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1. Introduction

It has been a central goal in homotopy theory for about half a century to single out
the homotopy theoretical properties characterizing compact Lie groups, and obtain a corre-
sponding classification, starting with the work of Hopf [70] and Serre [116, §4] on H-spaces

The first named author was supported by EU grant EEC HPRN-CT-1999-00119. The second named
author was supported by NSF grant DMS-0104318, a Clay liftoff fellowship, and the Institute for Advanced
Study for different parts of the time this research was carried out. The fourth named author was supported
by EU grant EEC HPRN-CT-1999-00119, MCYT grant BFM2001-1825, and CEC-JA grant FQM0213.



2 K. ANDERSEN, J. GRODAL, J. MØLLER, AND A. VIRUEL

and loop spaces. Materializing old dreams of Sullivan [127, p. 5.96] and Rector [114], Dwyer
and Wilkerson, in their seminal paper [51], introduced the notion of a p-compact group, as
a p-complete loop space with finite mod p cohomology, and proved that p-compact groups
have many Lie-like properties. Even before their introduction it has been the hope [113],
and later the conjecture [54, 82, 43], that these objects should admit a classification much
like the classification of compact connected Lie groups, and the work toward this has been
carried out by many authors. The goal of this paper is to complete the proof of the clas-
sification theorem for p an odd prime, showing that there is a one-to-one correspondence
between connected p-compact groups and finite reflection groups over the p-adic integers
Zp. We do this by providing the last—and rather intricate—piece, namely that the p-
completions of the exceptional compact connected Lie groups are uniquely determined as
p-compact groups by their Weyl groups, seen as Zp-reflection groups. In fact our method
of proof gives an essentially self-contained proof of the entire classification theorem.

We start by very briefly introducing p-compact groups and some objects associated to
them necessary to state the classification theorem—we will later in the introduction return
to the history behind the various steps of the proof. We refer the reader to [51] for more
details on p-compact groups and also recommend the overview articles [43, 82, 88]; we
likewise point out that it is the technical advances on homotopy fixed points by Miller [87],
Lannes [81], and others which makes this theory possible.

A space X with a loop space structure, for short a loop space, is a triple (X,BX, e) where
BX is a pointed connected space, called the classifying space of X, and e : X → ΩBX is a
homotopy equivalence. A p-compact group is a loop space with the two additional properties
that H∗(X;Fp) is finite dimensional over Fp (to be thought of as ‘compactness’) and that
BX is Fp-local [18][51, §11] (or, in this connection, equivalently Fp-complete [19]). Often
we refer to a loop space simply as X. When working with a loop space we shall only be
concerned with its classifying space BX, since this determines the rest of the structure—
indeed, we could instead have defined a p-compact group to be a space BX with the
above properties. The loop space (Gp̂, BGp̂, e), corresponding to a pair (G, p) (where p is
a prime, G a compact Lie group with component group a finite p-group, and (·)p̂ denotes
Fp-completion [19][51, §11]) is a p-compact group. (Note however that a compact Lie group
G is not uniquely determined by BGp̂, since we are only focusing on the structure ‘visible
at the prime p’; e.g., B SO(2n+1)p̂ ' B Sp(n)p̂ if p 6= 2, as originally proved by Friedlander
[61]; see Theorem 11.4 for a complete analysis.)

A morphism X → Y between loop spaces is a pointed map of spaces BX → BY . We say
that two morphisms are conjugate if the corresponding maps of classifying spaces are freely
homotopic. A morphism is called an isomorphism (or equivalence) if it has an inverse up
to conjugation, or in other words if BX → BY is a homotopy equivalence. If X and Y are
p-compact groups, we call a morphism a monomorphism if the homotopy fiber Y/X of the
map BX → BY is Fp-finite.

The loop space corresponding to the p-completed classifying space BT = (BU(1)r)p̂ is
called a p-compact torus of rank r. A maximal torus in X is a monomorphism i : T → X
such that the homotopy fiber of BT → BX has non-zero Euler characteristic. (We define
the Euler characteristic as the alternating sum of the Fp-dimensions of the Fp-homology
groups.) Fundamental to the theory of p-compact groups is the theorem of Dwyer-Wilkerson
[51] that, analogously to the classical situation, any p-compact group admits a maximal
torus. It is unique in the sense that for any other maximal torus i′ : T ′ → X, there exists
an isomorphism ϕ : T → T ′ such that i′ϕ and i are conjugate. (Note that there is a
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subtle difference between this statement and the classical statement of being ‘unique up
to conjugation’ due to the fact that a maximal torus is defined to be a map and not a
subgroup.)

Fix a p-compact group X with maximal torus i : T → X of rank r. Replace the
map Bi : BT → BX by an equivalent fibration, and define the Weyl space WX(T ) as
the topological monoid of self-maps BT → BT over BX. The Weyl group is defined as
WX(T ) = π0(WX(T )) [51, Def. 9.2]. By [51, Prop. 9.5] WX(T ) is a finite group of order
χ(X/T ). Furthermore, by [51, Thm. 9.7], if X is connected then WX(T ) identifies with
the set of conjugacy classes of self-equivalences ϕ of T such that i and iϕ are conjugate.
In other words, the canonical homomorphism WX(T ) → Aut(π1(T )) is injective, so we
can view WX(T ) as a subgroup of GLr(Zp), and this subgroup is independent of T up to
conjugation in GLr(Zp). We will therefore suppress T from the notation.

Now, by [51, Thm. 9.7] this exhibits (WX , π1(T )) as a finite reflection group over Zp.
Finite reflection groups over Zp have been classified for p odd by Notbohm [100] extending
the classification over Qp by Clark-Ewing [31] (which again builds on the classification over
C by Shephard-Todd [119]); we recall this classification in Section 11 and extend Notbohm’s
result to all primes. (Recall that a finite Zp-reflection group is a pair (W,L) where L is
a finitely generated free Zp-module, and W is a finite subgroup of Aut(L) generated by
elements α such that 1 − α has rank one viewed as a matrix over Qp; we say that two
finite Zp-reflection groups (W,L) and (W ′, L′) are isomorphic, if we can find a Zp-linear
isomorphism ϕ : L→ L′ such that the group ϕWϕ−1 equals W ′.)

Given any self-homotopy equivalence Bf : BX → BX, there exists, by the uniqueness
of maximal tori, a map Bf̃ : BT → BT such that Bf ◦ Bi is homotopy equivalent to
Bi ◦ Bf̃ . Furthermore, Bf̃ is unique up to the action of the Weyl group, as is easily seen
from the definitions (cf. Lemma 2.1). This sets up a homomorphism Φ : π0(Aut(BX)) →
NGL(LX)(WX)/WX , where Aut(BX) is the space of self-homotopy equivalences of BX (this
map has precursors going back to Adams-Mahmud [2]; see Lemma 2.1 and Theorem 1.4 for
a more elaborate version). The group NGL(LX)(WX)/WX can be completely calculated; see
Section 13.

The main classification theorem which we complete in this paper, is the following.

Theorem 1.1. Let p be an odd prime. The assignment which to the isomorphism class
of the connected p-compact group X assigns the isomorphism class of the pair (WX , LX)
via the canonical action of WX on LX = π1(T ) defines a bijection between the set of
isomorphism classes of connected p-compact groups and the set of isomorphism classes of
finite Zp-reflection groups.

Furthermore, for each connected p-compact group X the map Φ : π0(Aut(BX))
∼=→

NGL(LX)(WX)/WX is an isomorphism, i.e., the group of outer automorphisms of X is
canonically isomorphic to the group of outer automorphisms of (WX , LX).

In particular this proves, for p odd, Conjecture 5.3 in [43] (see Theorem 1.4). The self-
map part of the statement can be viewed as an extension to p-compact groups, p odd, of
the main result of Jackowski-McClure-Oliver [78, 76]. Our method of proof via centralizers
is ‘dual’, but logically independent, of the one in [78, 76] (see e.g. [42, 67]).

By [52] the identity component of Aut(BX) is the classifying space of a p-compact group
ZX, which is defined to be the center of X—we call X center-free if ZX is trivial. Further-
more recall that a connected p-compact group X is called simple if LX⊗Q is an irreducible
W -representation and X is called exotic if it is simple and (WX , LX) does not come from a
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Z-reflection group (see Section 11). By inspection of the classification of finite Zp-reflection
groups, Theorem 1.1 has as a’ corollary that the theory of p-compact groups on the level of
objects splits in two parts, as has been conjectured (Conjectures 5.1 and 5.2 in [43]).

Theorem 1.2. Let X be a connected p-compact group, p odd. Then X can be written as a
product of p-compact groups

X ∼= Gp̂ ×X ′

where G is a compact connected Lie group, and X ′ is a direct product of exotic p-compact
groups which are all simply connected, center-free, and have torsion free Zp-cohomology.

Theorem 1.1 has both an existence and a uniqueness part to it, the existence part being
that all finite Zp-reflection groups are realized as Weyl groups of a connected p-compact
group. The finite Zp-reflection groups which come from compact connected Lie groups are of
course realizable, and the finite Zp-reflection groups where p does not divide the order of the
group can also relatively easily be dealt with, as done by Sullivan [127, p. 5.96] and Clark-
Ewing [31] long before p-compact groups were officially defined. The remaining cases were
realized by Quillen [111, §10], Zabrodsky [138], Aguadé [4] and Notbohm-Oliver [101] [103,
Thm. 1.4]. The classification of finite Zp-reflection groups, Theorem 11.1, guarantees that
the construction of these examples actually enables one to construct all finite Zp-reflection
groups as Weyl groups of connected p-compact groups.

The work toward the uniqueness part, to show that a connected p-compact group is
uniquely determined by its Weyl group, also predates the introduction of p-compact groups.
The quest was initiated by Dwyer-Miller-Wilkerson [46, 47] (building on [3]) who proved
the statement, using slightly different language, in the case where p is prime to the order of
WX as well as for SU(2)2̂ and SO(3)2̂. Notbohm [98] and Møller-Notbohm [94, Thm. 1.9]
extended this to a uniqueness statement for all p-compact groups X where Zp[LX ]WX (the
ring of WX-invariant polynomial functions on LX) is a polynomial algebra and (WX , LX)
comes from a finite Z-reflection group. Notbohm [101, 103] subsequently also handled
the cases where (W,L) does not come from a finite Z-reflection group. (Beware that in
[101, 103] Notbohm proves an apparently weaker uniqueness statement, from which the
above statement however can be deduced; see Remark 7.11.)

To get general statements beyond the case where Zp[LX ]WX is a polynomial algebra,
i.e., to attack the cases where there exists p-torsion in the cohomology ring, the first step
is to reduce the classification to the case of simple, center-free p-compact groups. The
results necessary to obtain this reduction were achieved by the splitting theorem of Dwyer-
Wilkerson [53] and Notbohm [104] along with properties of the center of a p-compact group
established by Dwyer-Wilkerson [52] and Møller-Notbohm [93]. We carry out this reduction
in Section 4; see also [91].

An analysis of the classification of finite Zp-reflection groups together with explicit cal-

culations (see [102] and Theorem 12.2) shows that, for p odd, Zp[LX ]WX is a polynomial
algebra for all irreducible center-free finite Zp-reflection groups except the reflection groups
coming from the p-compact groups PU(n)p̂, (E8)5̂, (F4)3̂, (E6)3̂, (E7)3̂, and (E8)3̂. For
exceptional compact connected Lie groups the notation E6 etc. denotes their adjoint form.

The case PU(n)p̂ was handled by Broto-Viruel [22], using a Bockstein spectral sequence
argument to deduce it from the result for SU(n), generalizing earlier partial results of Broto-
Viruel [21] and Møller [90]. The remaining step in the classification is hence to handle the
exceptional compact connected Lie groups, in particular the problematic E-family at the
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prime 3, and this is what is carried out in this paper. (The fourth named author has also
given alternative proofs for (F4)3̂ and (E8)5̂ in [130] and [129].)

Theorem 1.3. Let X be a connected p-compact group, for p odd, with Weyl group equal
to (WG, LG ⊗ Zp) for one of the pairs (F4, p = 3), (E8, p = 5), (E6, p = 3), (E7, p = 3),
or (E8, p = 3). Then X is isomorphic, as a p-compact group, to the p-completion of the
corresponding exceptional group G.

We will in fact give an essentially self-contained proof of the entire classification The-
orem 1.1, since this comes rather naturally out of our inductive approach to the excep-
tional cases. We however still rely on the classification of finite Zp-reflection groups (see
[100, 102] and Section 11 and 12) as well as the above mentioned structural results from
[51, 52, 93, 53, 104, 92].

The main ingredient in handling the exceptional groups is to get sufficiently detailed
information about their many conjugacy classes of elementary abelian p-subgroups (carried
out in Section 8, expanding on the work of Griess [65]), and then to use this information to
show the relevant obstruction groups are trivial (carried out in Section 10), using formulas
of Oliver [106] (see also [67]).

It is possible to formulate a more topological version of the uniqueness part of Theorem 1.1
which holds for all p-compact groups (p odd), not necessarily connected, which is however
easily seen to be equivalent to the first one using [6, Thm. 1.2]. It should be viewed as a
topological analog of Chevalley’s isomorphism theorem for linear algebraic groups (see [71,
§32] [126, Thm. 1.5] and [37, 109, 99]). To state it, we define the maximal torus normalizer
NX(T ) to be the loop space such that BNX(T ) is the Borel construction of the canonical
action of WX(T ) on BT . Note that by construction we have a morphism NX(T ) → X,
and that this map is independent of the choice of T , up to conjugacy. By [51, Prop. 9.5],
WX(T ) is a discrete space so BNX(X) has only two non-trivial homotopy groups and fits
into a fibration sequence BT → BNX(T ) → BWX . (Beware that in general NX(T ) will
not be a p-compact group since its group of components WX need not be a p-group.)

Theorem 1.4 (Topological isomorphism theorem for p-compact groups, p odd). Let p be
an odd prime and let X and X ′ be p-compact groups with maximal torus normalizers NX
and NX′. Then X ∼= X ′ if and only if BNX ' BNX′.

Furthermore the spaces of self-homotopy equivalences Aut(BX) and Aut(BNX) are equiv-
alent as grouplike topological monoids. Explicitly, turn i : BNX → BX into a fibration
which we will again denote by i, and let Aut(i) denote the grouplike topological monoid of
self-homotopy equivalences of the map i. Then the following canonical zig-zag, given by
restrictions, is a zig-zag of homotopy equivalences:

BAut(BX)
'← BAut(i)

'→ BAut(BNX).

In the above theorem, the fact that the evaluation map Aut(i) → Aut(BX) is an
equivalence follows by a short general argument (Lemma 2.1), whereas the equivalence
Aut(i)→ Aut(BNX) requires a detailed case-by-case analysis.

We point out that the classification of course gives easy, although somewhat unsatisfac-
tory, proofs that many theorems from Lie theory extend to p-compact groups, by using that
the theorem is known to be true in the Lie case, and then checking the exotic cases. Since
the classifying spaces of the exotic p-compact groups have cohomology ring a polynomial
algebra, this can turn out to be rather straightforward. In this way one for instance sees
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that Bott’s celebrated result about the structure of G/T [14] still holds true for p-compact
groups, at least on cohomology.

Theorem 1.5 (Bott’s theorem for p-compact groups). Let X be a connected p-compact
group, p odd, with maximal torus T and Weyl group WX . Then H∗(X/T ;Zp) is a free
Zp-module of dimension |WX |, concentrated in even degrees.

Likewise combining the classification with a case-by-case verification for the exotic p-
compact groups by Castellana [26, 27], we get that the Peter-Weyl theorem holds for con-
nected p-compact groups, p odd:

Theorem 1.6 (Peter-Weyl theorem for connected p-compact groups). Let X be a connected
p-compact group, p odd. Then there exists a monomorphism X → U(n)p̂ for some n.

We also still have the ‘standard’ formula for the fundamental group (the subscript denotes
coinvariants).

Theorem 1.7. Let X be a connected p-compact group, p odd. Then

π1(X) = (LX)WX

The classification also gives a verification that results of Borel, Steinberg, Demazure, and
Notbohm [103, Prop. 1.11] extend to p-compact groups, p odd.

Theorem 1.8. Let X be a connected p-compact group, p odd. The following conditions are
equivalent:

(1) X has torsion free Zp-cohomology.
(2) BX has torsion free Zp-cohomology.
(3) Zp[LX ]WX is a polynomial algebra over Zp.
(4) All elementary abelian p-subgroups of X factor through a maximal torus.

Even in the Lie case, the proof of the above theorem is still not entirely satisfactory
despite much effort—see the comments surrounding our proof as well as Borel’s comments
[10, p. 775] and the references [8, 38, 125]. Recall that the centralizer CX(ν) of an elementary
abelian p-subgroup ν : E → X is defined as CX(ν) = Ω map(BE,BX)Bν ; cf. Section 6. The
following related result from Lie theory also holds true.

Theorem 1.9. Let X be a connected p-compact group, p odd. Then the following conditions
are equivalent:

(1) π1(X) is torsion free.
(2) Every rank one elementary abelian p-subgroup ν : Z/p → X has connected central-

izer CX(ν).
(3) Every rank two elementary abelian p-subgroup factor through a maximal torus.

Results about p-compact groups can in general, via Sullivan’s arithmetic square, be
translated into results about finite loop spaces, and the last theorem in this introduction is
an example of such a translation. Recall that a finite loop space is a loop space (X,BX, e),
where X is a finite CW-complex. A maximal torus of a finite loop space is simply a map
BU(1)r → BX for some r, such that the homotopy fiber is homotopy equivalent to a
finite CW -complex of non-zero Euler characteristic. The classical maximal torus conjecture
(stated in 1973 by Wilkerson [133, Conj. 1] as “a popular conjecture toward which the
author is biased”), asserts that compact connected Lie groups are the only connected finite
loop spaces which admit maximal tori. A slightly more elaborate version states that the
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classifying space functor should set up a bijection between isomorphism classes of compact
connected Lie groups and isomorphism classes of connected finite loop spaces admitting a
maximal torus, under which the outer automorphism group of the Lie group G equals the
outer automorphism group of the corresponding loop space (G,BG, e). (The last part is
true by [76].) It is well known that a proof of the conjectured classification of p-compact
groups for all primes p would imply the maximal torus conjecture. Our results at least
imply that the conjecture is true after inverting the single prime 2.

Theorem 1.10. Let X be a connected finite loop space with a maximal torus. Then there
exists a compact connected Lie group G such that BX[12 ] and BG[12 ] are homotopy equivalent

spaces, where [12 ] indicates Z[12 ]-localization.

Relationship to the Lie case and the conjectural picture for p = 2. We now state
a common formulation of both the classification of compact connected Lie groups and the
classification of connected p-compact groups for p odd, which conjecturally should also hold
for p = 2. We have not encountered this—in our opinion quite natural—description before
in the literature (compare [43] and [82]).

Let R be an integral domain and W a finite R-reflection group. For an RW -lattice L
(i.e., an RW -module which is finitely generated and free as an R-module) define SL to be
the sublattice of L generated by (1− w)x where w ∈ W and x ∈ L. Define an R-reflection
datum to be a triple (W,L,L0) where (W,L) is a finite R-reflection group and L0 is an RW -
lattice such that SL ⊆ L0 ⊆ L and L0 is of the form SL′ for some other RW -lattice L′.
(If R = Zp, p odd, then “S” is idempotent (since H1(W ;LW ) = 0 for all (W,L) by a case-
by-case computation given in [6, Thm. 3.2]) so L0 = SL in this case.) Two reflection data
(W,L,L0) and (W ′, L′, L′

0) are said to be isomorphic if there exists an R-linear isomorphism
ϕ : L→ L′ such that ϕWϕ−1 = W ′ and ϕ(L0) = L′

0.
If D is either the category of connected compact Lie groups or connected p-compact

groups, then we can consider the assignment which to each object X in D assigns the
triple (W,L,L0), where W is the Weyl group, L = π1(T ) is the dual weight lattice, and
L0 = ker(π1(T )→ π1(X)) is the coroot lattice.

Theorem 1.1 and 1.7 as well as the classification of compact connected Lie groups [17,
§4, no. 9] can now be reformulated as follows:

Theorem 1.11. If D is the category of compact connected Lie groups or connected p-
compact groups for p odd, then (W,L,L0) is an R-reflection datum (R = Z for compact
connected Lie groups and Zp for connected p-compact groups) and this assignment sets
up a bijection between the objects of D up to isomorphism and R-reflection data, up to
isomorphism. Furthermore the group of outer automorphisms of X equals the group of
outer automorphisms of the corresponding R-reflection datum.

Conjecture 1.12. Theorem 1.11 is also true if D is the category of connected 2-compact
groups.

One can check that the conjecture on objects is equivalent to the conjecture given in
[43] and [82], and the self-map statement would then follow from [76] and [105]. The role
of the coroot lattice L0 in the above theorem and conjecture is in fact only to be able to
distinguish direct summands isomorphic to SO(2n+1) from direct summands isomorphic to
Sp(n), cf. Theorem 11.4(1). Alternatively one can use the extension class γ ∈ H3(W ;LX)
of the maximal torus normalizer (see Section 3) rather than L0 but in that picture it is
not a priori clear which triples (W,L, γ) are realizable. It would be desirable to have a
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‘topological’ version of Theorem 1.11 and Conjecture 1.12, i.e., statements on the level of
automorphism spaces like Theorem 1.4 but we do not know a general formulation which
incorporates this feature.

Organization of the paper and notation. The sections of this paper can be read in an
almost arbitrary order. The short Section 2 sets up the map from the space of automor-
phisms of X to the space of automorphisms of NX , and in Section 3 we give an algebraic
description of the automorphism group of NX (which we expand on in Section 13). In Sec-
tion 4 we reduce the classification Theorem 1.1 to the case of simple, center-free, connected
p-compact groups. In Section 5 we prove a theorem about invariant rings and show how
this leads to an easy construction of the exotic p-compact groups. In Section 6 we give
proofs of the main theorem, modulo obstruction group calculations which are carried out in
Section 10. The applications listed in the introduction are proved in Section 7. The purely
algebraic Section 8 contains complete information about all non-toral elementary abelian
p-subgroups of the exceptional compact connected Lie groups, along with their Weyl groups
and centralizers, and Section 9 gives the analogous (but much easier) results for the pro-
jective unitary groups. (This information is used in a crucial way for the calculations in
Section 10 as well as, in a milder way, directly in Section 6 for information about rank
two non-toral subgroups.) In the appendix Section 11 we give a classification of finite Zp-
reflection groups generalizing Notbohm’s classification to all primes and in the appendix
Section 12 we recall Notbohm’s results on invariant rings of finite Zp-reflection groups. Fi-
nally in the appendix Section 13 we briefly calculate the outer automorphism groups of the
exotic Zp-reflection groups to make the result of Theorem 1.1 more explicit.

We have tried to introduce the definitions relating to p-compact group as they are used,
but it is nevertheless probably helpful for the reader unfamiliar with p-compact groups to
keep copies of the excellent papers [51] and [52] of Dwyer-Wilkerson (whose terminology we
follow) within reach. As a technical term we say that a p-compact group X is determined by
NX if it is true that any other p-compact group X ′ with the same maximal torus normalizer
is isomorphic to X (which will be true for all p-compact groups, p odd, by Theorem 1.4).

We tacitly assume that any space in this paper has the homotopy type of a CW-complex,
if necessary replacing a given space by the realization of its singular complex [86].

Acknowledgments. We would like to thank H. H. Andersen, D. Benson, G. Kemper,
A. Kleschev, G. Malle, and J.-P. Serre for helpful correspondence. We also thank J. P. May
and H. Miller for their comments on a draft of this manuscript. We would in particular
like to thank W. Dwyer, D. Notbohm, and C. Wilkerson for several useful tutorials on their
beautiful work, which this paper builds upon.

2. The map Aut(BX)→ Aut(BNX)

The purpose of this very short section is to construct the map Aut(BX) → Aut(BNX)
which we will later prove is an equivalence. We have been unable to find this description in
the literature.

For a fibration f : E → B we let Aut(f) denote the space of commutative diagrams

E
f
��

// E
f
��

B // B
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such that the horizontal maps are homotopy equivalences. (This is a subspace of Aut(E)×
Aut(B).)

Lemma 2.1 (Adams-Mahmud lifting). Let X be a p-compact group with maximal torus
normalizer NX . Turn the inclusion of the maximal torus normalizer into a fibration i :
BNX → BX. Then the restriction map Aut(i) → Aut(BX) is an equivalence of grouplike
topological monoids.

In particular any self-homotopy equivalence of BX lifts to a self-homotopy equivalence of
BNX , which is unique in the strong sense that the space of lifts is contractible. Choosing a
homotopy inverse to the homotopy equivalence BAut(i)→ BAut(BX), we get a canonical
homomorphism of grouplike topological monoids

Φ : Aut(BX)
∼=→ Aut(i)→ Aut(BNX).

Proof. For any ϕ ∈ Aut(BX), there exists, e.g. by [92, Thm. 1.2(3)], a map ψ ∈ Aut(BNX)
such that ϕi is homotopic to iψ. Since i is assumed to be a fibration, ψ can further-
more be modified such that the equality is strict. This shows that the evaluation map
Aut(i)→ Aut(BX) is surjective on components. This map of grouplike topological monoids
is furthermore easily seen to have the homotopy lifting property. To see that it is a homo-
topy equivalence we hence just have to verify that the fiber AutBX(BNX) over the identity
map is contractible. We have the following diagram with rows and columns fibrations

WX
// X/T //

��

X/NX

��
WX

//

��

BT //

��

BNX

��
∗ // BX BX.

Taking homotopy T -fixed points of the top row produces a fibration sequence WX →
(X/T )hT → (X/NX)hT , where, by the definition of WX , the inclusion of the fiber in the
total space is a homotopy equivalence. (We refer to [51, 3.3, §10] for basic facts and defi-

nitions about homotopy actions.) Hence (X/NX)hT is contractible. Let N̆X and T̆ denote

discrete approximations to NX and T respectively, i.e., T̆ ∼= (Z/p∞)r ⊆ T and N̆X is

an extension of WX by T̆ such that BN̆X → BNX is an Fp-equivalence (cf. [52, §3] for

facts about discrete approximations). The space (X/NX)hNX is contractible as well, since

(X/NX)hNX ' (X/NX)hN̆X ' ((X/NX)hT̆ )hWX and (X/NX)hT̆ is contractible. Since the
space of maps BNX → BNX over BX identifies with (X/NX)hNX , we see that any self-map
of BNX over BX is an equivalence, and that AutBX(BNX) is contractible as wanted. �

3. Automorphisms of maximal torus normalizers

The aim of this short section is to establish some easy facts about automorphisms of
maximal torus normalizers which are needed to carry out the reduction to connected, center-
free simple p-compact groups in Section 4. At the same time the section serves to make the
automorphism statement of Theorem 1.1 more explicit.

Recall that an extended p-compact torus is a loop space N such that W = π0(N ) is a

finite group and the identity component N1 of N is a p-compact torus T . Let N̆ be the
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discrete approximation to N (see [52, 3.12]), and recall that N̆ will have a unique largest

p-divisible subgroup T̆ , which will be a discrete approximation to T .

Proposition 3.1. For an extended p-compact torus N , the obvious map associating to
a self-homotopy equivalence of BN̆ a self-homotopy equivalence of BN via fiberwise Fp-
completion [19, Ch. I §8] induces an equivalence of aspherical grouplike topological monoids

Aut(BN̆ )p̂
∼=→ Aut(BN ).

If π0(N ) acts faithfully on π1(N1) then Aut1(BN̆ ), the component of Aut(BN̆ ) of the

identity map, has the homotopy type of B(T̆W ) where T̆ is a discrete approximation to T .

Sketch of proof. The statement on the level of component groups follows directly from [52,

3.12]. (The point is that the homotopy fiber of BN̆ → BN will have homotopy type
K(V, 1) for a Qp-vector space V , and hence the existence and uniqueness obstructions to

lifting a map BN̆ → BN̆ to BN lie in Hn(N̆ ;V ) where n = 2, 1 which are easily seen to be
zero.) It is likewise easy to see that both spaces are aspherical and that we get a homotopy
equivalence of the identity components. The last statement is also obvious. �

Let L be a finitely generated free Zp-module and suppose that W ⊆ GL(T̆ ), where we set

T̆ = L⊗Z/p∞. Consider the second cohomology groupH2(W ; T̆ ) which classifies extensions

of W by T̆ with the fixed action of W on T̆ . Given an isomorphism α : L → L′ sending
W ⊆ GL(L) to W ′ ⊆ GL(L′) we get an isomorphism of cohomology groups H2(W ; T̆ ) →
H2(W ′; T̆ ′) by sending an extension T̆

i→ N̆ π→ W to the extension T̆ ′ i◦α
−1

→ N̆ cα◦π→ W ′,
where cα denotes conjugation by α. An isomorphism between two triples (W,L, γ) and
(W ′, L′, γ′), where γ and γ′ are extension classes, is an isomorphism L→ L′ sending W to
W ′ and γ to γ′. The automorphism group of a triple (W,L, γ) thus identifies with

γNGL(T̆ )(W ) = {α ∈ NGL(T̆ )(W ) |α(γ) = γ ∈ H2(W ; T̆ )}.

It follows directly from the definition (and using that T̆ is characteristic in N̆ ) that two

triples as above are isomorphic if and only if the associated groups N̆ and N̆ ′ are isomorphic,
where N̆ is obtained from the extension 1→ T̆ → N̆ →W → 1 given by γ, and analogously
for γ′. However, N̆ and (W,L, γ) in general have slightly different automorphisms, as is
described in the following lemma (see also [132]):

Proposition 3.2. In the notation above, for any exact sequence 1 → T̆ → N̆ π→ W → 1
with extension class γ we have a canonical exact sequence

(3.1) 1→ Der(W, T̆ )→ Aut(N̆ )→ γNGL(T̆ )(W )→ 1

where we embed the derivations Der(W, T̆ ) in Aut(N̆ ) by sending a derivation s to the

automorphism given by x 7→ s(π(x))x, and the map Aut(N̆ ) → γNGL(T̆ )(W ) is given by

restricting an automorphism ϕ ∈ Aut(N̆ ) to T̆ .

This exact sequence has an exact subsequence 1 → T̆ /T̆W → N̆/ZN̆ → W → 1 and the
quotient exact sequence is

1→ H1(W ; T̆ )→ Out(N̆ )→ γNGL(T̆ )(W )/W → 1.

In particular if (W,L) is a finite Zp-reflection group and p is odd then by [6],[78, Pf. of

Prop. 3.5] H1(W ; T̆ ) = 0, so we get an isomorphism Out(N̆ )
∼=→ γNGL(T̆ )(W )/W .



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 11

Proof. Let ϕ ∈ Aut(N̆ ), and consider the restriction map ϕ 7→ ϕ|T̆ ∈ Aut(T̆ ). Note that

for all x ∈ N̆ , l ∈ T̆ we have

(ϕ ◦ cx)(l) = ϕ(xlx−1) = ϕ(x)ϕ(l)ϕ(x)−1 = (cϕ(x) ◦ ϕ)(l)

so ϕ|T̆ ∈ NGL(T̆ )(W ). That the image is the elements which fixes the extension class follows

easily from the definitions: The diagram

T̆
i◦ϕ // N̆

cϕ◦π //

ϕ

��

W

T̆
i // N̆ π // W

shows that ϕ leaves γ invariant. Likewise, to see that the right map in (3.1) is surjective let

ψ ∈ γNGL(T̆ )(W ) and let T̆ → Ñ → W be the extension obtained by first pushing forward

along ψ : T̆ → T̆ and then pulling back along ψ−1(−)ψ : W → W . Since ψ fixes γ there

exists an isomorphism Ñ → N̆ making the following diagram commute

T̆
ψ //

��

T̆

��

T̆

��

N̆ //

��

Ñ //

��

N̆

��
W
ψ(−)ψ−1

// W W

which shows that Aut(N̆ )→ γNGL(T̆ )(W ) is surjective.

Now suppose ϕ ∈ Aut(N̆ ) restricts to the identity on T̆ . For a given x ∈ N̆ we have

ϕ(x)lϕ(x−1) = ϕ(x)ϕ(l)ϕ(x−1) = ϕ(xlx−1) = xlx−1

so the induced map ϕ : W → W is the identity since W acts faithfully on T̆ . This means
that we can define a map s : W → T̆ by s(w) = w̃−1ϕ(w̃) where w̃ is a lift of w, and this is

easily seen to be a derivation. Furthermore taking the automorphism of N̆ associated to s
gives back ϕ, which establishes exactness in the middle, and we have proved the existence
of the first exact sequence.

The existence of the short exact subsequence is clear, noting that ZN̆ = T̆W (since W

acts faithfully on T̆ ) and that T̆ /T̆W embeds in Der(W, T̆ ) as the principal derivations by
sending l to the derivation w 7→ cw(l)l−1. The last exact sequence is now obvious. �

Remark 3.3. See [68] for a related exact sequence for compact connected Lie groups, fitting
with the conjectured classification of connected p-compact groups for p = 2.

Proposition 3.4. Suppose {(Wi, Li, γi)}ki=1 is a collection of pair-wise non-isomorphic
triples where Li is a finitely generated free Zp-module, Wi is a finite subgroup of GL(Li)

such that Li ⊗ Q is irreducible, and γi ∈ H2(Wi; T̆i). Let (W,L, γ) =
∏k
i=1(Wi, Li, γi)

mi

denote the product. Then

k∏

i=1

(γiNGL(Li)(Wi)/Wi) o Σmi

∼=→ γNGL(L)(W )/W.
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Proof. Assume for ease of notation that L = L1 ⊕ L2; the general case follows from this
by induction. Consider ϕ ∈ NGL(L1⊕L2)(W1 ×W2). For every w ∈ W1 ×W2 there exists a
unique w̃ ∈W1 ×W2 such that

ϕ(wx) = w̃ϕ(x) for all x ∈ L.
Let α denote the element in Aut(W1 ×W2) given by w 7→ w̃.

By the definition of α the canonical map

ϕji : Li → L1 ⊕ L2
ϕ→ α(L1 ⊕ L2)→ αLj

is W1×W2-equivariant, where the superscript α means that we are acting through α. Hence
this map, after tensoring with Q has to be either an isomorphism or zero, since Li⊗Q and
αLj ⊗Q are irreducible. But combined with the fact that ϕ is an isomorphism, this means
that

ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)

has to consist of either just ‘diagonal’ elements or just ‘off diagonal’ elements. If we further-
more require ϕ to respect the extension classes it is clear that we can only have the ‘diagonal’
case if (W1, L1, γ1) is not isomorphic to (W2, L2, γ2) whereas if they are isomorphic both
cases can really occur. This proves the lemma. �

4. Reduction to connected, center-free simple p-compact groups

In this section we prove some lemmas, which, together with the splitting theorems of
Dwyer-Wilkerson [53] and Notbohm [104], reduce the proof of Theorem 1.4 to the case of
connected, center-free simple p-compact groups. This reduction is known and most of it
appears in [91] (relying on earlier work of that author). We here provide a self-contained
and a bit more direct proof using [52].

