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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 292, Number 2, December 1985 

RATIONAL HOMOTOPY OF SPACES OF MAPS 
INTO SPHERES AND COMPLEX PROJECTIVE SPACES 

BY 
JESPER MICHAEL M0LLER AND MARTIN RAUSSEN 

ABSTRACT. We investigate the rational homotopy classification problem for 
the components of some function spaces with Sn or cPn as target space. 

1. Introduction. For any pair of topological spaces X and Y) let F(X, Y) 
be the space of all (free, continuous) maps of X into Y. In general, F(X, Y) is a 

disconnected space; so for any map f: X Y, we let Ff (X, Y) c F(X, Y) denote 

the (path-) component that contains f. A fundamental problem is to classify the 
components of F(X, Y) up to homotopy type; initiated by the results of V. L. 
Hansen [5, 6] on the case Y = sn, this has been the subject of a number of papers 
[1, 10, 11, 15] concerning the cases Y = sn, RPn or cPn. In this paper we discuss 
the homotopy classification problem from the point of view of rational homotopy 
theory restricting ourselves to the case where Y = sn, cPn is an n-sphere or 
complex projective n-space. 

Our main result for the case where Y = Sn is an n-sphere may be stated as 
follows. 

THEOREM 1. If n is odd, then all components of F(X, Sn) are rationally ho- 
motopy equivalent. 

In the case where n is even, fix a generator Sn E Hn(Sn; Q) of Hn(Sn; Z) c 
Hn(Sn;Q). Let f,g: X > Sn be maps of X into Sn and let f*(8n))9*(8n) E 
Hn(X; Q) be the images of Sn in rational cohomology. Denote the constant map 
byO:X ySn. 

THEOREM 2. Assume that n > 2 is an even integer and that X is a connected 
and rationally (2n- 1)-coconnected space, i.e. H°(X;Q) = 0 = H>2n-1(X;Q). 
Then 

(1) Ff(X) sn) Q Fo(X) sn) if and only if f*(sn) = O. 
(2) Ff(X,Sn) Q Fg(XXSn) if there exist an algebra autornorphism p on 

H*(X; Q) and a rational number t + O such that tf*(sn) = (p9*(Sn)* 

As a very special case we emphasize the following consequence which shows the 
connection with [5, 6]. 

COROLLARY. Let Mn be a closed n-manifold7 n > 1. The components of 
F(Mn, Sn) represent two rational homotopy types if Mn is orientable and n is 
even and one otherwise. 
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722 J. M. M0LLER AND MARTIN RAUSSEN 

Actually, the investigations presented in this paper were prompted by the ob- 
servation that the invariant used in [5, 6, 15] to distinguish between components 
associated to positive degrees is a torsion group, so that one might expect these 
components to be identical spaces in the rational category. The Corollary above is 
the affirmative answer to this conjecture. 

We prove Theorem 2 by constructing (minimal) models for the components of 
F(X, Sn) using a method of Haefliger's [4]. The applied technique works in fact 
whenever the target space Y is a 2-stage Postnikov tower. As an illustration of 
this, we consider in §3 spaces of maps into complex (and quaternionic) projective 
n-space (see Corollary 3.3 for an analogue of Theorem 2). 

In order to assure e.g. continuity of evaluation maps, we shall svork in the cat- 
egory of compactly generated spaces. Thus for any pair of compactly generated 
spaces X and Y, F(X, Y) is equipped with the compactly generated topology as- 
sociated with the compact-open topology (cf. [18, pp. 17-21]). Furthermore, we 
assume throughout that the domain space X is finite dimensional and of finite type; 
in particular, pi(x) = dimQHi(X; Q) < oo for all i > O. For short, we write H*(X) 
for H* (X; Q) and H* (X) for H* (X; Q). Our main references for rational homotopy 
theory are [12, 14, 16]. 

