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Abstract. The combinatorics of the poset of p-radical p-subgroups of a finite
group is used to count the number of p-elements.

1. Introduction

Let G be a finite group, p a prime number, and |G|p the p-part of the group
order, |G|. An element of G is a p-element if its order is a power of p. We write

Gp =
⋃

Sylp(G)

for the set of all p-elements in G, the union of all Sylow p-subgroups of G. Frobenius
proved in 1907 the general fact, |G|p | |Gp|, that the number of p-elements is a
multiple of the the p-part of the group order [4]. In the special case where G = K
is a finite group of Lie type in characteristic p we even have that |Kp| = |K|2p by
a theorem of Steinberg from 1968 [11, 15.2]. The main purpose of this note is to
present an alternative and more combinatorial proof of Steinberg’s theorem.

In addition to the already introduced symbols, G and p, the following notation
will be used in this note:

[H] the conjugacy class of the subgroup H of G
NG(H,K) the transporter set of all group elements g ∈ G such that Hg ≤ K

Sp
G (Sp+∗

G ) the poset of all (nontrivial) p-subgroups of G ordered by inclusion, H≤K ⇐⇒ H⊆K

[Sp
G
] ([Sp+rad

G
]) the set of conjugacy classes of p-subgroups (p-radical p-subgroups)

q a power of p
Fq the finite field with q elements

2. Counting p-elements using Möbius functions

The basic properties of the Möbius function μ of the poset Sp
G ∪ {∞} consisting

of the p-subgroup poset Sp
G with a top element, ∞, added are [9, §3.7]

(1) the Möbius function μ on Sp
G∪{∞} restricts to the Möbius function on Sp

G

(2) μ(∞,∞) = 1 and μ(∞,K) = 0 for all K ∈ Sp
G

(3)
∑

H≤K∈Sp
G
μ(H,K) + μ(H,∞) = 0 for all H ∈ Sp

G

(4)
∑

H≤K∈Sp
G
μ(K,∞) + 1 = 0 for all H ∈ Sp

G
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By P. Hall’s theorem [9, Proposition 3.8.5] and Quillen’s [7, Proposition 6.1], the
integer μ(H,∞), H ∈ Sp

G, is the reduced Euler characteristics of the interval (H,∞)

in Sp
G or Sp

NG(H) or of S
p+∗
NG(H)/H .

Lemma 2.1. The number of p-elements in G is |Gp| =
∑

H∈Sp
G
−μ(H,∞)|H|.

Proof. For a finite p-group H, write ϕ(H) for the number of elements of H gener-
ating H. If H is cyclic, ϕ(H) = 1 if |H| = 1 and ϕ(H) = |H| − |H|/p if |H| > 1. If
H is not cyclic, ϕ(H) = 0.

Declare two p-elements of G to be equivalent if they generate the same cyclic sub-
group. Since the set of equivalence classes is the set of cyclic p-subgroups C of G and
the number of elements in the equivalence class C is ϕ(C), |Gp| =

∑
H∈Sp

G
ϕ(H).

For any p-subgroup K of G, |K| = |Kp| =
∑

H∈Sp
K
ϕ(H) and ϕ(K) =∑

H∈Sp
K
μ(H,K)|H| by Möbius inversion [9, Proposition 3.7.1]. The calculation∑
H∈Sp

G

−μ(H,∞)|H| (3)=
∑

K∈Sp
G

∑
H∈Sp

G

μ(H,K)|H| =
∑

K∈Sp
G

ϕ(K) = |Gp|

now finishes the proof. �

A p-subgroup of G is said to be p-radical if it is the biggest normal p-subgroup
of its normaliser in G. Quillen observed that only p-radical p-subgroups contribute
to the sum of Lemma 2.1.

Lemma 2.2. μ(H,∞) = 0 unless H is a p-radical p-subgroup of G.