Lemma 4.1 (Behavior with respect to products). Let X and X ′ be p-compact groups with
maximal torus normalizers N and N ′. Then N × N ′ is a maximal torus normalizer for
X ×X ′ and the following statements hold:

(1) Aut1(BX) × Aut1(BX
′)

∼=→ Aut1(BX × BX ′) and Aut1(BN ) × Aut1(BN ′)
∼=→

Aut1(BN ×BN ′), where Aut1 denotes the set of homotopy equivalences homotopic
to the identity.

(2) If Aut(BX) → Aut(BN ) and Aut(BX ′) → Aut(BN ′) are injective on π0, then so
is Aut(B(X ×X ′))→ Aut(B(N ×N ′)).

(3) Suppose p is odd and that X and X ′ are connected and center-free. If Aut(BX)→
Aut(BN ) and Aut(BX)→ Aut(BN ′) are surjective on π0, then so is Aut(B(X ×
X ′))→ Aut(B(N ×N ′)).

Proof. Recall that the map Aut(BX) → Aut(BN ) was described in Section 2. To see (1)
first note that
(4.1)
map(BX ×BX ′, BX ×BX ′) ' map(BX,map(BX ′, BX)) ×map(BX ′,map(BX,BX ′)).

The evaluation map map(BX ′, BX)const → BX is an equivalence by the Sullivan conjecture
for p-compact groups [52, Thm. 9.3 and Prop. 10.1], (and likewise with X and X ′ switched).
Since the component of the identity map on the left hand side of (4.1) lands in the component
of the constant map in map(BX ′, BX) this shows that map(BX × BX ′, BX × BX ′)1 '
map(BX,BX)1 ×map(BX ′, BX ′)1 as wanted. (The statement just says that the center of
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a product of p-compact groups is the product of the centers, which of course also follows
from the equivalence of the different definitions of the center from [52].)

To see (2) suppose that ϕ is a self-equivalence of BX×BX ′ such that its restriction to a
self-equivalence of B(N ×N ′) becomes homotopic to the identity. The restriction ϕ|BX×∗

composed with the projection onto BX ′ becomes null homotopic upon restriction to BN ,
which by e.g., [89, Thm. 6.1] implies that it is null homotopic. Likewise the projection
of ϕ|∗×BX′ onto BX ′ becomes homotopic to the identity map upon restriction to BN ,
which by assumption means that the projection of ϕ∗×BX′ onto BX ′ is the identity. But
by adjointness, repeating the argument of the first claim, this implies that ϕ composed
with the projection onto BX ′ is homotopic to the projection map onto BX ′ (this is [52,
Lem. 5.3]). By symmetry this holds for the projection onto BX as well, and we conclude
that ϕ is homotopic to the identity as wanted.

Finally, combining Propositions 3.2 and 3.4 gives (3), since π0(BN ) = Out(N̆ ) by Propo-
sition 3.1. �

Remark 4.2. Part (3) of the above lemma is in general false for p = 2. For instance if X =
SO(3)2̂ then both for Y = X and Y = X ×X we have π0(Aut(BY )) ∼= NGL(LY )(WY )/WY .

But for Y = X × X we have H1(WY ; T̆Y ) ∼= Z/2 × Z/2, so BNY (T ) has non-trivial
automorphisms which restrict to the identity on BT (see Proposition 3.2).

Recall the observation that for p odd the component group of X is determined by WX :

Lemma 4.3. Let X be a p-compact group for p odd, with maximal torus normalizer j :
N → X. By definition WX = π0(N ). The map π0(j) : WX = π0(N )→ π0(X) is surjective.
The kernel is Op(WX), the subgroup generated by elements of order prime to p. It can also
be identified with the Weyl group of the connected component X1 of X, and is the largest
Zp-reflection subgroup of WX .

Proof. By [52, Rem. 2.11] π0(j) is surjective with kernel the Weyl group of the identity
component of X. Since π0(X) is a p-group, Op(π0(N )) is contained in the kernel. On the
other hand, since p is odd, the Weyl group of X1 is generated by elements of order prime
to p, since it is a Zp-reflection group, so equality has to hold. �

Remark 4.4. For p = 2 the component group of X cannot be read off from NX , and one
would have to remember π0(X) as part of the data. For instance the 2-compact groups
SO(3)2̂ and O(2)2̂ have the same maximal torus normalizers, namely O(2)2̂. Note however
that if X is the centralizer of a toral abelian subgroup A of a connected p-compact group
Y , then the component group of X can be read off from A and NY (see [52, Thm. 7.6]); a
case of frequent interest.

Before proceeding recall that by [45] (see also [52, Prop. 11.9]) we have, for a fibration

F → E f→ B, a fibration sequence

map(B, BAut(F))C(f) → BAut(f)→ BAut(B).

Here C(f) denotes the components corresponding to the orbit of the π0(Aut(B))-action on
the class in [B, BAut(F)] classifying the fibration.

We are interested in when the map of grouplike topological monoids Aut(f) → Aut(E)
is a homotopy equivalence. This will follow if we can see that Aut1(f) → Aut1(E) and
π0(Aut(f)) → π0(Aut(E)) are equivalences. By an easy general argument given as [52,
Prop. 11.10] the statement about identity components follows if B → map(F ,B)0 is an
equivalence, there the subscript 0 denotes the component of the trivial map.
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Lemma 4.5 (Behavior with respect to components). Let X be a p-compact group with
maximal torus normalizer N , and assume that p is odd (so that π0(X) can be read off from
N ). Let N1 denote the kernel of the map N → π0(X), which is a maximal torus normalizer
for X1.

If Aut(BX1)
∼=→ Aut(BN1), then Aut(BX)

∼=→ Aut(BN ). If furthermore BX1 is deter-
mined by BN1 then BX is determined by BN .

Proof. First note that by an inspection of Euler characteristics and using [92, Thm. 1.2(3)],
N1 is indeed a maximal torus normalizer in X1. Set π = π0(X) for short. We want to
apply the setup described before the lemma to the fibrations BX1 → BX → Bπ and
BN1 → BN → Bπ and to see that in both cases the map of monoids Aut(f) → Aut(E)
are homotopy equivalences. By the remarks above this follows if it is an isomorphism on
π0 and that B → map(F ,B)0 is an equivalence. The statement about π0 is true in both
cases since a self-map of E determines a unique self-map of Bπ. Likewise it is easy to see

that Bπ
'→ map(BX1, Bπ)0 and that Bπ

'→ map(BN1, Bπ)0. This means that our map
BAut(BX)→ BAut(BN ) (from Lemma 2.1) fits in a map of fibration sequences

map(Bπ,BAut(BX1))C(f)

��

// BAut(BX)

��

// BAut(Bπ)

��
map(Bπ,BAut(BN1))C(f)

// BAut(BN ) // BAut(Bπ).

Here the maps between the fibers and base spaces are homotopy equivalences by assumption,
and we conclude that we get a homotopy equivalence between the total spaces as well.

Now assume furthermore that X1 is determined by N1, and let X ′ be another p-compact
group with maximal torus normalizer N . By Lemma 4.3 we get that π = π0(X) ∼= π0(X

′)
and that N1 is also a maximal torus normalizer in X ′

1.
We want to show that the two fibrations BX → Bπ and BX ′ → Bπ are equivalent as

fibrations over Bπ, or equivalently that the π-spaces BX1 and BX ′
1 are hπ-equivalent, i.e.,

that we can find a zig-zag of π-maps which are non-equivariant equivalences connecting
the two (see e.g., [40] where this equivalence relation is called equivariant weak homotopy
equivalence).

By the assumptions on X1 we can choose a homotopy equivalence Bf : BX1 → BX ′
1

such that

BN1

Bj′

##F
FFFFFFF

Bj

{{xx
xx

xx
xx

x

BX1
Bf // BX ′

1

commutes up to homotopy, and Bf is unique up to homotopy.
We now want to see that we can change Bf so that it becomes a π-map. For this, consider

the restriction π-map

map(BX1, BX
′
1)→ map(BN1, BX

′
1).

By the assumptions on Aut(BX1) this map sends distinct components of map(BX1, BX
′
1)

corresponding to homotopy equivalences to distinct components of map(BN1, BX
′
1). More-

over, by the proof of Lemma 2.1, we have a homotopy equivalence map(BX1, BX
′
1)Bf '

map(BN1, BX
′
1)Bf◦Bj . In particular the component map(BX1, BX

′
1)Bf is preserved un-

der the π-action, since this obviously is so for map(BN1, BX
′
1)Bj′ . Furthermore since
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map(BN1, BX
′
1)
π
Bj′ contains Bj′ we see that map(BX1, BX

′
1)
hπ
Bf ' map(BN1, BX

′
1)
hπ
Bj′ is

non-empty, and so there exists a π-map Eπ×BX1 → BX ′
1 which is a homotopy equivalence.

This shows that BX1 and BX ′
1 are hπ-homotopy equivalent as wanted. �

Remark 4.6. If X is a connected p-compact group, and p is odd, then it follows from
[52, Thm. 7.5] that Z(N̆ ) is a discrete approximation to the center of X. The proof of the
above lemma extends this to X non-connected provided we know that the self-maps of X1

are detected by their restriction to N1, which will be a consequence of Theorem 1.4. Having
to appeal to this is a bit unfortunate but seems unavoidable. The point is that if there for a
connected p-compact group X, existed a self-equivalence σ of X of finite p-power order and
not detected by N , then we could form Xo〈σ〉, where σ would be central in the normalizer
but not in the whole group. (See also Lemma 10.2.)

Lemma 4.7 (Behavior with respect to centers). Let X be a connected p-compact group
with center Z.

(1) If π0(Aut(BX/Z)) → π0(Aut(BN/Z)) is surjective and X/Z is determined by
N/Z then X is determined by N .

(2) If p is odd and Aut(BX/Z)→ Aut(BN/Z) is a homotopy equivalence then Aut(BX)→
Aut(BN ) is as well.

Proof. Suppose that X and X ′ have the same maximal torus normalizer N and choose fixed
inclusions j : N → X and j′ : N → X ′. By [52, Thm. 7.6] X ′ and X have the same center
Z. Suppose that X/Z is isomorphic to X ′/Z. If π0(Aut(BX/Z)) → π0(Aut(BN/Z)) is
surjective we furthermore have that we can choose the homotopy equivalence BX/Z →
BX ′/Z in such a way that

BN/Z
j/Z

yyttttttttt
j′/Z

%%K
KKKKKKKK

BX/Z // BX ′/Z

commutes up to homotopy.
We have canonical maps BX → B2Z and BX ′ → B2Z classifying the extensions, and

we claim that in fact the bottom triangle in the diagram

BN/Z

%%K
KKKKKKKK

yyttttttttt

BX/Z

%%K
KKKKKKKK

// BX ′/Z

yysssss
sss

ss

B2Z
commutes up to homotopy. By construction the outer square commutes up to homo-
topy (since both composites agree with the classifying map BN/Z → B2Z since j and
j′ are fixed). Since the top triangle also commutes up to homotopy, an application of the
transfer [51, 9.12], using that B2Z is a product of Eilenberg-Mac Lane spaces and that
χ((X/Z)/(N/Z)) = 1, shows that the bottom triangle commutes up to homotopy as well.
Since we have constructed a map BX/Z → BX ′/Z over B2Z we get an induced homotopy
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equivalence BX → BX ′. (Note that this construction does not a priori give this map as a
map under BN .)

We now want to get the second statement about automorphism groups. Consider the
homotopy commutative diagram

BN
f ′ //

��

BN/Z

��
BX

f // BX/Z

where we can suppose that the two horizontal maps f ′ and f are fibrations.
We first claim that we can replace BAut(f) with BAut(BX) and BAut(f ′) with

BAut(BN ). As in the case of the component group (see the proof of Lemma 4.5) we
just have to justify that in the appropriate fibration sequences we have equivalences B →
map(F ,B)0 and π0(Aut(f)) → π0(Aut(E)). The map BX/Z → map(BZ, BX/Z)0 is a
homotopy equivalence since the trivial map is central [52, Prop. 10.1]. That BN/Z →
map(BZ, BN/Z)0 is an equivalence is a similar (but easier) argument.

By Lemma 2.1 a self-equivalence of BX induces a unique self-equivalence of BN , and
hence a canonical self-equivalence of BZ. Now, by the description of X/Z as a Borel
construction (given in [51, Pf. of Prop. 8.3]) we get a canonical self-equivalence of BX/Z.
This self-equivalence is furthermore unique, in the sense that given a diagram

BX
g //

��

BX

��
BX/Z g′ // BX/Z

the homotopy type of g′ is uniquely given by that of g. To see this note that by Lemma 2.1
the diagram restricts to a unique diagram

BN g̃ //

��

BN

��
BN/Z g̃′ // BN/Z.

By looking at discrete approximations we see that the homotopy class of g̃′ is determined
by g̃. Since by assumption the homotopy class of g′ is determined by g̃′, we conclude that
a self-equivalence of BX induces a unique self-equivalence of BX/Z, and so π0(Aut(f)) ∼=
π0(Aut(BX)). The last part of the argument furthermore shows that also π0(Aut(f ′)) ∼=
π0(Aut(BN )).

We hence have the following diagram where the rows are fibration sequences

map(BX/Z, B Aut(BZ))C(f)
//

��

BAut(BX) //

��

BAut(BX/Z)

��
map(BN/Z, B Aut(BZ))C(f ′)

// BAut(BN ) // BAut(BN/Z).
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Examining when the middle vertical arrow is a homotopy equivalence reduces to finding out
when the restriction map map(BX/Z, B Aut(BZ))C(f) → map(BN/Z, BAut(BZ))C(f ′) is
a homotopy equivalence, which we now analyze.

Note that since BZ is an product of Eilenberg-Mac Lane spaces we have a fibration
sequence

B2Z → BAut(BZ)→ BAut(Z̆)

where Z̆ is the discrete approximation to Z and Aut(Z̆) is the discrete group of automor-
phisms. Since our extensions are central this gives a diagram of fibration sequences

map(BX/Z, B2Z)C(f)
//

��

map(BX/Z, B Aut(BZ))C(f)
//

��

map(BX/Z, B Aut(Z̆))0

��
map(BN/Z, B2Z)C(f ′)

// map(BN/Z, BAut(BZ))C(f ′)
// map(BN/Z, B Aut(Z̆))0.

Again, in this diagram the map between the base spaces is obviously an equivalence, so we
are reduced to studying

(4.2) map(BX/Z, B2Z)C(f) → map(BN/Z, B2Z)C(f ′).

Since B2Z is a product of Eilenberg-Mac Lane spaces a transfer argument (cf. [51, 9.12])
shows that this gives an embedding as a retract. Since we assume π0(Aut(BX/Z)) ∼=
π0(BAut(BN/Z)) we furthermore get that this is an isomorphism on π0 by the definition
of C(f) and C(f ′). Now set X ′ = X/Z and N ′ = N/Z and let (W,L′) denote the Weyl
group of X ′. Write BZ ' B2A × BA′, where A is torsion free and A′ is finite (see [52,
Thm. 1.1]). On π1 the map (4.2) identifies with

H1(BX ′;A′)⊕H2(BX ′;A)→ H1(BN ′;A′)⊕H2(BN ′;A).

The group H1(BN ′;A′) is zero since π1(BN ′) = WX is generated by elements of order
prime to p, since p is assumed to be odd.

Furthermore, H2(BN ′;A) is related via the Serre spectral sequence to the groups

H2(BW ;H0(B2L′;A)),H1(BW ;H1(B2L′;A)), and H0(BW ;H2(B2L′;A)).

The first of these groups is zero since W is generated by elements prime to p by the as-
sumption that p is odd. The second is obviously zero, and the last group is zero since
H0(W ; Hom(L′,Zp)) = Hom((L′)W ,Zp) = 0 because (L′)W is finite.

Hence we get an isomorphism on π1, since we already know that the map is injective. On
π2 and π3 the map identifies with H0(BX ′;A′)⊕H1(BX ′;A)→ H0(BN ′;A′)⊕H1(BN ′;A)
and H0(BX ′;A) → H0(BN ′;A) respectively, and these maps are obviously isomorphisms.
Hence map(BX/Z, B2Z)C(f) → map(BN/Z, B2Z)C(f ′) is a homotopy equivalence, which
via the fibration sequences above imply that BAut(BX) → BAut(BN ) is a homotopy
equivalence as wanted. �

Remark 4.8. Consider BX = B(SO(3) × S1)2̂. This has center Z = (S1)2̂ and X/Z =

SO(3)2̂. It is easy to calculate directly that BAut(BX/Z)
'→ BAut(BN/Z) (or appeal

to [76]). However π0(Aut(BX)) → π0(Aut(BN )) is not onto by Proposition 3.2, since
Hom(WSO(3),Z/2

∞) = Z/2. This shows that the p odd assumption is necessary in the last
part of the above lemma. (Compare also Remark 4.2.)
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Remark 4.9. Suppose that X is a connected p-compact group. Fibration sequences with
base space B2π1(X) and fiber B(X〈1〉) are in one-to-one correspondence with the set of
maps [B2π1(X), B Aut(B(X〈1〉))]. Likewise self-equivalences of BX can be expressed in
terms of self-equivalences of B(X〈1〉) and π1(X), analogously to the lemmas above. Hence
if we a priori knew that Theorem 1.7 held true, i.e., if we could read off π1(X) from NX then
the above methods would reduce the proof of the main theorems to the simply connected
case, which could be used advantageously in the proofs. (See also Remark 7.3.)

Remark 4.10. The assumption in Lemma 4.7(1) that π0(Aut(BX/Z))→ π0(Aut(BN/Z))

is surjective has the following origin. We have a canonical restriction map H2(BX/Z; Z̆)→
H2(BN/Z; Z̆), which is injective by a transfer argument. Two extension classes inH2(BX/Z; Z̆)
give rise to isomorphic total spaces if the extension classes are conjugate via the actions
of Aut(BX/Z) and Aut(Z̆) on H2(BX/Z; Z̆). The total spaces have isomorphic maximal

torus normalizers if the extension classes have images in H2(BN/Z; Z̆) which are conjugate

under the actions of Aut(BN/Z) and Aut(Z̆), which could a priori be a weaker notion.

5. An integral version of a theorem of Nakajima and realization of
p-compact groups

The goal of this section is to prove an integral version of an algebraic result of Nakajima
(Theorem 5.1) and use this to prove a Theorem 5.3 which, as part of our induction proof
of Theorem 1.1, will allow us to construct the center-free p-compact groups corresponding
to Zp-reflection groups (W,L) such that Zp[L]W is a polynomial algebra. This will provide
the existence part of Theorem 1.1. We feel that this way of showing existence, is perhaps
more straightforward than previous approaches; compare for instance [103]. (We refer to
the introduction for the history behind this result.)

Theorem 5.1. Let p be an odd prime and let (W,L) be a finite Zp-reflection group. For
a subspace V of L ⊗ Fp we let WV denote the pointwise stabilizer of V in W . Then the
following conditions are equivalent:

(1) Zp[L]W is a polynomial algebra.
(2) Zp[L]WV is a polynomial algebra for all non-trivial subspaces V ⊆ L⊗ Fp.
(3) (WV , L) is a Zp-reflection group for all non-trivial subspaces V ⊆ L⊗ Fp.

Remark 5.2. An analog of the implication (1) ⇒ (2) where the ring Zp is replaced by a
field was proven by Nakajima [95, Lem. 1.4] (in the case of finite fields see also [56] and
[97]). For fields of positive characteristic the implication (3) ⇒ (1) does not hold; see [80]
for more information about this case. Our proof unfortunately involves the classification
of finite Zp-reflection groups and some case-by-case checking. (See the discussion following
the proof of Theorem 1.8 for related information.)

Proof of Theorem 5.1. To start, note that the implication (2) ⇒ (3) follows from the fact
that if Zp[L]WV is a polynomial algebra then Qp[L ⊗ Q]WV is as well, so (WV , L) is a
Zp-reflection group by the Shephard-Todd-Chevalley theorem ([7, Thm. 7.2.1] or [120,
Thm. 7.4.1]).

To go further we want to see that the theorem is well behaved under products, i.e., that if
(W,L) = (W ′, L′)× (W ′′, L′′), then the theorem holds for (W,L) if it holds for (W ′, L′) and
(W ′′, L′′). This follow from the fact that the stabilizer in W ′×W ′′ of an arbitrary subgroup
in (L′ ⊗ Fp)⊕ (L′′ ⊗ Fp) equals the stabilizer of the smallest product subgroup containing
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it, combined with the fact that the tensor product of two algebras is a polynomial algebra
if and only if each of the factors are. Hence to prove the remaining implications it follows
from Theorem 11.1 that it suffices to consider separately the cases where (W,L) comes from
a compact connected Lie group and the cases where (W,L) is one of the exotic Zp-reflection
groups.

Assume first that (W,L) = (WG, LG ⊗ Zp) for a compact connected Lie group G. If
Zp[L]W is a polynomial algebra then by Theorem 12.2 (which involves case-by-case con-
siderations and p odd) BX = BGp̂ satisfies H∗(BX;Zp) ∼= H∗(B2L;Zp)

W . We can iden-
tify V ⊆ L ⊗ Fp with a toral elementary abelian p-subgroup in X and by [56, Rem. 1.3]
H∗(BCX(V );Zp) is again a polynomial algebra concentrated in even degrees. In particu-
lar CX(V ) is connected and by [52, Thm. 7.6] WCX(V ) = WV . Hence, by Theorem 12.1,

H∗(BCX(V );Zp) ∼= H∗(B2L;Zp)
WV , so Zp[L]WV is a polynomial algebra. This shows that

(1)⇒ (2) when (W,L) comes from a compact connected Lie group. To prove (3)⇒ (1) for
Lie groups suppose that (W,L) is a finite Zp-reflection group corresponding to a p-compact
group X = Gp̂ such that (WV , L) is a Zp-reflection group for all non-trivial V ⊆ L ⊗ Fp.
Since p is odd it follows by [52, Thm. 7.6] that CX(V ) is connected for all non-trivial
V ⊆ L⊗ Fp. Hence, since X is assumed to come from a compact connected Lie group [8,
Thm. B] (or [125, Thm. 2.28]) implies that H∗(BX;Zp) does not have p-torsion and hence

H∗(BX;Zp) ∼= H∗(B2L;Zp)
W (cf. Theorem 12.1). So Zp[L]W is a polynomial algebra as

wanted.
Next we assume that (W,L) is one of the exotic Zp-reflection groups. By Theorem 12.2,

Zp[L]W is a polynomial algebra, so we only need to prove that Zp[L]WV is a polynomial
algebra for any non-trivial V ⊆ L ⊗ Fp. Furthermore, by Theorem 12.2(2), Fp[L ⊗ Fp]

W

is a polynomial algebra. Nakajima’s result [95, Lem. 1.4] shows that Fp[L ⊗ Fp]
WV is

a polynomial algebra as well. Thus we are done if p - |WV | by Lemma 12.6, which in
particular covers the cases where p - |W |.

If (W,L) belongs to family number 2 on the Clark-Ewing list, then since p is odd, it
is easily seen from the form of the representing matrices (see Section 11 for a concrete
description) that reduction mod p gives a bijection between reflections in (W,L) and (W,L⊗
Fp). As Fp[L⊗ Fp]

WV is a polynomial algebra it follows by the Shephard-Todd-Chevalley
theorem [7, Thm. 7.2.1] that WV ⊆ GL(L⊗Fp) is a reflection group. Thus (WV , L) is a Zp-
reflection group. Since the representing matrices are monomial, it follows by [95, Thm. 2.4]
that Zp[L]WV is a polynomial algebra.

By Theorem 11.1 only four cases remain, namely the Zabrodsky-Aguadé cases (W12, p =
3), (W29, p = 5), (W31, p = 5) and (W34, p = 7). For each of these a direct computation (for
instance easily done with the aid of a computer) shows that if S is a Sylow p-subgroup of
W , then U = (L ⊗ Fp)

S is 1-dimensional and (WU , L) is isomorphic to (Σp, LSU(p) ⊗ Zp)
(the construction of such a subgroup U can also be found in Aguadé [4]). Hence we see that
if V ⊆ L ⊗ Fp is non-trivial then either p - |WV | or V is W -conjugate to U . But in these
cases we already know that Zp[L]WV is a polynomial algebra. �

Theorem 5.3. Let p be an odd prime and let (W,L) be a finite Zp-reflection group with
the property that Zp[L]W is a polynomial algebra over Zp.

Assume that for all non-trivial elementary abelian p-subgroups V ⊆ T̆ = L⊗Z/p∞ there
exists a p-compact group F (V ) with discrete approximation to its maximal torus normalizer

given by T̆oWV such that F (V ) is determined by NF (V ), Φ : Aut(BF (V ))
∼=→ Aut(BNF (V )),
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and H∗(BF (V );Zp)
∼=→ H∗(B2L;Zp)

WV . Then there exists a p-compact group X with

discrete approximation to its maximal torus normalizer given by T̆oW satisfying the same
properties as listed for F (V ).

Proof. First recall that by Theorem 5.1 (WV , L) is again a Zp-reflection group and Zp[L]WV

is a polynomial algebra. Set N̆ = T̆oW . We want to construct a candidate ‘centralizer
decomposition’ diagram. Let A be the category with objects the non-trivial elementary
abelian p-subgroups V of T̆ and morphisms the homomorphisms between them induced by
inclusions of subgroups and conjugation by elements in W . We now define a functor F
from Aop to p-compact groups and conjugation classes of morphisms. On objects we send
V to F (V ). By assumption jV : CN̆ (V )→ F (V ) is a discrete approximation to the maximal
torus normalizer in F (V ). Now let ϕ : V → V ′ be a morphism in A, induced by conjugation
by an element x ∈W and consider the diagram

V ′ // // CN̆ (V ′)
c
x−1 //

jV ′

��

CN̆ (V )

jV
��

F (V ′) F (V )

Taking the centralizer of the composite map x−1 : V ′ → F (V ) we get a space CF (V )(x
−1) =

Ω map(BV ′, BF (V ))Bx−1 , which has discrete approximation to its maximal torus normalizer
equal to CN̆ (V ′). By assumption we get a unique (up to conjugacy) isomorphism F (V ′)→
CF (V )(x

−1) under CN̆ (V ′). By composing with the evaluation CF (V )(x
−1)→ F (V ), we get

a morphism F (ϕ) : F (V ′) → F (V ). We need to check that this gives us a well defined

functor from Aop to the homotopy category of spaces, i.e., that for V
ϕ→ V ′ ψ→ V ′′, F (ψϕ)

is conjugate to F (ϕ)F (ψ). To see this suppose that ψ is induced by conjugation by y ∈W
and consider the following diagram with obvious maps

F (V ) CF (V )(x
−1)

evoo F (V ′)
∼=oo CF (V ′)(y

−1)
evoo

∼=vvmmmmmmmmmmmm

F (V ′′)
∼=oo

∼=

wwppppppppppppppppppppppppppppppppp

CCF (V )(x−1)(x̃
−1y−1)

ev

hhQQQQQQQQQQQQ

∼=
��

CF (V )(x
−1y−1)

ev

ffNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

(Here (̃·) denotes the adjoint map which is explained in Remark 6.3.) Note that the bottom
composite from F (V ′′) to F (V ) is F (ψϕ) and the top composite is F (ϕ)F (ψ). The top tri-
angle is commutative, since the lower isomorphism in that triangle is just the map obtained
by taking centralizers of the upper one. The rightmost square is homotopy commutative,
since the corresponding square of isomorphisms between centralizers in N̆ is commutative,
using our assumptions that maps are detected here. Finally, the leftmost square is homotopy
commutative, by definition of the adjoint construction.

We hence get a well defined functor BF : Aop → Ho(Spaces), where Ho(Spaces) denotes
the homotopy category of spaces, on objects given by V 7→ BF (V ). By construction
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the functor obtained when taking cohomology of this diagram, can be identified with the
canonical functor which on objects is given by V 7→ H∗(BT̆ ;Zp)

WV .
We want to lift this to a diagram in the category of spaces. The obstruction theory for

doing this is described in [44, Thm. 1.1], noting that by [52, Lem. 11.15] our diagram is a
so-called centric diagram so the assumptions of that theorem are satisfied.

By looking at their cohomology we see that all the spaces F (V ) are connected and

hence by [52, Thm. 7.5] have center given by T̆WV , since p is odd. In particular (see e.g.
Lemma 10.2) the homotopy groups of ZF (V ) are given by π0(ZF (V )) = H1(WV ;L) and
π1(ZF (V )) = LWV . By [50, §8] (for details see Section 10) lim∗

V ∈A π∗(F (−)) = 0, so by [44,

Thm. 1.1] there exists a (unique) lift of our functor BF to a functor B̃F landing in Spaces.

Set BX = (hocolimA B̃F )p̂.
The spectral sequence for calculating the cohomology of a homotopy colimit [19, Ch. XII 4.5]

has E2-term given by Ei,j2 = limi
V ∈AHj(BT̆ ;Zp)

WV . But again by [50, §8] these groups

vanish for i > 0 and for i = 0 give lim0
AH∗(BT̆ ;Zp)

WV ∼= H∗(BT̆ ;Zp)
W . Hence the spectral

sequence collapses onto the vertical axis, and we get H∗(BX;Zp) ∼= H∗(BT̆ ;Zp)
W .

Since H∗(BX;Zp) is a polynomial algebra H∗(X;Zp) will be an exterior algebra on odd
generators (cf. Theorem 12.1), so X is indeed a p-compact group. The fact that BX is

determined by N and satisfies Φ : Aut(BX)
∼=→ Aut(BN ), also follows easily from the

above—the details are given in the proof of Lemma 6.4. �

Remark 5.4. Note that Theorem 5.3 in itself does not quite give a stand-alone proof of the
realization and uniqueness of all center-free p-compact groups with Weyl group satisfying
that Zp[L]W is a polynomial algebra, since (WV , L) is not center-free which prevents the
obvious induction from working; the main problem is the unitary groups.

6. Proof of the main theorem using Sections 8, 9, 10, 11, and 12

The purpose of this section is to prove the main Theorems 1.1 and 1.4, but in the proofs
referring forward to Sections 8 and 9 for information about elementary abelian p-subgroups
of the simple center-free Lie groups and to Section 10 for the obstruction group calculations.

We start by explaining the strategy in general terms. Recall that the centralizer of an
elementary abelian p-subgroup ν : E → X of a p-compact group X is defined as the p-
compact group CX(ν) with classifying space BCX(ν) = map(BE,BX)Bν . It is a theorem
of Dwyer-Wilkerson [51, Prop. 5.1 and 5.2] that this actually is a p-compact group and that
the evaluation map to X is a monomorphism. A theorem of Dwyer-Zabrodsky [41] [78,
Thm. 3.2] says that if G is a compact Lie group with component group a p-group, then the
map

BCG(ν(E))p̂ → BCGp̂
(ν) = map(BE,BGp̂)Bν

induced by the adjoint of the canonical homomorphism E ×CG(ν(E))→ G is a homotopy
equivalence. Note however that CX(ν) is not naturally a subobject of X, i.e., the map to
X is defined in terms of ν, unlike in the Lie case.

For a p-compact group X, let A(X) denote the Quillen category of X. The objects of
A(X) are conjugacy classes of monomorphisms ν : E → X of non-trivial elementary abelian
p-subgroups E into X. The morphisms (ν : E → X) → (ν ′ : E′ → X) of A(X) consists of
all group homomorphisms ϕ : E → E′ such that ν and ν ′ϕ are conjugate.

The centralizer construction gives a functor

(6.1) BCX : A(X)op → Spaces



22 K. ANDERSEN, J. GRODAL, J. MØLLER, AND A. VIRUEL

that takes the monomorphism (ν : E → X) ∈ Ob(A(X)) to its centralizer BCX(ν) =
map(BE,BX)Bν and a morphism ϕ to composition with Bϕ : BE → BE′.

By a theorem of Dwyer-Wilkerson [52, §8], generalizing a theorem for compact Lie groups
by Jackowski-McClure [75], the evaluation map

hocolimA(X)BCX → BX

induces an isomorphism on mod p homology. If X is connected and center-free, then for all
ν, the centralizer CX(ν) is a p-compact group with smaller cohomological dimension setting
the stage for a proof by induction. (The cohomological dimension of a p-compact group Y
is defined as cd(Y ) = max{n|Hn(Y ;Fp) 6= 0}; see [51, 6.13] and [53, 3.8].) To make use of
this we need a way to construct a map from the elementary abelian p-subgroups and their
centralizers in X, to any other p-compact group X ′ with the same maximal torus normalizer
N .

Suppose that N is embedded in connected p-compact groups X and X ′ via homomor-
phisms j and j′ respectively. If ν : E → X can be factored through a maximal torus
i : T → X, i.e., if there exists µ : E → T such that iµ = ν, then µ is unique up to
conjugation as a map to N by [53, Prop. 3.4], and furthermore by [52, Thm. 7.6], CN (µ)
is a maximal torus normalizer in CX(ν). In this case j′µ will be an elementary abelian p-
subgroup of X ′, which we have assigned without making any choices, and CX′(j′µ) will have
maximal torus normalizer CN (µ). Elementary abelian p-subgroups which can be conjugated
into T are called toral subgroups, and elementary abelian p-subgroups which do not have
this property are called non-toral subgroups. The problem hence arises how to compare
the centralizers in the case of non-toral elementary abelian p-subgroups. This problem was
addressed by the third-named author in [92]:

Theorem 6.1. [92] Let X be a p-compact group with maximal torus normalizer N .
If ν : E → X is an elementary abelian p-subgroup of X, then there exists a lift µ : E → N

with ν = jµ such that CN (µ) → CX(ν) is a maximal torus normalizer. Furthermore, if
E′ ⊆ E and µ′ is a lift of ν|E′ with the above property, then µ′ can be extended to a lift µ of
E which also has this property.

Assume now that X is connected. If ν : E → X has rank one then ν is toral [51,
Prop. 5.5.] and the above lift µ is unique up to conjugation in N . If ν has rank two, then
the lift is unique if ν is toral and if ν is non-toral then there are precisely p + 1 different
lifts with the further property that π0(µ) : E → π0(N ) is not injective, corresponding to the
p+ 1 rank one subgroups of E. �

Remark 6.2. The analogous theorem of the above in the classical case of compact Lie
groups does not seem to appear in the literature. However, as was explained by J.-P. Serre
[115], this can be obtained by a modification of the proof of [123, Thm. II.5.16]—strictly
speaking, we shall only need this theorem in the cases where either X is the p-completion
of a compact Lie group, or where the mod p cohomology of BX is a polynomial algebra,
the latter case being trivial.

If X is assumed connected then we can always arrange that the lift in Theorem 6.1
furthermore satisfies that the kernel of the map π0(µ) : E → π0(N ) is non-trivial, and such
a map will be called a preferred lift. Note that if ν : E → X can be factored through T
then the corresponding map µ : E → N is a preferred lift and it is furthermore unique up
to conjugacy in N , i.e., the preferred lift is exactly the factorization through the maximal
torus described earlier (see also [92, Prop. 4.10]).
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Before proceeding with our discussion, let us recall the construction of adjoint maps,
since these play a central role in what follows.

