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Abstract
This thesis aims to provide an overview of the theory of persistent homology, and an insight into
how it can be applied. Persistent homology allows one to analyse a data set by using techniques
of algebraic topology to reveal the shape of the data. It has found applications in many areas from
neuroscience to machine learning.
We cover the theory of one dimensional persistence, which was developed in the mid 2000’s and
still underpins the current literature. We then move on to the case of multidimensional persistence,
which has proven to be a more complicated topic and so has garnished more attention and has been
approached in many different ways. Here we primarily consider noise systems, introduced in [17].
These are used to develop pseudometrics, and in turn stable invariants on the space of tame multi-
dimensional persistence modules. We introduce the idea of Serre noise systems, a particular type of
noise system which are of theoretical interest. We then demonstrate how noise systems are of prac-
tical interest by using them to arrive at a stable invariant and applying this invariant to analyse a
dataset.
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Chapter 1

Introduction

Topological data analysis (TDA), and in particular persistent homology, is a rapidly growing field
that has garnished a lot of recent attention. The goal is to use tools from algebraic topology to be
able to describe the shape of a point cloud, which for practical purposes often comes from some data
set. Traditional invariants of a space, such as the homology and homotopy groups, are not useful for
distinguishing point clouds since these groups are trivial on any such space. This is where persistent
homology comes in. The primary idea is to look at the changing homology of a simplicial complex
(such as the Vietoris-Rips complex of a point cloud) as some parameter ε changes. This changing
homology tells us something about the underlying shape of the data. In particular, generators of the
homology group of the simplicial complex which persist for a large range of ε values are generaly
considered to correspond to the features of the data. On the other hand, those generators which die
off quickly reflect noise in the data. While there have been challenges to this viewpoint, and indeed
particualr examples where this is not the correct interpretation [26], it provides a good overview of
the motivation behind the methods of persistent homology. There have been many successful at-
tempts to apply persistent homology to real world data [27],[28],[29]. The most well known example
is probably the discovery of a specific form of breast cancer, for which the survival rates are very
good [25].
The organisation of this thesis is as follows: In section 3 we discuss one-dimensional persistence,
largely folowing [1]. Note that the dimension here does not refer to the dimension of the space
over which we work, but rather the number of parameters in the aforementioned simplicial com-
plex. We use the one-dimensional case to introduce ideas such as persistence modules, which are
functors F : R → Vectk, and a pseudometric on these modules, called the interleaving distance. We
demonstrate that decomposable persistence modules admit a complete invariant called the barcode
or persistence diagram. We then provide a proof the isometry theorem, which shows that the barcode
is stable, in the sense that a pair of persistence modules which are close to one another in the inter-
leaving distance have similar barcodes. In section 4 we investigate generalized persistence modules.
These are functors F : P → C, where (P,≤) is a poset, and C is an arbitrary category. We work with
a generalization of the interleaving distance. Much of this chapter serve as a primer for chapter 5,
which covers multidimensional persistence. Here we use the interleaving distance and superlinear
families defined in chapter 4 extensively. We will see that the multidimensional case is more compli-
cated than the one dimesional case. Largely, this is because we have no multidimensional equivalent
of the barcode; in fact it is impossible to define a complete invariant on multidimensional persistence
modules [15]. As a result, much of the work is focused on coming up with good incomplete invari-
ants which reflect the properties of a data set that we are interested in. In pursuit of this goal, our
attention turns to developing pseudometrics on the space of multidimensional persistence modules.
We investigate noise systems, introduced in [17], as a systematic means of concocting more pseudo-
metrics. Finally, we investigate the connection between these noise systems and Serre categories and
Serre localizations. Chapter 6 contains two applications of the tools discussed in the thesis, primarily
using ideas from chapter 5. The first is a "textbook" example, based on an exercise in a course taught
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by Wojciech Chacholski at KTH, Stockholm on TDA. We are able to create a signature for 3 shapes in
the plane - a square, triangle and circle. These signatures take the form of positive valued functions,
and plotting these functions shows them to be visibly distinct. We do the same with another circle
with some points added to the center to serve as noise. This noisy circle has a signature which is
indistinguishable from that of the original circle. The second application analyses a data set of heart
disease patients, and uses a similar signature to attampt to distinguish healthy patients from those
with heart disease. The thesis contains some novel contributions, namely the proof of Theorem 5.6.5,
as well as the discussion in section 5.8.
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Chapter 2

Preliminaries and Background

Given a poset P, denote by P ∪∞ the same poset with a maximum element ∞ attached. We denote
by Rr

≥0 the r-tuples of real numbers in which each entry is greater than or equal to 0. Similarly for
Qr
≥0, Nr

≥0.
A multiset is a set X in which elements can occur with multiplicity greater than 1. A multisubset of
X is a function f : X →N. The value f (x) is called the multiplicity of x ∈ T. The function f is called
finite if it has finite support, in which case we can define the rank of f to be the sum ∑x∈X f (x). Let
Mult(X) denote all the multisubsets of X.
Given a small category I and a field k, for an object i ∈ I, define the functor

k(i,−) : I → Vectk

to be the one which maps j ∈ I to the k-vector space spanned by HomI(i, j). In particular, if I is a
poset then k(i, j) ∈ {0, k}.
In the case that I is a poset, we can define an interval [a, b) ⊂ I by

[a, b) = {i ∈ I|a ≤ i ≤ b and i 6= b}.

Let [a, b) ⊂ I be a half-open interval. Then we define an interval functor [a, b) : I → R− mod, for
some ring R, by

[a, b)t =

{
R if t ∈ [a, b)
0 otherwise

and

[a, b)(s ≤ t) =

{
1 if s, t ∈ J
0 otherwise

It will always be clear from context whether [a, b) refers to an interval or an interval functor.
We denote by Ui : I → R-mod, the unique functor given by

Ui(j) =

{
R i = j
0 otherwise

and Ui(i ≤ i) = id, and Ui is 0 on all other maps.
Let {Vi}i∈I be a family of k-vector spaces for some field k. Then functors of the form F =

⊕
i∈I k(i,−)⊗

Vi are called free. We call the vector spaces Vi the components of F. A free functor F is said to be of
finite type if each Vi is finite dimensional. The support of F =

⊕
i∈I k(i,−)⊗Vi is the set

supp(F) = {i ∈ I|Vi 6= 0}.

and F is said to be of finite support if this set is finite. If F is of finite type and it has finite support,
then we can define the rank of F as rank(F) = ∑i∈I dim Vi. The 0-Betti diagram of F is defined to be
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the multiset of objects in I with multiplicities given by β0F(i) = dimk Vi.
A morphism φ : X → Y in a category C is called minimal if any morphism f : X → X satisfying
φ = φ ◦ f is an isomorphism. A natural transformation φ : F̃ → F of functors in Fun(I, C) is called
a minimal cover of F if F̃ is free and φ is both minimal and an epimorphism. All minimal covers of
a given functor are isomorphic [17]. In the case that F ∈ Fun(I, Vectk), then if F̃ is a minimal cover
of F and F̃ is of finite type and finite rank, then so is F. We define the rank of F to be the rank of F̃.
Similarly the support and 0-Betti diagram of F are defined to be those of F̃. Note that none of the
above depends on the choice of minimal cover for F.
Given a functor F : I → Vectk, there is a bijection between the set of natural transformations k(i,−)→
F and the vector space F(i) given by

Nat(k(i,−), F)→ F(i), f 7→ fi(idk)

Therefore any f ∈ F(i) yields a unique natural transformation f : k(i,−)→ F (which is also denoted
by f ) such that fi(idk) = f . A minimal set of generators for F is a set { f1 ∈ F(i1), · · · fn ∈ F(in)}
such that the induced natural transformation

n⊕
m=1

fm :
n⊕

m=1

k(im,−)→ F

is a minimal cover of F. A functor has a minimal set of generators if and only if it is of finite rank, in
which case the number of generators is given by rank F. The 0-th Betti diagram of F is given by the
map β0F : I →N which maps i to the number of generators in F(i).

Example 2.0.1. Let F : N2
≥0 → Vectk be a functor with the following representation

F =

k k k k

k k k k

0 k k k

0 0 k k

When we say that this diagram represents the functor F, we mean that this shows the values of F in
[0, 3]× [0, 3] ⊂N2

≥0, and that all the maps which are not necessarily zero are the identity. Also all the
maps which are not shown are the identity. To represent a functor R2

≥0 → Vectk, we show the values
of the functor at the critical points. It is clear that the free functor F̃ = k((0, 2),−) ⊕ k((1, 1),−) ⊕
k((2, 0),−) covers F, in the sense that there is a surjective map F̃ → F.

F̃ =

k k2 k3 k3

k k2 k3 k3

0 k k2 k2

0 0 k k
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Visually, it is also clear that this is a minimal cover of F. It follows that rank F = 3. ♦

Throughout this thesis we will use the language of category theory. The prerequisite knowledge
of the theory does not go far beyond the definition of a functor and a category, but there are some
definitions that will be used later on which we will state here.

Definition 2.0.2. A monoidal category is a category C equipped with the following data

• A functor
⊗ : C× C → C

called the tensor product

• An object 1C ∈ C which is the unit for the tensor functor.

• A natural isomorphism

α : ((−)⊗ (−))⊗ (−)→ (−)⊗ ((−)⊗ (−))

with components given by

αx,y,z : (x⊗ y)⊗ z→ x⊗ (y⊗ z)

• Natural isomorphisms

l : 1⊗ (−)→ (−)
r : (−)⊗ 1→ (−)

with components given by
lx : 1⊗ x → x, rx : x⊗ 1→ x

And these natural isomorphisms must be such that the following diagrams commute for all x, y, w, z ∈
C

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

αx,1,y

rx⊗idy

idx ⊗ly

(w⊗ x)⊗ (y⊗ z)

((w⊗ x)⊗ y)⊗ z (w⊗ (x⊗ (y⊗ z)))

(w⊗ (x⊗ y))⊗ z w⊗ ((x⊗ y)⊗ z)

αw,x,y⊗zαw⊗x,y,z

αw,x,y⊗idz

αw,x⊗y,z

idw ⊗αx,y,z

Definition 2.0.3. A lax monoidal functor is a functor F : C → D between monoidal categories
(C,⊗C, 1C), (D,⊗D, 1D), together with a natural transformation with components

φx,y : Fx⊗D Fy→ F(x⊗x y)

and a morphsim ψ : 1D → F(1C), such that the following diagrams commute:
Associativity:
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(F(x)⊗D F(y))⊗D F(z) F(x)⊗D (F(y)⊗D F(z))

F(x⊗C y)⊗C F(z) F(x)⊗D F(y⊗C z)

F((x⊗C y)⊗C z) F(x⊗C (y⊗C z))

αD
F(x),F(y),F(z)

φx,y⊗id id⊗φy,z

φx⊗Cy,z φx,y⊗Cz

F(αC
x,y,x)

Unitality:

1D ⊗D F(x) F(1C)⊗D F(x)

F(x) F(1C ⊗C x)

ψ⊗id

lF(x)D φ1C ,x

F(lC
x )

F(x)⊗d 1d F(x)⊗D F(1C)

F(x) F(x⊗C 1C)

id⊗ψ

rF(x)D φx,1C

F(rC
x )

The natural transformation φ and the morphism ψ are called the monoidal coherence maps. An oplax
monoidal functor is a lax monoidal functor Cop → Dop.

Definition 2.0.4. Let C be an essentially small abelian category. The Grothendieck group of C, de-
noted G(C), is the abelian group with one generator for each isomorphism class [a] of objects a ∈ C,
and one relation [b] ∼ [a] + [c] for every short exact sequence

0→ a→ b→ c→ 0.

G(C) has a natural translation invariant ordering given by [a] ≤ [b] whenever there is a morphism
[a]→ [b] which forms the second morphism of a short exact sequence as above.

Definition 2.0.5. Given a functors F : C → D, G : C → C′, the right Kan extension of F along G is a
pair (F̃, φ) where F̃ is a functor F̃ : C′ → D, and φ is a natural transformation φ : F̃ ◦ G → F which
is universal in the folowing sense: Given a pair (H, ψ) which satisfies the same conditions as (F, φ),
there exists a unique natural transformation ρ : H → F̃ such that ψ = φ ◦ ρ.

C′

C D
F̃

H

G

F

We will use a number of ideas from topology throughout the thesis. The reader is assumed to be
broadly familiar with simplicial complexes and homology, otherwise [22] provides a comprehensive
introduction.

Definition 2.0.6. A multifiltered space is a topological space X along with a family of subspaces
{Xv}v∈Nr such that Xv ⊂ Xw whenever v ≤ w

Definition 2.0.7. A pseudometric on a metric space X is a map d : X× X → R≥0 such that

• d(x, x) = 0∀x ∈ X.

• d(x, y) = d(y, x)∀x, y ∈ X.

• d(x, y) ≤ d(x, z) + d(z, y)∀x, y, x ∈ X.



Chapter 2. Preliminaries and Background 7

In particular, it is a metric without the requirement that d(x, y) = 0 =⇒ x = y. Its is called an
extended pseudometric if its codomain is R≥0 ∪∞.

We will also be using some ideas from algebra, particularly multigraded rings and modules.

Definition 2.0.8. An r-graded ring is a ring R with a decomposition of abelian groups

R ∼=
⊕

v∈Nr

Rv

such that Ru · Rv ⊂ Ru+v

A 1-graded ring is just called a graded ring.

Definition 2.0.9. A multigraded module over R is a module M with a vector space decomposition

M =
⊕

v∈Nr

Mv

such that Rw ·Mv ⊂ Mw+v. A module homorphism that preserves the multigrading is a homorphism
of multigraded modules. Elements of the summands Mv are called homogeneous elements.
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Chapter 3

One-dimensional Persistence

3.1 Motivation

The theory of one-dimensional persistence is well studied. Here we give an introduction to this
theory and build up to the proof of the isometry theorem, one of the most important theorems in
one-dimensional persistence. Fix a ring R with unit throughout this section.

Definition 3.1.1. Let X be a simplicial complex with a filtration

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

Then the (p, q)-persistent kth homology group of X with coefficients in R, denoted Hp,q
k (X, R), is

defined as the image of the map
i : Hk(Xp, R)→ Hk(Xq, R)

where i is the map induced from the inclusion Xp ↪→ Xq.

There is another definition of persistent homology which is perhaps a bit more illustrative. First
of all, recall that given a simplicial complex X, we can associate to it a chain complex

· · · Ci+1 Ci Ci−1 · · ·di+2 di+1 di

where Ci is the free group on the i-simplices of X. Then we have the groups Zk(X) = Zk(C•) = ker dk
and Bk(X) = Bk(C•) = im dk+1. Then of course Hk(X, R) = Zk(X)/Bk(X). We can also define the
(p, q)-persistent kth homology group of a filtered complex X as

Hp,q
k (X) ∼= Zk(Xp, R)/(Bk(Xq, R) ∩ Zk(Xp, R)).

From this definition we see that Hp,q
k has a generator for every k-cycle in Xp which is not mapped to a

boundary in Xq by the inclusion Xp ↪→ Xq. In particular, this definition is the same as the one above.
Note that Hp,q

k (Xi) is an R module since it is defined as the image of an R-module homomorphism.
The idea behind persistent homology is that if we fix p, and increase q we kill short-lived generators,
which are the "topological noise" of the complex.

Example 3.1.2 (Vietoris-Rips complex). Given a collection of points V ⊂ Rn (or indeed any metric
space), the Vietoris-Rips complex of these points for a value ε ∈ R, is the simplicial complex whose
k-simplices correspond to (k + 1)-tuples of points in V which are pairwise within a distance ε. An
example of how persistent homology works is to look at a filtered complex where for a given set of
points, each step in the filtration is the Vietoris-Rips complex of those points for a different ε value.
Then you can examine which homology generators are present for a large range of ε values. These
are called features of the set of points (typically a data set). The homology generators which only
exist for a small range of ε values are called noise.

♦
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ε = 0.6

ε = 1

ε = 1.6

FIGURE 3.1: The Vietoris-Rips complex for varying values of ε for some points. These
points roughly form an annulus concentrated around the unit circle. We see that the
hole in the center persists for a large range of ε, while smaller holes such as the one

present for ε = 0.6 vanish quickly.

Example 3.1.3 (Sub-level sets). Let X be a topological space, and let f : X → R be a function. For
each t ∈ R, we have the sublevel set

(X, f )t = f−1((−∞, t]) = {x ∈ X| f (x) ≤ t}

Note that if a ≤ b, then f−1((−∞, a]) ⊂ f−1((−∞, b]), and so this defines a real-indexed filtration of
X. ♦

Example 3.1.4 (Čech complex). Given a collection of points in V ⊂ Rn (or indeed any metric space),
the Čech complex of these points for a value ε ∈ R, is the simplicial complex whose k-simplices
correspond to (k+ 1)-tuples of points in V whose closed ε/2-neighhbourhoods have a common point
of intersection. ♦

Definition 3.1.5. Let (P,≤) be a partially ordered set. A P-persistence module is a family of P-
indexed R-modules (Mi)i∈P along with module homomorphisms

vt
s : Ms → Mt

whenever s ≤ t such that vt
s ◦ vs

r = vt
r and vt

t is the identity on Mt.
In particular, a persistence module is a functor from (P,≤) to the category of R-modules. We will
sometimes use both the index notation and functor notation i.e. Mt and M(t) mean the same thing.
The R−modules Mi are called the components of M, and the maps vt

s = M(s ≤ t) are called the
structure maps.
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FIGURE 3.2: [8] Comparison of the Čech complex (left) and Vietoris-Rips complex
(right) of a set of points in the plane for a particular value of ε.

