Equivariant Euler characteristic

Jesper M. Møller ${ }^{1}$

${ }^{1}$ Københavns Universitet
Louvain-la-Neuve, September 09, 2015

Euler characteristics of centralizer subcategories

/home/moller/projects/euler/orbit/presentation/louvainlaneuve.tex

Local Euler characteristics at p of an A-group G

Let G be a finite A-group and p a prime (such that $p||G|)$.

- $\mathcal{S}_{G}^{p}\left(\mathcal{S}_{G}^{p+*}\right)$ is the poset of (nontrivial) p-subgroup of G
- $C_{\mathcal{S}_{G}^{p}}(A)$ is the poset of A - p-subgroups $H \leq G$
- $N_{G}(H), H \in C_{S_{G}^{p}}(A)$, is a p-local A-subgroup
- $C_{S_{N_{G}(H) / H}^{p^{+}}}(A)$, poset of nontrivial A - p-subgroups of $N_{G}(H) / H$
- $\widetilde{\chi}\left(C_{S_{N_{\mathrm{G}}(H) / H}^{p+\pi}}(A)\right)$ is a p-local Euler characteristic of G
- $C_{G}(A)$ is the subgroup of G fixed by A
- $\left|G_{p}\right|$ the number of p-singular elements in G
- $|G|_{p}$ the p-part of the group order

$$
G \supset A \quad H \leq G, H^{A}=H \quad N_{G}(H) / H \longrightarrow A
$$

The p-local Euler characteristics are globally constrained

Global constraints on local Euler characteristics

Theorem:
(1) There is an inclusion-exclusion principle for the number $\left|C_{G}(A)_{p}\right|$ of p-singular A-centralized elements of G :

$$
\sum_{H \in C_{S_{G}^{p}}(A)}-\widetilde{\chi}\left(C_{\mathcal{S}_{N_{G}(H) / H}^{p+*}}(A)\right)\left|C_{H}(A)\right|=\left|C_{G}(A)_{p}\right|
$$

(2) For any A-normalized p-subgroup K of G

$$
\sum_{K \leq H \in C_{S_{G}^{p}}(A)}-\tilde{\chi}\left(C_{\mathcal{S}_{N_{G}(H) / H}^{p+*}}(A)\right)=1
$$

- $\left|C_{G}(A)\right|_{p} \mid \widetilde{\chi}\left(C_{S_{G}^{p+*}}(A)\right)$

Global constraints for trivial action

When A acts trivially on G the global constraints are
(1) $\sum_{H \in \mathcal{S}_{G}^{p}}-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{p+*}\right)|H|=\left|G_{p}\right|$ (inclusion-exclusion)
(2) $\sum_{K \leq H \in \mathcal{S}_{G}^{p}}-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{p+*}\right)=1$
(3) $|G|_{p} \mid \widetilde{\chi}\left(\mathcal{S}_{G}^{p+*}\right)$ (Brown's theorem)

Corollary: Brown's theorem of $1975\left(|G|_{p} \mid \widetilde{\chi}\left(\mathcal{S}_{G}^{p+*}\right)\right)$ and Frobenius' theorem of $1907\left(|G|_{p}| | G_{p} \mid\right)$ are equivalent.

Corollary: $\left|\Sigma(q)_{p}\right|=|\Sigma(q)|_{p}^{2}$ for an untwisted finite group of Lie type $\Sigma(q)$ in defining characteristic $p, \Sigma=A, B, \ldots, G$.

- $|G|=168=8 \cdot 3 \cdot 7,|G|_{2}=8,\left|G_{2}\right|=64=|G|_{2}^{2}$
- 6 conjugacy classes of 2-subgroups
- $4=2^{\left|\Pi\left(A_{2}\right)\right|}$ conjugacy classes of 2-radical $\left(H=O_{2} N_{G}(H)\right)$ 2-subgroups (Borel-Tits)
(1) $\sum-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{2+*}\right)\left|G: N_{G}(H)\right||H|=64$ $[H] \in\left[\mathcal{S}_{G}^{p}\right]$
(2) $\sum_{[H] \in\left[S^{p}\right]}-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{2+*}\right)| | G: N_{G}(H) \mid=1$
(3) $8=|G|_{2} \mid \widetilde{\chi}\left(\mathcal{S}_{G}^{2+*}\right)=-8$

$\|H\|$	1	2	4	4	4	8	
$\left\|G: N_{G}(H)\right\|$	1	21	7	7	21	21	
$-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{2+*}\right)$	8	0	-2	-2	0	1	
$-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{2+*}\right)\left\|G: N_{G}(H)\right\|\|H\|$	8	0	-56	-56	0	168	64
$-\widetilde{\chi}\left(\mathcal{S}_{N_{G}(H) / H}^{2+*}\right)\left\|G: N_{G}(H)\right\|$	8	0	-14	-14	0	21	1

Motivation for studying Euler characteristics of centralizer subcategories

Why are Euler characteristics of centralizer subcategories relevant?

