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Abstract

The practical approach to define and visualize Persistent homology and its products
is emphasized in this thesis. Persistent homology is a powerful notion originated from
topology as an application of computational algebraic topology. This is widely used in
analysis of large data to see the shape and features of the data sets, which have the data
dealing with diverse domains such as Biology, Cheminformatics, Automatic classification
of images, and Sensor and social network analysis. Since homology is homotopy invariant,
the concept of homotopy theory can be used to detect the rich features of the data sets.
Persistent homology is one of the foundation tools for TDA (Topological Data Analysis).
Several ways to examine the features of underlying spaces of the point clouds are alpha
complexes, Vietoris-Rips complex and direct usage of TDA packages. In addition, visual-
ization of persistent diagrams and barcodes of persistent homology, are also part of TDA
analysis.
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Introduction

Persistent homology is a homology theory converted to a computa-

tional point of view. It analyses the shape and qualitative features of the

data. In mathematical point of view, the data is in two different ways, such

as set of points floated in a metric space Rn, where n is dimension of a space

represented as ’Point Clouds’, and the points are considered as vectors. The

second type of data is functional valued data, which represents its behavior

to the corresponding function. The reason is to study the shape and quali-

tative features is, the more one can know the shape and geometric features

of data the more chance to analyze and explore the science behind it. Note

that qualitative features means global geometric features.

The quick overview to reach the persistent homology is, first con-

sidering the geometric object i.e.,data (the point cloud). Think of those

data points as a union of balls, decompose those as a Voronoi diagram of

the points, every center of the points assign the convex polyhedron with the

points whose center is the nearest. Pick the nerve (complex which is con-

structed by edges where two Voronoi regions intersect, triangles where three

of Voronoi regions and tetrahedron where three of Voronoi regions intersect),

remove the convex pieces and the resulting complex is the alpha complex

which is subset of Delaunay triangulation. Now is the time to find out the

topological invariant homology in that complex. The final step is to check the

persistency of that homology. The results give an idea whether they are ho-

motopy equivalent to any other established shape, sometimes if lucky, they
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6 CONTENTS

are topologically equivalent to already established topological space. This

justifies the shape and qualitative (geometric) features of that point cloud.

The basic foundation for this construction is Topology. The basic

notions of Topology are explained in chapter 1. In chapter 2, the building

blocks for the chain complexes are explained. The notion of homology is

also introduced in this chapter. In chapter 3, geometrical notions such as

Voronoi regions and Delaunay triangulation are explained. In chapter 4, the

notion of alpha complex is introduced, and visualizations of alpha shape is

also explained. Nerve and Vietoris Rips complexes are introduced to have an

idea of which complex construction is recommended for practical approach

of persistent homology. In chapter 5, the main objective of this thesis, intro-

duction and products of Persistent homology are explained. The final section

of this chapter analyzes point clouds and detects their topological features.



Chapter 1

Topology

To understand a topological space, here is quick introduction to address few

notations such as metric spaces, open sets and closed sets. The definition

of topology also give a more generalized version of the meaning of open and

closed sets.

1.1 Metric spaces

Definition 1. A metric space is a set X where it has a nota-

tion of distance. That is if x, y ∈ X, then d(x, y) is the distance

between x and y and the distance function must satisfy the fol-

lowing conditions.

1. d(x, y) > 0 for all x, y ∈ X

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

7
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4. d(x, z) 6 d(x, y) + d(y, z) for z ∈ X

Example 1. For any space X, let d(x, y) = 0 if x = y and

d(x, y) = 1, otherwise. This is called discrete metric.

Example 2. The Pythagorean theorem gives the most familiar

notation of distance for points in Rn. In particular, when given

x = (x1, ..., xn) and y = (y1, ..., yn), the distance f as

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

1.1.1 Open Sets (In a metric Space)

Definition 2. Let X be a metric space. A ball B of radius r

around a point x ∈ X is B = {y ∈ X|d(x, y) < r}

Definition 3. A subset O j X is open if for every x ∈ O,

there is a ball around x entirely contained in O

For Example, Let X = [0, 1]. The interval (0, 1/2) is open in

X With an open set, it always has a chance to pick any point within the

set, when taken an infinite dimensional step in any direction within the given

space. That means for example, the interval [0, 1/2) is not open in R where

as same interval is open in [0, 1]

1.1.2 Closed Sets(In a metric space)

Definition 4. A point z is a limit point for a set A if every

open set containing z intersects A in a point other than z. Any
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set C is a closed set, if and only if it contains all of its limit

points.

For example, Let A = Z, a subset of R. This is closed set because

it does contain all of its limit points; no point is a limit point! A set that has

no limit points is closed, by default, it contains all of its limit points.

From these definitions, it is obvious to see that, the empty set is

open and whole space is open. Moreover the union of open sets of any

collection of open sets is open, and the intersection of any finite number

of sets is open. Similarly every union of closed sets is closed, and finite

intersection of closed sets is closed.

1.1.3 Topological Space

Definition 5. A topological space is a pair (X, τ) where X is

a set and τ is a set of subsets of X satisfying following axioms,

τ is called a topology

1. The empty set ∅ and the space X are both sets in the topol-

ogy.

2. The union of any collection of sets in τ is contained in τ .

3. The intersection of any finitely many sets in τ is also con-

tained in τ .

Example 3. Let X be a set and τ is a a topology on X, the sets

in τ are called open. Therefore, if X does have metric (a notion
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of distance), then τ = {all open sets with the ball} is indeed a

topology, this is called Euclidean Topology .

1.2 Continuity

Definition 6. A function f : X → Y is continuous if and only

if the pre image of any open set in Y is open in X, similarly the

same applicable in closed set as well. That means the pre image

of any closed set in Y is closed.

Given a point x of X , a subset N of X is called a neighborhood

of X , if one can find an open set O such that x ∈ O ⊂ N

A function f : X → Y is continuous, if for any neighborhood V

of Y there is a neighborhood U of X such that f(U) ⊂ V . Note that a

composition of 2 continuous function is also continuous.

1.2.1 Homeomorphism

Homeomorphism is the notion of equality in topology. A classic ex-

ample in topology for Homeomorphism views doughnut and coffee cup are

topologically same because one of the geometric objects can be stretched and

bent continuously one from the other. Formally it is

Definition 7. A homeomorphism is a function f : X → Y

between two topological spaces X and Y that f is a continuous

bijection, and it has a continuous inverse function f−1.
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Two topological spaces X and Y are said to be homeo-

morphic, if there are continuous maps f : X → Y and g : Y →
X such that,

fog = IY and gof = IX . Moreover, the maps f and g

are inverses of each other.

The homeomorphism forms an equivalence relation of the class of

all topological spaces.

• Reflexive : X is homeomorphic to X .

• Symmetry: X homeomorphic to Y , then Y homeomorphic to X .

• Transitivity: X homeomorphic to Y and Y homeomorphic to Z , then

X homeomorphic to Z .

The resulting equivalence classes are called homeomorphic classes

Two spaces X , Y are homotopy equivalent , if there exists

a homotopy equivalence X → Y and is denoted by X ' Y . One should

think of homotopy equivalent spaces as spaces, which can be deformed con-

tinuously one into other. Any homeomorphism f : X → Y is a homotopy

equivalence with a homotopy inverse f−1, but the converse need not neces-

sarily be true.

For example the spaces S1 and R2−{0} are homotopy equivalent

spaces. The following three graphs are homotopy equivalent, but they are

not homeomorphic [1].
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In fact, they are homotopy equivalent to the disk with two points

removed by the homotopies indicated by the following picture

Definition 8. A space is contractible, if it is homotopy equiv-

alent to one-point space.

Rn is contractible.

