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CONNECTED FINITE LOOP SPACES WITH MAXIMAL TORI

J. M. MØLLER AND D. NOTBOHM

Abstract. Finite loop spaces are a generalization of compact Lie groups.
However, they do not enjoy all of the nice properties of compact Lie groups. For
example, having a maximal torus is a quite distinguished property. Actually,
an old conjecture, due to Wilkerson, says that every connected finite loop space
with a maximal torus is equivalent to a compact connected Lie group. We give
some more evidence for this conjecture by showing that the associated action
of the Weyl group on the maximal torus always represents the Weyl group as a
crystallographic group. We also develop the notion of normalizers of maximal
tori for connected finite loop spaces, and prove for a large class of connected
finite loop spaces that a connected finite loop space with maximal torus is
equivalent to a compact connected Lie group if it has the right normalizer of
the maximal torus. Actually, in the cases under consideration the information
about the Weyl group is sufficient to give the answer. All this is done by first
studying the analogous local problems.

1. Introduction

A loop space L := (L, BL, e) is a triple consisting of two spaces L and BL, which
is pointed, and an equivalence e : ΩBL → L between the loop space of BL and
L. The space BL is called the classifying space of L. A loop space L is called
finite if L is Z–finite, i.e. the integral cohomology H∗(L; Z) is a finitely generated
graded Z–module. A finite loop space L is called connected if L is a connected
space. For a compact Lie group G the triple (G, BG, e) is a finite loop space, where
e : ΩBG→ G is the obvious equivalence.

Following an old idea of Rector [19], several notions of (Lie) group theory can
be given in homotopy theoretic terms by means of classifying spaces (e.g. see [19],
[18], [5], [6], [13]). For example, a homomorphism f : L→ M of finite loop spaces
is a pointed map Bf : BL→ BM . The homotopy fiber of Bf is denoted by M/L.
A homomorphism f : L→M is an isomorphism if Bf is a homotopy equivalence.
In particular, we are interested in maximal tori and the associated Weyl groups of
connected finite loop spaces. We will use the following definition:

1.1 Definition. Let L be a connected finite loop space. A maximal torus of L is a
homomorphism f : T → L from a torus T into L which satisfies the following two
conditions:

1. The homogeneous space L/T is Z–finite.
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2. The rank rk(L) of L equals the rank rk(T ) of T . The rank is defined to be
the transcendence degree of the polynomial ring H∗(BL; Q) over Q.

The Weyl monoid WL := WL(T ) of a maximal torus f : T → L is the monoid

WL(T ) := { [w : BT → BT ] |Bf ◦ w ' Bf}
of all homotopy classes of self maps of BT stabilizing the structure map Bf : BT →
BL.

The classical maximal torus TG → G of a compact connected Lie group G passes
to a fibration G/TG → BT → BG, and an element w ∈ WG of the Weyl group WG

of G give rise to a homotopy commutative diagram

BTG

##F
F
F
F
F
F
F
F

w
// BTG

{{xx
x
x
x
x
x
x

BG

Hence, the above definitions are the extract of the classical situation in terms of
classifying spaces. We also show that every two maximal tori of a finite loop space
are conjugate and that the definition of the Weyl group does not really depend on
the chosen maximal torus (Proposition 3.5).

Usually, when talking about finite loop spaces, the Z–finiteness condition is re-
placed by the condition of being homotopy equivalent to a finite CW–complex,
which is a slightly stronger condition. For our purpose Z–finiteness is sufficient.

Having a maximal torus is a quite distinguished property for finite loop spaces. It
is well known that there exist finite loop spaces which don’t have a maximal torus.
Examples may be found in [19] or [18]. Actually, an old conjecture, which we could
trace back to [20], says that a connected finite loop space a with maximal torus is
isomorphic to a compact connected Lie group (as loop space). We want to give some
more evidence for this conjecture. An integral representation W → Gl(n, Z) of a
finite group W is called crystallographic, if the associated rational representation
W → Gl(n, Q) represents W as a reflection group. We define LTL := H2(BTL, Z)
and L∗TL := H2(BTL, Z).

1.2 Theorem. Let L be a finite loop space with maximal torus T → L. Then the
following hold:

1. The Weyl monoid WL is a group.
2. The induced action of WL on L∗TL represents WL as a crystallographic group.
3. We have H∗(BL; Q) ∼= H∗(BT ; Q)WL .