2. Minimal models for the components of F(X, S77). Note first that any 
component Ff (X, Sn) of F(X, Sn) is a nilpotent space by Theorem A of [9] and 
thus has a well-defined rational homotopy type. Moreover [9, Theorem B], its 
rationalization is given by 

Ff(X, sn)(o) = Frf(X, s(no), 

where r: Sn S(nO) is the rationalization map. Thus, Theorems 1 and 2 are 

immediate consequences of the following two theorems. 

THEOREM 2 . 1 If n > 1 is odd, then all corulponents of F(X, S(nO) ) are homotopy 
eq/lbisalent. 

THEOREM 2.2. Assume that n > 2 is even and that X is a connected and 
rationally (2n- 1)-coconnected space. Let A E Hn(X) be an n-dimensional rational 
cohomology class. Then 

(1) Fa (X, S(nO) ) Q Fo(X, s(nO) ) if and only if A = O. 
(2) Fa (X, S(nO) ) rvQ Ft; (X, S(0) ) for any rational nllmber t + O. 
(3) F;K(X, S(,)) Q F<,;K(X, s(nO)) for any algebra a?ltomorphism p on H*(X). 

In the formulation of Theorem 2.2 we write F>(X,S(no)) for Ff(X,S(no)) when 
A = f*(Sn), using the fact that, under the assumptions made, the components of 
F(X, S(0) ) are classified by Hn(X). 

The proof of Theorem 2.1 is very easy. For if n is odd, then the rationalized 
n-sphere s(nO) = K(Q, n) is an Eilenberg-Mac Lane space and hence the function 
space n 

F(X, S(o) ) = I| K(Hn-i (X; Q), i) 
i=o 

is a product of Eilenberg-Mac Lane spaces by a theorem of Thom [17, 4] (see also 
Federer [2, 10]). In particular, all the compc)nents of F(XvS(no)) are homotopy 
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equivalent. For the sake of completeness we mention that Ff (X, sn) for any map 

f: X Sn has the minimal model 

n 
[I ti(Hn_i(X)) 
i=l 

with trivial difEerential. For any rational vector space V, Li (V) here denotes the free 
commutative graded algebra generated by V considered as homogeneous of degree 
i. We also identify Hom(Hn-i(X),Q) = Hn_i(X) so that H*(K(Hn-i(X),i)) = 
L,(Hr,_i(X)) becomes the minimal model for the formal space K(Hn_i(X),i) (see 
[16]). 

For the rest of this section we concentrate on the even dimensional case. So 
assume now that n > 2 is an even integer and that X is a connected and ratio- 
nally (2n- 1)-coconnected space of finite type. In order to construct a model for 
F>(X, s(nO)) we apply the method of Haefliger [4j. 

Since n is even, the rationalized n-sphere S(nO) is the mapping fibre of k = 
^2: K(Q,n) > K(Q,2n), where lvn E Hn(Q,n;Q) is the characteristic class. As 
X is rationally (2n- 1)-coconnected this implies (see e.g. [4j) that Fx(X,S(0)) is 
the mapping fibre of the map 

k: F>(X, K(Q, n)) > F(X, K(Q, 2n)) 

obtained by composition with k. Write 
2n 2n 

k = H ki: F;i(X, K(Q, n)) H K(H2n-i(X) i) 

i=2 i=2 
corresponding to the factorization of F(X, K(Q, 2n)) given by Thom's theorem and 
let 

ki*: H2n_i(X) = Hi(H2n-i(X), i) > Hi(F>,(X, K(Q, n))) 
be the homomorphism induced on cohomology. Now, the rational cohomology 
algebra 

n 
B : = H* (Fa (X, K(Q, n) ) ) = tI Li (Hn-i (X) ) 

i=l 

is a (minimal) model for F;K(X,K(Q,n)) and hence Fx(XS(no))) as the mapping 
fibre of k = II ki, has a model of the form (Ax, d) where 

