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Preface

The following paper is my master’s thesis in mathematics at the University of Copen-
hagen. The intention with my master’s study was to obtain a knowledge about the
theoretical foundation of quantum computing.

The field of quantum computation has developed very rapidly in the last decade.
It seems safe to say, that the interest for this subject is do to some of its promising
applications, e.g., Shor’s prime-factoring algorithm and Grover’s search algorithm.
This focus, on applying the theory, is also evident in the literature which most often
concentrates on the circuit model of quantum computation. This model is the most
suited for describing computations and developing algorithms. But, when study-
ing the foundational aspects of quantum computation, the Turing machine model
is better qualified. Presently there are several monographs available on quantum
computing, but most of these avoid the quantum Turing machine. It should be
said though, that [Gruska, 1999] does have a chapter on quantum Turing machines
and does treat some of the more foundational aspects of the theory. But since its
publication several essential developments regarding the quantum Turing machine
model have been made.

I have chosen to concentrate my study on some results obtained by Harumichi
Nishimura and Masanao Ozawa regarding the computational equivalence between
quantum Turing machines and quantum circuit families. The two authors have
kindly supplied me with a draft of their paper [Nishimura and Ozawa, 2005a] before
its publication1. My master’s thesis is essentially a presentation of the main result
in this paper.

Prerequisites

The reader is assumed to have a basic knowledge of classical computation and
complexity theory. In particular one should be familiar with the polynomial-time
complexity classes P, ZPP, and BPP, i.e., classes of languages recognized by
polynomial-time Turing machines implementing exact, zero-error, and bounded-
error algorithms, respectively. We will also use the concept of an encoding 〈M〉
of a Turing machine M . Furthermore one should know O-notation. As a reference
for classical complexity theory I suggest [Papadimitrio, 1994].

1Available since the 12th November 2005 from arXiv.org.
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Introduction

At the foundation of computation theory lies the Turing machine model. In a simple
way it defines the notion of algorithm, computation time, space, etc. However other
models of computation, like the circuit model, are more suitable for designing al-
gorithms and for physical realization. In order to choose freely between the two
models one must establish the computational equivalence between them.

Shortly after Ethan Bernstein and Umesh Vazirani had presented their theory
of quantum complexity in [Bernstein and Vazirani, 1993] based on quantum Tur-
ing machines, Andrew Yao described in [Yao, 1993] a complexity theory based on
quantum circuits and gave a method of simulating computations by quantum Turing
machines with quantum circuits. He used this to give a sketch of the construction
of a polynomial-time universal quantum Turing machine. Bernstein and Vazirani
had found another universal quantum Turing machine, but it could only efficiently
simulate a special class of quantum Turing machines where the head must move
at each step (two-way quantum Turing machines). Yao mentioned a forthcoming
complete paper with details, but it did not appear.

By referring to the paper [Yao, 1993], it is often claimed in the literature, that
the quantum Turing machine model and the quantum circuit model are computa-
tionally equivalent 2. However, several issues were not treated. A single circuit has
fixed input length, whereas a Turing machines takes an input of arbitrary length.
So one must consider infinite families of circuits (one circuit for each input length).
In order to compare the computational power of Turing machines and circuit famil-
ies, the circuit families must satisfy some kind of uniformity condition. Or else one
circuit in the family may compute faster than another. But in [Yao, 1993] families
of circuits where not considered at all, and therefore a notion of uniformity was
neither formulated. It could of course be, that these issues are easily treated in a
way similarly as in classical complexity theory. But it turns out that, one needs a
rather different notion of uniformity in quantum complexity theory.

In [Nishimura and Ozawa, 2002] a simular but different definition of simulation
is formulated, than that given in [Yao, 1993]. Their definition requires that the
quantum circuit simulates the quantum Turing machine for inputs of arbitrary
length. They then use Yao’s technique to construct a two-way efficient universal
quantum Turing machine. Thus showing that, it is no restriction to only regard two-
way quantum Turing machines when developing quantum complexity, as Bernstein
and Vazirani did in [Bernstein and Vazirani, 1997]. They also formulate a uniform-
ity condition which quantum circuits must satisfy and then define polynomial-time
complexity classes for uniform quantum circuit families. For bounded-error com-
putations the complexity class defined by quantum Turing machines and the class
defined by quantum circuits families are shown to be the same. But they indicate
that the two complexity classes do not coincide in the error-free case.

2See for example the discussion at the end of section 3 in [Aharonov, 1998], or the introduction
of [Shor, 1994]
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In the recently published paper [Nishimura and Ozawa, 2005a] it is shown that
the complexity classes do coincide both for error-free and exact computations if one
requires that the quantum circuit families only contain finitely many different qubit
gates.

In this paper I will present quantum Turing machines and uniform quantum
circuit families, and then show this equivalence. Most of the following paper consists
of formalizing and defining the concepts of these two models. Many of these concepts
and definitions have already been given by Nishimura and Ozawa throughout their
papers, but each paper has its own objective making an inhomogeneous presentation.
My work consists mainly of collecting and isolating the definitions and concepts that
are necessary for proving the equivalence.
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1 The quantum Turing machine model

A classical Turing machine is often described as a physical system consisting of a
processor, a tape, and a head that reads and writes symbols on the tape. Some-
thing similar is also possible in the quantum case. These interpretations are some
times helpful, but can also be misleading - especially in the quantum case. The
presentation given here is purely mathematical and avoids using a physical inter-
pretation. Thus many definitions and new concepts will at first be given without
much reflection on their purpose.

1.1 Basics of quantum Turing machines

A symbol set Σ is a finite set of cardinality at least 2 with a specific element denoted
by B which we refer to as the blank symbol.

For a symbol set Σ we define the set of functions

Σ# =
{

T : Z → Σ
∣
∣
∣ T (m) = B except for finitely many m ∈ Z

}

and refer to the functions T ∈ Σ# as tape configurations.

For any tape configuration T ∈ Σ#, symbol τ ∈ Σ, and integer ξ ∈ Z we define
a new tape configuration T τ

ξ by letting

T τ
ξ (m) =

{
τ if m = ξ,
T (m) if m 6= ξ.

A processor configuration set Q is a finite set with two specific elements, denoted
by q0 and qf , which we call the initial processor configuration and the final processor
configuration.

A pair (Q,Σ) consisting of a processor configuration set Q and symbol set Σ is
called a Turing frame. To each Turing frame (Q,Σ) we associate the configuration
space

C(Q,Σ) = Q× Σ# × Z,

and refer to the elements C = (q, T, ξ) of C(Q,Σ) as configurations. The integer
ξ ∈ Z is called the head position of C. A configuration of the form (q0, T, 0) is called
an initial configuration and a configuration of the form (qf , T, ξ) is called a final
configuration.

