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Standard colorings

Example (Standard coloring of the Mdbius band MB)
Standard coloring of 5-vertex complex MB using 5 colors
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Example (Sudoku)

SUDOKU is an 8-dimensional simplicial complex with 9 +9 + 9
maximal simplices. A sudoku problem consists in completing a
given partial standard coloring to a full standard coloring of
SUDOKU using 9 colors.
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Standard Colorings

Standard coloring of K
= Standard coloring of
1-skeleton of K

— graph theory

Theorem (Standard colorings live on the 1-skeleton)
Standard coloring of K = Standard coloring of sky(K)

A coloring of the vertices is a coloring of K if and only if K
contains no monochrome 1-simplices. O
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Standard and Relaxed Colorings

Example (Standard and Relaxed coloring of Mébius band MB)
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Relaxed colorings

Example (Relaxed Coloring of projective plane P?)

A (3,2)-coloring of a
triangulation P? of the
5 6 . projective plane.

No monochrome
4 \ ) o
5 3 2-dimensional simplices

\ / A standard coloring of P?

1 needs 6 colors.

3
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Relaxed coloring

Example (Relaxed coloring of the torus T2)

A (3, 2)-coloring of Mébius’
minimal triangulation of the
torus.

A standard coloring needs 7
colors.
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Abstract Simplicial Complexes

Definition (Simplex)
A simplex is the set D|[o] of all subsets of a finite set o.

Definition (ASC)

An Abstract Simplicial Complex is a union of simplices:

K = Dlo]

n(K): number of vertices in maximal simplex of K
m(K): number of vertices in K (| V])

D[{1,3,5}]JUD[{1,5,6}|JUD[{1,2,6}]JuD[{2,3,5}|UD[{i
D[{4,5,6}]UD[{3,4,6}]JuD[{2,3,6}]JuD[{1,2,4}]JuD{}3
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Colorings of Simplicial Complexes

Let K be an ASC on vertex set V and P a finite palette of r
colors.

Definition ((r, s)-coloring of an ASC)

A (P, s)-coloring (or (r, s)-coloring) of K isamap f: V — P that
is at most s-to-1 on all simplices of K.

f: V — Pisan (r,s)-coloring if and only if K contains no
monochrome s-simplices.

An (r, s) coloring with
s =1 is a standard coloring using r colors

s > 1 is arelaxed coloring using r colors

Theorem ((r, s)-colorings live on the s-skeleton)

(r, s)-colorings of K = (r, s)-colorings of sks(K)
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Coloring the Poincaré homology 3-sphere

A (4, 2)-coloring of a 16-vertex triangulation of the Poincaré
homology 3-sphere:

{1,2,4,9},{1,2,4,15},{1,2,6,14},{1,2,6,15},{1,2,9,14},{1,8,4,12},{1,83,4,15},{1,3,7, 10},
{1,8,7,12},{1,8,10,15},{1,4,9,12}, {1,5,6,13}, {1,5,6, 14}, {1,5,8, 11}, {1,5,8,13}, {1,5, 11, 14},

{1,6,18,15},{1,7,8,10}, {1,7,8, 11}, {1,7, 11,12}, {1,8,10,13}, {1,9, 11,12}, {1,9, 11,14}, {1, 10,18, 15},

{2,3,5,10},{2,3,5,11},{2,8,7,10},{2,8,7,13},{2,3, 11,13}, {2, 4,9, 13}, {2, 4, 11,13}, {2, 4,11, 15},
{2,5,8,11},{2,5,8,12}, {2,5, 10,12}, {2, 6, 10,12}, {2, 6, 10, 14}, {2, 6,12, 15}, {2, 7,9, 13}, {2,7, 9, 14},

{2,7,10,14},{2,8,11,15},{2, 8,12, 15}, {3, 4,5, 14}, {3, 4,5, 15}, {3, 4,12, 14}, {3,5, 10,15}, {3, 5, 11, 14},

{8,7,12,13}, {3, 11,13, 14}, {3,12, 13,14}, {4,5,6, 7}, {4,5,6, 14}, {4,5,7, 15}, {4,6,7, 11}, {4,6,10, 11},

{4,6,10,14},{4,7,11,15}, {4,8,9,12}, {4,8,9,13}, {4,8, 10,13}, {4,8, 10, 14}, {4, 8,12, 14}, {4, 10, 11,13},