2n 
Aa = B C) (8) Li - 1 (H2n - i (X) ) ) 

i=2 
dB-O and dv-ki*(v) for v E H2n-i(x)* 

We now aim at a more explicit description of the model (Ax, d). Choose a vector 
space basis {aijlj E Ji} for Hi(X), O < i < 2n- 1, Ji = 0 if Hi(X) = O and 
Ji = {jll < j < A3i} if pi = dimQ Hi(X) > O. If A 7& O, take anl = A. Let 
{bn-ijll < j < t3i} c Hom(Hi(X), Q) = Hi(X) be the dual basis to {aij}, O < 
i < 2n- 1, and let bn E Hom(H°(X),Q) = H)(X) be the generator dual to 
1 H°(X). Note that bn E Bn and bn_i,j E Bn-i for O < i < n, j E Ji; in fact 
the set {bn_ij1O < i < n, j E Ji} U {bn} freely generates B. 
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According to [4, p. 614], 
n-1 

e>(^n) = bn {$ 1 + , , bn_i,j X aij + 1 X A E B X H*(X), 

i=l jEJ, 

where e>: F>(X,K(Q,n)) x X > K(Q,n) is the evaluation map, e>(f,x) = 

f (x), f E F>(X, K(Q, n)), x E X. Therefore the adjoint of k, 
X > = k o e>: Fa (X, K(Q, n)) x X > K(Q, 2n) ) 

pulls back the characteristic element 62n E H2n(Q, 2n; Q) to 
K>*(w2n) = (k o ex)*(62n) = ex(62n)2 

/ n-1 > 2 

= | bn 8)1+ E Ebn-ixj 8)aij+1 8)S 

\ i=l jEJ, 

2n-2 n-1 

= bn C) 1 + Sr + 2 E E (bnbn-iXj 8) aij + bn-iXj 8) Saij) + 2bn 8) A) 

r=2 i=l jE J, 

where 
Sr = {(-l)ikbn-i,jbn-k,l ) aijAkl, 2 < r < 2n - 2, 

summation over all i, j, k, I such that 1 < i, k < n - 1, i + k = r, j E Ji) t E Jk. 
For O < i < 2n- 1, finally let 

{U2n-i- 1, j j j E Ji } C Hom(Hi (X) ) Q) = Hi (X) c L2n_i_ 1 (Hi (X) ) 
be the basis dual to {aijlj E Ji} C Hi(X) and let 

v2n_ 1 E Hom(H° (X), Q) = Ho (X) c L2n_ 1 (Ho (X) ) 
be the linear form dual to the generator 1 H°(X). 

According to [4, 1.2] we now have 
dV2n-i-l,j = k2*n-i(U2n-i-l,j) = K>(62n) n bn-i,j) O < i < 2n-1, j E Ji, 

dV2n-l-k2*n(U2n-l) = K>*(62n) n bn) 
where, as in [4], (b X a) n bn_i,j = b (bn_i,j(a)) for b X a E B X H*(X). Using 
the above expression for K(w2n) we arrive at the following explicit formula for the 
differential d of the model Ax = B C) ($),2=2 Li_ l (H2n_i (x)) for Fx (X, s 

dbn = O) dbn_i,j = O for O < i < n, 

dV2n-i- l,j = (tsi + 2 E b2n_i,j X Sai_n,j! n bn-i, jv 
e Jt-n 

n < i < 2n- 1, j E Ji, 

dvn_l,l = Sn n bol + 26(A)bn, 

dVn-lXj = Sn n boj, 1 < j < /3n) 

dV2n-i-lXj = si n bn-iXj + 2bnbn-iXj) 1 < i < n, j E Ji, 

dV2n-2Xj = 2bnbn-lxj) j E J1, 

dV2n- 1 = b2n ) 
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where 6(A) = 1 if A 7& 0 and b(A) = O if A = O. We get imrnediately 

PROPOSITION 2.3. Let n > 1 be an even integer. Then mo = (Ao,d) is a 
minimal model for the component Fo (X, sn) of the constant map. Furthermore, 

dimQ Hom(7ri(Fo(X, sn)), Q) = 13n-i + /32n-i-1) i > O, 

and if Sn-l = U32n-2 = 0 then Fo(X, sn) is a simply connected coformal space (see 
[16]). 