1.2.2 Topological Invariants

Holes

A hole is a topological structure, which prevents the object from being contin-

uously shrunk to a point. When a one dimensional shape in two dimensional

space has a hole, it is not continuously shrinkable to a single point. That

means a function mapping a space with a hole to a space without hole can-

not be homeomorphism. They are also referred as voids. This is the key

concept described in this thesis (called Betti numbers). The details of the

n−dimensional holes is described in the following sections.

Note that, the tearing of the circle means that nearby points on the

circle can be mapped to a very distant points in the line. This violates the

continuity requirements of a homeomorphism.

Compactness

This is fundamental topological invariant. This explains the notion of a

subset of Euclidean space being closed and bounded. An open cover of a
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topological space X is a family of open subsets of X whose union is all of X .

If F is an open cover of X . Let Fi is a subfamily of F and
⋃

Fi = X , then

Fi is called the subcover of X . For example, Let F be the set of open balls

of radius 1 whose centers have integer coordinates {x, y|x2+y2 ≤ 1}. The

family of open balls covers the plane but if any one of the ball is removed,

the family no longer covers the plane. Therefore this family of open balls has

no proper subcover.

Definition 9. A topological space X is compact if every open

cover of X has a finite subcover.

For example, the closed unit interval [0, 1] is compact

Heine-Borel theorem states that, in Rn with the Euclidean topol-

ogy, compact sets are precisely the closed and bounded sets of Rn

Topogically Equivalent

Let X ,Y be two topological spaces. Let f : X → Y be a bijective func-

tion, which is homeomorphism between X and Y . If f and f−1 are both

continuous, then X and Y are said to be topologically equivalent or

homeomorphic. That means they have same topology type. If a function

g : X → Y , whose restriction to the image g(X) ⊆ Y is a homeomor-

phism. The triangle and the circle are topologically equivalent. Similarly the

tetrahedron and the 2-dimensional sphere are topologically equivalent.

1.2.3 Surfaces

A surface is a topological space S such that every s ∈ S has a neighborhood

homeomorphic to R2. Which are also called 2-Manifolds. Manifolds can be

explained in two different types: with or without boundary.
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Definition 10. A n-manifold(without boundary) is a topological

space M such that every x ∈M has a neighborhood homeomor-

phic to Rn

One can get manifolds with boundary by removing open disks

from manifolds without boundary. The boundary of n-dimension manifold

is a (n− 1) Manifold. Here are examples for each of these.

1. The cylinder S1 × I which is S1 × [0, 1] (here, I denotes the [0, 1]

in the usual topology) is a 2-manifold with boundary and its boundary

consists of two closed curves. It can be connected from a square by

gluing left edge to right edge.

Orientation

Which is a geometric notion that in two dimensions, allows one to say when a

cycle goes around clockwise or counterclockwise, and in 3-dimensions when a

figure is left handed or right handed. Technically, suppose for a closed man-

ifold M without boundary with n-dimension, and for any point x ∈ M ,

a local orientation of M at x ∈ M is a choice of generator µx which is

n-dimensional loop.

The purpose of orientation definition is to see the spaces being glued with

edges that give interesting new spaces and classify them according to it,

whether they are orientable surfaces or not (non-orientable). As ex-

plained above, in cylinder S × I case, the opposite edges are being glued

with same orientation. If it is done in reverse orientation, the resulting sur-

face is then called non-orientable surface. Mobius strip is the surface

obtained by gluing opposite edges in reverse orientation. For example, here

are few constructions which give clear idea of what it means.

Torus S × S is obtained by gluing the top to the bottom edge,
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then the boundary is removed and get compact surface, and glued the left

edge and right edge with same orientation. In case, these side edges are being

glued with reverse orientation, the resulting surface is the Klein bottle.

Triangulation

Triangulation is decomposition of a surface into triangles whenever any two

triangles meet in a shared edge or shared vertex. By Euler characteristic of

convex polyhedron definition [13] as the alternating sum of simplices (ver-

tices, edges, faces, etc....), Triangulation does not cause any change in the

value of Euler characteristic of the surface.

Connected Sum of Surfaces

The connected sum of any two manifolds is obtained by removing a disc in

each manifold and gluing them together. The connected sum of two manifolds

is again a manifold. The connected sum of two orientable manifold is again

an orientable manifold, and the connected sum of non orientable manifold

to either orientable manifold or non-orientable manifold is a non orientable

manifold. This is denoted by ’#’. For example, the connected sum of two

projective planes gives Klein bottle which is K2 = R1#R1

The two connected compact 2-manifolds (without boundary) are

homeomorphic, if and only if they have the same Euler characteristic and they

are both orientable and non-orientable. This is the classification theorem.

The orientability plays major role in computations when one is con-

sidering the coefficient group.
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Chapter 2

Homology

Let X be topological space, one can define chain groups Cp(X) of a topo-

logical space X for all p ∈ N, and the boundary homomorphism Cp(X)→
Cp−1((X)

2.1 Free Abelian Group

Let X be a set, informally, the free abelian group with basis X is the formal

linear combination of elements of X with coefficients in Z i.e. expressions

c =
∑

cxx

where all cx ∈ Z and that cx = 0 for all but finitely many x ∈ X .

Two such expressions are equal if and only if the coefficients nx agree for all

x ∈ X . Addition is defined as, let c
′
=
∑
c
′

xx, then

c+ c
′
=
∑

(cx + c
′

x)x

Definition 11. Let ZX be the group of formal linear combina-

tions
∑
cxx with addition defined as above

17
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Moreover, the set of functions c : X → Z such that {x ∈
X|c(x) 6= 0} is finite For each x0 ∈ X there is a corresponding ele-

ment of ZX , viz. the linear combination
∑

x∈X cxx with cx0
= 1 and

cx = 0 for all x 6= x0. The same notation can be used for x0 ∈ ZX for

this element associated to x0 ∈ X .

Lemma 1. Let A be an abelian group. The two homomorphisms

φ, ψ : ZX → A for all x ∈ X

For any function f : X → A there exists a homomor-

phism φ(x) = f(x) for all x ∈ X

Proof. Since any linear element of ZX is a Z−linear combination

of elements of X, and homomorphisms preserve linear combina-

tions, two homomorphisms from ZX must agree if they agree

X.

Given f : X → A, define φ by φ(c) =
∑
cxf(x) if

c =
∑
cxx. This is well defined because the numbers cx are

uniquely determined by c and satisfies φ(x) = f(x) for all x ∈ X.

It is a homomorphism by the definition of addition in ZX.

2.2 Standard simplices and their faces

A simplicial complex is a set of points (vertices), line segments(edges), tri-

angles, and n-dimensional faces. Basic ingredients for the simplicial complex

are vertices, all higher-dimensional faces can be determined as subsets of

those vertices.
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Definition 12. For any integer p > 0, Let ∆p be the space

∆p = {(t0, ..., tp) ∈ Rp+1|
p∑
i=0

ti = 1,∀i : ti > 0}

equipped with the subspace topology from Rp+1 in its usual Eu-

clidean topology.

For example, ∆0 is a one-point space, ∆1 is line segment or home-

omorphic to an interval, ∆2 is a solid triangle, ∆3 is a tetrahedron shown

in following figure 2.1. In general, the topological space ∆p is called the

standard p-simplex.

It can be written e0, ..., ep ∈ Rp+1 for the standard basis, e.g

e0 = (1, 0, ...0), e1 = (0, 1, ...0),etc. Then the point t = (t0, ...tp) ∈
∆p may be written as the linear combination t = t0e0 + ....+ tpep.

Figure 2.1: Simplices

Definition 13. For 0 ≤ i ≤ p, let δi : ∆p−1 → ∆pbe the map

defined as,

δi(t0, ....., tp−1) = (t0, ...., ti−1, 0, ti.....tp−1)

The image δi(∆p−1) ⊂ ∆p is called the i-th face of ∆p, and the

union ∪pi=0δ
i(∆p−1) is called the boundary of ∆p and denoted by ∂∆p.
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For example as shown in figure 2.1, the two faces of ∆1 are the

two end points of line segment, the three faces of ∆2 are three edges in a

triangle, and the four faces of ∆3 are the triangles in the boundary of solid

tetrahedron, etc.