{5,6,7,13}, {5,7,9,18}, {5,7,9, 15}, {5, 8,9, 12}, {5, 8,9, 13}, {5,9, 10,12}, {5, 9, 10, 15}, {6, 7, 11,12},
{6,7,12,13},{6,10,11,12}, {6, 12,13, 15}, {7,8, 10,14}, {7,8, 11,15}, {7,8, 14,15}, {7,9, 14, 15},
{8,12,14,15}, {9, 10, 11,12}, {9, 10, 11, 16}, {9, 10, 15,16}, {9, 11, 14,16}, {9, 14,15, 16}, {10, 11, 13, 16},
{10,13,15,16}, {11,13,14,16}, {12,13, 14,15}, {13, 14,15, 16}

Run the magma program demo.prg from /home/moller/projects/simplicial/version04/presentation.



http://www.eg-models.de/models/Simplicial_Manifolds/2003.04.001/_direct_link.html

Chromatic Numbers of ASCs

Definition (Chromatic numbers of ASCs)

The s-chromatic number, chr®(K), is the least r such that K
admits an (r, s) coloring.

@ |V| >chr'(K) > chr’(K) > ... > chr'*dmK (k) — 1
e chrs(D[V]) = [%}
@ K C K' = chr®(K) < chr’(K’)
° {@W < chr’(K) < [mTKW
@ K admits a (r, s)-coloring —-
any maximal simplex of K admits a (r, s)-coloring —-

K) <
n(K)<rs | /
Example (The chromatic numbers of P?)
chr'(P2) = 6, chr(P?) = 3, and chr3(P2) = 1 2
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Chromatic numbers of manifolds

Definition (Chromatic numbers of manifolds)

The s-chromatic number of the manifold M is the maximum

chr’(M) = max{chr®(K) | |K| ~ M}

Example (Chromatic numbers of S?)

Colorings of the tetrahedron AD[3. ] shows that chr'(S?) > 4
and chr?(S?) > 2.

Theorem ( )
chr'(S2) = 4, chr?(S?) = 2, chr3(S2) = 1.



http://en.wikipedia.org/wiki/Four_color_theorem

Chromatic numbers of S8, S, ...

chr'(8%) = oo and chr?(S®) > 4.

Proof.

For any finite set V there exist triangulations of S® with vertex
set V such that any two vertices are connected by an edge.
There are triangulations K of S® with chr?(K) = 4. O

The first interesting chromatic numbers for spheres are

v

chr’(82"-1)  and  chr(S2")

as chr¥(82"=1) = oo = chr’(S?") foralln > 1 and all s < n.

Speculations
@ Is chr?(S?®) finite?
@ Ischr(S2") = 4 (n > 1) and chr"(S2"~") = 4 (n > 2)?




Davis—Januszkiewicz spaces

Definition (The Davis—Januszkiewicz space of K)
m(K)
@ Let DJ(D[V]) = map(V,CP>®) =CP> x --- x CP™

@ For o C V consider DJ(D[o]) = map(V, V — o;CP>,x) as
the subspace of the o-axes of DJ(D[V]) = map(V,CP>)

@ DJ(K) = Uyek DI(DIo])
Example
If K = D[{1,2}] U D[{1,3}] U D[{2,3}] € D[{1,2,3}] then
DJ(K) is

CP>™ x CP™ x {x} UCP™ x {x} x CP® U {¥} x CP> %/c\

o K C K= DJ(K) c DJ(K")
@ \/,CP>® = DJ(V) c DJ(K) c DJ(D[V]) = (CP=)V
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Vector bundles over Davis—Januszkiewicz spaces

Definition (The canonical vector bundle \x)
The canonical vector bundle A\ over DJ(K) is the restriction

Ak A %A dim Ak = m(K)

| |

DJ(K)———=CP>® x ... x CP>®

to DJ(K) of the product of the tautological complex line bundles.

Theorem (The canonical vector bundle £k)
There exists a short exact sequence of vector bundles

0— &k — Ak — GRS @

where diméyk = n(K).
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Colorings and splittings of vector bundles

Theorem (Colorings = Splittings of vector bundles)

Assume that n(K) < rs. Then K admits an (r, s)-coloring if and
only if there exists a lift in either of the diagrams

BU(s)" BU(s)"
? 7 lea e 7 i@
DJ(K) —— BU DJ(KjﬁBU(rs)

The combinatorial problem of existence of an (r, s)-coloring of
K has been translated to a topological problem of stably
splitting the canonical vector bundle Ak into r vector bundles of
dimension s.

