 2. Conditions (1), (2) and

(3) 4) (x, uO) < 4 (x°, u°) + 4)?' (x - xo)

(4) ) (x°, u) _ 4) (x°I, u) + '4O' (u -.u°)
for all x > 0, u> 0, are sufficient that xA, u° provide a solution for the saddle value
problem.

PROOF. Applying (3), (1), (2), (4) in turn, one has
4 (x, uO) < 4 (xo, uO) + 4)?' (x - x°)

<
4 (xA, u°)

_ 4 (x°, u°) + 4)?' (u - u°)
< 4 (xA, u)

for all x> 0, u > 0.
Conditions (3) and (4) are not as artificial as may appear at first sight. They are

satisfied if +(x, u°) is a concave function of x and O(xO, u) is a convex function of u
(see section 4).

3. Lagrange multipliers for an inequality constrained maximum
Let x -* u = FK be a differentiable mapping of nonnegative n-vectors x into

m-vectors u. That is, &?x is an m-vector whose components fi(x), . .. , fm(x) are
differentiable functions of x defined for x _ 0. Let g(x) be a differentiable func-
tion of x defined for x > 0. Taking partial derivatives, evaluated at xA, let

F°= [0fh1/OxI0, g°= [Og/axJ]0.
Here FO is an m by n matrix and g° an n-vector.
MAXIMUM PROBLEM. To find an xA that maximizes g(x) constrained by F4x)_ 0,

x>O.
CONSTRAINT QUALIFICATION. Let x° belong to the boundary of the constraint set

of points x satisfying Fx _ 0, x> 0. Let the inequalities xiNA'> 0, IxA> 0 (where
I is the identity matrix of order n) be separated into

FlxA= 0, I1xA= 0 and F2X >O, I2x > 0.

It will be assumed for each xA of the boundary of the constraint set that any vector
differential dx satisfying the homogeneous linear inequalities
(5) F°ldx > O, Ildx _ 0

is tangent to an arc contained in the constraint set; that is, to any dx satisfying (5)
there corresponds a differentiable arc x = a(O), 0 _< 9 1, contained in the con-
straint set, with x° = a(O), and some positive scalar X such that [da/d0]0 = Xdx.
This assumption is designed to rule out singularities on the boundary of the con-
straint set, such as an outward pointing "cusp." For example, the constraint set in
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two dimensions determined by
(1-X1)3-X2 _ O X1>-°, X2 >_

does not satisfy the constraint qualification at the boundary point xo = 1, xo = 0,
since it does not contain an arc leading from this point in the direction dxl = 1,
dx2 = 0. At such a singular point condition (1) in theorem 1, below, may fail to
hold for any u0-as would be the case for g(x) = xi subject to the above con-
straints.

Treating the vector u as a set of m nonnegative Lagrange multipliers [10], form
the function

4 (x, u) =_ g (x) + u'Fx .
Then

= g° + FO'uO, 0, = Fx°.
THEOREM 1. In order that x° be a solution of the maximum problem, it is necessary

that x° and some u° satisfy conditions (1) and (2) for +(x, u) -g(x) + u'Ft.)
PROOF. Let x°maximize g(x) constrained by Fx > 0, x > 0 (subject to the above

constraint qualification). Then, the inequality g°'dx _ 0 must hold for all vector
differentials dx satisfying (5). But, it is a fundamental property of homogeneous
linear inequalities (indicated by H. Minkowski and proved by J. Farkas at the
turn of the century) that an inequality b'x _ 0 holds for all n-vectors x satisfying
a system of m inequalities Ax _ 0 only if b = A't for some m-vector t _ 0 [6, pp.
5-7], [7, corollary to theorem 2], [9, lemma 1] and [14, theorem 3]. Hence

-g0 = F°'uo + I'wo for some u° > O,w. > 0.

This equation expresses the intuitively evident geometric fact that at the point x°
the outward normal -g° to the set of points x for which g(x) > g(xO) must belong

j \ ~~g(X)-= g(X

CONSTRAINT SET

FZX-O, X O
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to the convex polyhedral "cone" of inward normals to the constraint set. Of course,
if x° is an interior point of the latter set, then F° and I, are both vacuous. In this
case xo maximizes g(x) independent of the constraints, so g° = 0 and conditions
(1), (2, hold for u° = 0.