Let (Q,Σ) be a Turing frame. The quantum state space of (Q,Σ), denoted by
H(Q,Σ), is the Hilbert space generated by the countable set C(Q,Σ), i.e.,

H(Q,Σ) =






ϕ : C(Q,Σ) → C

∣
∣
∣
∣
∣

∑

C∈C(Q,Σ)

|ϕ(C)|2 <∞
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equipped with the inner product

(ϕ, ψ) =
∑

C∈C(Q,Σ)

ϕ(C)† · ψ(C),

where ϕ(C)† denotes the complex conjugate of ϕ(C). A unit-vector in H(Q,Σ) is
called a state.

Now is an appropriate time for a few words on notation. The reason why the
inner product (·, ·) above is chosen to be conjugate linear in the first variable (not
the second as usual) is that we will be using Dirac notation. Thus |ϕ〉 denotes a
vector in H(Q,Σ). The inner product of vectors |ϕ〉 and |ψ〉 is written 〈ϕ|ψ〉. The
functional |ψ〉 7→ 〈ϕ|ψ〉 is referred to as the dual of |ϕ〉 and denoted by 〈ϕ|. The
operator |χ〉 7→ |ψ〉〈ϕ|χ〉 is referred to as the outer product of |ψ〉 and |ϕ〉, and
denoted by |ψ〉〈ϕ|.

Besides using † to denote the complex conjugate of a number z ∈ C, we will also
use it on linear operators A : H(Q,Σ) → H(Q,Σ) to denote the adjoint operator,
i.e., A† denotes the adjoint operator of A.

Moreover, we adopt the following notation. For any integers n < m the interval
{n, n + 1, . . . , m− 1, m} will be denoted by [n,m]Z. The set of finite strings over a
set X is denoted by X∗, and an element in X is called a X-string. The length of a
string x is written |x|.

In order to have some standard representation for elements in H(Q,Σ), we define
the following basis. For each element C ∈ C(Q,Σ) let the function |C〉 : C(Q,Σ) → C

be defined by

|C〉(C ′) =

{
1 if C ′ = C
0 otherwise.

Then the set {

|C〉 : C(Q,Σ) → C

∣
∣
∣ C ∈ C(Q,Σ)

}

(1.1)

is obviously an orthonormal basis for H(Q,Σ). It is called the computational basis
for (Q,Σ). Elements in the computational basis are referred to as basis states and
when C = (q, T, ξ) we just write |q, T, ξ〉 for |C〉.

A quantum transition function for a Turing frame (Q,Σ) is a function

δ : Q× Σ ×Q× Σ × [−1, 1]Z −→ C.

A prequantum Turing machine is a triplet (Q,Σ, δ) such that (Q,Σ) is a Turing
frame and δ is a quantum transition function.

Before we define quantum Turing machines, we introduce a particular operator
determined by the quantum transition function δ. This will enable us to give a
simple definition of quantum Turing machines.
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Proposition 1.1. Let M = (Q,Σ, δ) be a prequantum Turing machine. Then there
is a unique bounded linear operator Mδ : H(Q,Σ) → H(Q,Σ) which satisfies

Mδ|q, T, ξ〉 =
∑

(p,τ,d)∈Q×Σ×[−1,1]Z

δ(q, T (ξ), p, τ, d) · |p, T τ
ξ , ξ + d〉 (1.2)

for all |q, T, ξ〉 ∈ H(Q,Σ).

Proof. (Sketch) A detailed proof of Proposition 1.1 is given in the appendix of
[Nishimura and Ozawa, 2000]. It is shown that the operator norm of Mδ is bounded
by

√
5K|Q||Σ|2 where

K = max
(q,σ)∈Q×Σ




∑

(p,τ,d)∈Q×Σ×[−1,1]Z

|δ(q, σ, p, τ, d)|





1

2

.

The idea of the proof in short is to split the operator Mδ into a sum of 5 other (more
simple) operators which are each seen to be bounded by K2|Q|2|Σ|4.

The operator Mδ defined by (1.2) is called the evolution operator of M . Before
we give the definition of a quantum Turing machine, we need to introduce the notion
of efficiently computable numbers.

Informally speaking, a complex number z is polynomial-time computable if its
real and imaginary parts can be approximated with accuracy of 1/2n in time poly-
nomial in n. More formally, a real number x ∈ R is polynomial-time computable (in
PR) if there is a DTM (deterministic Turing machine) which on input 1n computes
φx ∈ {m/2n|m ∈ Z} such that |φx − x| ≤ 1/2n, in time polynomial in n. And a
complex number z = x + iy is polynomial-time computable (in PC) if x, y ∈ PR.

Definition 1.2. A quantum Turing machine (QTM) is a prequantum Turing ma-
chine M = (Q,Σ, δ) such that the evolution operator Mδ of M is unitary and
range(δ) ⊆ PC.

Thus, the evolution operator must satisfy M †
δMδ = I = MδM

†
δ , and all the

values of δ must be efficiently computable. The following theorem characterizes
those quantum transition functions whose evolution operators are unitary.

Theorem 1.3. Let M = (Q,Σ, δ) be a prequantum Turing machine. Then, the
evolution operator Mδ of M is unitary if and only if the quantum transition function
δ satisfies the following conditions.

(a) For any (q, σ) ∈ Q× Σ,

∑

(p,τ,d)∈Q×Σ×[−1,1]Z

|δ(q, σ, p, τ, d)|2 = 1.
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(b) For any (q, σ), (q′, σ′) ∈ Q× Σ with (q, σ) 6= (q′, σ′),

∑

(p,τ,d)∈Q×Σ×[−1,1]Z

δ(q′, σ′, p, τ, d)† · δ(q, σ, p, τ, d) = 0.

(c) For any (q, σ, τ), (q′, σ′, τ ′) ∈ Q× Σ × Σ,

∑

(p,d)∈Q×[0,1]Z

δ(q′, σ′, p, τ ′, d− 1)† · δ(q, σ, p, τ, d) = 0.

(d) For any (q, σ, τ), (q′, σ′, τ ′) ∈ Q× Σ × Σ,

∑

p∈Q

δ(q′, σ′, p, τ ′,−1)† · δ(q, σ, p, τ, 1) = 0.

Proof. (Sketch) This theorem was first stated in [Ozawa, 2000] and then proved in
[Nishimura and Ozawa, 2000]. It is proved by first showing that if M †

δMδ = I then,

one automatically has MδM
†
δ = I, i.e., if the evolution operator is an isometry then,

it is unitary. By straight forward verification it is then seen that condition (a) holds
if and only if 〈C|M †

δMδ|C〉 = 1 for any C ∈ C(Q,Σ). Then it is shown that one

automatically has 〈C ′|M †
δMδ|C〉 = 0 except in three different situations which arise

if and only if condition (b), (c) or (d) holds. Thus showing that Mδ is an isometry
if and only if conditions (a)-(d) hold.

A QTM M = (Q,Σ, δ) where δ(p, σ, q, τ, 0) = 0 for any (p, σ, q, τ) ∈ (Q,Σ)2

is called a two-way QTM. This is the restricted class of quantum Turing ma-
chines which Bernstein and Vazirani used to develop their complexity theory in
[Bernstein and Vazirani, 1997].