Remark 6.3 (Adjoint maps). Let A be an abelian p-compact group, X a p-compact group,
and ν : A→ X be a homomorphism. Suppose that E is a subgroup of A and note that we
have a canonical map

Bψ : BA×BE mult−→ BA→ BX

which only depends on the conjugacy class of ν. Since furthermore

π0(map(BA×BE,BX)) =
∐

ξ∈[BE,BX]

π0(map(BA,map(BE,BX)ξ))

we get that every element ν : A→ X gives rise to an element ν̃ : A→ CX(ν|E) making the
diagram

CX(ν|E)

ev

��
A

ν̃
;;wwwwwwwww ν // X

commutative. Here ν̃ is well defined up to conjugacy, from the conjugacy class of ν. We

will always use the notation (̃·) for this construction.

We now want to show how to use Theorem 6.1 to construct a map between the centralizer
diagrams of connected p-compact groups X and X ′.

Suppose that ν : V → X has rank one and that CX(ν) is determined by NCX(ν) and

satisfies Φ : Aut(BCX(ν))
∼=→ Aut(BNCX(ν)). Since ν has rank one and X is connected the

unique preferred lift µ will in fact factor through T by [51, Prop. 5.5], and µ is a preferred
lift of j′µ by [52, Thm. 7.6]. Hence CN (µ) is a maximal torus normalizer for both CX(ν)
and CX′(j′µ), so by assumption there exists a homomorphism hν , unique up to conjugacy,
making the diagram

(6.2) CN (µ)
j′

%%K
KKKKKKKK

j

zzuu
uu

uu
uu

u

CX(ν)
hν

∼=
// CX′(j′µ)

commute. We can use the rank one case to get a map in general: For an arbitrary elementary
abelian p-subgroup ν : E → X with preferred lift µ : E → N we can by Theorem 6.1 choose
a rank one subgroup V in the kernel of E → π0(N ). Hence µ|V factors through T and we
are in the rank one situation described above, i.e., we get a diagram as in (6.2) but with
ν everywhere replaced by ν|V and µ replaced by µ|V . The adjoint maps of ν, µ, and j′µ
(see Remark 6.3) map into this diagram in a coherent way, which expresses j′µ in terms of
ν and the rank one subgroup V , so it only depends on those parameters. Taking further
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adjoints with respect to ν, µ and j′µ produces a commutative diagram

(6.3) CN (µ)

j

xxqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

j′

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

CCN (µ|V )(µ̃)

∼=

OO

xxqqqqqqqqqqq

''OOOOOOOOOOO

CX(ν) CCX(ν|V )(ν̃)∼=
oo

∼=

h̃ν|V // CCX′ (j′µ|V )(j̃′µ) ∼=
// CX′(j′µ)

where h̃ν|V is the map induced from hν|V on the centralizers. But this means that CN (µ) is a

maximal torus normalizer also in CX(j′µ), e.g., by the characterizing property for maximal
torus normalizers given in [92, Thm. 1.2(3)], so in particular µ is a preferred lift of j′µ.
Denote the bottom left-to-right composite in the above diagram by hν,V , and note that

the composition E
ν̃→ CX(ν)

hν,V→ CX′(jµ) → X ′ equals j′µ, which we, by a slight abuse
of notation, we will denote hV (ν). We would like to see that hV,ν does in fact not depend
on the choice of V since this will allow us to construct a map in the homotopy category
from the centralizer diagram of X to X ′. Likewise we want see that this diagram can be
rigidified to a diagram in the category of spaces, so as to get an induced map from the
homotopy colimit of the centralizer diagram. The next lemma states precisely what needs
to be checked—the calculations to verify that these conditions are indeed verified for all
p-compact groups is essentially the contents of the rest of the paper.

Lemma 6.4. Let X and X ′ be two connected p-compact groups with the same maximal torus
normalizer N embedded via j and j′ respectively. Assume that for all rank one elementary
abelian p-subgroups ν : E → X of X the centralizer CX(ν) is determined by NCX(ν) and that

Φ : Aut(BCX(ν))
∼=→ Aut(BNCX(ν)) when ν is of rank one or two.

(1) Assume that for every rank two non-toral subgroup ν : E → X with a preferred lift
µ, both the conjugacy class of j′µ : E → X ′ and the conjugacy class of the induced
map hν,V : CX(ν) → CX′(j′µ) described above are independent of the choice of the
subgroup V of E. Then there exists a map in the homotopy category of spaces from
the centralizer diagram of BX to BX ′ (seen as a constant diagram), i.e., an element
in lim0

ν∈A(X)[BCX(ν), BX ′], given via the maps hν,V described above.

(2) Assume furthermore limi
ν∈A(X) πj(BZCX(ν)) = 0 for j = 1, 2 and i = j, j + 1, then

there is a lift of this element in lim0 to a map in the (diagram) category of spaces.
This produces an isomorphism f : X → X ′ under N , unique up to conjugacy, and

Φ : Aut(BX)
∼=→ Aut(BN ).

Proof. As explained before the proof there are no choices involved for rank one subgroups.
If ν : E → X has rank two and is toral then hν,V does not depend on the choice of V
by diagram (6.3) since µ is uniquely determined from ν in this case, and we are assuming
that Φ is an isomorphism for centralizers of rank two subgroups. If ν has rank two and is
non-toral, then we are just simply assuming that hν,V does not depend on V .

We want to see that the rank two condition forces this to hold in general. Let V1 and
V2 be two different rank one subgroups of E, and set U = V1 ⊕ V2. Since hν|U ,V does not



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 25

depend on the choice of V the following diagram commutes up to conjugation

CX(ν|V1
)
hν|V1 // CX′(h(ν|V1

))

%%J
JJJJJJJJJ

E

ν̃

<<xxxxxxxxx ν̃ //

ν̃ ""F
FFFFFFFF
CX(ν|U )

hν|U //

OO

��

CX′(h(ν|U ))

OO

��

// X ′

CX(ν|V2
)
hν|V2 // CX′(h(ν|V2

))

99tttttttttt

But this shows that in general hν,V does not depend on the choice of V , since for any two
choices of rank one subgroups V1 and V2 the above diagram shows that both maps will be
centralizers of the common hν|U .

It is now easy to construct a map from the centralizer diagram of X into X ′, by assigning

to ν the homomorphism CX(ν)
hν→ CX′(h(ν)) → X ′. We have to check that this is really

a natural transformation, i.e., that we get commutative diagrams on morphisms. Since all
morphisms in A(X) are the composite of an isomorphism followed by an inclusion, it is
enough to check the claim on these. Suppose ϕ : (ν : E → X) → (ν ′ : E′ → X) is an
isomorphism. If ν has rank one then by assumption CX(ν) has the same automorphisms as
its maximal torus normalizer so the diagram

CX(ν ′)
∼=

hν′

//

∼=CX(ϕ)
��

CX′(j′µ′)

∼= CX′ (ϕ)

��
CX(ν ′ϕ)

hν′ϕ

∼=
// CX′(j′µϕ)

commutes up to conjugation, since we can view the diagram of isomorphisms as taking
place under CN (µ′) → CN (µ′ϕ), for a preferred lift µ′ of ν ′. For a general isomorphism,
if we restrict to a rank one subgroup V of E and its image ϕ(V ) in E′, then the diagram
above is, by construction of hν′ and hν′ϕ, just obtained by taking centralizers of the adjoint
maps of ν ′ϕ and ν ′ of the diagram in rank one case, and it hence has to commute up to
conjugation as well. If ϕ is an inclusion of a subgroup then above diagram will also commute
up to conjugation, by the same adjointness argument. This shows that for all maps ϕ in
A(X) the diagram

CX(ν ′)

##F
FFFFFFF

CX(ϕ) // CX(ν)

||xxx
xxx

xx

X ′

commutes up to conjugation, where the diagonal maps are the natural composites CX(ν)
hν→

CX′(hν(ν)) → X ′. So we have constructed a map, of diagrams in the homotopy category,
from the centralizer diagram of X to X ′ (seen as a constant diagram), or in other words we
have given an element

[ρ] ∈ lim
ν∈A(X)

0π0(map(BCX(ν), BX ′))
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By [54, Rem. after Def. 6.3] [52, 11.15] (which says that the centralizer diagram of a p-
compact group is “centric”) we have that

map(BCX′(hν(ν)), BCX′(hν(ν)))1
' // map(BCX′(hν(ν)), BX

′)e
' // map(BCX(ν), BX ′)ehν

where the first map is composition with the evaluation map e : CX′(hν(ν)) → X ′ and the
second is precomposition with hν .

Likewise, by the homotopy equivalences established earlier in the proof

map(BCX′(hν(ν)), BCX′(hν(ν)))1 ' map(BCX(ν), BCX(ν))1

which by the definition of the center [52] equals BZCX(ν). Since these identifications are
natural, this gives a canonical identification of the functor ν 7→ πi(map(BCX(ν), BX ′)[ρ])
with ν 7→ πi(BZCX(ν)).

By obstruction theory (see [135, Prop. 3] [77, Prop. 1.4]) the existence obstructions for
lifting this to an element in π0(holimA(X) map(BCX(ν),X ′)) ∼= π0(map(BX,BX ′)) lie in

lim
ν∈A(X)

i+1πi(map(BCX(ν), BX ′)[ρ]) ∼= lim
ν∈A(X)

i+1πi(BZCX(ν)), i ≥ 1

But by assumption all these groups are identically zero, so our data lifts to a map Bf :
BX → BX ′.

We now want to see that the construction of f forces it to be an isomorphism. Let Np
denote a p-normalizer of T , i.e., the union of components in N corresponding to a Sylow
p-subgroup of W . Since Np has non-trivial center (since the action of a p-group on T̆ has
to have a fixed point), we can find a rank one central subgroup µ : V → Np, and so we can
view Np as sitting inside CN (µ). Hence by construction the diagram

Np
j

~~}}
}}

}}
}} j′

  B
BB

BB
BB

B

X
f // X ′

commutes up to conjugation, and in particular fj : Np → X ′ is a monomorphism. This
easily implies that f is a monomorphism as well: We have that H∗(BNp;Fp) is finitely
generated over H∗(BX ′;Fp) via H∗(Bfj;Fp) by [51, Prop. 9.11]. By an application of
the transfer [51, Thm. 9.13] the map H∗(Bj;Fp) : H∗(BX;Fp) → H∗(BNp;Fp) is a
monomorphism, and since H∗(BX ′;Fp) is noetherian by [51, Thm. 2.3] we conclude that
H∗(BX;Fp) is finitely generated over H∗(BX ′;Fp) as well, by the definition of noetherian.
Hence f : X → X ′ is a monomorphism by another application of [51, Prop. 9.11]. Since
we can identify the maximal tori of X ′ and X, the definition of the Weyl group defines
a map between the Weyl groups WX → WX′ , which has to be injective since the Weyl
groups act faithfully on T (by [51, Thm. 9.7]). But since we know that X and X ′ have the
same maximal torus normalizer, the above map of Weyl groups has to be an isomorphism.
By [52, Thm. 4.7] (or [93, Prop. 3.7] using [51, Thm. 9.7]) this means that f is indeed an
isomorphism.
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We now want to argue that this f is a map under N . By Lemma 2.1 we know that there
exists a g ∈ Aut(BN ), unique up to conjugation, such that

N
g //

j

��

N
j′

��
X

f // X ′

commutes up to conjugation. By covering space theory and Sylow’s theorem we can restrict
g to a self-map of g′ making the diagram

Np
g′ //

j

��

Np
j′

��
X

f // X ′

commute. Furthermore any other map Np → Np fitting in this diagram will be conjugate
to g′ in N , by the proof of Lemma 2.1. However by construction f is a map under Np
so g′ is conjugate in N to the canonical inclusion. But by Proposition 3.1 and 3.2 we get
that if an outer automorphism of N restricts to the identity on Np then it is in fact the
identity. This shows that g = 1, i.e., that f is a map under N . This also shows that
π0(Aut(BX))→ π0(Aut(BN )) is surjective, since for any automorphism g : N → N , jg is
also a maximal torus normalizer in X by [92, Thm. 1.2(3)].

Note that if Aut1(BN ) is not contractible then we can find a rank one elementary

abelian p-subgroup ν : V → T such that CN (ν)
∼=→ N which by assumption means that

Φ : Aut(BX)
∼=→ Aut(BN ). So we can assume that Aut1(BN ) is contractible in which case

Aut1(BX) is as well by [52, Thm. 1.3 and Thm. 7.5].
The only remaining claim in the lemma is that the map π0(Φ) : π0(Aut(BX)) →

π0(Aut(BN )) is injective under the additional assumption that limi
ν∈A(X) πi(BZCX(ν)) =

0, i ≥ 1. In other words we have to see that any self-equivalence f of X which, up to
conjugacy, induces the identity on N is in fact conjugate to the identity. But if we examine
the above argument with X ′ = X, the map on centralizers of rank one elements induced
by f has to be the identity by the rank one uniqueness assumption. The maps for higher
rank are centralizers of maps of rank one, so they as well have to be the identity. Hence f
maps to the same element as the identity in lim0

ν∈A(X) π0(map(BCX(ν), BX)), which means

that f actually is the identity by the vanishing of the obstruction groups (again, see [135,
Prop. 4] or [77, Prop. 1.4]). �

Remark 6.5. Note how the assumptions of the lemma fail (as they should) for the group
SO(3) at the prime 2 which is not determined by its normalizer. In this case the element
diag(−1,−1, 1) in the maximal torus SO(2) × 1 is fixed under the Weyl group action and
has centralizer equal to the maximal torus normalizer O(2).

Recall that the Weyl group W (ν) of an elementary abelian p-subgroup ν : E → X is
defined as the subgroup of Aut(E) consisting of the elements α such that να is homotopic
to ν.

Remark 6.6. It is perhaps natural to ask whether the preferred lift of rank two elementary
abelian p-subgroups is unique in the “subgroup of Lie group sense”, i.e., whether the Weyl
group of ν : E → X acts transitively on the rank one subgroups of E. The lists in Section 8
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and 9 reveals that this is false for the subgroup E2a
E6

of the group E6 but true for all other
center-free simple compact connected Lie groups at odd primes.

Lemma 6.7. Let X and X ′ be two connected p-compact groups with the same maximal torus
normalizer N embedded via j and j′ respectively. Assume that for all rank one elementary
abelian p-subgroups η : E → X of X the centralizer CX(η) is determined by NCX(η) and that

Φ : Aut(BCX(η))
∼=→ Aut(BNCX(η)) when η is of rank one and two.

Let ν : E → X be a rank two elementary abelian p-subgroup of X and assume that:

(1) The Weyl group W (ν) of ν contains SL(E).
(2) ν is up to isomorphism the only (non-toral) elementary abelian p-subgroup whose

centralizer is isomorphic to CX(ν).

Then the map j′µ : E → X ′ constructed by picking a preferred lift µ : E → N of ν does
not depend on the choice of µ (corresponding to the p + 1 rank one subgroups of E; see
Theorem 6.1 and Lemma 6.4).

Proof. Let {ν} denote the orbit of ν in [BE,BX] under the natural GL(E)-action and note
that the size of the set {ν} equals the index of W (ν) in GL(E). Let {µ} denote the set of
the preferred lifts in [BE,BN ] which lifts elements in {ν}. Since any ν has p+ 1 preferred
lifts the map of GL(E)-sets {µ} → {ν} induced by j is surjective and (p + 1)-to-1.

By assumption SL(E) ⊆ W (ν) so the Weyl group W (ν) acts transitively on the rank
one subgroups of E. Hence if µ is a preferred lift of ν, any other preferred lift of µ can be
obtained as µα for some α ∈W (ν). In other words also {µ} is a transitive GL(E)-set.

We now want to argue that {µ} is also exactly the preferred lifts of the GL(E)-orbit
{j′µ} of j′µ where µ is any lift of ν. Namely, if µ′ is any preferred lift of j′µ then by the
first assumptions in the lemma (about centralizers of rank one and two subgroups) µ′ is
also a preferred lift of jµ′ and CX(jµ′) is isomorphic to CX′(j′µ) and CX(ν) (see the proof of
Lemma 6.4). Hence by the assumption that there is only one object up to conjugacy in X
with centralizer isomorphic to CX(ν) there exists α ∈ GL(E) such that ν = jµ′α. In other
words µ′ ∈ {µ}. So the surjective map of GL(E)-sets {µ} → {j′µ} is (p+ 1)-to-1 as well.

Hence the set {j′µ} has the same cardinality as {ν}. In particular the stabilizer of j′µ is a
subgroup of GL(E) of index [GL(E) : W (ν)]. But since SL(E) ⊆W (ν) this means that this
stabilizer equals W (ν), since W (ν) is the unique subgroup with this index (c.f. e.g. [74]). In
particular j′µ = (j′µ)α = j′(µα) and since µα exhausts the preferred lifts of ν, we conclude
that j′µ does not depend on the choice of preferred lift. �

Lemma 6.8. Let X and X ′ be two connected p-compact groups with the same maximal
torus normalizer N embedded via j and j′ respectively. Assume that for all rank one and
two elementary abelian p-subgroups η : E → X of X the centralizer CX(η) is determined

by NCX(η) and that Φ : Aut(BCX(η))
∼=→ Aut(BNCX(η)). Furthermore assume that for

η : E → X of rank two, self-equivalences of CX(η)1 are detected by its maximal torus (which
is covered by the previous assumption if p is odd; cf. Proposition 3.2).

Let ν : E → X be a rank two non-toral elementary abelian p-subgroup of X. Assume the
following:

(1) The Weyl group W (ν) of ν acts transitively on the rank one subgroups of E.

(2) E × CX(ν)1
∼=→ CX(ν), where the identity component CX(ν)1 is a non-trivial p-

compact group and α ∈W (ν) acts on E × CX(ν)1 as α× 1.

Then neither jµ nor the map hν,V : CX(ν)→ CX′(j′µ) of Lemma 6.4 depends on the choice
of the rank one subgroup V of E (i.e., the assumptions of Lemma 6.4(1) are satisfied).
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Proof. Fix a preferred lift µ of ν, and let TE be the identity component of the space CN (µ)
(which will be a maximal torus in CX(ν) and by assumption non-trivial). Let V be the
kernel of π0(µ) : E → π0(N ).

Since the map µ : E → CN (µ) is central, we get an induced map µ̄ : E × TE = E ×
CN (µ)1 → CN (µ)→ N .

The assumption about the action means that for α ∈W (ν) we have the following diagram
which commutes up to conjugation:

E × TE //

α×1

��

CN (µ) // CX(jµ)

α

�� ""F
FF

FF
FF

FF

E × TE // CN (µ) // CX(jµ) // X

so jµ̄(α× 1) is homotopic to jµ̄.
Let U be a rank one elementary abelian p-subgroup of TE. By assumption we have a

unique map hµ̄|U making the following diagram commutative up to conjugation.

E × TE

j̃µ̄

~~||
||

||
||

||
||

||
||

||
||

˜̄µ
��

j̃′µ̄

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

CN (µ̄|U )

((QQQQQQQQQQQQ

vvnnnnnnnnnnnn

CX(jµ̄|U )
hµ̄|U

∼=
//

��

CX′(j′µ̄|U)

��
X X ′

so j′µ(α × 1) is also homotopic to j′µ. The same is hence true for the adjoint maps
E × TE → CX(ν) and E × TE → CX′(j′µ).

CN (µ)
j

zzuuu
uu

uu
uu

j′

%%K
KKKKKKKK
E × TE

˜̄µoo
¯̃µ(α×1)

// CN (µα)
j′

yyrrrrrrrrrr
j

$$J
JJJJJJJJ

CX(ν)
hν,V

∼= // CX′(j′µ) CX(ν)
h

ν,α−1(V )

∼=oo

which is up to conjugation commutative by the above and where the two maps E × TE →
CX(ν) are identical.

Hence h−1
ν,α−1(V )

hν,V is a self-equivalence of CX(ν) ∼= E ×CX(ν)1 which is the identity on

E × TE . Since by assumption self-maps of CX(ν)1 are determined by their restriction to
a maximal torus we hence conclude that h−1

ν,V hν,α−1(V ) is indeed homotopic to the identity

(cf. [52, Lem. 5.3]) and thus hν,V does not depend on the choice of subgroup V in E. �

The above two lemmas are in fact general enough to let us verify the conditions of
Lemma 6.4 in all the situations we shall encounter, except the subgroup E2a

E6
of E6 where

we need a small variation of Lemma 6.8.
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Lemma 6.9. Let ν : E2a
E6

↪→ X = (E6)3̂ be the rank two non-toral elementary abelian
3-subgroup of E6 listed in Theorem 8.9. Assume that for all rank one elementary abelian
3-subgroups η : V → X of X the centralizer CX(η) is determined by NCX(η) and that

Φ : Aut(BCX(η))
∼=→ Aut(BNCX(η)) when η is of rank one or two.

Then the conjugacy class of j′µ : E2a
E6
→ X ′ does not depend on the choice of preferred

lift µ of ν and likewise the conjugacy class of hν,V : CX(ν) → CX′(j′µ) does not depend on
the choice of rank one subgroup V of E2a

E6
.

Proof. The proof is almost identical to Lemma 6.8 but here we have to argue a bit more
carefully since W (ν) does not act transitively on the rank one subgroups of E = E2a

E6
.

Let µ1, . . . , µ4 be the four preferred lifts. By Proposition 8.10 TE = CN (µi(E))1 is
independent of the choice of µ. (Note that we are taking centralizers in the Lie group

sense.) Set µ̄i : E × TE µi×1→ N . Also by Proposition 8.10 the conjugacy class of jµ̄i does
not depend on µi. This brings us in exactly the same situation as in the proof of Lemma 6.8
(with the µ̄(α× 1) replaced by the µ̄i), which proves the lemma. �

Proof of Theorems 1.4, and 1.1 using Section 8, 9, 10, 11, and 12. We will show that The-
orems 1.1 and 1.4 both hold by a simultaneous induction on the cohomological dimension
of X. We will furthermore add to the induction hypothesis the statement that if X is
connected and Zp[L]WX is a polynomial ring, then H∗(BX;Zp) ∼= H∗(BT ;Zp)

WX .
By Lemma 4.3 and 4.5, Theorem 1.4 holds for a p-compact group X if it holds for its

identity component X1, so we can assume that X is connected.
By [6, Thm. 1.2], if (W,L) is realized as the Weyl group of a p-compact group X, then

NX will be split, i.e., N̆X ∼= T̆oWX (cf. also [128], [57], and [96] for the Lie case). So,
to prove Theorems 1.4 and 1.1 we have to show that given any finite Zp-reflection group
(W,L) there exists a unique connected p-compact group X realizing (W,L), with self-maps

satisfying Φ : Aut(BX)
∼=→ Aut(BNX) (since this implies π0(Aut(BX))

∼=→ NGL(LX)(W )/W
by Proposition 3.1 and 3.2).

If (W,L) can be written as a non-trivial product, then there exists a p-compact group
X realizing (W,L) by the induction hypothesis. The p-compact group is unique by [53,
Thm. 1.4] and the induction hypothesis, i.e., X is determined by NX . Lemma 4.1 and the
induction hypothesis show that X has the right space of automorphisms. Hence we can
assume that (W,L) cannot be written as a product.

By the classification of finite Zp-reflection groups (Theorem 11.1), (W,L) is either of the
form (WG, LG⊗Zp), for some compact connected Lie group G, or (W,L) is one of the exotic
Zp-reflection groups.

In the first case (W,L) can of course be realized by X = Gp̂. Note that, by Theorem 12.2

(and Theorem 12.1) H∗(BX;Zp) ∼= H∗(BT ;Zp)
W if and only if Zp[L]W is a polynomial

algebra.
In the latter case Zp[L]W is a polynomial algebra by Theorem 12.2 and (W,L) satisfies

T̆W = 0 by Theorem 11.1. Hence the induction hypothesis shows that the assumptions of
Theorem 5.3 are satisfied. So, by Theorem 5.3 there exists a unique p-compact group X

with Weyl group (W,L) which is determined by NX , and satisfies that Φ : Aut(BX)
∼=→

Aut(BNX) and H∗(BX;Zp) ∼= H∗(BT ;Zp)
WX .

We now want to show that X is uniquely determined by (WX , LX) and satisfies the
properties about self-maps listed in Theorems 1.1 and 1.4. In fact, the statement about
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self-maps in Theorem 1.1 follows from the one in Theorem 1.4 by Proposition 3.2, so we
can concentrate on Theorem 1.4.

By Lemma 4.7 we can assume that X is center-free. Likewise by the splitting theorem
[53, Thm. 1.4 and 1.5] together with Lemma 4.1 we can assume that X is simple. By
Theorem 12.2 (W,L) either has the property that Zp[L]W is a polynomial algebra, or (W,L)
is one of the reflection groups (WPU(n), LPU(n)⊗Zp) (with p |n), (WE8 , LE8⊗Z5), (WF4, LF4⊗
Z3), (WE6 , LE6 ⊗ Z3), (WE7 , LE7 ⊗ Z3), or (WE8 , LE8 ⊗ Z3).

If the Zp-reflection group (W,L) has the property that Zp[L]W is a polynomial algebra,
then we have just seen that there exists a spaceX ′ such thatH∗(BX ′;Zp) ∼= H∗(B2L;Zp)

W .
Hence all elementary abelian p-subgroups of X ′ are toral (cf. Lemma 7.8). In particu-
lar X ′ has no rank two non-toral elementary abelian p-subgroups so the assumptions of
Lemma 6.4(1) (used with X and X ′ switched around) are satisfied. By Theorem 10.1 the
assumptions of Lemma 6.4(2) also hold, and hence Lemma 6.4 implies that there exists an
isomorphism of p-compact groups X ′ → X, and that X satisfies the conclusion of Theo-
rem 1.4.

Consider (W,L) = (WPU(n), LPU(n) ⊗ Zp) where p | n. We divide up in two cases. If
n = pk with k > 1 then Theorem 9.1 shows that the assumptions of Lemma 6.8 are satisfied
which implies that the assumptions of Lemma 6.4(1) are satisfied. By Theorem 10.1 the
assumptions of Lemma 6.4(2) are also satisfied, so Lemma 6.4 produces an isomorphism of
p-compact groups PU(n)p̂ → X, and shows that X satisfies the conclusion of Theorem 1.4.
If n = p then we argue as above but replace the reference to Lemma 6.8 with a reference to
Lemma 6.7, noting that the statement about hν,V in this case follows for free from that of
j′µ, since E ∼= CPU(p)(E).

If (W,L) equals (WE8 , LE8 ⊗Z5), (WF4 , LF4 ⊗Z3), (WE7 , LE7 ⊗Z3), or (WE8 , LE8 ⊗Z3)
then by Theorem 8.2(3) the corresponding Lie group G does not have any non-toral rank
2 elementary abelian p-subgroups at the associated prime p. Furthermore the higher limits
obstructions which feature in the assumptions for Lemma 6.4(2) vanish by Theorem 10.1.
Hence Lemma 6.4 implies that there exists an equivalence of p-compact groups Gp̂ → X,
and that X satisfies the conclusion of Theorem 1.4.

Finally, if (W,L) = (WE6, LE6 ⊗ Z3) then the rank 2 non-toral subgroup E2b
E6

of The-
orem 8.9 satisfies the conditions of Lemma 6.8 so the assumptions of Lemma 6.4(1) are
satisfied for this subgroup. Likewise for the subgroup E2a

E6
the custom made Lemma 6.9

shows that the assumptions of Lemma 6.4(1) are also satisfied for this subgroup. Since the
assumptions of Lemma 6.4(2) are satisfied by Theorem 10.1 we conclude by Lemma 6.4 that
X is homotopy equivalent to (E6)3̂ and satisfies the conclusion of Theorem 1.4 also in this
case. This concludes the proof of the main theorem. �

Remark 6.10. Note that taking the case (WE6 , LE6 ⊗ Z3) last in the above theorem is a
bit misleading, since groups with adjoint form E6 appear as centralizers in E7 and E8, so a
separate inductive proof of uniqueness in those case would require knowledge of uniqueness
of E6.

Remark 6.11. The very careful reader might have noticed that the splitting result in [6],
which we use in the above proof, to conclude the splitting for (WPU(3), LPU(3)) refers to a
uniqueness result in [21]. We now quickly sketch a more direct way to see this, which we
were told by Dwyer-Wilkerson: We need to see that a 3-compact group with Weyl group
(WPU(3), LPU(3)⊗Z3) has to have split maximal torus normalizer N . So, suppose that X is
a hypothetical 3-compact group as above but with non-split maximal torus normalizer. By
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a transfer argument (cf. [51, 9.12]) N3 has to be non-split as well. Since every elementary
abelian 3-subgroup in X can be conjugated into N3 (since χ(X/Np) is prime to p), this
means that all elementary abelian 3-subgroups inX are toral. Furthermore by [53, Prop. 3.4]
conjugation between toral elementary abelian p-subgroups is controlled by the Weyl group,
so the Quillen category of X in fact agrees with the Quillen category of N . The category has
up to isomorphism one element of rank two and two of rank one. The centralizers CN (V ) of
these are respectively T , T : Z/2, and T ·Z/3. The unique 3-compact groups corresponding
to these centralizers are in fact given by BCN (V )3̂. Hence the map BN → BX is an
equivalence by the centralizer cohomology decomposition theorem [52, §8]. But since N is
non-split, we can find a map Z/p2 → N , which is not conjugate in N to a map into T .
Hence the corresponding map Z/p2 → X cannot be conjugated into T either, contradicting
[51, Prop. 5.5].

7. Consequences of the main theorem

In this section we prove the theorems listed in the introduction which are consequences
of the main theorem.

Proof of Theorem 1.2. The theorem follows directly from Theorem 1.1 together with the
classification of finite Zp-reflection groups (Theorem 11.1), noting that by the proof of
Theorem 1.1 (and Theorem 12.1) all the exotic p-compact groups have torsion free Zp-
cohomology. �

Proof of Theorem 1.5. By [93, Thm. 1.4] X is isomorphic to a p-compact group of the form
(X ′ × T ′′)/A, where X ′ is a simply connected p-compact group, T ′′ is a p-compact torus,
and A is a finite central subgroup of the product. Hence we have X/T ∼= X ′/T ′, where T
and T ′ are maximal tori of X and X ′ respectively. So we can without restriction assume
that X is simply connected.

For compact connected Lie groups the statement of this theorem is the celebrated result
of Bott [14, Thm. A]. Hence by Theorem 1.2 it is enough to prove the theorem when
X is an exotic p-compact group. In that case H∗(BX;Zp) is a polynomial algebra with
generators in even degrees, and the number of generators equals the rank of X (by the proof
of Theorem 1.4). The same is true over Fp, and since H∗(BT ;Fp) is finitely generated
over H∗(BX;Fp) by [51, Prop. 9.11], H∗(BX;Fp) → H∗(BT ;Fp) is injective by a Krull
dimension consideration. But since they are both polynomial algebras it follows by e.g., [55,
§11] that H∗(BT ;Fp) is in fact free over H∗(BX;Fp). Hence the Eilenberg-Moore spectral
sequence of the fibration X/T → BT → BX collapses and

H∗(X/T ;Fp) ∼= Fp ⊗H∗(BX;Fp) H
∗(BT ;Fp).

In particular H∗(X/T ;Fp) is concentrated in even degrees so the rank equals the Euler
characteristic χ(X/T ) which again equals |WX | by [51, Prop. 9.5]. By the long exact
sequence in cohomology and Nakayama’s lemma we get that H∗(X/T ;Zp) is a free Zp-
module of rank |WX | as wanted. �

Remark 7.1. Let H∗
Qp

(·) = H∗(·;Zp) ⊗ Q. For any connected p-compact group X the

natural map X/T → BT induces an isomorphism

H∗
Qp

(X/T ) ∼= Qp ⊗H∗
Qp

(BX) H
∗
Qp

(BT )

since the Eilenberg-Moore spectral sequence of the fibration X/T → BT → BX collapses
by [51, Prop. 9.7] and [55, §11]. It then follows from [29] that the natural WX-action on
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H∗(X/T ;Zp) ⊗Qp = H∗
Qp

(X/T ) is isomorphic to the regular representation of WX when

ignoring the grading. Just as for compact connected Lie groups this is not true over Zp
when p | |WX |.
Proof of Theorem 1.6. By Theorem 1.2 it is enough to prove the statement for the case
where X is the p-completion of a compact connected Lie group and the case where X is
an exotic p-compact group separately. The case where X is the p-completion of a compact
connected Lie group of course follows directly from the classical Peter-Weyl theorem (cf. e.g.
[20, Thm. III.4.1], so we can concentrate on the case where X is exotic. If p does not divide

the order of the Weyl group the statement is also obvious: The inclusion T̆ → U(r) induces

a map T̆oW → U(r|W |) whose p-completion is a faithful representation. The remaining
cases have been shown to have faithful representations by Castellana: If (W,L) is in the
2a family then this is carried out in [27] and if (W,L) is one of the pairs (G12, p = 3),
(G29, p = 5), (G31, p = 5), or (G34, p = 7) this is carried out in [26]. �

We now turn to Theorem 1.7 which in fact follows easily from the classification. But let
us first state the part which one can see by elementary means. (See also [93, Cor. 5.6] and
[55, Lem. 9.3].)

Proposition 7.2. Let X be a connected p-compact group then the natural composite map

(LX)W ∼= H0(W ;H2(BT ;Zp))→ H2(BX;Zp) ∼= π1(X)

induced by the inclusion T → X is surjective with finite kernel.
In particular if (LX)W is torsion free then it is an isomorphism.

Proof. By [93, Thm. 1.4] X is isomorphic to a p-compact group of the form (X ′ × T ′′)/A,
where X ′ is a simply connected p-compact group, T ′′ is a p-compact torus, and A is a
finite central subgroup of the product. Since the center of a connected p-compact group is
contained in a maximal torus by [52, Thm. 7.5] we can assume A is a subgroup of T ′× T ′′,
where T ′ is maximal torus forX ′, and hence (T ′×T ′′)/A is a maximal torus forX. Therefore
we get the following diagram of fibration sequences

BA // BT ′ ×BT ′′

��

// B((T ′ × T ′′)/A)

��
BA // BX ′ ×BT ′′ // BX

The long exact sequence of homotopy groups and the five-lemma now shows that π2(B((T×
T ′′)/A)) → π2(BX) is surjective which is the first statement in the proposition. To see
that the kernel is finite note that by [51, Thm. 9.7(3)] H2

Qp
(BX) → H2

Qp
(BT )W is an

isomorphism, which by dualizing to homology shows the claim.
That we get an isomorphism when (LX)W is torsion free is obvious from the general

statement. �

Remark 7.3. One easily shows that the image of the differential d3 : H3(W ;Zp) →
H0(W ;H2(BT ;Zp)) in the Serre spectral sequence for the fibration BT → BNX → BW
is always in the kernel of the surjective map of Proposition 7.2. By standard group coho-
mology (cf. [28]) the image of this differential identifies with the image of the map given by
capping with the k-invariant γ ∈ H3(W ;H2(BT ;Zp)) of the extension. If one knew that

the double coset formula held for p-compact groups (more precisely that H∗(BN ;Zp)
tr∗→
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H∗(BX;Zp)
res→ H∗(BT ;Zp) is the restriction map, cf. [59, Ex. VI.4]) then it would easily

follow that this image is in fact equal to the kernel of the map in Proposition 7.2, which
would give a conceptual proof of the formula for the fundamental group. Note that by a
result of Tits [128] (see also [57, 96, 6]) the extension class γ is always of order 2 for compact
connected Lie groups. The next proposition gives the complete answer in the Lie case.