We will generally be concerned with persistence modules over R or some subset of R. If a persistence
module is indexed over N it is called a discrete persistence module.
If M is a P-persistence module and Q ⊂ P, then we get a Q-persistence module by considering only
those R-modules and maps in M with indices in Q. This is called the restriction of M to Q, denoted
MQ.

Given a persistence module M, we denote by M[a] the a-shift of M, defined as

M[a]i = Mi+a, M[a](s ≤ t) = M(s + a ≤ t + a)

Note that a discrete persistence module M is entirely defined by the diagram

· · · Mt−1 Mt Mt+1 · · ·M(t−2≤t−1) M(t−1≤t) M(t≤t+1) M(t+1≤t+2)

Persistence modules are the central algebraic objects of study in the field of persistent homology.

Definition 3.1.6. A morphism of persistent modules M, N is a natural transformation φ : M→ N.

We can now consider the collection of R-persistence modules as a category, with morphisms as
per the definition above. As with any category, we define an isomorphism of persistence modules to
be a morphism with an inverse. This category is an abelian category, and it inherits this structure from
the category of R modules. For example, given two persistence modules M and N, their product is the
persistence module with modules given by MiΠNi, and structure maps given by M(s ≤ t)ΠN(s ≤
t).

Example 3.1.7. Given a filtered complex

0 ⊂ X1 ⊂ · · · ⊂ Xn = X

we can define a persistence module M : (N,≤)→ R−mod by

Mi = Hk(Xi, R), M(i ≤ j) = ι
j
i .

Where ι
j
i is induced from the inclusion Xi ↪→ Xj. This is the canonical example to keep in mind as it

is in practice how persistent homology is applied to a data set. ♦
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Example 3.1.8. Interval Modules Let [a, b) ⊂ R be a half-open interval. Then the interval functor
[a, b) : R→ R-mod is a persistence module. This will turn out to be an important example. ♦

We will often want to impose some finiteness conditions on persistence modules, the following
are some such conditions.

Definition 3.1.9. A persistence module M is called q-tame if

rt
s := rank M(s ≤ t) < ∞ whenever s < t

Definition 3.1.10. A persistence module M is locally finite if it is a direct sum of interval modules,
and any bounded subset of R intersects only finitely many of the intervals.

Definition 3.1.11. An R-persistence module M is of finite type if there exists some m ∈ R such that
M(s ≤ t) is an isomorphism whenever s, t ≥ m.

Definition 3.1.12. An R-persistence module M is of finitely presented (generated) type if it is of finite
type and each Mi is finitely presented (generated).

We recall here the definition of a finitely presented module

Definition 3.1.13. An R module A is finitely generated if there is a surjective module morphism
φ : Rn → A for some n ∈ N. A is called finitely presented if ker φ is also finitely generated, in which
case we have an exact sequence

Rm Rn A 0
φ

3.2 The representation theorem

Given a discrete persistence module M, we can associate with it a graded R[t]-module, where R[t] is
given the usual grading ,via the map

α(M) :=
⊕
i∈N

Mi

where the R-module structure is the sum of the structures of each Mi, and where multiplication by t
is defined by t · mi := M(i ≤ i + 1)(mi) for mi ∈ Mi. Similarly, given an R[t]-module

⊕
i∈N Mi, we

get a discrete persistence module by defining a functor β from R[t]-mod to the category of discrete
persistence modules, where

β

(⊕
i∈N

Mi

)
= M

where M(i ≤ i + 1)(mi) := t ·mi.
In [6], Zomorodian and Carlsson state the following theorem

Theorem 3.2.1. The functors α and β define an equivalence of categories between the category of discrete
persistence modules of finitely generated type over R and the category of finitely generated non-negatively
graded modules over R[t]

This statement is not entirely correct, as can be demonstrated via the following counterexample,
due to [7]. Let R = Z[x1, x2, . . .] and consider the graded R[t]-module M =

⊕
i∈N Mi, where Mi =

R/(x1, . . . , xi), and where multiplication by t is the map Mi → Mi+1 given by t · f := f mod xi+1.
Now the module M is generated by {1}, but the persistence module β(M) is not of finite type, since
the inclusion Mi → Mi+1 is never an isomorphism.
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It turns out that R needs to be commutative and Noetherian for theorem 3.2.1 to hold. As can be seen
from the counterexample, the issue is that β(M) is not generally of finitely generated type whenever
M is finitely generated. In [7], Corbet and Kerber prove the following version of the representation
theorem

Theorem 3.2.2. The category of finitely presented graded R[t]-modules is isomorphic to the category of discrete
persistence modules over R of finitely presented type.

We note that this theorem, along with the following lemma, gives us theorem 3.2.1 in the case that
R is commutative and Noetherian.

Lemma 3.2.3. If R is a Noetherian ring, then every finitely generated R-module is finitely presented. If R is
also commutative, then R[t] is Noetherian.

The representation theorem now guides us in choosing suitable rings over which to take persis-
tence modules. If R is not a field, we have no simple description for the modules over R[t]. When
R = k, a field, then k[t] is a PID, so every every graded module over k[t] is of the form m⊕

j=1

tβ j · (k[t]/(tnj))

⊕( n⊕
i=1

tαi · k[t]
)

. (3.1)

In the case where a persistence module M has its components given by homology in degree k, as in
example 3.1.9, then if we work over a field k, α(M) will have the above form. The interpretation of
3.1 is that the free parts correspond to homology generators which are born at the parameter αi and
persist (i.e. do not die). The torsion elements correspond to homology generators which appear at a
parameter βi and die at βi + nj. We note also that in this case the persistent homology groups Hp,q

n
will be vector spaces over k, and are therefore fully determined by their rank. The persistence of M is
then the data of the intervals [β j, β j + nj), and we can visualize this via what we call barcodes, which
we will meet later. In particular, the persistence module corresponding to 3.1 is m⊕

j=1

[β j, β j + nj)

⊕( n⊕
i=1

k(αi,−)
)

.

Due to this nice interpretation, we will work over a fixed field k from now on, unless otherwise
specified.

3.3 The role of interval modules

Definition 3.3.1. The direct sum of two persistence modules M, N is defined by

(M⊕ N)i = Mi ⊕ Ni, (M⊕ N)(v ≤ w) = M(v ≤ w)⊕ N(v ≤ w)

Definition 3.3.2. A persistence module M is said to be indecomposable if the only direct sum decom-
positions of M are of the form M = M1 ⊕M2 are where either M1 = 0 or M2 = 0.

We will see that interval modules are the "building blocks" for persistence modules. Here we state
some facts about interval modules.

Lemma 3.3.3. Let [a, b) be an interval R-persistence module. Then End([a, b)) = k.

Lemma 3.3.4. Interval modules are indecomposable.
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Theorem 3.3.5. If a persistence module M can be decomposed into interval modules in two separate ways

M ∼=
⊕
l∈L

[al , bl) ∼=
⊕
n∈N

[an, bn)

Then there is a bijection σ : L→ N such that Jl = Kσ(n) for all l.

We wish to know when a persistence module can be written as a direct sum of interval modules,
and also with what multiplicity each interval module occurs. This will give us all the information we
need to construct the barcode of the module.
We now introduce some definitions due to [4], which will only be used in the statement of theorems
3.3.9 and 3.3.11.

Definition 3.3.6. A T-persistence module M is said to have the descending chain condition if for all
t, s1, s2, . . . ∈ T ⊂ R with t ≥ s1 > s2 > · · · , the chain

Mt ⊃ im M(s1 ≤ t) ⊃ im M(s2 ≤ t) ⊃ · · ·

stabilizes, and for all t, r1, r2, . . . ∈ T with t ≤ · · · < r2 < r1, the chain

Mt ⊃ ker M(t ≤ r1) ⊃ ker M(t ≤ r2) ⊃ · · ·

stabilizes.

Definition 3.3.7. A cut for T ⊂ R is a pair c = (c−, c+) of subsets of T such that T = c− ∪ c+ and
s < t for all s ∈ c− and t ∈ c+. Let M be a T-persistence module.

If c is a cut with t ∈ c+, we define the following subspaces of Mt:

im−ct =
⋃

s∈c−
im M(s ≤ t), im+

ct =
⋂

s∈c+,s≤t

im M(s ≤ t),

and if t ∈ c−, we define the following subspaces of Mt:

ker−ct =
⋃

r∈c−,t≤r

ker M(t ≤ r), ker+ct =
⋂

r∈c+
ker M(t ≤ r).

If c− is empty, we set im−ct = 0, and if c+ is empty we set ker+ct = Mt.
If I ⊂ T is an interval, there are uniquely determined cuts l and u with I = l+ ∩ u−. In particular

l− = {t : t < s∀s ∈ I}, l+ = {t : t ≥ s for some s ∈ I}
u+ = {t : t > s∀s ∈ I}, u− = {t : t ≤ s for some s ∈ I}.

Definition 3.3.8. Let M and T be as before. For I ⊂ T an interval, and for l = (l−, l+) and u =
(u−, u+) the unique cuts determined by I, we define the following subspaces of Mt:

V−It = (im−lt ∩ ker+ut) + (im+
lt ∩ ker−ut) V+

It = im+
lt ∩ ker+ut

The maps M(s ≤ t) induce maps on V±Is → V±It , and using these maps we can define the inverse
limit V±I = lim←−t∈I

V±It . We are now ready to state our first theorem about the decomposition of
modules as a sum of interval modules.

Theorem 3.3.9. Any persistence module M with the descending chain condition is a direct sum of interval
modules. Also, the multiplicity of [a, b) as a summand of M is equal to the dimension of V+

[a,b)/V−
[a,b).
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Remark. The proof of this statement in [4] assumes that M is a T-persistence module where T has a
countable subset which is dense in the order topology on T i.e. where T is separable. Since we are
working with T ⊂ R, this will always be the case. This is because R is a separable metric space, and
the order topology on R is the same as the standard topology. It is a general fact that any subspace
of a separable metric space is separable.

We note in particular that if M is such that each Mi is finite dimensional, or if M is a T-persistence
module where T is finite, then it satisfies the descending chain condition. We say that M is of length
n if T has cardinality equal to n. In such cases we may always assume that T = {1, 2, . . . n}. In this
case we have an easier way of determining the interval decomposition of M.

Definition 3.3.10. Let M be a peristence module of length n. The right filtration of M, denoted R(M),
is the n-tuple given by

R(M) = (im M(1 ≤ n), im M(2 ≤ n), . . . , im M(n− 1, n), Mn)

The easiest case is when all the structure maps are injective. In this case, M is called streamlined.
As we have seen from previous examples, this is the most common case in applications.

Theorem 3.3.11. [3] Let M be a streamlined persistence module of length n, and define the n-tuple c =
(c1, cn, . . . cn) such that ci is the dimension of the ith component of R(M). Then we have an isomorphism of
persistence modules

M ∼=
⊕

1≤i≤n

ci[i, n).

We can make a similar statement when M is not necessarily streamlined.

Definition 3.3.12. If M = M1 → M2 → · · · → Mn, then for m ≤ n let M/m = M1 → M2 → · · ·Mm
be the truncation of M to length m.

Theorem 3.3.13. [3] Let M be a persistence module of length n. For m < n, define the m-tuple (cm
1 , cm

2 , . . . , cm
m)

such that cm
i is the dimension of R(M/m)i ∩ ker M(m ≤ m + 1), i.e. the dimension of im M(i, m) ∩

ker M(m ≤ m + 1). When m = n, then cn
i = ci where ci is as in the previous definition. Then we have

an isomorphism
M ∼=

⊕
1≤i≤m≤n

cm
i [i, m)

Example 3.3.14. Consider the persistence module M : {1, 2, · · · , n} → Vectk given by

Mt =

{
k2 t = 2, 3
k otherwise

where M(1 ≤ 2) =
[
1 0

]
, M(3 ≤ 4) =

[
1
0

]
and all other structure maps are the identity. By

inspection, we can see that
M ∼= [1, n]⊕ [2, 3].

We can verify this using the methods described above. Setting the interval I = [2, 3], to find its
multiplicity we need to compute V+

I , V−I . First we see that the cuts u, l for the interval I are given by

l− = {1} l+ = {2, 3, . . . n}
u− = {1, 2, 3} l+ = {4, 5, . . . n}.
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These cuts determine the following values

im+
l2 = k2 im+

l3 = k2

im−l2 = k⊕ 0 im−l3 = k⊕ 0

ker+u2 = 0⊕ k ker+u3 = 0⊕ k

ker−u2 = 0 ker−u3 = 0.

And now we can compute

V+
I2 = k, V+

I3 = k =⇒ V+
I = k

V−I2 = 0, V−I3 = k =⇒ V−I = 0.

This gives us the result that we were expecting. Similarly we can show that the multiplicity of [1, n] is
1, and all other intervals have multiplicity 0. Using the second method described above, we first note
that the right filtration of M is R(M) = (k, k, . . . , k). Now M ∼=

⊕
1≤i≤m≤n cm

i [i, m] as per Theroem
3.3.13, where

c3
2 = R(M/3)2 ∩ ker M(3 ≤ 4) = k2 ∩ k = k,

cn
1 = c1 = k.

Since ker M(m ≤ m + 1) = 0 whenever m 6= 3, the only other interval with non-zero mulitplicity
must be of the form [i, 3]. Now c3

1 = (k⊕ 0) ∩ (0⊕ k) = 0, and so M ∼= [1, n]⊕ [2, 3]. ♦

So to recap, we now have an explicit decomposition of a persistence module M whenever M is
of length n for some n ∈ N, and whenever M satisfies the descending chain condition. In particular,
this includes the case where each Mi is finite dimensional. Thus we are at the very least justified in
using persistent homology in practical applications, where every thing is necessarily finite.

Example 3.3.15. We now consider an example of a persistence module with no interval decomposi-
tion, due to [23]. Define a Z≤0-persistence module M by

M0 = {sequences of real numbers (x1, x2, . . .)}
M−n = {sequences with x1 = · · · = xn = 0}

The maps M(−m ≤ −n) are the inclusion maps M−m ↪→ M−n. Assume M has an interval decom-
position. Since M is streamlined, each of the intervals must be of the form [−n, 0] or (−∞, 0]. Since
dim(M−n/M−n−1) = 1, each interval module occurs with multiplicity 1. Since

⋂
n∈Z≤0

M−n = {0},
the interval (− inf, 0] does not occur at all. This would imply that M ∼=

⊕
n≥0[−n, 0], but this contra-

dicts the fact that dim(M0) is uncountable. Note that M clearly does not satisfy the descending chain
condition. ♦

Definition 3.3.16. If a persistence module M can be decomposed as a direct sum of interval modules

M ∼=
⊕
n∈N

[an, bn)

Then we define the persistence barcode of M to be the multiset

bar(M) = {(an, bn) ∈ R2|n ∈ N}.

Theorem 3.3.5 tells us that this is invariant under isomorphism, and indeed every possible mul-
tiset of intervals in T ⊂ R gives an isomorphism class of T-persistence modules. There are two
common ways to represent the data of bar(M): a barcode diagram, and by plotting the points of
bar(M) in the plane, often referred to as a persistence diagram.
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FIGURE 3.3: The barcode (left) and persistence diagram (right) of the points in figure
3.1

Example 3.3.17. Consider again the points in figure 3.1. Their persistence diagram and barcodes
are given by the two diagrams in figure 3.3 above. In both diagrams black represents H0 and red
represents H1. We can see that there is clearly one generator of H1 which persists for a long range
of ε, representing the hole in the ring of points. The short lived generator of H1 is noise, as it does
not contribute to our image of these points as a circle. Note that there will always be a H0 generator
which does not die. ♦

So now we have seen the full process of going from a data set to a visualisation of the shape
of the data, sometimes referred to as the "persistence pipeline". Given a data set in the form of a
point cloud, we build the Vietoris-Rips complex for varying values of our parameter ε. We apply
the functors Hi(−) to the complex at each value of ε, which gives us a persistence module. We then
compute the barcode of this module and plot it.

Point cloud

Simplicial Complex

Persistence module

Barcode/Persistence diagram

Vietoris -Rips Čech

H0 H1

3.4 Interleaving

The idea of interleaving was first introduced in [5].
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Definition 3.4.1. Let M, N be R-persistence modules, and let δ ∈ R. A persistence module homo-
morphism of degree δ is a family of maps φt : Mt → Nt+δ such that the following diagram commutes
for all s < t

Ms Mt

Ns+δ Nt+δ

φs φt

where the unlabelled maps are the structure maps.

So in other words it is a persistence module homomorphism M → N[δ]. We denote the degree δ

morphisms M → N by Homδ(M, N), and we define Endδ(M) similarly. Composition is then given
by a map

Homδ1(M, N)×Homδ2(L, M)→ Homδ1+δ2(L, N).

Example 3.4.2. The shift map 1δ
M ∈ Endδ(M) is the collection of the structure maps of M of the form

M(s ≤ s + δ). ♦

Note that if φ ∈ Homε(M, N) for any ε ∈ R, then φ ◦ 1δ
M = 1δ

N ◦ φ for all δ ≥ 0. This is just a
reformulation of the commutativity condition in definition 3.4.1.

Definition 3.4.3. Two persistence modules are δ-interleaved if there are homomorphisms φ ∈ Homδ(M, N), ψ ∈
Homδ(N, M) such that

ψ ◦ φ = 12δ
M, φ ◦ ψ = 12δ

N

Explicitly, we have maps
φt : Mt → Nt+δ, ψt : Nt → Mt+δ

which satisfy the commutativity condition in definition 3.4.1, and the following diagrams commute.

