Chromatic polynomials of simplicial complexes

Two open problems

Jesper Michael Møller Natalia Dobrinskaya Frank Lutz
Gesche Nord Dietrich Notbohm

University of Copenhagen
moller@math.ku.dk

Copenhagen
May 31, 2013
1. log-concave sequences and falling factorials

2. Colorings of simplicial complexes
 - Chromatic numbers of simplicial complexes
 - The chromatic polynomial
 - Comparing chromatic polynomials of graphs and simplicial complexes

3. The d-chromatic lattice

4. Weighted colorings
Definition 1.1 (LC)

A finite sequence a_1, a_2, \ldots, a_m of positive numbers is log-concave (LC) if $a_{j-1}a_{j+1} \leq a_ja_j$ for $1 < j < m$.

$(a_j)_{j=1}^m$ is log-concave $\iff \frac{a_1}{a_2} \leq \frac{a_2}{a_3} \leq \ldots \leq \frac{a_{m-1}}{a_m}$

$\iff \frac{\log a_{j-1} + \log a_{j+1}}{2} \leq \log a_j \Rightarrow (a_j)_{j=1}^m$ is unimodal

Example 1.2

Binomial sequence $j \mapsto \binom{m}{j}$ is LC

$1, 2, 5, 2, 1$ is unimodal but not LC
Falling factorials and Stirling numbers

Two bases for the polynomial ring $\mathbb{Z}[r]$

\[[r]_j = r(r-1) \cdots (r-j+1), \quad r^j = r \cdot r \cdots r \]

falling factorial base (FFB) \hspace{1cm} monomial base (MOB)

\[[r]_0, [r]_1, [r]_2, [r]_3, \ldots \]

base change \hspace{1cm} \[r^0, r^1, r^2, r^3, \ldots \]

\[[r]_m = \sum_{j=0}^{m} S_1(m, j)r^j \]

Stirling numbers 1st kind \hspace{1cm} \[r^m = \sum_{j=0}^{m} S_2(m, j)[r]_j \]

Stirling numbers 2nd kind

$S_2(m, j)$ is the number of partitions of an m-set into j blocks

\[[r]_1 = r^1 \quad r^1 = [r]_1 \quad j \rightarrow |S_1(m, j)| \text{ is LC} \]

\[[r]_2 = -r^1 + r^2 \quad r^2 = [r]_1 + [r]_2 \quad j \rightarrow S_2(m, j) \text{ is LC} \]

\[[r]_3 = 2r^1 - 3r^2 + r^3 \quad r^3 = [r]_1 + 3[r]_2 + [r]_3 \]
Definition 2.1 (Colorings of simplicial complexes)

A (weak) \((r, d)\)-coloring of the simplicial complex \(K\) is a map

\[\text{col}: F^0(K) \to \{1, 2, \ldots, r\} \]

such that

\[|\text{col}(\sigma)| = 1 \implies \dim \sigma < d \]

for all simplices \(\sigma \in K\). \((K \neq \emptyset, d > 0.)\)
Definition 2.3 (The d-chromatic number of a simplicial complex K)

The d-chromatic number of K, $\text{chr}(K, d)$, is the minimal r so that K admits an (r, d)-coloring.

$$|F^0(K)| \geq \text{chr}(K, 1) \geq \text{chr}(K, 2) \geq \cdots \geq \text{chr}(K, \dim K) \geq 1$$

Example 2.4 (Do we know the chromatic numbers of any complexes?)

$$K = D[4]$$

$$(2, 2)$$-coloring

$\text{chr}(K, 1) = 4$

$\text{chr}(K, 2) = 2$

$\text{chr}(K, 3) = 2$

$\text{chr}(D[m], d) = \lceil \frac{m}{d} \rceil$
Definition 2.5 (The d-chromatic number of a compact manifold M)

$$\text{chr}(M, d) = \sup \{ \text{chr}(K, d) \mid K \text{ triangulates } M \}$$

$$\infty \geq \text{chr}(M, 1) \geq \text{chr}(M, 2) \geq \cdots \geq \text{chr}(M, \text{dim } M) \geq 1$$

Example 2.6 (Do we know the chromatic numbers of any manifolds?)

| K | $|K| = S^2$ |
|-----|-------------|
| chr($S^2, 2$) \geq | Is there a triangulation K of S^2 with chr($K, 2$) > 2? |
| chr($K, 2$) $= 2$ | |

Theorem 2.7 (The 4-color theorem = chromatic numbers of S^2)

$$\text{chr}(S^2, 1) = 4 \text{ and } \text{chr}(S^2, 2) = 2$$
Problem 1: What are the chromatic numbers of S^3?