For convenience of computations, the coefficient group is taken in

this thesis for these operations Z2, whose elements are 0 and 1, and these

are called modulo 2 coefficients.

2.2.1 Chain Complexes

Another way of defining triangulation of a topological space X is a simplicial

complex K, whose underlying space is homeomorphic to space X. Let K

be simplicial complex with underlying topological space X which contains

p dimensional simplices, a p-chain is a formal linear sum of p-simplices in

K like defined above
∑
ciσi, here ci are the coefficients and σi are the

p-simplices(continuous maps σ : ∆p → X). The two p-chains are added

component wise like polynomials. Let c =
∑
aiσi and c′ =

∑
biσi be two

chains, then c+c′ =
∑

(ai + bi)σi is the addition operation and moreover

considering the coefficient group is Z2, so 1 + 1 = 0, the p-chains together

with addition operation form the group of p-chains, denoted by (Cp,+).

Associativity can be easily seen, with neutral element 0 =
∑

0σi and the

inverse of ai is −ai = ai because ai + ai = 0. Moreover Z2 is abelian

implies the group (Cp,+) is also abelian group. For convenience call the

chain group as Cp.

Boundaries and Cycles

The boundary of p-simplex is defined as the sum of (p − 1) - dimensional

faces. They are p + 1. The boundary of p-chain is the sum of boundaries
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of its p-simplices. The boundary is (p − 1) chain. The boundary map is

denoted by ∂ and the map between chain groups is shown below

∂p : Cp → Cp−1

Which has homomorphism and hence is also called p - boundary

homomorphism or boundary map. Since the relation is homomorphism with

group operations, the maps and groups dimension wise arrangement give

Chain Complex of K which is,

.....
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ ........

A p - cycle is a p - chain with empty boundary and since ∂ commutes with

addition, it is group of p-cycles and is denoted by Zp or Zp(K), which is a

subgroup of p - chains, moreover this group is the kernel of the p-th boundary

homomorphism. Similarly the group of p-boundary homomorphisms is also

denoted by Bp or Bp(K) and which is also subgroup of the group of p-

chains. Clearly this is image of p-boundary homomorphism.

A p-boundary is a p-chain which is boundary of (p + 1) -chain

indeed, For 0 ≤ p ≤ dim K are non trivial groups. Since the boundary of

a vertex is empty so it is clear that 0-chain maps to 0, moreover here the

interesting points are the composition ∂◦∂ = 0 is the trivial homomorphism

and hence image of the homomorphism ∂ : Cp+1 → Cp is contained in the

kernel of homomorphism ∂ : Cp → Cp−1. Since the p-boundaries form

subgroups of p-cycles, now it is time to introduce quotients, that means one

can partition each cycle group into classes of cycles that differ from each

other by boundaries. This quotient group is called the p-th homology group.
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2.2.2 Homology

The p-th homology group can be defined as the quotient of p-cycles mod out

by p-boundaries

Hp(K) = Zp(K)/Bp(K) =
ker(∂ : Cp → Cp−1)

img(∂ : Cp+1 → Cp)

Two chains c, c′ ∈ Cp(K) are homologous, if c− c′ ∈ Bp(K),

and if there exist an α ∈ Cp+1(K) with ∂α = c−c′, this is an equivalence

relation, and Hp(K) is the group of p-cycles modulo the relation of being

homologous.

These are the homology groups of the spaces - circle, sphere and

torus. with coefficients in Z are isomorphic to following groups

H0(S
1) ∼= Z, H1(S

1) ∼= Z, H2(S
1) ∼= 0

H0(S
2) ∼= Z, H1(S

2) ∼= 0, H2(S
2) ∼= Z.

H0(S
1 × S1) ∼= Z, H1(S

1 × S1) ∼= Z⊕ Z, H2(S
1 × S1) ∼= Z.

The homology groups of same spaces with coefficients in Z2 are

isomorphic to indeed same combinations with Z2 group, instead of Z. The

benefit of considering the homology with Z/2Z coefficients is, there is no

need to worry about the orientation of the simplices. For computations and

dealing with Gaussian elimination in matrices, considering this group is a

good option.

Euler Characterstic

Let A be finitely generated abelian group, from fundamental theorem of

algebra, one may find isomorphism
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A ∼= Zd ⊕ T

where T is finite abelian group (torsion), the number of copies Z,

and d is the rank of A.

Definition 14. Let X be a topological space such that Hp(X) is

finitely generated for all p such that there exists N with Hp(X) =

0 for all p > N for such X,

χ(X) =

∞∑
i=0

(−1)irank(Hi(X))

The rank of the homology group is called the Betti number.

If we compare the alternating sum of Betti numbers of corresponding sim-

plices and Euler characteristic numbers, it is the same for common surfaces.

Betti numbers are topological objects which were proved to be invariants

by Poincǎre and used by him to extend the Polyhedra formula to higher

dimensional spaces. The numbers β0, β1, β2 of any space represents the

connected components, one-dimensional holes and cavities of that space re-

spectively. The rank of the p-th homology group is the p-th Betti number

of k. Moreover if substitute the dimension of quotient group [11] and from

that the rank of the quotient group i.e.,

rank(Hp) = rank(Zp)− rank(Bp) (2.1)

This rank is a measure of the difference between the p-th cycle

group and p-th boundary group.
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Chapter 3

Voronoi Diagram and Delaunay

Triangulation

3.1 Convex Polygons

A set X is convex if two points x, y ∈ X i.e., every point on the line segment

connecting x and y belongs to X. For example, a disk in R2 is convex but a

circle is not.

Note that the intersection of convex sets is convex.

Convex polygons can be constructed as the intersection of a finite number of

half-planes or as the convex hull of a finite set of points.

3.2 Voronoi Diagrams

Let S be a finite set of points in R2, in order to distinguish them from other

points in the plane, these elements are called sites . It is known that the

Euclidean distance between a point x = (x1, x2) and a site s = (s1, s2)
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is ||(x−s)|| is (x−s, x−s)1/2, the Voronoi Region or Voronoi

cell of s is defined as,

Vs = {x ∈ R2|||x− s|| ≤ ||x− t||,∀t ∈ S} (3.1)

The set of points those satisfy ||x−s|| ≤ ||x−t|| is a closed half-plane, Vs
is the intersection of finitely many half planes, hence it is a convex polygon.

The Voronoi regions intersect at most, along their boundaries. The Voronoi

regions covers the entire plane. The set of all these Voronoi regions is the

Voronoi Diagram of S (Figure 3.1).

Figure 3.1: Voronoi Diagram for finite set S of points R2

The Voronoi ball of any site s w.r.t S is defined as the intersection

of the Voronoi region with the closed ball of radius say r around that point.

In easy words, imagine the concept by taking arbitrary finite set of

points in a plane and draw the circles around each point with some radius

r. Start increasing the radius of circle, at some point, they all intersect and

it looks, the whole plane contains union of circles. But in Voronoi diagrams,

they are not merging with neighboring circles. Instead the circles with neigh-

boring sites in the plane start colliding at a single point (like horizontal 8

figure). As they expand, they grow into a line where they squish together.

The lines are drawn in the circle boundaries. If this happens with all the
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finite sites, it looks like irregular patterns as shown in Figure 3.1. Moreover,

the border of each Voronoi region(cell) is always at the same distance to the

two nearest sites, and whenever three lines meet, there obtained a vertex and

that is equally distanced to the three nearest sites.

3.3 Delaunay Triangulation

Suppose S is a Voronoi region in R2, the Delaunay triangulation is ob-

tained by connecting two sites by a straight edge, whenever the correspond-

ing Voronoi regions shared by an edge (the boundary of Voronoi region). The

intersection of four or more Voronoi regions is empty, and the intersection of

three Voronoi regions form a triangle in Delaunay Triangulation, is shown in

Figure 3.2.