Proposition 7.4. Let G be a compact connected Lie group. Then the map π1(T )W → π1(G)
is surjective with kernel (Z/2)s, where s is the number of direct factors of G isomorphic to
a symplectic group Sp(n), n ≥ 1.

Proof. That the map is surjective follows as in the p-compact case, so we just have to identify
the kernel. By [85, Thm. 1.6], for any compact connected Lie groupG, TW = Z(G)⊕(Z/2)s,
where s is the number of direct factors of G isomorphic to an odd special orthogonal group
SO(2n + 1), n ≥ 1.

Consider the dual group G∨ of G obtained as the taking the dual root diagram (see [17,

§4, no. 8]). Then G∨ has fundamental group isomorphic to Ẑ(G), where the hat denotes

the Poincaré dual group (see [17, §4, no. 9]). Likewise ̂(LG )̌W is canonically isomorphic
to TW . Since duality is an involution on the set of compact connected Lie groups which
sends direct summands to direct summands and SO(2n + 1) to Sp(n) the claim about the
fundamental group follows directly from the dual result about the center. �

Proof of Theorem 1.7. By Theorem 11.1 (LX)W = 0 for all the exotic p-compact groups,
so Proposition 7.2 shows the formula in this case. By Theorem 1.2 we are hence reduced
to showing the formula for X of the form Gp̂ for some compact connected Lie group G.
In this case the formula is well known and easy. Namely it follows from Remark 7.3 that
the kernel of (LX)W → π1(X) is an elementary abelian 2-group. Alternatively the same
conclusion follows from the formula for the fundamental group of a compact connected Lie
group (see [17, §4, no. 6, Prop. 11] or [1, Thm. 5.47], noting that in the notation of [1]
(1− ϕr)γr = 2γr). �

We now start to prove Theorem 1.8 and 1.9.

Lemma 7.5. Suppose X and X ′ are two connected p-compact groups both with maximal
torus normalizer N . Then all elementary abelian p-subgroups of X are toral if and only if
all elementary abelian p-subgroups of X ′ are toral.

Furthermore, if for all toral elementary abelian p-subgroups V → X the centralizer CX(V )
is connected then all elementary abelian p-subgroups in X are toral.

Proof. Suppose that X has a non-toral elementary abelian p-subgroup V → X. We can
assume that it is minimal, in the sense that any elementary abelian p-subgroup of smaller
rank is toral. Write V = V ′ ⊕ V ′′, where V ′ has rank one. We can assume that V ′′ →
X factors through T (by the minimality) and that V ′ → X factors through N (by [52,
Prop. 2.14]). Let N ′′ denote the maximal torus normalizer of CX(V ′′)1, which by [52,
Thm. 7.6] can be described in terms of V ′′ and N . The adjoint map V ′ → CN (V ′′) cannot
factor through N ′′ since otherwise V ′ → CX(V ′′) would factor through T in CX(V ′′) (by
[51, Prop. 5.5]), contradicting that V is assumed not to be toral. Note that N ′′ is normal
in CN̆ (V ′′) and CN̆ (V )/N ′′ ∼= π0(CX(V ′′)) ∼= π0(CX′(V ′′)) (see [52, Rem. 2.11]). Hence
V ′ → π0(CX′(V ′′)) is non-trivial so V → N → X ′ cannot be toral in X ′.

The last part of the lemma is clear from the proof of the first part. �
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Remark 7.6. Despite the above lemma it is not a priori clear how to determine whether
a p-compact group X has the property that all elementary abelian p-subgroups are toral
just from looking at NX (but see [125, Thm. 2.28] for the Lie case). However, by a case-
by-case analysis (Theorem 1.8), this is the case if and only if all toral elementary abelian
p-subgroups have connected centralizers.

Remark 7.7. Note that by Lannes theory [81, Thm. 0.4] the property that every elementary
abelian p-subgroup of X is toral is equivalent to that H∗(BX;Fp)→ H∗(BT ;Fp)

WX is an
F -isomorphism. (See also Theorem 12.1 and Remark 12.3.)

We state the following well known lemma for easy reference.

Lemma 7.8. Suppose that X is a connected p-compact group such that H∗(BX;Zp) is
a polynomial algebra with generators concentrated in even degrees. Then all elementary
abelian p-subgroups of X are toral.

Proof. For every elementary abelian p-subgroup ν : E → X, H∗(BCX(ν);Fp) is a poly-
nomial algebra with generators concentrated in even degrees by [56, Thm. 1.3] (note that
Lannes T -functor preserves objects concentrated in even degrees by [81, Prop. 2.1.3]). In
particular CX(ν) is connected so by Lemma 7.5 all elementary abelian p-subgroups are toral.
(Alternatively one can use Remark 12.3.) �

Proof of Theorem 1.8. First note that the implications (1) ⇒ (3) and (1) ⇒ (2) follows
from Theorem 12.1. The implication (3) ⇒ (4) follows easily from Theorem 5.1. Namely
for all toral elementary abelian p-subgroups V → X, Theorem 5.1 implies that WCX(V ) is
a reflection group, so by [52, Thm. 7.6] CX(V ) is connected, using the assumption that p is
odd. But this implies that all elementary abelian p-subgroups are toral by Lemma 7.5.

We now prove the implication (4) ⇒ (1). First note that by Theorem 11.1 and [53,
Thm. 1.4] we can write X ∼= X ′ ×X ′′ where X ′ has Weyl group (WG, LG ⊗ Zp), for some
compact connected Lie group G, and (W ′′, L′′) is a product of exotic finite Zp-reflection
groups. Furthermore, since the normalizer of a connected p-compact group is split for p
odd by [6, Thm. 1.2] we can in fact choose G such that NGp̂

∼= NX′ . Since by Lemma 7.5
the property of having all elementary abelian p-subgroups toral is a property which only
depends on N we conclude that G has to have this property as well. But this implies that
G has torsion free Zp-cohomology by [8, Thm. B] (see also [125, Thm. 2.28]). In the exotic

case, we know by the proof of Theorem 1.4 that we can find a p-compact group X̃ ′′ which has
the same maximal torus normalizer as X ′′ and which has torsion free Zp-cohomology. Hence

we have found a p-compact group Gp̂ × X̃ ′′ which has the same maximal torus normalizer
as X and has torsion free Zp-cohomology. Since by Theorem 1.4 a p-compact group is
determined by its normalizer we conclude that X in fact has torsion free Zp-cohomology.
(Alternatively, one can appeal to Remark 7.11 which shows that the property of having
torsion free Zp-cohomology only depends on N .)

Finally we prove the implication (2) ⇒ (1), where we seem to need the full strength of
Theorem 1.1. Note that by Theorem 1.2 we can write X ∼= Gp̂ ×X ′ where G is a compact
connected Lie group and X ′ has torsion free Zp-cohomology. Likewise if BGp̂ has torsion
free Zp-cohomology then Gp̂ has torsion free Zp-cohomology by [9, p. 93]. �

Remark 7.9. Since the implication (1) ⇒ (4) follows from Lemma 7.8, we see that in
the above theorem the implications (1) ⇒ (3), (1) ⇒ (2), and (1) ⇒ (4) follow by general
arguments. In the case of compact connected Lie groups the implication (4) ⇒ (3) has a
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general proof, by combining [125, Thm. 2.28] with [38], and likewise (2)⇒ (1) has a general
proof by [9, p. 93]. We do not know non-case-by-case proofs of these implications for p-
compact groups. (The implication (2) ⇒ (1) is stated in [94, Thm. 4.2] but the proof has
a gap.) The remaining implications do not seem to have general proofs even for compact
connected Lie groups. See also [125, §4].
Proof of Theorem 1.9. The statement is basically obvious by Theorem 1.2—we sketch a
proof which only uses the classification in the torsion free case. As in the proof of The-
orem 1.8 we can by Theorem 11.1 and [53, Thm. 1.4] write X ∼= X ′ × X ′′ where X ′ has
Weyl group (WG, LG ⊗Zp), for some compact connected Lie group G, and the Weyl group
(W ′′, L′′) of X ′′ is a product of exotic Zp-reflection groups.

By Theorem 1.1 and its proof we know that X ′′ is uniquely determined by its Weyl group
(W ′′, L′′) and has cohomology isomorphic to H∗(B2L′′;Zp)

W ′′
. Since H2(B2L′′;Zp)

W ′′
=

(L′′∗)W
′′

= 0 we conclude by the universal coefficient theorem that π1(X
′′) = H2(BX

′′;Zp) =
0. Hence by the T -functor, as in the proof of Theorem 1.8, we conclude that X ′′ satisfies
all three equivalent conditions of the theorem. Furthermore we can, again by [6, Thm. 1.2]
since p is odd, choose G such that NGp̂

∼= NX′ . Hence by Lemma 7.5 and [52, Thm. 7.6]
the theorem holds for X ′ if and only if it holds for G. But by [125, Thm. 2.27] the theorem
is true for G, which finishes the proof of the theorem. �

Remark 7.10. The same arguments as above shows that the conjectural classification for
p = 2 implies that Theorem 1.9 and Theorem 1.8 (1)⇔ (2)⇔ (4)⇒ (3) holds true for p = 2.
However, in Theorem 1.8, (3) is not equivalent to the other conditions since Z2[LSO(2n+1)]

W

is a polynomial algebra, since this is true for Sp(n), despite SO(2n + 1) having 2-torsion.

Remark 7.11. Notbohm states his classification of connected p-compact groups with
Zp[L]W a polynomial algebra in the setup of spaces BX with polynomial cohomology
(cf. [103]). This means that his uniqueness statement is a priori only uniqueness among
p-compact groups with torsion free Zp-cohomology (cf. Theorem 12.1). We will here briefly
sketch a direct but case-by-case way (following a line of argument given in a special case
in [94, Pf. of Thm. 5.3]) to show that for a p-compact the property of having torsion free
Zp-cohomology depends only on (W,L), which allows us to remove the extra assumption.

Assume that X is a connected p-compact group, p odd, such that Zp[LX ]WX is a poly-
nomial algebra. We want to show that H∗(BX;Zp) is a polynomial algebra as well. By
Theorem 12.2(1), (LX)WX

is torsion free, so π1(X) = (LX)WX
by Proposition 7.2. By the

Serre and Eilenberg-Moore spectral sequences H∗(BX;Zp) is a polynomial algebra if and
only ifH∗(B(X〈1〉);Zp) is a polynomial algebra. Furthermore by construction LX〈1〉 = SLX
and by Theorem 12.2(1) Zp[LX〈1〉]

WX is also a polynomial algebra, so we can without loss
of generality assume that X is simply connected. By [53, Thm. 1.4 and Rem. 1.6] we can
furthermore assume that X is a simple p-compact group.

By [6, Thm. 1.2] N̆X = T̆XoWX . Using Theorems 11.1 and 12.2 we first show that

the cohomology of N̆X is detected on elementary abelian p-subgroups. More precisely we
show that in each case there is a compact connected Lie group H such that N̆X contains
a subgroup isomorphic to N̆H p̂

with index prime to p having the required property. When
p - |W | we take H to be a torus, and if (WX , LX) is in family 1 or family 2a we take
H = SU(n) and H = U(n) respectively. If (WX , LX) is one of the exotic Zp-reflection
groups (G12, p = 3), (G29, p = 5), (G31, p = 5), or (G34, p = 7) we take H = SU(p),
cf. the proof of Theorem 5.1. The only remaining cases are the ones where (WX , LX) =
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(WG, LG ⊗ Zp) for one of the following pairs (G, p): (G2, p = 3), (3E6, p = 5), (2E7, p = 5),
(2E7, p = 7), and (E8, p = 7). In these cases we can by [78, Prop. 6.11] take H = SU(3),

SU(2) ×C2 SU(6), SU(8)/C2, SU(8)/C2 and SU(9)/C3 respectively. Since both N̆U(n)p̂
and

N̆SU(n)p̂
have cohomology which is detected on elementary abelian p-subgroups by [110,

Prop. 3.4] (for NU(n)p̂
; NSU(n)p̂

follows from this, cf. [98, Lem. 12.6]) we see that in all cases

the cohomology of N̆H p̂
is detected on elementary abelian p-subgroups. Hence, by a transfer

argument, the mod p cohomology of BX is detected on elementary abelian p-subgroups.
Next, we want to show that all elementary abelian p-subgroups of X can be conjugated

into a maximal torus. By Lemma 7.5 we just have to show that we can find some p-compact
group X ′ with the same maximal torus normalizer which has that property. If (WX , LX) is
of Lie type this follows from Borel’s theorem [8, Thm. B]. If (WX , LX) is exotic this is also
true since we know (by Theorem 5.3 or Notbohm’s work [103]) that there exist a p-compact
group with Weyl group (WX , LX) and classifying space having polynomial Zp-cohomology
algebra.

The fact that all elementary abelian p-subgroups of X are toral combined with the fact
that the cohomology is detected on elementary abelian p-subgroups implies that the mod
p cohomology of BX is concentrated in even degrees. Hence H∗(BX;Zp) is torsion free as
wanted.

Proof of Theorem 1.10. Let X be a connected finite loop space with maximal torus i : T →
X. Note that (X/T )p̂ ' X p̂/T p̂ by the fiber lemma [19, II 5.1], and consequently, by the
definition of Euler characteristic, χ(X/T ) = χ(X p̂/T p̂). Hence T p̂ → X p̂ will be a maximal
torus for the p-compact group X p̂, for all primes p.

For our connected finite loop space X, define WX(T ) to be the set of conjugacy classes
of self-equivalences ϕ of T such that i and iϕ are conjugate. We obviously have an injective
homomorphism WX → WX p̂

for all primes p and we now want to see that this map is
surjective as well, so that we can naturally identify (WX , π1(T )⊗ Zp) with (WX p̂

, LX p̂
).

First note that by [51, Pf. of Thm. 9.7] we can view WX p̂
as the Galois group of the

extension of polynomial algebras H∗
Qp

(BX)→ H∗
Qp

(BT ). But, since BX has finitely many

cells in each dimension and since BX is nilpotent, we can identify

H∗(BX;Q)⊗Q Qp
//

∼=

H∗(BT ;Q)⊗Q Qp

∼=

H∗
Qp

(BX) // H∗
Qp

(BT )

so the extensions H∗(BX;Q) → H∗(BT ;Q) and H∗
Qp

(BX) → H∗
Qp

(BT ) have canonically

isomorphic Galois groups. Hence any element in WX p̂
lifts to a canonical element in the

Galois group of the extension H∗(BX;Q) → H∗(BT ;Q). However, since BXQ and BTQ

are products of Eilenberg-Mac Lane spaces (cf. e.g. [117, Ch. V Prop. 6]), this Galois
group just identifies with the self-equivalences BTQ → BTQ which commute with the map
BiQ : BTQ → BXQ up to homotopy. Hence any element in WX p̂

gives rise to a compatible
family of self-equivalences of BTQ and BT l̂, for all primes l. So by the arithmetic square
[19, VI.8.1], we get a self-equivalence of BT which commutes with the map to BX up to
homotopy, i.e., an element in WX . The constructed element is a lift of the element in WX p̂

we started with, so the map WX →WX p̂
is surjective as well.
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Likewise, the argument above showed that WX is the Galois group of the extension
H∗(BX;Q)→ H∗(BT ;Q), so we have an isomorphism

H∗(BX;Q)
∼=→ H∗(BT ;Q)WX .

Since H∗(BX;Q) is a polynomial algebra we get by the Shephard-Todd-Chevalley theorem
(see [7, Thm. 7.2.1]) that (WX , π1(T )) is a Z-reflection group. Hence, by the proof of
Theorem 11.1, (WX , π1(T )) is the Weyl group of some compact connected Lie group G.

For each p we have an extension class γp ∈ H3(WX ;π1(T ) ⊗ Zp) corresponding to the
fibration sequence BT p̂ → BNX p̂

→ BWX . Since H3(WX ;π1(T )) is a finite abelian group,
and hence given as a sum of its p-primary parts, these extension classes identify with a
unique extension class γ ∈ H3(WX ;π1(T )). We define the loop space NX to be the loop
space of the total space in the fibration sequence BT → BNX → BWX with the canonical
action of WX on BT and extension class γ. Since the fiberwise Fp-completion of BNX with
respect to this defining fibration identifies with BNX p̂

, the arithmetic square produces a
canonical morphism NX → X. (NX is, quite naturally, called the maximal torus normalizer
of the finite loop space X [94, Def. 1.3].)

By [6] (see also [96], [57]) the extension classes defining T → NX → WX and T →
NG(T )→WG(T ) are both 2-torsion. Let B̃N denote the fiber-wise Z[12 ]-localization of the
total space of the fibration BT → BNG(T ) → BWG(T ) or equivalently the corresponding
fibration with BNX . We hence have embeddings

B̃N

##F
FFFFFFF

{{xxxxxxxx

BX[12 ] BG[12 ]

By the arithmetic square [19, VI.8.1], the following square is a pullback

BX[12 ] //

��

∏
p 6=2BX p̂

��
BXQ

// (
∏
p 6=2BX p̂)Q

and similarly for BG. By Theorem 1.4 we can construct unique maps between p-completions

under B̃N , and we obviously also have a unique map between the rationalizations. By

construction (as maps under B̃N) these maps agree on the rationalization of the product
of the p-completions, so by the arithmetic square we get an induced map BX[12 ]→ BG[12 ],
which by construction is an Fp-equivalence for all primes p. Since both spaces are one-
connected this implies that the map is a homotopy equivalence. �

8. Non-toral elementary abelian p-subgroups of the exceptional groups

In this section we find all conjugacy classes of non-toral elementary abelian p-subgroups
E, p odd, of any exceptional compact connected Lie group G, as well as their centralizers
CG(E) and Weyl groups W (E) = NG(E)/CG(E). (Recall that a subgroup of G is called
toral if it is contained in a torus in G and non-toral otherwise.) We do this by expanding on
the work of Griess [65], who found the maximal non-toral elementary abelian p-subgroups.

Our strategy is as follows. Using the work of Griess [65], we first find representatives
of the conjugacy classes of maximal non-toral elementary abelian p-subgroups. We then
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get lower bounds for their Weyl groups by producing explicit elements in these. From this
we are able to identify the non-maximal non-toral elementary abelian p-subgroups and get
lower bounds for their Weyl groups. Finally we get exact results on the Weyl groups by
computing centralizers.

To be compatible with the standard literature we will in this section state and prove all
theorems in the context of linear algebraic groups over the complex numbers C—we state
in Proposition 8.4 why this is equivalent to considering compact Lie groups. (The results
for G(C) can furthermore be translated into results for G(F ) for any algebraically closed
field F of characteristic prime to p, see [66, Thm. 1.22] and [62].)

This section is divided into four subsections. The first recalls some results from the theory
of linear algebraic groups and discusses the relation to compact Lie groups. The remaining
subsections deal with the elementary abelian 3-subgroups of the groups of type E6, E7 and
E8 respectively. (The remaining non-trivial cases E8(C), p = 5 and F4(C), p = 3 are treated
completely in [65, Lem. 10.3 and Thm. 7.4].)

For some of our computations for the groups 3E6(C) and E8(C) we have used the com-
puter algebra system Magma [13], although this reliance on computers could if needed be
replaced by some rather tedious hand calculations.

Notation 8.1. We use standard names for the linear algebraic groups we consider, e.g.
3E6(C) denotes the simply connected group of type E6 over C and E6(C) denotes its
adjoint version. We let Tn denote an n-dimensional torus, i.e., Tn = (C×)n.

To describe centralizers we follow standard notation for extensions of groups, cf. the
ATLAS [34, p. xx]. Thus A : B denotes a group which is the semidirect product of the
normal subgroup A with the subgroup B, and A ·B denotes a non-split extension of A with
B. If p is a prime number, pn denotes an elementary abelian p-group of rank n.

Whenever E is a concrete elementary abelian p-group of rank n we will always fix an or-
dered basis of E, so that GL(E) identifies with GLn(Fp). We make the standing convention
that all matrices acts on columns.

We identify a permutation σ in the symmetric group Σn with its permutation matrix
A = [aij ] given by aij = δi,σ(j) where δ is the Kronecker delta.

If K is a field, we let Mn(K) denote the set of n×n-matrices over K. For a1, . . . , an ∈ K
we let diag(a1, . . . , an) ∈ Mn(K) denote the diagonal matrix with the ai’s in the diagonal.
For 1 ≤ i, j ≤ n, eij ∈Mn(K) denotes the matrix whose only non-zero entry is 1 in position
(i, j). Given matrices A1 ∈ Mn1(K), . . . , Am ∈ Mnm(K) we let A1 ⊕ . . . ⊕ Am denote the
n × n-block matrix with the Ai’s in the diagonal, n = n1 + . . . + nm. We also need the
“blowup” homomorphism ∆n,m : Mn(K) −→ Mmn(K) defined by replacing each entry aij
by aijIm, where Im ∈Mm(K) is the identity matrix.

As p = 3 in all the cases we consider, we use some special notation. An arbitrary element
of F3 is denoted by ∗, and ε denotes an element of the multiplicative group F×

3 . We let

ω = e2πi/3 and η = e2πi/9 and define elements β, γ, τ1, τ2 ∈ SL3(C) by β = diag(1, ω, ω2),
γ = (1, 2, 3),

τ1 =
e−πi/18√

3




1 ω2 1
1 1 ω2

ω2 1 1




and τ2 = diag(η, η−2, η). Note that βτ1 = βγ, γτ1 = γ, βτ2 = β and γτ2 = βγ.
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8.1. Recollection of some results on linear algebraic groups. Recall that a (not
necessarily connected) linear algebraic group G is called reductive if the unipotent radical,
i.e., the largest normal connected unipotent subgroup of G, is trivial.

Theorem 8.2. Let G be a linear algebraic group over an algebraically closed field K.

(1) If A is a subgroup of G and S is some subset of A, then A is toral in G if and only
if A is toral in CG(S).

(2) If H is a maximal torus of G, then two subsets of H are conjugate in G if and
only if they are conjugate in NG(H). If A is a toral subgroup of G, then W (A) =
NG(A)/CG(A) is isomorphic to a subquotient of the Weyl group W = NG(H)/H of
G.

(3) Assume that G is a connected reductive group such that G′ is simply connected.
Then the centralizer of any semisimple element in G is connected. In particular,
if A is an abelian subgroup of G consisting of semisimple elements generated by at
most two elements, then A is toral.

(4) If G is reductive and σ is a semisimple automorphism of G, then the fixed point
subgroup Gσ is reductive and contains a regular element of G.

(5) Assume that G is a connected reductive group, let Z ⊆ G be a central subgroup, and
let π : G→ G/Z be the quotient homomorphism. If A is a subgroup of G, then A is
toral in G if and only if π(A) is toral in G/Z.

(6) Assume charK = 0 and let g be the Lie algebra of G. If S ⊆ G is a finite subset of
G, then the Lie algebra of CG(S) is given by

cg(S) = {x ∈ g|Ad(s)(x) = x for all s ∈ S}.
In particular, if S ⊆ G is a finite subgroup, then

dimCG(S) =
1

|S|
∑

s∈S

tr Ad(s) |
g
.

Proof. (1): Obviously, if A is toral in CG(S) then A is toral in G. Conversely, if A is toral
in G, then A ⊆ H for a torus H in G. Since S ⊆ A we get H ⊆ CG(S) and thus A is toral
in CG(S).

(2): The first part follows by a Frattini argument. Assume that A,Ag ⊆ H are conjugate

subsets of H. Then H and Hg−1
are maximal tori of CG(A) and thus conjugate in CG(A)

(cf. [71, Cor. 21.3.A]). Thus we may write H = Hg−1c for some c ∈ CG(A) and we conclude

that n = g−1c ∈ NG(H). Then An
−1

= Ac
−1g = Ag, which proves the first part. The second

part follows similarly, cf. [83, Prop. 1.1(i)].
(3): The first part which is due to Steinberg is proved in [25, Thm. 3.5.6]. The second

part follows from the first, cf. [123, II.5.1].
(4): We can assume G to be connected. In case G is semisimple and simply connected

the first claim is proved in [124, Thm. 8.1] and the general case reduces to this one. Indeed

we can find a finite cover G̃ of G which is a direct product of a semisimple simply connected
group and a torus, and σ lifts to a semisimple automorphism of G̃ by [124, 9.16]. For the
second claim see [134, Thms. 2 and 3] or [123, Pf. of Thm. II.5.16] in case G is semisimple;
the general case clearly reduces to this one.

(5): By [71, Cor. 21.3.C] we know that if H is a maximal torus of G, then π(H) is a
maximal torus of G/Z, and all maximal tori of G/Z are of this form. Thus if A is toral
in G, then π(A) is toral in G/Z. Conversely, if H ′ is a maximal torus of G/Z containing
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π(A), then by the above we have H ′ = π(H) for some maximal torus H of G. Thus we
get A ⊆ 〈H,Z〉. However since G is connected and reductive, we get Z ⊆ H by [71,
Cor. 26.2.A(b)]. Thus A ⊆ H and we are done.

(6): In case S consists of a single element, the first part follows from [71, Thm. 13.4(a)]
(note that the connectivity assumption in [71, Thm. 13.4] is only used in part (b)). The
general case follows from this by applying [71, Thm. 12.5(b)] to the centralizers CG(s),
s ∈ S.

Now assume that S ⊆ G is a finite subgroup, and let χ denote the character of the adjoint
representation of G restricted to S. Then the dimension of

cg(S) = {x ∈ g|Ad(s)(x) = x for all s ∈ S}.
equals the multiplicity of the trivial character in χ. By the orthogonality relations this is
given by

(χ |1) =
1

|S|
∑

s∈S

χ(s),

and we are done. �

We also need the following result whose proof is extracted from [115].

Theorem 8.3. Let G be a reductive linear algebraic group, H a maximal torus of G and
let N = NG(H). Let U ⊆ N be a subgroup consisting of semisimple elements such that
U/(U ∩ H) is cyclic. Let S be the identity component of HU (the subgroup of H fixed by
U), and assume that S is a maximal torus of CG(U). Then CN (U) = NCG(U)(S) and in
particular CN (U) is a maximal torus normalizer in CG(U).

Proof. As any element of CN (U) normalizes HU and hence also its identity component S,
the inclusion CN (U) ⊆ NCG(U)(S) is clear. Suppose conversely that x ∈ NCG(U)(S). Let

C = U ∩H. From [12, 2.15(d)] it follows that GC is reductive. By assumption the cyclic
group U/C acts by semisimple automorphisms on GC . It now follows from Theorem 8.2(4)

that GU = (GC)U/C is reductive and that every maximal torus of GU is contained in a
unique maximal torus of GC . Since C ⊆ H, we see that H is the maximal torus of GC

containing S. As Hx is also a maximal torus of GC and Hx ⊇ Sx = S we conclude that
Hx = H. Thus x ∈ CN (U) proving the result. �

We now explain the relationship between reductive complex linear algebraic groups and
compact Lie groups. If G is a complex linear algebraic group then the underlying variety of
G is an affine complex variety. By endowing this variety with the usual Euclidean topology
instead of the Zariski topology we may view G as a complex Lie group since the group
operations are given by polynomial maps.

Proposition 8.4. Let G be a complex linear algebraic group.

(1) Viewed as a Lie group, G contains a maximal compact subgroup which is unique up
to conjugacy, and for any such subgroup K we have a diffeomorphism G ∼= K ×Rs

for some s.
(2) Let K be a maximal compact subgroup of G, and let S, S′ ⊆ K be two subsets. If

S′ = Sg for some g ∈ G, then there exists k ∈ K such that xk = xg for all x ∈ S.
(3) Assume that G is reductive. If S is a finite subgroup of G, then CG(S) is also

reductive. If K is a maximal compact subgroup of G containing S, then CK(S) is a
maximal compact subgroup of CG(S).
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(4) If G is reductive and K is a maximal compact subgroup of G, then we have a
diffeomorphism Z(G) ∼= Z(K)×Rs for some s.

Proof. Note first that the identity component G1 of G seen as a Lie group coincides with
the identity component of G seen as a linear algebraic group [108, Ch. 3, §3, no. 1]. Thus
G/G1 is finite by [71, Prop. 7.3(a)]. The first claim is now part of the Cartan-Chevalley-
Iwasawa-Malcev-Mostow theorem [69, Ch. XV, Thm. 3.1] and the second claim also follows
from this, cf. [11, Ch. V, §24, Prop. 2].

In case G is reductive it is possible to give a more explicit form of the decomposition
above. By [71, Thm. 8.6] we may assume that G is a closed subgroup of GL(V ) for some
complex vector space V . From [108, Thm. 5.2.8] it follows that G has a compact real formK
and we may thus choose a non-degenerate Hermitian inner product on V which is invariant
under K (e.g. by [108, Thm. 3.4.2]). Let U(V ) denote the set of operators in GL(V ) which
are unitary with respect to the chosen inner product. Using [108, Problems 5.2.3 and 5.2.4]
we see that G ⊆ GL(V ) is self-adjoint and that K = G ∩ U(V ). The last part now follows
by combining [108, Cor. 2 of Thm. 5.2.2] with [108, Cor. 2 of Thm. 5.2.1].

If S is a subgroup of K, then S is selfadjoint since K consists of unitary operators. In
particular CG(S) is also a selfadjoint subgroup of GL(V ), so by [108, Cor. 3 of Thm. 5.2.1]
it follows that CK(S) = CG(S) ∩U(V ) is a maximal compact subgroup of CG(S).

It only remains to prove that CG(S) is reductive for a finite subgroup S of G. However
by [108, Problem 6.11] and [108, Ch. 4, §1, no. 2] we see that a complex linear algebraic
group is reductive if and only if its Lie algebra is reductive. Thus it suffices to prove that
the Lie algebra of CG(S) is reductive. However by Theorem 8.2(6) this Lie algebra equals

cg(S) = {x ∈ g|Ad(s)(x) = x for all s ∈ S}.
where g denotes the Lie algebra of G. The claim now follows from [30, Ch. V, §2, no. 2,
Prop. 8]. �

8.2. The groups E6(C) and 3E6(C), p = 3. In this subsection we consider the elementary
abelian 3-subgroups of the groups of type E6 over C. The group 3E6(C) has two non-
isomorphic faithful irreducible 27-dimensional representations. These have highest weight
λ1 and λ6 respectively and are dual to each other. An explicit construction of 3E6(C) based
on one of these representations was originally given by Freudenthal [60]. This construction
is described in more detail in [33, §2] from which we take most of our notation. In particular
we let K be the 27-dimensional complex vector space consisting of triples m = (m1,m2,m3)
of complex 3× 3-matrices mi, 1 ≤ i ≤ 3 where addition and scalar multiplication is defined
coordinatewise. We define a cubic form 〈·〉 on K by

〈m〉 = det(m1) + det(m2) + det(m3)− tr(m1m2m3).

Then 3E6(C) is the subgroup of GL(K) preserving the form 〈·〉. Moreover the stabilizer in
3E6(C) of the element (I3, 0, 0) ∈ K is the group F4(C). For g1, g2, g3 ∈ SL3(C) we have
the element sg1,g2,g3 of 3E6(C) given by

sg1,g2,g3 (m1,m2,m3) =
(
g1m1g

−1
2 , g2m2g

−1
3 , g3m3g

−1
1

)

for m = (m1,m2,m3) ∈ K. This gives a representation of SL3(C)3 which has kernel C3

generated by (ωI3, ωI3, ωI3), and we thus get an embedding of SL3(C)3/C3 in 3E6(C). We
will denote the element sg1,g2,g3 by [g1, g2, g3].

We let {eij,k}, 1 ≤ i, j, k ≤ 3 be the natural basis of K consisting of the elements eij,k whose

entries are all 0 except for the (j, k)-entry of the i’th matrix which equals 1. The elements
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of 3E6(C) which acts diagonally with respect to this basis of K form a maximal torus H

in 3E6(C). Let mj,k
i denote the (j, k)-entry of the matrix mi. We then have H-invariant

subgroups

uα1(t) = [I3, I3 + te1,3, I3] , u−α1(t) = [I3, I3 + te3,1, I3] ,

uα2(t) = [I3 + te2,1, I3, I3] , u−α2(t) = [I3 + te1,2, I3, I3] ,

uα3(t) = [I3, I3 + te2,1, I3] , u−α3(t) = [I3, I3 + te1,2, I3] ,

uα4(t) : (mi)i=1,2,3 7→


mi + t ·




0 −m2,3
i+2 0

0 0 0

0 m2,1
i+2 0







i=1,2,3

u−α4(t) : (mi)i=1,2,3 7→


mi + t ·




0 0 0

m3,2
i+1 0 −m1,2

i+1
0 0 0





i=1,2,3

uα5(t) = [I3, I3, I3 + te2,1] , u−α5(t) = [I3, I3, I3 + te1,2] ,

uα6(t) = [I3, I3, I3 + te1,3] , u−α6(t) = [I3, I3, I3 + te3,1] .

Here, in the description of u±α4(t), the mi’s should be counted cyclicly mod 3, e.g. mi+2 =
m1 for i = 2.

The associated roots αi, 1 ≤ i ≤ 6, of these root subgroups form a simple system in the
root system Φ(E6) of 3E6(C) (our numbering agrees with [15, p. 260–262]). For this simple
system, the highest weight of K is λ1. Furthermore the root subgroups u±αi

, 1 ≤ i ≤ 6,
have been chosen so that they satisfy [122, 8.1.1(i) and 8.1.4(i)], i.e. they form part of a
realization ([122, p. 133]) of Φ(E6) in 3E6(C). For α = ±αi, 1 ≤ i ≤ 6, and t ∈ C×, we
may then define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements h(t1, t2, t3, t4, t5, t6) =
∏6
i=1 hαi

(ti) and
the normalizer N(H) of the maximal torus is generated by H and the elements ni =
nαi

(1), 1 ≤ i ≤ 6. It should be noted that this notation differs from the one used in
[33]. More precisely, the element h(α, β, γ, δ, ε, ζ) in [33] is h(δ, α−1, γ−1, β, ε−1, ζ) in our
notation, and the elements n1, n2, n3, n4, n5 and n6 in [33] equal n1hα1(−1)hα3(−1),
n2h(−1, 1, 1,−1, 1,−1), n3hα1(−1), n4, n5hα6(−1) and n6hα5(−1)hα6(−1) respectively in
our notation.

From the description of the root system of type E6 in [15, p. 260–262] we see that the
center Z of 3E6(C) is cyclic of order 3 and is generated by the element z =

[
I3, ω

2I3, ωI3
]
.

