Completely Reducible *p*-compact Groups

JESPER MICHAEL MØLLER

ABSTRACT. Rational automorphisms of products of simple *p*-compact groups are shown to be composites of products of rational automorphisms of the individual factors and permutation maps.

1. Introduction

Homotopy Lie groups, or p-compact groups, have come under intense scrutiny since their inaugural appearance in Dwyer and Wilkerson's foundational paper [4] and this note may be viewed as yet another piece of evidence in support of the prophecy of an "uncanny similarity" between compact Lie groups and p-compact groups.

The purpose of this note is to show that rational automorphisms of products of *p*-compact groups behave in a very rigid way.

A rational automorphism of a connected *p*-compact group *Y* is an endomorphism *f* of *Y*, i.e. a based self-map *Bf* of *BY*, inducing an automorphism $H^*(Bf; \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ of the polynomial ring $H^*(BY; \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Conjugacy classes of rational automorphisms form a monoid $\varepsilon_{\mathbb{Q}}(Y) \subseteq [BY, BY]$.

As an illustration of the main result [Theorem 3.5], suppose that Y_1 and Y_2 are two *simple* [8, Definition 5] *p*-compact groups with nonisomorphic, nontrivial Weyl groups. Then the product map

$$\varepsilon_{\mathbb{Q}}(Y_1) \wr \Sigma_{n_1} \times \varepsilon_{\mathbb{Q}}(Y_2) \wr \Sigma_{n_2} \to \varepsilon_{\mathbb{Q}}(Y_1^{n_1} \times Y_2^{n_2})$$

is monoid isomorphism for any choice of exponents $n_1, n_2 \geq 1$. In other words, any rational automorphism f of $Y = Y_1^{n_1} \times Y_2^{n_2}$ is, up to permutation of the n_1 factors equal to Y_1 and the n_2 factors equal to Y_2 , conjugate to a product

$$f = \prod_{1 \le j \le n_1} f_{1j} \times \prod_{1 \le j \le n_2} f_{2j}$$

©0000 American Mathematical Society 0000-0000/00 1.00 + 2.25 per page

1

¹⁹⁹¹ Mathematics Subject Classification. 55P35, 55S37.

Key words and phrases. Representation theory, similarity, rational equivalence, center.

This paper is in final form and no version of it will be submitted for publication elsewhere.

J. M. MØLLER

of rational automorphisms f_{1j} , $1 \leq j \leq n_1$, of Y_1 and rational automorphisms f_{2j} , $1 \leq j \leq n_2$, of Y_2 . Moreover, the corresponding product map of mapping spaces

$$\prod_{1 \le j \le n_1} \max(BY_1, BY_1)_{Bf_{1j}} \times \prod_{1 \le j \le n_2} \max(BY_2, BY_2)_{Bf_{2j}} \to \max(BY, BY)_{Bf}$$

is a homotopy equivalence. It follows [Corollary 3.9] that the precomposition map

$$\overline{Bf}: \operatorname{map}(BY, BY)_{B1} \to \operatorname{map}(BY, BY)_{Bf}$$

is a homotopy equivalence for each of the precomposition maps $\overline{Bf_{1j}}$ and $\overline{Bf_{2j}}$, involving simple *p*-compact groups, are known to be homotopy equivalences by an earlier result [8, Corollary 4.7]. Combined with Dwyer and Wilkerson's demonstration that the centralizer [4, 3.4] of the identity endomorphism is a *p*-compact group isomorphic [10, Theorem 1.3] to the center, we see that the centralizer $C_Y(fY)$ of any rational automorphism f of Y is a *p*-compact group isomorphic to the center [10, 3] Z(Y) of Y.

The completely reducible p-compact groups of the title [Definition 3.10] constitute a class of connected p-compact groups to which the above computation of centralizers of rational automorphisms is extendable [Theorem 3.11] by covering group methods. The size of this class of p-compact groups has not yet been investigated.

Part of this work was done as a guest of the Institut Mittag-Leffler, Djursholm, Sweden, and I would like to thank the institute for its hospitality.

2. Representation theory

This section contains some preliminary remarks about representations of finite groups designed for use in the following sections.

Let R be an integral domain, k its field of fractions, and let E, E_1 and E_2 be R-modules. Suppose that the finite groups W, W_1 and W_2 act faithfully on the modules E, E_1 and E_2 , respectively.

DEFINITION 2.1. The W_1 -representation E_1 is similar to the W_2 -representation E_2 if the there exists an R-module isomorphism $A: E_1 \to E_2$ and a group isomorphism $\alpha: W_1 \to W_2$ such that $A \circ w = \alpha(w) \circ A$ for all $w \in W_1$. The isomorphism A is called a similarity from E_1 to E_2 .

Let $\operatorname{Sim}(W) \subset \operatorname{Aut}_R(E)$ denote the group of self-similarities of the *W*-representation *E*. In other words, $\operatorname{Sim}(W)$ is the normalizer of the image of *W* in $\operatorname{Aut}_R(E)$. Note the exact sequence

$$1 \to \operatorname{Aut}_{R[W]}(E) \to \operatorname{Sim}(W) \to \operatorname{Aut}(W)$$

and that if the representations $W_1 \to \operatorname{Aut}_R(E_1)$ and $W_2 \to \operatorname{Aut}_R(W_2)$ are similar, conjugation with a similarity $A: E_1 \to E_2$ induces an isomorphism $\operatorname{Sim}(W_1) \cong \operatorname{Sim}(W_2)$ of self-similarity groups. For any ring extension $R \subseteq S$, let $W \otimes_R S$ denote the induced representation of W in $E \otimes_R S$. In particular, $W \otimes_R k$ denotes the vector space representation of W in $E \otimes_R k$. An element $w \in W$ is called a *reflection* if the vector space endomorphism $1 - w \otimes_R k$ has rank 1 [1, V, §2, no 1, Definition 1].