Figure 3.2: Voronoi Diagram and corresponding Delaunay triangulation of

finite set S of points R2

The star of a site in the Delaunay triangulation is defined as the

collection of edges and triangles that share s. The link of s is the collection

of sites and edges in the boundary of the star that doesn’t contain s. The
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triangles in the Delaunay triangulation decompose the convex hull of S.



Chapter 4

Complex Constructions

The main reason to study the concept of alpha shapes is to develop concrete

explanation of shape of a finite point set.

4.0.1 Jarvis Construction

Given a set of points in plane, the convex hull of a set is the smallest convex

polygon (Figure 4.1), that contains all of the points in that plane.

Figure 4.1: Convex hull: A bound around the plane
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Jarvis March algorithm solves the convex hull of set of points such

that all the points are covered and the boundary is minimal. The basic idea

starts with choosing the left most point and pick the next point as left most

point of starting points, and repeat the process until it reaches the initial

point. Left most point can be determined by cross product.

The time complexity of this algorithm is O(n, h), n is number of

points in the set and h is the number of points in the boundary. If h is

small, the algorithm is very efficient. If not, it would be O(n2), that means

it has to check every point until it gets the boundary. Space complexity is

something that might be holding all the collinear points.

Non convex can be drawn in generalized way, that is instead of

rotating line, one can draw line segment by decreasing length (fixed length).

Since the line segment should be drawn with fixed length, it wouldn’t get nice

shape unless the sequence of points(sites) in the plane are nicely distributed.

4.1 Alpha Shapes

The α-shape [2] of a finite set of points for arbitrary real α. This notion

is generalization of one common definition of the convex hull. The main

objective is to construct efficient algorithm for the α-shapes of a point set

for several α’s. There is a close connection between α-hull and α-shapes

with Delaunay Triangulation that will be explained in following section.

Some relevant definitions are as following.

Let S be a set of n (n being positive integer) points in the plane.

The convex hull of S may be defined as the intersection of all closed half

planes that contain all the points of S.

Definition 15. For an arbitrary sufficiently small real value α,
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the α-hull of S is the intersection of all closed discs with radius

1/α that contain all the points of S.

In order to get an intersection of discs, there exists at least one disc

of the chosen size that contain all the points. The smallest possible value for

1/α is exactly equal to radius of the smallest enclosing circle.

Definition 16. For negative real α’s, the α-hull is defined as

the intersection of the complements of discs where radii of these

discs −1/α that contains all the points in S.

Let us assume the intersection of no discs and discs with large posi-

tive α is equal to the entire plane, general disc radius be 1/α for α > 0, the

complement of a disc of radius −1/α, if α < 0 and a half plane if α = 0,

then the family of α-hull ranging from −∞ to ∞. The family contains

entire plane for sufficiently large α’s, the smallest enclosing circle of S, when

its radius equals to 1/α and convex hull of S for α = 0 and S itself, when

α ls sufficiently small.

Definition 17. A point a in a set S is called as α-extreme in

S, if there exists a closed generalized disc of radius 1/α such that

a lies on its boundary and it contains all the points of S. For two

such a, b as extreme points, there exists a closed generalized disc

of radius 1/α with both points on its boundary, which contain

all the points of S, then a and b are said to be α-neighbors.

Definition 18. Let S be a set of points and a real valued α, the

α-shape of S is the straight line graph, whose vertices are the α-

extreme points and edges are connections between the respective

α-neighbors.
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If any space or point cloud data is provided, it can then be decom-

posed into Voronoi regions. The dual space of that decomposition is Delaunay

triangulation. In fact α-complex is Delaunay triangulation and through this

complex, the filtration of the complex is defined. Here, s denotes site in

Voronoi region.

4.1.1 Union of disks

Let x be a point and be center of disk constructed around each point with

radius α in the space of points, and note x is the center of an empty disk of

radius α, if and only if it is further than α. Then the union of all the disks

of radius α centered at x is the entire region covered by the disks.

Us(α) =
⋃
s∈S

Ds(α) (4.1)

4.1.2 Voronoi Decomposition

It is a formulation of α-shape as the union of simplices in the α-complex.

i.e., overlaying of the union of disks with the Voronoi diagram, decomposing

the union into convex regions.

Rs(α) = Vs ∩ Ds(α) (4.2)

The intersection of convex set is again a convex set, so

Us(α) =
⋃
s∈S

Rs(α) (4.3)

The region Rs covers the entire union without overlapping. The common

intersection of regions are shared edges and vertices only. So the Delaunay

triangulation is constructed as follows. Construct a α-complex between two

sites if the regions are intersecting in common edge, and draw a triangle
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among the regions of the respective sites if all of them intersect in common

point. Note that, if three regions of three sites are intersecting with common

vertex, a triangle can be drawn as shown in Figure 4.3. This is the convex

of Nerve theorem. The construction is explained in the following Figure 4.3

which give an idea [3]

Figure 4.2: Left-The union of disks with radius α, middle- The Voronoi

decomposition of the union, right- The α-complex is superimposed on the

union of disks, convex regions of Voronoi decomposition

Figure 4.3: The intersection of three Voronoi regions
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4.2 Visualization of Alpha shapes of a point

cloud data

In this study, a sample point cloud set with 400 points is taken, and the

α-shapes with different values of α are constructed as shown below (Figure

4.4).

Figure 4.4: Left is a sample point cloud with 400 points, rest of the figures

are α-shapes of the point cloud at various α’s 0.2, 0.25 and 0.5 respectively

In the centre-top sub-figure of Figure 4.4 the α-shape has holes

and has big tunnel ([2]). In the centre-bottom sub-figure of Figure 4.4 the α-

shape has most of the holes disappeared, except one. But it still has enclosed

volume which is homotopy equivalent to 2-dimensional sphere with removed

1-dimensional disk. The right side sub-figure of Figure 4.4 is complete convex

α-shape with enclosed volume (seen in middle portion of the figure).

Another example of point cloud α-shapes construction is shown in

Figure 4.5. In this case, 450-points are distributed in 3-dimensional space. It

is identified as circular distribution via α-value of 0.15, and by increasing the

value of α to 0.25, 0.5 and 1.0, the respective α-shapes are constructed and
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analyzed. For α-value 0.5, the α-shape of point cloud has holes, and they

begin to merge. When α-value is 1.0, it turns out to be a giant α-complex.

Figure 4.5: The alpha shapes of the another sample of point clouds, the alpha

complex constructed with α-values

In this thesis, theα-complex construction is done in R(http://cran.r-

project.org/). R is a programming language used for statistical computing

and graphics. R-programming has certain nice properties and it has many

packages for computing and visualizations. It is very easy to make inter-

active plots viaR-programming. Since it is a scripting language, it is easy

to use, but R is slower in execution when compared with C or C++.

