
Toric morphisms between p-compact groups

Jesper M. Møller

Abstract. It is well-known that any morphism between two p-compact groups
will lift, non-uniquely, to an admissible morphism between the maximal tori.
We identify here a class of p-compact group morphisms, the p-toric mor-
phisms, which can be perceived as generalized rational isomorphisms, en-
joying the stronger property of lifting uniquely to a morphism between the
maximal torus normalizers. We investigate the class of p-toric morphisms and
apply our observations to determine the mapping spaces map(BSU(3), BF4),
map(BG2, BF4), and map(BSU(3), BG2) where the classifying spaces have
been completed at the prime p = 3.

1. Introduction

The classification up to homotopy of maps between classifying spaces of com-
pact Lie groups is a traditional project of algebraic topology [18, 26]. One line
of development started with the investigations 25 years ago by Hubbuck [15, 16]
and Adams-Mahmud [1]. They noted the close relationship between maps be-
tween classifying spaces and admissible homomorphisms between maximal tori.
The regular admissible homomorphisms, in particular, turned out to have espe-
cially nice properties. It is the purpose of this paper to study regular admissible
morphisms, here called toric admissible morphisms, in light of the more recent
theory by Dwyer-Wilkerson [9] of p-compact groups. As case studies, we classify
homotopy homomorphisms SU(3)→ F4, G2 → F4, and SU(3)→ G2 at the prime
p = 3.

In order to describe the content in more detail, let X1 and X2 be p-compact
groups, for the sake of this introduction assumed to be connected, with maximal
tori T (X1)→ X1 and T (X2)→ X2, respectively. For any morphism f : X1 → X2

there is a lift T (f) : T (X1)→ T (X2), unique up the action of the Weyl group of
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X2, such that the diagram

T (X1)
T (f) //

i1

²²

T (X2)

i2

²²
X1

f
// X2

commutes up to conjugacy. As a consequence of uniqueness, the morphism T (f) is
admissible in the sense that for any element w1 of the Weyl group ofX1 there exists
and element w2 of the Weyl group of X2 such that T (f)w1 = w2T (f). In general,
w2 is not uniquely determined by w1, but if it is, we say that f is p-toric (2.1). (As
we shall see (2.4), f is p-toric, if and only if the centralizer CX2(fi1T (X1)) of the
maximal torus of X1 in X2 is a maximal torus of X2. This explains the name.) In
that case, the correspondence w1 → w2 is a homomorphism of Weyl groups and,
by Theorem 3.5, there is a unique lift N(f) : N(X1)→ N(X2) to a map between
the maximal torus normalizers such that the diagram

N(X1)
N(f) //

²²

N(X2)

²²
X1

f
// X2

commutes up to conjugacy, i.e. a p-toric morphism lifts uniquely to a morphism
between the maximal torus normalizers.

In many concrete cases the generic morphism is p-toric. As a first example,
we consider the case where the domain X1 = SU(3), the codomain X2 = F4,
and the prime p = 3. The compact Lie group F4 contains a unique copy of
SU(3, 3) = SU(3) ×Z(SU(3)) SU(3) as a subgroup of maximal rank (4.10). Any
morphism SU(3)→ SU(3, 3) is of the form

ψ(u,v) : SU(3) ∆−→ SU(3)× SU(3)
ψu×ψv

−−−−→ SU(3)× SU(3)→ SU(3, 3)

where u and v are 3-adic units or zero (2.17). Composing with the inclusion
e : SU(3, 3)→ F4 we obtain the morphism eψ(u,v) : SU(3)→ F4. Observe that
eψ(u,v) = eψ(−u,−v) since the inclusion e is invariant under the action of the
Weyl group WF4(SU(3, 3)) [11, 4.3] [24, 8.4] which is of order two generated by the
self-map ψ−1×Z(SU(3))ψ

−1 of SU(3, 3) (4.15). These maps eψ(u,v), u, v ∈ Z∗3∪{0},
with the relation eψ(u,v) = eψ(−u,−v), turn out to describe Rep(SU(3),F4) =
[BSU(3)∧3 , (BF4)∧3 ] completely.

Theorem 1.1. The map

e ◦ − : WF4(SU(3, 3))\Rep(SU(3),SU(3, 3))→ Rep(SU(3),F4)

is a bijection when p = 3.
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See (4.16, 5.7, 6.7) for information about the centralizers [9, 3.5] of these
maps. The proof of Theorem 1.1 is divided into three cases: Monomorphisms
SU(3) → F4 (4.13), p-toric monomorphisms PU(3) → F4 (5.4), and, the tech-
nically most demanding case, non-p-toric monomorphisms PU(3)→ F4 (6.1).

As a second example, we consider the case where X1 = G2 and X2 = F4

and p = 3 and reprove a result from Jackowski-McClure-Oliver [19]. To state the
theorem, we recall that the compact Lie group G2 contains a unique copy of SU(3)
as a subgroup of maximal rank (8.5). Thus we may restrict morphisms defined on
G2 to this subgroup SU(3) ⊂ G2.

Theorem 1.2. [19, 3.4] The restriction map

Rep(G2,F4)→ Rep(SU(3),F4)

is a bijection when p = 3.

See (7.2) for information about the centralizers of the homotopy morphisms
from G2 to F4 at the prime p = 3.

When working with this paper, I made use of a MAGMA program written
by K. Andersen for computing admissible homomorphisms. I also wish to thank
C. McGibbon for a clarifying remark.

2. Toric morphisms

In this section I introduce the concept of a p-toric morphism, relate it to other, more
familiar, types of morphisms between p-compact groups, and provide examples of
morphisms that are p-toric and others that are not.

Let X1 and X2 be p-compact groups (or extended p-compact tori [10, 3.12])
with maximal tori T1 = T (X1) → X1, T2 = T (X2) → X2 and Weyl groups
W1 = W (X1) and W2 = W (X2) [9], respectively. Write Rep(X1, X2) for the set
[BX1, BX2] of conjugacy classes of loop space morphisms [9, §3].

Definition 2.1. 1. A loop space morphism T1 → X2 is p-toric (or regular [1,
2.22], [19, 1.3]) if its centralizer CX2(T1) is a p-compact toral group [9,
6.3].

2. A loop space morphism X1 → X2 is p-toric if its composition with T1 →
X1 is p-toric.

Note that the centralizer CX2(T1) in (2.1.1) is known to be a p-compact group
[9, §6] [10, 2.5].

We shall now consider some alternative criteria for a morphism to be p-
toric. For any loop space morphism f : X1 → X2 between p-compact groups or
extended p-compact tori there exists [9, 8.11] [10, 2.14] a loop space morphism
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T (f) : T1 → T2 between the maximal tori such that

T1

T (f) //

i1

²²

T2

i2

²²
X1

f
// X2

(2.2)

commutes. Moreover, the conjugacy class of T (f) in Rep(T1, T2) is unique up to
the action by the Weyl group W2 of the target [22, 3.5]. The Adams-Mahmud map

Rep(X1, X2)→W2\Rep(T1, T2),

taking f ∈ Rep(X1, X2) to the W2-orbit of T (f) ∈ Rep(T1, T2), is instrumental
in the proofs of 1.1 and 1.2. Note that, by uniqueness of T (f), the image of the
Adams-Mahmud map is contained in W2\Adm(T1, T2) where

Adm(T1, T2) = {ϕ ∈ Rep(T1, T2) | ϕW1 ⊆W2ϕ} (2.3)

is the set of admissible homomorphisms. For each element w1 of the Weyl group
W1 of the domain there are in general several solutions for w2 ∈ W2 in the equa-
tion T (f)w1 = w2T (f). As we shall shortly see (2.4), the p-toric morphisms are
characterized (for connected X2) as the ones for which w2 is uniquely determined
by w1.

Let

W
T (f)
2 = {w2 ∈W2 | w2 · T (f) = T (f)}

denote the stabilizer subgroup at T (f) for the action of W2 on Rep(T1, T2). The
conjugacy class of this subgroup does not depend of the choice of T (f) but only
on f .

In case X1 and X2 are extended p-compact tori, there is a short exact se-
quence of loop spaces

T2 → CX2(T (f)T1)→W
T (f)
2

from which we see that

f : X1 → X2 is p-toric⇔W
T (f)
2 = π0(CX2(T1)) is a finite p-group.

In case X1 and X2 are p-compact groups, CX2(T1)→ X2 is a monomorphism
of maximal rank [10, §4], so

f : X1 → X2 is p-toric⇔ CX2(T1)0 → X2 is a maximal torus for X2

where subscript 0 indicates identity component. If X2 is assumed to be connected ,
a stronger statement is possible.

Proposition 2.4. Assume that X2 is a connected p-compact group. The following
are equivalent

1. f is p-toric.
2. CX2(T1)→ X2 is a maximal torus for X2.



Toric morphisms 5

3. WT (f)
2 is trivial.

for any p-compact group morphism f : X1 → X2.

Proof. For general reasons, the centralizer CX2(T1) is a connected [21, 3.11] [10,
7.8] p-compact group [10, 2.5] and the evaluation morphism CX2(T1) → X2 a
monomorphism of maximal rank [10, 4.3]. Also, any p-compact group with trivial
Weyl group is [9, 9.7] [21, 3.7, 3.8] a p-compact torus. These general facts, in
combination with [9, 8.11] [21, 3.6], easily imply the proposition. ¤

Consequently, for any p-toric morphism f : X1 → X2 with connected tar-
get, there is for each element w of the Weyl group of the domain a unique ele-
ment χ(f)(w) of the Weyl group of the target so that T (f)w = χ(f)(w)T (f) ∈
Rep(T1, T2), and χ(f) : W1 →W2 is a group homomorphism.

In general, for a possible non-connected target X2, we consider an enlarged
version of diagram (2.2) in the form of the diagram

T1

T (f) //

i1

²²

T2

i′2
²²
N2

j2

²²
X1

f
// X2

(2.5)

where j2 : N2 → X2 is the normalizer [9, 9.8] of the maximal torus. Using that
CN2(T1)→ CX2(T1) is a maximal torus normalizer [22, 3.4.3], we get

f is p-toric⇔ T1
i1−→ X1

f−→ X2 is p-toric (2.6)

⇔ CN2(T1)→ CX2(T1) is an isomorphism (2.7)

⇒ T1
T (f)−−−→ T2

i′2−→ N2 is p-toric (2.8)

⇔WT (f)
2 is a finite p-group. (2.9)

When p > 2, also the converse of the third implication holds because, for odd p,
a p-compact group is a p-compact toral group if and only if its Weyl group is a
finite p-group [23, 7.9].