EXAMPLE 2.2. Let W_B denote the Weyl group of the Lie group Spin(2n+1) faithfully represented in the Z-module E_B given by the fundamental group of a maximal torus. Similarly, let W_C denote the Weyl group of Sp(n) faithfully represented in the Z-module given by the fundamental group E_C of a maximal torus in Sp(n), n > 2.

Assume that the representations $W_B \otimes R$ and $W_C \otimes R$ are similar, i.e. that there exists an *R*-isomorphism $A: E_B \otimes R \to E_C \otimes R$ which is α -equivariant for some group automorphism $\alpha: W_B \to W_C$.

Let β_1, \ldots, β_n be a basis for the root system (of type B_n) for Spin(2n + 1)and σ_i^B the reflection of E_B corresponding to β_i , i.e. $\sigma_i^B(x) = x - \beta_i(x)\beta_i^{\vee}$ where $\beta_i^{\vee} \in E_B$ is the inverse root to β_i .

Note that, for any $i, A \circ \sigma_i^B \circ A^{-1}$ is a reflection of $E_C \otimes k$ so that $[\mathbf{1},$ VI, §1, no 1, Remarque 3] $A \circ \sigma_i^B = \sigma_i^C \circ A$ for some reflection $\sigma_i^C \in W_C$. Let γ_i be the root and γ_i^{\vee} the inverse root corresponding to the reflection σ_i^C . The vectors $A(\beta_i^{\vee})$ and γ_i^{\vee} are proportional; write $A(\beta_i^{\vee}) = \lambda_i \gamma_i^{\vee}$ with $\lambda_i \in k$. Since $(\beta_1^{\vee}, \ldots, \beta_n^{\vee})$ is a \mathbb{Z} -basis for E_B [2, IX, §4, no 6, Proposition 11] and A is an R-automorphism, $(\lambda_1 \gamma_1^{\vee}, \ldots, \lambda_n \gamma_n^{\vee})$ is an R-basis for $E_C \otimes R$ and the linearly independent set $(\gamma_1^{\vee}, \ldots, \gamma_n^{\vee})$ is a \mathbb{Q} -basis for $E_C \otimes \mathbb{Q}$ such that the corresponding set of reflections $\{\sigma_1^C, \cdots, \sigma_n^C\}$ generates [1, VI, §1, no 5, Remarque 1] the Weyl group W_C . This implies (since not all γ_i^{\vee} can have the same length) that $(\gamma_1^{\vee}, \ldots, \gamma_n^{\vee})$ is a basis for the inverse root system of $\operatorname{Sp}(n)$, hence a \mathbb{Z} -basis for E_C . As $A: E_B \otimes R \to E_C \otimes R$ is surjective, each coefficient λ_i must be a unit in the ring R.

The relation $A\sigma_i^B(\beta_j^{\vee}) = \sigma_i^C A(\beta_j^{\vee})$ is equivalent to $\lambda_i \beta_i(\beta_j^{\vee}) = \lambda_j \gamma_i(\gamma_j^{\vee})$ for all *i* and *j*. It follows that $\beta_i(\beta_j^{\vee})\beta_j(\beta_i^{\vee}) = \gamma_i(\gamma_j^{\vee})\gamma_j(\gamma_i^{\vee})$, i.e. that the bijection $\beta_i \to \gamma_i$ of bases determines an isomorphism of the associated Coxeter graphs. Thus we may arrange the roots so that $\beta_{n-1}(\beta_n^{\vee}) = -1$ and $\gamma_{n-1}(\gamma_n^{\vee}) = -2$ leading to the relation $\lambda_{n-1} = 2\lambda_n$. Since both λ_{n-1} and λ_n are units in *R*, also 2 is a unit in *R*.

Conversely, if 2 is invertible in R, it is easy to write down a similarity between $W_B \otimes R$ and $W_C \otimes R$.

Let now S_i , $i \in I$, be a finite family of free *R*-modules of finite rank and W_i , $i \in I$, finite, nontrivial groups with W_i acting faithfully on S_i such that the corresponding vector space representation $W_i \otimes_R k$ is irreducible.

Let the product group $\prod_{i \in I} W_i$ act faithfully on $\prod_{i \in I} S_i$ in the obvious way. The first lemma of this section computes the endomorphism ring of $\prod S_i$ as an $R[\prod W_i]$ -module. LEMMA 2.3. Suppose that R is a principal ideal domain and that each group W_i contains a reflection of S_i . Then the obvious homomorphism

$$\prod_{i \in I} R \to \operatorname{End}_{R[\prod W_i]} \left(\prod S_i \right)$$

is a ring isomorphism.

PROOF. Let A be an $R[\prod W_i]$ -endomorphism of $\prod S_i$. Since the $\prod W_i$ representations $S_i \otimes_R k, i \in I$, are irreducible and pairwise nonisomorphic, $A = \prod A_i$ for some $A_i \in \operatorname{End}_{R[W_i]}(S_i)$ by Schur's lemma.

Let $\sigma_i \in W_i$ be a reflection of S_i . As the image $\operatorname{im}(1 - \sigma_i)$ is a free *R*-module of rank 1 which is invariant under A_i , there exists a scalar $\lambda_i \in R$ such that $\operatorname{im}(1 - \sigma_i) \subseteq \operatorname{ker}(A_i - \lambda_i)$ in S_i . Then also $\operatorname{ker}(A_i - \lambda_i) \neq 0$ in the irreducible W_i -representation $S_i \otimes_R k$; hence A_i is multiplication by λ_i on $S_i \otimes_R k$ and on S_i . \Box

The next two lemmas are concerned with groups of self-similarities of faithful representations.