The R-packages used in the current analysis are ”geometry”, ”rgl” and ”al-

phashape3d” for α-shape construction. It has to be noted that the input

data should be in the required class. For example, the data used here is in

the form of list, it is then converted into double class in order to construct

α-shape on to it.
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################ Installing Required Packages ###############

########### Here we are using "alphashape3d" #################

install.packages("geometry")

install.packages("rgl")

install.packages("alphashape3d")

############# Loading Package ##############################

library("geometry")

library("rgl")

library("alphashape3d")

############################################################

Sample_Point_cloud <- read.csv(file.choose(), header = T)

## This is "data frame" class, we are making this into matrix form

###### constructing alpha shape for this sample #############3

sample_matrix_PC <- data.matrix(Sample_Point_cloud[1:400,1:3])

alphashape3d_Sample_PC <- ashape3d(sample_matrix_PC, alpha = 0.5)

#plotting with 4 different values of alpha

######### plotting the alpha shape #######################

plot(alphashape3d_Sample_PC)

####### sample of circular alpha shape ############################

sample_circ_data <- data.matrix(PC3)

alphashape3d_circ <- ashape3d(sample_circ_data, alpha = 0.5)

alpha <- c(0.15,0.25,0.5,1)

alphashape3d_circ <- ashape3d(alphashape3d_circ, alpha = alpha)

plot(alphashape3d_circ, indexAlpha = 1:4)

Device 7 : alpha = 0.5

Device 8 : alpha = 0.15

Device 9 : alpha = 0.25

Device 10 : alpha = 1
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4.3 Complex constructions on Point clouds

Homology can be computed for spaces if they are equipped with a triangu-

lation which is a homeomorphism to a simplicial complex. A point cloud is

a geometric object which is a set of points, floating around randomly in a

space. Topologically it is a discrete space i.e., they are isolated from each

other. In order to obtain the information from the point cloud, one can

construct complex on it, and computations can be done on it.

Abstract Simplicial Complex: An Abstract Simplicial

Complex of a space is a system of sub collection A, the finite sets are called

faces (vertices, edges and faces). Every sub-face of a face is again face of that

complex i.e. if α ∈ A and β ⊆ α imply β ∈ A.

4.3.1 Čech Complex

Let X be a topological space and let u = {Uα}α∈A of X indexed by a set

A

Definition 19. The Čech complex of u, C(u), is the simplicial

complex whose vertex set is A, and where a subset {α0, α1, ...αk}
is a simplex, if and only if Uα0 ∩Uα1 ∩ ...Uαk 6= ∅

The Čech complex of covering of u is homotopy equivalent to X,

so the homology of covering space is isomorphic to homology of X i.e. if all

the sets of the form Uα0 ∩ Uα1 ∩ ...Uαk are either empty or contractible,

then C(u) is homotopy equivalent to X.

If S is a finite subset of a metric space, it can be written as C(Bε),

where B is the collection of metric balls {Bε(s)|s ∈ S} in the case of

Euclidean data. Here, the union of balls Sε, which is homotopy equivalent
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to X, where S is sampled from a space X ⊆ Rn. Induced homology is also

isomorphic to homology of X

4.3.2 Vietoris-Rips Complex

The Vietoris-Rips complex characterizes the topology of a point set. This

complex is popular in Topological Data Analysis and its construction can

easily be extended to higher dimensions. This complex needs distance be-

tween points in a space, which is an abstract simplicial complex defined on

a finite metric space.

Definition 20. Let X be a metric space with radius r, for any

finite subset S of X, the Vietoris-Rips Complex VRr(X) is all fi-

nite subsets of diameter at most of r. The set {σ ⊆ X|diameter(σ) ≤
r} where σ ∈ S is finite.

4.3.3 Nerve

Let X be a finite collection of sets. The nerve of X is the system of sub

collections of X whose sets have non-empty common intersection.

NrvX = {∅ 6= V ⊆ X| ∩ V 6= ∅}

Theorem 1. Nerve Theorm: If V is a finite collection of X with

all non-empty intersections of subcollections of V is contractible,

then Nrv(V) is homotopic to the union of elements of V

If the cover of the sets is sufficiently nice, then the Nerve Theo-

rem says that the nerve of the cover and the underlying space X have the

same homology group. For example, let S be a finite set points in a metric
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space X, and for every ε > 0 the space Sε as the union ∪B(x, ε) where

B(x, ε) denotes the closed ball with radius ε centered at x. It follows that

{B(x, ε)|x ∈ S} is a cover of Sε, and nerve of this cover is the Čech complex

on S at scale ε. If the space X is Euclidean space, then the Nerve theorem

guarantees that the simplicial complex Čε(S) recovers the homology of Sε.

In order to preserve one dimensional homology group, the Čech

complex can be used. If the diameter of ball increases, the hole disappears,

so when one perform the persistent homology, there is not a lot of differ-

ence because eventually the Čech complex does embed inside a Vietoris-Rips

complex when increasing the diameter. So one can conclude that there is

no big difference of which kind of homology is used for computing persistent

homology [8].

Betti numbers (Figure 4.6) provides a signature of the underlying

topology. If unknown data cloud is given, using these Betti numbers one can

conclude the shape of data by computing persistent homology and compare

whether it has same homotopic type that of standard topological space such

as circle, torus, Klein or sphere etc.

From a computational point of view, the Rips complex is less ex-

pensive than the corresponding Čech complex, even though the Rips complex

has more simplices. It is a flag complex, and is maximal among all simpli-

cial complexes with the given 1-skeleton(topological graph) that completely

determines the complex. The Rips complex can be stored as a graph and re-

constructed instead of storing the entire boundary operator needed for Čech

complex.

In order to convert a point cloud data set into a global complexes

whether it is Rips or Čech, it requires a choice of parameter ε. If the chosen

ε is sufficiently small, the complex is a discrete set. If it is sufficiently large,

the complex is a single giant complex.
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Figure 4.6: A fixed point set can be completed to a Čech complex Cε or to

a Rips complex Rε based on a parameter ε

[10], This Čech complex has the homotopy type of the ε/2 cover

(S1∨S1∨S1), where as the Rips Complex has a homotopy type (S2∨S1).
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Persistent Homology

5.0.1 Introduction

Persistent homology is a technique that has been developed over last 20 years.

Persistent homology can be used to measure the scale or resolution of a topo-

logical space. Persistent homology is also a method that is used in topological

data analysis (TDA) to study qualitative features of data that persist across

multiple scales. TDA is a field that lies at the intersection of data analysis,

algebraic topology, computational geometry, statistics, and other related ar-

eas. When it is time to handle large amount of data, the complexity arises

in such form of noise in the data, higher dimension, and incomplete, and

these are more significant challenges. The clustering techniques [5], machine

learning from Computer Science, and uncertainty qualifications along with

mathematical and statistical models are often useful for data analysis. TDA

is a mathematical approach to help people to manage complicated point

cloud data.

The main goal of TDA is to use ideas and results from geometry

and topology to develop tools for studying qualitative features of the data.

To achieve this, one needs precise definitions of qualitative features, tools

41
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to compute them in practice and some acceptance about the robustness of

these features. One mathematical way to address these features is a method

in TDA called Persistent homology. This method is appealing for appli-

cations since it is based on Algebraic topology, which gives good under-

standing of theoretical framework and commutable via Liner algebra, and

is robust with respect to small perturbations in input data.

The data sets that are studied with persistent homology includes

finite metric spaces, digital images, level sets of real-valued functions, and

networks. Which is also used in virtual chemical compounds testings, study

the cancer cells data as well. In TDA literature, Finite-metric spaces are con-

sidered as point-cloud data sets. From Topological point of view, these types

of data does not have any interesting information. Persistent homology is an

algebraic method for discerning topological features (connected components,

holes and enclosed volumes etc..) of data by building simplicial complex

with different techniques (Vietoris-Rips complex, čech complex and a few

more) in order to achieve Delaunay Triangulation. The output of persistent

homology is the data of finite collection of intervals (birth and death of the

homology). These finite collection of intervals are called barcodes. They can

be visualized in two ways, viz. persistent diagrams and barcodes plot.

5.1 Persistentency

5.1.1 Filtered Complex

Let K be a finite simplicial complex and let K1 ⊂ K2 ⊂ ...... ⊂ Kl = K

be a finite sequence of nested subcomplexes of K. The simplicial complex

K with a sequence of such subcomplexes is called a filtered simplicial

complex. One can apply homology to each of the subcomplexes. For all

p(dimension), the inclusion maps Ki → Kj induce Z2-linear maps fi,j :
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Hp(Ki) → Hp(Kj) for all i, j ∈ {1, ....l} with i ≤ j. By functionality

it follows that

fk,j ◦ fi,k = fi,j

let K1 ⊂ K2 ⊂ ...... ⊂ Kl = K be a filtered simplicial complex.