In some cases, see e.g. [22, 5.1] or (3.5) below, it is possible to lift f to a loop
space morphism N(f) between the maximal torus normalizers such that

N1

N(f) //

j1

²²

N2

j2

²²
X1

f
// X2

(2.10)
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commutes up to conjugacy. In this situation

f is p-toric⇒ N(f) is p-toric (2.11)

and for p > 2 also the converse holds. (Use (2.7, 2.8) to see this.)
In the following examples and elsewhere

• TRep(X1, X2) ⊂ Rep(X1, X2) denotes the set of conjugacy classes of p-
toric morphisms

• Mono(X1, X2) ⊂ Rep(X1, X2) denotes the set of conjugacy classes of
monomorphisms

• TMono(X1, X2) = Mono(X1, X2) ∩ TRep(X1, X2)
• εQ(X1, X2) ⊂ Rep(X1, X2) is the set of rational isomorphisms [22, 2.1]
• εQ(X1) = εQ(X1, X1) is the monoid of rational automorphisms of X1

• Out(X1) is the group of conjugacy classes of automorphisms of X1 (the
invertible elements of the monoid Rep(X1, X1)).

Above, a loop space morphism between extended p-compact tori is a monomor-
phism if its discrete approximation [10, 3.12] is a group monomorphism.

Example 2.12. If X1 and X2 have the same rank [9, 5.11],

Mono(X1, X2) ⊂ TRep(X1, X2) ⊃ εQ(X1, X2)

because any monomorphism [9, 3.2] (rational isomorphism [22, 2.1]) restricts to an
isomorphism (epimorphism) between maximal tori [21, 3.6] [22, 3.6].

If X1 and X2 are locally isomorphic, simple p-compact groups [22, 2.7, 5.4]

TRep(X1, X2) = Rep(X1, X2)− {0} = εQ(X1, X2)

because f is p-toric or a rational isomorphism if and only if T (f) is non-trivial if
and only if f is non-trivial [22, 6.7].

Example 2.13. For any p-compact group X and any integer m > 0,
TRep(X,Xm) = (TRep(X,X))m. If X is simple,

TRep(X,Xm) = (Rep(X,X)− {0})m = εQ(X)m
p||W |
= Out(X)m,

where the last identity holds under the assumption that p divides the order of the
Weyl group [22, 5.5, 5.6].

Proposition 2.14. Assume that X1 is connected and that z : Z1 → X1 is a central
monomorphism [9, 3.5]. Then there are bijections

• Rep(X1/Z1, X2)→ {f ∈ Rep(X1, X2) | f ◦ z is trivial}
• TRep(X1/Z1, X2)→ {f ∈ TRep(X1, X2) | f ◦ z is trivial}

induced by the epimorphism X1 → X1/Z1 [9, 3.2, 8.3]. In fact,
map(B(X1/Z1), BX2) is homotopy equivalent to a union of connected components
of map(BX1, BX2).
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Proof. The epimorphism of X1 to X1/Z1 induces a homotopy equivalence be-
tween map(B(X1/Z1), BX2) and a collection of components of map(BX1, BX2)
[22, 2.10]. This shows the injection of sets of representations, and, when applied
with X1 replaced by T1, it shows that a morphism X1 → X2 is p-toric if and only
if its composition with the epimorphism X1 → X1/Z1 is p-toric. ¤

Proposition 2.15. Assume that X1 is simply connected, X2 is connected, and that
z : Z2 → X2 is a central monomorphism. Then there are bijections

• Rep(X1, X2)→ Rep(X1, X2/Z2)
• TRep(X1, X2)→ TRep(X1, X2/Z2)

induced by the epimorphism X2 → X2/Z2.

Proof. Obstruction theory (remember that BX1 is 3-connected [6]) shows that
Rep(X1, X2) = Rep(X1, X2/Z2) and the existence of a short exact sequence of
p-compact groups [9, 3.2]

K → CX2(X1)→ CX2/Z2(X1)

where BK is one component of the homotopy fixed point set BZhX1
2 ; in particular

K is a p-compact toral group. It follows that CX2(X1) is a p-compact toral group
if and only if CX2/Z2(X1) is. ¤

Example 2.16. For any simply connected, simple p-compact group X and any cen-
tral monomorphism Z → Xm,

TRep(X,Xm/Z) = TRep(X,Xm) = εQ(X)m
p||W |
= Out(X)m

where the last identity holds if p divides the order of the Weyl group [22, 5.5, 5.6].

Example 2.17. Let p be an odd prime and let SU(p, p) denote the quotient of
SU(p) × SU(p) be the central subgroup generated by (ζE, ζ−1E) where ζ 6= 1 is
a pth root of unity. Then ( 2.15)

Rep(SU(p),SU(p, p)) = Rep(SU(p), SU(p))× Rep(SU(p), SU(p))

TRep(SU(p), SU(p, p)) = Out(SU(p))×Out(SU(p))

where [20, 2.5, 3.5] [24, 4.8] Rep(SU(p), SU(p)) − {0} = Out(SU(p)) = Z∗p, the
group of units in the ring of p-adic integers. Relative to this identification

Mono(SU(p), SU(p, p)) = {(u, v) ∈ (Z∗p ∪ {0})2 | u+ v ∈ Z∗p} (2.18)

for [24, 5.2] the morphism ψ(u,v) defined as the composition

SU(p) ∆−→ SU(p)× SU(p)
ψu×ψv

−−−−→ SU(p)× SU(p)→ SU(p, p)

is a monomorphism if and only if u+v ∈ Z∗p. The monoid Rep(SU(p, p), SU(p, p))
is ( 2.14, 2.15) isomorphic to a submonoid of Rep(SU(p)× SU(p), SU(p)× SU(p))
and, in particular,

Out(SU(p, p)) = {(u, v) ∈ Z∗p × Z∗p | u ≡ v mod p}o 〈τ〉
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where τ is the automorphism that swaps the two SU(p)-factors.
The set of monomorphisms ( 2.18) consists of two orbits, represented by ψ(1,1)

and ψ(1,0), under the action of the automorphism group Out(SU(p, p)). It follows
that the centralizers of the monomorphisms ψ(u,v) are

CSU(p,p)(ψ(u,v)SU(p)) ∼=
{
Z(SU(p)) if u 6= 0 and v 6= 0
SU(p) if u = 0 or v = 0

(2.19)

i.e. that ψ(u,v) is centric [7] precisely when it is p-toric. (To prove that ψ(1,1) is
centric one uses the fact that Z(SU(p)) ∆−→ Z(SU(p) × SU(p)) → Z(SU(p, p))
is an isomorphism of centers.) In the non-toric case, observe that the projection
morphism SU(p) × SU(p) → SU(p, p) restricts to ψ(1,0) on the first factor and to
ψ(0,1) on the second factor. This gives a factorization

SU(p)→ CSU(p,p)(ψ(1,0)SU(p))→ SU(p, p)

of ψ(0,1) through the centralizer of ψ(1,0) where the first map is an isomorphism. We
conclude that if f : SU(p)→ SU(p, p) is a non-toric monomorphism, so is the eval-
uation monomorphism SU(p) = CSU(p,p)(fSU(p)) → SU(p, p). The Weyl group,
WSU(p,p)(ψ(u,v)SU(p)), of any monomorphism ψ(u,v) is trivial [24, 8.5].

Finally, we note that by ( 2.14),

Rep(PU(p), SU(p, p)) = {(u, v) ∈ (Z∗p ∪ {0})2 | u+ v ∈ pZp}
TRep(PU(p), SU(p, p)) = {(u, v) ∈ (Z∗p)

2 | u+ v ∈ pZp}
so that Rep(PU(p), SU(p, p)) = {0} ∪ Mono(PU(p), SU(p, p)) and
Mono(PU(p), SU(p, p)) = TRep(PU(p), SU(p, p)).

Lemma 2.20. Let f : X → Y1 be any morphism and g : Y1 → Y2 a monomorphism
between p-compact groups. Then

g ◦ f : X → Y2 is p-toric⇒ f : X → Y1 is p-toric.

Proof. Let T be a maximal torus of X1. Since composition with Bg, CY1(fiT )→
CY2(gfiT ), is a monomorphism, CY2(gfiT ) is a p-compact toral group if CY1(fiT )
is a p-compact toral group [21, 3.5.(1)]. ¤

The converse of (2.20) is not true in general; take for instance Y1 to be the
maximal torus of Y2.

3. Lifting p-toric morphisms

In this section I show that all p-toric morphisms between two p-compact groups
lift uniquely to p-toric morphisms between the maximal torus normalizers.

Recall that X1 and X2 are p-compact groups or extended p-compact tori and
that j1 : N1 → X1 and j2 : N2 → X2 are normalizers of the respective maximal
tori, i1 : T1 → X1 and i2 : T2 → X2.
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By the very definition of a p-toric morphism, the maps j1 and j2 induce maps

TRep(X1, X2)→ TRep(N1, X2)← TRep(N1, N2) (3.1)

of sets of p-toric representations. Our first objective is to prove that the arrow to
the right is a bijection. This will enable us to define a map from TRep(X1, X2)
to TRep(N1, N2). Note the favorable input provided by the information [22, 3.2]
that

TRep(T1, X2)← TRep(T1, N2) (3.2)

is a bijection and

CX2(T1)← CN2(T1) (3.3)

an isomorphism for any p-toric morphism T1 → N2.
For any set S ⊂ Rep(X1, X2), write map(BX1, BX2)S for the space of all

maps BX1 → BX2 homotopic to a member of S.

Lemma 3.4. The map, induced by j2,

map(BN1, BX2)TRep(N1,X2) ← map(BN1, BN2)TRep(N1,N2)

is a homotopy equivalence.

Proof. The map of the lemma is the map on homotopy fixed point spaces

map(BN1, BY2)TRep(N1,Y2) =
(
map(BT1, BY2)TRep(T1,Y2)

)hW1
, Y2 = N2, X2,

induced by the map

map(BT1, BX2)TRep(T1,X2) ← map(BT1, BN2)TRep(T1,N2)

which is known to be a homotopy equivalence (3.2, 3.3). ¤

This lemma immediately leads to the main result of this section.

Theorem 3.5. (Cf. [1, 2.22]) Let X1 and X2 be p-compact groups and f : X1 → X2

a p-toric morphism. Then there exists a morphism N(f) : N1 → N2 between ex-
tended p-compact tori such that

N1

N(f) //

j1

²²

N2

j2

²²
X1

f
// X2

commutes up to conjugacy. Moreover,

• N(f) is unique up to conjugacy
• N(f) is p-toric
• CX2(fj1N1)← CN2(N(f)N1) is an isomorphism of loop spaces
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Proof. The map

N : TRep(X1, X2)→ TRep(N1, N2) (3.6)

is defined as the composition of the map TRep(X1, X2)→ TRep(X1, N2) with the
inverse of the bijection TRep(N1, X2) ← TRep(N1, N2) from (3.1). That N(f) is
p-toric is (2.11) and the isomorphism of centralizers is (3.4). ¤

Example 3.7. If X is simple and N → X the normalizer of the maximal torus,
the map TRep(X,Xm) → TRep(N,Nm) is injective if εQ(X) → Rep(N,N) is
injective ( 2.13); e.g. if X = PU(p), X = G2 and p = 3, or X = DI2 and p = 3
[24].

The above theorem is intended as a tool to facilitate the computation of
TRep(X1, X2) in concrete cases. We now address injectivity of (3.6).