Proof. The poset Sp+∗
NG(H)/H of nontrivial p-subgroups of NG(H)/H is contractible

if NG(H)/H contains a nontrivial normal p-subgroup [7, Proposition 2.4]. Thus

μ(H,∞) = χ̃(Sp+∗
NG(H)/H) = 0 if H is not p-radical. �

Define TOMp+rad
G , the table of marks for the p-radical p-subgroups of G [2], and

TOMp+rad
G , the normalised table of marks , to be the square matrices with entries

(2.3)

TOMp+rad
G ([H], [K]) =

|NG(H,K)|
|K| , TOMp+rad

G ([H], [K]) =
|NG(H,K)|
|NG(K)|

indexed by conjugacy classes of p-radical p-subgroups. Alternatively,

TOMp+rad
G ([H], [K]) = |(K\G)H | is the mark of H on the right G-set K\G and

TOMp+rad
G ([H], [K]) the number of H-supergroups conjugate to K. Relation (4)

satisfied by the Möbius function μ can be expressed as either of the two equivalent
linear equations

TOMp+rad
G ([H], [K])[H],[K]∈[Sp+rad

G ]

(
−μ(K,∞)

|NG(K) : K|

)
[K]∈[Sp+rad

G ]

= (1)[K]∈[Sp+rad
G ]

(2.4)

TOMp+rad
G ([H], [K])[H],[K]∈[Sp+rad

G ](−μ(K,∞))[K]∈[Sp+rad
G ] = (1)[K]∈[Sp+rad

G ](2.5)

where the right hand sides are the column vectors whose entries are all 1. By
Lemma 2.1, Lemma 2.2 and equation (2.4), the density of p-elements in G,

|Gp|
|G| =

∑
[K]∈[Sp+rad

G ]

−μ(K,∞)

|NG(K) : K| =
∑

[H],[K]∈[Sp+rad
G ]

(TOMp+rad
G )−1([H], [K])
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is the sum of the entries of the inverse table of marks for p-radical p-subgroup
classes. (Note that the integer μ(K,∞) only depends on the conjugacy class of K.)

3. Radical subgroups at the defining characteristic in finite groups

of Lie type

Let Σ be a reduced and crystallographic root system with fundamental and
positive roots Π,Σ+ ⊆ Σ [6, Definition 1.8.1]. Suppose K(Σ) is a semisimple Fp-
algebraic group with root system Σ [6, Theorem 1.10.4] equipped with a Steinberg
endomorphism σ. We can assume that σ = γρϕq or σ = ψϕq (in the notation of
[6, Definition 1.15.(b), Remarks 2.2.5.(e)]) is of standard form. Assuming Σ to be

also irreducible [6, Definition 1.8.4], let K = Op′
CK(Σ)(σ) be the finite group in

Lie(p) with σ-setup (K(Σ), σ) [6, Definition 2.2.2].

The surjections Σ → Σ̃ → Σ̂ of [6, (2.3.1)] induce surjections Π → Π̃ → Π̂ of

sets. Here, Σ̃ is the twisted root system of K [6, p 41], and Σ̂ = Σ̃/∼ the set of
equivalence classes of twisted roots pointing in the same direction.

For every subset J ⊆ Π̂ we have associated subgroups PJ , UJ , LJ ⊆ K such
that UJ = Op(PJ), PJ = NK(UJ) and PJ = UJ � LJ [6, Theorem 2.6.5]. The PJ

are parabolic subgroups, the UJ are unipotent p-radical p-subgroups and the LJ

are Levi complements [6, Definition 2.6.4, Definition 2.6.6]. It is a consequence of

the Borel–Tits theorem that {UJ | J ⊆ Π̂} is complete set of representatives for
the K-conjugacy classes of the p-radical p-subgroups of K [6, Corollary 3.1.5]. In

the extreme cases J = ∅, Π̂, P∅ = U∅ � L∅ is a Borel subgroup of K, U∅ a Sylow
p-subgroup [6, p 41, Theorems 2.3.4, 2.3.7], L∅ = H is a maximal torus or Cartan
subgroup [6, Theorem 2.4.7, Definition 2.4.12], and PΠ̂ = K = LΠ̂, UΠ̂ = 1. If

∅ ⊆ J ⊆ I ⊆ Π̂ then UI ⊆ UJ ⊆ PJ ⊆ PI and UI ⊆ U∅ ⊆ P∅ ⊆ PI .