The p-th persistent homology of K is the pair ({Hp(Ki)}1≤i≤l, {fi,j}1≤i≤j≤l)
for all i, j ∈ {1, ....l} with i ≤ j, the linear maps fi,j : Hp(Ki) →
Hp(Kj) are the maps induced by the inclusion maps Ki → Kj [7]

Figure 5.1: Example for increasing sequence of simplicial complex

The p-th persistent homology of a filtered simplicial complex give

more refined information than just homology of the single subcomplexes.

In Figure 5.1, the filtration followed by the incremental algorithm [9]

for Betti numbers is shown. For each sequence of filtration, by adding a sim-

plex, either chain extension or cycle is created. If the added simplex creates

a cycle, then one of the Betti number in that sequence(β1β2β3) decreases

by 1, otherwise it increases by one, there by creating a chain extension.

The complex construction contains six increasing finite sequences

of simplicial complexes C0 ⊂ C1 ⊂ C2 ⊂ C3 ⊂ C4 ⊂ C5, is starting

with two vertices a, b at sequence 0, then in sequence 1, two vertices and

two edges are added. In each sequence, the dotted line represents creation
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of new edges. The light pink area in sequence 4 and sequence 5 represents

the formation of new triangle by boundary edges. In sequence 5, the dark

pink triangle represents the solid face triangle. The solid face triangle is

the boundary of tetrahedron, a 3-dimensional face. Moreover a,b are in

C0
0 ⊆ C1

0 ⊆ C2
0 ⊆ C3

0 ⊆ C4
0 ⊆ C5

0, and 2-dimensional simplex ’abc’

is in C4
2 ⊆ C5

2, the ’ab’,’ac’,’cd’ and ’ad’ represent edges. In the entire

sequences, the superscript of chains denotes the time of filtration level n,

and subscript denotes the dimension of simplices. So by the definition of

homology discussed earlier, consider the chain complex

.....
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

The homology group H0 is the (kernel of ∂0)/ (image of ∂1). Con-

sider the chain complex below here, the vertical map is the boundary map

of chain complex at n-dimension where one can find the homology and the

horizontal maps are inclusion maps where those maps embedded in next se-

quence of chain groups in the process of filtration. So that one can find the

homology at time n, for example in above filtration in the figure 5.1, we can

find homology at time 0 to 5

The following giant chain complex is the nested sequence of chain

subcomplexes with boundary homomorphisms in each dimension. In this

chain complex Ck
p is not only inclusion map for Ck

p+1, but also the inclu-

sion map for all values greater than k and p. The induced homology of the

chain complex is: ϕi,jk : Hk(C
i
k)→ Hk(C

j
k)
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C2
0 C2

1 C2
2 ....

C1
0 C1

1 C1
2 ....

C0
0 C0

1 C0
2 ....

0 0 0

∂3

f0 f1 f2

∂2

f0 f1 f2

∂1

f0 f1 f1

∂1

∂3

∂2 ∂2

∂0

∂3

∂1

f0 f1 f2

∂0 ∂0

This gives information about the homology at dimension k, and

how long the homology is going to be persistent at time i to j. For example,

consider the Figure 5.1, H0,1
0 computes the zero dimensional cycles created

at time 0 and checks whether they disappear at time 1, i.e. at time 0 + 1

the zero dimensional cycles at time 0 are going to be boundaries at time 1.

{< a, b > |(a+ b)} is the only generator for H0,1
0 . The interval of cycles

created at time 0 and destroyed at time 1. Similarly the persistent homology

can be computed at all time intervals.

H i,p
k = Z i,p

K /(B
i+p ∩ Z i

k)
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which is p−persistent kth homology group.

Topological Noise and Features

If precise number of holes or voids for a good fraction of the complex in the

underlying topological space is expected, sometimes during the filtration pro-

cess it creates p-cycles which are not persistent in a long time and does not

give any interesting information. The n−dimensional holes with short life-

times are considered to be topological noise, where as the n−dimensional

holes with a long lifetime are considered to be topological features.

Birth and Death

In the sequence of homomorphisms connecting the the homology groups of

the complexes on the filtration [3], for i ≤ j, Ki is a subcomplex of Kj

which has the injective and inclusion map f i,j : Ki ↪→ Kj , is inclusion

map since it is within same complexes. In case of p-cycles the inclusion map

f i,jp : Zp(Ki) ↪→ Zp(Ki), it induces map on homology

ϕi,jp : Hp(Ki)→ Hp(Kj)

Which is not inclusion map, since ϕi,jk does not depend on the

choice of representative. It sends p-cycle in Ki to Kj .

In the Figure 5.1, The 1-dimensional homology group is generated

by a 2-simplex< abc >, which is created in this complex. It is the birth of

that homology group. It fills in the next sequence of complex in the filtration,

that means the hole is filled. There is no more 1-dimensional homology group

generated by < abc >, hence it dies in that sequence. That it is called

death of that homology group.
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Figure 5.2: The generator < abc >= γ is created at K5 and dies when

entering the K6

In Figure 5.2, γ ∈ H1(K5) is born at K5 and it dies at K6 and

ϕ5,6
1 (γ) is the image of ϕ4,6

1 . So the index of persistency of the group H1

is only one [3]

If γ surrounds a hole in Ki, and fills up at the time when it reaches

Kj , then ϕi,jp sends γ to 0, which belongs to Hp(Kj). The image of ϕi,jp
is called the Persistent homology group , and it contains all p-

dimensional homology classes that have generators already in Ki. The cor-

responding Persistent Betti number is called the rank of the per-

sistent homology group.

Barcodes

Pairing up the births and deaths of n-dimensional homology group for n ∈
N, one can get a set of intervals or bars (connecting line segment of death

and birth). The set is called as barcode of the homology group. The

following Figure 5.4 illustrates the barcode of the filtration. The construction

of the simplicial complex can be followed with incremental algorithm. In each

sequence, the Betti number changes by ±1, depending on birth or death

of a simplex. Short bars in the barcode diagram represent the topological

noise. The long bars represent the persistent homology in the corresponding

dimension.
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Figure 5.3: simplicial complex filtration

Figure 5.4: Table: Filteration sequence, Betti numbers, bar codes and Per-

sisent diagrams

In the table (Figure 5.4): Top-row represent the construction of

simplex and Betti numbers β0, β1, β2 in the sequence of corresponding sim-

plices. The middle-row represent the barcode of the filtration. The bottom-

row with vertical bars represent creation of simplices. The diagonal dotted

bars represent the death of that simplex paired up with birth.

In the Figure 5.4, the bars represent the persistency of Betti num-

ber for the corresponding cycle. As already explained (Figure 5.3), the bar

denotes the persistency of β1, that is born with ’ad’ and dies with ’acd’. The
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bottom part of Figure 5.4 is a Persistent diagram of the simplex.

Computation of persistent homology

For computing persitent homology, the matrix method can be used. The

Gaussian elimination procedure is used to compute the persistent homology.

As explained in the previous sections, the construction follows the incremen-

tal algorithm [7].

5.2 Persistent homology analysis in point clouds

using TDA, R-programming

In this section, concepts and visualization of the plots such as persistent

diagrams and barcodes is shown. The analysis of time lapse for the Vietoris

Rips complex is also explained with the help of Topological Data Analysis

(TDA) package, which is used in programming language R(http://cran.r-

project.org/).

TDA package in R bridges between C++ libraries (GUDHI, Diony-

sus, PHAT) and R. The TDA package provides an R interface for the effi-

cient algorithm of the C++ libraries (GUDHI, Dionysus, PHAT). By using

this package, short execution time and quick development can be achieved.

This also provides tools for Topological Data Analysis. The persistent ho-

mology of the Rips filtration is implemented in this thesis.