The above equation may be rewritten as

-g0 = F°'uO + w° for some u° > 0, w° > 0

by adding zeros as components to uo and wO, to form u° and w°. Consequently,

4'? = g° + F°'u° < g° + FO'u°+ w° = 0 .

At the same time, since w°'x° = w°'IlxO= 0,

ox = g01XO + u0'F0x0 = 0.
Moreover,

44,= Fx° > 0 and 4'0'uO = u°'Fx° = u°'FixO = 0 .

This completes the proof of theorem 1.
THEOREm 2. In order that x° be a solution of the maximum problem, it is sufficient

that x° and some u° satisfy conditions (1), (2), and (3) for 4'(x, u) E g(x) + u'Fx.
PROOF. From (3), (1), and (2) one has that

g (x) + u°'Fx = 4 (x, u°) < 0 (xO, u°) + 4'?' (x - x°)
< O(x0, u°) g (xO) + u'Fx° = g (xO) for all x _ 0 .

But u°'Fx > 0 for all x satisfying Fx > 0. Hence g(x) _ g(xO) for all x satisfying
the constraints Fx > 0, x > 0. This proves theorem 2.

One notes in theorem 2 that (3) need only hold for Fx _ 0, x> 0.

4. Convexity-concavity properties and the equivalence theorem
In this section restrictions are placed on Fx and g(x) which will insure the equiva-

lence of solutions of the maximum problem and the saddle value problem for
4'(x, u) = g(x) + u'Fx.

DEFINITIONS. A function f(x) is convex if

(1-) f (x°) + Of (x) _ f I (1- ) x° + oxl

for 0 _ 0 _ 1 and all x° and x in the (convex) region of definition off(x). A function
f(x) is concave if -f(x) is convex (that is, if the interpolation inequality holds with
< instead of _).
LEmmA 3. Iff(x) is convex and differentiable, then

f (x) f(x) + f' (x - xO) (where fo [= f]°)

for all x° and x in the region of definition. [With f(x) concave, the inequality is re-
versed.]

PROOF. From the above definition of convexity one has, for 0 < 0 < 1,

f(x) -f(xO), fIx+0(x °xo) }-f(xO)0
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Hence, in the limit,
f (x) - f (x°) > fJ° (x - xo)

THEOREm 3 (Equivalence theorem). Let the functions fi(x), ... f,,f (x), g(x)
be concave as well as differentiable for x > 0. Then, x° is a solution of the maximum
problem if, and only if, x° and some u° give a solution of the saddle value problemfor
<O(x, u) _ g(x) + u'Fx.

PROOF. By lemma 3 (for concavity)

Fx < Fx° + FO (x - x°)

g (x) _ g (x°) + go' (x - x°)
for all x° _ 0 and x _ 0. Hence, for any u°> 0,

4 (x, u°) = g (x) + u° Fx
< g (x°) + UO'Fx° + (g°'O + UO'FO) (x - x°)
= 4 (x°, u°) + d)0' (x -x).

That is, condition (3) holds for all x° > 0 and x > 0. Under these circumstances,
theorems 1 and 2 combine to make conditions (1) and (2) both necessary and suffi-
cient that x° provide a solution for the maximum problem.

Condition (4) holds automatically, since the linearity of +(x, u) with respect to
u implies that

4 (x°, u) = (x°, u0) + &' (u - u°)
identically. So lemmas 1 and 2 combine to make conditions (1) and (2) both neces-
sary and sufficient that x° and u° provide a solution for the saddle value problem.
This completes the proof of theorem 3.

5. Quadratic and linear problems
LEMMA 4. A quadratic form

x'Qx = qjxixj

is a convexfunctionfor all x, if x'Qx _ Ofor all x (that is, if theform is positive semi-
definite).