Ms−δ Ms+δ

Ns

φs−δ

M(s−δ≤s+δ)

ψs

Ns−δ Ns+δ

Ms

ψs−δ

N(s−δ≤s+δ)

φs

To write things more succinctly, a δ-interleaving between two persistence modules M and N is the
following data

φ ◦ 1ε
M = 1ε

N ◦ φ, ψ ◦ 1ε
N = 1ε

M ◦ ψ, ψ ◦ φ = 12δ
M, φ ◦ ψ = 12δ

N (3.2)

where φ ∈ Homδ(M, N), ψ ∈ Homδ(N, M) and the first two relations hold for any ε ∈ R.

Example 3.4.4. Let X be a topological space, and f , g : X → R be functions. Consider the persis-
tence modules we get by applying Hn(−) to the filtrations ((X, f )t)t∈R and ((X, g)t)t∈R of X. We
denote these by Hn((X, f )) and Hn((X, g)) respectively, where Hn((X, f ))t = Hn((X, f )t), where
here we are viewing the persistence module as a functor from (R,≤). Note that we leave out the
coefficients, since we have already stated that we are working over a fixed field k. If || f − g||∞ < δ,
then Hn((X, f )) and Hn(X, g)) are δ-interleaved. Note that we have an inclusion (X, f )t ⊂ (X, g)t+δ.
To see this, let x ∈ (X, f )t, so f (x) ≤ t. Now if g(x) ≤ f (x), then g(x) ≤ t =⇒ g(x) ≤ t + δ, and
so x ∈ (X, g)t+δ. If f (x) < g(x), then g(x)− f (x) < δ =⇒ g(x) < f (x) + δ =⇒ g(x) < t + δ,
and so once again we have x ∈ (X, g)t+δ. Similarly, we have an inclusion (X, g)t ⊂ (X, f )t+δ. These
inclusions induce morphisms of degree δ

φ : Hn((X, f ))→ Hn((X, g)), ψ : Hn((X, g))→ Hn((X, f ))

Since these maps are induced by inclusion maps, the interleaving relations 3.2 are satisfied. ♦
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An interleaving of two persistence modules can itself be associated to a persistence module over
a particular poset. Consider the partial order on R2

(a1, b1) ≤ (a2, b2)⇔ a1 ≤ a2 and b1 ≤ b2.

For any x ∈ R, define the x-shifted diagonal as

∆x = {(a, b) ∈ R2| b− a = 2x}

The category (∆x,≤) is equivalent to (R,≤) via the map t→ (t− x, t + x) ∈ ∆x.

Proposition 3.4.5 ([1]). Let x, y ∈ R. Persistence modules M, N are |y− x|-interleaved if and only if there
is a ∆x ∪ ∆y-persistence module L such that L|∆x = M and L|∆y = N.

3.5 Interpolation and the isometry theorem

Theorem 3.5.1. Any persistence module L over ∆x0 ∪∆x1 extends to a persistence module L̃ over the diagonal
strip

∆[x0,x1] = {(p, q) ∈ R2|x0 ≤ q− p ≤ 2x1}

Proof. We can interpret this theorem as a functor extension theorem by regarding the posets ∆x0 ∪
∆x1 and ∆[x0,x1] as categories. Persistence modules over these posets are functors to the category of
vector spaces, so the theorem asserts the existence of an extension L̃ of any functor L in the following
diagram

∆[x0,x1]

∆x0 ∪ ∆x1 Vectk

L̃

L

With this view, we can now apply Kan extensions to prove the theorem. It is a well known fact about
Kan extensions that given a functors F : C → D, G : C → C′, then if C is small and D is complete, then
F has a right Kan extension along G. Similarly, if D is cocomplete then F has a left Kan extension along
G [24]. Upon noting that Vectk is both complete and co-complete, we immediately get the theorem.
Note that this also proves that L̃ may in general not be unique.

We now get the interpolation lemma of [5] as a corollary of theorem 3.5.1.

Lemma 3.5.2 (Interpolation lemma). Suppose M, N are a δ-interleaved pair of persistence modules. Then
there exists a family of persistence modules (Mx|x ∈ [0, δ]) such that M0 = M and Mδ = N, and Mx, My

are |x− y|-interleaved for all x, y ∈ [0, δ].

Proof. If M, N are δ-interleaved, then there is a persistence module L over ∆0 ∪∆δ such that L|∆0 = M
and L|∆δ

= N. By theorem 3.5.1, this extends to a persistence module L̃ over the strip ∆[0,δ]. We then
can define a family of persistence modules by Mx = L̃|∆x , and Mx, My are |y− x|- interleaved for all
x, y ∈ [0, δ] by proposition 3.4.5.
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3.5.1 Interleaving distance

If M and N are a pair of δ-interleaved persistence modules, then they are (δ + ε)-interleaved for all
ε > 0. Indeed, if φ, ψ are the δ-interleaving maps, then

φ′ = φ ◦ 1ε
M = 1ε

N ◦ φ

ψ′ = ψ ◦ 1ε
N = 1ε

M ◦ ψ

give a (δ + ε)-interleaving. We wish to find the minimum δ for which two persistent modules are
δ-interleaved. However as we will see, this minimum is not always attained. This leads us to the
following definition.

Definition 3.5.3. Two persistence modules M, N are called δ+-interleaved if they are (δ+ ε)-interleaved
for all ε > 0.

It is clear from the definition that δ-interleaved implies δ+-interleaved. In general, the converse
does not hold.

Example 3.5.4. Two persistence modules are 0-interleaved iff they are isomorphic. ♦

Example 3.5.5. Let M, N be two non isomorphic persistence modules which have all structure maps
equal to the zero map. Then M and N are 0+-interleaved, but not 0-interleaved. The zero maps
provide an ε-interleaving for all ε > 0 since 12ε

M = 12ε
N = 0. ♦

Definition 3.5.6. The interleaving distance between two persistence modules is defined as

dI(M, N) = inf{δ|M, N are δ- interleaved}
= min{δ|M, N are δ+- interleaved}

Proposition 3.5.7 ([1]). The interleaving distance satisfies the triangle inequality. In particular, given three
persistence modules M, N and L, we have

dI(M, L) = dI(M, N) + dI(N, L)

So the interleaving distance is a pseudometric. Indeed, it is an extended pseudometric if we
define dI(F, G) = ∞ whenever F, G are not δ-interleaved for any δ. But as the next example will
show, it is not a metric since dI(M, N) = 0 does not imply that M ∼= N.

Example 3.5.8. The four interval modules [p, q], [p, q), (p, q], (p, q) are 0+ interleaved, but not isomor-
phic.

Proof. It is clear that none of the four interval modules are isomorphic. Consider the persistence
modules [p, q], [p, q). We wish to show that these modules are ε-interleaved for every ε > 0. This
amounts to showing that the following diagrams commute for every ε > 0

[p, q]t [p, q]t+2ε

[p, q)t+ε

[p, q)t [p, q)t+2ε

[p, q]t+ε

where all the maps are the identity map where possible, or otherwise 0. Consider the left hand
diagram. We have four cases:

• Whenever t 6∈ [p, q] two of the map are zero, so the diagram commutes.



3.5. Interpolation and the isometry theorem 21

• If t = q, then t + ε 6∈ [p, q), and t + 2ε 6∈ [p, q], so the diagram commutes because all the maps
are 0.

• If t + 2ε 6∈ [p, q], then again two of the map are zero, so the diagram commutes.

• If t ∈ [p, q) and t + 2ε ∈ [p, q], then t + ε ∈ [p, q), therefore all the maps are the identity, so the
diagram commutes.

The right hand diagram commutes for similar reasons. It can be shown that the other interval mod-
ules are pairwise 0+-interleaved by the same argument.

♦

Proposition 3.5.9. Let (Mi|i ∈ I), (Ni|i ∈ I) be two families of persistence modules for some indexing set I.
Let

M =
⊕
i∈I

Mi N =
⊕
i∈I

Ni.

Then
dI(M, N) ≤ supi∈I dI(Mi, Ni)

Proof. Given interleaving maps φi, ψi for each pair Mi, Ni, then φ = ⊕i∈Iφi, ψ = ⊕i∈Iψi are interleav-
ing maps for M, N. So it is clear that any upper bound on the values dI(Mi, Ni) is also an upper
bound for dI(M, N).

3.5.2 Bottleneck distance

Recall that given a persistence module M, the multiset bar(M) is composed of points in the plane
corresponing to intervals [p, q). In particular, it is a subset of the extended open half plane

H◦ = {(p, q)| −∞ ≤ p < q ≤ ∞}

We wish to describe two barcodes as being close if there is a bijection between them which does not
move any point too far. For this purpose we use the l∞ norm in the plane:

d∞((p, q), (r, s)) = max(|p− r|, |q− s|)

Points at infinity are compared in the following way:

d∞((−∞, q), (−∞, s)) = |q− s|
d∞((p, ∞), (r, ∞)) = |p− r|
d∞((−∞, ∞), (−∞, ∞)) = 0

The extended open half plane is divided into 4 strata, which are H◦ intersected with the following
spaces

R×R, {−∞} ×R, R× {∞}, {−∞} × {∞}.

Distances under d∞ between points in different strata are defined to be infinite. We relate points to
the diagonal as follows:

d∞((p, q), ∆) =
1
2
(q− p)

Proposition 3.5.10. Let M = [p, q), N = [r, s). Then

dI(M, N) ≤ d∞((p, q), (r, s)).
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Proof. Let p, q, r, s be finite. We must show that if δ > max(|p− r|, |q− s|) then M, N are δ-interleaved.
Define families of linear maps

φ = (φt : Mt → Nt+δ)

ψ = (ψt : Nt → Mt+d)

by

φt =

{
id Mt = Nt+δ = k
0 otherwise

and ψt is defined similarly. We have to show that these satisfy the interleaving relations (3.2). We
first need to show that φ and ψ are in fact persistent module homomorphisms. Showing φ is a
homomorphism amounts to showing that the following diagram commutes

Mt Mt+η

Nt+δ Nt+η+δ

φt φt+δ

This clearly commutes as long as the two following criteria are met

Nt+δ = 0⇔ one of the other modules = 0
Mt+η = 0⇔ one of the other modules = 0

Consider the case Nt+δ = 0. If none of the others are 0, then p ≤ t. Also we have t + δ < r or
s ≤ t + δ. The latter cannot be true since by assumption we have r ≤ t + η + δ < s, therefore
the former must be the case. This implies that t− p + δ < r − p =⇒ δ < r − p. But δ > r − p by
assumption, so this is impossible. Similarly, if Mt+η = 0 and none of the other modules are zero, then
q ≤ t + η, t + η + δ ≤ s. But δ > s− q, so this is impossible. Therefore φ is a module homomorphism,
and by a similar argument so is ψ.
We also require the following relations to be satisfied:

ψ ◦ φ = 12δ
M, φ ◦ ψ = 12δ

N

The first is equivalent to the following diagram commuting

Mt Mt+2δ

Nt+δ

φt ψt+δ

This diagram commutes as long as we don’t have Nt+δ = 0 and Mt = Mt+2δ = k. If that were the
case, the top row would imply p ≤ t and t + 2δ < q. Now note that if r ≤ p, then since Nt+δ = 0 and
Mt+2δ = k, then s ≤ t + δ < t + 2δ < q. However this is impossible since δ > |q− s|. So r > p. By a
similar argument, q > s. So we have δ > r− p and δ > q− s. Therefore must be true that

r ≤ p + δ ≤ t + δ ≤ q− δ < s

and so Nt+δ = k, a contradiction. It follows that ψ ◦ φ = 12δ
M, and similarly φ ◦ ψ = 12δ

N . The case
where p, q, r, s, t are allowed to be infinite is similar.

Note that this proposition provides another proof of the statement in example 3.5.8, since the
necessary < terms can be changed to ≤, and nothing in the proof changes.
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Proposition 3.5.11. Let M = [p, q), and let 0 denote the zero module. Then

dI(M, 0) =
1
2
(q− p)

Proof. Let δ ≥ 0. If there is a δ-interleaving, then the interleaving maps must be zero maps. So
ψ ◦ φ = 12δ

M = 0. This is true whenever δ > 1
2 (q− p).

Definition 3.5.12. Given two sets A, B, a partial matching between them is a collection of pairs Γ ⊂
A× B such that

• For every α ∈ A there is at most one β ∈ B s.t. (α, β) ∈ Γ.

• For every β ∈ B there is at most one α ∈ A s.t. (α, β) ∈ Γ.

Such a partial matching is called a δ-matching if in addition the following is true

• (α, β) ∈ Γ =⇒ d∞(a, b) ≤ δ

• If α ∈ A is unmatched (so there is no β ∈ B s.t (α, β) ∈ Γ), then d∞(α, ∆) ≤ δ.

• If β ∈ B is unmatched, then d∞(β, ∆) ≤ δ.

In practice we are interested in δ-matchings between diagrams of persistence modules, which are
multisets rather than sets. We can go from multisets to sets by distinguishing each occurence of an
element in the multiset. For example, if x ∈ X occurs with multiplicity n, this gives rise to n distinct
elements x1, . . . , xn in X considered as a set.

Definition 3.5.13. The bottleneck distance between two multisets A, B in H◦ is defined as

db(A, B) = inf{δ|∃ a δ−matching between A and B}.

Proposition 3.5.14 ([1]). The bottleneck distance satisfies the triangle inequality, i.e.

db(A, C) ≤ db(A, B) + db(B, C)

for three multisets A, B, C.

Theorem 3.5.15. Let M, N be decomposable persistence modules. Then

dI(M, N) ≤ db(dgm(M), dgm(N))

Proof. Let Γ be a δ-matching between bar(M), bar(N). Now each point in the barcodes correspond
to an interval summand in the decomposition of the persistence modules. Write

M =
⊕
j∈J

Mj, N =
⊕
j∈J

N j

so that each pair (Mj, N j) is either:

• A pair of matched intervals under the δ-matching M.

• Mj is unmatched and N j = 0.

• N j is unmatched and Mj = 0.

Then dI(Mj, N j) ≤ δ for all j ∈ J by Proposition 3.5.10. Then by Proposition 3.5.9, dI(M, N) ≤ δ, as
required.
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3.5.3 Persistence measure

Definition 3.5.16. Let M be an R-persistence module. Then the persistence measure of M, denoted
µM, is the function

µM(R) = multiplicity of [b, c) in M{a,b,c,d}

where R = [a, b]× [c, d] ⊂ R2 with a < b < c < d.

Proposition 3.5.17. Let M = [p, q) and R = [a, b]× [c, d] where a < b < c < d. Then

µM(R) =

{
1 [b, c] ⊂ [p, q) ⊂ (a, d)
0 otherwise

Proof. It is clear that M{a,b,c,d} is either an interval or 0. Thus µM(R) ≤ 1. Moreover, µM(R) = 1
precisely when M{a,b,c,d} is 0 on a, d and k on b, c. This happens iff [b, c] ⊂ [p, q] ⊂ (a, d). Note that
we stated the theorem for a half open interval M, but the proof clearly also works when M is open
or closed.

Corollary 3.5.18. Let M be a decomposable R-persistence module. Then µM(R) = | bar(M) ∩ R|

Proposition 3.5.19 ([1]). Let M be a persistence module, a < b < c < d. If rc
b < ∞ , and R = [a, b]× [c, d].

Then
µM(R) = rc

b − rc
a − rd

b + rd
a

The following proposition is the reason why we call µM a measure.

Proposition 3.5.20 ([1]). µM is additive under horizontal and vertical splitting of rectangles, i.e.

µM([a, b]× [c, d]) = µM([a, p]× [c, d]) + µM([p, b]× [c, d])
µM([a, b]× [c, d]) = µM([a, b]× [c, q]) + µM([a, b]× [q, d])

where a < p < b < c < q < d.

Since persistence diagrams sit in H◦, we also want to be able to talk about intervals with a = −∞
and d = ∞. We do so by setting

M−∞ = 0, M∞ = 0 for any R-module M.

Then using Proposition 3.5.19 gives

µM([−∞, b]× [c, ∞]) = rc
b

µM([a, b]× [c, ∞]) = rc
b − rc

a

µM([−∞, b]× [c, d]) = rc
b − rd

b

3.6 The isometry theorem

Theorem 3.6.1 (The Isometry Theorem). Let M, N be q-tame persistence modules. Then

dI(M, N) = db(bar(M), bar(N))

The isometry theorem is in fact a combination of two theorems; the stability theorem and the
converse stability theorem.



3.6. The isometry theorem 25

3.6.1 The stability theorem

Theorem 3.6.2 (The Stability Theorem). Let M, N be q-tame persistence modules. Then

dI(M, N) ≥ db(bar(M), bar(N))

This theorem, along with the converse stability theorem will give us the Isometry Theorem. The
proof will follow closely the strategy of [1], [5]. The original proof [9] considered only the case where
the persistence modules arose from the sublevel sets of functions f , g : X → R where X is a triangu-
lable topological space and f , g were continuous and had only finitely many critical values. This was
generalised by [5] to the case which we are interested in, namely for q-tame persistence modules. It
was further generalised in [1] to a statement about rectangular measures, a notion introduced in the
same paper. Here we will provide a proof in the same generality as [5] while avoiding some technical
tools introduced in [5], [1]. The primary tools we need are the Interpolation lemma, which we have
already proven, and the box lemma (Lemma 3.6.5).

Definition 3.6.3. Let R = [a, b]× [c, d] be a rectangle in H◦. The δ-thickening of R is the rectangle

Rδ = [a− δ, b + δ]× [c− δ, d + δ].

Given the above situation, we write

A = a− δ, B = b + δ, C = c− δ, D = d + δ

Lemma 3.6.4 (Box lemma [1], [9]). Let M, N be a pair of δ-interleaved persistence modules. Let R be a
rectangle whose δ-thickening Rδ lies above the diagonal. Then µM(R) ≤ µN(Rδ), and similarly µN(R) ≤
µM(Rδ).