PROOF. Clearly, (Ao, d) is a minimal nilpotent DGA and thus a minimal model 
for Fo(X, sn). As a graded algebra, Ao is freely generated by the set 

S = {bn-iilO < i < n, j E Ji} U {bn} 
U {V2n-i-l,j|O < i < 2n-1, j E Ji} U {V2n-1} 

which contains oBn-i +132n-i- 1 elements of degree i. This yields the evaluation of the 
rank of the dual to the homotopy group 7ri(F(X, sn), O). As to the final assertion, 
we just note that the differential d on Ao is quadratic (see e.g. [3, 16]). g 

When A f O, the model (Ax,d) is in general far from being minimal. However, 
if X is (n + 1)-coconnected, then the model (Ax, d) for A 7& 0 simplifies to 

dbn = O) dbn_i,j = O for O < i < n, 
dvn_lXl=8nnbol+2bn) 

dvn_l,; = Sn n boj, 1 < j < ffn) 

dV2n-i-lj = si n bn-ij + 2bnbn-ij) 1 < i < n, j E Ji, 
dv2n_2,j = 2bnbn_1,j, i E J1, 
dv2n-l = bn 

Here the only deviation from minimality occurs in the relation for dVn-ll so in this 
important special case it is easy to construct the minimal model for the nilpotent 
DGA A>i. 

PROPOSITION 2.4. Assume furthermore, that X is (n+ 1)-coconnected7 n > 2 
even. Then the minimal model m; for F> (X, s(nO), A 7& O, is the graded commuta- 
tive algebra freely generated by the set {bn_i,j|O < i < n, j E Ji} U {V2n-i-lilo < 

i < n, g E Ji; i = n, j > 1} U {V2n_l} and with differential d given by 

dbn_i,j = O, O < i < n, 
dVn_l,j = sn n bol, 1 < 1 < /3n) 

dV2n-z-li = si n bn-ii-(Sn n bOl)bn_ijx 1 < i < n, j E Ji, 
dV2n-2j =-(8n n bol )bn_ 1,j, j E J1, 
dV2n- 1 = 4 (Sn n bol )2 

Next follow two examples of the computation of the minimal models ma from 
Propositions 2.3 and 2.4. 

EXAMPLE 2 . 5 . (1) For any even integer n > 2, 

rno = (S[bn] 8) E(vn-l) V2n-l); dbn = 0) dvn-l = 0 dV2n-1 = bn) 
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is a minimal model for Fo(Sn,Sn) while m1 = (E(v2n_1),d = O) is a minimal 
model for Ff (Sn) Sn)) where f: Sn > Sn is any map of nonzero degree. 

Using Thom's theorem [17] for the case of an odd n, we conclude that 

( Sn x sn-1, n even, deg Jf = O, 

Ff (SneSn) Q 4 S2n-1 n even, deg f7&0 
t sn, n odd. 

In particular, the evaluation fibration Ev(Sn, sn) from [8] is always rationally de- 
composable. (See V L. Hansen [5, 6, 7] and W. A. Sutherland [15] for a discussion 
of the integral homotopy types represented by the components of F(Sn, sn).) 

