Relaxed vertex colorings of simplicial complexes

Natalia Dobrinskaya ${ }^{1}$ Jesper M. Møller ${ }^{2}$ Dietrich Notbohm ${ }^{1}$
${ }^{1}$ Department of Mathematics
Vrije Universiteit, Amsterdam
${ }^{2}$ Department of Mathematics
University of Copenhagen

Bergen Topology Symposium, June 10 - 11, 2010

Outline

- Introduction
- Standard Vertex Colorings and Relaxed Vertex Colorings of simplicial complexes: Examples
- Formal definitions
- Colorings and vector bundles
- Davis-Januszkiewicz spaces
- Canonical vector bundles over Davis-Januszkiewicz spaces
- Colorings = Splittings of canonical vector bundles
- Colorings and Stanley-Reisner rings
- Stanley-Reisner rings
- Colorings = Factorizations in Stanley-Reisner rings
- Conclusion
- Summary
- Questions to think about

Standard colorings

Example (Standard coloring of the Möbius band MB)
Standard coloring of 5-vertex complex MB using 5 colors

Example (Sudoku)

SUDOKU is an 8-dimensional simplicial complex with $9+9+9$ maximal simplices. A sudoku problem consists in completing a given partial standard coloring to a full standard coloring of SUDOKU using 9 colors.

Standard Colorings

Example

> Standard coloring of K
> $=$ Standard coloring of 1-skeleton of K
> \Longrightarrow graph theory

Theorem (Standard colorings live on the 1-skeleton)

Standard coloring of $K=$ Standard coloring of $\mathrm{sk}_{1}(K)$

Proof.

A coloring of the vertices is a coloring of K if and only if K contains no monochrome 1 -simplices.

Standard and Relaxed Colorings

Example (Standard and Relaxed coloring of Möbius band MB)

N Dobrinskaya, JM Møller, D Notbohm

Relaxed colorings

Example (Relaxed Coloring of projective plane P^{2})

A $(3,2)$-coloring of a triangulation P^{2} of the

2 projective plane.

No monochrome
$3^{\text {2-dimensional simplices }}$

A standard coloring of P^{2} needs 6 colors.

Relaxed coloring

Example (Relaxed coloring of the torus T^{2})

A (3,2)-coloring of Möbius' minimal triangulation of the torus.

A standard coloring needs 7 colors.

Abstract Simplicial Complexes

Definition (Simplex)

A simplex is the set $D[\sigma]$ of all subsets of a finite set σ.

Definition (ASC)

An Abstract Simplicial Complex is a union of simplices:

$$
K=\bigcup_{\sigma} D[\sigma]
$$

$n(K)$: number of vertices in maximal simplex of K $m(K)$: number of vertices in $K(|V|)$

Example

Colorings of Simplicial Complexes

Let K be an ASC on vertex set V and P a finite palette of r colors.

Definition (r, s)-coloring of an ASC)

A (P, s)-coloring (or (r, s)-coloring) of K is a map $f: V \rightarrow P$ that is at most s-to-1 on all simplices of K.
$f: V \rightarrow P$ is an (r, s)-coloring if and only if K contains no monochrome s-simplices.

Remark

An (r, s) coloring with
$s=1$ is a standard coloring using r colors
$s>1$ is a relaxed coloring using r colors
Theorem (($r, s)$-colorings live on the s-skeleton)
(r, s)-colorings of $K=(r, s)$-colorings of $\mathrm{sk}_{s}(K)$