This result extends to rectangles whose δ-thickening doesn’t lie above the diagonal by setting
µM(Rδ) = ∞ in such cases. We are now ready to prove the stability theorem.

proof of The Stability Theorem. By the interpolation lemma, we know that there exists an interpolating
family of persistence modules (Mx|x ∈ [0, δ]) such that M0 = M, Mδ = N and Mx, My are |y− x|-
interleaved.
We must split the proof into 4 cases; a case for each strata of H◦. Assume for the moment that
bar(M), bar(N) ⊂H◦ ∩R2.

Claim 3.6.5. The following two properties hold:

• If α ∈ bar(Mx) and d∞(α, ∆) > |x− y|, then there exists a β ∈ bar(My) with d∞(α, β) ≤ |y− x|.

• If β ∈ bar(My) and d∞(β, ∆) > |x− y|, then there exists an α ∈ bar(Mx) with d∞(α, β) ≤ |y− x|.

Proof. We prove only the first statement, since the second follows by symmetry. First, some notation:
Let Sδ(α) denote the square centred at α with side length 2δ. In other words, if α = (p, q) then:

Sδ(α) = [p− δ, p + δ]× [q− δ, q + δ].

Also let η = |x − y|. Now, given an α as in the claim, let ε > 0 be small enough such that η + ε <
d∞(α, ∆). Then the box lemma gives

1 ≤ µMx(Sε(α)) ≤ µMy(Sη+ε(α)).

Since this is true for all sufficiently small ε > 0, there is at least one point β ∈ bar(My) which is
contained in Sη(α).
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Claim 3.6.6. The theorem holds if bar(Mx) has finite cardinality for each x ∈ [0, δ].

Proof. We will prove this using the following fact:

• We claim that for every x ∈ [0, δ], there is a real number δx > 0 such that bar(Mx), bar(My) are
|y− x|-matched whenever |y− x| < δx.

To show this, we first enumerate the distinct elements of bar(Mx) by α1, α2, . . . αk, and we denote
their respective multiplicities by n1, n2, . . . nk. Then we can define

δx = 1/2 min({d∞(αi, ∆)|αi ∈ bar(Mx)} ∪ {d∞(αi, αj)|αi, αj ∈ bar(Mx)})

Now assume |y − x| < δx. We want to show that bar(Mx), bar(My) are |y − x|-matched. Let η =
|y− x|, and define

∆η := {α ∈H◦|d∞(α, ∆) ≤ η}.

By the claim 3.6.6, we know that bar(My) is contained in

∆η ∪ Sη(α1) ∪ · · · ∪ Sη(αk).

By the definition of δx, the terms in the above union are all disjoint. Now let ε > 0 be small enough
such that 2η + ε < 2δx. Then by the box lemma we have

ni = µMx(Sε(αi)) ≤ µMy(Sη+ε(αi)) ≤ µMx(S2η+ε(αi)) = ni.

Since the two outside terms are equal, they must also be equal to the middle term. Thus Sη(αi)
contains the same number of points (with multiplicity) of bar(MX) as bar(My). By mapping each of
the ni copies of αi to a point of bar(My) that is contained in Sη(αi), we can define a bijection, and in
fact an η-matching between the two multisets.
Equipped with this statement, we are ready to prove that the theorem holds in the finite case. Let

m = sup{x ∈ [0, δ]| bar(M0), bar(Mx) are x−matched}

We wish to show that m = δ. First of all, if δ0 ≥ δ, then m = δ. So assume δ0 < δ. It is clear that
m is positive since m ≥ δ0. Let 0 < m′ < m be such that bar(M0), bar(Mm′) are m′-matched and
m− m′ < δm. Then applying the triangle inequality, we see that bar(M0), bar(Mm) are m-matched.
Now suppose that m < δ. We again apply fact 1 to 0 < m < m′′ where m′′ −m < δm to deduce that
bar(M0) bar(Mm′′) are m′′-matched. However this contradicts the maximality of m, thus we must
have m = δ, and thus bar(M0), bar(Mδ) are δ-matched.

Claim 3.6.7. The theorem holds in the general case, i.e. the persistence diagrams need not have finite cardinal-
ity.

Proof. Let U = (Un)n∈N be an open cover of H◦ ∩R2 such that Un ⊂ Un+1 and each Un has compact
closure. Since M0, Mδ are q-tame, we have

rc
b = µM([−∞, b]× [c, ∞]) < ∞

and it follows that | bar(M0) ∩Un|, | bar(Mδ) ∩Un| are finite for all n ∈ N. Denote by M0,n, Mδ,n the
persistence modules which have bar(M0) ∩Un, bar(Mδ) ∩Un as their persistence diagrams, respec-
tively. Then we can choose the open cover U such that the interleaving maps between M0, Mδ restrict
to δ-interleaving maps between M0,n, Mδ,n. So by the previous claim, we have a δ-matching between
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bar(M0)∩Un, bar(Mδ)∩Un for every n ∈ N. Call this matching Γn. We can now take a limit of these
matchings to get a δ-matching Γ between bar(M0), bar(Mδ) as follows: We have indicator functions

χ : bar(M0)× bar(Mδ)→ {0, 1}
χn : bar(M0,n)× bar(Mδ,n)→ {0, 1}

for Γ and Γn respectively. Take a fixed enumeration ((αj, β j))j∈J of the countable set bar(M0) ×
bar(Mδ). We will construct a descending chain

N = N0 ⊃ N1 ⊃ N2 ⊃ · · ·

of infinite subsets of N such that χn(αj, β j) takes the same value for all n ∈ Nj. We then define
χ(αj, β j) to be this common value. We will then define Γ via this indicator function.
We define Nj inductively: Once Nj−1 is defined at least one of the two sets

{n ∈ Nj−1|χn(αj, β j) = 0} and {n ∈ Nj−1|χn(αj, β j) = 1}

has infinite cardinality, and that will be our Nj.

Claim 3.6.8. If F ⊂ bar(M0)× bar(Mδ) is finite, then there is a j ≥ 1 s.t.

χ(α, β) = χn(α, β)∀(α, β) ∈ F, ∀n ∈ Nj

Proof. Choose j s.t. {(α1, β1), . . . , (αj, β j)} contains F as a subset

To see that this Γ is in fact a δ-matching, we first note that (α, β) ∈ Γ =⇒ d∞(α, β) < δ since this
is true in every Γn. To see that each α is matched with at most one β, suppose χ(α, β) = χ(α, β′) = 1
for β 6= β′ ∈ bar(Mδ). By the Claim 3.6.9, there is some n such that χn(α, β) = χn(α, β′) = 1, which
contradicts the assumption that Γn is a partial matching. Similarly each β is matched with at most
one α.
Now suppose that α ∈ M0 with d∞(α, ∆) > δ. The square Sδ(α) is compact in H◦ ∩ R2, and is
therefore contained in Un for large enough n and so α is matched in Γn for sufficiently large n. Now
α has only finitely many neighbours within a distance δ, call them β1, . . . , βk, in the locally finite set
bar(Mδ), so by the Claim 3.6.9 there are infinitely many n ∈ N such that χ(α, βi) = χn(α, βi) for
every 1 ≤ i ≤ k. This implies that for large enough n

χ(α, βi) = χn(α, βi) = 1

for some i. Thus α is matched. By symmetry, the necessary statements for β are also true. Thus Γ is
the required δ-matching

This completes the proof when bar(M), bar(N) ⊂H◦ ∩R2. At the point (−∞, ∞), we define

µM((−∞, ∞)) = lim
e→∞

µM([−∞,−e]× [e, ∞]) = min
e

µM([−∞,−e]× [e, ∞])

We then have a box lemma at the point at infinity.

Lemma 3.6.9. Let M, N be persistence modules which satisfy the box lemma. Then

µM((−∞, ∞)) = µN((−∞, ∞)).
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It follows that the points of bar(M0), bar(Mδ) which are at the point at infinity get matched with
each other, and apart from that the matching Γ is unchanged.
For the cases of H◦ ∩ {−∞} ×R and H◦ ∩R× {∞}, the same basic proof works once we introduce
some modifications. Similarly to above, we define

µMx(−∞, [c, d]) = lim
b→−∞

µMx([−∞, b]× [c, d]) = min
b

µMx([−∞, b]× [c, d])

µMx([a, b], ∞) = lim
c→∞

µMx([a, b]× [c, ∞]) = min
c

µMx([a, b]× [c, ∞]).

Note that since R ⊂ S =⇒ µM(R) ≤ µM(S), the above limits and the limit in the definition of
µMx(−∞, ∞) always exist. We also have a box lemma for the lines at infinity.

Lemma 3.6.10. Let M, N be persisence modules which satisfy the box lemma. Let a, b, c, d, A, B, C, D be as
before. Then we have the following "box inequalities" at the lines at infinity:

µM(−∞, [c, d]) ≤ µN(−∞, [C, D])

µM([a, b], ∞) ≤ µN([A, B], ∞).

We also have the same inequalities when you swap the measures, i.e.

µN(−∞, [c, d]) ≤ µM(−∞, [C, D])

µN([a, b], ∞) ≤ µM([A, B], ∞).

Now the only changes that need to be made to the above proof is to replace the square Sη(α) with
intervals [α− η, α + η].

The Stability Theorem shows that persistence modules are stable in the sense that persistence
modules which are close in the interleaving distance have similar barcodes.

3.6.2 The converse stability theorem

We now prove the converse stability theorem, following [1]. There will be some statements given are
required for the proof of the converse stability theorem, none of which we will need again.
We begin by approximating persistent modules by better behaved ones via a procedure called smooth-
ing.

Definition 3.6.11. Let M be a persistence module and ε > 0 a real number. Then the ε-smoothing of
M, denoted Mε is the image of the persistence module homomorphism

12ε
M : M[−ε]→ M[ε]

Proposition 3.6.12. Let M be a persistence module and ε > 0. Then

dI(M, Mε) ≤ ε

Proof. We have the following factorisation of 12ε
M:

M[−ε]→ Mε → M[ε]

Where the first map is surjective and the second map is injective at each index t. These maps define
an ε-interleaving between M, Mε.
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Example 3.6.13. Let M = [p, q). Then

Mε =

{
[p + ε, q− ε) p + ε < q− ε

0 otherwise

This is clear from the definition of Mε. ♦

Proposition 3.6.14. The barcode of Mε is obtained from bar(M) by applying the translation

Tε : (p, q)→ (p + ε, q− ε)

to the part of H◦ which lies above the diagonal {(t− ε, t + ε)}, and is constant everywhere else.

Corollary 3.6.15. Let M be a q-tame persistence module. Then

db(bar(M), bar(Mε)) ≤ ε

Proof. An ε-matching between the persistence diagrams is given by

bar(M)→ bar(Mε), (p, q) 7→ (p + ε, q− ε)

This is a bijection apart from the unmatched points of bar(M). All such points lie on or below the
line {(t− ε, t + ε)|t ∈ R}. Such points lie within a distance ε of the diagonal, and therefore vanish
under the above map.

Proposition 3.6.16 ([1]). If a persistence module M is q-tame then Mε is locally finite. In particular, Mε has
an interval decomposition.

Theorem 3.6.17 (Converse Stability Theorem). Let M, N be q-tame persistence modules. Then

dI(M, N) ≤ db(bar(M), bar(N))

Proof. M, N are q-tame =⇒ Mε, Nε are decomposable. So by theorem 3.5.15, we know that dI(Mε, Nε) ≤
db(bar(Mε), bar(Nε)). Then

dI(M, N) ≤ dI(M, Mε) + dI(Mε, N)

≤ dI(M, Mε) + dI(Mε, Nε) + dI(Nε, N)

≤ dI(Mε, Nε) + 2ε

≤ db(bar(Mε), bar(Nε)) + 2ε

≤ db(bar(Mε), bar(M)) + db(bar(M), bar(Nε)) + 2ε

≤ db(bar(Mε), bar(M)) + db(bar(M), bar(N)) + db(bar(N), bar(Nε)) + 2ε

≤ db(bar(M), bar(N)) + 4ε

Where above we have used the fact that Mε, Nε satisfy the converse stability theorem, the triangle
inequality for both the bottleneck distance and the interleaving distance, and corollary 3.6.16. Since
this is true for all ε > 0, we have

dI(M, N) ≤ db(bar(M), bar(N))

as required.

Finally, there is a characterisation of q-tame persistence modules in terms of locally finite modules.
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Definition 3.6.18. A persistence module M is said to be approximated in the interleaving distance
by a family of persistence modules (Mi)i∈I if for all ε > 0, there is an i ∈ I such that

dI(M, Mi) ≤ ε

Theorem 3.6.19. A persistence module M is q-tame if and only if it can be approximated in the interleaving
distance by a family of locally finite modules.

Proof. If M is q-tame then it is approximated by modules of the form Mε, which are all locally finite.
For the converse, suppose that M is approximated by locally finite modules. Fix b < c and let L be a
locally finite module such that dI(M, L) ≤ ε for some ε < (c− b)/2. Then

rc
b = rank(Mb → Mc)

= rank(Mb → Lb+ε → Lc−ε → Mc)

≤ dim(Lb+ε)

< ∞
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Chapter 4

Generalized Persistence

Definition 4.0.1. Let (P,≤) be a poset, and C an arbitrary category. Then a generalized persistence
module (referred to simply as a persistence module in this chapter) is a functor

M : P→ C.

Such a persistence module is called a persistence module in C over P. The collection of persistence
modules in C over P is itself a category, denoted CP.

In this section we will discuss generalized persistence modules. We first introduce a general-
ization of the interleaving and then of the persistence diagram that applies in a limited case. The
former will allow us to define the interleaving for multidimensional persistence modules in chapter
5, and the latter will show that we can sometimes consider persistence modules over rings that are
not fields.

Definition 4.0.2. A translation on a poset P is a function T : P → P which is monotone and satisfies
x ≤ T(x) for all x ∈ P. In particular, a translation on P is a functor T : P → P for which there is a
natural transformation id =⇒ T. Since all morphisms in P are unique, this natural transformation
is unique. We denote the set of all translations on P by TransP.

Example 4.0.3. The map
Tδ : R→ R t 7→ t + δ

is a translation on (R,≤). ♦

Example 4.0.4 (Sublevel set). Given a function f : X → R on a topological space X, we have a
generalized persistence module given by

(X, f ) : R→ X, t→ f
−1
((−∞, t]).

Then the sublevel set persistent homology that we have encoutered before is the composite of two
generalized persistence modules

R
(X, f )(−)−−−−→ Top

Hk(−)−−−→ Vectk .

♦

Lemma 4.0.5. Let F, G : C → P be two functors into a poset P viewd as a category. Then there is a natural
transformation φ : F → G ⇔ F(x) ≤ G(x) ∀x ∈ C. This natural transformation is unique when it exists.

Proof. There exists a family of maps (φx) : F(x) → G(x) if and only if F(x) ≤ G(x) for all x ∈ C.
If such a family exists, then the following diagram automatically commutes since all maps in P are
unique:
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F(x) F(y)

G(x) G(y).

F(α)

φx φy

G(α)

And so (φx)x∈P is a natural transformation. Since all the maps are unique, this natural transformation
is also unique.

Given a poset (P,≤), the set TransP has the following structure:

• It is a monoid with respect to composition, where the identity functor is the identity.

• It is a poset with respect to the relation

T ≤ T′ ⇔ T(x) ≤ T′(x) ∀x ∈ P⇔ ∃ a natural transformation T → T′.

Definition 4.0.6. Let (P,≤) be a poset, T, T′ ∈ TransP, C an arbitrary category, and M, N ∈ CP two
persistence modules. Then a (T, T′)−interleaving between M, N is a pair of natural transformations

φ : M→ N ◦ T, ψ : N → M ◦ T′

such that
ψ ◦ φ = M ◦ ηT′◦T, φ ◦ ψ = NηT◦T′ . (4.1)

Where we let ηF denote the unique natural transformation id→ F. Explicitly, we have the following
commuting diagrams for all x ≤ y ∈ P

M(x) M(y)

N(Tx) N(Ty)
φx

φy

M(T′x) M(T′y)

N(x) N(y)
ψx ψy

M(x) M(T′ ◦ Tx)

N(Tx)
φx

ψTx

M(T′x)

N(x) N(T ◦ T′x)

φT′xψx

A (T, T) interleaving is simply called a T-interleaving.

Example 4.0.7. Let M, N be R-persistence modules in the normal (non-generalized) sense. A mor-
phism M→ N ◦ Tδ is a morphism in Homδ(M, N), and a Tδ-interleaving is a δ-interleaving. ♦

Lemma 4.0.8. Let P, Q be posets, M, N : P→ Q persistence modules in QP and T, T′ ∈ TransP. Then

M, N are (T, T′)− interleaved⇔ M(x) ≤ N ◦ T(x), N(x) ≤ M ◦ T′(x) ∀x ∈ P.

Proof. The existence of the maps φx : M(x) → N ◦ T(x), ψx : N(x) → M ◦ T′(x) is equivalent to the
inequalities. All the relevant diagrams commute since all the maps are unique.

The interleaving relation is functorial, monotone and satisfies a triangle inequality.
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Proposition 4.0.9 (Functoriality). Let P be a poset, T, T′ ∈ TransP, C, D be arbitrary categories, F : C → D
a functor and M, N ∈ CP. Then M, N are (T, T′)-interleaved =⇒ FM, FN are (T, T′)-interleaved.

Proposition 4.0.10 (Monotonicity). Let P be a poset, T1, T2, T′1, T′2 ∈ TransP, C a category, and M, N ∈ CP.
Suppose T1 ≤ T2, T′1 ≤ T′2. Then M, N are (T1, T′1)-interleaved =⇒ M, N are (T2, T′2)-interleaved.