- $\text{chr}(S^3, 1) = \infty$ FOR SURE
- $\text{chr}(S^3, 2) = \infty$ PRESUMABLY
- $\text{chr}(S^3, 3) < \infty$ UNKNOWN

The standard triangulation $K = \partial D[5]$ of S^3 has $\text{chr}(K, 3) = 2$. There exists a triangulation $K, f(K) = (18, 143, 250, 125)$, of S^3 with 3-chromatic number $\text{chr}(K, 3) = 3$. Does there exist a triangulation K of S^3 with 3-chromatic number $\text{chr}(K, 3) > 3$?

Theorem 2.8 (Chromatic numbers of spheres)

$\text{chr}(S^d, \lceil d/2 \rceil) = \infty$ when $d \geq 3$ PRESUMABLY
\(\chi(K, r, d) \) is the number of \((r, d)\)-colorings of \(K \)

\[
\begin{align*}
\chi(K, r, 1) & = 5 \\
\chi(K, 5, 1) & = 120 \\
\chi(K, r, 2) & = 2 \\
\chi(K, 2, 2) & = 10
\end{align*}
\]
$r \to \chi(K, r, d)$ is the d-chromatic polynomial of K.

$\chi(K, r, 1)$ and $\chi(K, r, 2)$ are the chromatic polynomials for different d values.

- $\chi(K, 1, 1) = 5$
- $\chi(K, 5, 1) = 120$
- $\text{chr}(K, 1) = 5$
- $\text{chr}(K, 2) = 2$
Simplicial Stirling numbers

Compute the number $\chi(K, r, d)$ of (r, d)-colorings of K!

Definition 2.9 (Simplical Stirling numbers)

$S(K, j, d)$ is the number of partitions of $F^0(K)$ into j blocks containing only K-simplices of dimension $< d$.

- $S(K, j, d) = S_2(m, j)$ when $K = \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$
- $K_1 \subseteq K_2 \implies S(K_1, j, d) \geq S(K_2, j, d)$ when $F^0(K_1) = F^0(K_2)$
- $S_2(m, j) \geq S(K, j, d) \geq S(D[m], j, d')$ with equality for $j = \lfloor F^0(K) \rfloor, \ldots, \lfloor F^0(K) \rfloor - d + 1$, $m = \lfloor F^0(K) \rfloor$
- $S(K, |F^0(K)| - d, d) = S_2(|F^0(K)|, |F^0(K)| - d) - f^d(K)$
- $S(K, j, d) = 0$ for $0 < j < \text{chr}(K, d)$
- $\text{chr}(K, d) = \min\{j \mid S(K, j, d) > 0\}$
Theorem 2.10 (The d-chromatic polynomial of K)

The number of (r, d)-colorings of K is

\[
\chi(K, r, d) = \sum_{j=\text{chr}(K,d)} |F^0(K)| \cdot S(K, j, s)[r]_j
\]

where $S(K, j, d)[r]_j$ represents (r, d)-colorings of K with $\left|\text{col}(F^0(K))\right| = j$, and $\text{S}(K, j, d)$ represents partitions of $F^0(K)$ into j blocks without d-simplices. The theorem provides a formula for calculating the d-chromatic polynomial of a graph K. The notation $\text{chr}(K,d)$ refers to the number of colorings compatible with the chromatic number of K. The formula uses the concept of colorings and equivalence relations to express the number of colorings in terms of the number of blocks and simplices.
Colorings and equivalence relations

r possible colors

$r - 1$ possible colors

$r - 2$ possible colors

3 blocks with no d-simplices can be colored in $[r]_3$ ways from a palette of r colors

\[
\chi(K, r, d) = \frac{|F^0(K)|}{\sum_{j=\text{chr}(K,d)} S(K, j, d)[r]_j}
\]
\[\chi(K, r, d) = \frac{|F^0(K)|}{\sum_{j=\text{chr}(K,d)} S(K, j, d)[r]_j} \]
\[
\chi(K, r, d) = \sum_{j=\text{chr}(K,d)} |F^0(K)| S(K, j, d)[r]_j
\]
Colorings and equivalence relations

\[\chi(K, r, d) = \sum_{j=\text{chr}(K, d)} |F^0(K)| S(K, j, d)[r]_j \]
The two chromatic polynomials of a 2-complex

\[\chi(\text{MB}, r, 1) = r^5 - 10r^4 + 35r^3 - 50r^2 + 24r^1 \]
\[\text{chr}(\text{MB}, 1) = 5 \]

\[\chi(\text{MB}, r, 2) = r^5 - 5r^3 + 5r^2 - r^1 \]
\[5[r]_2 + 20[r]_3 + 10[r]_4 + [r]_5 \]
\[\text{chr}(\text{MB}, 2) = 2 \]
Example 2.11 (Specialization to graphs)