Coloring the Poincaré homology 3-sphere

A $(4,2)$-coloring of a 16 -vertex triangulation of the Poincaré homology 3 -sphere:

```
{1,2,4,9},{1,2,4,15},{1,2,6,14},{1,2,6,15},{1,2,9,14},{1,3,4,12},{1,3,4,15},{1,3,7,10},
{1,3,7,12},{1,3,10,15},{1,4,9,12},{1,5,6,13},{1,5,6,14},{1,5,8,11},{1,5,8,13},{1,5,11, 14},
{1,6,13,15},{1,7,8,10},{1,7,8,11},{1,7,11,12},{1, 8, 10,13},{1,9,11,12},{1,9,11,14},{1,10,13,15},
{2,3,5,10},{2,3,5,11},{2,3,7,10},{2,3,7,13},{2,3,11,13},{2,4,9,13},{2,4,11,13},{2,4,11,15},
{2,5,8,11},{2,5,8,12},{2,5,10,12},{2,6,10,12},{2,6,10,14},{2,6,12,15},{2,7,9,13},{2,7,9,14},
{2,7,10,14},{2,8,11,15},{2,8,12,15},{3,4,5,14},{3,4,5,15},{3,4,12,14},{3,5,10,15},{3,5,11,14},
{3,7,12,13},{3,11,13,14},{3,12,13,14},{4,5,6,7},{4,5,6,14},{4,5,7,15},{4,6,7,11},{4,6,10,11},
{4,6,10,14},{4,7,11,15},{4, 8, 9, 12},{4, 8, 9, 13},{4, 8, 10,13},{4,8,10,14},{4,8,12,14},{4,10,11,13},
{5,6,7,13},{5,7,9,13},{5,7,9,15},{5,8,9,12},{5,8,9,13},{5,9,10,12},{5,9,10,15},{6,7,11,12},
{6,7,12,13},{6,10,11,12},{6,12,13,15},{7,8,10,14},{7,8,11,15},{7,8,14,15},{7,9,14,15},
{8,12,14,15},{9,10,11,12},{9,10,11,16},{9,10,15,16},{9,11,14,16},{9,14,15,16},{10,11,13,16},
{10, 13, 15, 16},{11, 13, 14, 16},{12,13,14,15},{13,14, 15,16}
```

Run the magma program demo.prg from/home/moller/projects/simplicial/version04/presentation.

Chromatic Numbers of ASCs

Definition (Chromatic numbers of ASCs)

The s-chromatic number, $\operatorname{chr}^{s}(K)$, is the least r such that K admits an (r, s) coloring.

- $|V| \geq \operatorname{chr}^{1}(K) \geq \operatorname{chr}^{2}(K) \geq \cdots \geq \operatorname{chr}^{1+\operatorname{dim} K}(K)=1$
- $\operatorname{chr}^{s}(D[V])=\left\lceil\frac{|V|}{s}\right\rceil$
- $K \subset K^{\prime} \Longrightarrow \operatorname{chr}^{s}(K) \leq \operatorname{chr}^{s}\left(K^{\prime}\right)$
- $\left\lceil\frac{n(K)}{s}\right\rceil \leq \operatorname{chr}^{s}(K) \leq\left\lceil\frac{m(K)}{s}\right\rceil$
- K admits a (r, s)-coloring \Longrightarrow any maximal simplex of K admits a (r, s)-coloring \Longrightarrow $n(K) \leq r s$

Example (The chromatic numbers of P^{2})
$\operatorname{chr}^{1}\left(P^{2}\right)=6, \operatorname{chr}^{2}\left(P^{2}\right)=3, \operatorname{and}_{\operatorname{chr}}{ }^{3}\left(P^{2}\right)=1$

Chromatic numbers of manifolds

Definition (Chromatic numbers of manifolds)

The s-chromatic number of the manifold M is the maximum

$$
\operatorname{chr}^{s}(M)=\max \left\{\operatorname{chr}^{s}(K)| | K \mid \simeq M\right\}
$$

Example (Chromatic numbers of S^{2})
Colorings of the tetrahedron $\partial D\left[3_{+}\right]$shows that $\operatorname{chr}^{1}\left(S^{2}\right) \geq 4$ and $\operatorname{chr}^{2}\left(S^{2}\right) \geq 2$.

Theorem (4-color theorem)
$\operatorname{chr}^{1}\left(S^{2}\right)=4, \operatorname{chr}^{2}\left(S^{2}\right)=2, \operatorname{chr}^{3}\left(S^{2}\right)=1$.

Chromatic numbers of S^{3}, S^{4}, \ldots

Proposition

$$
\operatorname{chr}^{1}\left(S^{3}\right)=\infty \text { and } \operatorname{chr}^{2}\left(S^{3}\right) \geq 4
$$

Proof.

For any finite set V there exist triangulations of S^{3} with vertex set V such that any two vertices are connected by an edge. There are triangulations K of S^{3} with $\operatorname{chr}^{2}(K)=4$.
The first interesting chromatic numbers for spheres are

$$
\operatorname{chr}^{n}\left(S^{2 n-1}\right) \quad \text { and } \quad \operatorname{chr}^{n}\left(S^{2 n}\right)
$$

as $\operatorname{chr}^{s}\left(S^{2 n-1}\right)=\infty=\operatorname{chr}^{s}\left(S^{2 n}\right)$ for all $n \geq 1$ and all $s<n$.