Proposition 4.0.11 (Triangle inequality). Let P be a poset, M, N, L ∈ CP for a category C, and T1, T2, T′1, T′2 ∈
TransP. Then M, N are (T1, T′1)-interleaved, and N, L are (T2, T′2)-interleaved =⇒ M, L are (T2 ◦ T1, T′2 ◦
T′1)-interleaved.

4.1 Sublinear projections and superlinear families

In this section we investigate when it makes sense to say that two generalized persistence modules
are δ-interleaved for some δ ∈ R≥0. Fix a poset (P,≤) and a category C throughout this section.

4.1.1 Sublinear projections

Definition 4.1.1. A sublinear projection is a map ω : TransP → [0, ∞] such that

• ωid = 0.

• ωT1◦T2 ≤ ωT1 + ωT2 ∀T1, T2 ∈ TransP.

A sublinear projection is called monotone if ωT ≤ ωT′ whenever T ≤ T′. Given any sublinear
projection ω, its monotone hull is the sublinear projection given by

ω̂T = inf{ωT′ |T′ ≥ T}.

It is clear from this definition that ω̂ is monotone.

Definition 4.1.2. A translation T ∈ TransP is called a δ-translation with respect to ω if ωT ≤ δ.
Persistence modules M, N ∈ CP are δ-interleaved w.r.t. ω if they are (T, T′)-interleaved for a pair of
δ-translations T, T′.

Definition 4.1.3. The interleaving distance w.r.t. a sublinear projection ω is defined as

dω(M, N) = inf{δ ∈ [0, ∞)|M, N are δ-interleaved w.r.t. ω}.

If the set on the right hand side is empty, we set dω(M, N) = ∞.

From now on we fix a sublinear projection ω : TransP → [0, ∞]. Note that if M, N are δ-interleaved
w.r.t ω, then they are δ + ε-interleaved for all ε ∈ [0, ∞]. To see this, just observe that if a translation
T is a δ-translation, then it is a δ + ε-translation for all ε ∈ [0, ∞].

Proposition 4.1.4 ([10]). Let ω̂ be the monotone hull of ω. Then dω = dω̂.

This proposition guarantees that we can always assume that a sublinear projection is monotone
without affecting the resulting interleaving distance. Of course, for any of this discussion to make
sense, we need the following theorem.

Theorem 4.1.5. dω is a pseudometric.

Proof. It is clear that dω is symmetric, and dω(M, M) = 0 since any persistence module is 0-interleaved
with itself. So we just need to check the triangle inequality. Let M, N be δ1-interleaved, and N, L be δ2-
interleaved. Let Ti, T′i be δi-translations such that M, N are (T1, T′1)-interleaved and N, L are (T2, T′2)-
interleaved. Then by the triangle inequality for the interleaving relation, M, L are (T2 ◦ T1, T′2 ◦ T′1)-
interleaved, and ωT2◦T1 , ωT′2◦T′2 ≤ δ1 + δ2, and so the triangle inequality is satisfied.
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4.1.2 Lawvere metrics

Definition 4.1.6. A Lawvere metric space is a set X together with a function d : X× X → [0, ∞] such
that d(x, x) = 0 ∀x ∈ X, and d satisfies the triangle inequality.

Proposition 4.1.7. Let d be a Lawvere metic on the poset P. Then

ωd
T = sup{d(x, T(x))|x ∈ P}

defines a sublinear projection.

Proof. Clearly ωd
id = 0 and ωd

T ∈ [0, ∞] ∀T ∈ TransP. For sublinearity, we see that

d(x, T1 ◦ T2(x)) ≤ d(x, T1x) + d(T1x, T2 ◦ T1x) ≤ ωd
T1
+ ωd

T2

so ωd
T1◦T2

≤ ωd
T1
+ ωd

T2
.

So considering theorem 4.1.5, we see that any Lawvere metric on P gives rise to a pseudometric
on CP.

Example 4.1.8. We can derive the regular interleaving distance of R-persistence modules as follows:
Let ω be the sublinear projection associated to the standard metric d(x, y) = |x − y| on R. If T is a
δ-translation w.r.t. ω, then

x ≤ T(x) ≤ x + δ

for every x ∈ R, and so T ≤ Tδ. Then two R-persistence modules M, N are δ-interleaved w.r.t. ω
⇔ M, N are (T, T′)-interleaved for a pair of δ-translations T, T′⇔ M, N are Tδ-interleaved. It follows
that dω is the usual interleaving distance for R-persistence modules. ♦

4.1.3 Superlinear families

Now we look at the dual approach to sublinear projections.

Definition 4.1.9. A superlinear family over P is a function Ω : [0, ∞) → TransP which satisfies
Ωδ1 ◦Ωδ2 ≤ Ωδ1+δ2

The definition implies that Ω0 is the identity element when we view a superlinear family as a
monoid with the operation of composition. To see this, observe that

Ωδ ≤ Ω0 ◦Ωδ ≤ Ωδ

and
Ωδ ≤ Ωδ ◦Ω0 ≤ Ωδ.

We also have that any superlinear family is monotone. Indeed

Ωδ1 ≤ Ωδ2−δ1 ◦Ωδ1 ≤ Ωδ2

whenever δ1 ≤ δ2. We now fix a superlinear family over the poset P.

Definition 4.1.10. The interleaving distance between M, N ∈ CP w.r.t. Ω is defined as

dΩ(M, N) = inf{δ ∈ [0, ∞)|M, N are Ωδ-interleaved}.

We let dΩ(M, N) = ∞ if the set on the right hand side is empty.
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Once again we have the key fact that a superlinear family corresponds to a psuedometric on CP.

Theorem 4.1.11. dΩ is a pseudometric on CP.

Proof. Again, it is clear that dΩ is symmetric, and dΩ(M, M) = 0 since any persistence module is
Ω0-interleaved with itself. For the triangle inequality, let M, N be Ωδ1-interleaved, and N, L be Ωδ2-
interleaved. Then M, L are Ωδ2 ◦Ωδ1-interleaved by the triangle inequality for the interleaving rela-
tion. This implies that M, L are Ωδ1+δ2-interleaved since Ωδ2 ◦Ωδ1 ≤ Ωδ1+δ2 by superlinearity. Then
once we apply the monotonicity of the interleaving relation, we get the desired interleaving.

Theorem 4.1.12. Let M, N ∈ CP, D be an arbitrary category, and F : C → D be a functor. If Ω is a
superlinear family over P, then

dΩ(FM, FN) ≤ dΩ(M, N).

Proof. If M, N are Ωδ-interleaved then FM, FN are Ωδ-interleaved by functoriality.

We can get a superlinear family from a sublinear projection, as the next theorem shows.

Theorem 4.1.13. Let ω be a sublinear projection on P. Suppose for every δ ≥ 0, there is a translation Ωδ

with the property that ωΩδ
≤ δ which is largest in the sense that ωT ≤ δ =⇒ T ≤ Ωδ. Then Ω = (Ωδ)δ is

a superlinear family, and dω = dΩ.

Proof. To show superlinearlity, we note that

ωΩδ1◦Ωδ2
≤ ωΩδ1

+ ωΩδ2
≤ δ1 + δ2

and this implies Ωδ1 ◦ Ωδ2 ≤ Ωδ1+δ2 by the ’largest’ assumption. To see that the two interleaving
distances are the same, we have to show that the following statements are eqiuvalent

• M, N are (T, T′)-interleaved for δ-tranlations T, T′.

• M, N are Ωδ-interleaved.

The direction ⇐ is trivial. For the other direction, because of the ’largest’ assumption, T, T′ are δ-
translation =⇒ T, T′ ≤ Ωδ. Then monotonicity of the interleaving relation gives us the result.

We will see that the connection between superlinear families and sublinear projections goes
deeper.

4.1.4 Monoidal structures

If we view the poset P as a category in the usual way, then it is clear that TransP is a monoidal category
where the tensor product is given by composition. So T ⊗ T′ = T ◦ T′ and (T1 ≤ T2)⊗ (T′1 ≤ T′2) =
T1 ◦ T′1 ≤ T2 ◦ T′2. The tensor unit is idP.
Similarly, both [0, ∞] and [0, ∞) are monoidal categories with the tensor product given by

x⊗ y = x + y, (x ≤ y)⊗ (w ≤ z) = x + w ≤ y + z

and the tensor unit is 0.

Lemma 4.1.14. A super linear family corresponds to a lax monoidal functor

Ω : ([0, ∞),+, 0)→ (TransP, ◦, id)
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Proof. The fact that Ω is monotone guarantees that it is a functor. The maps Ωa ◦ Ωb ≤ Ωa+b and
the map id ≤ Ω0, which exists by definition, are the monoidal coherence maps. Since all the maps
involved are unique, all the relevant diagrams commute.

Lemma 4.1.15. A monotone sublinear projection ω : TransP → [0, ∞] corresponds to an oplax monidal
functor.

Proof. The sublinearity relation ωT◦T′ ≤ ωT + ωT′ and that ωid = 0 give the monoidal coherence
maps. Choosing ω to be monotone ensures that it is a functor.

As we have mentioned, requiring that ω be monotone is not a very limiting condition, since we
can replace any sublinear projection by its monotone hull and we get the same interleaving distance.
We are now ready to define an adjunction between sublinear projections and superlinear families.

Definition 4.1.16. Let ω : TransP → [0, ∞], Ω : [0, ∞) → TransP be arbitrary functions. We say that
ω a Ω if

ωT ≤ δ⇔ T ≤ Ωδ ∀δ ∈ [0, ∞), T ∈ TransP .

If we append a terminal object to TransP and define Ω∞ to be this terminal object, then the above
relation corresponds with the definition of an adjunction.

Proposition 4.1.17 ([10]). Let ω : TransP → [0, ∞], Ω : [0, ∞) → TransP be arbitrary functions such that
ω a Ω. Then:

1. T ≤ ΩωT ∀T ∈ TransP.

2. ωΩδ
≤ δ.

3. ω is monotone.

4. Ω is monotone.

We also have the following general fact about monoidal functors:

Proposition 4.1.18 ([11]). A functor with a right adjoint is oplax monoidal ⇔ the right adjoint is a lax
monoidal functor.

Applying the proposition in this context, if we have arbitrary functions ω : TransP → [0, ∞], Ω :
[0, ∞)→ TransP, such that ω a Ω, then ω is a sublinear projection⇔ Ω is a superlinear family.

Theorem 4.1.19. If ω is a sublinear projection, and Ω is a superlinear family such that ω a Ω, then dω = dΩ.

Proof. First, recall

dΩ(M, N) = inf{δ ∈ [0, ∞)|M, N are Ωδ-interleaved}.
dω(M, N) = inf{δ|M, N are δ-interleaved w.r.t. ω}

= inf{δ|M, N are (T, T′)-interleaved where T, T′ are δ-translations w.r.t. ω}

If M, N are (T, T′)-interleaved where ωT, ωT′ ≤ δ, then T, T′ ≤ Ωδ, and so M, N are Ωδ-interleaved
by monotonicity. Thus dΩ(M, N) ≤ dω(M, N). For the converse inequality, note that if M, N are
Ωδ-interleaved, then dω(M, N) ≤ δ since ωΩδ

≤ δ.

So whenever we can define a sublinear projection TransP → [0, ∞], or a superlinear family
[0, ∞)→ TransP, we have a way to define the notion of a δ-interleaving.
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Chapter 5

Multidimensional Persistence

In chapter 3, we looked at persistence diagrams over subsets of R. We now consider what happens
when we index over subsets of Rn.

Definition 5.0.1. A multidimensional persistence module is a functor

M : Pn → Vectk

where P is a subset of R. In particular it is simply a Pn-persistence module.

While we have stated this definition in terms of any arbitrary subset of R, in practice we will be
restricting ourselves to P = R, Q, N. We will see that multidimensional persistence modules do not
lend themselves to the general treatment that their 1-dimensional cousins do.

5.1 Complications with multidimensional persistence

The ideal situation would be to find a complete invariant for multidimensional persistence, such as
the barcode for 1-dimensional persistence. In particular, we want a parameterization which assigns
non-isomorphic persistence modules to different points in the parameter space, and isomorphic ones
to the same point. We also want this parameter to always map into the same space, i.e. we want it
to always return an integer, a vector space, etc. (in the case of the barcode, the parameter space is
always a multiset in H◦). As it turns out, such an invariant does not exist [15]. Just as in the one-
dimensional case, we first wish to use algebraic structures to classify multidimensional persistence
modules. Throughout this section, let R denote the polynomial ring k[x1, . . . , xr]. Given a vector
v = (v1, . . . , vr) ∈ Nr, we denote by xv the monomial xv1

1 · · · x
vr
r . R is an r-graded ring with the

grading Rv = kxv.

Definition 5.1.1. Given an Nr-persistence module M, we can define an r-graded module over R by

α(M) =
⊕

v∈Nr

Mv

where the action xv−u : Mu → Mv is the map M(u ≤ v).

Theorem 5.1.2 ([15]). The correspondence α defines an equivalence of categories between the category of finite
Nr-persistence modules over k and the category of finitely generated n-graded modules over R.

So far our treatment of multidimensional persistence has been a simple extension of the one di-
mensional case. However this more or less ends here. In the 1-dimensional case, the algebraic object
at hand - k[x]-modules - had a very simple classification, given by the structure theorem. Unfortu-
nately in the case of r-graded R-modules, the corresponding classification is more complicated. A
full discussion of this classification can be seen in [15].
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5.2 Multidimensional persistent homology

Let X be a multifiltered simplicial complex, and let {Xv}v∈Nr be a multifiltration of X where each
Xv is a simplicial complex. Consider the functor Cn from the category of simplicial complexes to
Vectk which sends a simplicial complex Y to the k-vector space generated by the n-simplices in Y.
Applying Cn to the multifiltration {Xv}v gives us a family of vector spaces {Cn(Xv)}v and linear
inclusions {Cn(Xv → Xw)}v≤w. These determine an r-graded R-module

Cn(X) =
⊕

v
Cn(Xv)

with module action given by

xw · Cn(Xv) = im Cn(Xv → Xv+w).

Definition 5.2.1. The n-chain module of a multifiltered space X is the r-graded R-module Cn(X).

Now consider the functor Hn(−) from simplicial complexes to Vectk which sends a complex to
its nth simplicial homology group with coefficients in k. Applying this functor to the multifiltra-
tion {Xv}, we get a family of vector spaces {Hn(Xv)} and linear maps {Hn(Xv → Xw)}v≤w. This
determines an r-graded R-module

Hn(X) =
⊕

v
Hn(Xv)

with module action given by

xw · Hn(Xv) = im Hn(Xv → Xv+w).

Definition 5.2.2. The n-multipersistent homology module of a multifiltered space X is the module
Hn(X).

Let d = dim X where X is a multifiltered simplicial complex. The modules Cn(X) fit into a chain
complex of r-graded R-modules

C•(X) : 0 Cd(X) · · · C1(X) C0(X) 0.
δd δ1

This is the direct sum of the corresponding chain complexes {C•(Xv)}v∈Nr . Note that the maps δi
here are the direct sums of the normal boundary maps Cn(Xv)→ Cn−1(Xv). Now let σ ∈ Xv be an n-
face, and let a ∈ Cn(Xv) be the corresponding basis element. Then xej · a = Cn(v ≤ v + ej)(a) , where
ej is the jth standard basis vector, corresponds to the same face σ since Cn(v ≤ v + ej) is the inclusion
map. Thus xej · δn = δn · xej . We know that δn(Cn(Xv)) ⊂ Cn−1(Xv) and xej(Cn(Xv)) ⊂ Cn(Xv+ej). So
C•(X) is double graded:

C•(X) =
⊕

n
Cn(X) =

⊕
n

⊕
v∈Nr

Cn(Xv) =
⊕

v∈Nr

⊕
n

Cn(Xv) =
⊕

v∈Nr

C(Xv).

Proposition 5.2.3 ([15]). Multidimensional homology modules are the homology modules of the chain com-
plexes C•.

Proof. ⊕
v∈Nr

Hn(Xv) = Hn

(⊕
v∈Nr

Xv

)
= Hn(C•).
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5.3 Searching for invariants

Since the search for a complete invariant on the space of multidimensionanal persistence modules
is a fruitless one, we turn our attention to finding invariants that are still useful in applications.
Additionally, we would like to produce continuous invariants so that some statistical analysis can
be done on the invariants. One of the disadvantages of the barcode as an invariant is that it does
not lend itself to such analysis. For example, it does not even make sense to take the average of two
barcodes. The key to finding continuous invariants will turn out to be generating pseudometrics on
an appropriate subset of persistence modules. From now on, we will follow the literature and focus
on persistence modules over Qr

≥0 for r ≥ 1 [17], [18],[19],[20].
Given a set T, in particular where T is a collection of multidimensional persistence modules, we
want to produce useful and applicable invariants on this set. A multiset f ∈ Mult(T) is an invariant.
We wish to "stabilize" f to get a continuous invariant. Given an extended pseudometric on T, d :
T × T → R ∪∞, we construct a function f̂ : T → Mult(Q≥0), called the hierarchical stabilization of
f [17]. For x ∈ T, τ ∈ Q≥0, define

f̂ (x)(τ) := min{ f (y)|d(x, y) ≤ τ}.

Note that if τ ≤ ε, then f̂ (τ) ≥ f̂ (ε). Thus f̂ (x) can be viewed as a functor T → Nop. We say that
f̂ (x), f̂ (y) are δ-interleaved if f̂ (x)(ε) ≥ f̂ (y)(ε + δ), and f̂ (y)(ε) ≥ f̂ (x)(ε + δ) for all ε ∈ Q≥0.

Proposition 5.3.1. Given a function f : T →N for some set T, and a pseudometric d on T, the function f̂ is
1-Lipschitz, i.e.

dI( f̂ (x), f̂ (y)) ≤ d(x, y)

where dI is the interleaving distance.