Remark 3.8. According to the homology decomposition theorem of Jackowski-
McClure [17] and Dwyer-Wilkerson [8], the exists an Fp-equivalence

hocolimAop BCX1(ν)→ BX1

where the homotopy colimit is taken over some full subcategory A of the Quillen
category A(X1). Let us assume that

• Any object ν : V → X1 of A admits a factorization µ : V → T1 through the
maximal torus and

• N : TRep(CX1(ν), X2)→ TRep(CN1(µ), N2) is injective for all objects
ν : V → X1 of A

and let now f and f ′ be two p-toric morphisms with N(f) = ϕ = N(f ′) for some
ϕ ∈ TRep(CN1(µ), N2). Then the two possible compositions

CX1(ν)
e(ν) // X1

f //
f ′

// X2

are again p-toric morphisms for CX2(fe(ν)CT1(µ)) = CX2(fi1T1) is a p-compact
torus and similarly for the other morphism f ′. Since also,

N(f ◦ e(ν)) = ϕ ◦ e(µ) = N(f ′ ◦ e(ν))
we have f ◦ e(ν) ' f ′ ◦ e(ν) for all objects ν of A by hypothesis. (Here,
e(ν) : CX(ν)→ X stands for the evaluation monomorphism.) The obstructions to
constructing a homotopy between Bf and Bf ′ lie in

limi
Aπi(map(BCX1(ν), BX2)B(f◦e(ν))), i ≥ 1

which is an abelian group for i > 1 but just a set if i = 1 and the fundamental
groups are non-abelian.

It is possible that (3.8) can be generalized to a more general situation using
the preferred lifts of [25].

While (3.8) applies to the case where X1 is center-free, the following lemma
can be helpful if X1 has a non-trivial center [10] [21].
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Consider the following situation

Z

z

²²
z1 ÃÃA

AA
AA

AA
z2

''PPPPPPPPPPPPPPP

X Y1 g
// Y2

of p-compact groups and loop space morphisms. Let Rep(X,Y1)z→z1 = {f ∈
Rep(X,Y1) | f ◦ z = z1} denote the set of conjugacy classes of morphisms under
Z and map(BX,BY )z→z1 the corresponding mapping space.

Lemma 3.9. (Cf. [9, 8.4].) Assume that z : Z → X is a central monomorphism into
the connected p-compact group X and that composition with Bg is an isomorphism
g : CY1(z1Z)→ CY2(z2Z) of centralizers. Then composition with Bg,

Bg ◦ − : map(BX,BY1)z→z1 → map(BX,BY2)z→z2

is a homotopy equivalence.

Proof. The fibration [9, 8.3] [21, 4.1] BZ → BX → B(X/Z) allows us to view
BX = BZh(X/Z) as a homotopy orbit space [9, 9.10] and

map(BX,BYi) = map(BZh(X/Z), BY1) = map(BZ,BYi)h(X/Z), i = 1, 2,

as homotopy fixed point spaces. Composition with Bg : BY1 → BY2,

map(BX,BY1)z→z1 = map(BZ,BY1)
h(X/Z)
Bz1

→ map(BZ,BY2)
h(X/Z)
Bz2

= map(BX,BY2)z→z2

is a homotopy equivalence because [9, 10.2] it is induced by the map

map(BZ,BY1)Bz1 = BCY1(z1)→ BCY2(z2) = map(BZ,BY2)Bz2

which by assumption is a homotopy equivalence. ¤

Here is a typical application of (3.9). In the diagram

V

z1

²² z2 ##HHHHHHHHH
z2

))SSSSSSSSSSSSSSSSSSSS

X1 CX2(V )
e(V )

// X2

V is an elementary abelian p-group, z1 a central monomorphism, z2 a monomor-
phism , and z2 the canonical factorization of z2 through its centralizer [9, 8.2].
Since the evaluation monomorphism e(V ) : CX2(V )→ X2 clearly [9, 8.2] satisfies
the hypothesis of (3.9) we see that

map(BX1, BCX2(V ))z1→z2 → map(BX1, BX2)z1→z2 (3.10)

is a homotopy equivalence.
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Definition 3.11. Let R be a subset of Rep(X1, X2). We say that R is T -determined
if the implication

f |T (X1) = g|T (X1)⇒ f = g

holds for all f ∈ R and all g ∈ Rep(X1, X2).

Example 3.12. If the order of W (X1) is prime to p, then

Rep(X1, X2) = W (X2)\Adm(T (X1), T (X2)) (3.13)

where Adm(T (X1), T (X2)) consists of the admissible homomorphisms ( 2.3). Thus
Rep(X1, X2) is T -determined in this case. The bijection ( 3.13) follows by exploit-
ing the H∗Fp-equivalence BN(X1)→ BX1 [23, 3.12].

Remark 3.14. Let S1 → G1 → π0(G1) and S2 → G2 → π0(G2) be two ex-
tensions of finite groups, π0(G1) and π0(G2), by p-compact tori, S1 and S2.
Let Hom(G1, G2) = [BG1, ∗;BG2] denote the set of based and Rep(G1, G2) =
[BG1, BG2] = π0(G2)\Hom(G1, G2) the set of free homotopy classes of maps of
BG1 into BG2.

The two functors π1 and π2 define a map

Hom(G1, G2)→ Hom(π0(G1),π0(G2))(S1, S2) (3.15)

into the set Hom(π0(G1),π0(G2))(S1, S2) of pairs (χ, φ) ∈ Hom(π0(G1), π0(G2)) ×
Hom(S1, S2) such that φ is χ-equivariant. The fibre over (χ, φ) is either empty or
in bijection with the set

π0(map(BS1, BS2)
π0(G1)
Bφ ) = H2(π0(G1);π2(BS2)) = H1

χ(π0(G1); Š2) (3.16)

where π0(G1) acts on Š2, the discrete approximation to S2, through χ.
If we put w2 · (χ, φ) = (w2χw

−1
2 , w2φ) for all w2 ∈ π0(G2) and all (χ, φ) ∈

Hom(π0(G1),π0(G2))(S1, S2) then ( 3.15) becomes π0(G2)-equivariant, so it descends
to a map

Rep(G1, G2)→ π0(G2)\Hom(π0(G1),π0(G2))(S1, S2) (3.17)

of π0(G2)-orbit sets. The fibre over the orbit π0(G2)(χ, φ) is either empty or in
bijection with the orbit set

π0(G2)(χ,φ)\H1
χ(π0(G1), Š2)

for the action of the stabilizer group π0(G2)(χ,φ), consisting of all w2 ∈ π0(G2)
such that w2χ = χw2 and w2φ = φ, on the fibre ( 3.16).

Proposition 3.18. Let (χ, φ) be an element of Hom(π0(G1),π0(G2))(S1, S2) and sup-
pose that the stabilizer subgroup π0(G2)(χ,φ) acts transitively on the cohomology
group H1

χ(π0(G1), Š2). Then at most one element of Rep(G1, G2) is mapped to the
orbit π0(G2)(χ, φ) under the map ( 3.17).

For later reference, I record here a non-realizability result.
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Lemma 3.19. (Cf. [19, 1.8]) Let f : X1 → X2 be a p-compact group morphism
where p is odd and X1 is connected. Assume that

• π1(T (f)) is injective, and
• p divides the order of the Weyl group W1.

Then p does not divide π1(T (f)) in Hom(π1(T1), π1(T2)).

Proof. By fixed point theory [10, 2.10, 2.14], f lifts to a morphism
Np(f) : Sylp(N1)→ Sylp(N2) of the p-normalizers. The assumption that π1(T (f))
be injective implies, since W1 is faithfully represented in π1(T1) [9, 9.7], that
π0(Np(f)) embeds the Sylow p-subgroup of W1 into W2.

Choose a monomorphism µ : Z/p→ Sylp(N1) such that also
π0(µ) : Z/p→ Sylp(W1) is injective. This is possible since the epimorphism
Sylp(N1)→ Sylp(W1) admits a section when p is odd [2]. Note that the composi-
tion Np(f)µ is a monomorphism since it induces a monomorphism on component
groups. Consider now the commutative diagram

Sylp(N1)

jp

²²

Np(f) // Sylp(N2)

²²
Z/p

µ
::vvvvvvvvv jpµ //

µ′ $$IIIIIIIIII X1
f // X2

T1

OO

T (f)
// T2

i2

OO

where µ′ is a lift of jpµ [9, 4.7, 5.6]. Since Np(f)µ is monomorphic, so is i2T (f)µ′ by
commutativity of the diagram. However, this map would be trivial were π1(T (f))
divisible by p. ¤

The rest of the paper consists of an analysis of the special case where X1 =
SU(3) or G2, X2 = F4, and the prime p = 3.

4. Embeddings of SU(3) in F4

In this section we apply the concepts of the previous sections to investigate
monomorphisms from SU(3) to F4 at the prime p = 3. First, a few facts about the
Quillen category A(F4) of F4. (See [28] for more details.)

Lemma 4.1. [14, 7.4][28, 8.2.2] Let E1 be an elementary abelian group of order
31. The set Mono(E1,F4) of conjugacy classes of monomorphisms of E1 into F4

has three elements e11, e
1
2, e

1
3. The centralizers of these three elements are connected

3-compact groups with Weyl groups of order 36, 48, and 48, respectively. The cen-
tralizer CF4(e

1
1) of e11 is isomorphic to SU(3, 3). The automorphism group Aut(E1)

acts trivially on Mono(E1,F4).
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Lemma 4.2. [14, 7.4][28, 8.2.4], [27, 7.5] Let E2 be an elementary abelian group
of order 32. The set Mono(E2,F4)/Aut(E2) of isomorphism classes of conjugacy
classes of monomorphisms of E2 into F4 has 5 elements, e21, e

2
2, e

2
3, e

2
4, e

2
5, with

Quillen automorphism groups of order 8, 4, 12, 12, 48, and with centralizer Weyl
groups of order 4, 6, 6, 8, 3, respectively. The centralizer, CF4(e

2
5), of e25 is a 3-

compact toral group of maximal rank with component group π0(CF4(e
2
5)) of order

3. There are no maps in the Quillen category from e12 or e13 to e25.

Proofs of ( 4.1) and ( 4.2). With computer assistance it is easy to determine, using
[24, 2.6] and [22, 3.2], that Mono(E1,F4) is a trivial Aut(E1)-set containing three
elements whose centralizers are connected 3-compact groups with Weyl groups
of order 36, 48, 48, respectively. See [19, 3.3] for the precise structure of CF4(a).
Since each centralizer of E1 is connected, any monomorphism E2 → F4 will factor
through the maximal torus. ¤

The Quillen automorphism group referred to in (4.2) consists of all automor-
phism of E2 that leaves e2i ∈ Mono(E2,F4) invariant.

We now show that for any monomorphism of SU(3) or SU(3, 3) to F4 the
triangles

E1

z

||xx
xxx

xx
x

e11

ÃÃA
AA

AA
AA

A E1

z

{{vvv
vv

vv
vv e11

ÃÃA
AA

AA
AA

A

SU(3) // // F4 SU(3, 3) // // F4

(4.3)

where z : E1 → SU(3) and z : E1 → SU(3, 3) are centers, will commute up to con-
jugacy. This observation is the key to the classification of monomorphisms of
SU(3) ½ F4.

