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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 303, Number 2, October 1987 

NILPOTENT SPACES OF SECTIONS 

JESPER MICHAEL M0LLER 

ABSTRACT. The space of sections of a fibration is nilpotent provided the base is finite 
CW-complex and the fiber is nilpotent. Moreover, localization commutes with the 
formation of section spaces. 

1. Introduction. In their famous book on localization theory and later in the 
proceedings of the Vancouver 1977 conference, Hilton et al. showed that (any 
component of) the space of maps of a finite CW-complex into a nilpotent space is 
itself nilpotent [5, II. 2.6; 6, Theorem A]. The main purpose of this paper is to state 
and prove a twisted and relative version of their result. 

To be more precise, let now, and throughout the paper, A > X be a cofibration, 

p: Y B a fibration with fiber F, u: X Y a continuous map, and let 

Fu(X,A;Y,B):= {v: X > Ylvi= ui,pv=pu} 

be the space of all lifts of pu: X B which agree with u on A. In this set-up, 

Fu(X,A; Y, B) is a nilpotent space provided F is nilpotent and (X, A) is a finite 
relative CW-complex (Theorem 4.1). 

The proof of this assertion proceeds essentially as in the case considered by Hilton 
et al. of ordinary mapping spaces. A key move, though, is to establish a usable 
generalization of the principally refined Postnikov systems of nilpotent spaces. This 
is done in §3 and could be of some independent interest. 

The content of the remaining sections is as follows. §2 contains the basic 
definitions, a few preliminary lemmas, and nilpotency of the function space is 
proved in a particularly easy case corresponding to the easy construction of 
localization functors in the simply connected category. Nilpotency in the general 
case is proved in §4 by means of the refined Postnikov towers of §3. This 
corresponds to the standard way of constructing localization functors in the nilpo- 
tent category. Finally, in §5, we show that fiberwise localization induces localization 
of the function space. 

The following conventions are in force throughout the paper: X, the base B, and 
the fiber F are 0-connected spaces; a space is said to be nilpotent if all its 
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734 J. M. M0LLER 

components are nilpotent; G denotes an arbitrary group and M a G-module; the 

function space F"(X, A; Y, B) is equipped with the compactly generated topology 

associated to the compact-open topology. 

2. The case of a simple fiber. In this section we recall some basic facts, introduce 

the notation, and prove the main result in a particularly easy case. 

The G-action on M can be realized geometrically as a based, cellular action on the 

Eilenberg-Mac Lane space K(M, n + 1), n > O. Let EG be a free, contractible 

G-space and put 

L(M,n+l):=EGXGK(M,n+l). 

The obvious maps 

L(M,n+l)FFK(G,l) 

make L(M, n + 1) into an object in the category SK(G, 1) of spaces over and 

under K( G, 1) [l0]. 
Let now N be another G-module and Homc(M, N) the set of G-module 

homomorphisms of M into N. Also, let (L(M, n + 1), L(N, n + 1)>K(C 1) denote 

the set of SK(G, 1)-homotopy classes of maps of L(M, n + 1) into L(N, n + 1). 

LEMMA 2.1. There is a bijective correspondence 

Homc(M, N) (L(M, n + 1), L(N, n + 1))K(C 1)- PROOF. BY the universal nature of k: L ( N, n + 1) K( G, 1), 

(L(M, n + 1), L(N, n + 1))K(C 1) = H"+l(L(M n + 1), K(G, 1); N). 

The Serre spectral sequenee for k: L(M, n + 1) K(G, 1) with local coefficients N 

shows [10, (5) p. 4] that Hpl+l(L(M, n + 1), K(G, 1); N)-Homc(M, N). O 

Recall that we have a path fibration 

PL ( M, n + 1) L ( M, n + 1) 

in SK(G, 1). The path space is defined [10] as 

PL(M,n + 1):= to: I L(M,n + 1)lk(I) = k(O),(0) = kk(O)} 

and the projection onto L(M, n + 1) is evaluation at 1 E I = [0,1] as usual. 