PROOF. From the hypothesis, one has

0 (X- X)' Q (x -X) >_ O (x - x)' Q (x - X)

for all 0 _ 0 < 1 and all x, x°. Hence
(1 - 0) X°'QX° + 0x'Qx

= X'Qx° + AXO'Q (x - X°) + 0 (x - X)' QX° + 0 (x - X)' Q (x - X°)
_ X°'QXO + 0x0OQ (X-X) + 0(X -'X)' QXA + 02 (X- X°) Q (X- XO)
= {X° + 0 (x-x°)}' Q Igx +0 (x-x°)}
= {(1-0)X0+ OX1'Q I(1-0)X+ OX)

for all 0 _ 0 < 1 and all x, xA.
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QUADRATIC MAXIMUM PROBLEM. To find an x° that maximizes

g (x) = E cixi- cijxix

constrained by the m + n inequalities

fh (X) i_ bh- EahiXi- E EahiJXX>Oadx~~~~~~~~~Vx and xi >O.

It is assumed that the quadratic forms in the above double sums (including the
preceding sign) are nonpositive for all x (that is, negative semidefinite).

From lemma 4 it follows that these quadratic functionsfh(x) and g(x) are con-
cave for all x, since their linear parts are concave and convex both. Hence, by
theorem 3, solution of the quadratic maximum problem is equivalent to solution
of the saddle value problem for

(X, U) - E cixi- E E CijXiXj+ E bhUh- E EahiUhXi

_E E E ahijUhXiXj-

When all of the quadratic terms vanish (an extreme but legitimate special case
of semidefiniteness), the quadratic maximum problem reduces to the following
problem of linear programming.

LINEAR MAXIMUM PROBLEM. To find an x° that maximizesE cixi constrained
by the m + n linear inequalities

E ahiXi bh , Xi _ ° -

Now the equivalent saddle point problem concerns the bilinear function

4 (X, U) - E cixi + z bhUh- E ahiuhxi-

The minimum maximum r6les of x and u can be interchanged by replacing +(x, u)
by -+(x, u). Hence, solution of the following dual problem of linear programming
is equivalent to solution of the saddle point problem for the bilinear function
+(x, u).

LINEAR MINIMUM PROBLEM. To find a u° that minimizes E bhUh constrained by
the n + m inequalities

ahiUh >_ Ci, Uh >_ O

6. Extension to a vector maximum problem
This section extends the previous results to a maximum problem for a vector

function Gx constrained by Fx > 0, x > 0. Here the concept of maximum-like
T. C. Koopmans' efficient point [111-depends on a ar derng of vectors by
the relation >, where v > v° means that v _ v° but v $- vO.

Let x -* v = Gx be a differentiable mapping of nonnegative n-vectors x into
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p-vectors v. That is, Gx is a p-vector whose components gi(x), . . , g,(x) are dif-
ferentiable functions of x defined for x _ 0. Taking partial derivatives, evaluated
at a particular x°, let

G= [ 11gk] -

Here GO is a p by n matrix. Let gZ denote the n-vector whose components form
the k-th row of GO. Let Fx have the meaning assigned in section 3.

VECTOR MAXIMUM PROBLEM. Tofind an x0 that maximizes the vector function Gx
constrained by Fx _ 0, x 2 0-that is, to find an x° satisfying the constraints and
such that Gx > Gx°for no x satisfying the constraints.

RESTRICTION. Attention will be restricted to solutions x° of the vector maximum
problem that are proper in the sense that G°dx > 0 for no vector differential dx if
xO is interior to the constraint set determined by Fx 0O, x> 0, and for no dx
satisfying
(5) F°,dx> 0, Ildx . 0

if x° belongs to the boundary of the constraint set (as qualified in section 3).
Example. To maximize gi(x) = x, g2(x) = 2x -x2 x being a real variable (one

dimensional vector) constrained only by x> 0. Here, Gx > Gx° for no x if x° > 1,
and G°dx > 0 for no dx except at x° = 1, where G°dx > 0 for dx > 0. So, any
x > 1 is a proper solution of this particular vector maximum problem, but x° = 1
is a solution that is not proper. An argument against admitting x°= 1 as a
"proper" solution is that it would usually be natural to accept a second order loss
in g2(x) 2x - x2 to achieve a first order gain in g1(x) = x. (The anomaly indi-
cated by x° = 1 in this example was noticed by C. B. Tompkins. A rather similar
anomaly occurs in the paper [1] of K. J. Arrow.)
THEOREm 4. In order that x° be a proper solution of the vector maximum problem,

it is necessary that there be some v° > 0 such that x° and some u° satisfy conditions
(1) and (2) for +(x, u) a v°'Gx + u'Fx.