In the next section we introduce some different projections on the quantum state
space H(Q,Σ). The purpose of these projections is to extract information about
the particular form of a given state |ϕ〉 (i.e., unit vector) in H(Q,Σ).

1.2 Projections on the quantum state space

Any state |ϕ〉 ∈ H(Q,Σ) can be written uniquely as a finite linear combination of
basis states |C1〉, . . . , |Cn〉 in the computational basis (1.1)

|ϕ〉 =
∑

i∈[1,n]Z

αi|Ci〉 (1.3)

where αi ∈ C \ {0} and
∑

i∈1n|αi|2 = 1. Given some state |ϕ〉, we will be interested
in deducing information about the form of the |Ci〉’s in this linear combination. We
do this by using projections onto different subspaces of H(Q,Σ).

The first basic projections are:
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E(q̂ = p), which is the projection onto span{|p, T, ξ〉|T ∈ Σ#, ξ ∈ Z},
E(T̂ = S), is the projection onto span{|q, S, ξ〉|q ∈ Q, ξ ∈ Z},
E(ξ̂ = ν), the projection onto span{|q, T, ν〉|q ∈ Q, T ∈ Σ#}.

Note that for or any state |ϕ〉 ∈ H(Q,Σ) we have
∑

(p,S,ν)∈C(Q,Σ)

‖E(q̂ = p)E(T̂ = S)E(ξ̂ = ν)|ϕ〉‖2 = 1. (1.4)

To see this write |ϕ〉 as in (1.3). Then one sees that the sum in (1.4) is reduced to
the finite sum ∑

i∈[1,n]Z

‖αi|Ci〉‖2

which equals 1.

The identity (1.4) shows that for any state |ϕ〉 ∈ H(Q,Σ) the function

(p, S, ν) 7→ ‖E(q̂ = p)E(T̂ = S)E(ξ̂ = ν)|ϕ〉‖2

is a probability distribution on C(Q,Σ). And from this we see that for any state
|ϕ〉 ∈ H(Q,Σ) the functions

(p, ν) 7→ ‖E(q̂ = p)E(ξ̂ = ν)|ϕ〉‖2 and S 7→ ‖E(T̂ = S)|ϕ〉‖2

are probability distributions on Q× Z and Σ#, respectively.

Assume, for example, that we are given the state |ϕ〉 and asked to determine
whether it is a linear combination of initial states (see just after (1.1)). If it satisfies
‖E(q̂ = q0)E(ξ̂ = 0)|ϕ〉‖2 = 1 then it has lost no norm by being projected onto the
subspace spanned by initial states, and we can then conclude that |ϕ〉 is a linear com-
bination of initial states. But for example if we have ‖E(q̂ = q0)E(ξ̂ = 0)|ϕ〉‖2 = 1/3
then some of the basis states |Ci〉 in (1.3) were not initial states, and in this situation
we settle by saying that |ϕ〉 is a linear combination of initial states with probability
1/3.

Definition 1.4. A QTM M = (Q,Σ, δ) is said to be stationary, if for every initial
state |C0〉, there exists some t ∈ N such that ‖E(q̂ = qf )E(ξ̂ = 0)M t

δ |C0〉‖2 = 1 and
for all s < t we have ‖E(q̂ = qf )M

s
δ |C0〉‖2 = 0. The positive integer t is called the

computation time of M for state |C0〉.

Since M t
δ |C0〉 is a state in H(Q,Σ) the conditions in Definition 1.4 require that,

if M t
δ |C0〉 is written as in (1.3) then all the |Ci〉’s have the form |qf , T, 0〉, and if

we write M s
δ |C0〉 the same way, then none of the basis states have the form |qf , T, ξ〉.

From now on we assume that all quantum Turing machines are stationary. As
shown in [Nishimura and Ozawa, 2002] (Theorem 5.8) we may consider only sta-
tionary QTMs without loss of generality to develop quantum complexity theory. By
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assuming that all QTMs are stationary, we are able to talk about the computation
time for any QTM.

We now introduce a special kind of tape configuration which is used to represent
Σ-strings as elements in Σ#. Let x = x0 · · ·xk−1 where xm ∈ Σ. Then we define the
tape configuration T[x] by letting

T[x](m) =

{
xm if m ∈ [0, k − 1]Z,
B otherwise.

We use this tape configuration to define the input/output-notion of quantum
Turing machines.

Definition 1.5. Let M = (Q,Σ, δ) be a QTM and x, y ∈ Σ∗. Assume that t is the
computation time of M for the initial state |q0,T[x], 0〉. Then we say that y is the
output of M on input x with probability p, if

‖E(T̂ = T[y])M t
δ |q0,T[x], 0〉‖2 = p. (1.5)

Definition 1.6. A QTM M = (Q,Σ, δ) is said to be polynomial-time, if for every
x ∈ Σ∗ the computation time t of M for |q0,T[x], 0〉 is bounded by a polynomial in
the length of x.

Remark 1.7. Actually, we can assume that the computation time t is not only
bounded by a polynomial, but that it equals the value of a polynomial p(n) (See
[Nishimura and Ozawa, 2002] Remark 2. on p.25). This enables us to talk about
the computation time t for inputs of length n. And this will become useful later.

Using the two last definitions, we can now formulate the notion of recognition of
languages by QTMs and define polynomial-time complexity classes.

1.3 Languages recognized by quantum Turing machines

Languages are used to represent problems to Turing machines (and other comput-
ing devices). By “problem” we mean a predicate, which can be either true or false.
More formally, a predicate is a function P : {0, 1}∗ → {0, 1}. Such a function can
be represented by the set {x ∈ {0, 1}∗|P (x) = 1}. Subsets L ⊆ {0, 1}∗ are called
languages. If a QTM M = (Q,Σ, δ) satisfies that the symbol set Σ contains {0, 1}
then M can take strings from a language as input. Through out this section we
make the assumption that the symbol set of any QTM contains {0, 1}.

We say that a QTM M accepts x ∈ {0, 1}∗ with probability p if 1 is the output
of M on input x with probability p, i.e., if M satisfies

‖E(T̂ = T[1])M t
δ |q0,T[x], 0〉‖2 = p. (1.6)

If M satisfies
‖E(T̂ = T[0])M t

δ |q0,T[x], 0〉‖2 = p′ (1.7)
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then we say that M rejects x with probability p′.

Let L be a language. Then we say that M recognizes L with probability at least
p if the following two conditions are satisfied.

(1) M accepts x with probability at least p for any x ∈ L,

(2) M rejects x′ with probability at least p for any x′ /∈ L.

Now we can define the complexity class which is the quantum analogue of P (the
class of languages recognized by polynomial-time DTMs).

• A language L is in EQP if there is a polynomial-time QTM M that recognizes
L with probability 1.

Before we can define the quantum analogues of BPP and ZPP, we must refine
our notion of recognition slightly.

Let L be a language. Then we say that M recognizes L with probability uniformly
larger than p if there is a constant 0 < η ≤ 1 − p such that M recognizes L with
probability at least p+ η.