Because of their connection to equivariant Euler characteristics!

Many familiar posets are equivariant posets and their equivariant Euler characteristics carry interesting information. Here are some examples:

Equivariant Euler characteristics of finite A-categories

finite poset (finite category)
$\longrightarrow \mathcal{C} \supseteq A \longleftarrow$ group acting on \mathcal{C}
$\chi(\mathcal{C}), \quad \widetilde{\chi}(\mathcal{C})=\chi(\mathcal{C})-1$
$\chi_{r}(\mathcal{C}, A)=\frac{1}{|\boldsymbol{A}|} \sum_{\chi \in C_{r}(A)} \chi\left(C_{\mathcal{C}}(X)\right) \in \mathbf{Q}, \quad r=1,2, \ldots$
$\tilde{\chi}_{r}(\mathcal{C}, A)=\frac{1}{|\boldsymbol{A}|} \sum_{X \in C_{r}(A)} \tilde{\chi}^{\left(C_{\mathcal{C}}(X)\right) \in \mathbf{Q}, \quad r=1,2, \ldots}$
$C_{r}(A)$ the set of commuting r-tuples $X=\left(x_{1}, \ldots, x_{r}\right)$ of A-elements
$C_{\mathcal{C}}(X)$ the subcategory of \mathcal{C} fixed (centralized) by all autofunctors of the r-tuple $X=\left(x_{1}, \ldots, x_{r}\right)$
$\chi_{r}(\mathcal{C}, A)=\sum_{[x] \in[A]} \chi_{r-1}\left(C_{\mathcal{C}}(x), C_{A}(x)\right) \quad$ (recursion)

Equivariant posets

Many familiar posets are A-posets

Poset	A
Brown poset \mathcal{S}_{G}^{p+*}	G
Partition poset Π_{n}	Σ_{n}
Boolean poset B_{n}	Σ_{n}
Subspace poset $L_{n}\left(\mathbf{F}_{q}\right)$	$\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$

and have equivariant (reduced) Euler characteristics $\chi_{r}(\mathcal{C}, A)$ for $r=1,2, \ldots$.

$$
\begin{aligned}
& \chi_{1}(\mathcal{C}, A)=\tilde{\chi}_{1}(\mathcal{C}, A)+1 \\
& \chi_{2}(\mathcal{C}, A)=\tilde{\chi}_{2}(\mathcal{C}, A)+k(A) \\
& \chi_{3}(\mathcal{C}, A)=\tilde{\chi}_{3}(\mathcal{C}, A)+\sum_{[x] \in[A]} k\left(C_{A}(x)\right)
\end{aligned}
$$

Equivariant Euler characteristics of Brown posets

Nontrivial p-subgroups of G ordered by inclusion

conjugation action
G finite group
p prime number dividing the order of G
$z_{p}(G)$ number of irreducible \mathbf{C}-reps of p-defect 0
($\widetilde{\chi}\left(\mathcal{S}_{G}^{p+*}\right)=0 \Longleftrightarrow \exists P \in \mathcal{S}_{G}^{p+*}: P \unlhd G$ (Quillen Conjecture)
(1) $\tilde{\chi}_{1}\left(\mathcal{S}_{G}^{p+*}, G\right)=0$ (Webb Theorem)
(2) $\widetilde{\chi}_{2}\left(S_{G}^{p+*}, G\right)=-z_{p}(G)$ (Alperin Weight Conjecture)
(2) $\widetilde{\chi}_{3}\left(\mathcal{S}_{G}^{p+*}, G\right)=$?