An \((r, 1)\)-coloring of \(K\) is an \(r\)-coloring of the simple graph \(K^1\), and the 1-chromatic number of \(K\) is the graph chromatic number of \(K^1\).

<table>
<thead>
<tr>
<th>Monomial basis (MOB)</th>
<th>Falling factorial basis (FFB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>F^0(K)</td>
</tr>
</tbody>
</table>

Properties of 1-chromatic polynomials

- **MOB is ±** The MOB coefficients \((b_j)\) alternate in sign
- **MOB is LC** The MOB coefficients \(|b_j|\) are LC
- **No roots < 0** \(\chi(K, r, 1)\) has no roots < 0
- **\(m, m - 1\) vals** \(\chi(K, m, 1) > e\chi(K, m - 1, 1)\), \(m = |F^0(K)|\)
- **FFB is LC** The FFB coefficients \((a_i)\) are LC **UNKNOWN**
Example of a 1-chromatic polynomial

\[\chi(OG, r, 1) = -64r^1 + 154r^2 - 137r^3 + 58r^4 - 12r^5 + r^6 \]

1-chromatic polynomial in MOB and FFB

Properties of \(\chi(OG, r, 1) \)

- MOB is ±: Yes
- MOB is LC: Yes
- No roots < 0: Yes
- \(m, m-1 \) vals: Yes
- FFB is LC: Yes
Example of a 2-chromatic polynomial

\[\chi(MT, r, 2) = 6r - 21r^2 + 7r^3 + 21r^4 - 14r^5 + r^7 \]

2-chromatic polynomial in MOB and FFB

Properties of \(\chi(MT, r, 2) \)

- MOB is ±: No
- MOB is LC: No
- No roots <0: No
- \(m, m-1 \) vals: No
- FFB is LC: Yes
Are the simplicial Stirling numbers LC?

Problem 2: Are the simplicial Stirling numbers

\[j \rightarrow S(K, j, d), \quad \text{chr}(K, d) \leq j \leq |F^0(K)| \]

LC for fixed \(K \) and \(d \)? (Only property that might generalize!)

\[
\begin{align*}
\text{chr}(K, 1) &= 10 \\
\text{chr}(K, 2) &= 3 \\
\text{chr}(K, 3) &= 2
\end{align*}
\]
Theorem 2.12 (Equivalent conditions for colorability)

- K admits an (r, d)-coloring
- There exists a lift such that

\[\text{Davis–Januszkiewicz space} \]

\[\text{DJ}(K) \subseteq \underbrace{BU(1) \times \cdots \times BU(1)}_{|F^0(K)|} \]

\[\lambda_1 \times \cdots \times \lambda_1 \]

\[\lambda_d \times \cdots \times \lambda_d \]

\[BU(d) \times \cdots \times BU(d) \]

is homotopy commutative

- $\chi(K, r, d) > 0$
The d-chromatic lattice

$T \not\in L(K, 2)$ \hspace{2cm} $T \in L(K, 2), |\pi(T)| = 2$ \hspace{2cm} $T \in L(K, 2), |\pi(T)| = 1$

Definition 3.1

The d-chromatic lattice, $L(K, d)$, is the partially ordered set of monochrome subsets of $F^d(K)$ of the form

$$M^d(col) = \{ \sigma \in F^d(K) \mid |col(\sigma)| = 1 \} \subseteq F^d(K)$$

for some map $col: F^0(K) \rightarrow \{1, \ldots, |F^0(K)|\}$.