Proof. Assume that d(x, y) < ∞, or else there is nothing to prove. Let ε, τ ∈ Q≥0 s.t. d(x, y) ≤ ε. By the
triangle inequality, B(y, τ) ⊂ B(x, τ + ε) and B(x, τ) ⊂ B(y, τ + ε). Therefore f̂ (y)(τ) ≥ f̂ (x)(τ + ε)
and f̂ (x)(τ) ≥ f̂ (y)(τ + ε). In particular, f̂ (x), f̂ (y) are ε-interleaved. The result follows.

5.4 Tame functors

We want to define tame functors as functors which have only a discrete number of critical points. To
do this, we first take a look at functors in Fun(N≥0, Vectk).

Definition 5.4.1. The radical of a functor F : Nr
≥0 → Vectk, denoted rad F, is the functor whose value

at v is the subspace of F(v) given by the sum of all the images of the maps F(u ≤ v) for all u ≤ v.

The functor F/ rad F is isomorphic to a functor of the form
⊕
(Uv⊗Vv), where {Vv} is a sequence

of vector spaces indexed over Nr
≥0, and Uv is as in section 2. Functors of such a form are called

semisimple.

Example 5.4.2. Consider the free functor F = k((1, 0),−)⊕ k((0, 1),−) : N2 → Vectk.

k k2 k2

k k2 k2

0 k k
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Its radical is given by the following functor

k k2 k2

0 k2 k2

0 0 k

And the quotient F/ rad F is given by

0 0 0

k 0 0

0 k 0

♦

Proposition 5.4.3 ([17]). Any functor F : Nr
≥0 → Vectk has a minimal cover

This proposition means that it makes sense to consider the rank, support and 0-th Betti diagram
of persistence modules over Nr.
Let α ∈ Q. We have a functor α : Nr → Qr which is coordinate-wise multiplication by α. We also
have a functor

bα−1c : Qr →Nr, (v1, . . . , vr) 7→ (bv1

α
c, . . . , bvr

α
c).

where bxc is the largest integer less than or equal to x. bα−1cα : Nr →Nr is the identity.

Definition 5.4.4. A functor G : Qr → Vectk is called α-tame if it is isomorphic to Fbα−1c for some
functor F : Nr → Vectk, i.e. F ∼= Gα : Nr → Vectk. A functor is called tame if it is α-tame for some
α ∈ Q. We denote the set of all tame functors Qr → Vectk by Tame(Qr, Vectk). This forms a category
when we take the morphisms to be natural transformations.

Proposition 5.4.5 ([17]). Let F ∈ Tame(Qr, Vectk) be α-tame such that Fα/ rad Fα ∼=
⊕

w(Uw ⊗Vw) for a
sequence of k-vector spaces {Vw}. Then

a) supp(F) = {αw|w ∈ supp(Fα)}

b) rank F = rank Fα = ∑ dimk Vw

c) β0F(v) =

{
β0(Fα)(w) = dimk Vw v = αw
0 otherwise

Thus we can talk about the rank, support, and 0-th Betti diagram of tame persistence modules.
The function rank : Tame(Qr, Vectk) → N is an invariant of tame persistence modules, and it will
be part of the input of the hierarchichal stabilization process. We will stablize these functions with
respect to some pseudometric on Tame(Qr, Vectk). Of course one pseudometric we can work with is
the interleaving metric. We have the superlinear family

Ωε(v) = v +~ε

where~ε is the vector in Qr
≥0 with ε in every entry. We can then define two persistence modules to be

ε-interleaved if they are Ωε-interleaved. This definition of interleaving corresponds to the definition
in [20]. We wish to have another way of generating pseudometrics on tame functors. To define these
pseudometrics, we need to look at noise systems.
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5.5 Noise systems

We now discuss noise systems, first introduced in [17]. The idea is to define some notion of how far
away a tame persistence modules is from the zero functor. Conceptually, we think of those persis-
tence modules which are close to the zero module as noise.

Definition 5.5.1. A noise system in Tame(Qr, Vectk) is a collection C = {Cε}ε∈Q≥0 of sets of tame
functors such that

• The zero functor is in Cε for all ε ∈ Q≥0.

• τ ≤ ε =⇒ Cτ ⊂ Cε.

• Given an exact sequence of tame functors

0→ F0 → F1 → F2 → 0

then

1. F1 ∈ Cε =⇒ F0, F2 ∈ Cε.

2. If F0 ∈ Cε, F2 ∈ Cτ =⇒ F1 ∈ Cτ+ε.

Given two noise systems C = {Cε}ε,D = {Dε}ε, we say that C ⊂ D if Cε ⊂ Dε for all ε. With this
relation, the collection of all noise systems in Tame(Qr, Vectk) forms a poset.

Example 5.5.2 (Standard noise in the direction of a cone). A cone is a subset of Qr made up of all
linear combinations of some finite collection of elements in Qr, where these linear combinations have
coefficients in Q≥0. Let V ⊂ Qr

≥0 be a cone. Define

Vε = {F ∈ Tame(Qr
≥0, Vectk)| For any u ∈ Qr

≥0, x ∈ F(u) ∃w ∈ Vs.t. ||w|| = ε and x ∈ ker(u ≤ u+w)}.

To see that this is a noise system, first note that the 0 functor is clearly in Vε for all ε. Let τ ≤ ε. If
x ∈ ker F(u ≤ u + w) then x ∈ ker F(u ≤ u + ε

τ w), since w ≤ ε
τ w. As || ετ w|| = ε

τ ||w||, if we have
||w|| = τ, then the inclusion Vτ ⊂ Vε is clear.
Consider now the short exact sequence

0→ F → G → H → 0.

If G ∈ Vε, then by naturality F, H ∈ Vε. Now assume F ∈ Vε, H ∈ Vτ. Consider x ∈ G(u). Then its
image x1 ∈ H(u) is in ker H(u ≤ u + w) for some w ∈ V with ||w|| = τ. Therefore G(u ≤ u + w)
maps x to an element x2 ∈ ker(G(u + w) → H(u + w)) = im(F(u + w) → G(u + w)). Let x̂2 denote
the element in F(u + w) which is mapped to x2.

0 F(u) G(u) H(u) 0

0 F(u + w) G(u + w) H(u + w) 0

0 F(u + w + w′) G(u + w + w′) H(u + w + w′) 0

We can thus find a w′ ∈ V with ||w′|| = ε such that x̂2 ∈ ker F(u + w ≤ u + w + w′). It follows that
x ∈ ker G(u ≤ u + w + w′). Since ||w + w′|| ≤ ||w||+ ||w′|| = τ + ε, it follows that x ∈ ker G(u ≤
u + τ+ε

||w+w′|| (w + w′)). Therefore G ∈ Vτ+ε. Note that τ+ε
||w+w′|| (w + w′) ∈ V since V is a cone. ♦
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Example 5.5.3 (Domain noise). Let X = {Xε}ε∈Q≥0 be a sequence of non-decreasing subsets of Qr
≥0,

where by non-decreasing we mean that τ ≤ ε =⇒ Xτ ⊂ Xε. For a persistence module F ∈
Tame(Qr

≥0, Vectk), we define its domain to be

Domain(F) = {v ∈ Qr
≥0|F(v) 6= 0}.

Then the domain noise associated to X is defined by

Xε = {F ∈ Tame(Qr
≥0, Vectk)|Domain(F) ⊂ Xε}.

The fact that the sequence {Xε}ε∈Q≥0 is non-decreasing ensures that this is in fact a noise system. It is
also clear that the domain noise is closed under direct sums. ♦

We will use noise systems to define pseudometrics on Tame(Qr, Vectk). For the rest of this section,
we fix a noise system C = {Cε}ε∈Q≥0 in Tame(Qr, Vectk).

Definition 5.5.4. An ε-equivalence betweeen two tame functors F, G is a natural transformation φ :
F → G such that ker φ, coker φ ∈ Cε. 1

Definition 5.5.5. Let ε ∈ Q≥0, and F, G ∈ Tame(Qr, Vectk). F and G are called ε-close if there is a
tame functor H and natural transformations φ : H → F, ψ : H → G such that φ is a τ-equivalence
and ψ is a µ-equivalence where τ + µ ≤ ε.

Note that if there is an ε-equivalence between F, G, then they are ε-close. Being ε-close is a reflexive
and symmetric relation, but it is not transitive. We need some properties about ε-equivalences in
order to show that being ε-close defines a pseudometric on Tame(Qr, Vectk).

Proposition 5.5.6. Consider the following commuting square in Tame(Qr, Vectk):

H F

G E

φ

ψ ψ′

φ′

(5.1)

Then (5.1) is a pushout square and φ is an ε-equivalence =⇒ φ′ is an ε-equivalence. Also (5.1) is a pullback
square and φ′ is an ε-equivalence =⇒ φ is an ε equivalence.

Proof. We will prove only the first statement since the proof of the second is similar. Our approach
will be to show that coker φ ∼= coker φ′ and that ker φ′ is a quotient of ker φ. Then the result follows
since each component of a noise system is closed under taking quotients. Since Tame(Qr, Vectk) is
a functor category, taking pushouts is performed object-wise, so we consider the following pushout
diagram in Vectk:

H(x) F(x)

G(x) E(x)

φx

ψx ψ′x

φ′x

(5.2)

In particular, E(x) ∼= F(x)⊕G(x)/∼, where∼ is the equivalence relation generated by φx(v) ∼ ψx(v)
for all v ∈ H(x), and φx, ψx are the projection maps. Now coker φ′x

∼= (F(x)⊕ G(x)/∼) / im φ′x. In

1In [17], an ε-equivalence between F, G is defined to be a natural transformation φ : F → G such that ker φ ∈
Cτ , coker φ ∈ Cµ where τ + µ ≤ ε. We use a slightly different definition here because this formulation is more natural
in the context of connecting noise systems to Serre categories, as we will do later.
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particular, coker φ′x
∼= F(x) ⊕ G(x)/∼, where now additionally (0, w)∼ (0, 0) for any w ∈ G(x).

Therefore φx(v)∼ ψx(v)∼ (0, 0). So we have coker φ′x
∼= F(x)/ im φx ∼= coker φx. For the kernels, note

that if w ∈ ker(φ′x), then w = ψx(v)∼ φx(v)∼ 0 for some v ∈ H(x). Therefore ker(φ′x) ∼= ψ(ker(φx)),
which by the first isomorphism theorem is a quotient of ker φx, as required.

Proposition 5.5.7. Let φ : F → G, ψ : G → H be natural transformations in Tame(Qr, Vectk). If φ is an
ε1-equivalence and ψ is an ε2-equivalence, then ψ ◦ φ is an (ε1 + ε2)-equivalence.

Proof. First note that we have the following exact sequences

0→ ker φ→ ker ψ ◦ φ→ ker ψ

coker φ→ coker ψ ◦ φ→ coker ψ→ 0

Let ker φ, coker φ ∈ Cε1 , and ker ψ, coker ψ ∈ Cε2 . Now the image of ker ψ ◦ φ → ker ψ from the first
exact sequence is contained in Cε2 , since it is a subfunctor of ker ψ. Now if we replace ker ψ by this
image, the first sequence becomes a full short exact sequence, therefore ker ψ ◦ φ ∈ Cε1+ε2 . Similarly
it is true that coker ψ ◦ φ ∈ Cε1+ε2 . Therefore ψ ◦ φ is an (ε1 + ε2)-equivalence.

Corollary 5.5.8. Let F, G be tame functors and τ, µ ∈ Q≥0. Then TFAE

a) There is a tame functor H and natural transformations φ : H → F, ψ : H → G such that φ is a τ-
equivalence and ψ is a µ-equivalence.

b) There is a tame functor E and natural transformations φ′ : G → E, ψ′ : F → E such that φ′ is a τ-
equivalence and ψ′ is a µ-equivalence.

Proof. Consider the diagram (5.1) as a pushout, and assume a) is true. Then by Proposition 5.5.6, φ′

is a τ-equivalence and ψ′ is a µ-equivalence. The other direction is similar.

Proposition 5.5.9. Given tame functors F, G, L such that F, G are ε1-close and G, L are ε2-close, then F, L
are (ε1 + ε2)-close.

Proof. From the statement, we have natural transformations

φ1 : H1 → F, ψ1 : H1 → G

Such that φ1 is a τ1-equivalence and ψ1 is a µ1-equivalence, with τ1 + µ1 ≤ ε2. And similarly we have

φ2 : H2 → G, ψ2 : H2 → L

Where φ2 is a τ2-equivalence and ψ2 is a µ2-equivalence, with τ2 + µ2 ≤ ε2. Now consider the follow-
ing pullback square

H3 H1

H2 G

φ3

ψ3 ψ1

φ2

By Proposition 5.5.6, φ3 is a τ2-equivalence and ψ3 is a µ1-equivalence. So, φ1 ◦ φ3 : H3 → F is
a (τ1 + τ2)-equivalence, and ψ2 ◦ ψ3 : H3 → L is a (µ1 + µ2)-equivalence. It follows that F, L are
(ε1 + ε2)-close.

Definition 5.5.10. Let F, G be tame functors. Then we define a pseudometric on Tame(Qr, Vectk) by

d(F, G) = inf{ε ∈ Q≥0|F, G are ε− close }
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From the discussion in this section, it is clear that this defines a pseudometric. We are now ready
to apply the hierarchical stabilization process. We have equipped the set Tame(Qr, Vectk) with an
invariant given by the rank function, and a pseudometric d dependent on the noise system C. Let
B(F, ε) denote the closed ball of radius ε with respect to the pseudometric d. Then we get the stabi-
lized rank invariant

r̂ank : Tame(Qr, Vectk)→ Mult(Q), F 7→ (ε 7→ min{rank(G)|G ∈ B(F, ε)}).

5.6 Persistence contours

We have a method of generating noise systems, called persistence contours.

Definition 5.6.1. A persistence contour is a functor (Qr
≥0 ∪∞)×Q≥0 → Qr

≥0 ∪∞ such that for any
v ∈ Qr

≥0 ∪∞, ε, τ ∈ Q≥0, we have

• v ≤ C(v, ε).

• C(C(v, ε), τ) ≤ C(v, τ + ε).

• C(∞, ε) = ∞ for all ε

We have in fact already met persistence contours before. Recall the definition of a superlinear
family over a poset P.

Definition 5.6.2. A superlinear family over P is a function Ω : [0, ∞) → TransP which satisfies
Ωδ1 ◦Ωδ2 ≤ Ωδ1+δ2

Given a persistence contour C, we can define a superlinear family over P = Qr
≥0 ∪∞ by setting

Ωε(v) = C(v, ε), and vice versa. The first condition of C being a persistence contour corresponds to
Ωε being a translation, and the second condition is superlinearity. In this way persistence contours
can be viewed as a superlinear families. From now on we will only use this viewpoint, and we use
the term persistence contour, or simply contour, to refer to a superlinear family over P = Qr

≥0 ∪∞
for some r.

Example 5.6.3. The standard contour is given by the map

Ωε(v) = v +~ε.

Similarly, we can define a persistence contour by

Ωε(v) = v + f (ε)

where f : Q≥0 → Qr
≥0 is non-decreasing and superlinear, in the sense that f (τ + ε) ≤ f (τ) + f (ε). ♦

Definition 5.6.4. Given a persistence contour Ω, define Cε ⊂ Tame(Qr, Vectk) to be the collection of
finitely generated tame functors for which F(v ≤ Ωε(v)) is the zero homorphism whenever Ωε(v) <
∞. The collection {Cε}ε is the noise system associated to the contour Ω.

Proposition 5.6.5 ([17]). The noise system associated to a persistence contour Ω is in fact a noise system.

Proof. Clearly 0 ∈ Cε for all ε. Let τ ≤ ε, and G ∈ Cτ. Then for any v ∈ Qr
≥0 ∪∞, Ωτ(v) ≤ Ωε(v).

Then since G(v ≤ Ωτ(v)) is trivial, so is the composition G(v ≤ Ωε(v)) = G(Ωτ(v) ≤ Ωε(v)) ◦G(v ≤
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Ωτ(v)). Therefore G ∈ Cε, and so Cτ ⊂ Cε.
Now consider an exact sequence of tame functors

0→ G0 → G1 → G2 → 0

Let G1 ∈ Cε, so G1(v ≤ Ωε(v)) = 0. Now G1(v) → G2(v) is an epimorphism, and G0(Ωε) → G1(Ωε)
is a monomorphism. Then by naturality, we see that G0(v ≤ Ωε(v)) and G2(v ≤ Ωε(v)) are trivial.
In particular, this becomes clear when we consider the following commutative diagram

0 G0(v) G1(v) G2(v) 0

0 G0(Ωε(v)) G1(Ωε(v)) G2(Ωε(v)) 0

0

Now let G0 ∈ Cτ, G2 ∈ Cε. Now consider the following commutative diagram

0 G0(v) G1(v) G2(v) 0

0 G0(Ωτ(v)) G1(Ωτ(v)) G2(Ωτ(v)) 0

0 G0(Ωε ◦Ωτ(v)) G1(Ωε ◦Ωτ(v)) G2(Ωε ◦Ωτ(v)) 0

0

0

Then commutativity implies that the composition of the two central vertical maps is trivial. Then in
particular, since Ωε ◦Ωτ ≤ Ωτ+ε, we have G(v ≤ Ωε+τ(v)) = 0.

We now prove a claim which was stated without proof in [17]. This result demonstrates how
the pseudometric generated by the noise system associated to a persistence contour is related to the
interleaving distance to the interleaving distance.