The next lemma shows that for J ⊆ I ⊆ Π̂, the set PJ\PI of right PJ -cosets in
PI parametrizes the conjugates of UJ containing UI . The proof relies on the fact
that NK(U) ≥ NK(V ) when U ≤ V are p-radical p-subgroups of K. Even though
both lemma and fact are probably well-known, a proof of the lemma is included
here and [12, Proposition 2.13] proves the fact.

Lemma 3.1. The entries of the normalised table of marks (2.3) for the p-radical
p-subgroups of K are

TOMp+rad
K (UI , UJ ) =

{
|PI : PJ | J ⊆ I

0 otherwise

for all subsets I, J ⊆ Π̂.

Proof. It suffices to show that the transporter set NK(UI , UJ) equals PI if I ⊇ J

and is empty otherwise. Assume that Ug
I ≤ UJ for some I, J ⊆ Π̂, g ∈ K. Then

P g
I ≥ PJ are parabolic subgroups containing P∅. The classification of parabolic

subgroups [6, Theorem 2.6.5] implies that I ⊇ J , P g
I = PI , U

g
I = UI , and g ∈

PI . �

Let I and J be subsets of Π̂. Then LI = HMI where MI = 〈Xα̂ | ±α ∈ I〉
[6, Definition 2.6.4]. Note that M∅ = 1 is the trivial group, L∅ = H, MΠ̂ = K = LΠ̂
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and |LI |p = |MI |p as MI = Op′
(LI) [6, Theorem 2.6.5.(f)]. We make the following

observations:

• |PI : PJ | = |PI : P∅|/|PJ : P∅| when J ⊆ I
• |U∅ : UI | = |LI |p since U∅/UI is the Sylow p-subgroup of LI = PI/UI

• |PI : P∅| = |UILI : U∅L∅| = |LI :L∅|
|U∅:UI | =

|HMI :H|
|LI |p = |MI |

|H∩MI ||MI |p = |MI |
|MI :P∅∩MI |

is the index of the Borel subgroup in MI [6, Theorem 2.6.2.(e)]

The first observation shows that the entire normalised table of marks is determined
by the entries, |PI : P∅|, of the first column. These entries can, by the third
observation, be read off from the Dynkin diagram of K as MI is a subsystem
subgroup [6, Theorem 2.6.5.(f)]. Example 4.1 makes this principle explicit in some
concrete cases.

Lemma 3.2.
∑

∅⊆J⊆I(−1)|J||PI : PJ | = |U∅ : UI | and
∑

∅⊆J⊆I(−1)|J||PI :

PJ ||U∅ : UJ | = 1 for any subset I of Π̂.

Proof. The two identities of the lemma are equivalent under Möbius inversion. We

verify the first identity. For any subset I of Π̂, let (WI , I) denote the reflection
group generated by the subset I. From the Bruhat decomposition in K we have
|PI | = |P∅|WI(q) [8, p. 387] where WI(q) is the Poincaré polynomial of WI . Now∑

∅⊆J⊆I

(−1)|J||PI : PJ | =
∑

∅⊆J⊆I

(−1)|J|
WI(q)

WJ (q)
= |U∅ : UI |

by L. Solomon’s [8, Corollary 2.2] (or [1, Corollary 7.1.4]) applied to the reflection
group WI . �

Corollary 3.3. −μ(UI ,∞) = (−1)|I||U∅ : UI | for any subset I of Π̂.