(2) The graded algebra 

mO = S[b2) b4) . ) b2m-2v b2m] (23 E(U2m-l) V2m+lx . . ) V4m-l) 
with diffelential d given by 

db2i = O, 1 < i < m, 

dv4m_2t-l = E b2rb2sx 0 < i < m, 
rs=2m-i 

is the minimal model for Fo(CPm, S2m). 
The graded algebra ml = S[b2, b4 . . . ) b2m-2] (D E(U2m+l V2m+3 * X V4m-1) 

with differential d given by 

db2? = O, 1 < t < m, 

dv4m_2i- 1 = E b2rb2s-b2m-2i/\m 0 < i < m, 
r+s=2m-i 

dv4m_l=4/m) 

with /\m = r+s=m b2rb2SX is the minimal model for the component Ff (CPm, S2m) 
for any map f: Cpm > S2m of nonzero degree. 

We now turn to the 
PROOF OF THEOREM 2.2. The fibration of rational spaces 

F(X,K(Q,2n- 1)) F)<(XS(no)) F>(X,K(Q,n)) 

has an associated long exact homotopy sequence of the form 
Hn-i-l t3 2n-i-l tF \ Hn-itXX H2n-ifX 

(X)H (X) > 1riv ay > V X > t } > 

in which the cohomology groups have rational coefficients and F, (X, s(nO) ) has been 
abbreviated to F>. It is not hard to see, and it was proved by Federer [2], that a 
is cup product with A E Hn(X). We deduce e.g. that 

dimQ7Tn_l (Fo) > dimQ7Tn_l (FA) 

whenever A 7& 0 (cf. [6, Lemma 2(i)]). This proves the first part of Theorem 2.2. 
To prove the second part, we just note that multiplication by t + O on Q = 

Hn(S(no)) Q) can be realized by a homotopy self equivalence Mt on s(nO). By com- 

position with Mt we get a homotopy equivalence Mt: Fa (X, S(no) ) Ft; (X, S(0)) 

between components. 
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The third and final part of Theorem 2.2 is a special case of the next theorem. 121 
Noting that the isomorphism type ofthe "pointed algebra" (H*(X),>) deter- 

mines the isomorphism type of the model (A>,d), as constructed above, we derive 
the following consequence: 

THEOREM 2.6. Let n > 2 be an even integer and let X and Y be connected 
and rationally (2n - l)-coconnected spaces of finite type. Assume that there exists 

an isomorphism W H*(X) H*(Y) between the cohomology algebras. Then 

Fa (X, S(O) ) Q Fwa (Y, S(O) ) 

for any A E Hn(X). In particular, Ff(X, Sn) Q Fg(Y) Sn) iff: X > Sn, 9: Y 

Sn are maps such that pf*(sn) = tg*(sn) for some rational number t 78 O. 

We are now heading towards a partial converse to Theorem 2.2(3). We ask 

whether a rational homotopy equivalence al: Fx(X,Sn) F(X,Sn) implies the 

existence of an algebra-automorphism p on H*(X) such that p(A) = ,u. This is 
true under some restrictions-at least if X is (n + 1)-coconnected. 

Let V1, V2 be graded vector spaces, and l9Vl, AV2 the graded commutative alge- 

bras freely generated by them. An algebra map Ol: Avl Av2 is called linearly 

generated iff there is a graded linear map a: V1 - ) V2 such that og = Aa (com- 
pare [16. p. 26]). Remark that one may construct a linearly generated rational 
isomorphism of models a: mH > m< in the situation of Theorem 2.2(3). 

We investigate the following situation: Let n be even and X a simply-connected 
and (n + 1)-coconnected CW-complex; furthermore A, ,ls E Hn(X) are linearly in- 

. 

dependent elements. Then, one may choose a basis {aij}2-E2Jt n °f H+(X) such 
that anl = A and an2 = ,u. These in turn allow us to construct a minimal mx of 
F>v(X S(0)) as in Proposition 2.4; a minimal model mH of F(X S(no) ) is obtained 
by replacing vn_1n2 by vn-ll and Sn n bol by Sn n bo2. 

PROPOSITION 2.7. Assume X and A,,u E Hn(X) given as above. If there is 
a linearly generated rational isomorphism cx: m, > mx? then there is an algebra 
automorphism p on H*(X) and a rational number t + O such that fp(A) = t ,u. 