Let now v: X PL(M, n + 1) be any map into this path space. Using the fact that k: PL(M, n + 1) K(G, 1) is a homotopy equivalence, one may prove 

LEMMA 2.2. F,,(X, A; PL(M, n + 1), K(G, 1)) is contractible. 

Let Z K be a space over some other space K and let L 2 K be an object of 

SK. 
DEFINITION 2.3. A K-principal fibration over Z is any fibration obtained as the 

pullback of the path fibration PL L in SK along a map k: Z > L over K. Suppose for instance that the base space B is a space over K, B K, so that any 

space over B also becomes a space over K. Suppose furthermore that we have a 
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NILPOTENT SPACES OF SECTIONS 735 

commutative diagram of the form 

y PL 

P24 4 

Y2 L 

P1 4 

B K 

where P = P1P2 and P2: Y > Y2 is the K-principal fibration defined by k. Put 
u2 = p2u and u1 = p1u2. In this situation we have the simple but important 

LEMMA2.4. If FU^(X,A;Y2,B) isnilpotent, soisF"(X,A;Y,B). 

PROOF. The pul]back diagram of the K-principal fibration P2 induces another 
pullback diagram 

Fu(X, A; Y, B) Fk"(X A; PL, K) F"(X, A; Y2, B) Fk"(X, A; L, K) 

of function spaces. Here, Fk"(X, A; PL, K) is contractible by Lemma 2.2, so the 
assertion fOllows from [5, II.2.2]. The requirement of [5, II.2.2] that all spaces be 
connected can be met, as in the proof of [6, Theorem A], by introducing suitable 
covering spaces of FkU(X, A; L, K). O 

The material introduced at this point suffices to verify the nilpotency statement in 
a special case. Recall that F is simple if sr1(F) acts trivially on q*(F), that F is 
finitely anticonnected if qrj(F) = O for j sufficiently large, and that ( X, A) is finitely 
coconnected if HJ(X, A; M) = O for any local coefficient system M for j suffi- 
ciently large. 

PROPOSITION 2.5. Suppose that the fiber F is simple and that either ( X, A) is finitely 
coconnected or F is finitely anticonnected. Then FU(X, A; Y, B) is nilpotent. 

PROOF. Make B into a space over K(G, 1), where G := sr1(B), by choosing a map 

B K(G, 1) which is the identity on sr1. 

Since F is simple, G acts on q*(F) and we may erect Postnikov towers [10] 

L ( qr,F, i + 1) 

Y > Yr+l > *-- Y+1 Yl *-- Y2 > Y1 = B 

K( stiF, i ) K( st1F, 1) 

where Y Yr+1 is (r + 1)-connected and each stage Y,+1 X,, 1 < i < r, is a 

K(G,1)-principal fibration. FU(X,A;Y2,B) is nilpotent, even simple, by [12], so 
repeated applications of Lemma 2.4 show that F"(X, A; Yr+l B) is nilpotent. But 
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736 J. M. M0LLER 

the stated finiteness assumptions assure that this space converges to FU(X, A; Y, B) 
as r goes to infinity. Hence the latter space is nilpotent. O 

It is not true in general that FU(X, A; Y, B) is simple even though F is simple: 

The fundamental group of the space of degree O maps S1 x S1 S2 is not abelian 

[2, 8] 

3. Refinements of Postnikov towers. Nilpotent spaces have the important property 
that their Postnikov systems admit principal refinements. In this section we shall 
relativize this concept. 

First, we consider fibrations with acyclic fibers. 
Let N be a nilpotent group. The lower central series of N, 

rl(ff )>r2(ff )>...Dri( ff)Dri+l( ff)D*@@. 

defined inductively by rl(N) = N, rl+1(N) = [N, ri(N)], i > 1, is [inite, in the 
sense that rc+l(N)= {1} for some c, by the very definition of nilpotency. Any 
automorphism of N restricts to an automorphism of ri(N) for all i > 1. In other 
words, Aut(N) acts on ri(N) and hence also on ri(N)/ri+l(N) for all i > 1. 
Moreover, inner automorphisms act trivially on ri(N)/ri+l(N) and hence 
Out(N) := Aut(N)/N acts on these subquotients. Similarly, Aut(N)/rl(N) acts on 
ri(N)/rl + l(N) and even on H1(ri(N)) = ri(N)/[ri(N), ri(N)]. 