Theorem 5.6.6. Let F, G : Qr
≥0 → Vectk be tame persistence modules, and Ω a persistence contour. Then

dI(F, G) ≤ δ =⇒ F, G are 3δ-close w.r.t the noise system generated by Ω. Also if F, G are δ-close, then they
are 2δ-interleaved. In particular

1
2

dI(F, G) ≤ d(F, G) ≤ 3dI(F, G)

Proof. First assume that F, G are δ-interleaved, i.e. Ωδ-interleaved. So we have natural transforma-
tions φ : F → G ◦Ωδ, ψ : G → F ◦Ωδ such that φ ◦ ψ = G ◦ ηΩ2δ

, and ψ ◦ φ = F ◦ ηΩ2δ
, where ηT

is the unique natural transformation between the identity functor and the translation T. Our goal
will be to show that φ is a 2δ-equivalence and that λ : G → G ◦Ωδ is a δ-equivalence, where λ is
precomposition by ηΩδ

. Then using the triangle inequality, we will be able to conclude that F, G are
3δ-close.
To see that λ : G → G ◦Ωδ is a δ-equivalence, consider the following diagram

ker λx G(x) G(Ωδ(x)) coker λx

ker λΩδ(x) G(Ωδ(x)) G(Ω2δ(x)) coker λΩδ(x)

λx

λΩδ(x)
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Notice that in the central square, both maps coming from G(x) are λx, so by commutativity, the
vertical map between the kernels must be trivial. Similarly, the map between the cokernels must be
trivial. Therefore ker λ, coker λ ∈ Cδ, and it follows that G, G ◦Ωδ are δ-close.
To see that φ is a 2δ-equivalence, recall that we have the following exact sequences:

0→ ker φ→ ker ψ ◦ φ→ ker ψ

coker ψ→ coker φ ◦ ψ→ coker φ→ 0

Now recall that (ψ ◦ φ)x = F ◦ ηΩ2δ(x) = F(x ≤ Ω2δ(x)). Therefore ker ψ ◦ φ ∈ C2δ. In the first exact
sequence above, if we replace ker ψ by the image of the last map, we get a short exact sequence. It
follows that ker φ ∈ C2δ, and similarly coker φ ∈ C2δ. In particular, F, G ◦Ωδ are 2δ-close.
Now assume that F, G are δ-close. To show that they are 2δ-interleaved, it suffices to show that any
δ-equivalence gives rise to a 2δ-interleaving. To see this, note that since F, G are δ-close, we have the
following diagram:

L

F G

θ ρ

Where L is a tame functor and θ, ρ are τ- and µ-equivalences respectively, where τ + µ ≤ δ. Then
if we can say that L, F are τ-interleaved, and L, G are µ-interleaved, it will follow by the triangle
inequality that F, G are δ-interleaved.
Let H ∈ Tame(Qr, Vectk), and λ : H → F be a τ-equivalence. So ker λ, coker λ ∈ Cτ. In particular, we
have the following diagram

ker λx H(x) F(x) coker λx

ker λΩτ(x) H(Ωτ(x)) F(Ωτ(x)) coker λΩτ(x)

ker λΩ2τ(x) H(Ω2τ(x)) F(Ω2τ(x)) coker λΩ2τ(x)

0

λx

0

0

λΩτ (x)

0

λΩ2τ (x)

We have a natural transformation H → F ◦Ω2τ given by the composition λ ◦ H(x ≤ Ω2τ(x)). So
the existence of a 2τ interleaving between H, F is equivalent to the existence of the dashed arrow
in the above diagram such that the resulting diagram commutes. Fix an element z ∈ F(x). Then
by commutativity of the upper right square, z′ := F(x ≤ Ωτ(x))(z) ∈ im λΩτ(x). Now consider
w1, w2 ∈ H(Ωτ(x)) such that λΩτ(x)(wi) = z′ for i = 1, 2. Then in particular w1 − w2 ∈ ker λΩτ(x).
Hence, by commutativity of the bottom left square, we have H(Ωτ(x) ≤ Ω2τ(x))(w1) = H(Ωτ(x) ≤
Ω2τ(x))(w2) =: w. Then the map given by z 7→ w is a well defined linear function, which by the
naturality of λ, defines a natural map F → H ◦Ω2τ. In particular, it defines a 2τ-interleaving between
F, H.

Proposition 5.6.7 ([17]). Let V = Cone(v1, . . . , vn) be a cone in Qr
≥0. If v1, . . . , vn are linearly independent,

then then the standard noise in the direction of V is the same as the standard noise in the direction of v1 +
· · ·+ vn.

This proposition implies that theorem 5.6.5 also holds when we replace the noise system gener-
ated by a persistence contour by the standard noise in the direction of the full cone Qr

≥0, which is the
claim made in [17].2
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In one dimension, we can generate contours from positive, Lebesgue measurable functions. We will
call such functions density functions.

Example 5.6.8. Given a density function f and some ε ∈ Q≥0, we can uniquely define a persistence
contour Ω by

ε =
∫ Ωε(v)

v
f (x)dx.

x

y

v Ωε(v)

ε

f (x)

To see that this defines a contour, consider ε, τ ∈ Q≥0. Then

ε + τ =
∫ Ωε(v)

v
f (x)dx +

∫ Ωτ(Ωε(v))

Ωε(v)
f (x)dx

=
∫ Ωτ(Ωε(v))

v
f (x)dx

However,

ε + τ =
∫ Ωε+τ(v)

v
f (x)dx

by definition. Therefore Ωε+τ(v) = Ωτ(Ωε(v)), and so Ω is a persistence contour. A contour defined
in this way is said to be of distance type. Note that if f is the constant function f (x) = 1, then the
distance type contour we get is the standard contour. ♦

Example 5.6.9. Given a density function f , and a value v ∈ Q≥0, there is a unique a ∈ Q≥0 such that

v =
∫ a

0
f (x)dx.

Then we can define a contour Ω by

Ωε(v) =
∫ a+ε

a
f (x)dx.

2The statement in [17] is that if d is the pseudometric associated to the standard noise in the direction of the full cone
Qr
≥0, then dI(F, G) ≤ d(F, G) ≤ 6dI(F, G). The discrepancy is due to the different choice of definition for an ε-equivalence

that we have used.
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x

y

a a + ε

v Ωε(v)

f (x)

Monotonicity of integrals guarantees that Ω satisfies the first condition of being a contour. Now, by
definition

Ωτ(Ωε(v)) =
∫ a+ε+τ

a
f (x)dx = Ωε+τ(v)

and so Ω also satisfies the second condition of being a contour. Contours generated in this way are
said to be of shift type. Just as in the previous example, if f (x) = 1, then Ω is the standard contour.
♦

We will now see that persistence contours give rise to a particularly nice set of noise systems,
which we call simple noise systems.

5.7 Denoising and simple noise systems

Definition 5.7.1. Let {Cε}ε be a noise system in Tame(Qr, Vectk), and F a tame and finitely generated
functor. A denoising of F is a sequence of functors {denoise(F)ε}ε such that for any ε ∈ Q≥0:

• denoise(F)ε ∈ B(F, ε).

• rank(denoise(F)ε) = r̂ankF(ε).

So a denoising of F at scale ε is a functor in B(F, ε) that realises the minimum rank. Thus a
denoising of F with respect to a particular noise system is a functor which realises the stable rank of
F. Therefore any efficient way of producing a denoising of a functor would also result in an efficient
computation of the stable rank.
Given a tame persistence module F, we define its τ-neighbourhood w.r.t to some noise system {Cε}ε

as
B⊂(F, τ) = {F′ ⊂ F|F′ tame and F/F′ ∈ Cτ}.

If the noise system is closed under direct sums, in the sense that each Cε is closed under direct sums,
then if the above set has a minimal element w.r.t. inclusion, this minimal element is unique [19]. If
this minimal element exists, we call it Fτ. Note that whenever Fτ exists, the condition that F/F′ ∈ Cτ

is equivalent to saying that Fτ ⊂ F′. To see this, note that if Fτ ⊂ F′, then there is the short exact
sequence

0→ F′/Fτ → F/Fτ → F/F′ → 0.
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Therefore B⊂(F, τ) can be identified with the set

{F′ ⊂ F|F′ tame and Fτ ⊂ F′ ⊂ F}

Definition 5.7.2. A noise system {Sε}ε is called simple if

• It is closed under direct sums.

• For any finitely generated functor G ∈ Tame(Qr
≥0), the set B⊂(G, τ) has a minimal element for

any τ ∈ Q≥0, which we denote Gτ.

• rank Gτ ≤ rank G.

Note that the third condition is always satisfied in the one dimensional case, but not in higher
dimensions.

Example 5.7.3. Let X = {Xε}ε∈Q≥0 , where Xε = [0, ε) × [0, ε) ⊂ Q2
≥0, and let {Xε}ε∈Q≥0 be the

associated domain noise system. Let F = k((0, 0),−). Then Fτ is the minimal subfunctor with respect
to inclusion such that Domain(F/Fτ) ⊂ Xτ. In particular, we must have F = Fτ on Q2

≥0\Xτ. So for
τ = 0 ,it is clear that F = Fτ. For all other values, Fτ is given by the functor k((0, ε),−)⊕ k((ε, 0),−).
Therefore, rank Fτ ≥ rank F. It follows that the domain noise is not simple.

x

y

X1

X2

F =

k k k

k k k

k k k

F1 =

k k k

k k k

0 k k

♦

It turns out that simple noise systems admit a simplified way of computing the stable rank, par-
ticularly in the one-dimensional case. Given a noise system {Cε}ε, the approach will be to compute
r̂ankF(τ) by considering the tame functors in B⊂(F, τ).

Theorem 5.7.4 ([17],[21]). Let {Sε}ε be a simple noise system, and G ∈ Tame(Qr
≥0) be finitely generated.

Then
r̂ankG(τ) = min{rank F|F ∈ B⊂(G, τ)}

Therefore in order to calculate the stable rank of F, it is enough to look at the functors in B⊂(F, τ).
So if we can produce a family of simple noise systems, and construct explicitly the functors Fτ, we
will be able to compute the stable rank invariant. It turns out that in the one dimensional case, we
can do just this.
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Let G be a finitely generated tame persistence module (of any dimension), and let Ω be a persistence
contour, and C = {Cε}ε the associated noise system. Choose a minimal set of generators {gs ∈
G(vs)}n

s=1. Let hs = G(vs ≤ Ωτ(vs))(gs). Now define Gτ ⊂ G to be the functor generated by the
elements hs. This reuse of notation is justified by the fact that the two definitions of Gτ coincide when
our noise system is simple. To see this, irst we will show that G/Gτ ∈ Cτ. For v ∈ Q≥0, any x ∈ G(v)
can be written as x = ∑vs≤v λsG(vs ≤ v)(gs) for some coefficents λs. So

G(v ≤ Ωτ(v))(x) = ∑
vs≤v

λsG(v ≤ Ωτ(v)) ◦ G(vs ≤ v)(gs)

= ∑
vs≤v

λsG(Ωτ(vs) ≤ Ωτ(v) ◦ G(vs ≤ Ωτ(vs))(gs)

= ∑
vs≤v

λsG(Ωτ(vs) ≤ Ωτ(v))(hs).

And in particular, x is mapped into Gτ(v). To check minimality, let G′ ∈ B⊂(G, τ). In particular,
G/G′ ∈ Cτ, so G(vs ≤ Ωτ(vs)) maps the generator gs to an element in G′(v), and so in particular hs
belongs to G′(v). Therefore Gτ ⊂ G′.

Example 5.7.5. Let Ω be the standard contour, and F : N2
≥0 → Vectk be the following persistence

module:

F =

k k k

k k k

0 k k

Then F has generators which lie in F(0, 1) and F(1, 0), and any set of such generators is minimal.
Similarly, if we compute F1, we see that a minimal set of generators is made up of elements of F(1, 2)
and F(2, 1), so F1 looks like the following diagram in the range [0, 2]× [0, 2]:

F1 =

0 k k

0 0 k

0 0 0

Now by Theorem 5.7.4, r̂ankF(1) can be computed by looking at the ranks of the functors G such
that F1 ⊂ G ⊂ F. We can see that the free functor G = k((1, 1),−) satisfies this criteria, and so
r̂ankF(1) = rank G = 1.

G =

0 k k

0 k k

0 0 0
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♦

Proposition 5.7.6 ([19]). If F ∈ Tame(Q≥0, Vectk) is finitely generated, then

r̂ankF(τ) = Fτ

where the stabililisation of the rank is w.r.t the noise system generated by a contour.

In particular, denoise(F)τ = Fτ in the one dimensional case. We recall that finitely generated
tame one-dimensional persistence modules admit an interval decomposition, and so a corresponding
barcode. In the multi-dimensional case the situation is more complicated and there is in general no
canonical choice of a denoising, so the focus is on directly computing the stable rank.

Example 5.7.7. Let {Sε} be the simple noise system associated to the standard contour in one dimen-
sion. Consider the free functor in one generator F = k(i,−) ∈ Tame(Q≥0, Vectk) for some i ∈ Q≥0.
Then Fτ = k(i + τ,−). For G = [a, b) ∈ Tame(Q≥0, Vectk), an interval module in one dimension,
we have Gτ = [a + τ, b). It follows that for a decomposable one dimesional persistence module
H, the subfunctor Hτ has rank given by the number of bars in the barcode decomposition of H of
length strictly greater than τ. This explicit description of a denoising for one dimensional persistence
modules allows the stable rank to be computed very efficiently, since we can compute the barcode
efficiently. ♦

It turns out that simple noise systems are in bijective correspondence with persistence contours.
We have already seen that contours give rise to noise systems, and the discussion in this section
section shows that these noise systems are simple. The map which sends a persistence contour to
its associated simple noise system turns out to be a bijection between the set of contours and sim-
ple noise systems [19]. This bijection, along with the methods for generating contours described in
example 6.7 and 6.8 give us a pipeline for generating a wide variety of metrics between persistence
modules. By taking any choice of positive valued, Lebesgue measurable function, we can generate
a contour. This contour is associated to a unique simple noise system, from which we derive a new
pseudometric. This pipeline allows us to very easily vary the nature of the pseudometric we wish to
use, so it is easier to find an appropriate metric for any given application. The question of finding
a good pseudometric for a particular data set is still open, with trial and error being the primary
method available at the moment.

Lebesgue measurable function

Persistence contour

Simple noise system

Pseudometric on the space of tame persistence modules

5.8 Noise systems as Serre categories

We will now give a brief introduction to the theory of Serre categories.
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Definition 5.8.1. Let A be an abelian category. A Serre subcategory of A is a non-empty full subcate-
gory C of A such that given any SES in A

0→ F → G → H → 0

F, H ∈ Ob(C)⇔ G ∈ Ob(C).

Lemma 5.8.2. Let A be an abelian category, and C be a Serre subcategory. Then there exists an abelian
category A/C and an exact functor

π : A→ A/C

which is essentially surjective, and is such that π(F) is the zero object of A/C iff F ∈ Ob(C), i.e. C is the
kernel of π.

So Serre subcategories are used to define an analogy to quotients on categories. The pair (A/C, π)
has the following universal property: Given an exact functor π′ : A → B such that C is in the kernel
of π′, then there is a unique exact functor φ : A/C → B such that φ ◦ π = π′.

A B

A/C

π′

π

φ

We in fact have an explicit construction of the category A/C. Define a C-equivalence in A to be a
morphism ψ : F → G in A such that ker ψ, coker ψ ∈ C. Then A/C is obtained by inverting all
C-equivalences [30].
The definition of a noise system looks very similar to that of a Serre category. And indeed we use
noise systems to define the functors which we consider noise at a scale ε. It therefore makes sense to
want to take the quotient Tame(Qr

≥0, Vectk)/Sτ for a noise system {Sε}ε. However this is not always
possible, since in general Sε is not a Serre subcategory; while it is true that given an SES in Tame(Qr

≥0)

0→ F → G → H → 0

then G ∈ Sε =⇒ F, H ∈ Sε, the converse is not in general true. What we can say is that the
components S0 and

⋃
ε Sε are always Serre subcategories of Tame(Qr

≥0, Vectk).

Example 5.8.3. Let {Sε}ε be the noise system associated to the standard contour. Then recall that an
ε-equivalence is a morphism φ : F → G such that the following diagram commutes for all x ∈ Qr

≥0

ker φx F(x) G(x) coker φx

ker φx+~ε F(x +~ε) G(x +~ε) coker φx+~ε

0

φx

0
φx+~ε

where the vertical maps are the structure maps of F and G. Then following the construction above,
π0 : S0 → Tame(Qr

≥0, Vectk)/S0 inverts all 0-equivalences. However 0-equivalences in this case
are already isomorphisms, so the categories Tame(Qr

≥0, Vectk) and Tame(Qr
≥0, Vectk)/S0 are equiv-

alent. The other case to look at is π∞ : Tame(Qr
≥0, Vectk) → Tame(Qr

≥0, Vectk)/
⋃

ε Sε. Here, any
ε-equivalence is mapped to an isomorphism, so any two tame persistence modules become isomor-
phic whenever they are ε-interleaved for any ε. ♦

From the above example it is clear that we would like more control over the size of the noise we
can quotient out. For this we want to introduce the notion of a Serre noise system.
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Definition 5.8.4. A Serre noise system, or simple a Serre system is a noise system {Sε}ε where every
component Sε is a Serre subcategory of the category of tame functors.