Now pick a set of exponents $n_i \geq 1$, $i \in I$. The group $W := \prod_{i \in I} W_i^{n_i}$ is faithfully represented in the *R*-module $S := \prod_{i \in I} S_i^{n_i}$. Let $\Sigma_{n_i} < \operatorname{Sim}(W_i^{n_i}) < \operatorname{Sim}(W)$ denote the subgroup consisting of permutations of the n_i -factors of S_i in the product $S_i^{n_i}$ or in $S = \prod S_i^{n_i}$.

The proof of the following key lemma was kindly supplied by K. Uno.

LEMMA 2.4. Assume that the W_i -representations S_i , $i \in I$, are pairwise nonsimilar. Then the canonical homomorphism

$$\prod_{i \in I} \operatorname{Sim}(W_i) \wr \Sigma_{n_i} \to \operatorname{Sim}(W)$$

is a group isomorphism.

PROOF. Write $W = \prod_i W_i^{n_i} = \prod_{i,j} W_{ij}$ and $S = \prod_i S_i^{n_i} = \prod_{i,j} S_{ij}$ where $W_{ij} = W_i$ and $S_{ij} = S_i$ for $1 \le j \le n_i$.

Let A be an R-automorphism of S and α a group automorphism of W such that $A \circ w = \alpha(w) \circ A$ for all $w \in W$. Note that the submodule AS_{ij} of S is W-invariant as

$$\alpha(w)AS_{ij} = AwS_{ij} = AS_{ij}$$

for all $w \in W$. Let now v be a nonzero element of AS_{ij} . Write v on the form $v = \sum_{i,j} v_{ij}$ with $v_{ij} \in S_{ij}$. Pick k and l such that v_{kl} is nonzero. Since AS_{ij} is invariant under the action of the subgroup $W_{kl} < W$,

$$\sum_{i,j)\neq (k,l)} v_{ij} + W_{kl} v_{kl} \subseteq AS_{ij}$$

and hence also

$$W_{kl}v_{kl} - W_{kl}v_{kl} \subseteq AS_{ij}.$$

The left hand side generates a nontrivial W_{kl} -invariant submodule of S_{kl} , so

$$S_{kl} \otimes_R k \subseteq A(S_{ij} \otimes_R k)$$

by irreducibility of $S_{kl} \otimes_R k$. In fact, since A is an automorphism of $S \otimes_R k$, $S_{\sigma(i,j)} \otimes_R k = A(S_{ij} \otimes_R k)$ for some permutation σ of the index set. Then also $S_{\sigma(i,j)} = AS_{ij}$ since A is an automorphism of $S = \prod S_{ij}$ and each S_{ij} is a free R-module.

If $w \in W_{ij}$, $\alpha(w) \in W_{\sigma(i,j)}$ for $\alpha(w) = AwA^{-1}$ fixes pointwise $\prod_{(u,v)\neq\sigma(i,j)} S_{uv}$. In fact, $\alpha(W_{ij}) = W_{\sigma(i,j)}$ since α is an automorphism of $W = \prod W_{ij}$. Thus A restricts to a similarity from S_{ij} to $S_{\sigma(i,j)}$ and therefore, by the nonsimilarity assumption, $\sigma(i,j) = (i,\sigma_i(j))$ for some permutation $\sigma_i \in \Sigma_{n_i}$.

We conclude that $A = \prod_{i \in I} (\prod_j A_{ij}) \circ \sigma_i$ where $A_{ij} \in Sim(W_{ij}) = Sim(W_i)$ for $1 \le j \le n_i$. \Box

For instance

$$\operatorname{Sim}(W_B^{n_1} \otimes \mathbb{Z}_2 \times W_C^{n_2} \otimes \mathbb{Z}_2) \cong \operatorname{Sim}(W_B \otimes \mathbb{Z}_2) \wr \Sigma_{n_1} \times \operatorname{Sim}(W_C \otimes \mathbb{Z}_2) \wr \Sigma_{n_2}$$

where W_B and W_C are the representations over \mathbb{Z} as in Example 2.2 and \mathbb{Z}_2 is the ring of 2-adic integers.

In Lemma 2.4 the representations W_i , $i \in I$, are assumed to be pairwise nonsimilar. We now omit this assumption and instead group together similar representations.

More specifically, declare $i_1, i_2 \in I$ to be equivalent indices if the representations $W_{i_1} \to \operatorname{Aut}_R(S_{i_1})$ and $W_{i_2} \to \operatorname{Aut}_R(S_{i_2})$ are similar. Write the index set $I = \bigcup_{j \in J} I(j)$ as a disjoint union of equivalence classes $I(j), j \in J$. Then $W(j) := \prod_{i \in I(j)} W_i^{n_i}$ is faithfully represented in $S(j) := \prod_{i \in I(j)} S_i^{n_i}$ and $W = \prod_{j \in J} W(j)$ faithfully represented in $S = \prod_{j \in J} S(j)$.

COROLLARY 2.5. Assume that the index set $I = \bigcup_{j \in J} I(j)$ is divided into equivalence classes such that S_{i_1} and S_{i_2} are similar if and only if $i_1, i_2 \in I(j)$ for some $j \in J$. Then the canonical homomorphism

$$\prod_{j\in J}\operatorname{Sim}(W(j))\to\operatorname{Sim}(W)$$

is a group isomorphism.