Now assume that K(N, 1) Y B is a fibration with an acyclic, nilpotent fiber. 

The associated semiaction [4, p. 142] of sr1(B) on N is a homomorphism {: 

sr1(B) Out(N). B, and hence also Y, becomes a space over K(Out(N), 1) if we 

realize + geometrically as a map of B into K(Out(N), 1). 

LEMMA 3.1. Suppose that the fibration p: Y B has an acyclic, nilpotent space 

K(N, 1) as fiber. Then there is a factorization 

L(ri/ri+l,2) 

y= YC+1 Yc ........... yl+l Yi ................ . Y1 = B 

v(ri/ri+l, 1) 

of p: Y B into a finite string of K(Out(N), 1)-principalfibrations. 

PROOF. W.l.o.g., p is the universal example [4, Theorem 2.1] of such a fibration. 
Then Y = K(Aut (N ), 1) and sr1(B) = Out(N ). In the Serre spectral sequence for p 

with local coefficients Out(N) Aut(rl(N)/r2(N)) one has, as in the proof of 

[10, Theorem 4.1], that 

E2°1 = HOmAut(N)/rl(N)( Hlrl(N ), rl(N )/r2(N )) 

= HomAut(X) ( rl(N ), rl( N )/r2(N )) . 

Hence the projection map rl(N) rl(N)/r2(N), which is Aut(N)-equivariant, is 

geometrically realizable [10, p. 5 and Theorem 3.1] by a map Y1 
Lfrl(N)/r2(N),2) over K(Out(N), 1). By pullback of the path fibration we get a 
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NILPOTENT SPACES OF SECTIONS 737 

factorization 

Y Y2 Y1 = B 

K(rl 1) K(rl/r2, 1) 

of Y B such that Y2 Y1 is a K(Out(N), 1)-principal fibration and the restric- tion of Y Y2 to the fibre induces the projection rl(N) rl(N)/r2(N) on sr1. This implies that the homotopy fiber of Y Y2 is K(r2(N), l) and qrl(Y2) = 

Aut(N)/r2(N). 

Repeat the argument with Y1 replaced by Y2, etc. The process eventually stops, 
because the homotopy fiber, K(rC+l(N),1), of Y YC+1 is contractible if 
rC (N)= 1. 0 

Next, we consider the abelian case. Suppose that the group G fits into an exact 
sequence of groups of the form 

K A 

N G Q 1. 

Then N acts on M through K. Define the lower central N-series of M, 

rN(M) 2 rx(M) 2 z rN(M) 2 rx (M) 2 , 
by setting rl (M) = M and letting ry+l(M) be the subgroup generated by {nm- 
m | n E N, m E ry( M)}. N acts nilpotently on M if ry+ l(M) = O for some c. 

LEMMA 3.2. rN( M) is a G-submodule for all i > 1. 

PRooF.Foralln eN, me rN(M),andge G, 
g(nm-m) = (gng )gm-gm E rN (M) 

for gng-1 E K(N) and, arguing by induction, we may assume that gm E rN(M). 
o 

Thus all the subquotients ry(M)/ry+l(M) are G-modules and even Q-modules 
since N acts trivially here. 

Assume now that K(M, n) Y B is a K(G, 1)-principal fibration, n > 1. 

LEMMA 3.3. Suppose that N acts nilpotently on M. Then there is a factorization 

L(r'/r'+1, n + 1) 

Y= YC,+1 YC* *-e Y,+1 Yi ... yl=B 

K(r'/ri+1 n) 

of p: Y B into a finite string of K(Q, 1)-principalfibrations. 