Proof. This follows immediately from the second identity of Lemma 3.2 and the
linear relation (2.5). �

We now arrive at a new proof of a version of Steinberg’s theorem [11, 15.2] valid
for all parabolic subgroups of K.

Theorem 3.4. |Pp| = |K|2p/|Op(P )| for any parabolic subgroup P of K.

Proof. There is always a bijection between the p-radical p-subgroups of a finite
group G and those of G/Op(G) [5, Proposition 6.3]. In particular, {UJ | I ⊇
J} is a complete set of representatives for the p-radical p-subgroup classes of PI

corresponding to the p-radical p-subgroup classes of LI . Obviously, NPI
(UJ ) =

PI ∩ NK(UJ ) = PI ∩ PJ = PJ = NK(UJ ) and |PI : NPI
(UJ)| = |PI : PJ | is the

number of conjugates of UJ in PI or K. According to Lemma 2.1, the number of
p-elements in PI is

|(PI)p| =
∑

∅⊆J⊆I

−μ(UJ ,∞)|UJ ||PI : PJ |

C 3.3
= |U∅|

∑
∅⊆J⊆I

(−1)|J||PI : PJ |

L 3.2
= |U∅||U∅ : UI | = |K|2p/|Op(PI)|

where we used Corollary 3.3 and Lemma 3.2. �
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Theorem 3.4 is valid at all prime powers q for the groups K = Ω2m+1(Fq),

SO2m+1(Fq), Spin2m+1(Fq), Ω
±
2m(Fq), PΩ±

2m(Fq), Spin
±
2m(Fq) of the D-family [6,

§2.7]. Note that the groups SO±
2m(Fq) are not of the type considered in the theorem.

However, since Ω±
2m(Fq) has index 2 in SO±

2m(Fq), we still have | SO±
2m(Fpe)p| =

| SO±
2m(Fpe)|2p when p is odd but we can not expect this to hold when p = 2.

Indeed, SO−
4 (F2) ∼= Σ5 of order 23 · 15 contains 56 < | SO−

4 (F2)|22 = 26 2-elements
and SO+

6 (F2) ∼= Σ8 of order 27 ·315 contains 11264 < | SO+
6 (F2)|22 = 214 2-elements

by Stanley’s formula [10, Example 5.2.10]

∞∑
n=1

|(Σn)p|
xn

n!
= exp(x+

xp

p
+

xp2

p2
+ · · ·+ xpm

pm
+ · · · )

for the number of p-elements in symmetric groups.
By Corollary 3.3 and observations at the beginning of Section 2, the poset Sp+∗

LI
of

nontrivial p-subgroups of the Levi complement LI has reduced Euler characteristics
−χ̃(Sp+∗

LI
) = (−1)|I||LI |p.

4. Examples

In the first example we consider (2.5) in case of a concrete Chevalley group, a
Steinberg group, and a Suzuki–Ree group. The q-bracket of the natural number
d is the polynomial [d](q) = qd−1 + · · · + q + 1 ∈ Z[q] of degree d − 1 with value
[d](1) = d at q = 1. In case K = SL±

m(Fq), the index |PΠ̂
: P∅| = [m±]!(q) with

[m±]!(q) =
∏

1≤d≤m[d]((±1)dq).

Example 4.1. For the Chevalley group G = SL+
3 (Fq), the linear identity (2.5) has

the form ⎛⎜⎜⎝
1 0 0 0

[2+]!(q) 1 0 0
[2+]!(q) 0 1 0
[3+]!(q) [3](q) [3](q) 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1
−q
−q
q3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ .

To see this, let Π = {α1, α2} be the set of fundamental roots for SL+
3 (Fq). The

p-radical p-subgroups classes are UI with |U∅ : UI | = 1, q(
2
2), q(

2
2), q(

3
2) and |PI :

P∅| = 1, [2+]!(q), [2+]!(q), [3+]!(q) for I = ∅, {α1}, {α2},Π.
For the Steinberg group G = SL−

5 (Fq), the linear identity (2.5) has the form⎛⎜⎜⎝
1 0 0 0

[2+]!(q2) 1 0 0
[3−]!(q) 0 1 0
[5−]!(q) 1 + q3 + q5 + q8 1 + q2 + q5 + q7 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1
−q2

−q3

q10

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠
To see this, let Π = {α1, α2, α3, α4} be the set of simple roots for SL+

5 (Fq) and

Π̂ = {α̂1, α̂2}, α̂1 = {α1, α4}, α̂2 = {α2, α3}, the set of simple roots for the

Steinberg group SL−
5 (Fq). Then |U∅ : UI | = 1, q2(

2
2), q(

3
2), q(

5
2) and |PI : P∅| =

1, [2+]!(q2), [3−]!(q), [5−]!(q) for I = ∅, {α̂1}, {α̂2}, Π̂.
For the Ree group 2F4(q), the linear identity (2.5) becomes

⎛
⎜⎜⎜⎝

1 0 0 0

1+q2 1 0 0

1+q4 0 1 0

(1+q2)(1+q4)[3−]!(q2)[3−]!(q4) (1+q4)[3−]!(q2)[3−]!(q4) (1+q2)[3−]!(q2)[3−]!(q4) 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1

−q2

−q4

q24

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠.
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where now q = 2a+
1
2 , a ≥ 0. Entry (4, 1) of this matrix is the index, |PΠ̂

: P∅| =
(q2−1)(q6+1)(q8−1)(q12+1)

(q2−1)2 , of the Borel subgroup in 2F4(q) [6, Theorems 2.2.9, 2.4.7].

We can obtain a long list of polynomial identities in q by stating Lemma 3.2

explicitly. The two identities of the lemma in case I = Π̂ are

(4.2)
∑
J⊆Π̂

(−1)J
WΠ(q)

WJ (q)
= q|Σ̂

+|,
∑
J⊆Π̂

(−1)J
WΠ(q)

WJ(q)
q|Σ̂

+
J | = 1,

where we remember that the Poincaré polynomials are products WJ(q) =
∏

d[d](q)
over the degrees d of the basic polynomial invariants [1, Theorem 7.1.5]. We shall
now consider two concrete examples. Let OP(m) = {(m1, . . . ,mk) | k ≥ 1,mi ≥
1,
∑

mi = m} denote the set of all the 2m−1 ordered partitions of m [9, p 14].

Example 4.3. Subsystems of the root systems Am−1 or Bm−1 are indexed by
OP(m) via the bijection taking (m1, . . . ,mk) ∈ OP(m) to Am1−1 × · · · ×Amk−1 or
Am1−1×· · ·×Amk−1−1×Bmk−1 (where A0 is the empty root system and B0 = A0,

B1 = A1). The incarnations of equation (4.2) for the Chevalley groups SL+
m(Fq) and

SO2m−1(Fq) of rank m− 1 with root systems Σ = Am−1, Bm−1 are the polynomial
identities ∑

(−1)k
(

[m](q)

[m1](q), · · · , [mk](q)

)
= (−1)mq(

m
2 ),∑

(−1)k
(

[m](q)

[m1](q), · · · , [mk](q)

)
q
∑
(mi

2 ) = (−1)m,

∑ (−1)k
∏m−1

d=mk
[2d](q)

[m1]!(q) · · · [mk−1]!(q)
= (−1)mq(m−1)2 ,

∑ (−1)k
∏m−1

d=mk
[2d](q)

[m1]!(q) · · · [mk−1]!(q)
q
∑mk−1

i=1 (mi
2 )+(mk−1)2 = (−1)m.

The sums are indexed by all (m1, . . . ,mk) ∈ OP(m) and the identities for Am−1

use Gaussian multinomial coefficients [9, §1.7].