PROOF. Choose an element $i(j) \in I(j)$ and let $n(j) := \sum_{i \in I(j)} n_i$. Because $W(j) = \prod_{i \in I(j)} W_i^{n_i}$ is similar to $W_{i(j)}^{n(j)}$,

$$\operatorname{Sim}(W) \cong \operatorname{Sim}\left(\prod_{i \in I} W_i^{n_i}\right) = \operatorname{Sim}\left(\prod_{j \in J} \prod_{i \in I(j)} W_i^{n_i}\right) \cong \operatorname{Sim}\left(\prod_{j \in J} W_{i(j)}^{n(j)}\right)$$
$$\cong \prod_{j \in J} \operatorname{Sim}(W_{i(j)}) \wr \Sigma_{n(j)}$$

$$\operatorname{Sim}(W(j)) \cong \operatorname{Sim}\left(\prod_{i \in I(j)} W_i^{n_i}\right) \cong \operatorname{Sim}\left(W_{i(j)}^{n(j)}\right) \cong \operatorname{Sim}(W_{i(j)}) \wr \Sigma_{n(j)}$$

for all $j \in J$. \square

In the applications to be discussed the next section, W_i will be the Weyl group and S_i the free \mathbb{Z}_p -module given by the fundamental group of the maximal torus of a *p*-compact group.

3. Rational automorphisms

This section introduces a class of p-compact groups, called completely reducible p-compact groups, and investigates their rational automorphisms.

A homomorphism $f: X_1 \to X_2$ between two connected *p*-compact groups, X_1 and X_2 , i.e. a based map $Bf: BX_1 \to BX_2$ between the classifying spaces, is a *rational isomorphism* if [8, Definition 4]

$$H^*(Bf;\mathbb{Z}_p)\otimes_{\mathbb{Z}_p}\mathbb{Q}_p\colon H^*(BX_2;\mathbb{Z}_p)\otimes_{\mathbb{Z}_p}\mathbb{Q}_p\to H^*(BX_1;\mathbb{Z}_p)\otimes_{\mathbb{Z}_p}\mathbb{Q}_p$$

is an isomorphism. An endomorphism $f: Y \to Y$ of a *p*-compact group Y which is a rational equivalence will be called a *rational automorphism*.

All homomorphisms between p-compact groups restrict to homomorphisms between the maximal tori [8, Theorem 2.4]. For endomorphisms, the precise formulation of this assertion is the following version for p-compact groups of the classical Adams-Mahmud theorem.

THEOREM 3.1. [8, Theorem 2.5] Let Y be a connected p-compact group with maximal torus $T \to Y$ and let $f: Y \to Y$ be an endomorphism of Y. There exists an endomorphism φ of T such that the diagram

commutes and

- (i) The endomorphism φ is a (rational) automorphism if and only if f is a (rational) automorphism.
- (ii) The homotopy class of Bφ in [BT, BT] is unique up to left action by the Weyl group W_T(Y).

The Weyl group $W_T(Y)$ is faithfully represented [4, Theorem 9.7] in the free \mathbb{Z}_p -module $\pi_2(BT)$. The uniqueness of the lift φ has the consequence that for any $w \in W_T(Y) \subseteq [BT, BT]$, $B\varphi \circ w = \alpha(w) \circ B\varphi$ for some $\alpha(w) \in W_T(Y)$. Since

6

 $\pi_2(B\varphi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is an automorphism of $\pi_2(BT) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, α is an automorphism of $W_T(Y)$ and

$$\pi_2(B\varphi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \in \operatorname{Sim}(W_T(Y) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$$

is a self-similarity of the vector space representation $W_T(Y) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. If f is an (honest) automorphism of Y, $\pi_2(B\varphi)$ is an automorphism of $\pi_2(BT)$ and the uniqueness clause implies that

$$\pi_2(B\varphi) \in \operatorname{Sim}(W_T(Y))$$

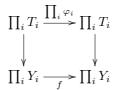
is a self-similarity of the \mathbb{Z}_p -representation $W_T(Y)$.

Denote by $\varepsilon_{\mathbb{Q}}(Y) \subseteq [BY, BY]$ the monoid of conjugacy classes of rational automorphism of Y. The invertible elements in this monoid is the group $\operatorname{Out}(Y)$ of conjugacy classes of automorphisms of Y.

Now consider a finite collection Y_i , $i \in I$, of connected *p*-compact groups. Let W_i be the Weyl group of Y_i with respect to some maximal torus $T_i \to Y_i$.

The following lemma, based on the vanishing theorem of [8, Theorem 5.1], will be applied repeatedly in the following.

LEMMA 3.2. Let f be an endomorphism of the product p-compact group $\prod_{i \in I} Y_i$. Suppose that there exist endomorphisms $\varphi_i : T_i \to T_i, i \in I$, such that

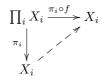


commutes up to conjugacy. Then

- (i) There exist endomorphisms f_i of Y_i such that f is conjugate to the product endomorphism ∏_i f_i of ∏_i Y_i.
- (ii) If f is a (rational) automorphism, each f_i is a (rational) automorphism.

PROOF. Let, for each $i \in I$, $\iota_i \colon Y_i \to \prod_i Y_i$ and $\pi_i \colon \prod_i Y_i \to Y_i$ be the canonical injection and projection homomorphisms. Define $f_i \colon Y_i \to Y_i$ as the composite $\pi_i \circ f \circ \iota_i$.