REMARKS. (1) If A and ,lb are linearly dependent, W may be chosen as the 
identity map. 

(2) We were unable to decide whether an arbitrary rational isomorphism oe mH 
mx implies a cohomology isomorphism as in Proposition 2.7. 
PROOF. AS a is linearly generated, it restricts to vector space automorphisms 

Ckn-s on (bn-s,j)ieJsx 2 < s < n; 

Ct2n-s-1 on (U2n-s-lej)jEJs) 2 < S < n; 

CB2n-1 on (W2n-1 ) 

and an isomorphism 

an-1 (Vn-lxj)jEJn-{2} (Vn-li)jGJn-{1}* 

In particular. R2n-1 (v2n_l) = k2 V2n_lx k E Q*, because d(U2n-l) = Old(U2n-1) 
is a square. Furthermore, Sn n bo1 and Sn n bo2 are either both zero or nonzero. In 
the first case, A and , are both undecomposable; then, yx may be chosen to be the 
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identity map on H*(X), * < n and on (an3) Xan,pn) C Hn(X) and permuting 
A = anl and , = an2. From now on, we may assume that 

(l) Sn n bo1 and Sn n bo2 are both nonzero. 

Before defining ¢p, we have to agree on some notation. The following vector space 
isomorphisms will be helpful: 

f)n-s (bn-s,j)jeJi (U2n-s-l,j)jEJ,) 2 < s < n, 

bn_5jU2n-s-lxi 

Let us now define p = q3pi: Hi(X) Hi(X) as a graded vector space isomor- 

phism, and then verify that p indeed can be made to an algebra homomorphism: 

ps = as: H (X) H (X), s < n, 

(Pn (A) = (n (anl ) = an2 = ,U and (Rn = (?/)o 1 0 Ctn- l o ?/)o ) * on (an2 X * * X anvB(n) ) 

This is indeed a vector space isomorphism, as Ol is one. To make sure that og is a 
ring homomorphism, we have to run through the following calculations using that 

. . 

Ol 1S a c zaln map: 

dce(U2n_ 1) = k2 dA (V2n-1) 

= (kbol(ari an-rj)bn-ri brj) ) 

Ctd(U2n-l) = (bo2(ari an-rj)ol(bn-ri) Ol(brj)) 

= (fb02(<pari W)an_r,j)bn-r,i brj) 

We conclude 

(2) k bol(x y) = bo2('PX (pY) z E Hr(X)) y Hn-r(X), O < r < n. 

A similar calculation on V2n_s_lj yields by comparison of coefficients: 

(3) (? 1a?tbn-S)(x p) = bn-s((RX <4>v) 
where bn_S E Hn_s(x)) x G Hr(X) and y E Hs-r(X) O < s < n, and 

E bol (ari an-r,j) bn-ri brj+- l R+bn-rj 

= E bo2(pari Wan-r,j) bn-rXi brj bn-roj 

From (1), (2) and (4), we may conclude: 

(5) ?fi-1af = k * Ol in dimensions less than n. 
, * * , . , Uslng tnls ln 3 ylelas 

(6) k (p*bn-8)(x y) = bn_s(ypx (A)Y)) 

where bn_S E Hn_s(x)n x E Hr(X) and y E Hs-r(X), O < s < n. 
Lastly a similar calculation for vn_1,i yields 

(7) k (W*z)(x y) = z(9x Wy), 
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here z E (boj)jEJn_{2}, x E Hr(X) and y E Hn-r(X) O < r < Th 
collecting (2), (6), and (7), we get 

(8) k (W*z)(x y)=z(9x wy), zE H*(X)) xxyEH*(X). 
For ' = t , t = k-1, this implies 

(((p/)*z)(x y) = z((p/x (p/y)) z E H*(X)) xxy E H*(X); 
hence ' is an algebra automorphism with '(A) = t p(A) = t ,u. C: 

3. Spaces of maps into cP(no). In this section, we let X denote a connected 
and rationally (2n + 1)-coconnected space with first Betti number :1 (X) = O. The 
components of the space F(X, cP(no)) of maps of X into the rationalized complex 
projective n-space cP(no), n > 1, are classified by H2(X). For any A E H2(X; Q), 
let 

Fa (X, cP(no) ) = {f E F(X, CP(no) ) I f * cl = >}, 

where c1 E H2(CP(no);Q) is the first rational Chern class, be the corresponding 
component of F(X, cP(no) ). 