Speculations

- Is $\operatorname{chr}^{2}\left(S^{3}\right)$ finite?
- Is $\operatorname{chr}^{n}\left(S^{2 n}\right)=4(n \geq 1)$ and $\operatorname{chr}^{n}\left(S^{2 n-1}\right)=4(n \geq 2)$?

Davis-Januszkiewicz spaces

Definition (The Davis-Januszkiewicz space of K)

- Let $\mathrm{DJ}(D[V])=\operatorname{map}\left(V, \mathbf{C} P^{\infty}\right)=\overbrace{\mathbf{C} P^{\infty} \times \cdots \times \mathbf{C} P^{\infty}}^{m(K)}$
- For $\sigma \subset V$ consider $\operatorname{DJ}(D[\sigma])=\operatorname{map}\left(V, V-\sigma ; \mathbf{C} P^{\infty}, *\right)$ as the subspace of the σ-axes of $\operatorname{DJ}(D[V])=\operatorname{map}\left(V, \mathbf{C} P^{\infty}\right)$
- $\operatorname{DJ}(K)=\bigcup_{\sigma \in K} \operatorname{DJ}(D[\sigma])$

Example

If $K=D[\{1,2\}] \cup D[\{1,3\}] \cup D[\{2,3\}] \subset D[\{1,2,3\}]$ then $\mathrm{DJ}(K)$ is

$$
\mathbf{C} P^{\infty} \times \mathbf{C} P^{\infty} \times\{*\} \cup \mathbf{C} P^{\infty} \times\{*\} \times \mathbf{C} P^{\infty} \cup\{*\} \times \mathbf{C} P^{\infty}
$$

- $K \subset K^{\prime} \Longrightarrow \mathrm{DJ}(K) \subset \operatorname{DJ}\left(K^{\prime}\right)$
- $V_{V} \mathbf{C} P^{\infty}=\operatorname{DJ}(V) \subset \operatorname{DJ}(K) \subset \operatorname{DJ}(D[V])=\left(\mathbf{C} P^{\infty}\right)^{V}$

Vector bundles over Davis-Januszkiewicz spaces

Definition (The canonical vector bundle λ_{K})

The canonical vector bundle λ_{K} over $\mathrm{DJ}(K)$ is the restriction

to $\mathrm{DJ}(K)$ of the product of the tautological complex line bundles.
Theorem (The canonical vector bundle ξ_{K})
There exists a short exact sequence of vector bundles

$$
0 \rightarrow \xi_{K} \rightarrow \lambda_{K} \rightarrow \mathbf{C}^{m(K)-n(K)} \rightarrow 0
$$

where $\operatorname{dim} \xi_{K}=n(K)$.

Colorings and splittings of vector bundles

Theorem (Colorings = Splittings of vector bundles)

Assume that $n(K) \leq r s$. Then K admits an (r, s)-coloring if and only if there exists a lift in either of the diagrams

The combinatorial problem of existence of an (r, s)-coloring of K has been translated to a topological problem of stably splitting the canonical vector bundle λ_{K} into r vector bundles of dimension s.

A failed proof of the 4-color theorem

Theorem (The 4-color theorem)