PROOF. W.l.o.g., B = L(M, n + 1) = EG x c K(M, n + 1), Y = PL(M, n + 1), 

and p: Y B is the path fibration in SK(G, 1). 

Since the Milnor construction [7] of universal numerable, principal bundles is 

functorial, there exists a map ER: EG EQ over A: K(G, 1) K(Q, 1) such that 

E)V(eg) = ER(e)X(g), e E EG, g E G. By Lemma 2.1, there also exists a G-equi- 
variant, based map 

p: K(rN(M),n + 1) K(rN(M)/r'+l(+) n + 1) 
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738 J. M. M0LLER 

corresponding to the projection ry(M) ry( M)/ry+ 1( M) of G-modules. Consid- 

ering the target as a Q-space, this means that p(gx) = A(g)p(x) for all g E G and 
x E K(rN(M), n + 1). ER x p induces, by passing to orbit spaces, a map 

L ( ry(M), n + 1) L(rN(M)/rx+1(M), n + 1) 

1T ST 

K(G, 1) K(Q, 1) 

over and under A. Since this map lifts to the path spaces, we obtain, by forming 
pullback, a factorization 

PL(rN(M),n + 1) ' Y+1 , L(rx(M)5n + 1) 

K(rz, n) K(r'/r'+1, n) 

of the path fibration over L= L(rN(M),n + 1). Here, Y,+1 > L is a K(Q,1)- 

principal fibration and the homotopy fiber of PL Y,+1 is K(rN+1(M), n). This 

implies that Y,+1 = L(rN+1(M), n + 1) and Pt+1 = PL. 
If N acts nilpotently on M, then this process eventually stops, for the homotopy 

fiber K(rN+1(M), n) of PL(rN(M), n + 1) YC+1 is contractible if ry+l(M) = O. 

o 

A combination of Lemma 3.1, Lemma 3.3, [4], and [10] yields 

THEOREM 3.4. Let p: Y B be a fibration with nilpotent Jiber F. For r > 1 there 

exist factorizations 

y Ys+l > . . . Y+1 > t > . . . Y2 Y1 = B of p: Y B such that Y Ys+1 is (r + 1)-connected and each stage Y+1 > Y, 

1 < i > s, is a K-principal fibration where either K = K(Outsr1(F,),l) or K = 
K(r1(B), 1). 

PROOF. There exist Postnikov decompositions of the form [4, 10]: 

Y Y,+1 > > Y+1 Y Y2 Y1=B 

K(s,(F), i) K(r1(F), 1) 

The first stage, Y2 > Y1, is a fibration of the type discussed in Lemma 3.1. The next 

stages, Y+1 x, i > 2, are K(X1(Y),l)-principal fibrations corresponding to the 

action of sr1( Y) on q,,(F) = q,,+ 1(B, Y). But sr1(Y) fits into the exact sequence 

St1(F) > St1(Y) st1(B) 1 and sr1(F) acts nilpotently on q,,(F). Thus Y+1 Y is a fibration of the type 

diseussed in Lemma 3.3. 0 
The converse of Theorem 3.4 is also true, for the restrietion to the fiber of 

faetorizations as in the theorem are prineipal refinements of the Postnikov tower of 
F. 

This content downloaded from 130.226.229.16 on Sat, 25 May 2013 08:27:38 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


NILPOTENT SPACES QF SECTIONS 739 

4. The case of a nilpotent fiber. In this section we shall prove the main result in its 
full generality. 

In fact, all preparations have been made already so we proceed straightway to the 
formulation of 

THEOREM 4.1. Suppose that the fiber F of p: Y B is nilpotent and that either 

( X, A) is finitely coconnected or F is finitely anticonnected. Then Fuf X, A; Y, B) is 
nilpotent. 

In order to prove this statement, replace the "crude" Postnikov tower by the 
refined one of Theorem 3.4 and proceed as in Proposition 2.5. 