We consider also the element a = [ωI3, I3, I3]. A straightforward computation shows that
the roots of the centralizer C3E6(C)(a) are

{±α1,±α2,±α3,±α5,±α6,±α̃,±(α1 + α3),±(α5 + α6),±(α2 − α̃)},
where α̃ is the longest root. The Dynkin diagram for this centralizer is the same as the
extended Dynkin diagram for E6 with the node α4 removed. In particular it has type
A2A2A2 and a simple system of roots is given by {α1, α3, α5, α6, α2,−α̃}. Since 3E6(C) is
simply connected, Theorem 8.2(3) implies that the centralizer C3E6(C)(a) is connected, and
thus it is generated by the maximal torus H and the root subgroups u±α(t) where α runs
through the simple roots {α1, α3, α5, α6, α2,−α̃}. Now note that uα̃(t) = [I3 + te3,1, I3, I3]
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and u−α̃(t) = [I3 + te1,3, I3, I3] are root subgroups with associated roots α̃ and −α̃ re-
spectively. Since these along with H and the root subgroups u±α1 , u±α2 , u±α3 , u±α5

and u±α6 generate the subgroup SL3(C)3/C3 of 3E6(C) from above, we conclude that
C3E6(C)(a) = SL3(C)3/C3.

To describe the conjugacy classes of elementary abelian 3-subgroups we need to introduce
some more elements. Consider the following elements in SL3(C)3/C3 ⊆ 3E6(C):

x1 = [I3, β, β] , x2 = [β, β, β] , y1 =
[
I3, γ, γ

2
]
, y2 = [γ, γ, γ] .

We also need the following elements in N(H):

s1 = n1n3n4n2n5n4n3n1n6n5n4n2n3n4n5n6,

s2 = n1n2n3n1n4n2n3n1n4n3n5n4n2n3n1n4n3n5n4n2n6n5n4n2n3n1n4·
n3n5n4n2n6n5n4n3n1

The action of these elements are as follows:

s1(m1,m2,m3) = (m3,m1,m2), s2(m1,m2,m3) = (mT

3,m
T

2,m
T

1),

where mT

i denotes the transpose of mi. Thus these elements acts by conjugation on the
subgroup SL3(C)3/C3 as follows

[g1, g2, g3]
s1 = [g2, g3, g1] , [g1, g2, g3]

s2 =
[(
g−1
1

)T
,
(
g−1
3

)T
,
(
g−1
2

)T]
.

Lemma 8.5. We have

z = h(ω, 1, ω2, 1, ω, ω2), a = h(ω, 1, ω2, 1, ω2, ω), x1 = h(ω, 1, ω, 1, ω, ω),

x2 = h(1, ω2, ω2, 1, ω2, 1), y1 = n1n3n5n6hα5(−1),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5hα2(−1).

Moreover conjugation by the element

n1n4n2n3n1n4n5n4n6n5n4n2n3n1n4 · hα2(−1)hα4(−1)

acts as follows:

a 7→ x2, x2 7→ a, y1 7→ s1, y2 7→ y2
2, x2x

−1
1 7→ hα4(ω) = [τ2, τ2, τ2] .

Proof. Both parts of the lemma may be checked by direct computation. The second part
also follows from the first by using the following relations in N(H): The element ni has
image sαi

in W ([122, 8.1.4(i)]), we have n2
i = hαi

(−1) ([122, 8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 6, where the number of factors on both sides equals the order of sαi
sαj

in W
([122, 9.3.2]). �

Notation 8.6. For our calculations, we need some information on the conjugacy classes of
elements of order 3 in 3E6(C). These are given in [33, Table 2]: There are 7 such conjugacy
classes, which we label 3A, 3B, 3B′, 3C, 3D, 3E and 3E′, where 3B′ and 3E′ denotes the
inverses of the classes 3B and 3E. This notation is almost identical to the notation in [33],
but differs from [65]. We will need the following, which follows quickly from [33, Table 2]
using the action of W on H: We have z ∈ 3E, a, x2, y2 ∈ 3C, x1, y1 ∈ 3D and x2x

−1
1 ∈ 3A.

Multiplication by z acts as follows on the conjugacy classes:

3A 7→ 3B, 3B 7→ 3B′, 3B′ 7→ 3A, 3C 7→ 3C, 3D 7→ 3D, 3E 7→ 3E′, 3E′ 7→ 1,

where 1 denotes the conjugacy class consisting of the identity element.
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Theorem 8.7. The conjugacy classes of non-toral elementary abelian 3-subgroups of 3E6(C)
are given by the following table.

rank name ordered basis 3E6(C)-class distribution C3E6(C)(E)

3 E3
3E6

〈a, x2, y2〉 3C26 E4
3E6

4 E4
3E6

〈z, a, x2, y2〉 3C783E13E′1 E4
3E6

Their Weyl groups with respect to the given ordered bases are as follows:

W (E3
3E6

) = SL3(F3), W (E4
3E6

) =




1 ∗ ∗ ∗
0
0
0

SL3(F3)




Proof. Non-toral subgroups: By [65, Thm. 11.13], there are two conjugacy classes of non-
toral elementary abelian 3-subgroups in 3E6(C), one non-maximal of rank three and one
maximal of rank 4. We may concretely realize these as follows. Consider the subgroups

E3
3E6

= 〈a, x2, y2〉 and E4
3E6

= 〈z, a, x2, y2〉 ,
which are readily seen to be elementary abelian 3-subgroups of rank 3 and 4 respectively.
In particular both groups are subsets of C3E6(C)(a) = SL3(C)3/C3, and since β, γ ∈ SL3(C)

does not commute, we see that the preimages of E3
3E6

and E4
3E6

under the projection

SL3(C)3 → SL3(C)3/C3 are non-abelian. Thus by Theorem 8.2(5) E3
3E6

and E4
3E6

are non-

toral in SL3(C)3/C3 = C3E6(C)(a) and hence also non-toral in 3E6(C) by Theorem 8.2(1).
Thus by the above these two groups represent the conjugacy classes of non-toral elementary
abelian 3-subgroups in 3E6(C).

Lower bounds for Weyl groups: By [65, Thm. 7.4] there is a unique non-toral elementary
abelian 3-subgroup of F4(C) of rank 3. Since we have an inclusion F4(C) ⊆ 3E6(C) this
subgroup may also be considered as a subgroup of 3E6(C). As its Weyl group in F4(C) is
SL3(F3), its Weyl group in 3E6(C) must contain SL3(F3). In particular it has order divisible
by 13 and since 13 - |W (E6)|, we conclude by Theorem 8.2(2) that E is non-toral in 3E6(C)
as well. Thus by the above E must be conjugate to E3

3E6
, and we get that W (E3

3E6
) contains

SL3(F3). From this we immediately see that W (E4
3E6

) contains the group



1 0 0 0
0
0
0

SL3(F3)




Note that the element
[
I3, β, β

2
]

commutes with z, a and x2 and conjugates y2 to y2z. Thus

it normalizes E4
3E6

and produces the element I4 + e1,4 in W (E4
3E6

). As a result we see that

W (E4
3E6

) contains the group 


1 ∗ ∗ ∗
0
0
0

SL3(F3)




Class distributions: Since a ∈ 3C by 8.6 and W (E3
3E6

) contains SL3(F3) which acts

transitively on E3
3E6
− {1}, the class distribution of E3

3E6
follows immediately. Using this
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and the information given in 8.6 about multiplication by z, the class distribution of E4
3E6

is easily found.
Centralizers: We have already seen that C3E6(C)(a) = SL3(C)3/C3. From this we directly

get

C3E6(C)(a, x2) = CSL3(C)3/C3
(x2) = 〈y2, (T2 ×T2 ×T2) /C3〉 ,

C3E6(C)(a, x2, y2) = 〈x2, y2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3〉 = E4
3E6

,

proving that C3E6(C)(E
3
3E6

) = C3E6(C)(E
4
3E6

) = E4
3E6

.
Exact Weyl groups: From the lower bounds above and the fact that z is central we get

SL3(F3) ⊆W (E3
3E6

) ⊆ GL3(F3) and




1 ∗ ∗ ∗
0
0
0

SL3(F3)


 ⊆W (E4

3E6
) ⊆




1 ∗ ∗ ∗
0
0
0

GL3(F3)




As C3E6(C)(a, x2) = 〈y2, (T2 ×T2 ×T2) /C3〉, we see that no element in C3E6(C)(a, x2)

conjugates y2 to y−1
2 . Hence diag(1, 1, 2) /∈ W (E3

3E6
) and diag(1, 1, 1, 2) /∈ W (E4

3E6
) which

shows that Weyl groups are the ones given in the theorem. �

We now turn to the group E6(C). As above we let Z be the center of 3E6(C) and we
let π : 3E6(C) → E6(C) = 3E6(C)/Z denote the projection. For g ∈ 3E6(C) we write g
instead of π(g) and similarly we let S = π(S) for a subset S ⊆ 3E6(C).

Lemma 8.8. Let E be a rank 2 non-toral elementary abelian 3-subgroup of E6(C). Then
the Weyl group W (E) is a subgroup of SL2(F3).

Proof. Let E = 〈g1, g2〉. By Theorem 8.2 part (5) and (3) the group 〈g1, g2〉 ⊆ 3E6(C)
is non-abelian. Thus setting z′ = [g1, g2] ∈ Z we have z′ 6= 1. Assume that σ ∈ W (E)

is represented by the matrix

[
a11 a12

a21 a22

]
, i.e. we have σ(g1) = (g1)

a11(g2)
a21 and σ(g2) =

(g1)
a12(g2)

a22 . Since σ is given by a conjugation in E6(C), it lifts to a conjugation in 3E6(C).

Now the relation [g1, g2] = z′ ∈ Z shows (z′)a11·a22−a12·a21 = z′, so since z′ 6= 1 we have
σ ∈ SL2(F3). �

Theorem 8.9. The conjugacy classes of non-toral elementary abelian 3-subgroups of E6(C)
are given by the following table:

rank name ordered basis 3E6(C)-class distribution CE6(C)(E) Z(CE6(C)(E))

2 E2a
E6

〈y1, x2〉 3C
18

3D
6
3E

1
3E

′1 E2a
E6

× PSL3(C) E2a
E6

2 E2b
E6

〈y1, x1〉 3D
24

3E
1
3E

′1 E2b
E6

× G2(C) E2b
E6

3 E3a
E6

〈a, y1, x2〉 3C
60

3D
18

3E
1
3E

′1 E3a
E6

◦〈a〉 (T2 : 〈y2〉) E3a
E6

3 E3b
E6

〈a, x2, y2〉 3C
78

3E
1
3E

′1 E3b
E6

· 33 E3b
E6

3 E3c
E6

〈a, y1, x1〉 3C
6
3D

72
3E

1
3E

′1 E3c
E6

◦〈a〉 SL3(C) E3c
E6

3 E3d
E6

〈
x2x

−1
1 , y1, x1

〉
3A

2
3B

2
3B

′2
3C

48
3D

24
3E

1
3E

′1 E3d
E6

◦〈
x2x

−1

1

〉 GL2(C) E3d
E6

◦〈
x2x

−1

1

〉 T1

4 E4a
E6

〈a, y2, y1, x2〉 3C
186

3D
54

3E
1
3E

′1 E4a
E6

E4a
E6

4 E4b
E6

〈
a, x2x

−1
1 , y1, x1

〉
3A

6
3B

6
3B

′6
3C

150
3D

72
3E

1
3E

′1 E4b
E6

◦〈
a,x2x

−1

1

〉 T2 E4b
E6

◦〈
a,x2x

−1

1

〉 T2
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In particular we have 3Z(CE6(C)(E)) = E for any non-toral elementary abelian 3-subgroup
of E6(C). (In the table the 3E6(C)-class distribution of E ⊆ E6(C) denotes the class
distribution of π−1(E) ⊆ 3E6(C).)

The Weyl groups of these groups with respect to the given ordered bases are given as
follows:

W (E2a
E6

) =

[
ε ∗
0 ε

]
, W (E2b

E6
) = SL2(F3), W (E3a

E6
) =



ε1 ∗ ∗
0 ε2 ∗
0 0 ε2




W (E3b
E6

) = SL3(F3), W (E3c
E6

) =




ε ∗ ∗
0
0

SL2(F3)


 , W (E3d

E6
) =




ε 0 0
0
0

SL2(F3)




W (E4a
E6

) =




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det


 , W (E4b

E6
) =




ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)




where det denotes the determinant of the matrix from GL2(F3) in the description of W (E4a
E6

).

Proof. Maximal non-toral subgroups: By [65, Thm. 11.14], there are two conjugacy classes
of maximal non-toral elementary abelian 3-subgroups in E6(C), both of rank 4. We may
concretely realize these as follows. Consider the subgroups

Ea = 〈z, a, y1, y2, x2〉 and Eb =
〈
z, a, x2x

−1
1 , y1, x1

〉

of C3E6(C)(a) = SL3(C)3/C3. Since the commutator subgroup of both of these is Z, we see

that E4a
E6

= π(Ea) and E4b
E6

= π(Eb) are elementary abelian 3-subgroups of rank 4 in E6(C).

It follows from Theorem 8.2(5) that both E4a
E6

and E4b
E6

are non-toral in E6(C). We will see
below that their class distributions are as given in the table. From this it follows that they
are not conjugate and thus represents the two conjugacy classes of maximal elementary
abelian 3-subgroups in E6(C).

Lower bounds for Weyl groups of maximal non-toral subgroups: We can find lower bounds
for the Weyl groups of the maximal non-toral elementary abelian 3-subgroups by conjugating
with elements coming from the centralizer C3E6(C)(a) = SL3(C)3/C3 and the normalizer
N(H) of the maximal torus.

The elements [β2, I3, I3], [I3, τ1, τ2
1 ], s1 and s2 normalize E4a

E6
and conjugation by these

elements induce the automorphisms on E4a
E6

given by the matrices I4+e1,2, I4+e3,4, I4+e2,3
and diag(2, 1, 2, 2). Moreover, by Lemma 8.5 we may conjugate the ordered basis of E4a

E6

into the ordered basis
〈
x2, y

2
2 , s1, a

〉
. Noting that the element [τ1, τ1, τ1] commutes with y2,

s1 and a and conjugates x2 into x2y2, we see that W (E4a
E6

) contains the element I4 + e2,1.
The above matrices are easily seen to generate the group

W ′(E4a
E6

) =




GL2(F3)
∗
∗

∗
∗

0 0 det ∗
0 0 0 det




and thus W 4a
E6

contains this group.
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Now consider E4b
E6

and let σ = −(2, 3) ∈ SL3(C). We then see that the elements

[I3, τ1, τ2
1 ], [I3, τ2β, τ2

2 ], [σ, I3, I3], [γ, I3, I3], [I3, β2, I3] and s2 normalize E4b
E6

, and conju-

gation by these elements induce the automorphisms on E4b
E6

given by the matrices I4 + e3,4,
I4 + e4,3, diag(1, 2, 1, 1), I4 + e1,2, I4 + e1,3 and −I4. These matrices generate the group

W ′(E4b
E6

) =




ε1 ∗ ∗ ∗
0 ε2 0 0
0
0

0
0

SL2(F3)




and thus W 4b
E6

contains this group.
Orbit computation: Any elementary abelian 3-subgroup of rank 1 is toral since E6(C)

is connected. As we already know that E4a
E6

and E4b
E6

are representatives of the maximal
non-toral elementary abelian 3-subgroups, we may find the conjugacy classes of non-toral
elementary abelian 3-subgroups of rank 2 and 3 by studying subgroups of these.

Under the action of W ′(E4a
E6

), the set of rank 2 subgroups of E4a
E6

has orbit representatives

E2a
E6

= 〈y1, x2〉 , 〈a, x2〉 , 〈a, y1〉 and 〈a, y2〉 ,
and under the action ofW ′(E4b

E6
), the set of rank 2 subgroups of E4b

E6
has orbit representatives

E2a
E6

= 〈y1, x2〉 , E2b
E6

= 〈y1, x1〉 , 〈a, x2〉 , 〈a, y1〉 ,
〈
a, x2x

−1
1

〉
and

〈
x2x

−1
1 , x1

〉
.

Similarly we find that under the action of W ′(E4a
E6

), the set of rank 3 subgroups of E4a
E6

has
orbit representatives

E3a
E6

= 〈a, y1, x2〉 , E3b
E6

= 〈a, y2, x2〉 and 〈a, y1, y2〉 ,
and that under the action of W ′(E4b

E6
), the set of rank 3 subgroups of E4b

E6
has orbit repre-

sentatives

E3a
E6

= 〈a, y1, x2〉 , E3c
E6

= 〈a, y1, x1〉 , E3d
E6

=
〈
x2x

−1
1 , y1, x1

〉
and

〈
a, x2x

−1
1 , x1

〉
.

Other non-toral subgroups: We see directly that the subgroups 〈a, x2〉,
〈
a, x2x

−1
1

〉
,
〈
x2x

−1
1 , x1

〉

and
〈
a, x2x

−1
1 , x1

〉
are toral. Noting that the elements β and γ are conjugate in SL3(C) we

see that the group 〈a, y1, y2〉 is conjugate to the group
〈
a, [I3, β, β2], x2

〉
which is obviously

toral. Thus we see that the groups 〈a, y1, y2〉, 〈a, y1〉 and 〈a, y2〉 are also toral. Using the
fact that [y1, x1] = [y1, x2] = z we see from Theorem 8.2(5) that both E2a

E6
and E2b

E6
are

non-toral in E6(C). Since the groups E3a
E6

, E3c
E6

and E3d
E6

all contain either E2a
E6

or E2b
E6

they

are also non-toral. Using Theorem 8.2(5) we see that the group E3b
E6

is non-toral in E6(C),

since we know that π−1(E3b
E6

) = E4
3E6

is non-toral in 3E6(C) by Theorem 8.7.

Class distributions: Using 8.6 and the action of the groups W ′(E4a
E6

) and W ′(E4b
E6

) it is
not hard to verify the class distributions in the table. As an example consider the group
E4b
E6

. From the action of W ′(E4b
E6

) we see that E4b
E6
− {1} contains 2 elements conjugate to

a, 6 elements conjugate to x2x
−1
1 , 24 elements conjugate to x1 and 48 elements conjugate

to x2. Thus by 8.6, the set π−1(E4b
E6
−{1}) contains 6 elements from each of the classes 3A,

3B and 3B′, 3 · (2 + 48) = 150 elements from the class 3C and 3 · 24 = 72 elements from
the class 3D. Including the elements z and z2 from the classes 3E and 3E′ respectively, we
get the class distribution of π−1(E4b

E6
) − {1} given in the table. Similar computations give
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the remaining entries in the table. Since these distributions are different we see that the
groups in the table are not conjugate and thus they provide a set of representatives for the
conjugacy classes of non-toral elementary abelian 3-subgroups of E6(C).

Lower bounds for other Weyl groups: We now show that the other matrix groups in the
table are all lower bounds for the remaining Weyl groups. To do this consider one of the
non-maximal groups E from the table. We then have E ⊆ E4a

E6
or E ⊆ E4b

E6
, and we get

a lower bound on W (E) by considering the action on E of the subgroup of W ′(E4a
E6

) or

W ′(E4b
E6

) fixing E. As an example we see that E2a
E6
⊆ E4a

E6
and that the stabilizer of E2a

E6

inside W ′(E4a
E6

) is 


GL2(F3)
0
0

0
0

0 0 det x
0 0 0 det




where det is the determinant of the matrix from GL2(F3). The action of such a matrix on
E2a
E6

is given by

y1 7→ (y1)
det, x2 7→ (y1)

x(x2)
det.

Thus W (E2a
E6

) contains the group

W ′(E2a
E6

) =

[
ε ∗
0 ε

]

as claimed. Similar computations show that for the groups E = E2b
E6

, E3a
E6

, E3c
E6

and E3d
E6

,

the group W ′(E) occurring in the theorem is a lower bound for the Weyl group W (E).
For the group E3b

E6
= 〈a, x2, y2〉 we know the structure of W (π−1(E3b

E6
)) = W (E4

3E6
) by

Theorem 8.7. From this we immediately get W (E3b
E6

) = SL3(F3).
Exact Weyl groups: We now prove that the lower bounds on the Weyl groups established

above are in fact equalities. By Lemma 8.8 the Weyl groups W (E2a
E6

) and W (E2b
E6

) are

subgroups of SL2(F3). From this we see that W (E2b
E6

) = SL2(F3) and that W (E2a
E6

) is equal

to either W ′(E2a
E6

) or SL2(F3), since these are the only subgroups of SL2(F3) containing

W ′(E2a
E6

). We have E2a
E6

= 〈y1, x2〉, and by 8.6 we see that the elements y1 and x2 are

not conjugate in E6(C). In particular we see that W (E2a
E6

) cannot act transitively on the

non-trivial elements of E2a
E6

, and we conclude that W (E2a
E6

) = W ′(E2a
E6

) is the group from
above.

For each of the remaining non-toral subgroups we now show that a strictly larger Weyl
group contradicts the Weyl group results already established. The groups E = E3a

E6
, E3d

E6
,

and E4b
E6

all contain E2a
E6

. A direct computation shows that any proper overgroup of W ′(E)

in GL(E) contains an element which normalizes the subgroup E2a
E6

and induces an auto-

morphism which does not lie in W (E2a
E6

). Hence W (E) = W ′(E). If E = E3c
E6

a similar

argument, using the subgroup E2b
E6

, again shows that W (E) = W ′(E). Consider finally

E = E4a
E6

. Each proper overgroup of W ′(E) contains an element which normalizes one of

the subgroups E2a
E6

or E3b
E6

and induces an automorphism on it not contained in its Weyl

group. Hence W (E) = W ′(E). This concludes the proof that the Weyl groups listed in the
theorem are the correct ones.

Centralizers: Let Θ : SL3(C) −→ SL3(C)3/C3 ⊆ 3E6(C) denote the homomorphism
given by Θ(g) = [g, g, g] for g ∈ SL3(C). By Lemma 8.5 the group E2a

E6
= 〈x2, y1〉 is
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conjugate to the group 〈a, s1〉. Since as1 = az2 we obtain CE6(C)(a) = 〈s1,SL3(C)3/C3〉,
and hence

CE6(C)(a, s1) = 〈a, s1, z,Θ(SL3(C))〉 = 〈a, s1, z〉 ×Θ(SL3(C)) = 〈a, s1〉 × PSL3(C),

proving the claims for E2a
E6

. By abusing the notation slightly, we let g denote the image
of g ∈ SL3(C) in the quotient PSL3(C). From Lemma 8.5 we then see that the elements

a, y2 and x2x
−1
1 in CE6(C)(E

2a
E6

) correspond to the elements β, γ2 and τ2 in the PSL3(C)

component of CE6(C)(E
2a
E6

). Thus we immediately get

CE6(C)(E
3a
E6

) = E2a
E6
×CPSL3(C)(β), CE6(C)(E

3d
E6

) = E2a
E6
×CPSL3(C)(τ2),

CE6(C)(E
4a
E6

) = E2a
E6
×CPSL3(C)(β, γ2), CE6(C)(E

4b
E6

) = E2a
E6
×CPSL3(C)(β, τ2).

Note that CPSL3(C)(β) = T2 : 〈γ〉, giving CPSL3(C)(β, γ2) =
〈
β, γ

〉
and CPSL3(C)(β, τ2) =

T2. From this the results on E3a
E6

, E4a
E6

and E4b
E6

follow directly. Note also that CPSL3(C)(τ2) ∼=
GL2(C) from which we deduce the claims about E3d

E6
.

Now consider the group E3b
E6

. Since CE6(C)(a) = 〈s1,SL3(C)3/C3〉 we get

CE6(C)(a, x2) = 〈s1, y1, y2, (T2 ×T2 ×T2) /C3〉,
CE6(C)(a, x2, y2) = 〈s1, y1, y2, [I3, β, β2] , x2, (〈ωI3〉 × 〈ωI3〉 × 〈ωI3〉) /C3〉

and thus CE6(C)(E
3b
E6

) =
〈
E3b
E6
, s1, y1, [I3, β, β2]

〉
. It is now easy to check that CE6(C)(E

3b
E6

)

has the structure E3b
E6
· 33 and that Z(CE6(C)(E

3b
E6

)) = E3b
E6

. For the group E3c
E6

we obtain

CE6(C)(a, x1) = 〈y1, (SL3(C)×T2 ×T2) /C3〉,
CE6(C)(a, x1, y1) = 〈y1, x1, (SL3(C)× 〈ωI3〉 × 〈ωI3〉) /C3〉.

Thus the centralizer CE6(C)(E
3c
E6

) equals the central product E3c
E6
◦〈a〉 SL3(C) and we obtain

the claims about E3c
E6

.

Finally we consider the group E2b
E6

= 〈y1, x1〉. If g ∈ π−1(CE6(C)(E
2b
E6

)) then [g, y1] , [g, x2] ∈
Z, and since [y1, x2] = z it follows that g ∈ π−1(E2b

E6
) ◦Z C3E6(C)(π

−1(E2b
E6

)). Thus we have

CE6(C)(E
2b
E6

) = E2b
E6
× C3E6(C)(π−1(E2b

E6
)).

A direct computation shows that C3E6(C)(x1) has type T2D4 and a system of simple roots
of the centralizer is given by {α1 + α3 + α4, α2, α4 + α5 + α6, α3 + α4 + α5}. From this we
see that the 2-dimensional torus consists of the elements h(α, 1, γ, 1, α, γ) where α, γ ∈ C×.
Moreover we see that C3E6(C)(x1) = T2 ◦C Spin(8,C), where the central product is over
the group C = Z(Spin(8,C)) = C2 × C2 which consist of the elements h(α, 1, γ, 1, α, γ),
α, γ = ±1.

Let σ denote the automorphism of C3E6(C)(x1) given by conjugation with y1. A direct

check shows that the map from C to C given by x 7→ x−1xσ is surjective. It then follows
that

C3E6(C)(π
−1(E2b

E6
)) = (T2 ◦C Spin(8,C))σ = T σ2 ◦Cσ Spin(8,C)σ .

We have T σ2 = 〈z〉, so C3E6(C)(π
−1(E2b

E6
)) = 〈z〉 × Spin(8,C)σ . Using the class distribution

of π−1(E2b
E6

) found above together with [33, Table 2] and Theorem 8.2(6) we find

dimC3E6(C)(π
−1(E2b

E6
)) =

1

33
·
(
3 · 78 + 24 · (30 + 24ω + 24ω2)

)
= 14.
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Thus Spin(8,C)σ has dimension 14 and since Z(Spin(8,C))σ = 1 we also see that Spin(8,C)σ

has rank less than 4. From this it follows that the identity component of Spin(8,C)σ

must have type G2. By [124, Thm. 8.1] we know that Spin(8,C)σ is connected, so we get
Spin(8,C)σ = G2(C) and hence C3E6(C)(π

−1(E2b
E6

)) = 〈z〉 × G2(C). Combining this with

the computation from above we conclude CE6(C)(E
2b
E6

) = E2b
E6
×G2(C). �

For the proof of our main results we need the following auxiliary results about the two
non-toral elementary abelian 3-subgroups of rank 2.

Proposition 8.10. Let E be an elementary abelian 3-group of rank 2 with basis (e1, e2)
and consider the 4 homomorphisms µi : E → NE6(C)(H) (the maximal torus normalizer in
E6(C)), 1 ≤ i ≤ 4 defined as follows:

µ1 : e1 7→ y1, e2 7→ x2,

µ2 : e1 7→ y1, e2 7→ x2y1,

µ3 : e1 7→ y1, e2 7→ x2y
−1
1 ,

µ4 : e1 7→ x1, e2 7→ x2y
−1
1 .

Then µi(E) is conjugate to E2a
E6

for all i and µ−1
i (H) equals the 4 distinct rank 1 subgroups

of E for i = 1, . . . , 4. Moreover TE = (H
µi(E)

)1 is independent of i and CNE6(C)(H)(µi(E))

is a maximal torus normalizer in CE6(C)(µi(E)) for all i. The canonical homomorphism

E × TE
µi×1−→ N(H)→ E6(C) does not depend on i up to conjugacy in E6(C).

Proof. Obviously µ−1
1 (H) = 〈e2〉, µ−1

2 (H) = 〈e1 − e2〉, µ−1
3 (H) = 〈e1 + e2〉 and µ−1

4 (H) =

〈e1〉, so µ−1
i (H) equals the 4 distinct rank 1 subgroups of E for i = 1, . . . , 4.

Since x1, x2 ∈ H, it is clear that the identity component of H
µi(E)

equals the identity

component of H
y1. Hence TE = (H

µi(E)
)1 is independent of i and as y1 =

[
I3, γ, γ

2
]
, a

direct computation shows that TE consists of the elements of the form [g, I3, I3], g ∈ T2,
where T2 ⊆ SL3(C) denotes the maximal torus consisting of diagonal matrices.

We now prove that the homomorphisms E
µi−→ CE6(C)(TE) are conjugate in CE6(C)(TE).

As a ∈ TE we find that CE6(C)(TE) consists of the elements [g1, g2, g3], where g1 ∈ T2 and

g2, g3 ∈ SL3(C) are arbitrary. Note first that the conjugation by the element
[
I3, τ1, τ2

1

]
∈

CE6(C)(TE) sends y1 to itself and x2 to x2y1. Hence the homomorphism E
µi−→ CE6(C)(TE)

is conjugate to the homomorphism E
µi+1−→ CE6(C)(TE) for i = 1, 2. Letting

τ3 = −e
πi/18

√
3




1 ω2 1
1 1 ω2

1 ω ω


 ∈ SL3(C),

we get βτ3 = βγ and γτ3 = β2. Thus the conjugation by the element
[
I3, τ2τ

−1
1 , τ3

]
∈

CE6(C)(TE) sends y1 to x1 and x2 to x2y
−1
1 and hence the homomorphism E

µ1−→ CE6(C)(TE)

is conjugate to the homomorphism E
µ4−→ CE6(C)(TE). This proves the claim. We conclude

that E × TE µi×1−→ N(H) → E6(C) is independent of i up to conjugacy in E6(C) and also
that µi(E) is conjugate to µ1(E) = E2a

E6
for all i.
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Since CE6(C)(E
2a
E6

) has rank 2 it follows that TE is a maximal torus in CE6(C)(µi(E)) for

all i. Since µi(E) is elementary abelian of rank 2 and µi(E) ∩H 6= 1 it now follows from
Theorem 8.3 that CNE6(C)(H)(µi(E)) is a maximal torus normalizer in CE6(C)(µi(E)) for all

i. �

Proposition 8.11. An element α ∈W (E2b
E6

) acts up to conjugacy by α×1 on CE6(C)(E
2b
E6

) =

E2b
E6
×G2(C).

Proof. Since G2(C) is connected and has trivial center it is clear that Out(E2b
E6
×G2(C)) =

Out(E2b
E6

)×Out(G2(C)). The result now follows as Out(G2(C)) = 1 (e.g. by [71, Thm. 27.4]).
�

8.3. The group E8(C), p = 3. In this section we consider the elementary abelian 3-
subgroups of the group E8(C). By using [16, Table 2, p. 214] we see that the smallest faithful
representation of E8(C) is the adjoint representation, i.e. the representation given by the
action of E8(C) on its Lie algebra e8, which has dimension 248. For our computations, we
explicitly construct this representation on a computer by following the recipe in [24, Ch. 4].
(As explained in [24, Ch. 4] there is some ambiguity in choosing a Chevalley basis of e8 and
we fix a certain such choice; a different choice affects our formulas at only one point—see
Remark 8.12.)

Letting Φ(E8) denote the root system of type E8 (we use the notation of [15, p. 268–
270]), we have in particular a maximal torus H generated by the elements hαi

(t), 1 ≤ i ≤ 8,
t ∈ C× ([24, p. 92, p. 97]) and root subgroups uα(t), α ∈ Φ(E8), t ∈ C. The normalizer
N(H) of the maximal torus, is generated by H and the elements ni = nαi

, 1 ≤ i ≤ 8 ([24,
p. 93, p. 101]). We let

h(t1, t2, t3, t4, t5, t6, t7, t8) =
8∏

i=1

hαi
(ti).

Note that by [24, p. 100 and Lem. 6.4.4] the root subgroups uα form a realization ([122,
p. 133]) of Φ(E8) in E8(C). In particular we have the following relations. The element ni
has image sαi

in W = W (E8) ([122, 8.1.4(i)]), we have n2
i = hαi

(−1) ([122, 8.1.4(ii)]) and

ninjni . . . = njninj . . .

for 1 ≤ i, j ≤ 8, where the number of factors on both sides equals the order of sαi
sαj

in W
([122, 9.3.2]).

Now let a = hα1(ω)hα2(ω)hα3(ω
2) ∈ E8(C). Direct computation shows that for any root

α ∈ Φ(E8) we have α(a) = ω2〈α,λ2〉. From this we see that the Dynkin diagram of the
centralizer CE8(C)(a) is the same as the extended Dynkin diagram of E8 with the node α2

removed. Thus it has type A8 and a simple system of roots is given by

{α1, α3, α4, α5, α6, α7, α8,−α̃},
where α̃ is the longest root. As in [15, p. 250–251] we identify Φ(A8) with the set of elements
in R9 of the form ei − ej with i 6= j and 1 ≤ i, j ≤ 9, where ei denotes the i’th canonical
basis vector in R9. We now consider SL9(C), which is the simply connected group of type
A8 over C. Given a root α′ = ei − ej ∈ Φ(A8) we let u′α′(t) = I9 + tei,j for t ∈ C. With
respect to the maximal torus consisting of the diagonal matrices, this is a root subgroup
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of SL9(C) corresponding to the root α′. The roots α′
i = ei − ei+1, 1 ≤ i ≤ 8, is a simple

system in Φ(A8). From the above we then see that

u′±α′
1
(t) 7→ u±α1(t), u′±α′

2
(t) 7→ u±α3(t), u′±α′

3
(t) 7→ u±α4(t), u′±α′

4
(t) 7→ u±α5(t),

u′±α′
5
(t) 7→ u±α6(t), u′±α′

6
(t) 7→ u±α7(t), u′±α′

7
(t) 7→ u±α8(t), u′±α′

8
(t) 7→ u∓α̃(t)

defines a homomorphism SL9(C)→ E8(C) onto the centralizer CE8(C)(a). It is easy to check
that this map has kernel C3 = 〈ωI9〉 and thus we may make the identification CE8(C)(a) =
SL9(C)/C3. For any g ∈ SL9(C) we denote by g its image in SL9(C)/C3 = CE8(C)(a) ⊆
E8(C). In particular we see that a = ηI9 corresponds to the element a from above. We also
define the following elements in SL9(C) :

x1 = diag(1, ω, ω2, 1, ω, ω2, 1, ω, ω2), x2 = diag(1, 1, 1, ω, ω, ω, ω2 , ω2, ω2),

x3 = diag(1, 1, 1, 1, 1, 1, ω, ω, ω), y1 = (1, 2, 3)(4, 5, 6)(7, 8, 9),

y2 = (1, 4, 7)(2, 5, 8)(3, 6, 9).

From the explicit homomorphism above we easily find

a = hα1(ω)hα2(ω)hα3(ω
2), x1 = hα1(ω)hα5(ω)hα8(ω),

x2 = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω), x3 = hα1(ω
2)hα3(ω)hα5(ω

2)hα6(ω),

and a direct computation in E8(C) shows that

n−α̃ = n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8·
n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5n4n2n3n4n5n6n7n8.

Remark 8.12. A different choice of Chevalley basis for e8 may effect the expression for n−α̃
by an order two element in H. If a Chevalley basis is chosen such that the above formula
holds then all further formulas will be independent of the choice.