”TDA stats” package is also one of the channels for computing

persistent homology. Which also conducts statistical interface on persistent

homology calculations and visualize it by using persistent plots and barcode

plots.
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The package ”alphashape3d” in R, implements the 3-dimensional

alpha shapes for the reconstruction of 3-dimensional sets from a point cloud.

It computes the alpha-shape and provides the users with functions to com-

pute the volume of the alpha-shape, and identifies the connected components

and produce three dimensional graphical visualizations of the set.

Before installing R package TDA, four additional packages are needed

to be installed: parallel, FNN, igraph, and scales. The ’parallel’ is included

when installing R. But the FNN, igraph, and scales have to be installed

additionally.

5.2.1 Persistent homology analysis on Point Clouds

A point cloud is a set of points in floating around n-dimensional space. In

programming world, it is a data set or a data frame which has ’n’ number of

variables, both quantitative and qualitative variables. It is an array of points

arranged in columns and rows(matrices).

Now, 3 point clouds are taken in the Euclidean space and the cor-

responding data is visualized, each with a set of 450 data points in three

variables X1, X2, X3. All these are real numbers ranging from −4 to 5

distributed in a plane shown in the Figure 5.5. The implementation in RStu-

dio is shown below. The ”rgl” package provides 3D view of point cloud data.

PC1, PC2, PC3 are short forms used in this thesis for the point

cloud 1, point cloud 2 and point cloud 3 respectively.

################ Installing Required Packages ################

install.packages(’TDA’, dependencies=TRUE,

repos=’http://cran.rstudio.com/’)

install.packages("TDAstats")

install.packages(’rgl’, dependencies=TRUE,

repos=’http://cran.rstudio.com/’)
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install.packages(’FNN’, dependencies=TRUE,

repos=’http://cran.rstudio.com/’)

############# Loading R package TDA ###########################

library(package = "TDA")

library(TDAstats)

library(rgl) #installed required packages as well

################### Import files from Excel(First point cloud) ###

PointCloud1 <- PC1

PC1 <- read.csv(file.choose(), header = T)

plot3d(PC1)

#### same procedure for rest of 2 PointClouds}

##################################################################

PointCloud2 <- PC2

PC2 <- read.csv(file.choose(), header = T)

plot3d(PC2)

###################################################################

PointCloud3 <- PC3

PC3 <- read.csv(file.choose(), header = T)

plot3d(PC3)
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Figure 5.5: 3 different PointClouds

The 3 point clouds are decomposed into Voronoi regions, i.e.letting

the points of point clouds as a union of balls in 3-dimensional Euclidean

space. They are shown in Figure 5.6 for PC1, Figure 5.7 for PC2, and Figure

5.8 for PC3 respectively. The left-hand side subplots of these Figures are

Voronoi decomposition of Voronoi regions with original point clouds. The

right-hand side subplots are decomposition of Voronoi regions as a result of

removing 50-data points in each point cloud. The nerve from triangulation

of these Voronoi diagrams are clearly homotopy equivalent to sphere, torus

and circle. The implementation is expecting to find the topological features

of original point clouds.

library(rgl)

plot3d(PC1, type=’s’, size=3, col = "pink")

#same for rest of two
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Figure 5.6: Voronoi decomposition of data points of PC1

Figure 5.7: Voronoi decomposition of data points of PC2
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Figure 5.8: Voronoi decomposition of data points of PC3

The duality of these Voronoi diagrams, the Delaunay triangulation

is acquired by picking the nerve of convex polyhedron whose centers is the

nearest (Figure 4.2 explains the general case of points in 2−dimensional

plane). The resulting complex is the Delaunay complex, Figure 5.9 is the

delaunay triangulation of corresponding point clouds.

######### Delaunay triangualtion of 3 point clouds ################

library(alphahull)

del1 <- delvor(PC1)

plot(del1)

del2 <- delvor(PC1)

plot(del2)

del3 <- delvor(PC1)

plot(del3)
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Figure 5.9: Delaunay Triangulation of respective point clouds

Note that the alpha complex can be subset of Delaunay triangula-

tion. The alpha shape of the point clouds is illustrated below. The respective

α−shapes of the PC1,PC2 and PC3 are shown in Figure 5.10.

##### Alpha hulls of 3 point clouds ################

library(alphashape3d)

AShape3d_PC1 <- ashape3d(PC1_Dat_Matr, alpha = 0.75)

plot(AShape3d_PC1, byComponents = TRUE, indexAlpha = 1)

Device 2 : alpha = 0.75

AShape3d_PC2 <- ashape3d(PC2_Dat_Matr, alpha = 0.75)

plot(AShape3d_PC2, byComponents = TRUE, indexAlpha = 1 )

Device 1 : alpha = 0.75

AShape3d_PC3 <- ashape3d(PC3_Dat_Matr, alpha = 0.75)

plot(AShape3d_PC3, byComponents = TRUE, indexAlpha = 1)

Device 3 : alpha = 0.75
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Figure 5.10: α−shapes for 3 different PointClouds

The α−shapes of the respective point clouds with proxy parameter α with

different values (detailed implementation described in section 4.2). The vol-

ume of alpha shape is also determined. The Figure 5.11 shows the Alpha

shape of the second point cloud. For the rest of 2 point clouds, the respec-

tive alpha shapes for different α shown in Figures 4.4 and 4.5

########### Alpha Shapes ########################################

##########Alpha complexs for point cloud samples #############3

PC1_Dat_Matr <- data.matrix(PC1)#Making data frame into data matrix

AShape3d_PC1 <- ashape3d(PC1_Dat_Matr, alpha = 0.75) #Checking

with various alphas

plot(AShape3d_PC1)
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##### Computation of volumes of the connected components of the

alpha ahapes#####

AShape3d_PC1 <- ashape3d(AShape3d_PC1, alpha = alpha)

plot(AShape3d_PC1, indexalpha = 1:3)

volume_ashape3d(AShape3d_PC1, byComponents = TRUE)

#[1] 8.499966

plot(AShape3d_obj1, byComponents = TRUE, indexAlpha = 2)

### Same produre followed with rest of the data clouds###

######## Volume of PC2 Alpha shape ###############

volume_ashape3d(AShape3d_PC2)

#[1] 19.09232

######## Volume of PC2 Alpha shape ###############

volume_ashape3d(AShape3d_PC3)

#[1] 6.243968

Figure 5.11: Alpha Shapes of Point Cloud 2 for various α’s
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One of the applications of alpha shape is, in molecular shape char-

acterization, the novel properties are exhibited and then compared against

the established shape descriptors [12]. In a Cheminformatics research, it is

of significant importance to characterize, analyze and predict properties that

describe the shape of molecules.

Now by using TDA package, Rips complex is determined and the

time lapse for its construction is also observed. It is also observed how long

the homology groups are persistent in that Rips complex. In order to visualize

the persistency diagram and barcodes of these three homology groups at one,

The package ”TDAstats” can be useful. The Z2 coefficient group is taken,

so there is no need to worry about the orientation of the simplices obtained

from point clouds.