For an application of Theorem 4.1, suppose that F is a G-space and X a free 
(principal) G-space such that (X/G, A/G) = (X, A) for some G-invariant subspace 
A c X. Denote by Ff (X, A; E)c the space of all G-equivariant extensions of f | A, 

where f: X F is some G-map. 

COROLLARY 4.2. Ff(X, A; F)C is nilpotent under the assumptions of Theorem 4.1. 

PROOF. Apply the theorem to the space of sections of the associated fiber bundle 
XXgF > X. O 

In particular, section spaces and equivariant function spaces admit localizations. 
That these localizations behave as expected will be shown in the next, final section. 

5. Localizations of section spaces. Throughout this section we make the additional 
assumption that (X, A) is a relative CW-complex with finite skeleta. 

For any family P of primes, the P-localized module Mp is canonically a G-module 

and the localization map e: M Mp a G-homomorphism. Given a homomorphism sr1(X) G, M and Mp become local coefficient systems 

in X. 

LEMMA 5.1. The coefficient group homomorphism 

e*: H*(X, A; M) H*(X, A; Mp) 

is a P-localization. 

PROOF. Let r*(x, A; M), r*(x, A; Mp) denote the cellular cochain complexes of 
( X, A) with local coefficients M, Mp. Since localization commutes with direct sum, 
the commutative diagram 

@ M(ha(Eo)) rq(X,A; M) 

l e l e* 

@ M(ha(Eo))p rq(X,A;Mp) where { ha /\q X} are the q-cells of (X, A) and Eo E /\q the base point, shows 

that e* P-localizes on the cochain level. To complete the proof, observe that e* is a 
cochain map and localization an exact functor. O 
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740 J. M. M0LLER 

Let also e: L L(p) denote the SK(G,1)-morphism of L:= L(M,n + 1) into L(p) := Lf Mp, n + 1), n > O, corresponding to e: M Mp. 

In the following, 
Fu°(-,-;-,-) 

denotes the path-component of Fuf-,-;-,-) containing u; m, where m is a fiber 
map, denotes the map on function spaces defined as post composition with m. 

LEMMA 5.2. For any map v: X > PL, 

Pe: Ft,°(X,A; PL,L) F°eV(X A; PL(p); L(p)) 

is a P-localization. 

PROOF. This follows from Lemma 5.1 and the decomposition [12] of the function 
spaces in question as products of Eilenberg-Mac Lane spaces. O 

Consider the fiberwise P-localization e: Y Y(p) constructed in [1,9] for any 

fibration with nilpotent fiber. 

THEOREM 5.3. Suppose that F is nilpotent and that either (X, A) is finite or F is 
finitely anticonnected. Then 

e : FU°( X A ; Y, B ) Fe° ( X A ; Y( p) , B ) 

is a P-localization. 

The proof is again by induction in the refined Postnikov tower of p and proceeds 
as that of [6, Theorem B] once [6, Theorem 2.1] has been replaced by Lemma 5.2. 

In the situation of Corollary 4.2 and under the same assumptions as in Theorem 
5.3 we have 

COROLLARY 5.4. Ff ( X A; F)C = Fef ( X A; Fp)6. 

PROOF. ( X X C F)( p) = X X G Fp O 
We finish this paper by considering an application of Corollary 5.4. 
EXAMPLE 5.5. The antipodal map defines a Z/2-action on SS7. Suppose that n is 

even (and positive) and let 1 denote the identity map. Then any component of 
F1(Ss7 sm; Ss7)Z/2 is rationally homotopy equivalent to sn-m-l if m is even, 
0 < m < n, and to S2'7-'-2 if m is odd, -1 < m < n (where S-1 = 0). 

The assertions in Example 5.5 follow from the decomposition [12] of the section 

space for St7 X z/2 S(O) RPn induced from the Postnikov tower; cf. [3, 13]. Note 

that the results of [3 or 15] cannot be used as neither the fibration nor the base is 
nilpotent. 

Added in proof. Only K(7T1(B), 1)-principal fibrations are needed in Theorem 3.4 
since in Lemma 3.1, Out(N) can easily be replaced by 7r1(B). 
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