We now proceed to construct the minimal model for F>(X, cP(no)). Since cP(no) 
is the mapping fibre of k = l>2n+l K(Q, 2) > K(Q, 2n+2), where />2 E H2(Q, 2; Q) 
is the characteristic class, F>(X, cP(no)) is the mapping fibre of the map 

k: K(H°(X)) 2) = F>(X, K(Q) 2)) > F(X, K(Q, 2n + 2)) 
obtained by composition with k. Hence Fa (X, cP(no) ) has a model whose underlying 
graded algebra is 

2n+2 
Aa = S [b] X @ Li_ 1 (H2n+2 -i (X) ), 

i=2 
where S[b] = H*(F>(X,K(Q,2));Q) is the symmetric algebra generated by an 
element b of degree 2. The differential d and Aa is given by db = O and 

'fv E H2n+2-i(x) dV = ki (U), 

where 
2n+2 2n+2 

k = H ki: F>(X, K(Q, 2)) > F(X, K(Q, 2n + 2)) = H K(H2n+2-i(X), i) 
i=2 i=2 

and 

ki*: H2n+2-i (X) = Hi (H2n+2-i (X) n i; Q) Hi (Fa (X, K(Q, 2))) 

is the map induced on cohomology. 
As in the previous section, we now offer a more explicit expression for the model 

A>. To A E H2(X) we associate its height, h(A), defined by 

h(A) = { max{i > °1S + °} if A + O, 

Choose a vector space basis {aijlj E Ji} for Hi(X), 2 < i < 2n, Ji = {jll < j < 
pi}, such that a2i,l = Ai when l < i < h(A). Let 

{U2n+l i,j} c Hom(Hi(X), Q) = Hi(X) c L2n+l_i(Hi(X)) 
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be the dual basis to {aij} C Hi(X), 2 < i < 2n, and let 
v2n+ 1 E Hom(H° (X), Q) = Ho (X) c L2nl (Ho (X)) 

be the generator dual to 1 H°(X). Then the set 
{V2n+l-i,jl2 < i < 2n, j E Ji} U {V2n+1} 

generates the graded algebra {$J2n+2ti-l(ff2n+2-t(X)). 
The evaluation map e;i: F;\(X) K(Q, 2)) x X t K(Q, 2) is given by (see [4, 11]) 

e>,(62) = 1 X A + b X 1 E B X H* (X). 

Thus the adjoint Kv = k Q e>: F,(X, K(Q, 2)) x X K(Q) 2n + 2) of k satisfies 

KA(628+2) = eA(w2) + = E ( . ) bn+l i <8> Xi. 

This means [4, 1.2] that 

k2m+2-2i(W2n+l-2i,l) = ( + ) bn+l-i7 0 < i < h(>) 

k2n+2 (U2n+ 1 ) = (n + l)bn+ 1 . 
A model Aa for Fx(XCP(no)) may be constructed as the commutative graded 

algebra freely generated by the set 
S = {b} U {v2n+l ,jl2 < i < 2n, j E Ji} U {V2n+1} 

together with the differential d: A; > A; given by 
[ bn+l-i if s = V2n+l-2ilX 1 < i < h(A), 

ds = 4 bn+l if s = v2n+1, 
t O otherwise, 

for any s E S. Remark that the binomial coefficients can be omitted by appropriate 
choice of the vij. Then (Ax, d) is a minimal nilpotent DGA when h(A) < n. (A>, d) 
is not minimal when h(A) = n, but one easily sees that the algebra m> freely 
generated by S- {b,v1,l} and equipped with trivial differential may serve as a 
minimal model in this case. 