PROOF. Let x° be a proper solution of the vector maximum problem. Then, for
each k = 1, . .. , p, one must have g°'dx _ 0 for all dx satisfying

Fi°dx _ O, I1dx > 0, G°dx > 0

(where FO and I, may be vacuous). Hence, by the fundamental property of homo-
geneous linear inequalities used in the proof of theorem 1,

-g-= Fou+Iwl + G°Vk for some u 0 , w 00, vk _ 0.

Now, summing for k = 1, ... , p, and transferring the GO terms to the left side,
one has

-GO'v° = F0'uo + I'w,

where u-= U 0 Wl =, =, and v° e +EVk > 0, e being a p-

vector whose components are all l's.
Let g(x) = v°'Gx. Then

-g= -GO'v° = F°'uo + I'w,° .
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From this point on the proof of theorem 4 is completed by following the remaining
steps of theorem 1.
THEOREM 5. In order that x° be a proper solution of the vector maximum problem,

it is sufficient that there be some v° > 0 such that x° and some u° satisfy conditions (1),
(2), and (3) for ck(x, u) = v°'Gx + u'Fx.

PROOF. From the proof of theorem 2, with g(x) _ v°'Gx, it follows that

vO'Gx < vT'Gx°

for all x satisfying the constraints Fx > 0, x > 0. But v° > 0, so Gx > Gx° for no x
satisfying the constraints.

If x° is interior to the constraint set, then GO'v° = 0 by (1), since x° > 0, Fx° > 0,
and u° = 0. So G°dx > 0 for no dx. If x° belongs to the boundary of the constraint
set, then (1) implies that

-G°'v°- FO'u° = I'w for some w° > 0.

Through (2) this can be written

-G°v° = FO'uO + I'wo for uo> 0 .

Hence G°dx > 0 for no dx satisfying
(5) Foldx=0, Ildx O.

This completes the proof of theorem 5.
THEOREM 6 (Equivalence theorem). Let the functions fi(x), ... X fm(x), g1(x),

g, (x) be concave as well as differentiable for x _ 0. Then, x° is a proper solution
of the vector maximum problem if, and only if, there is some v° > 0 such that x° and
some u° give a solution of the saddle value problem for +k(x, u) = v°'Gx + u'Fx.

PROOF. Clearly g(x) = v°'Gx is concave, since v° > 0. So the proof of theorem 3
can be duplicated, using theorems 4 and 5 in place of theorems 1 and 2.

7. Another extension
Let Fx and Gx be differentiable mappings, as previously defined (with the con-

straint qualification on Fx 0O, x > 0 still in effect). Let min [Gx] denote the
(scalar) function whose value for each x > 0 is the least among the p values
g(x), ... , gp,(x) of the components of the vector Gx.
MINIMUM COMPONENT MAXIMUM PROBLEM. To find an x° that maximizes

min [Gx] constrained by Fx 0O, x > 0.
THEOREM 7. In order that x° be a solution of the minimum component maximum

problem, it is necessary that there be some nonnegative v° with unit component sum
satisfying
(6) vO'Gx° = min [Gx°]

and such that x° and some u° satisfy conditions (1) and (2) for +(x, u) - v°'Gx + u'Fx.
PROOF. Let Fix0 and Ilx0 have the meanings assigned them in section 3. Further,

let Gx° be separated into G1x0 = min [Gx°] and G2x0 > min [Gx°] (see note pre-
ceding theorem 10, below). Then, since x° is assumed to maximize min [Gx] con-
strained by Fx > 0, x > 0, one must have that GO,dx > 0 for no vector differential
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dx satisfying
F°dx > O, Ildx _ O

(or for no dx at all, if FO and I, are vacuous). That is, for each k belonging to a cer-
tain nonvacuous subset of the set of indices corresponding to the rows of GO that
belong to G' one must have that g"'dx _ 0 for all dx satisfying

F°dx _ , I1dx 0, G°ldx > 0.