The assumption that f lifts to a product endomorphism of the product maximal torus $\prod_i T_i$ implies that the restriction of $\pi_i \circ f$ to $\prod_{j \neq i} T_j$ is trivial and hence also [8, Corollary 5.7] that the restriction of $\pi_i \circ f$ to $\prod_{j \neq i} Y_j$ is trivial. Consequently, $\pi_i \circ f$ admits a factorization [8, Corollary 1.8]



through X_i . The only possible factorization is the endomorphism f_i . Of course, $[BY, BY] = \prod_i [BY, BY_i]$, so $\pi_i \circ f = f_i \circ \pi_i = \pi_i \circ (\prod_i f_i)$ shows that f and $\prod_i f_i$ are conjugate.

If f is a (rational) automorphism, the lift $\prod_i \varphi_i$ is a (rational) automorphism too [Theorem 3.1] and hence each φ_i , $i \in I$, is a (rational) automorphism. Since $\varphi_i : T_i \to T_i$ covers $f_i : X_i \to X_i$ it follows, Theorem 3.1 again, that f_i is a (rational) automorphism. \Box

Assume now that the faithful representation $W_i \to \operatorname{Aut}_{\mathbb{Q}_p}(\pi_2(BT_i) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ is irreducible for each $i \in I$, i.e. that each Y_i is a simple [8, Definition 5] *p*-compact group.

Lemma 3.2 leads in the first place to a slight generalization of [8,Theorem 4.5] or, in other words, to a *p*-compact group version of [5,Proposition 1.3] from where the proof is copied.

PROPOSITION 3.3. Suppose that the prime p divides the order of each of the Weyl groups W_i of the connected, simple p-compact groups Y_i , $i \in I$. Then $Out(\prod_i Y_i) = \varepsilon_{\mathbb{Q}}(\prod_i Y_i)$.

PROOF. Let f be any rational automorphism of the product p-compact group $\prod_i Y_i$. The task is to show that f is invertible.

Choose [Theorem 3.1] a rational automorphism φ such that

$$\begin{array}{ccc} \prod_{i} T_{i} & \stackrel{\varphi}{\longrightarrow} & \prod_{i} T_{i} \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ \prod_{i} Y_{i} & \stackrel{\varphi}{\longrightarrow} & \prod_{i} Y_{i} \end{array}$$

commutes up to conjugacy and $\pi_2(B\varphi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \in \operatorname{Sim}(\prod_i W_i \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$. In particular, φ determines an automorphism of the Weyl group $\prod_i W_i$ of $\prod_i Y_i$ and by replacing f by an iterate of itself, if necessary, we may assume that this automorphism is in fact the identity. Then the induced homomorphism

$$\pi_2(B\varphi) \in \operatorname{End}_{\mathbb{Z}_p[\prod W_i]}\left(\prod \pi_2(BT_i)\right) \cong \prod \mathbb{Z}_p$$

is a product homomorphism by Lemma 2.3 meaning that φ itself is conjugate to a product $\prod_i \varphi_i$ of endomorphisms φ_i of T_i . That also f is conjugate to a product $\prod_i f_i$ of rational automorphisms $f_i \in \varepsilon_{\mathbb{Q}}(Y_i)$ now follows from Proposition 3.2. However, since p divides the order of the Weyl group W_i and Y_i is simple, any rational automorphism of Y_i is invertible by [8, Theorem 4.5]. \Box

Rational automorphisms of the product *p*-compact group $\prod_i Y_i$ can be analyzed in detail in case the factors are distinct in the sense defined below.

DEFINITION 3.4. A finite family Y_i , $i \in I$, of connected, simple p-compact groups is similarity free if each Weyl group W_i is nontrivial and

- (i) The representations $W_i \to \operatorname{Aut}(\pi_2(BT_i))$ of the Weyl groups in the maximal tori are pairwise nonsimilar.
- (ii) If, for some pair $i_1, i_2 \in I$, the representations $W_{i_1} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ and $W_{i_2} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ are similar, then p divides the Weyl group order $|W_{i_1}| = |W_{i_2}|$.

Any family G_i , $i \in I$, of pairwise nonisomorphic, simply connected, simple compact Lie groups (none of which is equal to Sp(n), n > 2, if p > 2) is similarity free; see Example 2.2 when p = 2.

The main motivation for the introduction of this concept is the following main result; cfr. [9, Theorem 3.1].

THEOREM 3.5. Let Y_i , $i \in I$, be a similarity free family of connected, simple p-compact groups and let $Y = \prod_{i \in I} Y_i^{n_i}$, $n_i \ge 1$.

(i) The canonical homomorphisms

$$\prod_{i \in I} \varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i} \to \varepsilon_{\mathbb{Q}}(Y)$$
$$\prod_{i \in I} \operatorname{Out}(Y_i) \wr \Sigma_{n_i} \to \operatorname{Out}(Y)$$

are isomorphisms.

(ii) If $f = (\prod_{i \in I} \prod_{1 \leq j \leq n_i} f_{ij}) \circ \sigma$ for some $f_{ij} \in \varepsilon_{\mathbb{Q}}(X_i), 1 \leq j \leq n_i$, and some permutation map $\sigma \in \prod_{i \in I} \Sigma_{n_i}$, then the product map

$$\prod_{i \in I} \prod_{1 \leq j \leq n_i} \max(BY_i, BY_i)_{Bf_{ij}} \to \max(BY, BY)_{B(f \circ \sigma^{-1})}$$

is a homotopy equivalence.

The proof is divided into four parts.

By assumption, the index set I can be divided into equivalence classes $I = \bigcup_{j \in J} I(j)$ such that $i_1, i_2 \in I(j)$ for some $j \in J$ if and only if the representations $W_{i_1} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ and $W_{i_2} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ are similar. Note that if the equivalence class I(j) contains more than one element then $p \mid |W_i|$ for all $i \in I(j)$.