Class equation interpretation of Webb's Theorem $\left(\chi_{1}\right)$

$$
\begin{aligned}
& \sum_{[x] \in[G]}\left|G: C_{G}(x)\right|=\sum_{[x] \in[G]}|[x]|=|G| \\
& \sum_{[x]] \in[G]} \chi\left(C_{\mathcal{S}_{G}^{p+*}}(x)\right)\left|G: C_{G}(x)\right|=|G| \\
& \sum_{[x] \in[G]} \widetilde{\chi}\left(C_{\mathcal{S}_{G}^{p+*}}(x)\right)\left|G: C_{G}(x)\right|=0 \\
& p\left||x| \Longrightarrow \widetilde{\chi}\left(C_{\mathcal{S}_{G}^{p+*}}(x)\right)=0\right.
\end{aligned}
$$

For the simple group $G=G L_{3}\left(F_{2}\right)$ of order 168:

$\|x\|$	1	2	3	4	7	7	\cdot
$\left\|G: C_{G}(x)\right\|$	1	21	56	42	24	24	
$\widetilde{\chi}\left(C_{\mathcal{S}_{G}^{2+*}}(x)\right)$	-8	0	1	0	-1	-1	0
$\widetilde{\chi}\left(C_{\mathcal{S}^{3+*}}(x)\right)$	27	3	0	-1	-1	-1	0
$\widetilde{\chi}\left(C_{\mathcal{S}_{G}^{7+*}}(x)\right)$	7	-1	1	-1	0	0	0

Alperin's Weight Conjecture (χ_{2})

The (Knörr-Robinson formulation of the) Alperin Weight Conjecture

$$
\begin{aligned}
& \quad-\widetilde{\chi}_{2}\left(\mathcal{S}_{G}^{p+*}, G\right)=z_{p}(G) \\
& \sum_{A \in \mathcal{S}_{G}^{p^{\prime}+\text { abelian }}}-\widetilde{\chi}\left(C_{S_{G}^{p+*}}(A)\right) \varphi_{2}(A)=z_{p}(G)|G|
\end{aligned}
$$

is true for

- G with cyclic p-Sylow subgroup
- G solvable
- G with a nontrivial normal p-subgroup $\left(\Longrightarrow z_{p}(G)=0\right)$
- $G L_{n}\left(F_{q}\right)$ where p is the characteristic of F_{q}
- The Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$ and the Janko groups J_{1}, J_{2}, J_{3} at all primes p dividing the group order (computer verifications)

Alperin's Weight Conjecture for $\mathrm{GL}_{3}\left(\mathrm{~F}_{2}\right), p=3$

$G=G L_{3}\left(F_{2}\right), p=3, z_{p}(G)=3,|G|=168$
G contains six classes of abelian subgroups of order prime to 3

A	1	2	4	7	2×2	2×2
$\left\|G: N_{G}(A)\right\|$	1	21	21	8	7	7
$\varphi_{2}(A)$	1	3	12	48	6	6
$-\widetilde{\chi}\left(C_{\mathcal{S}_{G}^{p+*}}(A)\right)$	-27	-3	1	1	1	1
$-\widetilde{\chi} \varphi_{2}\left\|G: N_{G}(A)\right\|$	-27	-189	252	384	42	42

The sum of the numbers of the bottom row is

$$
\sum_{A \in \mathcal{S}_{G}^{p^{\prime}+\text { abelian }}}-\widetilde{\chi}\left(C_{\mathcal{S}_{G}^{p+*}}(A)\right) \varphi_{2}(A)=504=3 \cdot 168=z_{p}(G) \cdot|G|
$$

Why?

n	4	5	6	7	8	9	10
$\widetilde{\chi}_{3}\left(\mathcal{S}_{A_{n}}^{2+*}, A_{n}\right)$	0	-8	-24	2	-32	-20	-42
$\widetilde{\chi}_{3}\left(\mathcal{S}_{\Sigma_{n}}^{2+*}, \Sigma_{n}\right)$	0	-2	-12	2	-10	-11	-16

- Let p be the characteristic of \mathbf{F}_{q}. Then

$$
\tilde{\chi}_{2}\left(\mathcal{S}_{\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)}^{p+*}, \mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)\right)=\tilde{\chi}_{2}\left(L_{n}^{*}\left(\mathbf{F}_{q}\right), \mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)\right)
$$

as the Brown poset $\mathcal{S}_{\mathrm{GL} L_{n}\left(\mathbf{F}_{q}\right)}^{p+*}$ and the building $L_{n}^{*}\left(\mathbf{F}_{q}\right)$ are $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$-homotopy equivalent

- $z_{p}\left(\operatorname{GL}_{n}\left(F_{q}\right)\right)=q-1$ where p is the characteristic of F_{q}
- $\chi_{r}\left(L_{n}^{*}\left(\mathbf{F}_{q}\right), G\right)$ are the equivariant Euler characteristics of an n-dimensional \mathbf{F}_{q}-representation of G