Hence, by the fundamental property of homogeneous linear inequalities used in the
proof of theorem 1,

-g0 = Folu± Iw + G1vl for some uk 0O,= 0,v=. 0.

Now, summing for k over the nonvacuous subset and transferring the Go terms to
the left side, one has

-Gl'vo = F°'u° + I'wo,

whereu = Euk _,w = E w _, and v = e1 +E v 0O, e1being a vector
'whose components are O's or 1's-with at least one 1. Here it can be assumed that
the sum of the components of v° is one, since the above vector equation is homoge-
neous and the sum of the components of v° is positive. Form v° from vo by adding
zeros as components. Then

vO'Gx° = vo'GlxO min [Gx°] .

By setting g(x)- v'Gx, the above vector equation can be rewritten as
-g _ -GO-vo=-G0'vO = Fo'uo + Il'we° .

From this point on the proof of theorem 7 is completed by following the remaining
steps of theorem 1.
THEOREM 8. In order that x° be a solution of the minimum component maximum

problem, it is sufficient that there be some nonnegative v° with unit component sum
satisfying condition (6) and such that x° and some u° satisfy conditions (1), (2), and
(3) for 4O(x, u) _ v°'Gx + u'Fx.

PROOF. From the proof of theorem 2 with g(x) _ v°'Gx, it follows that

VO'Gx _ VO'Gx°

for all x satisfying the constraints Fx > 0, x _ 0. But v° is nonnegative with unit
component sum and satisfies condition (6). Hence

min [Gx] < vO'Gx _ v°'Gx° = min [Gx°]

for all x satisfying the constraints. This proves theorem 8.
THEOREM 9 (Equivalence theorem). Let the functions fi(x), . .. , fm(x), g1(x),

, gp(x) be concave as well as differentiable for x _ 0. Then, x° is a solution of the
minimum component maximum problem if, and only if, there is some nonnegative v°
with unit component sum satisfying condition (6) and such that x° and some uO give a
solution of the saddle value problem for +k(x, u) a v°'Gx + u'Fx.

PROOF. Clearly g(x) _ v°'Gx is concave, since v° is nonnegative. The proof of
theorem 3 can be duplicated, using theorems 7 and 8 in place of theorems 1 and 2.

The fact that the constraints Fx > 0 can be written equivalently as min [Fx] > 0
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suggests the possibility of interchanging the r6les of Fx and Gx. The following
theorem exploits this possibility. As before, constraints are subject to the con-
straint qualification introduced in section 3. (It is to be noted that a constant, such
as min [Gx°], appearing as a vector in a vector inequality or equation is to be in-
terpreted as a vector all of whose components equal that constant.)
THEOREM 10. Let the functions fi(x), . . ., fm(x), gi(x), . .. , gp(x) be concave as

well as differentiable for x> 0. Then, in order that x° maximize min [Gx] constrained
by Fx _ min [Fx], x _ 0, it is sufficient that x° maximize min [Fx] constrained by
Gx > min [Gx°], x _ 0-provided Fx > min [Fx°] for some x _ 0.

PROOF. Let x° maximize min [Fx] constrained by (Gx - min [Gx0]) > 0,
x _ 0, as hypothesized. Then, by theorem 7 applied to this reversed situation,
there must be some nonnegative u° with unit component sum and some v° such
that

uO'Fx° = min [Fx°],

F°'u° + GO'v° < 0, u°'F°x° + v°'Gx° = O , x° =
0

(Gx°-min [Gx°]) _ 0, v°' (Gx°-min [Gx] )= , v >0.

Assume, if possible, that v° = 0. Then, using the concavity of the functions form-
ing Fx and the above conditions, one has

uO'Fx < u°'Fx°+ u'F°(x - x°) _ u°'Fx° for all x> 0 ,

contradicting the proviso that Fx > min [Fx°] for some x _ 0. Therefore the vec-
tor v° > 0 and one can assume that it has unit component sum by dropping the
same assumption concerning u°. Under these circumstances

(Fx° - min [Fx°]) _ 0, u°'(Fx° - min [Fx°]) = 0, u° 0

and v°'Gx° = min [Gx°] .