• A language L is in BQP if there is a polynomial-time QTM M that recognizes
L with probability uniformly larger than 1

2
.

Thus, M will accept strings x ∈ L (and reject strings x′ /∈ L) with a probability
larger than 1/2. But note that, unless p + η = 1, M can still reject an x ∈ L (or
accept an x′ /∈ L) with a probability larger than 0. We can only be sure that this
probability of “error” is bounded by some number less than 1/2. We rule out this
possibility in the subclass defined below.

• A language L is in ZQP if there is a polynomial-time QTM M that recognizes
L with probability uniformly larger than 1

2
, and M satisfies the following

conditions.

1. If M accepts x with a positive probability, then M rejects x with prob-
ability 0,

2. If M rejects x′ with a positive probability, then M accepts x′ with prob-
ability 0.

From these definitions, we have obviously EQP ⊆ ZQP ⊆ BQP. In the lit-
erature these classes are often called the languages efficiently recognized by QTMs
implementing deterministic, Las Vegas, and Monte Carlo algorithms, respectively.
Or, Exact, Zero-error, and Bounded-error algorithms.

The goal of the next section is to define corresponding complexity classes from
quantum circuit families.
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2 The quantum circuit family model

Quantum circuits are often described as acyclic graphs consisting of quantum gates
connected with quantum wires - similar to classical circuits. However for our purpose
it is more appropriate to describe circuits as finite sequences of pairs consisting of
gates and permutations. This results in a rather formal presentation. But this
method is the most suited for proving the results we need.

2.1 Uniform quantum circuit families

An index set Λ is a subset {j1, . . . , jn} ⊆ N such that j1 < · · · < jn. The set of
functions X : Λ → {0, 1} is called the binary register over Λ, and written {0, 1}Λ.

Let Λ be an index set. Then the Λ-qubit register, denoted by H(Λ), is the
2n-dimensional Hilbert space generated by the set {0, 1}Λ, i.e.,

H(Λ) =
{

ϕ : {0, 1}Λ → C

}

equipped with the inner product

(ϕ, ψ) =
∑

X∈{0,1}Λ

ϕ(X)† · ψ(X).

In particular, H([1, n]Z) is called the n-qubit register.

As in the previous section we will be using Dirac notation. Similarly we define
a standard basis. For each element X ∈ {0, 1}Λ let the function |X〉 : {0, 1}Λ → C

be defined by

|X〉(X ′) =

{
1 if X ′ = X
0 otherwise.

Then the set {

|X〉 : {0, 1}Λ → C
∣
∣ X ∈ {0, 1}Λ

}

(2.1)

is obviously an orthonormal basis for H(Λ). It is called the computational basis on
Λ. As in the previous section, we will refer to unit vectors in H(Λ) as states and
elements in the basis (2.1) as basis states.

Before continuing to the definition of quantum gates, it is appropriate to mention
a few things regarding notation.

First, we need some convenient way of specifying the elements |X〉 in the com-
putational basis. For this purpose we will identify mappings X : Λ → {0, 1} with
binary strings in the following way. Assume that the index set Λ consists of n
elements. Then there is a one-to-one correspondence between n-bit strings x and
elements X ∈ {0, 1}Λ. The binary string x1 · · ·xi · · ·xn corresponds to the func-
tion X such that X(ji) = xi for all i ∈ [1, n]Z, and the function Y corresponds to

12



the binary string Y (j1) · · ·Y (ji) · · ·Y (jn). Thus, if x1 · · ·xn is the binary string cor-
responding to X then we will write |x1 · · ·xn〉 for the basis state |X〉, and vice versa.

Second, when specifying operators on the space H(Λ), it will be convenient
to view H(Λ) as the product of other quantum registers, in particular the tensor
product of the qubit registers H({j}) where j ∈ Λ, i.e.,

H(Λ) =
⊗

j∈Λ

H({j}).

Hence, we will not distinguish between the vector |x1 · · ·xn〉 and |x1〉 ⊗ · · · ⊗ |xn〉.
This last vector is abbreviated |x1, . . . , xn〉 - using commas.

A unitary operator G : H(Λ) → H(Λ) is called a Λ-qubit gate. In particular, a
[1, n]Z-qubit gate is called an n-qubit gate. The S-matrix of a Λ-qubit gate G is the
matrix representing the operator G in the computational basis over Λ. Usually we
will identify the S-matrix of a quantum gate with the quantum gate itself.

In contrast to the situation in the previous section, we are now working in a finite
dimensional vector space H(Λ). This means, among other things, that an operator
G that satisfies G†G = I will automatically satisfy GG† = I, or in other words,
isometries are unitary.

We now give two important examples of n-qubit gates. These will enable us to
define the notion of decomposability in a simple way.

Let π be a permutation on [1, n]Z. The permutation operator of π, denoted by
Vπ, is the n-qubit gate that maps |x1 · · ·xn〉 into |xπ(1), . . . , xπ(n)〉 for any n-bit string
x1 · · ·xn.

Let G be an m-qubit gate and n ∈ N such that n ≥ m. The n-qubit extension
of G, denoted by G[n], is the n-qubit gate that acts like G on the first m factors of
H[1,n]Z and as the identity on the last n−m, i.e.,

G[n] = G⊗ I[m+1,n]Z

where I[m+1,n]Z denotes the identity operator on H([m+ 1, n]Z).

Let G be a set of qubit gates on, not necessarily the same, qubit registers. Then
we say that an n-qubit gate G is decomposable into m qubit gates in G if there are
ni-qubit gates Gi ∈ G with ni ≤ n and permutations πi on [1, n]Z satisfying

G = Um · · ·U1, where Ui = V †
πi
Gi[n]Vπi

for i ∈ [1, m]Z. (2.2)

The method, by which the operator Ui above is constructed, is very useful. It
allows us to operate on an arbitrary set of factors in a vector |x1, . . . , xn〉. First, the
ni factors, which we want to operate on, are collected by Vπi

up front. Then Gi[n]
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operates on these ni factors and leaves the rest alone. And at last the factors are
returned to there original place by V †

πi
, which works as the inverse of Vπi

.

The least number m of qubit gates in G which G can be decomposed into is
called the size of G for G. In most situations, we are only sure that the size is less
than some particular m, and there fore we normally just say that G has size O(m)
for G, or that G is decomposable into O(m) qubit gates in G.

We shall now introduce a specific set Gu of quantum gates that plays an im-
portant role in complexity theory. It consists of two types of 1-qubit gates and one
specific 2-qubit gate.

Let R1,θ and R2,θ denote the 1-qubit gates whose S-matrices are given as follows.

R1,θ =

(
cos θ − sin θ
sin θ cos θ

)

, R2,θ =

(
eiθ 0
0 1

)

.

And let N denote the 2-qubit gate whose S-matrix is given by

N =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

The gate R1,θ is called the rotation gate by angle θ and R2,θ is called the phase shift
gate by by angle θ. N is referred to as the controlled-not gate.