- $L(K, d)$ is a finite lattice with $\widehat{0} = \emptyset$ and $\widehat{1} = F^d(K)$
- μ is the Möbius function of $L(K, d)$
- $|\pi(T)|$ is the number of connected components of $T \in L(K, d)$
Theorem 3.2 (Relating simplicial and usual Stirling numbers)

\[
\chi(K, r, d) = \sum_{T \in L(K, d)} \mu(\hat{0}, T) r^{\pi(T)}
\]
\[
S(K, j, d) = \sum_{T \in L(K, d)} \mu(\hat{0}, T) S_2(|\pi(T)|, j)
\]

‘Dehn–Sommerville relations’ for simplicial Stirling numbers of manifold?
$L(K, d)$ is graded for $d = 1$ but not for $d > 1$.

Theorem 3.3

The reduced Euler characteristic of the open interval $(\hat{0}, \hat{1})$ in $L(K, d)$ is

\[
|F^0(K)| \sum_{j=\text{chr}(K, d)} (-1)^{j-1}(j - 1)! S(K, j, d)
\]
Integer sequences of Euler characteristics

The reduced Euler characteristics of $L(D[m], d)(\hat{0}, \hat{1})$ for $m - d = 2, 3, 4, \ldots$ are

$$
d = 1 : \quad 2, -6, 24, -120, 720, -5040, 40320, -362880, \ldots
$$

$$
d = 2 : \quad 3, -6, 0, 90, -630, 2520, 0, -113400, 1247400, \ldots
$$

$$
d = 3 : \quad 4, -10, 20, -70, 560, -4200, 25200, -138600, \ldots
$$

$$
d = 4 : \quad 5, -15, 35, -70, 0, 2100, -23100, 173250, -1051050, \ldots
$$

$$
d = 5 : \quad 6, -21, 56, -126, 252, -924, 11088, -126126, \ldots
$$

$$
d = 6 : \quad 7, -28, 84, -210, 462, -924, 0, 42042, -630630, \ldots
$$

$$
d = 7 : \quad 8, -36, 120, -330, 792, -1716, 3432, -12870, \ldots
$$

$$
d = 8 : \quad 9, -45, 165, -495, 1287, -3003, 6435, -12870, 0, \ldots
$$

The first sequence is the sequence $(-1)^{m-1}(m - 1)!$. The second sequence is A009014 from The On-Line Encyclopedia of Integer Sequences (OES). The remaining 6 sequences don’t match any sequences of the OES.
Weighted colorings

Let \(w : F^0(K) \to \mathbb{N} \) be a weight function on the vertices. The weight of a simplex \(\sigma \in K \) is the sum

\[
 w(\sigma) = \sum_{v \in \sigma} w(v)
\]

of the weights of its vertices. (Special case: \(w = 1 \).)

Definition 4.1 (Weighted \((r, d)\)-coloring of \(K \))

A \((r, w \leq d)\)-coloring of \(K \) is a function

\[
 \text{col} : F^0(K) \to \{1, 2, \ldots, r\}
\]

such that \(|\text{col}(\sigma)| = 1 \implies w(\sigma) \leq d\) for all simplices \(\sigma \in K \).

Definition 4.2 (Weighted \(s\)-chromatic number of \(K \))

The weighted \(d\)-chromatic number of \(K \), \(\text{chr}(K, w \leq d) \), is the minimal \(r \) so that \(K \) admits an \((r, w \leq d)\)-coloring.
Weighted chromatic polynomials

Definition 4.3 (Weighted simplicial Stirling numbers)

$S(K, j, w \leq d)$ is the number of partitions of $F^0(K)$ with j classes containing only simplices $\sigma \in K$ of weight $w(\sigma) \leq d$.

Theorem 4.4 (Weighted d-chromatic polynomial)

The number of weighted (r, d)-colorings of K is

$$\chi(K, r, w \leq d) = \left| F^0(K) \right| \sum_{j=\text{chr}(K, w \leq d)} S(K, j, w \leq d)[r]_j$$

Problem 2: Are the weighted simplicial Stirling numbers $j \rightarrow S(K, j, w \leq d)$, $\text{chr}(K, w \leq d) \leq j \leq |F^0(K)|$ LC for fixed K, w, and d?
Definition 4.5

An \((r, d)\)-coloring of \(K\) is a simplicial map

\[\text{col}: K \rightarrow D[r] \]

such that \(\dim\{\sigma \in K \mid \text{col}(\sigma) = j\} < d\) for \(1 \leq j \leq r\)

Definition 4.6

An \((L, d)\)-coloring of \(K\) is a simplicial map

\[\text{col}: K \rightarrow L \]

such that \(\dim \text{col}^{-1}(v) < d\) for all vertices \(v\) in \(L\).