Put $Y(j) = \prod_{i \in I(j)} Y_i^{n_i}, j \in J$, so that $Y = \prod_{j \in J} Y(j)$.

LEMMA 3.6. The product maps

$$\prod_{j \in J} \varepsilon_{\mathbb{Q}}(Y(j)) \to \varepsilon_{\mathbb{Q}}(Y)$$
$$\prod_{j \in J} \operatorname{Out}(Y(j)) \to \operatorname{Out}(Y)$$

are monoid isomorphisms.

J. M. MØLLER

PROOF. It suffices to show surjectivity as the above maps are monoid monomorphisms by general and elementary principles. Let $f \in \varepsilon_{\mathbb{Q}}(Y)$ be a (rational) automorphism of Y. Let $T(j) := \prod_{i \in I(j)} T_i$ be the maximal torus and $W(j) := \prod_{i \in I(j)} W_i$ the Weyl group of Y(j). Choose [Theorem 3.1] a (rational) automorphism $\varphi \colon \prod_{i \in J} T(j) \to \prod_{i \in J} T(j)$ that covers f. Then

$$\pi_2(B\varphi) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \in \operatorname{Sim}\left(\prod_{j \in J} W(j) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p\right) \cong \prod_{j \in J} \operatorname{Sim}(W(j) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$$

by Lemma 2.5. It follows in particular, that the induced homomorphism $\pi_2(B\varphi)$ preserves the factors of $\prod_{j\in J} \pi_2(BT(j))$ and hence that also $\varphi = \prod_{j\in J} \varphi(j)$ is a product of (rational) automorphisms $\varphi(j) \in \varepsilon_{\mathbb{Q}}(T(j)), j \in J$. Now apply Lemma 3.2. \Box

In the next lemma, $\Sigma_{n_i} < \text{Out}(Y(j)), i \in I(j)$, denotes the subgroup consisting of permutations of the n_i factors equal to Y_i in $Y(j) = \prod_{i \in I(j)} Y_i^{n_i}$.

LEMMA 3.7. The canonical homomorphism

$$\prod_{i \in I(j)} \operatorname{Out}(Y_i) \wr \Sigma_{n_i} \to \operatorname{Out}(Y(j))$$

is an isomorphism for each $j \in J$.

PROOF. Let f be any automorphism of Y(j). Choose [Theorem 3.5] an automorphism φ of maximal torus T(j) that covers f. Then

$$\pi_2(B\varphi) \in \operatorname{Sim}(W(j)) \cong \prod_{i \in I(j)} \operatorname{Sim}(W_i) \wr \Sigma_n$$

by Lemma 2.4. It follows in particular that $B(\varphi \circ \sigma^{-1}) = \prod_{i \in I(j)} \varphi_i$ for some automorphisms $\varphi_i \in \text{Out}(T_i), i \in I(j)$, and some permutation map $\sigma \in \prod_{i \in I(j)} \Sigma_{n_i}$. Now apply Lemma 3.2 to $f \circ \sigma^{-1}$. \Box

In case the index set I(j) contains more than one element, then the formula

$$\prod_{j \in I(j)} \varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i} \cong \varepsilon_{\mathbb{Q}}(Y(j))$$

is, by Proposition 3.3, just an alternative formulation of Lemma 3.7. The computation of the rational equivalences in case the index set I(j) does consist of just a single element is handled by the following lemma.

LEMMA 3.8. The canonical homomorphism

$$\varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i} \to \varepsilon_{\mathbb{Q}}(Y_i^{n_i})$$

is a monoid isomorphism for all $i \in I$.

PROOF. Proceed as in the proofs of Lemma 3.6 and Lemma 3.7 using the isomorphism $\operatorname{Sim}(W_i^{n_i} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \cong \operatorname{Sim}(W_i \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \wr \Sigma_{n_i}$ from Lemma 2.4 together with Lemma 3.2. \Box

After these three lemmas it is time for

PROOF OF THEOREM 3.5. The preceding three lemmas imply that

$$\prod_{i \in I} \varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i} = \prod_{j \in J} \prod_{i \in I(j)} \varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i} \cong \prod_{j \in J} \varepsilon_{\mathbb{Q}}(Y(j)) \cong \varepsilon_{\mathbb{Q}}(Y)$$

and a similar computation applies to the case of (genuine) automorphisms.

As to point (ii), write $Y = \prod_i Y_i^{n_i} = \prod_{i,j} Y_{ij}$ where $Y_{ij} = Y_i$ for $1 \le j \le n_i$. The projection homomorphism π_{ij} of Y to Y_{ij} is part of a short exact sequence

$$\prod_{(k,l)\neq (i,j)} Y_{kl} \to Y \xrightarrow{\pi_{ij}} Y_{ij}$$

of *p*-compact groups. In this situation, precomposition with $B\pi_{ij}$ induces a homotopy equivalence of mapping spaces [8, Lemma 1.7] which, as $\pi_{ij} \circ f \circ \sigma^{-1} = f_{ij} \circ \pi_{ij}$, restricts to a homotopy equivalence

$$\overline{B\pi_{ij}}$$
: map $(BY_{ij}, BY_{ij})_{Bf_{ij}} \to map(BY, BY_{ij})_{B(\pi_{ij} \circ f \circ \sigma^{-1})}$

of connected components. With the map of point (ii) as the top horizontal map, the diagram

commutes and point (ii) follows. \Box

Any rational automorphism f of the connected p-compact group Y induces (restricts to) a rational automorphism Z(f) of the center Z(Y) characterized as the unique endomorphism that makes

commute up to conjugacy [8, Corollary 3.2].