Let Gu be the set defined by

Gu =
{
R1,θ, R2,θ, N

∣
∣ θ ∈ PR ∩ [0, 2π)

}
. (2.3)

Note that since there are only countably many DTMs, PR is a countable set and
thus the number of gates in Gu is also countable.

Theorem 2.1. Let G be an n-qubit gate such that the entries of its S-matrix all
belong to PC. Then G can be decomposed into O(22nn3) qubit gates from Gu.

Proof. (Sketch) The proof of this theorem is given in [Nishimura and Ozawa, 2005a].
It builds on an earlier result from [Barenco et al., 1995], namely that any 2n-dimensional
near-trivial matrixM can be decomposed into O(n3) matrices from {R1,θ, R2,θ, N |θ ∈
[0, 2π)}. A near-trivial matrix U , is a matrix that has one of the following two forms.

1. U is like a unit matrix except for one diagonal element which has the form eiθ,

2. U is like a unit matrix except for the elements in the intersections one row

and one column which form the matrix

(
cos θ − sin θ
sin θ cos θ

)

,
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where θ ∈ [0, 2π). In [Nishimura and Ozawa, 2005a] it is proved that any 2n-
dimensional unitary matrix U can be decomposed into O(22n) near-trivial matrices.
By keeping account of the entries of the matrices (whether they stay in PC) through
these two constructions, one obtains the theorem.

Note that the number of gates required to decompose an n-qubit gate grows
exponentially when n grows.

Definition 2.2. Let G be a set of qubit gates. An n-qubit circuit K based on G
is a finite sequence (Gm, πm), . . . , (G1, π1) such that each pair (Gi, πi) satisfies the
following conditions.

(1) Gi is an ni-qubit gate in G with ni ≤ n.

(2) πi is a permutation on [1, n]Z.

The positive integer m is called the size of K for G, and the unitary operator

Um · · ·U1, where Ui = V †
πi
Gi[n]Vπi

for i ∈ [1, m]Z

is called the n-qubit gate determined by K and denoted by G(K).

Note that, by definition, G(K) is decomposable into m qubit gates in G. Hence,
we can also view a qubit circuit K of size m for G as a description of how to decom-
pose a qubit gate G(K) into m gates in G.

Qubit circuits are often constructed by combining other qubit circuits. Suppose
that K1 = (Gm, πm), . . . , (G1, π1) and K2 = (G′

l, π
′
l), . . . , (G

′
1, π

′
1) are n-qubit circuits

based on G. Then

K2 ◦K1 = (G′
l, π

′
l), . . . , (G

′
1, π

′
1), (Gm, πm), . . . , (G1, π1)

is called the concatenation of K1 and K2, in particular K1 ◦ · · · ◦K1
︸ ︷︷ ︸

n

is called the

concatenation of n copies of K1 and denoted Kn
1 .

The qubit circuit defined in Definition 2.2 is not yet suited for computing. The
gate G(K) takes a 2n-dimensional vector and outputs a 2n-dimensional vector. In
most situations the length of the input and output is not the same. In the following
definition we supply the qubit circuit with the extra structure to handle this.

Definition 2.3. Let G be a set of qubit gates. A k-input m-output n-qubit circuit
K based on G is a 4-tuple (K,Λ1,Λ2, S) satisfying the following conditions.

(1) K is an n-qubit circuit based on G.

(2) Λ1 and Λ2 are two subsets of [1, n]Z satisfying |Λ1| = k and |Λ2| = m, respect-
ively.
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(3) S is a function from [1, n]Z \ Λ1 to {0, 1}.
Condition (2) takes care of the input and output, i.e., the index sets Λ1 and Λ2

each select a specific subset of the factors in |x1, . . . , xn〉 which are to be considered
as input and output. The function S in condition (3) is used to set the factors which
are not considered as input with some fixed value.

The size based on G of K = (K,Λ1,Λ2, S) is simply the size of K based on G.

We are now finally able to define quantum circuit families.

Definition 2.4. Let G be a set of qubit gates. A quantum circuit family (QCF) K
based on G is an infinite sequence {Kn}n∈N such that each Kn is an n-input

(
f(n)-

output g(n)-qubit
)

circuit based on G. The size s based on G of K is the function
s : N → N such s(n) is the size of Kn based on G. If s is bounded by some polynomial
in n, K is said to be polynomial-size.

Thus, we dedicate an n-qubit circuit to each input length n.

However, we are not yet finished. In order for the quantum circuit family model
to be a reasonable model of computation, we must require that quantum circuit
families are constructible by polynomial time bounded DTMs. In the case with a
QTM M = (Q,Σ, δ), this was rather simple - we just required that range(δ) ⊆ PC.
With a QCF K = {Kn}n∈N based on G, we must obviously require that the entries of
the S-matrices of the qubit gates in G are all contained in PC. But this alone is not
enough. Besides having to construct the qubit gates in G we must also be able to
construct the index sets Λ1 and Λ2, and the function S (from Definition 2.3) of each
Kn. The first requirement, regarding the S-matrices, is overcome by only consider-
ing QCFs based on subsets of Gu. By Theorem 2.1 any qubit gate with S-matrix
entries in PC is decomposable into qubit gates from Gu. Hence, this restriction gives
exactly what we need. In order to formalize the second requirement, regarding Λ1,
Λ2, and S, we need to introduce the code of a qubit circuit.

In Section 1.1 we briefly defined efficiently computable numbers. A complex
number z = x + iy is in PC if there are polynomial-time DTMs which approxim-
ate x and y. We shall now define the code of a number z ∈ PC. Let x ∈ PR,
then we define the code of x, denoted by c(x), to be the encoding 〈M〉 of the first
polynomial-time DTM M which approximates x. We can talk about the “first”
DTM because the set of DTMs is numerable. Assume that z ∈ PC. Then the code
c(z) of z = x + iy is defined to be 〈c(x), c(y)〉.

Definition 2.5. Let K = (Gm, πm), . . . , (G1, π1) be a qubit circuit based on Gu.
Then the code of K, denoted by c(K), is defined to be the list of finite sequences of
natural numbers 〈e(G1), . . . , e(Gm)〉, where

e(Gj) =

{
〈〈i, c(θ)〉, πj(1)〉 if Gj = Ri,θ

〈〈3, πj(1)〉, πj(2)〉 if Gj = N
for j ∈ [1, m]Z.
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Let K = (K,Λ1,Λ2, S) be a k-input m-output n-qubit circuit based on Gu, where
[1, n]Z \Λ1 = {i1, . . . , in−k} and Λ2 = {j1, . . . , jm}. The code of K, denoted by c(K),
is defined to be the list of finite sequences of natural numbers,

c(K) = 〈〈〈i1, S(i1)〉, . . . , 〈in−k, S(in−k)〉〉, c(K), 〈j1, . . . , jm〉〉.
Using the code of a qubit circuit, we can now formulate the notion of uniformity.

Definition 2.6. Let K = {Kn}n∈N be a QCF based on a subset G of Gu. Then K is
said to be uniform, if the function 1n 7→ c(Kn) is computable by a polynomial-time
DTM.

Note that if a QCF is uniform, then it must also be polynomial-size.