Example 5.8.5. As was mentioned previously, the domain noise is closed under direct sums. How-
ever it is also true that it is a Serre system. Consider the support noise defined by X = {Xε}ε∈Q≥0 ⊂
Qr
≥0. Then given an exact sequence of tame persistence modules,

0→ F → G → H → 0

if F, H ∈ Xε, then in particular F, H = 0 on Qr
≥0\Xε. Then by exactness, G is also trivial there, and so

G ∈ Xε. If we consider the functor πε : Tame(Qr
≥0, Vectk)→ Tame(Qr

≥0, Vectk)/Xε, this functor sends
ε-equivalences to isomorphisms. In particular, two tame persistence modules which are pointwise
isomorphic on Qr

≥0\Xε are mapped to isomorphic objects under πε. ♦

Given an exact sequence of tame functors

0→ F → G → H → 0

it is always the case that G(v) ∼= F(v) ⊕ H(v) since all short exact sequences in Vectk split. In a
Serre system, we can additionally say that any functors belonging to the same short exact sequence
belong to the same component of the system. In other words, the fact that G(v) ∼= F(v)⊕ H(v) holds
implies that F, G, H are contained in the same component of the Serre system. Therefore, in a Serre
system S = {Sε}ε it is sufficient to look at persistence modules pointwise when we want to compute
Tame(Qr

≥0, Vectk)/Sε i.e. we can ignore the structure maps. Thus the definition of the components Sε

do not depend on the structure maps. Conversely, any such components which satisfy the conditions
of being a noise system must define a Serre system.

Example 5.8.6 (Dimension noise). Let {nε}ε∈Q≥0 be a sequence of natural numbers where n0 = 0 and
nτ + nε ≤ nτ+ε. We can define a noise system, called the dimension noise by

Sε = {F ∈ Tame(Qr
≥0, Vectk)|dim F ≤ nε}.

The fact that this defines a noise system depends only on the conditions we have placed on the
sequence {nε}ε∈Q≥0 . It is also clear that this defines a Serre system. ♦

A natural question to ask is if there are any Serre systems which are simple. The answer is yes,
and in fact we have a way of generating such systems. Let {Cε}ε be a noise system. Then for ε ∈ Q≥0,
define

Xε = {v ∈ Qr
≥0|k(v,−) ∈ Cε} ⊂ Qr

≥0.

Note that τ ≤ ε =⇒ Cτ ⊂ Cε =⇒ Xτ ⊂ Xε. Therefore, we can consider the domain noise X with
respect to {Xε}ε, in particular

Xε = {F ∈ Tame(Qr
≥0, Vectk)|F(v) = 0 if v 6∈ Xε}

= {F ∈ Tame(Qr
≥0, Vectk)|F(v) = 0 if k(v,−) 6∈ Cε}.

Consider w ∈ Xε. Then k(w,−) ∈ Cε =⇒ k(v,−) ∈ Cε for all w ≤ v since k(v,−) is a subfunctor of
k(w,−). Therefore v ∈ Xε for all w ≤ v. Now k(w, v) 6= 0 iff w ≤ v. But as we have seen, any v such
that k(v,−) 6∈ Cε must be less that w. It follows that k(w,−) ∈ Xε. Similarly, if F has a minimal set of
generators which all belong to Xε, then F ∈ Xε. It was shown in [19] that this system is simple, and
considering the above characterization of Serre systems it is clearly Serre. The associated persistence
contour is given by

Ωτ(v) =

{
v k(v,−) 6∈ Cτ

∞ otherwise
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So given any noise system, we can generate a system which is both simple and Serre. Explicitly, we
see that

Xε = {F ∈ Tame(Qr
≥0|F(v) = 0 if k(v,−) 6∈ Cε}

= {F ∈ Tame(Qr
≥0|F(v ≤ v) = 0 if k(v,−) 6∈ Cε}

= {F ∈ Tame(Qr
≥0|F(v ≤ Ωε(v)) = 0}

where we use the fact that F(v ≤ v) is always the identity, and that the definition of the noise system
associated to a contour ignores those v ∈ Qr where Ωε(v) = ∞. From this example, it is clear that
that any contour of the form

Ωε(v) =

{
v Pε(v)
∞ ¬Pε(v)

corresponds to a Serre system, where here we use notation from first order logic, and Pε(v) means
that v satisfies some property Pε of the elements of Qr

≥0. In order for Ω to be contour, the sequence
of properties {Pε}ε must satisfy the condition that Pε+τ(v) =⇒ Pτ(v) and Pε(v) ∀v ∈ Qr

≥0. In
particular, any such sequence of properties of vectors in Qr

≥0 yields a simple Serre system.

Example 5.8.7. Consider the decreasing sequence of sets {Yε}ε∈Q≥0 ⊂ Q2
≥0 given by

Yε =

{
[0, 1

ε )× [0, 1
ε ) ε ≥ 1

[0, 1)× [0, 1) ε ≤ 1.

x

y

Y4

Y2

Y1

Then we can define a simple Serre system S by

Sε = {F ∈ Tame(Qr
≥0, Vectk)|F(v) = 0 if v ∈ Yε}.

The associated contour is then given by

Ωε(v) =

{
v v ∈ Yε

∞ otherwise.

Consider the tame functor F = k((0, 1/4),−)⊕ k((1/2, 0),−). Then Fτ has generators in F(Ωτ((0, 1/4)))
and F(Ωτ((1/2, 0))). In particular,

Fτ =


F τ ≤ 2
k((0, 1/4),−) 2 < τ ≤ 4
0 τ > 4.

The exact functor πε : Tame(Qr
≥0, Vectk)→ Tame(Qr

≥0, Vectk)/Sε identifies persistece modules which
are pointwise isomorphic on Yε. ♦
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Chapter 6

Applications

Both of the analyses in this chapter we performed using python, largely using software packages [33]
[32].

6.1 Textbook example

We will now use the techniques described in chapter 5 to differentiate between different shapes in the
plane. Consider a circle, triangle and square in the plane, as in figure 6.1. Note that all of these shapes
are homeomorphic to a circle, and so are indistinguishable via traditional techniques of algebraic
topology.

FIGURE 6.1

In order to build a Vietoris-Rips complex from which we can build H0(−) and H1(−) persistence
modules, we first randomly generate 5000 points centered around each shape, which gives us the
point clouds in 6.2.

FIGURE 6.2

The strategy will be to take a sample of 100 points from each shape, form the Vietoris-Rips com-
plex of the resulting point cloud, and from this compute r̂ankH0(−) and r̂ankH1(−). We will then
repeat this 2000 times, and take the average of the stable ranks and plot them. This process will pro-
vide a signature for each shape which clearly distinguishes them visually. We will also do the same
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FIGURE 6.3: The barcode for the circle (left), triangle (middle) and square (right)

for a fourth shape, which is just the circle with some noise added, as shown in figure 6.4. The process
that we have described will produce a signature for the "noisy" circle which is indistinguishable from
that of the circle. This shows that the stable rank is an effective tool at ignoring noise in the data,
which as we mentioned in the introduction has been one of the motivations for persuing persistent
homology from the beginning. The barcodes for a sample of 100 points from the square,triangle and
circle are shown in figure . Note that the barcode of the noisy circle would be very different from
the circle. In fact, adding just a single point to the center of the circle would drastically change its
barcode.

FIGURE 6.4: The noisy circle

For each sample of 100 points, we compute r̂ankH0(−), r̂ankH1(−) and r̂ankH0(−)/r̂ankH1(−).
This third quantity is what will comprise the aforementioned signature of each shape. For example,
figure 6.5 shows the graph of r̂ankH0(−), r̂ankH0(−) and r̂ankH0(−)/r̂ankH1(−) for one sample of
100 points taken from the triangle.

FIGURE 6.5: The stable rank for H0 (left), H1 (middle) and H1/H0 (right) of a sample of
100 points from the triangle

After doing this 2000 times for each shape, we will have 2000 different stable rank functions for
reach shape. We take the average of these and plot them. It is clear from figure 6.6 that each shape
has a distinct signature, and that the circle and noisy circle are indistinguishable using this method.
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FIGURE 6.6: Plots of the averaged r̂ankH1/r̂ankH0 functions for the different shapes.
blue = triangle, orange = square, red = circle, black = noisy circle.

6.2 Heart disease data

We now look at some real life data concerning heart disease patients, available at [31]. The data con-
tains information about 303 people, and each data point is comprised of 14 variables including age,
sex and resting blood pressure. Of the patients in question, 165 had heart disease and 138 did not.
Our goal will be to find a suitable invariant and metric to distinguish between a sample of healthy
people and a sample of people with heart disease. To do so, we first split the data into training and
test data. The former contained 202 of the data points, and the latter 101 points. We then further split
these sets by whether or not the patient had heart disease. So we had four data sets, denoted Test-
Pos, TestNeg, TrainPos and TrainNeg, where "Pos" indicated potients with heart disease, and "Neg"
indicates those without. Then using the same method as in the textbook example, we computed the
average stable rank of the H0 and H1 persistence modules with respect to the standard contour for
TestPos, TestNeg, TrainPos and TrainNeg. This time we took 400 samples of 20 points to compute the
average. The plot of these averages is shown in figure 6.7. Visually, r̂ankH1 appears to do a good job

FIGURE 6.7: Plots of the average of 400 samples for r̂ankH0 and r̂ankH1.
red = TestPos, orange = TestNeg, blue = TrainPos, black = TestNeg.

of identifying and distinguishing between TestPos and TestNeg. We wish to measure to what degree
this is actually the case. Let TestPosHi denote the function r̂ankHi for TestPos, and similarly for Test-
Neg, TrainPos and TrainNeg, and let d1(−,−) denote the metric associated with the L1 norm. Then
we want to compute d1(TestPosHi , TrainPosHi), d1(TestPosHi , TrainNegHi

), d1(TestNegHi
, TrainPosHi),

and d1(TestNegHi
, TrainNegHi

). If the stable rank invariant (w.r.t the standard contour) for Hi is a
good invariant for distinguishing healthy and unhealthy samples, then we should see

d1(TestPosHi , TrainPosHi) < d1(TestPosHi , TrainNegHi
)

and
d1(TestNegHi

, TrainNegHi
) < d1(TestNegHi

, TrainPosHi).
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The confusion matrices for these distances are shown in figure 6.8. We can see from these that the
stable rank of H0 is unable to definitively identify a sample of people with heart disease, but does
a good job of recognising a healthy sample. Confirming the visual inspection, the stable rank of H1
provides a better overall assessment, correctly categorizing both TestPos and TestNeg.

FIGURE 6.8: Confusion matrices for d1

We can repeat this process, but this time stabilizing the rank w.r.t the noise system generated by
the contour of distance type associated with the function shown in figure 6.9.

FIGURE 6.9

This produces new functions r̂ankH0, r̂ankH1. The graphs of these functions are shown in figure
6.10. The confusion matrices for the distances between the r̂ankH0, r̂ankH1 functions are given in
figure 6.11. This contour puts greater emphasis on the homology generators that are present for mid-
range values of the parameter ε in the Vietoris-Rips complex. We see that in this case, r̂ankH0 acts
as a better signature for identifying samples of people with heart disease than when we stabilize the
rank with respect to the standard contour.

FIGURE 6.10: r̂ankH0 (left) and r̂ankH1 (right) w.r.t the contour defined by the function
in figure 6.9.
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FIGURE 6.11: Confusion matrices for d1 w.r.t. the new contour.

There is another way of measuring the effectiveness of the signatures r̂ankH0 and r̂ankH1. The
procedure is to take the average of the stable rank across 400 samples of 20 points for TrainPos
and TrainNeg, as before. Then, given a sample of 20 points from TestPos, we compute the func-
tion rank Hi of the resulting Vietoris-Rips complex and measure the distance in the L1 norm to
TrainPosHi , TrainNegHi

. If the distance to TrainPosHi is less than the distance to TrainNegHi
, we con-

sider this a success. Then repeating this process for 400 samples of TestPos, we obtain a success rate
for the signature r̂ankHi. We then do the same thing for TestNeg. For the standard contour, we get
the success rates shown in the confusion matrices in figure 6.12. The values given in these confusion
matrices are the succes rates as percentages.

FIGURE 6.12: Success rate confusion matrices w.r.t the standard contour

Using this process makes it easier to compare the relative effectiveness of the different signatures.
From figure 6.12, we can see that r̂ankH0 successfully recognises healthy patients very effectively,
whereas r̂ankH1 is better at identifying those with heart disease. Figure 6.13 gives the corresponding
confusion matrix when we replace the standard contour by the contour of distance type associated
with the function shown in figure 6.9. This agrees with the previous observation that stabilizing w.r.t.
this contour improves r̂ankH0 as a signature for detecting patients with heart disease.

FIGURE 6.13: Success rate confusion matrices w.r.t the new contour.
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The general idea of the approach taken so far is to look at a sample of the population and be able
to discern if those people are at risk of heart disease. But of course, we would also like to know
what the underlying cause of heart disease is, or at the very least which characteristics correlate
strongly with the presence of heart disease. Ideally, the methods discussed so far should reflect when
a particular variable or group of variables are key indicators of heart disease. Based on previous
analyses of this data set [31], some of the most prominent variables in this regard have been found
to be the level of chest pain experienced by a patient, the number of major blood vessels they have,
their maximum heart rate, whether or not they experience exercise induced angina, and two other
variables which are related to a patient’s electrocardiogram (ECG). If we run the same analysis as
above w.r.t the standard contour for the dataset restricted to only the above variables, we get the
success rates shown in figure 6.14.

FIGURE 6.14: Success rate confusion matrices w.r.t. the standard contour when we
restrict the dataset to the most important variables.

We can clearly see that in this context r̂ankH0 is an extremely effective signature.



61

Bibliography

[1] Chazal, F., de Silva, V.,Glisse, M. and Oudot, S. The Structure and Stability of Persistence Modules.
Springer, 2016.

[2] Azumaya, G. Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem.
orem. Nagoya Mathematical Journal, 1:117-124, 1950.

[3] Carlsson, G. and de Silva, V. Zigzag persistence. Foundations of Computational Mathematics,
10(4):367-405, 2010.

[4] Crawley-Boevey, W. Decomposition of pointwise finite-dimensional persistence modules. Journal of
Algebra and Its Applications, Vol. 14, No. 05, 1550066, 2015.

[5] Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L. and Oudot, S. Proximity of Persistence Modules
and their Diagrams. Proceeding of the 25th Annual ACM Symposium on Computational Geom-
etry (SoCG), pages 237-246, 2009.

[6] Zomorodian, A. and Carlsson, G.: Computing persistent homology. Discrete and Computational
Geometry, 33(2):249-274, 2005.

[7] Corbet, R. and Kerber, M.: The Representation Theorem of Persistent Homology Revisited and Gener-
alized. Preprint arXiv:1707.08864v3 [math.AT], 2018.

[8] Ghrist, R.: Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. 45 61-75, 2008.

[9] Cohen-Steiner, D., Edelsbrunner, H. Harer, J.:Stability of Persistent Diagrams. Discrete and Com-
putational Geometry, 37:103–120 , 2007.

[10] Bubenik, P., De Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput.
Math. 15(6), 1501–1531 (2015)

[11] Schwede, S. and Shipley, B.: Equivalences of monoidal model categories. Algebr. Geom. Topol. 3
(2003), 287–334

[12] Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V.:Tensor categories. Mathematical Surveys and
Monographs, Volume 205, American Mathematical Society, 2015

[13] Patel, A.: Generalized persistence diagrams. J. Appl. Comput. Topol. 1(3), 397–419, 2018

[14] McCleary, A. and Patel, A.: Botleneck Stability for Generalized Persistence Diagrams. Preprint
arXiv:1806.00170 [math.AT], 2018

[15] Gunnar, C. and Zomorodian, A.: The Theory of Multidimensional Persistence. Discrete & Compu-
tational Geometry. 42:71-93, 2009

[16] Chacholski, W. and Riihimaki, H.: Metrics and stabilization in one parameter persistence. Preprint
arXiv:1904.02905 [math.AT], 2019



62 BIBLIOGRAPHY

[17] Scolamiero, M., Chacholski, W., Lundman, A. et al.: Multidimensional persistence and noise. Found
Comput Math 17: 1367, 2017

[18] Riihimaki, H. and Chacholski, W.: Generalized persistence analysis based on stable rank invariant.
Preprint arXiv:1807.01217 [cs.CG], 2018

[19] Gäfvert, O. and Chacholski, W.:Stable invariants for multidimensional persistence. Preprint
arXiv:1703.03632 [math.AT], 2017

[20] Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found
Comput Math 15: 613, 2015

[21] Gäfvert, O.: Algorithms for multidimensional persistence. Master’s thesis, 2016

[22] Hatcher, A.: Algebraic Topology. Cambridge, Cambridge University Press, 2002

[23] Webb, C.: Decomposition of graded modules. Proc. Am. Math. Soc. 94: 565-571, 1986

[24] Mac Lane, S.: Categories for the working mathematician. New York, Springer-Verlag New York,
1978

[25] Nicolau, S., Levine, A. amd Carlsson, G.: Topology based data analysis identifies a subgroup of breast
with a unique mutational profile and excellent survival. Proceedings of the National Academy of
Sciences 108(17):7265-70, 2011

[26] Bendich, P. et al.: Persistent homology analysis of brain artery trees. Ann Appl Stat. 10(1): 198–218,
2016

[27] Keller, B., Lesnick, M. and Willke, T.: Persistent homology for virtual screening. ChemRxiv preprint,
2018

[28] Topaz, C., Ziegelmeier, L. and Halverson, T.: Toplogical data analysis of biological aggregation mod-
els. PloS One, 10(5):e0126383, 2015

[29] Singh, G., et al.: Topological analysis of population activity in visual cortex. Journal of Vision 8(8):11,
1–18, 2008

[30] The stacks project. https://stacks.math.columbia.edu/tag/02MN

[31] Heart disease UCI. https://www.kaggle.com/ronitf/heart-disease-uci

[32] Chacholski, W.: stableRANK. Software, not yet distributed.

[33] Gäfvert, O.:Topcat. https://github.com/olivergafvert/topcat