From this and the explicit homomorphism above we find, either by direct computation
or by using the relations in N(H), that

y1 = n1n3n5n6n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6n5·
n4n2n3n4n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3·
n1n7n6n5n4n2n3n4n5n6n7n8 · hα1(−1)hα2(−1)hα7(−1),

y2 = n2n3n1n4n2n3n4n5n4n2n3n4n6n5n4n2n3n1n4n7n6n5n4·
n2n3n1n4n3n5n6n7n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5·
n4n3n1n7n6n5n4n2n3n4n5n8n7n6 · hα2(−1)hα5(−1).

Notation 8.13. To distinguish subgroups of E8(C), we need some information on the
conjugacy classes of elements of order 3. These are given in [65, Table VI] (which is taken
from [32, Table 4]): There are 4 such conjugacy classes, which we label 3A, 3B, 3C and
3D. Moreover these classes may be distinguished by their traces on e8. Since the trace of
the element h ∈ H is given by 8+

∑
α∈Φ(E8) α(h) we get a ∈ 3A, x1, x2, x3, y1, y2 ∈ 3B and

x3a−1 ∈ 3D.
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Notation 8.14. If K is a field and n is a natural number, we define the group of symplectic
similitudes as CSp2n(K) = {X ∈ GL2n(K)|XtBX = cB, c ∈ K×}, where

B =

[
0 −1
1 0

]
⊕ . . . ⊕

[
0 −1
1 0

]

︸ ︷︷ ︸
n times

We define the homomorphism χ : CSp2n(K)→ K× by χ(X) = c, where XtBX = cB. The
kernel of χ is the symplectic group Sp2n(K). (The notation CSp is taken from [84].)

Theorem 8.15. The conjugacy classes of non-toral elementary abelian 3-subgroups of
E8(C) are given by the following table.

rank name ordered basis E8(C)-class dist. CE8(C)(E) Z(CE8(C)(E))

3 E3a
E8

〈x1, y1, a〉 3A183B8 E3a
E8
× PSL3(C) E3a

E8

3 E3b
E8

〈x1, y1, x3〉 3B26 E3b
E8
×G2(C) E3b

E8

4 E4a
E8

〈
x1, y1, x3, x3a−1

〉
3A523B263D2 E4a

E8
◦〈x3a−1〉 GL2(C) E4a

E8
◦〈x3a−1〉 T1

4 E4b
E8

〈x2, x1, y1, a〉 3A543B26 E4b
E8
◦〈x2〉 (T2 : 〈y2〉) E4b

E8

4 E4c
E8

〈x2, x1, y1, x3〉 3B80 E4c
E8
◦〈x2〉 SL3(C) E4c

E8

5 E5a
E8

〈
x2, x1, y1, x3, x3a−1

〉
3A1563B803D6 E5a

E8
◦〈x2,x3a−1〉 T2 E5a

E8
◦〈x2,x3a−1〉 T2

5 E5b
E8

〈x1, y1, x2, y2, a〉 3A1623B80 E5b
E8

E5b
E8

In particular we have 3Z(CE8(C)(E)) = E for any non-toral elementary abelian 3-subgroup
of E8(C).

The Weyl groups of these groups with respect to the given ordered bases are given as
follows:

W (E3a
E8

) =


 GL2(F3)

∗
∗

0 0 det


 , W (E3b

E8
) = SL3(F3), W (E4a

E8
) =




SL3(F3)
0
0
0

0 0 0 ε




W (E4b
E8

) =




ε ∗ ∗ ∗
0
0

GL2(F3)
∗
∗

0 0 0 det


 , W (E4c

E8
) =




ε ∗ ∗ ∗
0
0
0

SL3(F3)




W (E5a
E8

) =




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2



, W (E5b

E8
) =




CSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ




where det is the determinant of the matrix from GL2(F3) in the description of W (E3a
E8

)

and W (E4b
E8

). In the description of W (E5b
E8

), χ denotes the value of the homomorphism

χ : CSp4(F3)→ F×
3 defined in 8.14 evaluated on the matrix from CSp4(F3).

Remark 8.16. Note that our information on the rank five subgroup E5a
E8

corrects [65].
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Proof of Theorem 8.15. Maximal non-toral subgroups: By [65, Lems. 11.7 and 11.9], any
maximal non-toral elementary abelian 3-subgroup of E8(C) contains an element of type
3A. We may thus find representatives in CE8(C)(a) = SL9(C)/C3. From [65, Cor. 11.10], it
follows that there are two conjugacy classes of these maximal non-toral elementary abelian
3-subgroups: E5a

E8
and E5b

E8
, both of rank 5. Moreover, by [65, Lem. 11.5], their preimages

in SL9(C) may be chosen to have the shapes 31+2 ◦C3 9 × 3 × 3 and 31+4 ◦C3 9. Using the
representation theory of extraspecial 3-groups ([64, Ch. 5.5]) we find that E5a

E8
is represented

by
〈
x2, x1, y1, x3, x3a−1

〉
and that E5b

E8
is represented by 〈x1, y1, x2, y2, a〉.

Lower bounds for Weyl groups of maximal non-toral subgroups: We can find lower bounds
for the Weyl groups of E5a

E8
and E5b

E8
by conjugating with elements in the centralizer

CE8(C)(a) = SL9(C)/C3 and the normalizer N(H) of the maximal torus.
Note that

a = ηI3 ⊕ ηI3 ⊕ ηI3, x1 = β ⊕ β ⊕ β, x2 = I3 ⊕ ωI3 ⊕ ω2I3,

x3 = I3 ⊕ I3 ⊕ ωI3, y1 = γ ⊕ γ ⊕ γ
and (A⊕B ⊕ C)y2 = B ⊕ C ⊕A. Conjugation by τ1 ⊕ τ1 ⊕ τ1, τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β
gives

τ1 ⊕ τ1 ⊕ τ1 : a 7→ a, x1 7→ x1y1, x2 7→ x2, x3 7→ x3, y1 7→ y1, y2 7→ y2.(8.1)

τ2 ⊕ τ2 ⊕ τ2 : a 7→ a, x1 7→ x1, x2 7→ x2, x3 7→ x3, y1 7→ x1y1, y2 7→ y2.(8.2)

I3 ⊕ β2 ⊕ β : a 7→ a, x1 7→ x1, x2 7→ x2, x3 7→ x3, y1 7→ x2y1, y2 7→ x1y2.(8.3)

Now consider the group E5a
E8

. From (8.1)—(8.3) we see that the elements τ1 ⊕ τ1 ⊕ τ1,
τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5a

E8
and that conjugation by these elements induces

the automorphisms on E5a
E8

given by the matrices I5 + e3,2, I5 + e2,3 and I5 + e1,3.

Letting σ = −(1, 4)(2, 5)(3, 6) ∈ SL9(C) we see that (A⊕B ⊕ C)σ = B ⊕A⊕ C. Using

this and the above we obtain that σ, y2 and I3 ⊕ I3 ⊕ β2 normalize E5a
E8

and that conjugation

by these elements induces the automorphisms on E5a
E8

given by the matrices diag(2, 1, 1, 1, 1),
I5 + e1,4 + e1,5 and I5 + e4,3. By using the relations in N(H) given above or by direct
computation, it may be checked that conjugation by the element

n1n2n4n2n3n5n4n2n3n1n4n3n5n4n6n5n4n2n3n4n7n6n5n4n8n7n6·
n5n4n2n3n1n4n3n5n4n2n6n5n4n7 · h(1, 1,−1,−1,−1, 1,−1,−1)

induces the automorphism on E5a
E8

represented by the matrix diag(1, 1, 1, 1, 2) + e2,4. It is
easy to see that the above matrices generate the group

W ′(E5a
E8

) =




ε1 ∗ ∗ ∗ ∗
0
0
0

SL3(F3)
0
0
0

0 0 0 0 ε2




and thus W (E5a
E8

) contains this group.

Next consider the group E5b
E8

. From (8.1)—(8.3) we see that the elements τ1 ⊕ τ1 ⊕ τ1,
τ2 ⊕ τ2 ⊕ τ2 and I3 ⊕ β2 ⊕ β normalize E5b

E8
and that conjugation by these elements induces

the automorphisms on E5b
E8

given by the matrices I5 + e2,1, I5 + e1,2 and I5 + e1,4 + e3,2.
Now note that a = ∆3,3(ηI3), x2 = ∆3,3(β) and y2 = ∆3,3(γ). Noting also that ∆3,3(M1)
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commutes with M2 ⊕M2 ⊕M2 for any M1,M2 ∈M3(C) we see that the elements ∆3,3(τ1)

and ∆3,3(τ2) normalize E5b
E8

. The automorphisms induced on E5b
E8

by conjugation with
these elements have the matrices I5 + e4,3 and I5 + e3,4. The upper left 4×4-corner of these
matrices are easily seen to generate the group Sp4(F3) from 8.14. By using the relations in
N(H) given above or by direct computation, we get that conjugation by the element

n2n8n7n6n5n4n2n3n1n4n3n5n4n2n6n5n4n3n1n7n6·
n5n4n2n3n4n5n6n7n8 · h(1,−1,−1,−1,−1, 1, 1, 1)

induces the automorphism on E5b
E8

represented by the matrix diag(1, 2, 1, 2, 2)+e3,5 . It now

follows that W (E5b
E8

) contains the group

W ′(E5b
E8

) =




CSp4(F3)

∗
∗
∗
∗

0 0 0 0 χ




Lower bounds for other Weyl groups: We now show that the other Weyl groups in the
table are all lower bounds. To do this consider one of the non-maximal groups E from the
table. We then have E ⊆ E5a

E8
, and we get a lower bound on W (E) by considering the

action on E of the subgroup of W ′(E5a
E8

) fixing E. As an example we find that the stabilizer

of E3a
E8

inside W ′(E5a
E8

) is 


ε1 0 0 x x
0 a11 a12 a13 0
0 a21 a22 a23 0
0 0 0 det 0
0 0 0 0 det




where det = a11 · a22 − a12 · a21 6= 0. The action of such a matrix on E3a
E8

is given by

x1 7→ (x1)
a11(y1)

a21 , y1 7→ (x1)
a12(y1)

a22 , a 7→ (x1)
a13(y1)

a23(a)det.

Thus W (E3a
E8

) contains the group

W ′(E3a
E8

) =


 GL2(F3)

∗
∗

0 0 det




as claimed. Similar computations show that for the remaining groups E = E3b
E8

, E4a
E8

, E4b
E8

and E4c
E8

, the group W ′(E) occurring in the theorem is a lower bound for the Weyl group
W (E).

Orbit computation: Note first that all elementary abelian 3-subgroups of rank at most
two are toral by Theorem 8.2(3). By using the lower bounds on the Weyl groups of E5a

E8

and E5b
E8

established above, we may find a set of representatives for the conjugacy classes

of subgroups of E5a
E8

and E5b
E8

of rank 3 and 4.

Under the action of W ′(E5a
E8

), the set of rank 3 subgroups of E5a
E8

has orbit representatives

E3a
E8

= 〈x1, y1, a〉 , E3b
E8

= 〈x1, y1, x3〉 , 〈x1, x2, y1〉 ,
〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉 ,



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 57

and under the action ofW ′(E5b
E8

), the set of rank 3 subgroups of E5b
E8

has orbit representatives

E3a
E8

= 〈x1, y1, a〉 , 〈x1, x2, y1〉 and 〈a, x1, x2〉 .
Similarly we find that under the action of W ′(E5a

E8
), the set of rank 4 subgroups of E5a

E8

has orbit representatives

E4a
E8

=
〈
x1, y1, x3, x3a−1

〉
, E4b

E8
= 〈x2, x1, y1, a〉 ,

E4c
E8

= 〈x2, x1, y1, x3〉 and 〈a, x1, x2, x3〉 ,
and that under the action of W ′(E5b

E8
), the set of rank 4 subgroups of E5b

E8
has orbit repre-

sentatives

E4b
E8

= 〈x2, x1, y1, a〉 and E0 = 〈x1, x2, y1, y2〉 .
Class distributions: Recall that by 8.13, a is in the conjugacy class 3A, x1 and x2 are in

the class 3B and x3a−1 belongs to the class 3D. Using the actions of W ′(E5a
E8

) and W ′(E5b
E8

)
it is then straightforward to verify the class distributions given in the table. As an example
consider the group E5a

E8
. Under the action of W ′(E5a

E8
) it contains 156 elements conjugate

to a, 78 elements conjugate to x1, 2 elements conjugate to x2 and 6 elements conjugate to

x3a−1, which gives the class distribution in the table. Similar computations give the results
for the remaining groups.

We also see that the group E0 = 〈x1, x2, y1, y2〉 has class distribution 3B80 and from the
class distribution of E5b

E8
we get E0 = (E5b

E8
∩3B)∪{1}. It then follows from [65, Lem. 11.5]

that E0 is toral.
Other non-toral subgroups: We see directly that the groups

〈a, x1, x2, x3〉 , 〈a, x1, x2〉 , 〈a, x1, x3〉 and 〈a, x2, x3〉
are toral. Since the group 〈x1, x2, y1〉 is a subgroup of E0 it is also toral. Alternatively, from
the action of W ′(E5a

E8
) we see that it is conjugate to the group 〈x1, x2, x3〉, which is visibly

toral. Thus any non-toral elementary abelian 3-subgroup of E8(C) is conjugate to a group
in the table. Moreover, since their class distributions differ, none of the groups occurring
in the table are conjugate.

To see that the groups in the table are actually non-toral we may proceed as follows.
The group E3a

E8
contains the element a, so by Theorem 8.2(1) it is toral if and only if it is

toral in CE8(C)(a) = SL9(C)/C3. However this is not the case by Theorem 8.2(5), since its

lift to SL9(C) is non-abelian. The groups E4a
E8

and E4b
E8

are thus also non-toral since they

contain E3a
E8

. We saw above that the Weyl group of E3b
E8

contains SL3(F3), which has order

divisible by 13. Since 13 - |W (E8)| it follows from Theorem 8.2(2) that E3b
E8

is non-toral.

Since E4c
E8

contains E3b
E8

it is also non-toral.

Centralizers: The subgroups E = E3a
E8

, E4a
E8

, E4b
E8

, E5a
E8

and E5b
E8

are easy to deal with
since they all contain a, and hence we have CE8(C)(E) = CSL9(C)/C3

(E) for these. It
is however notationally convenient first to change the representatives as follows. Define
x4 = τ−1

2 ⊕τ−1
2 ⊕τ−1

2 ∈ SL9(C), and note that conjugation by (2, 7, 3, 4)(5, 8, 9, 6) ∈ SL9(C)
acts as follows:

a 7→ a, x1 7→ x2, x2 7→ x2
1, x3a

−1 7→ x4, y1 7→ y2, y2 7→ y2
1.

In particular we see that E3a
E8

is conjugate to 〈x2, y2, a〉. Moreover we have

CE8(C)(a, x2) = 〈y2, {A⊕B ⊕ C | detABC = 1}〉.
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From this we directly get

CE8(C)(a, x2, y2) =
〈
x2, y2, {A ⊕A⊕A | (detA)3 = 1}

〉

= 〈x2, y2, a, {A ⊕A⊕A | detA = 1}〉
∼= 〈x2, y2, a〉 × PSL3(C).

Thus CE8(C)(E
3a
E8

) = E3a
E8
× PSL3(C) and Z(CE8(C)(E

3a
E8

)) = E3a
E8

. From the above we see

that the elements x2, x3a−1 and y2 in CE8(C)(E
3a
E8

) correspond to the elements β2, τ−1
2 and

γ2 in the PSL3(C) component of CE8(C)(E
3a
E8

). From this we easily compute the structure

of CE8(C)(E) for the representatives E which contain E3a
E8

, cf. the proof of Theorem 8.9.

For the computation of the centralizers of E3b
E8

and E4c
E8

we consider the element g =

hα1(ω)hα3(ω
2) ∈ E8(C). By using [32, Tables 4 and 6] we get that g belongs to the conjugacy

class 3B and that the centralizer CE8(C)(g) has type E6A2. The precise structure of this
centralizer may be found as follows. Since E8(C) is simply connected, Theorem 8.2(3)
implies that CE8(C)(g) is connected. Setting

α′ = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,

we see that {α5, α8, α6, α7, α
′, α2} ∪ {α1, α3} is a system of simple roots of CE8(C)(g) (the

simple systems of the components of type E6 and A2 have been ordered so that the num-
bering is consistent with [15, p. 250–251, 260–262]). From this we get an explicit homo-
morphism 3E6(C) × SL3(C) → E8(C) onto the centralizer CE8(C)(g). The kernel is given

by
〈
(z, ω2I3)

〉
, where z ∈ 3E6(C) denotes the central element defined in Section 8.2. Thus

CE8(C)(g) = 3E6(C) ◦C3 SL3(C), and we denote elements in this central product by A · B
where A ∈ 3E6(C) and B ∈ SL3(C). In particular we have g = z · I3 = 1 · ωI3.

Now consider the subgroup E = 〈z · I3, x1 · β, y1 · γ〉 which is seen to be an elementary
abelian 3-subgroup of rank 3 (here the elements x1, y1 ∈ 3E6(C) from Section 8.2 should
not be confused with the elements x1, y1 ∈ SL9(C) from above). We have

CE8(C)(z · I3, x1 · β) = C3E6(C)◦C3
SL3(C)(x1 · β) =

〈
y1 · γ,C3E6(C)(x1) ◦C3 CSL3(C)(β)

〉
.

We note that y1 · γ is not conjugate to its inverse in CE8(C)(z · I3, x1 ·β) since no element in

CSL3(C)(β) conjugates γ into γ−1 times a power of ωI3. Thus we have diag(1, 1,−1) /∈W (E)
and in particular W (E) 6= GL3(F3). From the above we also get

CE8(C)(E) =
〈
y1 · γ, x1 · β,C3E6(C)(x1, y1) ◦C3 CSL3(C)(β, γ)

〉

=
〈
y1 · γ, x1 · β,C3E6(C)(π

−1(E2b
E6

)) ◦C3 Z(SL3(C))
〉

= 〈y1 · γ, x1 · β, (〈z〉 ×G2(C)) ◦C3 Z(SL3(C))〉
= E ×G2(C),

using the computation of C3E6(C)(π
−1(E2b

E6
)) from the last part of the proof of Theorem 8.9.

Since the preimage of E in 3E6(C)× SL3(C) is non-abelian it follows from Theorem 8.2(5)
that E is non-toral in 3E6(C) ◦C3 SL3(C). Now Theorem 8.2(1) shows that E is non-toral
in E8(C) (alternatively one could also just observe that CE8(C)(E) has rank less than 8).

From what we have already proved we then see that E is conjugate to either E3a
E8

or E3b
E8

in

E8(C). Since we already know CE8(C)(E
3a
E8

) we conclude that E must be conjugate to E3b
E8



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 59

(alternatively one could also compute the class distribution of E directly). In particular we
have CE8(C)(E

3b
E8

) = E3b
E8
×G2(C) and W (E3b

E8
) 6= GL3(F3).

Using the inclusion 3E6(C) ⊆ 3E6(C) ◦C3 SL3(C) ⊆ E8(C) we may also consider the
subgroup E4

3E6
⊆ 3E6(C) from Theorem 8.7 as a subgroup of E8(C). Since E4

3E6
is non-

toral in 3E6(C), it is also non-toral in 3E6(C) ◦C3 SL3(C), and hence also in E8(C) by
Theorem 8.2(1). Thus E4

3E6
must be conjugate in E8(C) to one of the groups E4a

E8
, E4b

E8

or E4c
E8

. Comparing with the class distributions we can rule out E4a
E8

and E4b
E8

, so we

conclude that E4
3E6

is conjugate to E4c
E8

. From Theorem 8.7 we have C3E6(C)(E
4
3E6

) = E4
3E6

.

Hence CE8(C)(E
4
3E6

) = E4
3E6
◦C3 SL3(C) from which we get CE8(C)(E

4c
E8

) = E4c
E8
◦C3 SL3(C).

We determine the precise structure of the central product below after the computation of
W (E4c

E8
).

Exact Weyl groups: Recall from above that E3a
E8

is conjugate to 〈x2, y2, a〉. If W (E3a
E8

)

was larger than the group W ′(E3a
E8

) from above, we then see that W (E3a
E8

) would have to
contain one of the groups


 GL2(F3)

∗
∗

0 0 ε


 or SL3(F3)

which are the minimal overgroups of W ′(E3a
E8

) inside GL3(F3). Thus W (E3a
E8

) would have
to contain one of the matrices diag(1, 2, 1) or I3 + e3,2. This would mean that inside
CE8(C)(x2, a) there would be an element which conjugates y2 into either y2

2 or y2a. However
from above we have

CE8(C)(x2, a) = 〈y2, {A⊕B ⊕ C | detABC = 1}〉,
and from this it is easily seen that no such element exists. Thus W (E3a

E8
) = W ′(E3a

E8
) as

claimed. For the group E3b
E8

we have SL3(F3) ⊆W (E3b
E8

) 6= GL3(F3) and hence W (E3b
E8

) =
SL3(F3).

As in the proof of Theorem 8.9 we show that the remaining Weyl groups equal the lower
bounds already established, by looking at what a strictly larger Weyl group would imply
for the subgroups E3a

E8
and E3b

E8
. For E = E4a

E8
, E4b

E8
, E5a

E8
, and E5b

E8
, any proper overgroup

of W (E) contains an element which normalizes E3a
E8

but induces an automorphism on it not

contained in its Weyl group. For E4c
E8

the result follows by considering the subgroup E3b
E8

.

It remains only to determine the precise structure of the central product CE8(C)(E
4c
E8

) =

E4c
E8
◦C3 SL3(C). From the structure of W (E4c

E8
) we see that the subgroup 〈x2〉 is invariant

under the action of W (E4c
E8

). Thus a conjugation which sends to E4c
E8

to E4
3E6

must send

〈x2〉 to a W (E4
3E6

)-invariant subgroup of E4
3E6

of rank one. From the structure of W (E4
3E6

)
we see that there is only one such subgroup, namely 〈z · I3〉 = 〈1 · ωI3〉. As this is exactly
the center of the SL3(C)-component of CE8(C)(E

4
3E6

) = E4
3E6
◦C3 SL3(C), we see that

CE8(C)(E
4c
E8

) = E4c
E8
◦〈x2〉 SL3(C). �

8.4. The group 2E7(C), p = 3. In this section we consider the elementary abelian 3-
subgroups of 2E7(C). We let H be a maximal torus of 2E7(C), Φ(E7) be the root system
relative to H, and choose a realization ([122, p. 133]) (uα)α∈Φ(E7) of Φ(E7) in 2E7(C). By

[122, 8.1.4(iv)] we may suppose that the root subgroups (u′α)α∈Φ(E6) in 3E6(C) ⊆ 2E7(C)

coming from the choice of root subgroups for 3E6(C) from Section 8.2 satisfy uα = u′α for
α ∈ Φ(E6).
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For α = αi, 1 ≤ i ≤ 7, and t ∈ C× we define the elements

nα(t) = uα(t)u−α(−1/t)uα(t), hα(t) = nα(t)nα(1)−1.

Then the maximal torus consists of the elements
∏7
i=1 hαi

(ti) and the normalizer N(H) of
the maximal torus is generated by H and the elements ni = nαi

(1), 1 ≤ i ≤ 7.
As in Section 8.2 we define the following elements in 3E6(C) ⊆ 2E7(C):

z = hα1(ω)hα3(ω
2)hα5(ω)hα6(ω

2), a = hα1(ω)hα3(ω
2)hα5(ω

2)hα6(ω),

x2 = hα2(ω
2)hα3(ω

2)hα5(ω
2),

y2 = n1n2n3n4n3n1n5n4n2n3n4n5n6n5n4n2n3n1n4n3n5n4n6n5hα2(−1).

Notation 8.17. The conjugacy classes of elements of order 3 in 2E7(C) are given in [65,
Table VI] and [32, Table 6] from which we take our notation. In particular, there are 5 such
conjugacy classes, which we label 3A, 3B, 3C, 3D and 3E. Moreover these classes may be
distinguished by their traces on e7, except for the classes 3A and 3D which have the same
trace. Since the trace of the element h ∈ H is given by 7 +

∑
α∈Φ(E7) α(h) we easily obtain

the inclusions

3C[3E6] ⊆ 3C[2E7], 3E[3E6] ⊆ 3B[2E7], 3E′[3E6] ⊆ 3B[2E7],

corresponding to the inclusion 3E6(C) ⊆ 2E7(C).

Theorem 8.18. The conjugacy classes of non-toral elementary abelian 3-subgroups of
2E7(C) are given by the following table.

rank name ordered basis 2E7(C)-class dist. C2E7(C)(E) Z(C2E7(C)(E))

3 E3
2E7

〈a, x2, y2〉 3C26 E3
2E7
× SL2(C) E3

2E7
× Z(2E7(C))

4 E4
2E7

〈z, a, x2, y2〉 3B23C78 E4
2E7
◦〈z〉 T1 E4

2E7
◦〈z〉 T1

In particular we have 3Z(C2E7(C)(E)) = E for any non-toral elementary abelian 3-subgroup
of 2E7(C).

The Weyl groups of these groups with respect to the given ordered bases are given as
follows:

W (E3
2E7

) = SL3(F3), W (E4
2E7

) =




ε ∗ ∗ ∗
0
0
0

SL3(F3)




Remark 8.19. Note that our information on the rank 3 subgroup E3
2E7

corrects [65].

Proof of Theorem 8.18. Non-toral subgroups: From the way the realization (uα)α∈Φ(E7) is

chosen above, it follows from Theorem 8.7 that E3
2E7

and E4
2E7

are elementary abelian
3-subgroups of 2E7(C) and that we have

W (E3
2E7

) ⊇ SL3(F3), W (E4
2E7

) ⊇




1 ∗ ∗ ∗
0
0
0

SL3(F3)




In particular we see that both W (E3
2E7

) and W (E4
2E7

) have orders divisible by 13 and since

13 - |W (E7)|, we conclude by Theorem 8.2(2) that E3
2E7

and E4
2E7

are non-toral in 2E7(C).
By [65, Thm. 11.16] we know that there are precisely two conjugacy classes of non-toral



THE CLASSIFICATION OF p-COMPACT GROUPS FOR p ODD 61

elementary abelian 3-subgroups in 2E7(C), and thus E3
2E7

and E4
2E7

represent these two
conjugacy classes.

Class distributions: The class distributions follows directly from the class distributions
of the groups E3

3E6
and E4

3E6
given in Theorem 8.7 and the information in 8.17 about the

behavior of conjugacy classes in 3E6(C) under the inclusion 3E6(C) ⊆ 2E7(C).
Weyl groups: Using our realization (uα)α∈Φ(E7) we may define a canonical map φ : W →

N(H) as follows ([122, 9.3.3]): If w = sαi1
. . . sαir

is a reduced expression for w ∈W we let

φ(w) = ni1 . . . nir (by [122, 8.3.3 and 9.3.2] this does not depend on the reduced expression
for w). Note that the element φ(w) is a representative in N(H) for w ∈ W . Now let
w0 ∈W be the longest element in W , and let n0 = φ(w0). From [15, p. 264–266] it follows
that w0 equals the scalar transformation −1, and so conjugation by n0 acts as inversion
on H. Now let w ∈ W and define w′ by ww′ = w0. Since w0 is central in our case, we
have (ww′)w−1 = w−1 (ww′) = w′ so we conclude that w′w = ww′ = w0. Now let ` be the
length function on W . By [73, p. 16] we have `(w) + `(w′) = `(w0). In general the map φ
is not a homomorphism, but we do have φ(w1w2) = φ(w1)φ(w2) if `(w1w2) = `(w1)+ `(w2)
by [122, 9.3.4(i)]. From this it follows that φ(w)φ(w′) = φ(w′)φ(w) = φ(w0) = n0, and we
conclude that n0 commutes with φ(w) for all w ∈W .

Now consider the element

w = s1s2s3s4s3s1s5s4s2s3s4s5s6s5s4s2s3s1s4s3s5s4s6s5.

Using the fact that the length of an element is given by the number of positive roots it sends
to negative roots ([73, Cor. 1.7]), we see that the above product is a reduced expression for
w. Thus we have y2 = φ(w)hα2(−1). From the above we then conclude that conjugation
by n0 acts as follows:

z 7→ z2, a 7→ a2, x2 7→ x2
2, y2 7→ y2.

Thus n0 normalizes E4
2E7

and gives the element diag(2, 2, 2, 1) in W (E4
2E7

). Combined with
the above we conclude that

W (E4
2E7

) ⊇




ε ∗ ∗ ∗
0
0
0

SL3(F3)




From the inclusion Φ(E7) ⊆ Φ(E8) we get the inclusion 2E7(C) ⊆ E8(C), so we may
consider E3

2E7
and E4

2E7
as subgroups of E8(C) as well. Since the orders of their Weyl

groups in 2E7(C) are divisible by 13 and 13 - |W (E8)|, we see from Theorem 8.2(2) that
E3

2E7
and E4

2E7
remain non-toral in E8(C). Using Theorem 8.15 and the class distributions

from above we conclude that E3
2E7

and E4
2E7

are conjugate to E3b
E8

and E4c
E8

respectively in
E8(C). Theorem 8.15 now shows that the lower bounds found above are indeed the Weyl
groups of E3

2E7
and E4

2E7
in 2E7(C).

Centralizers: For the computation of the centralizer of E3
2E7

we consider the element

g = hα1(ω)hα3(ω
2) ∈ 2E7(C). By using [32, Table 6] we see that g belongs to the conjugacy

class 3B and that the centralizer C2E7(C)(g) has type A5A2. The precise structure of this
centralizer may be found as follows. Since 2E7(C) is simply connected, Theorem 8.2(3)
implies that C2E7(C)(g) is connected. Setting

α′ = α1 + α2 + 2α3 + 3α4 + 2α5 + α6,
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we see that {α5, α6, α7, α
′, α2}∪{α1, α3} is a system of simple roots of C2E7(C)(g) (the simple

systems of the components of type A5 and A2 have been ordered so that the numbering is
consistent with [15, p. 250–251]). From this we get an explicit homomorphism SL6(C) ×
SL3(C) → 2E7(C) onto the centralizer C2E7(C)(g). The kernel is given by

〈
(ωI6, ω

2I3)
〉
.

Thus C2E7(C)(g) = SL6(C) ◦C3 SL3(C), and we denote elements in this central product by
A · B where A ∈ SL6(C) and B ∈ SL3(C). In particular we have g = ωI6 · I3 = I6 · ωI3.

Now consider the subgroup E =
〈
ωI6 · I3, (β ⊕ β) · β, (γ ⊕ γ) · γ2

〉
which is seen to be an

elementary abelian 3-subgroup of rank 3. We have

C2E7(C)(ωI6 · I3, (β ⊕ β) · β) = CSL6(C)◦C3
SL3(C)((β ⊕ β) · β)

=
〈
(γ ⊕ γ) · γ2, CSL6(C)(β ⊕ β) ◦C3 CSL3(C)(β)

〉
.

From this we get

C2E7(C)(E) =
〈
(γ ⊕ γ) · γ2, (β ⊕ β) · β,CSL6(C)(β ⊕ β, γ ⊕ γ) ◦C3 CSL3(C)(β, γ)

〉

=
〈
(γ ⊕ γ) · γ2, (β ⊕ β) · β,CSL6(C)(β ⊕ β, γ ⊕ γ) ◦C3 Z(SL3(C))

〉
.

Here CSL6(C)(β⊕β, γ⊕γ) = ∆2,3({A ∈ GL2(C)|(detA)3 = 1}) is generated by ∆2,3(ω
2I2) =

ω2I6 and ∆2,3(SL2(C)). From this we get

C2E7(C)(E) = 〈E,∆2,3(SL2(C))〉 ∼= E × SL2(C).

Since the preimage of E in SL6(C)× SL3(C) is non-abelian it follows from Theorem 8.2(5)
that E is non-toral in SL6(C) ◦C3 SL3(C). Now Theorem 8.2(1) shows that E is non-
toral in 2E7(C) (alternatively one could also just observe that C2E7(C)(E) has rank less

than 7). It then follows that E is conjugate to E3
2E7

in 2E7(C). In particular we have

C2E7(C)(E
3
2E7

) = E3
2E7
× SL2(C). Hence Z(C2E7(C)(E

3
2E7

)) = E3
2E7
× Z(2E7(C)) since the

center of 2E7(C) has order 2.
To compute the centralizer of E4

2E7
we note that C2E7(C)(z) has centralizer type E6T1,

and that the E6 component corresponds to the subgroup 3E6(C) ⊆ 2E7(C). A computation
shows that the T1 component is given by T1 = {h(t2, t3, t4, t6, t5, t4, t3)|t ∈ C×}, and
thus we get C2E7(C)(z) = 3E6(C) ◦〈z〉 T1. Theorem 8.7 now shows that C2E7(C)(E

4
2E7

) =

C3E6(C)(E
4
2E7

) ◦〈z〉 T1 = E4
2E7
◦〈z〉 T1. �

9. Non-toral elementary abelian p-subgroups of projective unitary groups

The purpose of this short section is to describe the non-toral elementary abelian sub-
groups of PGLn(C), which by Theorem 8.4 is equivalent to finding them for its compact
form PU(n), as well as to give information about centralizers and Weyl groups. The sub-
groups are easily determined and are described in [65, §3]—we here just add some extra
information about centralizers and Weyl groups which we need in our proof of Theorem 1.1.

We first introduce a useful subgroup. If pr divides n write n = prk and consider the
extraspecial group p1+2r

+ embedded in GLn(C) by taking k copies of one of the p − 1
faithful irreducible pr-dimensional representations. (They all have the same image; see [74,
Satz 16.14].) Note that this embedding maps the center of p1+2r

+ to the elements of order
p in the center of GLn(C). Let Γr denote the subgroup of GLn(C) given by the subgroup
generated by the image of p1+2r

+ and the center of GLn(C). Note that as an abstract group
Γr fits into an extension sequence

1→ C× → Γr → Γ̄r → 1
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where C× identifies with the center of C× and Γ̄r ∼= (Z/p)2r identifies with the image of Γr
in PGLn(C). (The matrices for Γr are written explicitly for k = 1 in [107, p. 56] where it
is called ΓUpr .)

Theorem 9.1. Suppose E is a non-toral elementary abelian p-subgroup of PGLn(C) for
an arbitrary prime p. Then, up to conjugacy E can be written E = Γ̄r × Ā, for some r ≥ 1
and some abelian subgroup A of CGLn(C)(Γr) ∼= GLk(C).

For a given r the number of conjugacy classes of such subgroups E are in one-to-one cor-
respondence with conjugacy classes of toral elementary abelian p-subgroups Ā of PGLk(C) ∼=
CPGLn(C)(Γ̄r)1 (allowing the trivial subgroup), and the centralizer of E is given by CPGLn(C)(E) ∼=
Γ̄r × CPGLk(C)(Ā).

The Weyl group equals

WPGLn(C)(E) =

[
Sp(Γ̄r) 0
∗ WPGLk(C)(Ā)

]

Here Sp(Γ̄r) is the symplectic group relative to the symplectic product coming from the
commutator product [·, ·] : Γ̄r × Γ̄r → Z/p ⊆ C× and the symbol ∗ denotes a rank Ā × 2r
matrix with arbitrary entries.