Lemma 4.4. 1. Mono(SU(3),F4)z→e11 = Mono(SU(3),F4).
2. Mono(SU(3, 3),F4)z→e11 = Mono(SU(3, 3),F4).

The proof of this lemma uses admissible homomorphisms (2.3) which we now
discuss.

Let Z3 denote the ring of 3-adic integers. The Weyl group W1 = W (SU(3)) of
SU(3) is [24, 3.8, 3.13] 〈σ, τ〉 ⊆ Aut(Σ0(Z3

3)) where Σ0(Z3
3) is the free Z3-module

with basis (1,−1, 0), (0, 1,−1) ∈ Z3
3 and σ and τ have matrices

σ =
(

0 −1
1 −1

)
, τ =

(
0 −1
−1 0

)

with respect to this basis. The Weyl group W (F4) = W (F4) < GL(4,Z3) of F4 is
[3] [24, 3.13] the group (of order 1152 = 384 · 3)

W (F4) = W (B4)E ∪W (B4)H1 ∪W (B4)H2 (4.5)
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whereW (B4) is the reflection group (of order 384 = 24·4!) of all signed permutation
matrices, and H1 and H2 are the matrices

H1 =
1
2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 , H2 =

1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




satisfying H2
1 = E = H2

2 ,H2H1 = −H2,H1H2 = diag(−1, 1, 1, 1)H1.
We say that a linear map A : Σ0(Z3

3)→ Z4
3 is admissible if AW (SU(3)) ⊆

W (F4)A. The linear map A(u, v) : Σ0(Z3
3)→ Z4

3, u, v ∈ Z3, for instance, with
matrix

A(u, v) =




−u v
u v − u
0 v + u

−2v v


 = u




−1 0
1 −1
0 1
0 0


 + v




0 1
0 1
0 1
−2 1


 (4.6)

with respect to the chosen basis for Σ0(Z3
3) and the canonical basis for Z4

3, is
admissible. Indeed, A(u, v) is χ-equivariant where χ : W (SU(3))→W (F4) is the
group homomorphism given by

χ(σ) =
1
2




−1 −1 1 −1
1 −1 −1 −1
−1 1 −1 −1

1 1 1 −1


 , χ(τ) =

1
2




−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1


 (4.7)

The next lemma classifies the admissible homomorphisms. Note that A(u, v) and
−A(u, v) lie in the same orbit under the action of W (F4) as −E ∈W (F4).

Lemma 4.8. 1. Let A : Σ0(Z3
3)→ Z4

3 be a linear map. Then A is admissible
with respect to W (SU(3)) and W (F4) if and only if A ∈W (F4)A(u, v) for
some 3-adic integers u, v ∈ Z3.

2. A(u, v) is split injective if and only if u+ v is a 3-adic unit.
3. The map

〈(−1,−1)〉 \(Z3)2 →W (F4)\HomZ3(Σ0(Z3
3),Z

4
3)

±(u, v)→W (F4)A(u, v)

is injective.

Proof. 1. Using a computer, it is possible to show that up to inner automorphisms,
any admissible homomorphism Σ0(Z3

3) → Z4
3 must be χ-equivariant. Given this,

one simply solves the system of linear equations Aw = χ(w)A for A where w runs
through a generating set for W (SU(3)).
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2. The matrix A(u, v) is equivalent to the matrix


u− 2v 0
0 2v − u
3u 0
−u v




which is split injective if and only if u− 2v or, equivalently, (u− 2v) + 3v = u+ v
is a 3-adic unit.
3. The claim is that for any w in W (F4) the set of solutions to the homogeneous
system of linear equations

wA(u1, v1)−A(u2, v2) = 0

in the four unknowns (u1, v1, u2, v2) is contained in the diagonal (u1, v1) = (u2, v2)
or in the anti-diagonal (u1, v1) = −(u2, v2). This is easily verified on a computer.

¤
Our interest in the admissible homomorphisms lies in the fact that the in-

duced homomorphism π1(T (f)) is admissible for any lift T (f) : T (SU(3))→ T (F4)
to the maximal tori of any morphism f : SU(3)→ F4. Thus we must have
π1(T (f)) ∈ W (F4)A(u, v) for some 3-adic integers u and v. However, as we shall
shortly see, not all the homomorphisms A(u, v) are induced in this way from mor-
phisms SU(3)→ F4.

The proof of (4.4) follows immediately from (4.8.1).

Proof of Lemma 4.4. 1. Let f : SU(3)→ F4 be any monomorphism. Then π1(T (f))
is admissible, so we may assume that π1(T (f)) = A(u, v) for some 3-adic integers
u, v ∈ Z3. The restriction fz : E1 → F4 of f to the center z : E1 → SU(3) of SU(3)
is given by

A(u, v)
( −1

1

)
=




u+ v
u+ v
u+ v

0


 (4.9)

where we have reduced modulo 3. Since fz is a monomorphism, u+ v 6≡ 0 mod 3
and then the stabilizer in W (F4) of (u+ v, u+ v, u+ v, 0) ∈ (Z/3)4 has order 36.
Thus fz ' e11 ∈ Mono(E1,F4).
2. Let f : SU(3, 3)→ F4 be any monomorphism and choose some monomorphism
g : SU(3)→ SU(3, 3) such that gz = z, e.g. g = ψ(1,0). Then fz = fgz = e11. ¤

Let e : SU(3, 3) = CF4(e
1
1)→ F4 denote the inclusion of the centralizer of e11

into F4; this map is described in detail in [19, 3.3].

Corollary 4.10. The maps

Mono(SU(3), SU(3, 3))z→z
e◦−−−→ Mono(SU(3),F4)

Out(SU(3, 3))z→z
e◦−−−→ Mono(SU(3, 3),F4)

are bijections.



Toric morphisms 17

Proof. By (3.9) and (4.4),

Mono(SU(3), SU(3, 3)z→z = Mono(SU(3),F4)z→e11 = Mono(SU(3),F4)

and similarly for morphisms from SU(3, 3). ¤

Lemma 4.11. Let ψ(u,v) : SU(3)→ SU(3, 3) be the morphism ( 2.17) indexed by
u, v ∈ Z∗3 ∪ {0}. Then W (F4)π1(T (eψ(u,v))) = W (F4)A(u, v).

Proof. The monomorphism e : SU(3, 3)→ F4 is [19, 3.3] realizable on the level
of compact Lie groups as an inclusion SU(3, 3) ↪→ F4 such that the restriction
Σ0(Z3) × Σ0(Z3) → Σ2(Z4) to the integral lattices of the composite morphism
SU(3) × SU(3) ³ SU(3, 3) ↪→ F4 takes (x1, x2, x3; y1, y2, y3) to (x1 + y3, x2 +
y3, x3 + y3, y1 − y2). Thus



1 0 0 −1
−1 1 0 −1

0 −1 0 −1
0 0 2 −1







u 0
0 u
v 0
0 v


 =




u −v
−u u− v

0 −u− v
2v −v


 = −A(u, v)

represents π1(T (eψ(u,v))). ¤

Lemma 4.12. Let u and v be 3-adic integers and A(u, v) the corresponding admis-
sible homomorphism.

1. There exists a morphism f : SU(3)→ F4 such that W (F4)π1(T (f)) =
W (F4)A(u, v) if and only if both u and v are in the set Z∗3 ∪ {0}.

2. There exists a monomorphism f : SU(3)→ F4 such that W (F4)π1(T (f)) =
W (F4)A(u, v) if and only if u, v ∈ Z∗3 ∪ {0} and u+ v ∈ Z∗3.

Proof. We have already seen (4.11) that A(u, v) is realizable for all u, v ∈ Z∗3∪{0}.
Suppose, conversely, that π1(T (f)) = A(u, v) for some 3-adic integers, u and

v, and some morphism f : SU(3)→ F4. If f is a monomorphism, then f = eψ(u,v)

for some u, v ∈ Z∗3 ∪ {0} with u+ v ∈ Z∗3 by (4.10). If f is not a monomorphism,
A(u, v) is not split injective [24, 5.2] [21, 3.6.1], so u+v is not a 3-adic unit (4.8.2).

¤

Theorem 4.13. 1. Mono(SU(3),F4) is T -determined.
2. The map

〈(−1,−1)〉 \{(u, v) ∈ (Z∗3 ∪ {0})2|u+ v ∈ Z∗3} → Mono(SU(3),F4)

±(u, v)→ eψ(u,v)

is a bijection.

Proof. 1. The restriction map Mono(SU(3),F4) → Mono(T (SU(3)),F4) can be
identified to the map

{(u, v) ∈ (Z∗3 ∪ {0})2 | u+ v ≡ 1 mod 3} →W (F4)\Hom(Σ0(Z3
3),Z

4
3)

(u, v)→W (F4)A(u, v)
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which is injective by (4.8.3).
2. This is immediate from (2.18) and (4.10). ¤

Here is an alternative formulation of (4.10): Consider the commutative dia-
grams

Mono(SU(3), SU(3, 3))z→z

e◦−
∼=

++WWWWWWWWWWWWWWWWWWWWWW
//
〈
ψ−1 × ψ−1

〉 \Mono(SU(3), SU(3, 3))

e◦−
²²

Mono(SU(3),F4)

Out(SU(3, 3))z→z //

e◦−
∼=

++WWWWWWWWWWWWWWWWWWWWWW

〈
ψ−1 × ψ−1

〉 \Out(SU(3, 3)

e◦−
²²

Mono(SU(3, 3),F4)

where the slanted arrows are bijections. The vertical arrows exist because e(ψ−1×
ψ−1) = e by [19, 3.3]. Noting (2.17) that

Mono(SU(3), SU(3, 3))z→z = {(u, v) ∈ (Z∗3 ∪ {0})2 | u+ v ≡ 1 mod 3}
Out(SU(3, 3))z→z = {(u, v) ∈ (Z∗3)

2 | u ≡ 1 ≡ v mod 3}o 〈τ〉
we see that the vertical arrow in each of the diagrams is a bijection, too, and
hence that the vertical arrow of the upper (lower) diagram is a bijection of right
Out(SU(3))- (Out(SU(3, 3))-) sets. Thus the action

Mono(SU(3, 3),F4)×Out(SU(3, 3))→ Mono(SU(3, 3),F4) (4.14)

is transitive and the stabilizer subgroup at the centric monomorphism e, i.e. the
Weyl group [11, 4.3] [24, 8.4]

WF4(eSU(3, 3)) =
〈
ψ−1 × ψ−1

〉
(4.15)

is cyclic of order two.
The next lemma lists the centralizers of all monomorphisms SU(3) ½ F4. We

let ψ−1 denote the automorphism ψ−1 ×Z(SU(3)) ψ
−1 of T (SU(3)×Z(SU(3)) SU(3)

[22, 4.3].