Definition 2.7. Let K be a uniform QCF. If there is a finite subset G of Gu such
that K is based on G, then we say that K is finitely-generated.

In what follows, when we say that a QCF is finitely-generated, then it is impli-
citly given that it is uniform.

In Section 2.3 we will define complexity classes from finitely-generated quantum
circuit families. But before we do this, we introduce a projection on the qubit
register.

2.2 The output-distribution of a quantum circuit

Assume that K = (K,Λ1,Λ2, S) is a k-input m-output n-qubit circuit, where
Λ1 = {j1, . . . , jk} and Λ2 = {i1, . . . , im}.

For any k-bit string x = x1 · · ·xk, we define an n-bit string u(x,K) = u1 · · ·un

such that

uj1 = x1, . . . , ujk
= xk and uj = S(j) for all j ∈ [1, n]Z \ Λ1.

And for any basis state |z〉, with z = z1 · · · zn, in the qubit register H([1, n]Z), we
define an m-bit string v(|z〉,K) = v1 · · · vm such that

v1 = zi1 , . . . , vm = zim .

For any m-bit string y let E(v̂ = y) be the projection onto

span
{

|z〉 ∈ H([1, n]Z)
∣
∣
∣ v(|z〉,K) = y

}

.

We say that y is the output of K on input x with probability p, if

‖E(v̂ = y)G(K)|u(x,K)〉‖2 = p.

For any x ∈ {0, 1}k we define the function ρK(·|x) : {0, 1}m → [0, 1] by

ρK(y|x) = ‖E(v̂ = y)G(K)|u(x,K)〉‖2 (2.4)

and refer to it as the output-distribution of K for input x.

17



2.3 Languages recognized by quantum circuit families

Let K be an n-input 2-output qubit circuit and x ∈ {0, 1}n. Then K is said to accept
x with probability p if 01 is the output of K on input x, i.e., if K satisfies

ρK(01|x) = p.

If K satisfies
ρK(00|x) = p′

then we say that K rejects x with probability p′.

Let Ln ⊆ {0, 1}n. Then we say that K recognizes Ln with probability at least p if
the following two conditions are satisfied.

(1) K accepts x with probability at least p for any x ∈ Ln,

(2) K rejects x′ with probability at least p for any x′ /∈ Ln.

Let L be a language. A QCF K = {Kn}n∈N is said to recognize L with probability
at least p if Kn recognizes Ln = L∩{0, 1}n with probability at least p for any n ∈ N.

• A language L is in EFPQC if there is a finitely-generated QCF K that recog-
nizes L with probability 1.

A QCF K is said to recognize L with probability uniformly larger p if there is a
constant 0 < η < 1 − p such that K recognizes L with probability at least p+ η.

• A language L is in BFPQC if there is a finitely-generated QCF K that recog-
nizes L with probability uniformly larger than 1

2
.

• A language L is in ZFPQC if there is a finitely-generated QCF K = {Kn}n∈N

that recognizes L with probability uniformly larger than 1
2
, and satisfies

ρK|x|(00|x) = 0 or ρK|x|(01|x) = 0 for any x ∈ {0, 1}∗. (2.5)

From these definitions, we have obviously EFPQC ⊆ ZFPQC ⊆ BFPQC.

The goal of the next section is to show that these complexity classes are the
same as those defined in Section 1.3.
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3 Computational equivalence

In the following section we define the notion of simulation between QTMs and QCFs,
and then use this to show that polynomial-time QTMs and finitely-generated QCFs
recognize the same class of languages.

3.1 Encoding and simulation of quantum Turing machines

Before we can introduce the notion simulation of QTMs by QCFs, we define another
projection on the quantum state space H(Q,Σ) of a QTM M = (Q,Σ, δ).

For any σ ∈ Σ and m ∈ Z let E(T̂ (m) = σ) denote the projection onto
span{|q, T, ξ〉|q ∈ Q, T (m) = σ, ξ ∈ Z}. Then for any t ∈ N and Σ-string x we
define the probability distribution ρM

t (·|x) on Σ2t+1 by

ρM
t (y|x) = ‖E(T̂ (−t) = y1) · · ·E(T̂ (t) = y2t+1)M

t
δ |q0,T[x], 0〉‖2.

This distribution serves a similar purpose as the output-distribution of a quantum
circuit.

The qubit circuit Kn in a QCF K = {Kn}n∈N, takes binary strings of length n as
input, whereas the QTM M = (Q,Σ, δ) takes Σ-strings of arbitrary length as input.
To handle this we define an encoding function which maps Σ-strings into binary
strings of length n.

Let e : Σ → {0, 1}λ, where λ = dlog |Σ|e, be an injection computable by a
polynomial-time DTM. For any t ∈ N we define the encoding function et : Σ∗ →
{0, 1}(2t+1)λ by

et(x1 · · ·xk) =







e(B) · · · e(B)
︸ ︷︷ ︸

t

e(x1) · · · e(xk) e(B) · · · e(B)
︸ ︷︷ ︸

t+1−k

if t + 1 ≥ k,

e(B) · · · e(B)
︸ ︷︷ ︸

t

e(x1) · · · e(xt+1) if t + 1 < k.

Next, we define a decoding on the image of et. Let d : e(Σ) → Σ be a function
computable by a polynomial-time DTM such that d ·e = id. For any t ∈ N we define
the decoding function dt : et(Σ

∗) → Σ2t+1 by

dt(z1 · · · z2t+1) = d(z1) · · ·d(z2t+1).

Definition 3.1. Let M = (Q,Σ, δ) be a QTM and t some positive integer. A
(2t+ 1)λ-input (2t+ 1)λ-output qubit circuit K is said to t-simulate M (under the
encoding et and decoding dt), if for any x ∈ Σ∗ and y ∈ Σ2t+1, we have

ρM
t (y|x) = ρK(d−1

t (y)|et(x)).

A QCF K = {Kn}n∈N is said to simulate M , if for any n ∈ N the qubit circuit Kn

t(n)-simulates M , where t(n) is the computation time of M for inputs of length n
(See Remark 1.7).
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In [Yao, 1993] a similar, but different definition of simulation was given. The
difference is that the Σ-string x must have length dn/dlog |Σ|ee - there is no encoding
function et to shorten off or supplement x. In the literature, this kind of simulation
is often referred to as (n, t)-simulation.

Theorem 3.2. Let M = (Q,Σ, δ) be a polynomial-time QTM. Then, there is a
finitely-generated QCF K = {Kn}n∈N that simulates M .