Example 4.4 (SL−
m(Fq)). The two identities of (4.2) for the Steinberg group

SL−
2m(Fq) of rank 2m− 1 and twisted rank m are∑ (−1)k

∏2m
d=1[d]((−1)dq)

[m1]!(q2) · · · [mk]!(q2)
−
∑ (−1)k

∏2m
d=2mk+2[d]((−1)dq)

[m1]!(q2) · · · [mk−1]!(q2)
= (−1)mq(

2m
2 )

∑(−1)k
∏2m

d=1[d]((−1)dq)

[m1]!(q2)· · ·[mk]!(q2)
q
∑
(mi

2 )−
∑(−1)k

∏2m
d=2mk+2[d]((−1)dq)

[m1]!(q2)· · ·[mk−1]!(q2)
q
∑
(mi

2 )=(−1)m

and for the Steinberg group SL−
2m+1(Fq) of rank 2m and twisted rank m they are∑ (−1)k

∏2m+1
d=1 [d]((−1)dq)

[m1]!(q2) · · · [mk]!(q2)
−
∑ (−1)k

∏2m+1
d=2mk+2[d]((−1)dq)

[m1]!(q2) · · · [mk−1]!(q2)
= (−1)mq(

2m+1
2 )

∑(−1)k
∏2m+1

d=1 [d]((−1)dq)

[m1]!(q2)· · ·[mk]!(q2)
q
∑
(mi

2 )−
∑(−1)k

∏2m+1
d=2mk+2

[d]((−1)dq)

[m1]!(q2)· · ·[mk−1]!(q2)
q
∑
(mi

2 )=(−1)m,

where the sums run over all (m1, . . . ,mk) ∈ OP(m). These identities are obtained
by analysing the C2-subsystems of the C2-root system Am−1 [3, 13.3.8]. Write
S(Am−1) for the multiset of all C2-subsystems of Am−1. One subsystem of A2m−1
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is a2m−1 defined to be the C2-free part of A2m−1, i.e. the subsystem obtained
by deleting the middle root αm. The fundamental roots of the C2-root systems
a1, a3, a5, a7 are

∅
a1

a3 a5 a7

The first multisets of subsystems are S(A1) = {a1, A1}, S(A2) = {a1, A2}, S(A3) =
{a1, A1, a3, A3} = a1 × S(A1) ∪ {a3, A3}, S(A4) = {a1, A2, a3, A4} = a1 × S(A2) ∪
{a3, A4}. In general, the 2m subsystems of A2m−1 and A2m, m ≥ 2, are the
multisets

S(A2m−1) = a1 × S(A2m−3) ∪ · · · ∪ a2i−1 × S(A2(m−i)−1) ∪ · · · ∪ a2m−3

× S(A1) ∪ {a2m−1, A2m−1}
S(A2m) = a1 × S(A2m−2) ∪ · · · ∪ a2i−1 × S(A2(m−i)) ∪ · · · ∪ a2m−3

× S(A2) ∪ {a2m−1, A2m}.
For each subsystem a of Am, let P (a)(q) = |P : B| ∈ Z[q] be the index of the
Borel subgroup B in the parabolic subgroup of SL−

m+1(Fq) corresponding to a. In
particular, P (Am)(q) and P (a2m−1)(q) are the polynomials

P (Am)(q) =
∏

1≤d≤m+1

[d]((−1)dq), P (a2m−1) =
∏

1≤d≤m

[d](q2) = [m]!(q2), m ≥ 1

of degrees
(
m+1
2

)
and

(
m
2

)
. Consider the multiset of signed polynomials associated

to all subsystems of Am

P (S(Am)) = {(−1)|Π(a)/C2|P (a)(q) | a ∈ S(Am)},
where Π(a) is the set of fundamental roots and Π(a)/C2 the orbit set. Then
P (S(A1)) = {1,−P (A1)}, P (S(A2)) = {1,−P (A2)} and one may now determine
the multisets of polynomials for all the C2-root systems A2m−1 and A2m, m ≥ 2.
This leads to the above polynomial identities.
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