Lemma 4.16. Let (u, v) ∈ (Z∗3 ∪ {0})2 and u+ v ∈ Z∗3. If uv 6= 0, then

CF4(eψ
(u,v)SU(3)) = Z(SU(3))

CF4(eψ
(u,v)T (SU(3))) = T (F4)

If uv = 0, then

CF4(eψ
(u,v)SU(3)) = Z(SU(3))×Z(SU(3)) SU(3)

CF4(eψ
(u,v)T (SU(3))) = T (SU(3))×Z(SU(3)) SU(3)
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In all cases, CF4(ψ
−1) = ψ−1.

Proof. It only remains to determine the map CF4(ψ
−1) induced by ψ−1 since

the centralizers themselves are given by (2.19, 3.9). Let us, for example, consider
the case where (u, v) = (0, 1). Consider the morphism µ : (SU(3) × T (SU(3))) ×
T (SU(3))→ SU(3)×T (SU(3))→ SU(3, 3) constructed from the multiplication on
the maximal torus and the projection map. Since

eµ((1× 1)× ψ−1) = e(ψ−1 × ψ−1)µ((1× 1)× ψ−1) = eµ((ψ−1 × ψ−1)× 1)

it follows from (4.17) that CF4(ψ
−1) = ψ−1 on CF4(eψ

(0,1)T (SU(3))). The other
cases are similar. ¤

Lemma 4.17. If the diagram of p-compact groups

X1 ×X2

µ

²²

X1 ×X ′
2

1×f2oo f1×1 // X ′
1 ×X ′

2

µ′

²²
Y

h
// Y ′

commutes up to conjugacy, so does the induced diagram

X1

f1

²²

ad(µ) // CY (X2)

Ch(f2)

²²
X ′

1

ad(µ′) // CY ′(X ′
2)

where the horizontal arrows are adjoints of µ and µ′.

Corollary 4.18. Let N be a (topological) group with subgroups g1 : G1 → N and
g2 : G2 → N . Suppose that n ∈ N is an element such that conjugation with n,
c(n)(m) = nmn−1, m ∈ N , takes G1 into G2. Then conjugation with n−1 takes
the centralizer CN (G2) into CN (G1) and the diagram

BCN (G1) // map(BG1, BN)Bg1

BCN (G2)

Bc(n−1)

OO

// map(BG2, BN)Bg2

Bc(n)

OO

commutes up to homotopy.

Proof. We have µ(c(n)× 1) = c(n)µ(1× c(n−1)) where µ is group multiplication
and where the induced map Bc(n) : BN → BN is homotopic to the identity. ¤
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5. Toric representations of PU(3) in F4

In this section I classify the p-toric morphisms from PU(3) to F4 viewed as 3-
compact groups. The first step is the determination of the admissible homomor-
phisms.

Let X be a connected p-compact group with maximal torus i : T → X. We
want to describe the integral lattice of the central quotients of X. Suppose that
Z is a subgroup of the discrete approximation Ť = (π1(T )⊗Q)/π1(T ) such that
the composition Z → Ť → X is a central monomorphism. Then we may form the
p-compact group X/Z [9, 8.3] with induced maximal torus i/Z : T/Z → X/Z [21,
4.6] that fits into the commutative diagram

0 // κ−1(0) // κ−1(Z) //

²²

Z //

²²

0

0 // π1(T ) //

²²

π1(T )⊗Q κ //

∼=
²²

Ť //

²²

0

0 // π1(T/Z) // π1(T/Z)⊗Q // Ť /Z // 0

with exact rows. From this we get an isomorphism

0 // π1(T ) // π1(T/Z) //

²²

Z //

²²

0

0 // κ−1(0) // κ−1(Z) // Z // 0

of extensions of WT (X) = WT/Z(X/Z)-modules.
In particular, let Σ0(Z3

3) ⊆ Σ0(Q3
3) be the free Z3-submodule with basis

e1 = (1,−1, 0) and e2 = (0, 1,−1); this is the integral lattice for SU(3). Put
f = 1

3 (e1 − e2) and let PΣ0(Z3
3) be the free Z3-submodule of Q3

3 with basis
{e1, f}. Then there is an exact sequence

0→ Σ0(Z3
3)

ι−→ PΣ0(Z3
3)→ Z/3→ 0

of Z3[Σ3]-modules and PΣ0(Z3
3) corresponds to the maximal torus for PU(3).

Note that there is an extension, B(u, v), of A(u, v),

Σ0(Z3
3)

ι //

A(u,v)

²²

PΣ0(Z3
3)

B(u,v)
yyrrrrrrrrrr

L4
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if and only if u + v is divisible by 3 and in that case the extension is unique and
given by

B(u, v) = A(u, v)
(

1 1
0 −3

)−1

=




−u − 1
3 (u+ v)

u 1
3 (2u− v)

0 − 1
3 (u+ v)

−2v −v




where u and v are 3-adic integers and u + v ∈ 3Z3. Moreover, the inclusion ι is
W (SU(3)) = W (PU(3))-equivariant and B(u, v) is χ-equivariant where χ is the
group homomorphism from (4.7).

Lemma 5.1. 1. A Z3-linear map B : PΣ0(Z3
3)→ Z4

3 is admissible with respect
to W (PU(3)) and W (F4) is and only if B ∈W (F4)B(u, v) where u and v
are 3-adic integers whose sum is divisible by 3.

2. B(u, v) is split-injective when u and v are 3-adic units.
3. The map

〈(−1,−1)〉 \{(u, v) ∈ (Z3)2|u+ v ∈ 3Z3} →W (F4)\HomZ3(PΣ0(Z3
3),Z

4
3)

±(u, v)→W (F4)B(u, v)

is injective.

Proof. 1. B is admissible if and only if B ◦ ι is, i.e. if and only if B is an extension
of A(u, v) (4.8.1) for some 3-adic integers, u and v.
2. If u and v are units then( −u−1 0 u−1 0

2u−1 0 2u−1 −v−1

)

is a left inverse of B(u, v).
3. If B(u1, v1) ∈ W (F4)B(u2, v2) then also A(u1, v1) ∈ W (F4)A(u2, v2) and

then (4.8.3) (u1, v1) and (u2, v2) are equal up to sign. ¤
When u, v ∈ Z∗3∪{0} with sum u+v ∈ 3Z3 there is a unique conjugacy class,

ψ
(u,v)

, that makes the diagram

SU(3)

²²

ψ(u,v)
// SU(3, 3) e // F4

PU(3)
ψ

(u,v)

99ttttttttt

commutes up to conjugation. By construction,

W (F4)π1

(
T (e ◦ ψ(u,v)

)
)

= W (F4)B(u, v)

in W (F4)\HomZ3(PΣ0(Z3
3),Z

4
3).

Lemma 5.2. Let u and v be 3-adic integers with sum u + v ∈ 3Z3 and let
B(u, v) : PΣ0(Z3

3)→ Z4
3 be the corresponding admissible homomorphism.
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1. There exists a morphism f : PU(3)→ F4 such that W (F4)π1(T (f)) =
W (F4)B(u, v) if and only if u = 0 = v or u, v ∈ Z∗3.

2. There exists a monomorphism f : PU(3)→ F4 such that
W (F4)π1(T (f)) = W (F4)B(u, v) if and only if u, v ∈ Z∗3.

Proof. We have already seen that W (F4)B(u, v) is realizable by a morphism
f : PU(3)→ F4 if u = 0 = v or u, v ∈ Z∗3; if both u and v are non-zero then
f is a monomorphism by (5.1.2). Conversely, if W (F4)B(u, v) is realizable, so is
W (F4)A(u, v) and then (4.12) u, v ∈ Z∗3 ∪ {0}, u+ v 6∈ Z∗3. ¤

Alternatively, (5.2) says that any non-trivial morphism PU(3) → F4 is a
monomorphism.

Proposition 5.3. (Cf. [1, 2.27.(ii)]) Suppose that u and v are 3-adic units with
u+ v ∈ 3Z3. Then

T (PU(3))
B(u,v)−−−−→ T (F4)

i2−→ F4

is toric if and only if (u, v) 6∈ Z∗3(2, 1) ∪ Z∗3(1,−1).

Proof. Explicit (computer aided) computations of W (F4)B(u,v) = W (F4)A(u,v).
¤

The two generic non-3-toric morphisms

B(2, 1) =




−2 −1
2 1
0 −1
−2 −1


 and B(1,−1) =




−1 0
1 1
0 0
2 1




are related by the equation εB(2, 1) = 2B(1,−1) where

ε =




0 0 −1 1
0 0 −1 −1
−1 −1 0 0
−1 1 0 0




is the admissible automorphism of Z4
3 corresponding to the exotic automorphism

of F4. (In general, W (F4)(εA(u, v)) = W (F4)(A(2v,−u)), cf. [1, 2.11].)

Theorem 5.4. 1. TRep(PU(3),F4) is T -determined.
2. The map

〈(−1,−1)〉 \({(u, v) ∈ (Z∗3)
2 | u+ v ∈ 3Z3}) \ (Z∗3(2, 1) ∪ Z∗3(1,−1)))

→ TRep(PU(3),F4)

taking ±(u, v) to e ◦ ψ(u,v)
, is a bijection.

Consider the set Rep(N(PU(3)), N(F4)) of conjugacy classes of maps from
the maximal torus normalizer N(PU(3)) of PU(3) to the maximal torus normalizer
N(F4) of F4. As we have seen (3.17), there is a map

Rep(N(PU(3)), N(F4))→W (F4)\Hom(W (PU(3)),W (F4))(T (PU(3)), T (F4))
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induced by the functors π1 and π2. It is easy to calculate directly that the coho-
mology group H2(〈χ(σ)〉 ;π1(T (F4))) is trivial. Then also

H2
χ(W (PU(3));π1(T (F4))) = 0 (5.5)

for 〈σ〉 is a Sylow 3-subgroup of the Weyl group of PU(3) and we get

Lemma 5.6. There is at most one element of Rep(N(PU(3)), N(F4)) correspond-
ing to the orbit W (F4)(χ,B(u, v)), (u, v) ∈ (Z∗3)

2, u+ v ∈ 3Z3.

Proof of Theorem 5.4. Let f1, f2 ∈ T Rep(PU(3),F4) be two toric representations
and suppose that their restrictions to the maximal torus of PU(3) agree. Under
the map

TRep(PU(3),F4)→ TRep(N(PU(3)), N(F4))

→W (F4)\Hom(W (PU(3)),W (F4))(T (PU(3)), T (F4))

f1 and f2 go to the same element of the target and it follows (5.6) that the lifts
(3.5) N(f1) and N(f2) are conjugate, i.e. that f1 and f2 have conjugate restrictions
to the maximal torus normalizer N(PU(3)). In fact, N(f1) = B(u, v)oχ = N(f2)
for some (u, v) ∈ (Z∗3)

2 \ (Z∗3(2, 1) ∪ Z∗3(1,−1)).
We may approximate BPU(3) by a homotopy colimit over a category I =

I(SL(2,F3), S3) (a full subcategory of the Quillen category that may be described
as formed from the inclusion of a Sylow 3-subgroup S3 into the special linear group
SL(2,F3)) with just two objects, λ : E1 → PU(3) and ν : E2 → PU(3), where E1

and E2 are elementary abelian groups of order 3 and 32, respectively [17, 6.8, 7,7];
see [24, §4] for the notation used here. Since f1 and f2 agree on the centralizers,
CPU(3)(λE1) = N3(PU(3)) and CPU(3)(νE2) = E2, it only remains to compute the
relevant Wojtkowiak obstruction groups [29]. For this we need information about
the centralizer CF4(fiE

2) and CF4(fiN3(PU(3))).
We must have f1|E2 = e25 = f2|E2 for only e25 ∈ Mono(E2,F4) can contain

in its automorphism group the automorphism group SL(2,F3) of (E2, ν). Thus
CF4(fiE

2) is a p-compact toral group of maximal rank with E1 as its component
group (4.2).