Proof. Let t(n) be the computation time of M on input of length n. First, we fix
n and construct a qubit circuit K which t-simulates M . Henceforth, let t = t(n).
The qubit circuit K = (K,Λ1,Λ2, S) will be a (2t + 1)λ-input (2t + 1)λ-output
(l0 + (2t + 1)(λ + 2))-qubit circuit, where λ = dlog |Σ|e and l0 = dlog |Q|e. For the
sake of simplicity, let k = 2t+1 and l = (λ+2). Thus making K a kλ-input kλ-output
(l0 + kl)-qubit circuit. The first l0 factors of H[1,l0+kl]Z will be used to represent the
processor configuration q. The next l factors will represent the symbol T (−t) and
whether the head position ξ is −t or not. The next l represent T (−t + 1) and if
ξ = −t + 1, and so on. In what follows, p, q, . . . denote binary strings representing
elements of Q, the symbols σ, τ, . . . denote binary strings representing elements of
Σ, and s = 0̄, 1̄, 2̄ denote 00, 10, 11, respectively. Then we denote the computational
basis state |qσ1s1σ2s2 · · ·σksk〉 on [1, l0 + kl]Z by |q; σ1s1; σ2s2; · · · ; σksk〉.

We start by defining two qubit gates G1 and G2 which we will base our circuit
K on. G1 is an (l0 + 3l)-qubit gate satisfying the following conditions.

(i) G1|wp,σ1,σ,σ3
〉 = |vp,σ1,σ,σ3

〉 where

|wp,σ1,σ,σ3
〉 = |p; σ10̄; σ1̄; σ30̄〉,

|vp,σ1,σ,σ3
〉 =

∑

(q,τ)∈Q×Σ

δ(p, σ, q, τ,−1)|q; σ12̄; τ 0̄; σ30̄〉

+
∑

(q,τ)∈Q×Σ

δ(p, σ, q, τ, 0)|q; σ10̄; τ 2̄; σ30̄〉

+
∑

(q,τ)∈Q×Σ

δ(p, σ, q, τ, 1)|q; σ10̄; τ 0̄; σ32̄〉.

for any (p, σ1, σ, σ3) ∈ Q× Σ3.

(ii) G1|h〉 = |h〉 for each |h〉 in the subspace H of H[1,l0+3l]Z spanned by the three
types of vectors:

|h1
q,σ1,σ2,σ3

〉 = |q; σ1s1; σ2s2; σ3s3〉 where s1 6= 1̄ and s1, s2, s3 6= 2̄;

|h2
p,σ,σ2,σ3

〉 =
∑

(q,τ)∈Q×Σ

δ(p, σ, q, τ, 0)|q; τ 2̄; σ20̄; σ30̄〉+

∑

(q,τ)∈Q×Σ

δ(p, σ, q, τ, 1)|q; τ 0̄; σ22̄; σ30̄〉;

|h3
p,σ,τ,σ1,σ2,σ3

〉 =
∑

q∈Q

δ(p, σ, q, τ, 1)|q; σ12̄; σ20̄; σ30̄〉.
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The motivation behind these conditions will become obvious later. In order to
see that there actually exists a qubit gate satisfying these conditions, let W =
{|wp,σ,σ1,σ3

〉|(p, σ, σ1, σ3) ∈ Q × Σ3} and V = {|vp,σ,σ1,σ3
〉|(p, σ, σ1, σ3) ∈ Q × Σ3}.

Then, obviously W is an orthonormal system. By using condition (a) of Theorem
1.3 one can, by straight forward verification, show that each vector in V has unit
norm. And by using condition (b) of Theorem 1.3 one sees that all the vectors in V
are orthogonal to each other. Or in other words, V is also an orthonormal system.
Obviously, the first type of vector |h1

q,σ1,σ2,σ3
〉 in H is orthogonal to vectors in V . By

using condition (c) of Theorem 1.3 one can, by straight forward verification, show
that the second type of vector |h2

q,σ,σ2,σ3
〉 in H is orthogonal to V . And using con-

dition (d) of Theorem 1.3 one sees that |h3
p,σ,τ,σ1,σ2,σ3

〉 is also orthogonal V . Thus,
H⊥V . Obviously we have H⊥W and W⊥V . So, condition (i) requires that the
operator G1 maps the orthonormal subset W of Hl0+3l bijectively into the other
orthonormal subset V which is orthogonal to W . And condition (ii) requires that
G1 is the identity on the subspace H which is orthogonal to both W and V . These
requirements are consistent with unitarity, and therefore a unitary operator G1 sat-
isfying these conditions exists.

Let G2 be an (l0 + kl)-qubit gate which does nothing except for mapping all
si = 2̄’s to si = 1̄’s. and vice versa.

The qubit circuit K = (K,Λ1,Λ2, S) will be based on the set G = {G1, G2}. Let
K1 be the (l0 + kl)-qubit circuit

(G2, id), (G1, πk−1), . . . , (G1, π2), (G1, id)
︸ ︷︷ ︸

k−1

where πi is the permutation such that Vπi
maps

|q; σ1s1; · · · ; σi−1si−1; σisi; σi+1si+1; · · · ; σksk〉

to
|q; σi−1si−1; σisi; σi+1si+1; σ1s1; · · · ; σi−2si−2; σi+2si+2; · · ·σksk〉,

i.e., where σi−1si−1; σisi; σi+1si+1 is pushed up in front. The following diagram illus-
trates the structure of K1.
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G1

G1

G1

G1

·
··

· · · · · ·

q

G2

σ1s1 σ2s2 σksk

The qubit circuit K in K is defined to be the concatenation of t copies of K1.
Note that the qubit gate G(K) determined by K will then be equal to the gate
(G(K1))

t.

Next, we define the sets Λ1, Λ2, and the function S. Λ1, Λ2 are both to be the sub-
set of [1, l0+kl]Z that corresponds to the indexing of the σi’s in |q; σ1s1; σ2s2; · · · ; σisi; · · · ; σksk〉.
Or more formally, the set

{l0 + 1, . . . , l0 + λ; l0 + λ+ 3 . . . ; l0 + 2λ+ 3; . . .}.

And finally, the the function S from [1, l0 + kl]Z \ Λ1 to {0, 1}. It maps the first l0
bits to q0 - the binary string representing the initial processor configuration in Q.
And sets all the si’s to 0̄ except σt+1 which is set to 1̄. Hence, we get

|u(et(x),K)〉 = |q0;B0̄; · · · ;B0̄
︸ ︷︷ ︸

t

; x01̄; x10̄; · · · ; xm0̄〉

In order to see that K t-simulates M , we must show that for any x ∈ Σ∗ and
y ∈ Σ2t+1 we have

ρM
t (y|x) = ρK(d−1

t (y)|et(x))

or

‖E(T̂ (−t) = y1) · · ·E(T̂ (t) = y2t+1)M
t
δ |q0,T[x], 0〉‖ =

‖E(v̂ = d−1
t (y))(G(K1))

t|u(et(x),K)〉‖.

That this holds, will become obvious by applying Mδ and G(K1) just once to
the vectors |q0,T[x], 0〉 and |u(et(x),K)〉, respectively:

From the definition of Mδ (Proposition 1.1) we get
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Mδ|q0, T [x1 · · ·xm], 0〉 =
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ,−1)|q,T[τx1 · · ·xm],−1〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 0)|q,T[τx1 · · ·xm], 0〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 1)|q,T[τx1 · · ·xm], 1〉.