An element α ∈ Sp(Γ̄r) ⊆WPGLn(C)(E) acts as up to conjugacy as α×1 on CPGLn(C)(E) ∼=
Γ̄r × CPGLk(C)(Ā).

Sketch of proof: The existence of the decomposition E = Γ̄r × Ā follows from Griess [65,
Thm. 3.1] and the statements about uniqueness follow by representation theory of the
extraspecial p-groups.

Since the image of p1+2r
+ is the sum of k identical irreducible representations we have

by Schur’s lemma that CGLn(C)(Γr) ∼= GLk(C) (see also [107, Prop. 4]). From this the
centralizer in PGLn(C) can easily be worked out.

In the case where Ā is trivial the statement about Weyl groups is given in [107, Thm. 6]
(and just uses elementary character theory). The general case follows similarly, again using
character theory.

For the statement about the Weyl group action, first note that Out(Γ̄r × PGLk(C)) ∼=
Aut(Γ̄r) × Out(PGLk(C)). An element α ∈ Sp(Γr) = WPGLn(C)(Γ̄r) acts as an inner
automorphism on PGLk(C) since this is true for the action on CGLn(C)(Γr) ∼= GLk(C)

by character theory. Hence we can choose a representative g ∈ NPGLn(C)(Γ̄r) of α which

acts as α × 1 on CPGLn(C)(Γ̄r) ∼= Γ̄r × PGLk(C). Hence g is also a representative of

α ∈ Sp(Γ̄r) ⊆WPGLn(C)(Γ̄r × Ā). The claim now follows. �

10. Calculation of the obstruction groups

In this section we show that the existence and uniqueness obstructions to lifting our
diagram in the homotopy category to a diagram in the category of spaces identically vanish.
More precisely, we will show the following theorem.

Theorem 10.1. Suppose that X is any of the following p-compact groups (F4)3̂, (E6)3̂,
(E7)3̂, (E8)3̂, (E8)5̂ or PU(n)p̂ (any p), or suppose that p is odd and X is connected and
center-free with H∗(BX;Zp) a polynomial algebra. Then

lim
A(X)

iπj(BZ(CX(−))) = 0, for all i, j.
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(See Theorem 12.2 for an explanation of why exactly these p-compact groups need atten-
tion.) Note that for the purpose of Theorem 1.4 we only need to calculate the above groups
for j = 1, 2 and i = j or i = j + 1.

We prove the theorem by filtering the functor Fj = πj(BZ(CX(−))), and showing that all
filtration quotients vanish (with a small twist for PU(2)2̂). First we show that the quotient
functor of Fj concentrated on the toral elementary abelian p-subgroups has vanishing limits,
using a Mackey functor argument which first appeared in [50]. This takes care of the case
where H∗(BX;Zp) is a polynomial algebra since in this case all subgroups are toral by
Lemma 7.8. For the exceptional compact connected Lie groups we then continue and filter
the non-toral part of the functor by functors concentrated on only one non-toral subgroup,
and use a formula of Oliver [106] to show that the higher limits of these subquotient functors
all vanish. For PU(n) we use a variant of this technique by suitably grouping the non-toral
subgroups and using a combination of Oliver’s formula and the Mackey functor argument
we used for the toral part.

We use the notation StG to denote the Steinberg module over Zp of a finite group of Lie
type G of characteristic p, defined as the top homology group with Zp coefficients of the
Tits building of G (see e.g., [72]). In the special case of GL(E) we also write St(E) for the
Steinberg module.

10.1. The toral part. Define a quotient functor F tor
j of Fj by setting F tor

j (V ) = Fj(V )

if V is toral and F tor
j (V ) = 0 if V is non-toral. Let Ator(X) denote the full subcategory

of A(X) consisting of toral subgroups. From the chain complex defining higher limits (see
e.g., [63, 3.3]) it follows that

lim
A(X)

∗F tor
j
∼= lim

Ator(X)

∗F tor
j

In order to use a Mackey functor argument on the right-hand side we need a more explicit
description of the functor F tor

j .

Lemma 10.2. Fix a connected p-compact group X and let T̆ be the discrete approximation
to a maximal torus T in X. For a non-trivial elementary abelian p-subgroup V ⊆ T̆ , let
WX(V ) denote the Weyl group of CX(V ) and let WX(V )1 denote the Weyl group of CX(V )1
(see [52, Thm. 7.6]).

If T̆WX(V )1 is a discrete approximation to Z(CX(V )1) then T̆WX(V ) is a discrete approx-
imation to Z(CX(V )). In particular in this case π1(BZ(CX(V ))) = H1(WX(V );LX) and

π2(BZ(CX(V )) = (LX)WX(V ), where LX = π1(T ).

Remark 10.3. For a connected p-compact group X and p odd, the fixed point set T̆WX

always equals a discrete approximation to the center of X by [52, Thm. 7.6]. If X is the
p-completion of a compact connected Lie group then this is likewise the case for p = 2 unless
X contains a direct factor isomorphic to SO(2n + 1)2̂, by [85, Thm. 1.6].

Proof of Lemma 10.2. Set Y = CX(V ) and π = π0(Y ) for short. Since V is toral, T̆ is in a
canonical way a discrete approximation to a maximal torus in Y .

First observe that the center of Y has discrete approximation in T̆ . Indeed, otherwise
there would by [52, Thm. 6.4] exist a central homomorphism f : Z/pn → N̆p,Y with image

not in T̆ , which would produce a homomorphism f ′ : Z/pn → N̆p,X commuting with T̆ but

not in T̆ , which contradicts the fact that T is self-centralizing in X by [51, Thm. 9.1], since
X is connected.
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Suppose that T̆WX(V )1 is a discrete approximation to Z(Y1) and set C = T̆WX(V ). We
want to show that C is central in Y . Let f : BC → BY1 be the natural inclusion. We have
an obvious diagram with horizontal maps fibrations

map(BC,BY1){f} //

��

map(BC,BY )f //

��

map(BC,Bπ)0

BY1
// BY // Bπ

where {f} denotes the set of homotopy classes of maps BC → BY1 generated by f under
the π-action on BY1. If we can show that {f} consists of just f then it follows from the
five-lemma that the middle vertical map is a homotopy equivalence, since our assumption
implies that C is central in Y1.

To see that the action is trivial consider the following diagram:

BNY1

g̃ //

��

BNY1

��
BC

f //

f̃
;;wwwwwwwww
BY1

g // BY1

where f̃ is the natural inclusion of BC in BNY1, g is an element in Aut(BY1) induced by an
element in π and g̃ is the corresponding self-map of BNY1 defined via Lemma 2.1. However

by the definition of C, the composite g̃f̃ is homotopic to f̃ for all g induced by an element
in π, so f is homotopic to gf as well. Hence we have shown that C is central in Y and since
the center of Y has discrete approximation in T̆ it is obviously the largest subgroup with
this property. So C is a discrete approximation to ZY as wanted.

The last statement about the homotopy groups now follows easily using the long exact
sequence in group cohomology. �

Remark 10.4. The above lemma should be compared to Lemma 4.5 and Remark 4.6 which
have slightly different assumptions and conclusions.

The following lemma is essentially contained in [50, §8].
Lemma 10.5. Let X be a connected p-compact group, and assume that for each non-trivial
toral elementary abelian p-subgroup V ∈ A(X) the fixed point set T̆WX(V )1 is a discrete
approximation to Z(CX(V )1). Then

lim
A(X)

iF tor
j =

{
H2−j(WX ;LX) if i = 0 and j = 1, 2
0 otherwise.

where H2−j(WX ;LX) ∼= πj(BZ(X)) if T̆W is a discrete approximation to Z(X).
In particular, if p is odd, or more generally if for all reflections s ∈ WX the singu-

lar set σ(s) equals the fixed point set T̆ 〈s〉 then the assumptions above are satisfied and
limA(X)

iF tor
j = πj(BZ(X)) if i = 0 and zero otherwise. (See [52, Def. 7.3] and Remark 10.6

for the definition of σ(s).)

Proof. The first part of the proof consists of a translation of [50, §8] into the current notation.
By [53, Prop. 3.4] all morphisms in A(X) between toral subgroups V → X and V ′ → X
are induced by inclusions and action by elements of WX . Hence we can identify Ator(X),
up to equivalence of categories with a category which has objects non-trivial subgroups
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of pT̆ ∼= (Z/p)r (where r is the rank of T ) and morphisms the homomorphism between
subgroups induced by inclusions and action by WX . Also, by [52, Thm. 7.6], WX(V )
consists of the elements in WX which pointwise fixes V . Hence Lemma 10.2 shows that
the functor F tor

2 on Ator(X) is isomorphic to the functor α0
Γ,M on AΓ from [50, §8], where

Γ = WX and M = LX . Likewise F tor
1 is isomorphic to α1

Γ,M . (Note that there is the slight

difference from [50, §8] that M is a ZpΓ-module rather than an FpΓ-module, but this makes
no difference.) Therefore [50, §8] (which is a Mackey functor argument, which can also be
deduced from [49] or [75]) implies the first part of the lemma about obstruction groups.

To see the last part about the singular set recall that for an abelian subgroup A ⊆ T̆ we
have by [52, Thm. 7.6] that ⋂

reflections s ∈WX
such that A ⊆ σ(s)

σ(s)

is a discrete approximation to Z(CX(A)1). Hence if σ(s) equals T̆ 〈s〉 then the assumptions
of the first part are obviously satisfied since (again by [52, Thm. 7.6]) WX(A)1 is generated
by reflections s ∈WX with A ⊆ σ(s). �

Remark 10.6. Let G be a compact connected Lie group with maximal torus T , and let α
be a root of G relative to T with corresponding reflection sα. In this case the singular set
σ(sα) is just the discrete approximation of the kernel Uα of α on T . (To see this note that
by [17, §4, no. 5] the reflection sα lifts to an element nα (denoted by ν(θ) in [17]) which
satisfies n2

α = exp(α∨/2); the statement now follows—cf. [85, Pf. of Prop. 3.1(ii)].)

Explicit calculations [85, Prop. 3.1(ii)] (see also [58], [76, Prop. 3.2(vi)], and [109, §4])
show that for a compact connected Lie group G, σ(s) in fact always equal to T̆ 〈s〉 except
when G contains a direct factor isomorphic to SO(2n+1). Combining this with Lemma 10.5,
now gives the following calculation of the toral part of the obstruction groups, whose full
strength at p = 2 we will however not use here.

Corollary 10.7. Let G be a compact connected Lie group with no direct factors isomorphic
to SO(2n + 1) when p = 2. Set X = Gp̂. Then

lim
A(X)

iF tor
j =

{
πj(BZ(X)) if i = 0
0 otherwise.

�

Proof of Theorem 10.1 when H∗(BX;Zp) is polynomial, p odd. IfH∗(BX;Zp) is a polyno-
mial algebra concentrated in even degrees then all elementary abelian p-subgroups are toral
by Lemma 7.8, so F = F tor. Since p is odd the assumptions of Lemma 10.5 are satisfied
and Theorem 10.1 follows. �

10.2. The non-toral part for the exceptional groups. In this subsection we prove
Theorem 10.1 when X is the p-completion of one of the exceptional groups and p is odd.
Let FEj denote the subquotient functor of Fj concentrated on a non-toral elementary abelian

p-subgroup E. By Oliver’s formula [106, Prop. 4]

lim
A(X)

iFEj =

{
HomW (St(E), Fj(E)) if i = rkE − 1
0 otherwise.
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We now embark on proving some lemmas which will be used to show that these obstructions
groups identically vanish. (For the use in Theorem 1.4 we actually only need this when E
has rank at most four.)

Since Z(CX(E)) is the p-completion of an abelian compact Lie group (by [52, Thm. 1.1]),
Fj = 0 unless j = 1, 2. The following lemma reduces the problem of showing that

the obstruction groups vanish to showing that HomW (E)(St(E), pZ̆(CX(E))) = 0, where

pZ̆(CX(E)) is the finite group of elements of order p in the discrete approximation Z̆(CX(E)).

Lemma 10.8. Let A be an abelian compact Lie group, and let pA and Ap denote the kernel
and the image of the pth power map on A (using multiplicative notation). Let P be a finitely
generated projective ZpW -module for a finite group W , and assume that A has a module
action of W .

Then HomW (P, pA) = 0 if and only if HomW (P, π1(A)⊗Zp) = HomW (P, π0(A)⊗Zp) = 0.

Proof. The long exact sequence of homotopy groups associated to the exact sequence of
groups 1→ Ap → A→ A/Ap → 1 shows that the inclusion Ap ↪→ A induces an isomorphism

π1(A
p)

∼=→ π1(A) and an injection π0(A
p) ↪→ π0(A).

Hence the exact sequence 1→ pA→ A
p→ Ap → 1 produces the following diagram, where

the row, as well as the sequence going through πi(A) instead of πi(A
p), is exact.

π1(A)
p //

p

$$I
IIIIIIII
π1(A

p)

∼=
��

// π0(pA) // π0(A)
p //

p

$$I
IIIIIIII
π0(A

p)
� _

��
π1(A) π0(A)

Apply the exact functor HomW (P,− ⊗ Zp) to this diagram. The lemma now follows from
Nakayama’s lemma, using that π0(A) is finite and π1(A) is finitely generated. �

The following elementary observation is so useful that it is worth stating explicitly.

Lemma 10.9. Suppose that W is a subgroup of GL(E), p odd, such that −1 ∈ W . Then
HomW (St(E), E) = 0.

Proof. Set Z = 〈−1〉. Since Z acts trivially on St(E) we have

HomW (St(E), E) ⊆ HomZ(St(E), E) = HomZ(St(E), EZ ) = 0.

�

We also need the following lemma, which is a special case of a theorem of Smith [121].

Lemma 10.10. Let G be a finite group of Lie type of characteristic p, and let P be a
parabolic subgroup of G with corresponding unipotent radical U and Levi subgroup L ∼= P/U .
Suppose that W is a subgroup U ⊆W ⊆ P , and let M be an FpW -module.

(1) If U acts trivially on M , then HomW (StG,M) = HomW/U (StL,M).
(2) If StL⊗Fp is irreducible as an FpW/U -module and if M has a finite filtration as an

FpW -module, with filtration quotients of Fp-dimension strictly less than rankZp StL
then HomW (StG,M) = 0.

Proof. Since U acts trivially on M , HomW (StG,M) = HomW/U((StG)U ,M) where (−)U
denotes coinvariants. But since the Steinberg module is self-dual, as is clear from its def-
inition as a homology module, (StG)U ∼= (StG)U . Now Smith’s theorem [121] says that
(StG)U ∼= StL, which proves the first part of the lemma.
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For the second part, we can assume that the filtration quotients are simple FpW -modules.
Since U ⊆ Op(W ), U acts trivially on any irreducible FpW -module, by elementary repre-
sentation theory. Hence the second part follows from the first together with a dimension
consideration. �

The above lemma is usually used in conjunction with the following obvious observation.

Lemma 10.11. Let E be a non-toral elementary abelian p-subgroup of a compact Lie group
G. Then the Fp-dimension of pZCG(E) is at most equal to the maximal dimension of a
non-toral elementary abelian p-subgroup of G, and E is a W (E)-submodule of pZCG(E).�

The last lemma we shall need is a concrete calculation.

Lemma 10.12. Let E be a rank 4 elementary abelian 3-group, and let W = SL3(F3)× 1 ⊆
GL(E). Then HomW (St(E), E) = 0.

Proof. This most easily checked by computer, e.g., using MAGMA [13], but is indeed a
sufficiently small calculation so that the computer’s algorithm with a bit of effort can be
redone by hand. Alternatively one can use some ad hoc Lie theoretic arguments. (We are
grateful to A. Kleschev and H. H. Andersen for sketching a couple of such arguments to us—
however, since these arguments are rather involved compared to the size of the calculation
at hand we will not provide them here.) �

Before we start going through the exceptional groups, we need to introduce a bit of no-
tation. For an Fp-vector space E = 〈e1, . . . , en〉, we let Eij... denote the subspace generated
by ei, ej , . . .. Likewise we let Pij... (resp. Uij...) denote the parabolic subgroup (resp. its
unipotent radical) of GL(E) corresponding to the simple roots αi, αj , . . . in the standard
basis and notation. For example in GL3(Fp), U2 is the subgroup




1 ∗ ∗
0 1 0
0 0 1


 .

Proof of Theorem 10.1 when X = (E8)5̂, (F4)3̂, (E6)3̂, (E7)3̂, or (E8)3̂. By Lemma 10.8 it
is enough to see that HomW (E)(St(E), pZCG(E)) = 0 for all non-toral elementary abelian
p-subgroups of G. We proceed case-by-case.
(E8, 5) and (F4, 3): By [65, Lem. 10.3 and Thm. 7.4] G has, up to conjugacy, one non-
toral elementary abelian p-subgroup E, which has rank 3, Weyl group SL(E), and (since
E is necessarily maximal) E = pZCG(E). Since St(E) is an irreducible SL(E)-module of
dimension p3 we have that HomW (St(E), E) = 0.
(E7, 3): By Theorem 8.18 E7 has, up to conjugacy, two non-toral elementary abelian 3-
subgroups E3

2E7
and E4

2E7
of rank 3 and 4 respectively. Since W (E3

2E7
) = SL3(F3) a

dimension consideration as above gives HomW (E3
2E7

)(St(E3
2E7

), pZCG(E3
2E7

)) = 0. For E4
2E7

(whose Weyl group is listed in Theorem 8.18) we use Lemma 10.10(2), taking U = U23,
which immediately gives that also HomW (E4

2E7
)(St(E4

2E7
), pZCG(E4

2E7
)) = 0.

(E6, 3): By Theorem 8.9 E6 has eight non-toral elementary abelian 3-subgroups all of rank
less than or equal to four. We follow the notation of this theorem. By Lemma 10.10(2),
HomW (St(E), pZCG(E)) = 0 when E = E2b

E6
, E3b

E6
, E3c

E6
or E4a

E6
(taking U = 1, 1, U2, and U1

respectively). For E = E2a
E6

, E3a
E6

, E3d
E6

, and E4b
E6

we use that by Theorem 8.9 E = pZCG(E)
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in these cases (a fact that we did not need above), and also −1 ∈ W (E) so Lemma 10.9
applies to show that HomW (St(E), pZCG(E)) = 0.
(E8, 3): By Theorem 8.15 E8 has seven conjugacy classes of non-toral subgroups. If
E = E3a

E8
, E3b

E8
, E4b

E8
, or E4c

E8
then Lemma 10.10 shows that HomW (St(E), pZCG(E)) = 0

(taking U = U1, 1, U2, and U23 respectively). (Note that we do not need to know pZCG(E)
exactly since the rough bound from Lemma 10.11 will do.) We now consider E = E4a

E8
. By

Theorem 8.15 we have that pZ(CG(E)) = E, and by Lemma 10.12 HomW (E)(St(E), E) = 0.

Suppose that E = E5a
E8

. Then E has an invariant subspace E1 upon which U = U234

acts trivially. Now HomW (St(E), E1) = HomW/U (St(E1) ⊗ St(E2345), E1) = 0, where

we use Lemma 10.10 (to see that St(E)U ∼= St(E1) ⊗ St(E2345)) and Lemma 10.9 (us-
ing that ε1 act trivially on St(E1) but fixed point free on E1). Now HomW (St(E), E/E1) =
HomW/U (St(E1) ⊗ St(E2345), E/E1) = 0 by Lemma 10.12. Suppose that E = E5b

E8
. Take

U = U123 and note that E1234 is an invariant subspace underW . Then HomW (St(E), E1234) =
HomW/U (St(E1234), E1234) = 0 since −1 ∈ Sp(E1234) ⊆ W/U . By [5] (or a direct calcula-
tion)

HomSp(E1234)(St(E1234), E/E1234) = 0,

which shows HomW (St(E), E) = 0 as well. This exhausts the list. �

10.3. The non-toral part for the projective unitary groups. We now embark in
proving Theorem 10.1 for X = PU(n)p̂. We will throughout this subsection use the notation
for elementary abelian p-subgroups of X introduced in Section 9.

We first state the toral case.

Lemma 10.13. Let X = PU(n)p̂. Then

lim
A(X)

iF tor
j =

{
Z/2 if n = p = 2, i = 0 and j = 1
0 otherwise.

Proof. If n 6= 2 then it is immediate to check that T̆ 〈s〉 is connected for an arbitrary reflection
s ∈WX , so σ(s) = T̆ 〈s〉 by the definition of σ(s). Hence if n 6= 2 or p odd the lemma follows
by Lemma 10.5.

Now suppose that X = PU(2)2̂. Since for the non-trivial V ⊆ T̆ we have that WX(V )1
is trivial and CX(V )1 ∼= T the first part of Lemma 10.5 still applies to finish the proof also
in this case. �

We next record the following general lemma, which is obvious from the Künneth formula.

Lemma 10.14. Suppose D1 and D2 are two categories with only finitely many morphisms.
Let CDi be “the cone on Di” i.e., the category constructed from Di by adding an initial
object e to Di, and let D1 ?D2 = CD1 ×CD2 − (e, e), “the join of D1 and D2” (see [112,
§1]). If Fi : CDi → Zp-mod, i = 1, 2 are functors then

C∗(CD1 × CD2,D1 ?D2;F1 ⊗ F2) ∼= C∗(CD1,D1;F1)⊗C∗(CD2;D2;F2).

In particular if one of the chain complexes has torsion free homology or if everything is
defined over Fp then

H∗(CD1 × CD2,D1 ?D2;F1 ⊗ F2) ∼= H∗(CD1,D1;F1)⊗H∗(CD2;D2;F2).

�
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The following result gives that certain filtration quotients have (almost) vanishing coho-
mology.

Theorem 10.15. Set X = PU(n)p̂ and fix an integer r > 0. Let F r : A(X) → Zp-mod
denote the functor on objects given by F rj (E) = πj(BZCX(E)) if E is of the form Γ̄r × Ā
(in the notation of Section 9) and zero otherwise. Writing n = prk we have that

lim
A(X)

iF rj =

{
Z/2 if j = i = k = r = 1 and p = 2
0 otherwise.

Proof. Define a functor F̃ rj by F̃ rj (E) = πj(BZCPU(k)(Ā)p̂) if E = Γ̄r × Ā for a fixed r and

zero otherwise. This is a subfunctor of F rj via the identification PU(k) ∼= CPU(n)(Γ̄r)1. Set
˜̃F rj = F rj /F̃

r
j and observe that this is the trivial functor unless j = 1 where it is given by

˜̃F rj (E) = Γ̄r if E is of the form Γ̄r × Ā and zero otherwise.
Consider the category

D = Ae(X)⊆Γ̄r
×Ae(PU(k)p̂)− (e, e)

where the superscript e means that we do not exclude the trivial subgroup. We have a
natural inclusion of categories ι : D→ A(X) on objects given by (V, Ā) 7→ V × Ā. Step 1:
We claim that this map induces an isomorphism

lim
A(X)

∗F rj → lim
D

∗F rj .

By filtering the functor and using Nakayama’s lemma it is enough to show this for F̃ rj ⊗Fp

and ˜̃F rj ⊗Fp. We can furthermore replace these functors by the subquotient functors which

are only concentrated on one subgroup Γ̄r × Ā.
Consider first such a subquotient of F̃ rj ⊗ Fp. In this case the formula of Oliver [106,

Prop. 4] together with Lemma 10.14 shows that the higher limits on both sides are only
non-zero in a single degree, where the map identifies with the restriction map

HomWX(Γ̄r×Ā)(St(Γ̄r × Ā), πj(BZCPU(k)(Ā))⊗ Fp)→

HomSp(Γ̄r)×WPU(k)(Ā)(St(Γ̄r)⊗ St(Ā), πj(BZCPU(k)(Ā))⊗ Fp).

Now note that the elements U in WPU(n)(Γ̄r × Ā) which sends Γ̄r to Ā act trivially on the
target by Theorem 9.1. Furthermore we have by the theorem of Smith [121] (and self-duality
of the Steinberg module) that St(Γ̄r×Ā)U ∼= St(Γ̄r×Ā)U ∼= St(Γ̄r)⊗St(Ā), where (−)U and
(−)U denote coinvariants and invariants respectively. Hence this map is an isomorphism.

The case of a subquotient of ˜̃F rj ⊗Fp is completely analogous. This shows the isomorphism.
Step 2: We now proceed to calculate the higher limits over D, which we do by calculating

the limits of F̃ rj and ˜̃F rj . We first consider ˜̃F rj . We have already remarked that only
˜̃F r1 6= 0. Furthermore if k 6= 1 then H∗(CAtor(PU(k)p̂),A

tor(PU(k)p̂);Zp) = 0 by [50, §8]
so lim∗

D
˜̃F rj = 0 by Lemma 10.14. If k = 1 we get limi

D
˜̃F r ∼= HomSp(Γ̄r)(St(Γ̄r), Γ̄r) if

i = 2r − 1 and zero otherwise, by [106, Prop. 4].

Now consider F̃ rj . By Lemma 10.14

lim
D

iF̃ rj = HomSp(Γ̄r)(St(Γ̄r),Zp)⊗ lim
Ā∈Ator(PU(k)p̂)

i−2rπj(BZCPU(k)p̂
(Ā)).
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By Lemma 10.13 limi−2r
Ator(PU(k)p̂) πj(BZCPU(k)p̂

(Ā)) = 0 unless p = k = 2, j = 1 and

i− 2r = 1 where we get lim1
Ator(PU(2)2̂) πj(BZCPU(2)2̂(Ā)) = Z/2.

By an argument of H. H. Andersen and C. Stroppel [5] we have that

HomSp(Γ̄r)(St(Γ̄r),Zp) = 0

for all r and p.
To sum up we get that

lim
A(X)

iF rj
∼= lim

D

i ˜̃F rj
∼= HomSp(Γ̄r)(St(Γ̄r), Γ̄r)

if j = k = 1 and i = 2r − 1 and zero otherwise.
However the same argument of H. H. Andersen and C. Stroppel [5] shows that

HomSp(Γ̄r)(St(Γ̄r), Γ̄r) = 0

unless r = 1 and p = 2 where it equals F2. (Note that this is obvious if p is odd by
Lemma 10.9.) This shows the wanted formula. �

Remark 10.16. Note that slightly non-trivial statements from [5] are only used above for
p = 2 and furthermore become trivial when r = 1, where Sp(Γ̄1) ∼= SL(Γ̄1), and this is in
fact the only case which involve obstruction groups in the range needed for the proof of (the
p = 2 version of) Theorem 1.4.

Remark 10.17. It is in fact possible to give a short proof of Smith’s theorem in the special
case used above, using the geometric definition of the Steinberg module St(E) via flags.

Proof of Theorem 10.1 for X = PU(n)p̂. Lemma 10.15 and 10.13 directly shows the con-
clusion unless n = 2 and p = 2, so assume we are in this case. By writing down the
definition it follows that lim0

A(X) F1 = 0. Now, consider the exact sequence of functors

0→ F 1
1 → F1 → F tor

1 → 0. The long exact sequence of higher limits starts out as

0→ 0→ 0→ lim
A(X)

0F tor
1 → lim

A(X)

1F 1
1 → lim

A(X)

1F1 → 0→ · · ·

So, since lim0
A(X) F

tor
1
∼= Z/2 ∼= lim1

A(X) F
1
1 we get that limi

A(X) F1 = 0 for i > 0 as well.

This concludes the proof of this last case of Theorem 10.1. �

11. Appendix: The classification of finite Zp-reflection groups

The purpose of this appendix is to give a classification of finite Zp-reflection groups
extending and simplifying work of Notbohm [100, 102] who gave a classification for odd
primes p. See also [47, §5] for related earlier results.

We start by recalling some definitions. Let R be an integral domain with field of fractions
K. An R-reflection group is a pair (W,L) where L is a finitely generated free R-module,
and W is a subgroup of Aut(L) generated by elements α such that 1 − α has rank one
viewed as a matrix over K. Two finite R-reflection groups (W,L) and (W ′, L′) are called
isomorphic, if we can find an R-linear isomorphism ϕ : L→ L′ such that the group ϕWϕ−1

equals W ′. A finite R-reflection group (W,L) is said to be irreducible if the corresponding
representation of W on L ⊗R K is irreducible. If R has characteristic zero we define the
character field of an R-reflection group (W,L) as the field extension of Q generated by the
values of the character of the representation W ↪→ Aut(L). For R = Zp or Qp we define an
exotic R-reflection group to be a finite irreducible R-reflection group with character field
strictly larger than Q.
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The classification of finite Zp-reflection groups is based on the work of Clark and Ewing
[31], which is again based on the classification of finite C-reflection groups by Shephard and
Todd [119]. Clark and Ewing showed that there is a bijection between finite Qp-reflection
groups and finite C-reflection groups whose character field may be embedded in Qp. The
classification of finite complex reflection groups [119] is as follows: The irreducible ones fall
into 3 infinite families (in the following called families 1, 2 and 3) and 34 sporadic cases (in
the following labeled Gi, 4 ≤ i ≤ 37). Moreover any finite complex reflection group can be
written as a direct product of irreducible finite complex reflection groups, cf. [58, Rem. 2.3]
(in fact this holds over any field of characteristic 0).

It is convenient to split family 2 further depending on the character field. The associated
complex reflection group is the group G(m, r, n) (where m, r and n are integers with m,n ≥
2, r ≥ 1, r |m and (m, r, n) 6= (2, 2, 2)) from [119, p. 277] which consists of monomial n×n-
matrices such that the non-zero entries are mth roots of unity and the product of the
non-zero entries is an (m/r)th root of unity. Thus G(m, r, n) is the semidirect product of
its subgroup A(m, r, n) of diagonal matrices with the subgroup of permutation matrices.

Let ζm = e2πi/m. For n ≥ 3 or n = 2 and r 6= m the character field of G(m, r, n) equals
Q(ζm), and for n = 2 and r = m it equals Q(ζm + ζ−1

m ) (see [31, p. 432–433]). We label the
two cases family 2a and 2b respectively.

A complete list of the irreducible finite complex reflection groups, their character fields
and the primes for which these embed in Qp can be found in [79, p. 165] or [6, Table 1].

If (W,V ) is a finite Qp-reflection group, then by [36, Prop. 23.16] we can find a (non-
unique) finitely generated ZpW -submodule L ⊆ V with L ⊗Q = V . Thus any finite Qp-
reflection group may be obtained from a finite Zp-reflection group by extension of scalars,
but in general there are several non-isomorphic Zp-reflection groups which give rise to the
same Qp-reflection group. The following result extends [102, Thm. 1.5 and Prop. 1.6] to all
primes.

Theorem 11.1 (The classification of finite Zp-reflection groups). Let (W,L) be a finite
Zp-reflection group. Then there exists a decomposition

(W,L) = (W1 ×W2, L1 ⊕ L2)

where (W1, L1) ∼= (WG, LG ⊗ Zp), for some (non-unique) compact connected Lie group G
with Weyl group WG and integral lattice LG, and (W2, L2) is a (up to permutation unique)
direct product of exotic Zp-reflection groups.

The canonical map (W,L) 7→ (W,L⊗Q) gives a one-to-one correspondence between exotic
Zp-reflection groups up to isomorphism and exotic Qp-reflection groups up to isomorphism.

If (W,L) is any exotic Zp-reflection group, then L ⊗ Fp is an irreducible FpW -module,
and in particular we have (L⊗ Z/p∞)W = 0 and H0(W ;L) = 0.

Remark 11.2. For odd primes p the last two results says by definition that any exotic
Zp-reflection group is respectively center-free and simply connected, cf. [100].

Note also that [102, Thm. 1.5] imposes the unnecessarily strong condition that the in-
variant ring Zp[L]W is a polynomial algebra, but this condition is not actually used in
[102].

We recall the following elementary fact about elements of finite order in GLn(Zp).

Lemma 11.3. Let G ⊆ GLn(Zp) be a finite subgroup. Then the mod p reduction G ↪→
GLn(Zp)→ GLn(Fp) is injective if p is odd. For p = 2 the kernel of the composition is an
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elementary abelian 2-subgroup of rank at most n2. In particular the kernel is contained in
O2(G), the largest normal 2-subgroup of G.

Proof. It is easy to see directly that any non-trivial finite order element in GLn(Zp) has
non-trivial reduction mod p if p is odd (cf. [120, Pf. of Lem. 10.7.1]). For p = 2 the same
argument shows that this is true if we reduce mod 4. The result now follows. �

Proof of Theorem 11.1. We start by showing that for any exotic Qp-reflection group (W,V )
we can find a finitely generated ZpW -submodule L ⊆ V with L⊗Q = V , such that L⊗Fp
is an irreducible FpW -module.

Assume first that p - |W |. By [36, Prop. 23.16] we can find a finitely generated ZpW -
submodule L ⊆ V with L ⊗ Q = V . It follows from [35, 75.6 and 76.15] that L ⊗ Fp is
automatically an irreducible FpW -module.

Assume now that W has order divisible by p. From Clark-Ewing’s list we see that the
only exotic Qp-reflection groups satisfying this condition are the groups G(m, r, n) from
family 2a or one of the groups G12 for p = 3, G24 for p = 2, G29 and G31 for p = 5 or G34

for p = 7.
In case W = G(m, r, n) from family 2a we get the extra conditions m ≥ 3, p ≡ 1

(mod m) and p ≤ n. Note in particular that n ≥ 3. The description above directly gives a
representation with entries in Zp since the multiplicative group of Zp contains the (p− 1)th
roots of unity. Let L = (Zp)

n be the natural ZpW -module, i.e. the set of columns with
entries in Zp. Assume that 0 6= M ⊆ L ⊗ Fp is a FpW -submodule of L ⊗ Fp. Choose
x ∈ M with x 6= 0 and let θ ∈ Fp be a primitive mth root of unity. Since W contains the
permutation matrices and the diagonal matrix diag(θ, θ−1, 1, . . . , 1) we see that M contains
an element of the form x′ = (x1, x2, 0, . . . , 0)

T with x1 6= 0. Since n ≥ 3, W also contains
the diagonal matrix diag(θ, 1, θ−1, 1, . . . , 1) and hence M contains ((1− θ)x1, 0, . . . , 0)

T. As
θ 6= 1 and W contains all permutation matrices we conclude that M = L⊗Fp, proving the
claim for the groups from family 2a.

Next consider W = G12 at p = 3. Since W is isomorphic to GL2(F3), Lemma 11.3 shows
that for any finitely generated Z3W -submodule L ⊆ (Q3)

2 of rank 2, we may identify L⊗F3

as the natural F3W -module. In particular L⊗ F3 is an irreducible F3W -module.
For W = G24 at p = 2 we have W ∼= Z/2 × GL3(F2). Hence Lemma 11.3 shows that

for any finitely generated Z2W -submodule L ⊆ (Q2)
3 of rank 3, we may identify L ⊗ F2

as the F2(Z/2×GL3(F2))-module where Z/2 acts trivially and GL3(F2) acts naturally. In
particular L⊗ F2 is an irreducible F2W -module.