The centralizer CF4(fiN3(PU(3))) is (3.4) the p-compact toral group

CŤ (F4)oW (F4)
(Ť (PU(3))o 〈σ〉) = Ť (F4)〈χ(σ)〉 = t(F4)〈χ(σ)〉 = E2

where t(F4) ⊂ Ť (F4) denotes the maximal elementary abelian subgroup of the
discrete approximation Ť (F4) to T (F4) and

The obstructions to a homotopy between the two maps
Bf1, Bf2 : BPU(3)→ BF4 lie in the abelian groups lim1

Iπ1 and lim2
Iπ2 where π1

and π2 are the abelian I-groups

E2Z/2
55

SL(2,F3)/S3
// E1 SL(2,F3)

ii

0Z/2 ::
SL(2,F3)/S3 // Z4

3
SL(2,F3)hh
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given by the homotopy groups of the above centralizers. The group SL(2,F3) has
no normal subgroups of index two, so it necessarily acts trivially on E1. It now
follows from [24, 10.7.5] that both obstruction groups are trivial and we conclude
that f1 and f2 are conjugate. This shows that TRep(PU(3),F4) is T -determined.

Let now f : PU(3)→ F4 be any toric monomorphism. Then there is (5.1.3,
5.3) a unique, up to sign, pair of units (u, v) ∈ (Z∗3)

2, u+v ∈ 3Z3, (u, v) 6∈ Z∗3(2, 1)∪
Z∗3(1,−1), such that W (F4)π1(T (f)) = W (F4)B(u, v) and then f = ψ

(u,v)
since

the p-toric monomorphisms are T -determined. ¤

Lemma 5.7. Let (u, v) ∈ (Z∗3)
2, u+ v ∈ 3Z3, (u, v) 6∈ Z∗3(2, 1) ∪ Z∗3(1,−1). Then

CF4(eψ
(u,v)SU(3)) = Ť (F4)χ(W (SU(3)))

CF4(eψ
(u,v)T (SU(3))) = T (F4)

and CF4(ψ
−1) = ψ−1 in both cases.

Proof. Since eψ(u,v) is toric, the centralizer in F4 of eψ(u,v)T (SU(3)) equals the
maximal torus of F4. Proceed as in (4.16) to show that CF4(ψ

−1) = ψ−1.

The centralizer BCF4(eψ
(u,v)

PU(3)) is the homotopy colimit of the I-space

B(0)Z/2 99

SL(2,F3)/S3
//B(1) SL(2,F3)ee

where B(0) = BŤ (F4)〈χ(σ)〉 and B(0) = BCF4(e
2
5). We need to be more specific

about the group actions that occur here.
The 3-normalizer N3(PU(3)) = CN(PU(3))(Ť (PU(3))〈σ〉) is the centralizer

in N(PU(3)) of Ť (PU(3))〈σ〉 = E1. Since conjugation by (0, τ) restricts to the
non-trivial automorphism of Ť (PU(3))〈σ〉 we see that the induced action on
N3(PU(3)) = T (PU(3)) o 〈σ〉 is given by conjugation with (0, τ) ∈ Ň(PU(3)) =
Ť (PU(3))oW (PU(3)).

Since B̌(u, v)o χ : Ň3(PU(3))→ Ň(F4) is χ-equivariant with the Weyl
groups acting by conjugation, we see (4.17) that Z/2-acts on Ť (F4)〈χ(σ)〉 =
CŇ(F4)

(Ň3(PU(3))) as conjugation with (0, χ(τ)). With this information it is now
easy to see, using [24, 10.7.5], that

lim0
Iπ1 = (Ť (F4)〈χ(σ)〉)〈χ(τ)〉 = Ť (F4)χ(W (SU(3)))

is the only non-trivial contribution from the I-groups π1 and π2 to the Bousfield-
Kan spectral sequence. This means that the morphisms

CF4(eψ
(u,v)

PU(3))→ CF4(N(eψ
(u,v)

)(N(PU(3))))

← CN(F4)(N(eψ
(u,v)

)(N(PU(3))))

are isomorphisms. Consider the corresponding group homomorphism
µ : Ť (F4)χ(W (SU(3))) × Ň(SU(3))→ Ň(F4) which is the inclusion on the first
factor and equals Ň(eψ(u,v)) on the second factor. Since ψ−1 o 1 is inner on
Ň(F4), we have µ(1×(ψ−1o1)) = (ψ−1o1)µ(1×(ψ−1o1)) = µ(ψ−1×(1o1)) up
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to inner automorphism. This shows (4.17) that CF4(ψ
−1) = ψ−1 is the non-trivial

automorphism of CF4(eψ
(u,v)SU(3)) = E1. ¤

6. Non-toric morphisms of PU(3) to F4

The non-toric morphisms of PU(3) to F4 require special treatment. It is the object
of this section to show that also the non-toric morphisms are T -determined, i.e.
to complete the proof of the following theorem.

Theorem 6.1. 1. Mono(PU(3),F4) is T -determined.
2. The map

〈(−1,−1)〉 \{(u, v) ∈ (Z∗3)
2|u+ v ∈ 3Z3} → Mono(PU(3),F4)

±(u, v)→ eψ
(u,v)

is a bijection.

Since the toric morphisms were dealt with in (5.4) only the non-toric ones
need be considered in order to finish the proof of (6.1).

The first lemma, which is of a general nature, assures the existence of a kind
of preferred lifts in certain situations.

Let G be a p-compact toral group sitting in short exact sequence S i1−→ G→
π0(G) where S is a p-compact torus and π0(G) cyclic p-group. Let j : N → X be
the maximal torus normalizer of a p-compact group, X, and let i2 : T → N be the
inclusion of the identity component. Suppose that we are given a morphisms, B
and f , such that the diagram

S
B //

i1

²²

T

ji2

²²
G

f
// X

commutes up to conjugacy and B is admissible in the sense that for any ξ ∈ π0(G)
there exists some w in the Weyl group for X such that Bξ = wB.

Lemma 6.2. Assuming that the component group π0(G) is cyclic there is a unique
representation φ ∈ Rep(G,N) such that the diagram

T

i2

²²
N

j

²²
S

i1
//

B

??~~~~~~~~~~~~~~~~~~
G

φ
>>~~~~~~~

f
// X
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commutes up to conjugacy and such that the morphism

Cj : CN (φG)→ CX(fG),

induced by j, is a maximal torus normalizer for the centralizer CX(fG) of G in
X.

Proof. The π0(G)-map induced by j

BCN (i2BS)hπ0(G)
//

((PPPPPPPPPPPP
BCX(ji2BS)hπ0(G)

vvnnnnnnnnnnnn

Bπ0(G)

between the π0(G)-spaces BCN (i2BS) = map(BS,BN)i2B and BCX(ji2BS) =
map(BS,BX)ji2B is a maximal torus normalizer. There is an induced map

map(BG,BN)i1→i2B = BCN (i2BS)hπ0(G) → BCX(ji2BS)hπ0(G)

= map(BG,BX)i1→ji2B (6.3)

of homotopy fixed point spaces.
According to [25, 4.6], the section Bf ∈ BCX(ji2BS)hπ0(G) admits, since

π0(G) is assumed to be cyclic, a unique lift Bφ ∈ BCN (i2BS)hπ0(G) such that the
restriction of (6.3) to the corresponding components,

BCN (φG) = map(BG,BN)Bφ → map(BG,BX)Bf = BCX(fG)

is a maximal torus normalizer for the p-compact group CX(fG). ¤
After these general and preparatory remarks, we now return to the discussion

of non-toric morphisms from PU(3) to F4.
Let f : PU(3)→ F4 be a morphism of 3-compact groups such that

f |T (PU(3)) = W (F4)B(2, 1) ∈ [BT (PU(3)),BF4]. By (6.2), there is
a unique φ(2, 1) ∈ Rep(N3(PU(3)), N(F4)), extending B(2, 1), such that
CN(F4)(φ(2, 1)N3(PU(3))) is a maximal torus normalizer for CF4(fN3(PU(3))).
We shall now determine this map φ(2, 1).

Let Ň3 = Ť1 o 〈σ〉 and Ň2 = Ť2 o W2 be the discrete approximations to
the the 3-normalizer N3(PU(3)) and the maximal torus normalizer N(F4), re-
spectively. Also, let B̌(2, 1) : Ť1 → Ť2 be a discrete approximation to B(2, 1). The
stabilizer subgroup W (F4)B̌(2,1) at B̌(2, 1) for the action of W (F4) on Hom(Ť1, Ť2)
is isomorphic to the permutation group Σ3 and generated by the two Weyl group
elements

w1 =




0 0 0 1
−1 0 0 0

0 0 1 0
0 −1 0 0


 and w2 =




0 −1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1




of order 3 and 2, respectively.
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Lemma 6.4. The discrete approximation φ̌(2, 1) : Ť1 o 〈σ〉 → Ť2 oW (F4) to
φ(2, 1) is conjugate to B̌(2, 1)o χ.

Proof. For general reasons, the discrete approximation φ̌(2, 1) to φ(2, 1) has
the form φ̌(2, 1)(t, 1) = (B̌(2, 1)(t), 1) and φ̌(2, 1)(0, σ) = (a, λ(σ)) where
λ : 〈σ〉 →W (F4) is a group homomorphism, B̌(2, 1) is λ-equivariant, and a ∈
Z1(〈λ(σ)〉 ; Ť (F4)) is a 1-cocycle.