And from the definition of K1 we first get

G(K1)|q0;B0̄; · · · ;B0̄; x01̄; x10̄; · · · ; xt0̄〉 =
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ,−1)|q;B0̄; · · · ;B2̄; τ 0̄; x10̄; · · · ; xt0̄〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 0)|q;B0̄; · · · ;B0̄; τ 2̄; x10̄; · · · ; xt0̄〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 1)|q;B0̄; · · · ;B0̄; τ 0̄; x12̄; · · · ; xt0̄〉,

which is then transformed into

∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ,−1)|q;B0̄; · · · ;B1̄; τ 0̄; x10̄; · · · ; xt0̄〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 0)|q;B0̄; · · · ;B0̄; τ 1̄; x10̄; · · · ; xt0̄〉

+
∑

(q,τ)∈Q×Σ

δ(q0, x0, q, τ, 1)|q;B0̄; · · · ;B0̄; τ 0̄; x11̄; · · · ; xt0̄〉.

Since the δ-values are exactly the same, one sees that K will t-simulate M .

In order to get a qubit circuit Kn based on Gu that t(n)-simulates M , we decom-
pose the gates G1 and G2 in K into gates from Gu. According to Theorem 2.1 G1

can be decomposed into a finite number of gates from Gu. G1 is an (l0 + 3l)-qubit
gate, so this number does not vary with n. We can not use this decomposition on G2

because it is an (l0 +(2t+1)l)-qubit gate, and hence the number of gates used would
increase exponentially in n. However, one can easily see that G2 can be decomposed
into (2t + 1) controlled-not gates N . In the construction of K we used t(2t − 1)
copies of G1 and t copies of G2, so the resulting qubit circuit Kn has size O(t2).
M is polynomial-time so the QCF K = {Kn}n∈N is polynomial-size. From the way
we constructed K and thereby Kn, one sees that the code c(Kn) is computable by
polynomial-time DTM, and hence K is uniform. Since the number of different gates
used to decompose G1 and G2 does not vary with n, K is a finitely-generated QCF.
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3.2 Simulation of quantum circuit families and equivalence

In this section we present the converse result of the previous section, namely that
any finitely-generated QCF can be simulated by a polynomial-time QTM. However,
only a superficial sketch of the proof will be given, since a detailed one requires a
much more extensive treatment of QTMs than has been given in Section 1.

Definition 3.3. Let K = (K,Λ1,Λ2, S) be an n-input k-qubit circuit. A QTM
M = (Q,Σ, δ) is said to carry out K, if for any n-bit string x and k-bit string y, we
have

y is the output of M on input x with probability |〈y|G(K)|u(x,K)〉|2. (3.1)

Let K = {Kn}n∈N be QCF. A QTM M = (Q,Σ, δ) is said to simulate K, if M carries
out Kn for any n ∈ N.

Note that if Λ2, in the above definition, is the whole interval [1, k]Z, i.e., if K

is a k-output k-qubit circuit, then the probability |〈y|G(K)|u(x,K)〉|2 is equal to
ρK(y|x) - see (2.4).

Theorem 3.4. Let K = {Kn}n∈N be a finitely-generated QCF. Then, there is a
polynomial-time QTM M = (Q,Σ, δ) that simulates K.

Proof. (Sketch) This theorem is essentially the same as Theorem 5.1 in the paper
[Nishimura and Ozawa, 2002], which states the same, but for GR-uniform QCFs
instead of finitely-generated QCFs. GR is a particular finite set of qubit gates, and
GR-uniform QCFs are simply uniform QCFs based on GR. In order to construct the
QTM M , one needs the so called programming primitives for QTMs, developed in
[Bernstein and Vazirani, 1997]. A proper presentation of these, is beyond the scope
of this paper. However, the main idea in the construction is to first compute the
code c(Kn) from the input string 1n using a polynomial-time DTM. And then to
carry out Kn using the code and QTMs which each carry out the gates that Kn is
based on. The reason why all these different tasks can be composed together into a
single QTM M , is do to the fact that K is based on, only a finite number of different
gates.

The following corollary is obtained directly from Theorem 3.2 and Theorem 3.4.

Corollary 3.5. The class of languages EFPQC (resp. ZFPQC and BFPQC) re-
cognized with certainty (resp. with zero-error and bounded-error) by finitely-generated
QCFs coincides with the corresponding complexity class EQP (resp. ZQP and
BQP) for polynomial-time QTMs.
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4 Concluding remarks

In the previous section we have seen that finitely-generated QCFs are equivalent
to polynomial-time QTMs when implementing, not only bounded-error algorithms
but, also zero-error and exact algorithms. This suggests that we should base the
circuit model of quantum computation on the set of finitely-generated QCFs. In
this section we briefly consider some other possibilities.

4.1 Comparison with other models

A type of QCFs called polynomial-time uniformly generated were introduced in the
paper [Kitaev and Watrous, 2000]. These circuit families can briefly be described as
uniform QCFs (in the sense of Definition 2.6) based on a specific set of 5 qubit gates
(called the Shor-basis). This type of QCF is used to define quantum computation in
the text book [Kitaev et al., 2002]3. In the bounded-error case, the set of polynomial-
time uniformly generated QCFs recognizes the same languages as polynomial-time
QTMs do (i.e., BQP). But in [Nishimura, 2003] it has been shown that by fixing the
set of qubit gates, which the QCFs are based on, one seriously reduces the class of
languages which they recognize when implementing exact or zero-error algorithms.
For instance, in the exact case, the polynomial-time uniformly generated QCFs only
recognize the class P (languages recognized by polynomial-time DTMs) - not EQP.
Thus, a circuit model based on polynomial-time uniformly generated QCFs is only
suited for bounded-error computation.

One may also consider a circuit model based on QCFs that are just uniform,
i.e., without any limitation on the number of different qubit gates. Again, when im-
plementing bounded-error algorithms the set of uniform QCFs recognizes precisely
BQP - as it should4. But, in the exact and zero-error case, it turns out that they
recognize to much. In [Mosca and Zalka, 2003] it has been shown how to construct
a uniform QCF which exactly implements the quantum Fourier transform of any or-
der5. On the contrary it is proved in [Nishimura and Ozawa, 2005b] that there exists
no finitely-generated QCF which implements the quantum Fourier transform of any
order without error. Since finitely-generated QCFs and polynomial-time QTMs are
equivalent in this case, we see that uniform QCFs are more powerful than they ought
to be in the zero-error and exact case.

Finitely-generated QCFs are thus an intermediate of polynomial-time uniformly
generated QCFs and uniform QCFs, such that their computational power exactly
matches that of polynomial-time QTMs.

3See Definition 8.5 and Section 9.4
4Theorem 5.2 in [Nishimura and Ozawa, 2002]
5See [Nishimura and Ozawa, 2005b] for a definition.
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4.2 Conclusion

Nishimura and Ozawa have been able to prove many fundamental results regarding
both the Turing machine model and circuit model of quantum computation. This
has been due to the strict mathematical formalism they have introduced enabling
them to give a thorough definition of concepts that are normaly vaguely formulated.
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