N Dobrinskaya, JM Mgller, D Notbohm



A failed proof of the 4-color theorem

Theorem ( )

chr'(K) < 4 for all triangulations K of S?.

.

BU(1)* BU(1)*
; 7 =7 l@ o = l@
DJ(K) — BU DJ(K) —— BU(4)

Colorings of other compact surfaces? {7*7 V42724XJ . The 5-color theorem.
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The Stanley—Reisner algebra

Definition (The Stanley—Reisner algebra of K)

SR(K;R) = R[V]/(I]7 | 7 € D[V] — K) is the quotient of the
polynomial algebra on V (in degree 2) by the monomial ideal
generated by the (minimal) non-simplices of K.

Theorem (Davis—Januszkiewicz)

SR(K; R) = H*(DJ(K); R)

DJ(—)
o If V={vy, v, v3} then /

o SR(D[V];R) = R[w1, v, v3] “ !
o SR(@D[V]; R) = R[V1, Vo, V3]/<v1 Vo v3> SR(—:R |

@ K c K' = SR(K; R) « SR(K’; R)
@ R[V] - SR(K) = lim(P(K)*; SR(D[0])) C [,k Rlo]
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Colorings and the Stanley—Reisner ring
Theorem (Stanley—Reisner recognition of colorings)

The partition V = Vy; U ---U V, is an (r, s)-coloring of K if and

only if
[TaO+v) = ] e<s(v)

veV 1<j<r

in SR(K; 2).

Theorem (Colorings = Factorizations of symmetric polynomials)

K admits an (r, s)-coloring iff there exist r elements ¢y, ..., ¢, of
SR(K;Z) such that deg(c;) < 2s and

H(1+v): H ¢

veV 1<j<r

in SR(K; Z).
v




The Stanley—Reisner ring of P2 and Cs

Since [1,2,3,4,5,6] — I, H B W ¥]is a (3, 2)-coloring,
the identity

TII G+ vi) = +vi +va+ vz + vavg + vivg + vy va)(1 + vg + V5 + vavs)(1 +
1<i<6

holds in the Stanley—Reisner ring for P2

o W —
2.
SR(P%;Z) = Z[vy, . . ., Vel/(V1VaVa, viVaVs, Vi V3V, V1VaVs, V1 VaVe, VaVaVa, VoVa Ve, Vo Vs Ve, st}Vs\sts 6)

SR(C5; Z) = Z[V1 jocag V5]/(V1 V3, V1Vy, VoVy, Vo Vs, V3V5)

IT O+vi) =0 +wvi+va)(1+ v+ va)(1 + )
1<i<5
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Another failed proof of the 4-color theorem

chr'(K) < 4 for all triangulations K of S?.

Let K be a triangulation of S? with vertex set V. There exist 4
elements ¢y, ¢, 3, ¢4 € SR(K; Z) of degree < 2 so that

H(1 + V) = C1CC3Cy
veV

in SR(K; 2). O
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Summary

What we learned today

@ An (r,s)-coloring is a coloring of the vertices by r colors so
that at most s vertices of any simplex has the same color

@ (r, s)-colorings depend only on the s-skeleton

@ (r,s)-coloring is equivalent to splitting the canonical vector
bundle over the Davis—Januszkiewicz space

@ (r,s)-coloring is equivalent to factorizing the total Chern
class of the canonical vector bundle in the Stanley—Reisner
ring

What we didn’t learn today

@ (L, s)-colorings of the vertices of K where L is some ASC.
(Example: (8, 2)-colorings of P2 with 2-colors in every
simplex.)

@ (L, s)-colorings of the t-simplices of K
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Questions to think about

@ Ischr?(S%) =42

@ Is chr"(S$2"-1) = 4 for all n > 2?

@ Ischr’(S2") =4 foralln>1?

@ With these tools, is it possible to find a topological proof of
the 4-color theorem?

@ With these tools, is it possible to compute the chromatic
numbers of the compact surfaces?

@ |s there a connection between the face numbers and the
chromatic numbers (as in the 6-color theorem)?
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