Next consider the groups G29 and G31 at p = 5. Since G29 is contained in G31 it suffices
to show the result for W = G29. The representation in [119, p. 298] is defined over Z[12 , i]
and hence we get a representation over Z5 by mapping i to a primitive 4th root of unity
in Z5. Let L = (Z5)

4 be the natural Z5W -module. There are 40 reflections in G29: The
24 reflections in the hyperplanes of the form xj − iαxk = 0, j 6= k and the 16 reflections in

the hyperplanes of the form
∑4

j=1 i
αjxj = 0 with

∑4
j=1 αj ≡ 0 (mod 4). In particular G29

contains the reflections in the hyperplanes xj−xk = 0 and thus G29 contains all permutation
matrices. The product of the reflections in the hyperplanes x1 − ix2 = 0 and x1 − x2 = 0
equals the diagonal matrix diag(i,−i, 1, 1) and thus this element is also contained in G29.
Now the same argument used in the case of the groups from family 2a shows that L ⊗ F5

is an irreducible F5W -module.
The argument for the group W = G34 at p = 7 is similar. The representation given

in [119, p. 298] is defined over Z[13 , ω], ω = ζ3 and hence we get a representation over
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Z7 by mapping ω to a primitive 3rd root of unity in Z7. Let L = (Z7)
6 be the natural

Z7W -module. There are 126 reflections in G34: The 45 reflections in the hyperplanes of
the form xj − ωαxk = 0, j 6= k and the 81 reflections in the hyperplanes of the form∑6

j=1 ω
αjxj = 0 with

∑6
j=1 αj ≡ 0 (mod 3). In particular G34 contains all permutation

matrices. The product of the reflections in the hyperplanes x1 − ωx2 = 0 and x1 − x2 = 0
equals the diagonal matrix diag(ω, ω2, 1, 1, 1, 1) and thus this element is also contained in
G34. As above we then see that L⊗ F7 is an irreducible F7W -module.

This proves the claim made above that for any exotic Qp-reflection group (W,V ) we can
find a finitely generated ZpW -submodule L ⊆ V with L ⊗ Q = V , such that L ⊗ Fp is
an irreducible FpW -module. It now follows from [118, Ex. 15.3] that, up to scaling with
a unit in Qp, L is the only such ZpW -submodule. This gives the bijection between exotic
Zp-reflection groups and exotic Qp-reflection groups.

Since L ⊗ Fp is an irreducible FpW -module we also conclude that (L ⊗ Fp)
W = 0 and

H0(W ;L ⊗ Fp) = 0. Hence we get (L ⊗ Z/p∞)W = 0 as claimed. We also see that
multiplication by p is surjective on H0(W ;L) and from this we obtain H0(W ;L) = 0 by
Nakayama’s lemma. This proves the part of the theorem pertaining to exotic Zp-reflection
groups.

Now consider a finite Zp-reflection group (W,L) such that we have a direct sum decom-
position L ⊗ Q = V1 ⊕ V2 as QpW -modules. Let W1 (resp. W2) be the subgroup of W
which fixes V2 (resp. V1) pointwise. It it easy to see (cf. [53, Prop. 6.3]) that (Wi, Vi) is a
Qp-reflection group and that we get the decomposition (W,L⊗Q) = (W1 ×W2, V1 ⊕ V2).

We now claim that if (W2, V2) is an exotic Qp-reflection group, then we have the de-
composition (W,L) = (W1 × W2, L1 ⊕ L2) with Li = L ∩ Vi. Let α : L1 ⊕ L2 −→ L
be the addition map. As in [53, Pf. of Thm. 1.5] it suffices to prove that α ⊗ Z/p∞ :
(L1 ⊗ Z/p∞) ⊕ (L2 ⊗ Z/p∞) −→ L ⊗ Z/p∞ is injective. Assume that (x1, x2) is in the
kernel of α ⊗ Z/p∞, xi ∈ Li ⊗ Z/p∞. Thus x1 + x2 = 0. If s ∈ W2 is a reflection we
have by definition s · x1 = x1 and hence s also fixes x2 = −x1. Since W2 is generated by
reflections we get x2 ∈ (L2 ⊗ Z/p∞)W and hence x2 = 0 by the results already proved for
exotic Zp-reflection groups. Hence x1 = 0 as well, and thus α ⊗ Z/p∞ is injective proving
the claim.

Since any finite Qp-reflection group may be decomposed into a (up to permutation unique)
product of finite irreducible ones, we see by using the claim repeatedly that any finite Zp-
reflection group (W,L) may be decomposed as a product (W,L) ∼= (W1 × W2, L1 ⊕ L2)
where (W1, L1) is a Zp-reflection group with character field equal to Q and (W2, L2) is as
in the theorem.

To finish the proof we thus need to show that for any finite Zp-reflection group (W,L) with
character field equal to Q we may find a compact connected Lie group G such that (W,L)
is isomorphic to (WG, LG ⊗ Zp). We start by reducing the problem to finite Z-reflection
groups. The representation W → GL(L ⊗Q) is a reflection representation and hence has
Schur index 1 by [31, Cor. p. 429]. Thus this representation is equivalent to a representation
defined over Q. Hence [36, Cor. 30.10] applied to R = Z(p) shows that there exists a (unique)
finitely generated Z(p)W -submodule L′ ⊆ L with L′ ⊗Z(p)

Zp = L. Now [36, Cor. 23.14]

applied to R = Z shows that L′ contains a (non-unique) finitely generated ZW -submodule
L′′ ⊆ L′ with L′ = L′′ ⊗ Z(p). We conclude in particular that (W,L) ∼= (W,L′′ ⊗ Zp).

We finish the proof by showing that there exists a (non-unique) compact connected Lie
group G whose Weyl group (WG, LG) is isomorphic to (W,L′′). For each reflection s ∈ W
the group {x ∈ L′′ | s(x) = −x} is an infinite cyclic group with two generators which
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we label ±αs. Let Φ = {±αs | s is a reflection in W} and L′′
0 = (L′′)W . It then follows

(cf. [109, p. 85]) that (L′′, L′′
0 ,Φ) is a reduced root diagram whose associated Z-reflection

group equals (W,L′′) (see [17, §4, no. 8] for definitions). From the classification of compact
connected Lie groups ([17, §4, no. 9, Prop. 16]) it then follows that there exists a compact
connected Lie group G whose root diagram equals (L′′, L′′

0 ,Φ). In particular (WG, LG) is
isomorphic to (W,L′′) and we are done. �

The following result answers the question of when two compact connected Lie groups give
rise to the same p-compact group. For a compact connected Lie group G let G〈1〉 denote the
universal cover of G. Furthermore let H be the direct product of the identity component of
the center, Z(G)1, with the universal cover of the derived group of G. We have a canonical
covering homomorphism ϕ : H → G with finite kernel (cf. [17, §1, no. 4, Prop. 4]). If p is a

prime number, we let Covp
′
(G) denote the covering of G corresponding to the subgroup of

π1(G) given as the preimage of the Sylow p-subgroup of π1(G)/ϕ(π1(H)).

Theorem 11.4 (Addendum to Theorem 1.1 and 11.1). Let G and G′ be two compact
connected Lie groups and p a prime number. Then

(1) (WG, LG) and (WG′ , LG′) are isomorphic if and only if G is isomorphic to G′ up to
the substitution of direct factors isomorphic to Sp(n) with direct factors isomorphic
to SO(2n + 1).

(2) (WG, LG ⊗ Z2) and (WG′ , LG′ ⊗ Z2) are isomorphic if and only if Cov2′(G) and

Cov2′(G′) are isomorphic up to the substitution of direct factors isomorphic to Sp(n)
with direct factors isomorphic to SO(2n+1). Moreover the following conditions are
equivalent:
(a) (WG, LG ⊗ Z2, LG〈1〉 ⊗ Z2) and (WG′ , LG′ ⊗ Z2, LG′〈1〉 ⊗ Z2) are isomorphic.

(b) Cov2′(G) is isomorphic to Cov2′(G′).
(c) (BG)2̂ ' (BG′)2̂.

(3) For p odd the following conditions are equivalent:
(a) (WG, LG ⊗ Zp) and (WG′ , LG′ ⊗ Zp) are isomorphic.

(b) Covp
′
(G) and Covp

′
(G′) are isomorphic up to the substitution of direct factors

isomorphic to Sp(n) with direct factors isomorphic to Spin(2n + 1).
(c) (BG)p̂ ' (BG′)p̂.

Sketch of proof: By [109, §4] or [76, Prop. 3.2(vi)] we can recover the root datum of a
compact connected Lie group from its integral lattice up to substitution of direct factors
isomorphic to Sp(n) with direct factors isomorphic to SO(2n+ 1). Part (1) now follows.

Now, suppose that G is a compact connected Lie group of the form H/K where H is
a direct product of a torus with a simply connected compact Lie group and K is a finite
central p-group, i.e., that Covp

′
(G) = G. Suppose moreover that G does not contain any

direct factors isomorphic to Sp(n). By Proposition 7.4 the fundamental group of G equals
the coinvariants (LG)W and hence LH = (LG)W ⊕SLG. This shows that (W,LH ⊗Zp) can
be reconstructed from (W,LG⊗Zp). By the classification of simply connected compact Lie
groups we can for p = 2 reconstruct H from (W,LH ⊗ Zp). For p odd the only ambiguity
arises from direct factors isomorphic to Sp(n) or Spin(2n + 1). However, if p is odd then
by the assumption on G, H cannot contain any direct factors isomorphic to Sp(n), and we
conclude that in all cases we can reconstruct H from (W,LG⊗Zp). Since K is the cokernel
of the inclusion LH ⊗Zp → LG ⊗Zp, we can also recover the inclusion K ⊆ LH ⊗Z/p∞ =
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Z̆(H) ⊆ Z(H) using [58, Thm. 1.4] for the middle equality. This shows that we can recover
G from (W,LG ⊗ Zp).

The above analysis directly shows the first claim in (2) as well as (3a) ⇔ (3b). From the
first claim in (2), (2a)⇔ (2b) follows, since Sp(n) and SO(2n+1) have different Z2-reflection
data (WG, LG ⊗ Z2, LG〈1〉 ⊗ Z2). The implications (2b)⇒ (2c)⇒ (2a) are clear.

To finish off we remark that (3c)⇒ (3a) is clear and (3b)⇒ (3c) follows since B SO(2n+
1)p̂ is homotopy equivalent to B Sp(n)p̂ either by a very special case of our main Theorem 1.1
or by the original proof due to Friedlander [61]. �

12. Appendix: Invariant rings of finite Zp-reflection groups, p odd
(following Notbohm)

The purpose of this appendix is to recall Notbohm’s determination [102] of finite Zp-
reflection groups (W,L), p odd, such that the invariant ring Zp[L]W is a polynomial algebra.

Before stating it let us however for easy reference recall the following ‘classical’ character-
izations of being a ‘p-torsion free’ p-compact group, which has a proof by general arguments
which we will sketch.

Theorem 12.1. Let X be a connected p-compact group with maximal torus T and Weyl
group WX . The following statements are equivalent:

(1) H∗(X;Zp) is torsion free.
(2) H∗(X;Zp) is an exterior algebra over Zp with generators in odd degrees (or equiv-

alently with Fp instead of Zp).
(3) H∗(BX;Zp) is a polynomial algebra over Zp with generators in even degree (or

equivalently with Fp instead of Zp).

(4) H∗(BX;Zp) is a polynomial algebra and H∗(BX;Zp)
∼=→ H∗(BT ;Zp)

WX .

We now give Notbohm’s classification. The first part (which is a general argument
reducing to the simply connected case) is [102, Thm. 1.3] and the second (which is a case-
by-case argument in the simply connected case) is a slight extension of [102, Thm. 1.4].
For the benefit of the reader we give a streamlined proof of the second part. Recall that
for a finite Zp-reflection group (W,L) we define SL to be the submodule of L generated by
elements of the form (1 − w)x with w ∈ W and x ∈ L. We call (W,L) simply connected if
L = SL′ for some ZpW -lattice L′ (note that for p odd this is equivalent to SL = L since
S2L′ = SL′, cf. the discussion of Zp-reflection data in the introduction).

Theorem 12.2 (Finite Zp-reflection groups with polynomial invariants, p odd). Let p be an
odd prime and (W,L) a finite Zp-reflection group. Then we have the following statements:

(1) Zp[L]W is a polynomial algebra if and only if Zp[SL]W is a polynomial algebra and
the group of coinvariants LW is torsion free.

(2) Suppose (W,L) is irreducible and simply connected. The following conditions are
equivalent:
(a) Zp[L]W is a polynomial algebra.
(b) Fp[L⊗Fp]

W is a polynomial algebra.
(c) (W,L) is not isomorphic to (WG, LG⊗Zp) for the following pairs (G, p): (F4, 3),

(3E6, 3), (2E7, 3), (E8, 3) and (E8, 5).

In particular, if X is an exotic p-compact group then Zp[LX ]WX is a polynomial algebra and
if (W,L) = (WG, LG ⊗ Zp) for a compact connected Lie group G then Zp[LG ⊗ Zp]

WG is a
polynomial algebra if and only if H∗(G;Zp) is torsion free.
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Sketch of proof of Theorem 12.1. The equivalence of (1), (2), and (3) are old H-space and
loop space arguments which we first very briefly sketch. By a Bockstein spectral sequence
argument (cf. e.g., [79, §11-2]) H∗(X;Zp) torsion free if and only if H∗(X;Zp) is an exterior
algebra on odd dimensional generators so (1) is equivalent to (2). This is again equivalent
to that H∗(BX;Zp) is a polynomial algebra on even dimensional generators (using the
Eilenberg-Moore and the cobar spectral sequence; see e.g., [79, §7-4]), so (2) is equivalent
to (3).

That (4) implies (3) is obvious. The fact that (1)–(3) also imply (4) requires more
machinery and is probably first found in [47, Thm. 2.11]—we quickly sketch an argument.
We want to show that the map r : H∗(BX;Zp) → H∗(BT ;Zp)

W is an isomorphism. By
[51, Thm. 9.7(3)]

(12.1) H∗(BX;Zp)⊗Q
∼=→ H∗(BT ;Zp)

W ⊗Q.

This implies by comparing Krull dimensions that the number of polynomial generators
equals the rank of T . Since H∗(BT ;Fp) is finitely generated over H∗(BX;Fp) by [51,
Prop. 9.11] it follows by comparing Krull dimensions again thatH∗(BX;Fp)→ H∗(BT ;Fp)
is injective. Hence H∗(BX;Zp) → H∗(BT ;Zp) has to be injective by Nakayama’s lemma.
Likewise r has to be surjective: By (12.1) the cokernel of r has to be p-torsion. Since the
reduction mod p of r is still injective (as seen above) the cokernel of r has to be p-torsion
free as well (since Tor(coker(r),Fp) = 0). �

Remark 12.3. If p is odd then Fp-coefficients can also be used in Theorem 12.1(4) by a
Galois theory argument using Lemma 11.3. For p = 2, this is not true as can be seen by
taking X = SU(2)2̂. See [48] for a p = 2 version.

Remark 12.4. If (W,L) is a finite Zp-reflection group then Zp[L]W is a polynomial alge-
bra if and only if Fp[L ⊗ Fp]

W is a polynomial algebra and the canonical monomorphism

Zp[L]W ⊗Fp −→ Fp[L⊗Fp]
W is an isomorphism as shown in [102, Lem. 2.3]. Note that this

can be reformulated as saying that Zp[L]W is a polynomial algebra if and only if Fp[L⊗Fp]
W

is a polynomial algebra with generators in the same degrees as the generators of Qp[L⊗Q]W ,
since dimQp(Qp[L⊗Q]W )n = dimFp(Zp[L]W ⊗ Fp)n ≤ dimFp(Fp[L⊗ Fp]

W )n for any n.

Remark 12.5. The finite Z3-reflection group (W,L) = (WPU(3), LPU(3) ⊗ Z3) does not
have invariant ring a polynomial ring (e.g., since LW ∼= Z/3 is not torsion free). However a
short calculation shows that F3[L ⊗ F3]

W is a polynomial ring with generators in degrees
1 and 6 (as opposed to the degrees over Q3 which are 2 and 3). (See also [47, Rem. 5.3].)
It turns out that this example is essentially the only one since it can be proved that if
(W,L) is a finite Zp-reflection group, p odd, such that Fp[L]W is a polynomial algebra, then
Zp[L]W is also a polynomial algebra unless p = 3 and (W,L) contains (WPU(3), LPU(3)⊗Z3)
as a direct factor. We omit the proof which is an extension of the technique used in the
examples in Section 7 in a preprint version of [56], which can at the time of writing be found
on Wilkerson’s homepage.

Lemma 12.6. Assume that L is a finitely generated free Zp-module and that W is a finite

subgroup of GL(L). If p - |W | and Fp[L ⊗ Fp]
W is a polynomial algebra, then Zp[L]W is

also a polynomial algebra.

Proof. By assumption we have the averaging homomorphisms Zp[L] −→ Zp[L]W and Fp[L⊗
Fp] −→ Fp[L ⊗ Fp]

W given by f 7→ 1
|W |

∑
w∈W w · f . These are obviously surjective and
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hence the commutative diagram

Zp[L] //

��

Zp[L]W

��
Fp[L⊗Fp] // Fp[L⊗ Fp]

W

shows that the reduction homomorphism Zp[L]W → Fp[L⊗ Fp]
W is surjective. The result

now follows easily from Nakayama’s lemma (cf. [102, Lem. 2.3]). �

Proof of Theorem 12.2. Part (1) is contained in [102, Thm. 1.3]. To prove part (2) note
that by Notbohm [100] (see also [102, Thm. 1.2(iii)] and Theorem 11.1), there is a unique
finite irreducible simply connected Zp-reflection group for each group on the Clark-Ewing
list. We now go through the list, verifying the result in each case.

If p - |W | the invariant ring Fp[L⊗Fp]
W is a polynomial algebra by the Shephard-Todd-

Chevalley theorem ([7, Thm. 7.2.1] or [120, Thm. 7.4.1]), and thus Lemma 12.6 shows that
Zp[L]W is a polynomial algebra.

Next, assume that (W,L) is an exotic Zp-reflection group. If (W,L) belongs to family
number 2 on the Clark-Ewing list, the representing matrices with respect to the standard
basis are monomial and so Zp[L]W is a polynomial algebra by [95, Thm. 2.4].

An inspection of the Clark-Ewing list now shows that only 4 exotic cases remain, namely
(G12, p = 3), (G29, p = 5), (G31, p = 5) and (G34, p = 7). In the first case we have
G12
∼= GL2(F3) and Lemma 11.3 shows that the action on L⊗F3 = (F3)

2 is the canonical

one. The invariant ring F3[L⊗F3]
GL2(F3) was computed by Dickson [39]. In the remaining

3 cases the mod p invariant ring was calculated by Xu [136, 137] using computer, see also
Kemper and Malle [80, Prop. 6.1]. The conclusion of these computations is that in all 4
cases the invariant ring Fp[L ⊗ Fp]

W is a polynomial algebra with generators in the same

degrees as the generators of Qp[L ⊗Q]W . By Remark 12.4 we then see that Zp[L]W is a
polynomial algebra in these cases.

The only remaining cases are the finite simply connected Zp-reflection groups which are
not exotic. Since p is odd and π1(G) and (LG)WG

only differ by an elementary abelian 2-
group (cf. proof of Theorem 1.7 and Remark 7.4), we may assume that (W,L) = (WG, LG⊗
Zp) for some simply connected compact Lie group G. In this case Demazure [38] shows
that if p is not a torsion prime for the root system associated to G, then the invariant rings
Zp[LG ⊗ Zp]

WG and Fp[LG ⊗ Fp]
WG are polynomial algebras.

By the calculation of torsion primes for the simple root systems, [38, Prop. 8], the excluded
pairs (G, p) in the last part of the theorem are exactly the cases where the root system of G
has p-torsion. In these cases Kemper and Malle [80, Prop. 6.1 and Pf. of Thm. 8.5] shows
that Fp[LG ⊗ Fp]

WG is not a polynomial algebra. Hence in these cases Zp[LG ⊗ Zp]
WG is

not a polynomial algebra by [102, Lem. 2.3(i)]. This proves the second claim.
Finally, let G be a compact connected Lie group with Weyl group W and integral lattice

L = LG. We now prove that Zp[L⊗ Zp]
W is a polynomial algebra if and only if H∗(G;Zp)

is torsion free. (See also [103, Prop. 1.11].) One direction follows from Theorem 12.1, so
assume now that Zp[L⊗ Zp]

W is a polynomial algebra. From Theorem 12.2(1) we see that

Zp[S(L⊗Zp)]
W is a polynomial algebra and that (L⊗Zp)W is torsion free. Since p is odd,

we have (L⊗Zp)W = π1(G)⊗Zp and S(L⊗Zp) = LG〈1〉⊗Zp, cf. proof of Theorem 1.7 and
Remark 7.4. From what we have proved above we conclude that H∗(G〈1〉;Zp) is torsion
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free. Since π1(G) does not contain p-torsion, it now follows easily from the Serre spectral
sequence that H∗(G;Zp) is torsion free. �

Remark 12.7. Let p be an odd prime and (W,L) a finite Zp-reflection group. We claim
that the following conditions are equivalent:

(1) Zp[L]W is a polynomial algebra.
(2) Fp[L⊗Fp]

W is a polynomial algebra and LW is torsion free.
(3) Fp[SL⊗Fp]

W is a polynomial algebra and LW is torsion free.

Indeed we have (1) ⇔ (3) by Theorem 12.2 since (W,SL) can be decomposed as a direct
product of finite irreducible simply connected Zp-reflection groups by [100, Thm. 1.4]. The
implication (1)⇒ (2) follows from [102, Thm. 1.3 and Lem. 2.3]. Finally (2)⇒ (3) follows
from [95, Prop. 4.1] as LW torsion free implies that SL⊗Fp → L⊗ Fp is injective.

13. Appendix: Outer automorphisms of exotic finite Zp-reflection groups

Theorem 1.1 states that the outer automorphism group of a p-compact group, p odd,
equals NGL(L)(W )/W , which makes it useful to have a complete case-by-case calculation
of this group. Theorem 11.1 and Proposition 3.4 reduces the calculation to the case where
(W,L) = (WG, LG⊗Zp) for some compact connected Lie group G and the case where (W,L)
is exotic.

The purpose of this appendix section is to provide such a calculation when (W,L) is
exotic based on calculations of Broué, Malle and Michel [23, Prop. 3.13] over the complex
numbers. Information about the, perhaps more familiar, Lie case can be obtained similarly,
or by a very close reading of [76].

For the statement of the result (which will take place in the theorem below as well as in
the following elaborations), we fix the realizations G(m, r, n) of the groups from family 2
as described in Section 11. Moreover we also fix the realization of the complex reflection
groups Gi (4 ≤ i ≤ 37) to be the one described in [119]. Finally we let µn denote the group
of nth roots of unity.

Theorem 13.1 (Outer automorphisms of the exotic Zp-reflection groups). Let (W,L) be an
exotic Zp-reflection group and let (W,V ) be the associated complex reflection group. Then
NGL(V )(W ) = 〈W,C×〉 and hence NGL(L)(W )/W = Z×

p /Z(W ) and NGL(L)(W )/Z×
pW = 1

except in the following cases:

(1) W = G(m, r, n) from family 2 with (m, r, n) 6= (4, 2, 2), (3, 3, 3): NGL(V )(W ) =

〈G(m, 1, n),C×〉 and NGL(L)(W )/Z×
pW = Cgcd(r,n), cf. 13.4.

(2) W = G(4, 2, 2): NGL(V )(W ) = 〈G8,C
×〉 and NGL(L)(W )/Z×

pW = Σ3, cf. 13.5.

(3) W = G(3, 3, 3): NGL(V )(W ) = 〈G26,C
×〉 and NGL(L)(W )/Z×

pW = A4, cf. 13.6.

(4) W = G5: NGL(V )(W ) = 〈G14,C
×〉 and NGL(L)(W )/Z×

pW = C2, cf. 13.7.

(5) W = G7: NGL(V )(W ) = 〈G10,C
×〉 and NGL(L)(W )/Z×

pW = C2, cf. 13.8.

Lemma 13.2. Let K ⊆ K ′ be fields of characteristic zero, and W ⊆ GLn(K) an irreducible

reflection group. Then NGLn(K ′)(W ) =
〈
NGLn(K)(W ),K ′×

〉
.

Proof. The inclusion “⊇” is clear, so suppose g ∈ NGLn(K ′)(W ). Consider the system of

equations Xw = gwg−1X, w ∈ W where X is an n × n-matrix. Over K ′ this has the
solution X = g. By [58, Lem. 2.10], the representation W → GLn(K

′) is irreducible, so the
solution space is the 1-dimensional space spanned by g. Since the coefficients lie in K, the
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solution space over K is 1-dimensional as well, so we can write g = λg1 with λ ∈ K ′ and
g1 ∈Mn(K). As g 6= 0 we get λ 6= 0 and g1 ∈ NGLn(K)(W ). �

We can now start the proof of Theorem 13.1. By [23, Prop. 3.13] we easily get the results
on NGL(V )(W ) claimed above (note that 〈G(4, 1, 2), G6 ,C

×〉 = 〈G8,C
×〉 and G(3, 1, 3) ⊆

G26). Now assume that W does not belong to family 2 and W 6= G5, G7. Let n de-
note the rank of W and K the field extension of Q generated by the entries of the ma-
trices representing W . Our assumption ensures that NGL(V )(W ) = 〈W,C×〉 and hence

NGLn(K)(W ) = 〈W,K×〉. Lemma 13.2 now shows that NGLn(Qp)(W ) =
〈
W,Q×

p

〉
. Hence

we get NGL(L)(W ) =
〈
W,Z×

p

〉
and since W is irreducible we have W ∩Z×

p = Z(W ), cf. [58,
Lem. 2.9].

This proves Theorem 13.1 in case W does not belong to family 2 and W 6= G5, G7.
In the remaining cases we have also proved the statements concerning NGL(V )(W ), and
we thus only need to find the structure of NGL(L)(W ) in these cases. This is done in
Elaborations 13.4, 13.5, 13.6, 13.7 and 13.8 below.

To treat the dihedral group G(m,m, 2) from family 2 we need the following auxiliary
result. Note also that the exotic groups from family 2a are also handled in [101, §6] (where
the non-standard notation G(q, r;n) for G(q, q/r, n) is used).

Lemma 13.3. Assume that m ≥ 3 and p ≡ ±1 (mod m) so that ζm + ζ−1
m ∈ Zp. Then

2 + ζm + ζ−1
m is a unit in Zp.

Proof. It suffices to prove that the norm N
Q(ζm+ζ−1

m )/Q(2 + ζm + ζ−1
m ) is not divisible by p.

Since its square equals the norm NQ(ζm)/Q(2 + ζm+ ζ−1
m ) it is enough to see that this norm

is not divisible by p. In Q(ζm) we have 2 + ζm + ζ−1
m = (1 + ζm)2/ζm and since ζm is a unit

it is enough to see that NQ(ζm)/Q(1 + ζm) is not divisible by p. By definition

NQ(ζm)/Q(1 + ζm) =
∏

0≤k≤m
gcd(k,m)=1

(1 + ζkm) = (−1)φ(m)
∏

0≤k≤m
gcd(k,m)=1

(−1− ζkm) = Φm(−1).

The first claim now follows from [131, Lem. 2.9]. �

Elaboration 13.4 (Family 2, generic case). Let W = G(m, r, n) from family 2 and let p be
a prime number such that W is an exotic Zp-reflection group. Thus if n ≥ 3 or n = 2 and
r < m we have m ≥ 3 and p ≡ 1 (mod m), and for n = 2 and m = r we have m ≥ 5,m 6= 6
and p ≡ ±1 (mod m). Assume moreover that (m, r, n) 6= (4, 2, 2), (3, 3, 3) (these two cases
are dealt with in Elaborations 13.5 and 13.6 below).

Assume first that p ≡ 1 (mod m). The realizations of the groupsG(m, r, n) andG(m, 1, n)
from above are both defined over the ring Z[ζm] which embeds in Zp. Lemma 13.2 shows that
NGLn(Zp)(W ) =

〈
G(m, 1, n),Z×

p

〉
whence the natural homomorphism (A(m, 1, n)/A(m, r, n))×

Z×
p −→ NGLn(Zp)(W )/W is surjective. The kernel is the cyclic group generated by the el-

ement ([ζmIn], ζ
−1
m ) (here [ζmIn] ∈ A(m, 1, n)/A(m, r, n) denotes the coset of ζmIn) and

thus NGLn(Zp)(W )/W = (A(m, 1, n)/A(m, r, n))◦Cm Z×
p . Note that A(m, 1, n)/A(m, r, n) is

cyclic of order r generated by the element x = [diag(1, . . . , 1, ζm)] and that [ζmIn] = xn.
If the assumption p ≡ 1 (mod m) is not satisfied, then W = G(m,m, 2) is the dihedral

group of order 2m with m ≥ 5,m 6= 6 and p ≡ −1 (mod m). Conjugating the realization
of G(m,m, 2) from above with the element

g =

[
1 −ζ−1

m

1 −ζm

]
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gives a realization G(m,m, 2)g defined over the character field Q(ζm + ζ−1
m ). Note that

if m is odd, then NGL2(C)(G(m,m, 2) = 〈G(m, 1, 2),C×〉 = 〈G(m,m, 2),C×〉 and hence

NGL2(Zp)(G(m,m, 2)g)/G(m,m, 2)g = Z×
p , so we may assumem to be even. SinceG(m, 1, 2)

is generated by G(m,m, 2) and diag(1, ζm) we find

NGL2(Zp)(G(m,m, 2)g) =

〈
G(m,m, 2)g ,

[
1 1
−1 1 + ζm + ζ−1

m

]
,Q×

p

〉
∩GL2(Zp)

using Lemma 13.2. From Lemma 13.3 we see that the above matrix is invertible over Zp
and hence

NGL2(Zp)(G(m,m, 2)g) =

〈
G(m,m, 2)g ,

[
1 1
−1 1 + ζm + ζ−1

m

]
,Z×

p

〉

Thus the homomorphism Z× (Z×
p /µ2) −→ NGL2(Zp)(G(m,m, 2)g)/G(m,m, 2)g which maps

(k, [λ]) to the coset of λ

[
1 1
−1 1 + ζm + ζ−1

m

]k
is surjective. The kernel is easily seen to

be the infinite cyclic group generated by the element (−2, [1 + ζm + ζ−1
m ]) and thus we get

NGL2(Zp)(G(m,m, 2)g)/G(m,m, 2)g ∼= Z◦Z(Z×
p /µ2). It easily checked that [2+ζm+ζ−1

m ] has

a square root in Z×
p /µ2 if and only if either m ≡ 0 (mod 4) or m ≡ 2 (mod 4) and p ≡ −1

(mod 2m). In this case we have NGL2(Zp)(G(m,m, 2)g)/G(m,m, 2)g ∼= C2 × (Z×
p /µ2).

Elaboration 13.5 (G(4, 2, 2)). The realization of the group G(4, 2, 2) from above and the
realization of the group G8 from [119, p. 280–281] are both defined over their common
character field Q(i). Thus the relevant primes p are the ones satisfying p ≡ 1 (mod 4).
More precisely the representations are defined over Z[12 , i] and as this ring embeds in Zp

for all p as above, we see that NGL2(Zp)(G(4, 2, 2)) =
〈
G8,Z

×
p

〉
. It is easily checked that

G8 = 〈G(4, 2, 2),H〉, where H is the group of order 24 generated by the elements
[

0 i
1 0

]
,
1 + i

2

[
1 1
i −i

]

Since G(4, 2, 2) ∩
〈
H,Z×

p

〉
= Z(H) = µ4 we conclude that NGL2(Zp)(G(4, 2, 2))/G(4, 2, 2) ∼=

(H/Z(H))× (Z×
p /µ4) ∼= Σ3 × (Z×

p /µ4).

Elaboration 13.6 (G(3, 3, 3)). The realization of the group G(3, 3, 3) from above and the
realization of the group G26 from [119, p. 296–297] are both defined over their common

character field Q(ω) where ω = e2πi/3. Thus the relevant primes p are the ones satisfying
p ≡ 1 (mod 3). More precisely the representations are defined over Z[13 , ω] and as this

ring embeds in Zp for all p as above, we see that NGL3(Zp)(G(3, 3, 3)) =
〈
G26,Z

×
p

〉
. It is

easily checked that G26 is the semidirect product of G(3, 3, 3) with the group H ∼= SL2(F3)
generated by the elements

R1 =




1 0 0
0 1 0
0 0 ω2


 , R2 =

1√
−3




ω ω2 ω2

ω2 ω ω2

ω2 ω2 ω




The center of H is generated by the element

z =




0 −1 0
−1 0 0
0 0 −1
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and G(3, 3, 3) ∩
〈
H,Z×

p

〉
= 〈−z, µ3〉. Thus

NGL3(Zp)(G(3, 3, 3))/G(3, 3, 3) ∼= H ◦C2 (Z×
p /µ3) ∼= SL2(F3) ◦C2 (Z×

p /µ3)

where the central product is given by identifying z ∈ H with the element in Z×
p /µ3 repre-

sented by −1.

Elaboration 13.7 (G5). The realization of the group G5 from [119, p. 280–281] is defined
over the field Q(ζ12), but the group has character field Q(ω) and thus the relevant primes
p are the one satisfying p ≡ 1 (mod 3). Conjugation by the matrix

g =

[
2

√
3− 1

(
√

3− 1)(1 − i) i− 1

]

gives a realization defined over Z[13 , ω] which embeds in Zp for all p as above. Its easily
checked that G14 is generated by G5 and the reflection

S =
1√
2

[
−1 i
−i 1

]

From this we get

NGL2(Zp)(G
g
5) =

〈
Gg5,

[
0 1
−2ω 0

]
,Z×

p

〉

and thus the homomorphism Z× (Z×
p /µ6) −→ NGL2(Zp)(G

g
5)/G

g
5 which maps (k, [λ]) to the

coset of λ

[
0 1
−2ω 0

]k
is surjective. The kernel is easily seen to be the infinite cyclic group

generated by the element (−2, [2]) and we get NGL2(Zp)(G
g
5)/G

g
5
∼= Z ◦Z (Z×

p /µ6). It is easy

to check that [2] has a square root in Z×
p /µ6 if and only if p ≡ 1, 7, 19 (mod 24) (that is

unless p ≡ 13 (mod 24)). In this case we get the simpler description NGL2(Zp)(G
g
5)/G

g
5
∼=

C2 × (Z×
p /µ6).

Elaboration 13.8 (G7). The realizations of the groups G7 and G10 given in [119, p. 280–
281] are both defined over their common character field Q(ζ12). Thus the relevant primes
p are the ones satisfying p ≡ 1 (mod 12). More precisely the representations are defined
over Z[12 , ζ12] and as this ring embeds in Zp for all p as above, we see that NGL2(Zp)(G7) =〈
G10,Z

×
p

〉
. It is easily checked that G10 = 〈G7, C4〉, where C4 is the cyclic group generated

by

[
1 0
0 i

]
. Since G7 ∩ (C4 × Z×

p ) = C2 × µ12 we conclude that NGL2(Zp)(G7)/G7
∼=

C2 × (Z×
p /µ12).
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