Since the homomorphism B̌(2, 1) is χ-equivariant we know that λ(σ) is an
element of order 3 in the coset χ(σ)W B̌(2,1)

2 . This leaves the three possibilities
χ(σ), χ(σ)w1, and χ(σ)w2

1 for λ(σ). Since w2 conjugates χ(σ) into χ(σ)w2
1 we can

ignore the third possibility. We now rule out the second possibility.
Assume for the moment that λ(σ) = χ(σ)w1. Explicit computation

shows that H0(〈χ(σ)w1〉 ; Ť (F4)) is a 3-discrete torus of rank 2 and that
H0(〈χ(σ)w1〉 ; Ť (F4)) is cyclic of order 3 generated by the cohomology class of
the 1-cocycle

a =




0
0
1
0


 ∈ t(F4) ⊂ Ť (F4)

which is fixed by W (F4)B̌(2,1). It follows that the centralizer

CŤ (F4)oW (F4)
(φ̌(2,1)Ň3)

= CŤ (F4)oW (F4)
(B̌(2, 1)Ť (PU(3))) ∩ CŤ (F4)oW (F4)

(a, χ(σ)w1)

= (Ť (F4)oW (F4)B̌(2,1)) ∩ CŤ (F4)oW (F4)
(a, χ(σ)w1)

= CŤ (F4)oW (F4)B̌(2,1)(a, χ(σ)w1)

= Ť (F4)〈χ(σ)w1〉 oW (F4)B̌(2,1)

is the (discrete) maximal torus normalizer for SU(3) and hence (6.2) that
CF4(fN3(PU(3))) is isomorphic to the N -determined 3-compact group SU(3) [24,
1.2]. Thus φ(2, 1) : N3(PU(3))→ F4 extends to a morphism N3(PU(3))×SU(3)→
F4 which is a non-toric monomorphism on the second factor and we get a factor-
ization

N3(PU(3))→ CF4(SU(3)) = SU(3)→ F4

of φ(2, 1) through another non-toric monomorphism of SU(3) to F4. The restriction
of this map to the maximal tori

T (PU(3))→ T (SU(3))→ T (F4)

provides a factorization, up to left action by W (F4), of B(2, 1) as the composition
of an isomorphism followed by A(u, 0) or A(0, u), u ∈ Z∗3, and hence we have that
the set

W (F4) ·A(2, 1) ·GL(Σ0(Q3
3)) ⊂ HomQ3(Σ0(Q3

3),Q
4
3)
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contains A(1, 0) or A(0, 1). It is easy to verify, using a computer, that this is not
the case, so we have arrived at a contradiction.

Thus λ(σ) = χ(σ)w1 can not occur and we are left with λ(σ) = χ(σ) as
the only possibility. As H1(〈χ(σ)〉 ; Ť (F4)) = 0 (5.5), φ̌(2, 1) = B̌(2, 1) o χ is, up
to conjugation, the only extension of the pair (B̌(2, 1), χ) to a homomorphism
Ť1 o 〈σ〉 → Ť (F4)oW (F4). ¤

A similar statement holds for the non-toric morphism B(1,−1) which differs
from B(2, 1) by an automorphism of F4.

Proof of Theorem 6.1. It suffices to show that f1 ' f2 whenever
f1, f2 : PU(3)→ F4 are monomorphisms such that f1|T (PU(3)) = W (F4)B(2, 1) =
f2|T (PU(3)). We already know (6.4) that the two morphisms become conju-
gate when restricted to N3(PU(3)). Therefore, the situation is now exactly as
in the proof of Theorem 5.4: In order to compute the relevant Wojtkowiak ob-
struction groups [29] we need information about the centralizer CF4(fiE

2) and
CF4(fiN3(PU(3))).

Again, we must have f1|E2 = e25 = f2|E2 and CF4(fiE
2) is a p-compact toral

group of maximal rank with Z/3 as its component group (4.2).
Also, we know (6.2, 6.4) that the centralizer in Ť (F4) oW (F4) of φ̌(2, 1) is

the (discrete) maximal torus normalizer for CF4(fiN3(PU(3))). Since

CŤ (F4)oW (F4)
(φ̌(2, 1)Ň3) = CŤ (F4)oW (F4)

(B̌(2, 1)Ť1) ∩ CŤ (F4)oW (F4)
(χ(σ))

= (Ť (F4)oW (F4)B̌(2,1)) ∩ (Ť (F4)χ(σ) o CW (F4)(χ(σ)))

= Ť (F4)χ(σ) o CW (F4)B̌(2,1)(χ(σ))

= t(F4)χ(σ) o 〈w1〉
is a finite group (of order 27 and with center of order 3) it follows that also
CF4(fiN3(PU(3))) is this finite, but non-abelian, 3-group.

The obstructions to a homotopy between the two maps
Bf1, Bf2 :BPU(3)→ BF4 lie in the set lim1

Iπ1 and in the abelian group
lim2

Iπ2 where π1 and π2 are the I-groups

πZ/2 99

SL(2,F3)/S3
// E1 SL(2,F3)

ii

0Z/2 ::

SL(2,F3)/S3
// Z4

3
SL(2,F3)

hh

given by the homotopy groups of the above centralizers, e.g. π = t(F4)χ(σ)o 〈w1〉.
The group lim2

Iπ2 is trivial for general reasons [24, 10.7.5]. That also lim1
Iπ1 = ∗

follows from (6.5) below since both the central I-subgroup

0Z/2 ::
// Z/3 SL(2,F3)

mm



Toric morphisms 29

as well as the quotient I-group

πZ/2 99
// 0 SL(2,F3)dd

where SL(2,F3) necessarily acts trivially, have vanishing lim1 by [24, 10.7] and
(6.6). ¤

The following observations were used to compute the non-abelian lim1.
Let I be a small category. Define an I-group to be a functor from the category

I to the category of groups. Let A → E → G be a central extension of I-groups
meaning that A,E, and G are I-groups, the arrows are natural transformations,
and that the evaluation at each object of I yields a central extension of groups.

Lemma 6.5. Any central extension of I-groups A → E → G induces an exact
sequence

∗ → lim0
IA→ lim0

IE → lim0
IG→ lim1

IA→ lim1
IE → lim1

IG→ lim2
IA

of sets. Moreover, the fibres of the map lim1
IE → lim1

IG are precisely the orbits for
an induced action of the abelian group lim1

IA on the set lim1
IE.

Corollary 6.6. Let I be a finite group acting on a finite group π. If the π is a
p-group and p does not divide the order of I, then lim1

Iπ = ∗.
Proof. This follows, using the preceding lemma, by induction over the order of π
since any non-trivial p-group has a non-trivial center. ¤

Proof of Theorem 1.1. Modulo the action of the Weyl group WF4(SU(3, 3)) of
order two (4.15), the sets

Rep(SU(3), SU(3, 3)) = {0} ∪Mono(SU(3), SU(3, 3)) ∪Mono(PU(3),SU(3, 3))

and

Rep(SU(3),F4) = {0} ∪Mono(SU(3),F4) ∪Mono(PU(3),F4)

are (4.13, 6.1) in correspondence. ¤

Lemma 6.7. Let (u, v) ∈ Z∗3(2, 1) ∪ Z∗3(1,−1). Then

CF4(eψ
(u,v)SU(3)) = Ť (F4)χ(W (SU(3)))

CF4(eψ
(u,v)T (SU(3))) = T (SU(3))×Z(SU(3)) SU(3)

and CF4(ψ
−1) = ψ−1 in both cases.

Proof. We shall apply the Bousfield-Kan spectral sequence [4] to
map(BPU(3),BF4)eψ(u,v) where BPU(3) is viewed as the homotopy colimit of the
I-space

B(0)Z/2 99

SL(2,F3)/S3
//B(1) SL(2,F3)ee (6.8)

where B(0) = BCF4(eψ
(u,v)

N3(PU(3))) and B(1) = BCF4(e
2
5). It represents no

loss of generality to assume that (u, v) = (2, 1).
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As we saw in the proof of (5.7), Z/2-acts on Ň3(PU(3)) = Ť (PU(3))o 〈σ〉 as
conjugation with (0, τ) ∈ Ň(PU(3)) = Ť (PU(3)) oW (PU(3)). But this is again
the restriction to

ϕ̌(2, 1)(Ň3(PU(3))) ⊂ Ť (F4)oW (F4)

of conjugation by (0, χ(τ)). Thus (4.18) the Z/2-action on

CF4(eψ
(2,1)

N3(PU(3))) = CŤ (F4)oW (F4)
(ϕ̌(2, 1)Ň3) = Ť (F4)〈σ〉 o 〈w1〉

is through conjugation with (0, χ(τ)).
Note also that the multiplication map

µ : CŤ (F4)oW (F4)
(ϕ̌(2, 1)Ň3)× Ň3 → Ť (F4)oW (F4)

satisfies

µ(ψ−1 × 1) = ψ−1µ(ψ−1 × 1) = µ(1×N3(ψ−1))

up to inner automorphism. This means that the induced action on
CF4(eψ

(2,1)
N3(PU(3))) is CF4(N3(ψ−1)) = ψ−1 o 1.

Recall from [5] that there is an essentially unique monomorphism ι : DI2 → F4

inducing a monomorphism t(ι) : t(DI2)→ t(F4) and a group monomorphism
χ : GL(2,F3) = W (DI2)→W (F4) extending (4.7). Now, t(ι) is isomorphic to e25
and from the commutative diagram

t(DI2)

t(ι)

²²

w−1
// t(DI2)

t(ι)

²²
Ť (F4)oW (F4)

(0,χ(w))
// Ť (F4)oW (F4)

we see (4.18) that w ∈ GL(2,F3) acts on CŇ(F4)
(t(DI2)) = Ť (F4)oW (F4)t(DI2) as

conjugation with the element (0, χ(w)) of the semi-direct product. The restriction
to SL(2,F3) of this action gives the action on CN(F4)(t(DI2)) = CF4(t(DI2)) in
(6.8).

The conclusion of this is that

lim0
Iπ1 = (Ť (F4)〈χ(σ)〉 o 〈w1〉)〈χ(τ)〉 = Ť (F4)χ(W (SU(3)))

is the only non-trivial contribution from the groups lim−i
I πj , i + j ≥ 0, of the

Bousfield-Kan spectral sequence. Consequently, CF4(eψ
(2,1)SU(3)) is isomorphic

to this group of order 3. The action of CF4(ψ
−1), which is the restriction of the

action of CF4(N3(ψ−1)), is given by ψ−1.
The centralizer

CŤ (F4)oW (F4)
(eψ(2,1)Ť (SU(3))) = Ť (F4)oW (F4)A(2,1)

is the (discrete) maximal torus normalizer for CF4(eψ
(2,1)Ť (SU(3))) and the cen-

tralizer

CŤ (F4)oW (F4)
(eψ(0,1)Ť (SU(3))) = Ť (F4)oW (F4)A(0,1)
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is the (discrete) maximal torus normalizer for CF4(eψ
(0,1)Ť (SU(3))) =

SU(3) ×Z(SU(3)) T (SU(3)) [22, 3.4.3]. Since the two stabilizer subgroups
W (F4)A(2,1) and W (F4)A(0,1) are conjugate in W (F4), the two maximal torus
normalizers are isomorphic and hence the two centralizers are isomorphic, too, by
N -determinism [23] [24].

The group homomorphism µ : (Ť (F4)oW (F4)A(2,1) → Ť (F4)oW (F4) which
is the inclusion on the first factor and equals A(2, 1) on the second factor satisfies

µ((1o 1)× ψ−1) = (ψ−1 o 1)µ((1o 1)× ψ−1) = µ((ψ−1 o 1)× 1

up to inner automorphisms. This shows (4.17) that CF4(ψ
−1) = ψ−1. ¤

7. Morphisms from G2 to F4 at the prime p = 3

Using the Jackowski-McClure decomposition of B G2 and the Bousfield-Kan spec-
tral sequence we classify morphisms G2 → F4 viewed as 3-compact groups and
compute their centralizers.