Thanks to the homotopy equivalence $BZ(Y) \to \max(BY, BY)_{B1}$ from Dwyer and Wilkerson [3, Theorem 1.3], Z(f) can also be computed as a map between mapping spaces. COROLLARY 3.9. Let f be a rational automorphism of the p-compact group $Y = \prod Y_i^{n_i}$ from Theorem 3.5. Then the post- and precomposition maps

$$\operatorname{map}(BY, BY)_{B1} \xrightarrow{Bf} \operatorname{map}(BY, BY)_{Bf} \xleftarrow{\overline{Bf}} \operatorname{map}(BY, BY)_{B1}$$

are homotopy equivalences and the endomorphism Z(f) is an automorphism of Z(Y).

PROOF. According to Theorem 3.5 we may assume that $f = \prod_i \prod_j f_{ij}$ for some rational automorphisms f_{ij} of $Y_{ij} = Y_i$, $i \in I$, $1 \leq j \leq n_i$. The postcomposition and precomposition maps fit into the commutative diagram

where the vertical maps are the homotopy equivalences of Theorem 3.5. Since each of the *p*-compact groups Y_{ij} is simple with nontrivial Weyl group, the postcomoposition maps Bf_{ij} as well as the precomposition maps $\overline{Bf_{ij}}$ are homotopy equivalences by [8, Corollary 4.7].

Evaluation at the base point determines a commutative diagram

showing that Z(f) identifies to the homotopy equivalence $(\overline{Bf})^{-1} \circ Bf$. \Box

In particular, we see that Z may be regarded as a homomorphism $Z : \varepsilon_{\mathbb{Q}}(Y) \to \operatorname{Aut}(Z(Y)).$

The following definition was introduced as an attempt to extend Corollary 3.9 to a larger class of *p*-compact groups by applying Notbohm's [11, Theorem].

DEFINITION 3.10. A connected p-compact group is completely reducible if its universal covering p-compact group [10, Lemma 3.2] is isomorphic to a product p-compact group of the form $\prod_{i \in I} Y_i^{n_i}$ where $(Y_i)_{i \in I}$ is a finite, similarity free family of simply connected, simple p-compact groups.

This definition should be regarded as provisional since, with a little luck, any connected *p*-compact group will turn out to be completely reducible.

For any completely reducible *p*-compact group X there exists [10, Theorem 5.4] a short exact sequence of the form

(3.1)
$$K \xrightarrow{(\operatorname{incl},\varphi)} \left(\prod Y_i^{n_i}\right) \times S \xrightarrow{q} X$$

where K is a subgroup of the finite [10, Theorem 5.3] center $Z(\prod Y_i^{n_i}) \cong \prod Z(Y_i)^{n_i}$, S is a p-compact torus (equal to the connected component of the center of X), and $\varphi \colon K \to S$ a homomorphism.

Suppose now that X_1 and X_2 are two connected, *locally isomorphic* [8, Definition 3], completely reducible *p*-compact groups, i.e. [8, Proposition 1.4] that there exist short exact sequences

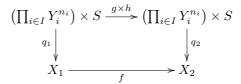
(3.2)
$$K_j \xrightarrow{(\operatorname{incl},\varphi_j)} \left(\prod Y_i^{n_i}\right) \times S \xrightarrow{q_j} X_j$$

for j = 1, 2. Let $\varepsilon_{\mathbb{Q}}(X_1, X_2) \subseteq [BX_1, BX_2]$ denote the set of conjugacy classes of rational equivalences from X_1 to X_2 .

By Theorem 3.5 and [8, Theorem 3.2] there exists an injection

$$\Lambda \colon \varepsilon_{\mathbb{Q}}(X_1, X_2) \to (\prod \varepsilon_{\mathbb{Q}}(Y_i) \wr \Sigma_{n_i}) \times \varepsilon_{\mathbb{Q}}(S)$$

associating to each $f \in \varepsilon_{\mathbb{Q}}(X_1, X_2)$, rational automorphisms $g_{ij} \in \varepsilon_{\mathbb{Q}}(Y_i)$, $i \in I, 1 \leq j \leq n_i, h \in \varepsilon_{\mathbb{Q}}(S)$, and a permutation map $\sigma \in \prod \Sigma_{n_i}$ such that



commutes up to conjugacy with $g = \prod_{i \in I} (\prod_j g_{ij}) \circ \sigma_i$. The image of Λ consists of those pairs (g, h) for which $Z(g)(K_1) \subseteq K_2$ and the diagram

commutes up to conjugacy.

In particular, the sets $\varepsilon_{\mathbb{Q}}(X_1, X_2)$ will be completely known for all pairs (X_1, X_2) of locally isomorphic, completely reducible *p*-compact groups once the the monoids $\varepsilon_{\mathbb{Q}}(Y)$ together with the homomorphisms $Z : \varepsilon_{\mathbb{Q}}(Y) \to \operatorname{Aut}(Z(Y))$ are known for all simply connected, simple *p*-compact groups *Y*.

Here is a consequence that already now is obtainable. In point (i), $Z: \varepsilon_{\mathbb{Q}}(X_1, X_2) \to \varepsilon_{\mathbb{Q}}(Z(X_1), Z(X_2))$ is the homomorphism of [8, Corollary 3.2] (considered above in case of rational automorphisms).

THEOREM 3.11. Suppose that X_1 and X_2 are the two locally isomorphic, completely reducible p-compact groups given by the short exact sequences (3.2).