We collect the preceding remarks in 
PROPOSITION 3.1. The minimal model for the component Fx(XXCP(no)) is 

(A>, d) if h(A) < n, and (mvi, d = O) if h(A) = n 
An immediate consequence is the following solution to the rational homotopy 

classification problem for the components of F(X, CPfO) ). 

THEOREM 3 . 2 . Let X be a connected and rationally (2n + l)-coconnected space 
of finite type with first Betti number :1(X) = O. Then 

Fv, (X, CP(no) ) Q Fj, (X, CP(0) ) X h(3v) = h(,vb) 

for any pair of cohomology classes A,,Ab E H2(X). 
Using [9, Theorem B], Theorem 3.2 can also be interpreted as a statement on the 

rational homotopy types represented by the components of the space F(X, CPn) 
of maps of X into the unrationalized projective space cPn. 
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COROLLARY 3.3. Let X be as in Theorem 3.2 and let f,g: X cPn be two 

maps of X into C:pn . Then Ff (X, c pn ) Q Fg (X, c pn ) X h( f * c1 )-h(g* cl ), 
where cl E H2(CPn; Q) is the first rational Chern class. 

The integral homotopy types represented by the components of F(X, CPm) have 
been studied in [1, 10, 11] for some special domain spaces X. 

We now conclude this paper by a few examples of the applications of the results 
in this section. 

EXAMPLE 3.4. (1) For 1 < m < n, let Mf(m,n) denote the minimal model 
for the component Ff(CPm,CPn) containing the map f: Cpm > cPn between 
complex projective spaces. Let deg f E Z denote the degree of f; i.e. deg f = f*(1), 
where f*: Z = H2(CPm; Z) - > Z = H2(CPn; Z) is the homomorphism induced on 
integral homology. Then 

( (A(m,n),do), 1 < m < n, degf = O, 
Mf(m,n)-!} (A(m,n),d1), 1 < m < n, degf 7& O, 

t (E, d = O), 1 < m = n, deg f 7& O. 
Here, 

A(m, n)-S[b] (8) E(U2n-2m+l) v2n-2m+3 . . X V2n-lv V2n+l) 
dob = Ox dot2n-2m+l = dOV2n-2m+3 = = dOV2n-1 = 0) dov2n+l = bn+ 

dlb = Ox dlv2n-2m+l = bn-m+l) dlt2n-2m+3 = bn-m+2X. xdlt2n+l = bn+ 

and E is the exterior algebra E = E(v3, V5,* xV2n+1)* 

Thus the countably infinitely many integral homotopy types [1, 10] represented 
by the components of F(CPm ) cPn ) localize to only two distinct rational homotopy 
types, Fo(CPmX CPn) and Fi(CPm) CPn)) i: CPm > Cpn the inclusion map. 
For m = n we get in particular 

Fo(CPn CPn) Q S1 x S3 X s5 X ** X S2n-1 X cPn, 

F (CPn CPn) Q S3 x S5 X . . X s2n-1 X 52n+19 

By [13, Theorem l.l(a)], the result for the component of the inclusion can also be 
interpreted as the determination of the rational homotopy type of a certain quotient 
space of the unitary group U(n + 1). 

(2) It is obvious that the applied technique works just as well when the target 
space is quaternionic projective n-space HPn. By analogy with the preceding 
example we get in particular the rational homotopy equivalences 

F (HPn HPn) Q S3 x S7 x Sll x x s4n-l x HP, 

Fi(HPn,HPn) Q S7 X S11 X ... X S4n-1 X S4n+3 

for the components of the space F(HPn, HPn) of self maps on HPn. The result 
for the component of the identity improves some results from [19]. 
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