 $\operatorname{chr}^{1}(K) \leq 4$ for all triangulations K of S^{2}.```
Failed Proof.
```



Colorings of other compact surfaces? $\left\lfloor\frac{7+\sqrt{49-24 \chi}}{2}\right\rfloor$. The 5 -color theorem.

## The Stanley-Reisner algebra

Definition (The Stanley-Reisner algebra of K)
$\mathrm{SR}(K ; R)=R[V] /\left(\prod \tau \mid \tau \in D[V]-K\right)$ is the quotient of the polynomial algebra on $V$ (in degree 2) by the monomial ideal generated by the (minimal) non-simplices of $K$.

## Theorem (Davis-Januszkiewicz)

$\operatorname{SR}(K ; R)=H^{*}(\mathrm{DJ}(K) ; R)$

- If $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ then
- $\operatorname{SR}(D[V] ; R)=R\left[v_{1}, v_{2}, v_{3}\right]$
- $\operatorname{SR}(\partial D[V] ; R)=R\left[v_{1}, v_{2}, v_{3}\right] /\left\langle v_{1} v_{2} v_{3}\right\rangle$

- $K \subset K^{\prime} \Longrightarrow \operatorname{SR}(K ; R) \leftarrow \operatorname{SR}\left(K^{\prime} ; R\right)$
- $R[V] \rightarrow \mathrm{SR}(K)=\lim \left(P(K)^{\mathrm{op}} ; \mathrm{SR}(D[\sigma])\right) \subset \prod_{\sigma \in K} R[\sigma]$


## Colorings and the Stanley-Reisner ring

## Theorem (Stanley-Reisner recognition of colorings)

The partition $V=V_{1} \cup \cdots \cup V_{r}$ is an $(r, s)$-coloring of $K$ if and only if

$$
\prod_{v \in V}(1+v)=\prod_{1 \leq j \leq r} c_{\leq s}\left(V_{j}\right)
$$

in $\operatorname{SR}(K ; \mathbf{Z})$.

Theorem (Colorings = Factorizations of symmetric polynomials)
$K$ admits an $(r, s)$-coloring iff there exist $r$ elements $c_{1}, \ldots, c_{r}$ of $\operatorname{SR}(K ; \mathbf{Z})$ such that $\operatorname{deg}\left(c_{j}\right) \leq 2 s$ and

$$
\prod_{v \in V}(1+v)=\prod_{1 \leq j \leq r} c_{j}
$$

in $\operatorname{SR}(K ; \mathbf{Z})$.

## The Stanley-Reisner ring of $\mathrm{P}^{2}$ and $C_{5}$

## Example

Since $[1,2,3,4,5,6] \rightarrow[\square, \llbracket, \llbracket, \llbracket, \llbracket, \square]$ is a $(3,2)$-coloring, the identity

$$
\prod_{1 \leq i \leq 6}\left(1+v_{i}\right)=\left(1+v_{1}+v_{2}+v_{3}+v_{2} v_{3}+v_{1} v_{3}+v_{1} v_{2}\right)\left(1+v_{4}+v_{5}+v_{4} v_{5}\right)\left(1+v_{6}\right)
$$

holds in the Stanley-Reisner ring for $P 2$

## $\mathrm{SR}\left(\mathrm{P}^{2} ; \mathbf{z}\right)=\mathbf{z}[\mathrm{V}$

$$
\begin{gathered}
\operatorname{SR}\left(C_{5} ; \mathbf{Z}\right)=\mathbf{Z}\left[v_{1}, \ldots, v_{5}\right] /\left(v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{4}, v_{2} v_{5}, v_{3} v_{5}\right) \\
\prod_{1 \leq i \leq 5}\left(1+v_{i}\right)=\left(1+v_{1}+v_{3}\right)\left(1+v_{2}+v_{4}\right)\left(1+v_{5}\right)
\end{gathered}
$$

## Another failed proof of the 4-color theorem

## Theorem (The 4-color theorem)

 $\operatorname{chr}^{1}(K) \leq 4$ for all triangulations $K$ of $S^{2}$.
## Failed Proof.

Let $K$ be a triangulation of $S^{2}$ with vertex set $V$. There exist 4 elements $c_{1}, c_{2}, c_{3}, c_{4} \in \mathrm{SR}(K ; \mathbf{Z})$ of degree $\leq 2$ so that

$$
\prod_{v \in V}(1+v)=c_{1} c_{2} c_{3} c_{4}
$$

in $\operatorname{SR}(K ; \mathbf{Z})$.

## Summary

## What we learned today

- An $(r, s)$-coloring is a coloring of the vertices by $r$ colors so that at most $s$ vertices of any simplex has the same color
- $(r, s)$-colorings depend only on the $s$-skeleton
- $(r, s)$-coloring is equivalent to splitting the canonical vector bundle over the Davis-Januszkiewicz space
- $(r, s)$-coloring is equivalent to factorizing the total Chern class of the canonical vector bundle in the Stanley-Reisner ring


## What we didn't learn today

- ( $L, s$ )-colorings of the vertices of $K$ where $L$ is some ASC. (Example: $(3,2)$-colorings of $P 2$ with 2-colors in every simplex.)
- $(L, s)$-colorings of the $t$-simplices of $K$


## Questions to think about

## Questions

- Is $\operatorname{chr}^{2}\left(S^{3}\right)=4$ ?
- Is $\operatorname{chr}^{n}\left(S^{2 n-1}\right)=4$ for all $n \geq 2$ ?
- Is $\operatorname{chr}^{n}\left(S^{2 n}\right)=4$ for all $n \geq 1$ ?
- With these tools, is it possible to find a topological proof of the 4 -color theorem?
- With these tools, is it possible to compute the chromatic numbers of the compact surfaces?
- Is there a connection between the face numbers and the chromatic numbers (as in the 6 -color theorem)?