(i) For any rational equivalence $f: X_1 \to X_2$, the precomposition map

 \overline{Bf} : map $(BX_2, BX_2)_{B1} \to map(BX_1, BX_2)_{Bf}$

is a homotopy equivalence (i.e. the centralizer of f is isomorphic to the center of X_2) and the diagram

commutes up to conjugacy.

(ii) If $|K_1| > |K_2|$, then $\varepsilon_{\mathbb{Q}}(X_1, X_2) = \emptyset$.

PROOF. Let $g \in \varepsilon_{\mathbb{Q}}(Y)$, where $Y = \prod Y_i^{n_i}$ is the universal covering *p*-compact group of X, and $h \in \varepsilon_{\mathbb{Q}}(S)$ be rational automorphisms such that $g \times h$ covers f up to conjugacy. Precomposition with these maps induces a fibre map

of fibrations as in [8, Proposition 3.4]. The precomposition map \overline{Bg} is a homotopy equivalence by Corollary 3.9 and \overline{Bh} is a homotopy equivalence since S is an abelian *p*-compact group. Hence also \overline{Bf} is a homotopy equivalence.

The computation of Z(f) now proceeds as in Corollary 3.9.

The second statement of the theorem follows because Z(g) is an automorphism of Z(Y) by Corollary 3.9. \Box

The postcomposition map Bf is in general *not* a homotopy equivalence.

Another consequence is a version of Proposition 3.3 concerning invertibility of rational automorphisms of semisimple *p*-compact groups, i.e. *p*-compact groups with finite fundamental groups.

COROLLARY 3.12. Let X be a semisimple, completely reducible p-compact group given as in (3.1) with S trivial. Assume that the prime p divides the order $|W_i|$ of the Weyl group of Y_i for all $i \in I$. Then $\varepsilon_{\mathbb{Q}}(X) = \text{Out}(X)$.

PROOF. By Proposition 3.3, any rational automorphism of Y has a homotopy inverse, so the monoid monomorphism $\Lambda \colon \varepsilon_{\mathbb{Q}}(X) \to \varepsilon_{\mathbb{Q}}(Y)$ shows that the same is true for X. \Box

Finally, a few examples to illustrate the use of Theorem 3.5.

EXAMPLE 3.13. (1) According to [5, Proposition 1.3] or Proposition 3.3 and [6]

 $\varepsilon_{\mathbb{Q}}(\operatorname{Spin}(2n+1)_{2}^{\wedge}) = \operatorname{Out}(\operatorname{Spin}(2n+1)_{2}^{\wedge}) = \{\psi^{u} \mid u \in \mathbb{Z}_{2}^{*}\}$

and $Z(\psi^u)$ is the identity map of $Z(\operatorname{Spin}(2n+1)_2^{\wedge}) = \mathbb{Z}/2$. Hence [8, Theorem 3.2]

$$\operatorname{Out}(\operatorname{SO}(2n+1)_2^{\wedge}) = \operatorname{Out}(\operatorname{Spin}(2n+1)_2^{\wedge})$$

and the product map

 $\operatorname{Out}(\operatorname{Spin}(2n+1)_2^{\wedge}) \times \operatorname{Out}(\operatorname{SO}(2n+1)_2^{\wedge}) \to \operatorname{Out}(\operatorname{Spin}(2n+1)_2^{\wedge} \times \operatorname{SO}(2n+1)_2^{\wedge})$

is an isomorphism.

(2) The monomorphism Λ : $\operatorname{Out}(\operatorname{SO}(2n)_2^{\wedge}) \to \operatorname{Out}(\operatorname{Spin}(2n)_2^{\wedge})$ is an isomorphism for n > 4 but not for n = 4; see [7, Example 2.2].

(3) For any finite collection $(G_i)_{i \in I}$ of pairwise nonisomorphic simply connected, simple, compact Lie groups

$$\prod_{\in I} \varepsilon_{\mathbb{Q}}((G_i)_2^{\wedge}) \wr \Sigma_{n_i} \cong \varepsilon_{\mathbb{Q}}(\prod_{i \in I} (G_i^{n_i})_2^{\wedge})$$

and the similar formula holds for odd primes too if $G_i \neq \text{Sp}(n)$, n > 2, for all $i \in I$.

References

- 1. N. Bourbaki, Groupes et algèbres de Lie, Chp. 4-6, Hermann, Paris, 1968.
- 2. ____, Groupes et algèbres de Lie, Chp. 9, Masson, Paris, 1982.
- 3. W.G. Dwyer and C.W. Wilkerson, The center of a p-compact group, Preprint, 1993.
- Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math.
 (2) 139 (1994), 395–442.
- 5. S. Jackowski, J. McClure, and R. Oliver, Self homotopy equivalences of BG, Preprint.
- <u>—</u>, Homotopy classification of self-maps of BG via G-actions, Part I, Ann. of Math.(2) 135 (1992), 183–226.
- 7. J.M. Møller, Rational equivalences between classifying spaces, Math. Z. (to appear).
- 8. _____, Rational isomorphisms of p-compact groups, Topology (to appear).
- 9. _____, The normalizer of the Weyl group, Math. Ann. 294 (1992), 59–80.
- 10. J.M. Møller and D. Notbohm, *Centers and finite coverings of finite loop spaces*, J. reine angew. Math. (to appear).
- D. Notbohm, Maps between classifying spaces and applications, J. Pure Appl. Algebra 89 (1993), 273–294.

MATEMATISK INSTITUT, UNIVERSITETSPARKEN 5, DK–2100 KØBENHAVN Ø $E\text{-mail}\ address:\ moller@math.ku.dk$