While, by the concavity of the functions forming Fx and Gx,
vO'Gx + u°'Fx . v°'Gx° + u°'Fx° + (v°'G° + u'F°) (x - x°) for all x _ 0.

Consequently, by theorem 8, x° is a solution of the minimum component maximum
problem for Gx constrained by (Fx - min [Fx]) > 0,x > 0. This completes the
proof of theorem 10.

8. Other types of constraints
The foregoing results admit simple modifications when the constraints Fx 0O,

x _ 0 are changed to:

(1) Fx _ O, or (2) Fx = 0, x>0, or (3) Fx = 0.

These modifications are outlined below.
Case 1: Fx _ 0.

Here, using +(x, u) g(x) + u'Fx defined for all x and constrained only by
u > 0, one must replace condition (1) by
( 1*) f0 = O.

Case 2: Fx = 0, x> 0.
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Here, using +(x, u) g(x) + u'Fx defined for all u and constrained only by x _ 0,
one must replace condition (2) by

(2*) < =O.

Case 3: Fx = 0.
Here, using 4(x, u) g(x) + u'Fx defined for all x and u without constraints, one
must replace conditions (1) and (2) by (1*) and (2*). This corresponds to the cus-
tomary use of the method of Lagrange multipliers for side equations [3].

REFERENCES
[1] K. J. ARRow, "A generalization of the basic theorem of classical welfare economics," Proceed-

ings of the Second Symposium on Mathematical Statistics and Probability, pp. 507-532.
[2] T. BONNESEN and W. FENCHEL, Theorie der konvexen Korper, Ergebnisse der Mathematik

und ihrer Grenzgebiete, Vol. 3, No. 1, Springer, Berlin, 1934; Chelsea, New York, 1948.
[3] R. COURANT and D. HILBERT, Methoden der mathematischen Physik, 2nd ed., Vol. 1, Springer,

Berlin, 1931; Interscience, New York.
[4] G. B. DANTZIG, "Programming of interdependent activities: II mathematical model," Econo-

metrica, Vol. 17 (1949), pp. 200-211; Activity Analysis, see [10].
[51 , "Maximization of a linear function of variables subject to linear inequalities," Activity

Analysis, see [10].
[6] J. FARKAS, "(lber die Theorie der einfachen Ungleichungen," Journalfur die reine und ange-

wandte Mathematik, Vol. 124 (1901), pp. 1-27.
[7] D. GALE, "Convex polyhedral cones and linear inequalities," Activity Analysis, see [10].
[8] D. GALE, H. W. KuHN and A. W. TUcKER, "Some linear convex problems equivalent to a

game problem," unpublished, 1948; "Four equivalent linear convex problems," mimeo-
graphed, Linear Programming Conference Memo 701, Cowles Commission, 1949.

[9] , "Linear programming and the theory of games," Activity Analysis, see [101.
[10] F. JoHN, "Extremum problems with inequalities as subsidiary conditions," Studies and

Essays, Courant Anniversary Volume, Interscience, New York, 1948.
[11] T. C. KoopmANs, "Analysis of production as an efficient combination of activities," Activity

Analysis of Production and Allocation, Cowles Commission Monograph 13, edited by T. C.
Koopmans, Wiley, New York, 1951.

[12] J. VON NEUMANN and 0. MORGENSTERN, The Theory of Games and Economic Behavior,
Princeton University Press, Princeton, 1944; 2nd ed., 1947.

[13] P. A. SAMUELSON, Foundations of Economic Analysis, Harvard University Press, Cambridge,
1948.

[14] H. WEYL, "Elementare Theorie der konvexen Polyeder," Commentarii Mathematici Helvetici,
Vol. 7 (1935), pp. 290-306. A translation by H. W. Kuhn of this paper appears in "Contribu-
tions to the theory of games," Annals of Math. Study, No. 24 (1950).