The Weyl group of G2, W (G2) < GL(Σ0(Z3
3)) is the product of the Weyl

groupW (SU(3)) = 〈σ, τ〉 of SU(3) and the central group 〈−1〉 of order 2. The group
morphism χ from (4.7) extends to a group homomorphism χ : W (G2)→W (F4)
simply by putting χ(−1) = −1. Let I = I(W (G2),W (SU(3))) denote the category

0〈−1〉 ::

W (G2)/W (SU(3))
// 1 W (G2)dd

of the central inclusion of W (SU(3)) into W (G2). Then BG2 is [24, §7] H∗F3-
equivalent to the homotopy colimit of an Iop-space

B(0)99〈ψ−1〉 99 B(1)
W (SU(3))op\W (G2)

op

oo W (G2)
op

ee (7.1)

where B(0) = BSU(3) and B(1) = BT (SU(3)).

Theorem 7.2. The restriction map

Rep(G2,F4)→ Rep(SU(3),F4)

is bijective. The centralizer CF4(eψ
(u,v)G2), u, v ∈ Z∗3∪{0}, is isomorphic to SU(2)

if uv = 0 and trivial otherwise.

Proof. We must show that any morphism SU(3) → F4 extends uniquely to G2.
Since this is true for the trivial morphism by [22, 6.7], we only need here to consider
non-trivial morphisms.

Let (u, v) ∈ (Z∗3 ∪ {0})2, (u, v) 6= (0, 0). Since eψ(u,v) : SU(3)→ F4 is invari-
ant under ψ−1, this map eψ(u,v) and its restriction to the maximal torus form a
homotopy coherent set of maps out of the Iop-space (7.1). Thus it suffices to show
that lim−i

I πj(u, v) = 0 for i+ j ≥ −1 where πj(u, v) is the I-group

πj(0)Z/2
99

W (G2)/W (SU(3))
//πj(1) W (G2)ee
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where the group πj(0) = πj(u, v)(0) = πj(BCF4(eψ
(u,v)SU(3))) and the group

πj(1) = πj(u, v)(1) = πj(BCF4(eψ
(u,v)T (SU(3)))). Since the abelian I-groups

πj(u, v) are in fact Z3[I]-modules and W (SU(3)) is normal in W (G2), it follows
from [24, 10.7.5] that lim0

Iπj(u, v) = πj(u, v)(0)Z/2 = πj(BCF4(eψ
(u,v)SU(3)))Z/2

is the subgroup that is invariant under the action of ψ−1 and that the higher limits
are automatically trivial. By (4.16, 5.7, 6.7), πj(u, v)(0)Z/2 is trivial except when
either u = 0 or v = 0 when it equals the invariants πj(BSU(3))〈Bψ−1〉.

We now examine the case (u, v) = (0, 1) more closely. According to Dynkin
[12, 13] the Lie group F4 contains a copy of (a central quotient of) SU(2)×G2. The
restriction to G2 of this inclusion SU(2)×G2 → F4 equals, up to an automorphism
of F4, the map eψ(0,1) for otherwise the restriction to the other factor, the inclusion
of SU(2) into F4, would factor through the trivial 3-compact group. The homotopy
class of the restriction

BSU(2)× BSU(3)→ BSU(2)× BG2 → BF4

to SU(2) × SU(3) is determined by its adjoint in
π0(map(BSU(2),map(BSU(3),BF4)B(eψ(0,1))) = π0(map(BSU(2),BSU(3))) =
Rep(SU(2), SU(3)) so. Since SU(3) contains (7.3) an essentially unique copy of
SU(2), we conclude that the diagram of 3-compact groups

SU(2)× SU(3)

²²

Sι(2,3)×1 // SU(3)× SU(3)

²²
SU(2)×G2

// F4

commutes up to conjugacy. After taking adjoint maps we end up with

BSU(2)

BSι(2,3)

²²

// map(BG2,BF4)B(eψ(0,1))

²²
BSU(3) ' // map(BSU(3),BF4)B(eψ(0,1))

which commutes up to homotopy and where the lower horizontal arrow represents
(4.16) a homotopy equivalence homotopy equivariant under the action

〈
Bψ−1

〉
.

By the above computations with the Bousfield-Kan spectral sequence,

π∗(map(BG2,BF4), B(eψ(0,1))) = π∗(map(BSU(3),BF4), B(eψ(0,1)))〈Bψ−1〉,
and linked with (7.4) this shows that the upper horizontal map is a homotopy
equivalence as well. ¤

The morphism eψ(u,v) : G2 → F4 where u, v ∈ Z∗3 with sum u + v ∈ 3Z3, is
an example a non-trivial non-monomorphism defined on a center-free 3-compact
group.

The following two results were needed for the proof of Theorem 7.2.
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Lemma 7.3. Let Sι(2, 3) : SU(2)→ SU(3) be the canonical inclusion. The map

Rep(SU(2), SU(2))→ Rep(SU(2),SU(3))

ψu → Sι(2, 3)ψu

is a bijection that identifies Out(SU(2)) = Z∗3/ 〈−1〉 and Mono(SU(2),SU(3)).

Proof. This follows from (3.13) that identifies both Rep(SU(2), SU(2)) and
Rep(SU(2), SU(3)) to Z3/ 〈−1〉. ¤

Since ψ−1Sι(2, 3) = Sι(2, 3)ψ−1 = Sι(2, 3), the image of π∗(BSU(2)) in
π∗(BSU(3)) is invariant under the action of the group

〈
Bψ−1

〉
.

Lemma 7.4. There is an isomorphism, induced by Sι(2, 3),

π∗(BSU(2))→ π∗(BSU(3))〈Bψ−1〉
between the homotopy of BSU(2) and the

〈
Bψ−1

〉
-invariant subgroup of the ho-

motopy of BSU(3).

Proof. There is a short exact sequence of homotopy groups

0→ π∗(SU(2))→ π∗(SU(3))→ π∗(S5)→ 0

of F3-complete spaces induced by the fibration of SU(3) onto S5 with fibre SU(2).
This fibration splits since π4(SU(2))⊗Z3 = 0. The homomorphism ψ−1, complex
conjugation of matrices, restricts to the identity on the fibre and induces the degree
−1-map on the base. Using that the 3-completion of S5 is an H-space we see that
the degree −1 self-map induces multiplication by −1 on the homotopy groups
π∗(S5)⊗ Z3 and the claim follows. ¤

8. Morphisms from SU(3) to G2 at the prime p = 3

The classification of morphisms SU(3) → G2 of 3-compact groups proceeds very
much like the classification of morphisms SU(3)→ F4.

Lemma 8.1. The set Mono(E1,G2) contains two elements, e11, e
1
2, with central-

izer Weyl groups of order 2, 6, and Quillen automorphism groups of order 2, 2,
respectively. The centralizer CG2(e

1
2) is isomorphic to SU(3).

The set Mono(E2,G2)/Aut(E2) contains a unique element, e22 = t(G2), with
Quillen automorphism group W (G2) of order 12.

Let χ1 : W (SU(3))→W (G2) be the inclusion and χ2 : W (SU(3))→W (G2)
the injection given by χ2(σ) = σ and χ2(τ) = −τ . Then the iden-
tity map A1 : Σ0(Z3

3)→ Σ0(Z3
3) is χ1-equivariant and the Z3-linear map

A2 : Σ0(Z3
3)→ Σ0(Z3

3) with matrix

A2 =
(

1 −2
2 −1

)

is χ2-equivariant.
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Lemma 8.2. A Z3-linear map Σ0(Z3
3) → Σ0(Z3

3) is admissible with respect to
W (SU(3)) and W (G2) is and only it belongs to W (G2)(uA1) or W (G2)(uA2)
for some scalar u ∈ Z3.

Proof. Computerized calculations show that any admissible homomorphism must,
up to inner automorphisms, be either χ1- or χ2-equivariant. Next, one solves the
two systems of linear equations Aw = χi(w)A, w ∈W (SU(3)), i = 1, 2. ¤

Proposition 8.3. Any non-trivial morphism f : SU(3)→ G2 is a monomorphism.

Proof. Let f : SU(3)→ G2 be any non-trivial morphism and
T (f) : T (SU(3))→ T (G2) a lift of f to the maximal tori. Then W (G2)π1(T (f))
equals W (G2)(uA1) or W (G2)(uA2) for some 3-adic integer, u. In fact, since
the order of W (SU(3)) is divisible by 3, u must be a unit (3.19). In the
first case, W (G2)π1(T (f)) = W (G2)(uA1), f is a monomorphism. And if
W (G2)π1(T (f)) = W (G2)(uA2), the kernel of Ť (f) equals the center of SU(3)
and f factors through a monomorphism f : PU(3)→ G2. However, such a
monomorphism can not exist since the Quillen category of PU(3) contains an
object E2 ½ PU(3) with Quillen automorphism group SL(2,F3) of order 24
exceeding the order of the Quillen automorphism group of e22 ∈ Mono(E2,G2).

¤
Consider now the diagram

E1

z

²²
z

$$IIIIIIIII
e12

))SSSSSSSSSSSSSSSSSSS

SU(3) SU(3)
e

// G2

where the SU(3) to the right stands for CG2(e
1
2) and z stands for center. Here,

eψ−1 = e since CG2(ψ
−1) = ψ−1.

Lemma 8.4. For any monomorphism f : SU(3)→ G2, fz = e12.

Proof. Since π1(T (f)) = uA1, u ∈ Z∗3, the reduction mod 3,
t(f) : t(SU(3))→ t(G2), takes the center, (1,−1), of SU(3) to the element
u(1,−1) ∈ t(G2) whose stabilizer subgroup is W (SU(3)). ¤

It follows (3.9) that

Mono(SU(3),SU(3))z→z = Mono(SU(3),G2)z→e12 = Mono(SU(3),G2)

or, alternatively, that the map

〈−1〉 \Z∗3 → Mono(SU(3),G2)

±u→ eψu

is a bijection. Also, any monomorphism f : SU(3)→ G2 is centric [7] in the sense
that the map given by composition with Bf ,

map(BSU(3), BSU(3))B1 → map(BSU(3), BG2)Bf
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is a homotopy equivalence. Clearly, f is toric as well (2.12).

Theorem 8.5. 1. Rep(SU(3),G2) = {0}∪Mono(SU(3),G2) is T -determined.
2. The action

Mono(SU(3),G2)×Out(SU(3))→ Mono(SU(3),G2)

is transitive and the stabilizer at f ∈ Mono(SU(3),G2) equals
WG2(fSU(3)) =

〈
ψ−1

〉
.

Proof. This is clear from the explicit description of the set Rep(SU(3),G2). For
instance, the restriction map

Mono(SU(3),G2)→ Mono(T (SU(3)),G2)

can be identified to the map

{u ∈ Z∗3 | u ≡ 1 mod 3} →W (G2)(uA1)

which clearly is injective. ¤
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