Equivariant Euler characteristics of partition posets

Partitions of $\{1, \ldots, n\}$ ordered by refinement
obvious action

Remove smallest and largest element:

$$
\Pi_{n}^{*}=\Pi_{n}-\{\{\{1\}, \ldots,\{n\}\},\{\{1, \ldots, n\}\}\}
$$

(0) $\widetilde{\chi}\left(\Pi_{n}^{*}\right)=(-1)^{n-1}(n-1)$! (Stanley)
(1) $\tilde{\chi}_{1}\left(\Pi_{n}^{*}, \Sigma_{n}\right)=0(\mathrm{me}!)$
(2) $\tilde{\chi}_{2}\left(\Pi_{n}^{*}, \Sigma_{n}\right)=\mu(n)-\mu(n / 2)$
(3) $\widetilde{\chi}_{3}\left(\Pi_{n}^{*}, \Sigma_{n}\right)=-4,-4,5,-6,16,-8,-2, \ldots$ (not in OEIS)
$\chi_{3}\left(\Pi_{n}^{*}, \Sigma_{n}\right)=0,4,26,33,108,162,358, \ldots($ not in OEIS $)$
$\mu(n)-\mu(n / 2)=-2,-1,1,-1,2,-1,0,0, \ldots(A 092673)$

Equivariant Euler characteristics of Boolean lattices

Remove smallest and largest element:

$$
B_{n}^{*}=B_{n}-\{\emptyset,\{1, \ldots, n\}\}
$$

(0) $\widetilde{\chi}\left(B_{n}^{*}\right)=(-1)^{n}$ (Stanley)
(1) $\tilde{\chi}_{1}\left(B_{n}^{*}, \Sigma_{n}\right)=0$
(2) $\widetilde{\chi}_{2}\left(B_{n}^{*}, \Sigma_{n}\right)=p_{\text {even }}^{*}(n)-p_{\text {odd }}^{*}(n)$
(3) $\widetilde{\chi}_{3}\left(B_{n}^{*}, \Sigma_{n}\right)=-3,-1,0,10,8,12,1,-28, \ldots$ (not in OEIS) $\chi_{3}\left(B_{n}^{*}, \Sigma_{n}\right)=1,7,21,49,100,182,361, \ldots$ (not in OEIS)
$p_{\text {even }}^{*}(n)$: The number of partitions of n with en even number of distinct blocks.

$$
p_{\text {even }}^{*}(n)-p_{\text {odd }}^{*}(n)=-1,0,0,1,0,1,0,0,0, \ldots(\mathrm{~A} 010815)
$$

Equivariant Euler characteristics of subspace posets

Subspaces of \mathbf{F}_{q}^{n}
ordered by inclusion

obvious action

Remove smallest and largest element:

$$
L_{n}^{*}\left(\mathbf{F}_{q}\right)=L_{n}\left(\mathbf{F}_{q}\right)-\left\{0, \mathbf{F}_{q}^{n}\right\}
$$

(0) $\widetilde{\chi}\left(L_{n}^{*}\left(\mathbf{F}_{q}\right)\right)=(-1)^{n} q^{\binom{n}{2}}$ (Stanley)
(1) $\tilde{\chi}_{1}\left(L_{n}^{*}\left(\mathbf{F}_{q}\right), G L_{n}\left(\mathbf{F}_{q}\right)\right)=0$
(2) $\tilde{\chi}_{2}\left(L_{n}^{*}\left(\mathbf{F}_{q}\right), \mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)\right)=-(q-1)$ (Thévenaz)
(3) $\widetilde{\chi}_{3}\left(L_{n}^{*}\left(\mathbf{F}_{2}\right), \mathrm{GL}_{n}\left(\mathbf{F}_{2}\right)\right)=-4,-12,-32,-80,-192, \ldots$ (multiple entries in OEIS)

Summary

- There are global constraints on the p-local Euler characteristics $\widetilde{\chi}\left(C_{\mathcal{S}_{N_{G}(H) / H}^{p+*}}(A)\right)$ defined for A - p-subgroups $H \leq G$
- $\chi_{1}(\mathcal{C}, A)=\chi(|\mathcal{C}| / A)$ is suprisingly often 1
- $\chi_{2}(\mathcal{C}, A)$ may carry crucial information
- $\chi_{3}(\mathcal{C}, A)$ is bewildering
- $\chi_{r}(\mathcal{C}, A)$ for $r>3$ is terra incognita