Point cloud 1: The implementation for the time lapse of the Rips

complex construction for point cloud 1 with maximum dimension 1 is de-

scribed in the following. The generated complex is of size 15185192, and it

took 12:52 minutes. The ε (diameter) value is selected so that the Rips com-

plex is neither complex of disjoint components nor giant complex. The same

is repeated until maximum dimension 2. However, the process of generating

Rips complex was never completed with the available resources (laptop). The

resultant persistent homology of PC1 from construction of Rips complex on

it of dimension 0 and 1 is shown in Figure 5.12

\begin{lstlisting}

###########################Rips complex#######################

RipsDiagPC1 <- ripsDiag(PC1, maxdimension = 1, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

plot(RipsDiagPC1[["diagram"]])

#RipsDiagPC1 <- ripsDiag(PC1, maxdimension = 2, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

#can not be completed

RipsDiagPC1$diagram[450:570,1:3] # No long intervals #noise
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RipsDiagPC1 <- ripsDiag(PC1, maxdimension = 1, maxscale = 5,

library = "Dionysus", printProgress = TRUE)

# Generated complex of size: 15185192

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

***************************************************

# Persistence timer: Elapsed time [ 772.387000 ] seconds

Figure 5.12: Persistent homology of Rips complex constructed on PC1 upto

dimension 1

The implementation of the Rips complex construction on PC1 to

see the persistent homology upto dimension 2 is described as following

######## Homology of PointCloud1 #######################

library(TDAstats)

PC1_Hom <- calculate_homology(PC1, dim = 2)

view(PC1_Hom) #table containes filtration of sequence of 572

subcomplexes

plot_persist(PC1_Hom)

plot_barcode(PC1_Hom)



60 CHAPTER 5. PERSISTENT HOMOLOGY

Figure 5.13: left-Persistent Diagram, Right-Barcode plots of point cloud 1

The point cloud 1 results in Figure 5.13 explains that H0(PC1)

is persistent through out the whole filtration. The final obtained complex

has only one component with generator in H2(PC1), and that is persistent

and never dies. The right-hand side subplot in Figure 5.13 has a few bars

that represent H1(PC1), and they are not consistent and lives very short

time. They are considered as topological noise during the filtration. The

left-hand side subplot in Figure 5.13 explains that there is no persistent

homology H450,572
1 (PC1). So the Rips complex obtained from PC1 has

only H0(PC1) and H2(PC1) persistency, and is isomorphic to group

generated by only one copy of generators in group with Z2 coefficients. So

this point cloud has a persistent homology that is isomorphic to homology of

the two dimensional sphere generated by the group with Z2 coefficients. The

Rips complex obtained from PC1 is homotopy equivalent to two dimensional

sphere.

Point cloud 2: The implementation for the time lapse of the Rips

complex construction for point cloud 2 with maximum dimension 1 is de-

scribed in the following. The generated complex is of size 5640057, and it

took around 3:56 minutes. The same implementation is repeated for max-
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imum dimension 2. However, the process of generating Rips complex was

never completed with the available resources (laptop).The resultant persis-

tent homology of PC2 from construction of Rips complex on it of dimension

0 and 1 is shown in Figure 5.14. Scaling parameter ε is taken for getting

appropriate Rips complex on it.

RipsDiagPC2 <- ripsDiag(PC2, maxdimension = 1, maxscale = 5,

library = "Dionysus", location = TRUE, printProgress = TRUE)

#plot(RipsDiagPC2[["diagram"]]

# Generated complex of size: 5640057

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

***************************************************

# Persistence timer: Elapsed time [ 236.377000 ] seconds

#RipsDiagPC2 <- ripsDiag(PC2, maxdimension = 2, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

#The process can not be completed.

Figure 5.14: The resultant persistent homology on Rips complex constructed

from PC2 at dimension 0 and 1
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The implementation of the Rips complex construction in PC2 to

see the persistent homology upto dimension 2 is described as following

######## Homology of PointCloud2 #######################

PC2_Hom <- calculate_homology(PC2, dim = 2)

view(PC2_Hom) #table containes filtration process of 638 complexes

plot_persist(PC2_Hom)

plot_barcode(PC2_Hom)

Figure 5.15: Left-The persistent diagram of PC2 and right-The barcodes

diagram of PC2

The barcode diagram, persistent diagram of second point cloud

are shown in Figure 5.15. The resultant homology groups are H0(PC2)

H1(PC2) and H2(PC2). The left-hand side subplot in Figure 5.15 is the

persist diagram. The right-hand side subplot is barcode. It can seen in the

barcode diagram that several bars are persistently long enough to represents

the H1(PC2) group. The two green points on the plot (viz.top most) are

persistent. as well as their birth and death in the form of intervals are [0.4,

1.5] and [0.5,1.4] (clearly seen the red scatters in Figure 5.14 also). So the

persistency of H1(PC2) is generated by two 1-dimensional cycles, the two
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copies of the quotient group Z2. This homology groups is isomorphic to first

homology group of the torus generated by cycle in group with Z2 coefficients.

On the barcode diagram, there is one long blue bar, which is persistent and

it represents the H2(PC2) in the filtration process.

When the filtration table is observed (in R interface), which contain

sequence of 638 subcomplexes of filtration. There are two intervals which are

persistent from filtration level 450 to filtration level 598 for a long time with

dimension 1. It shows thatH1(PC2) is generated by two generators. These

are two copies of Z2 group. The direct sum of these two copies generate

H1(PC2). Hence the persistent homology groups of this point cloud PC2

are isomorphic to homology of torus generated by Z2 group up to dimension

of 2 (without orientation into consideration).

Point cloud 3:The implementation for the time lapse of the Rips

complex construction for point cloud 3 with maximum dimension 1 is de-

scribed in the following. The generated complex is of size 15184305, and it

took 8:43 minutes. The same is repeated until maximum dimension 2. How-

ever, the process of generating Rips complex was never completed with the

available resources. The ε value is selected like what is done for PC1.

RipsDiagPC3 <- ripsDiag(PC3, maxdimension = 1, maxscale = 5,

library = "Dionysus", location = TRUE, printProgress = TRUE)

plot(RipsDiagPC3[["diagram"]])

# Generated complex of size: 15184305

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

***************************************************

# Persistence timer: Elapsed time [ 523.779000 ] seconds

#RipsDiagPC3 <- ripsDiag(PC3, maxdimension = 2, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

#RipsDiagPC3 <- ripsDiag(PC3, maxdimension = 2, maxscale = 5,

library = "Dionysus", printProgress = FALSE)
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#They can not be completed with existing resources

The resultant persistent homology of the PC3 from construction of Rips

complex on it of dimension 0 and 1 is shown in Figure 5.16

Figure 5.16: Black data denotes the persistency of connected components

and the triangle points denotes 1−dimesional homology groups

The implementation of the Rips complex construction in PC3 to

see the persistent homology upto dimension 2 is described as following

######## Homology of PointCloud3 #######################

PC3_Hom <- calculate_homology(PC3, dim = 2)

view(PC3_Hom) #table containes filtration process of 469 complexes

plot_persist(PC3_Hom)

plot_barcode(PC3_Hom)
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Figure 5.17: The persistent diagram and the barcode plot for PC3

The plots for point cloud 3 are shown in Figure 5.17. The left-

hand side subplot in Figure 5.17 is the persist diagram. The right-hand side

subplot is barcode. The resultant homology groups are only H0(PC3) and

H1(PC3). They are persistent in very long time and there is noH2(PC3)

group. There are no blue bars that represent the persistency of H1(PC3)).

In barcode diagram in figure 5.17, the longest red bars area and longest

green bar explains that there exists one generator each for 0−dimension

and 1−dimension. The corresponding homology groups persists in a long

intervals. It concludes that the persistent homology group exists for this

point cloud only in those dimensions but not in dimension 2. The persistent

H0(PC3) and H1(PC3) are generated different copies each. These are

representative classes of Z2 group. Therefore the persistent homology of

PC3 is is isomorphic to the homology groups of circle with Z2 coefficients.

The implementation is repeated with several values of scaling pa-

rameter for all 3 point clouds. The resulting Rips complexes does not change

their topological features, but with some topological noise in the PC1. For

PC3, all the values of ε, the resultant persistent barcodes are consistently

same. If it is the case with Rips complex constructed on point clouds is
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expected to be other than these, the approximation of ε has to be checked

to get the features of that point cloud.

In fact Homotopy equivalence is richer topological invariant than

homology. It is concluded that the alpha complex and Rips complex gener-

ated by these three point clouds are topologically equivalent to the sphere,

torus and circle respectively. See the Figure 4.4, Figure 5.11 and Figure 4.5.
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