The representation WL → Gl(L∗TL) is called the associated representation.
Examples of crystallographic representations W → Gl(n, Z) are given by actions

of Weyl groups of compact connected Lie groups on the 2–dimensional homology or
cohomology of the classifying space of the maximal torus. We say that a connected
finite loop space L with maximal torus TL → L has the same Weyl group type as
a compact connected Lie group G if rk(L) = rk(G) =: n and if the two associated
representations WL, WG → Gl(n, Z) are conjugate. The following question is a
weaker and slightly different form of the above mentioned conjecture. Let L be a
connected finite loop space with the same Weyl group type as the compact con-
nected Lie group G. Does this imply that L and G are isomorphic as loop spaces?
This conjecture can’t be true. The compact connected Lie groups SO(2n + 1)
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and Sp(n) are not isomorphic as loop spaces, because the existence of a homotopy
equivalence BSO(2n + 1) ' BSp(n) would imply that SO(2n + 1) and Sp(n) were
isomorphic as Lie groups [16]. But on the other hand they have the same Weyl
group type.

The right invariant to distinguish the isomorphism types of connected finite
loop spaces with maximal tori should be given by the normalizer of the maximal
torus. Some evidence for this conjecture comes from [16], where it is proved that
two compact connected Lie groups G and H are isomorphic (as Lie groups) if and
only if the classifying spaces are homotopy equivalent if and only if the classifying
spaces of the two normalizers of the maximal tori are equivalent if and only if the
normalizers itself are isomorphic (as Lie groups) for the loop spaces associated with
compact connected Lie groups.

1.3 Definition. Let L be a connected finite loop space with maximal torus TL →
L, The normalizer of TL is a monomorphism N(TL)→ L of finite loop spaces such
that N(TL) fits up to homotopy into a fibration

BTL → BN(TL)→ BWL

and such that

BTL

��

// BL

BN(TL)

::
u
u
u
u
u
u
u
u
u

commutes up to homotopy.

1.4 Proposition. Let L be a connected finite loop space with maximal torus TL →
L. Then there exists a normalizer N(TL) of the maximal torus, and N(TL) is
isomorphic to a uniquely determined compact Lie group as loop space.

In order to proceed with the maximal torus conjecture we first want to fix some
notation about compact connected Lie groups. For every compact connected Lie
group G there exists a finite covering K → Gs × T → G of compact Lie groups,
where Gs is simply connected, where T is a torus, and where K ⊂ Gs×T is a finite
central subgroup.

1.5 Definition. Let G be a compact connected Lie group.
1. G satisfies condition (Tp) if H∗(G; Z) or, equivalently, H∗(BG; Z) is p–torsion

free.
2. G satisfies condition (Ip) if H∗(BG; Fp) ∼= H∗(BTG; Fp)WG .
3. G satisfies condition (Cp) if G satisfies (Tp) and Gs the condition (Ip).

In [15] a compact connected Lie group G is called p–convenient if it satisfies (Cp).
This condition was used there to prove homotopy uniqueness results for classifying
spaces of compact connected Lie groups. We will apply similar methods here to
classify the isomorphism type of compact connected Lie groups as loop spaces using
the normalizer. Each of the above three conditions is weaker than the following one.
But for an odd prime all three conditions are equivalent [15]. We also notice that
U(2) satisfies (I2) but not (C2), because SU(2) does not satisfy (T2). A complete
list of simple simply connected compact Lie groups satisfying (Cp) may be found
in [15, Chapter 1].
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1.6 Theorem. Let G be a compact connected Lie group satisfying conditions (C2)
and (Tp) for all primes. Let L be a connected finite loop space with maximal torus
TL → L. Then the following statements are equivalent:

1. L has the same Weyl group type as G.
2. N(TG) and N(TL) are isomorphic as Lie groups.
3. BN(TG) and BN(TL) are homotopy equivalent.
4. BG and BL are homotopy equivalent.

1.7 Remark. There is an interesting observation related to Proposition 1.4. For a
given extension N(T ) of an operation of a Weyl group W on a maximal torus T it is
not known if there exists a connected finite loop space with these data. For example,
there are two extensions of the permutation representation of the symmetric group
Σn
∼= WU(n) on (S1)n = TU(n), namely the semidirect product and a nontrivial

extension. But Theorem 1.6 says that only the semidirect product can occur as the
normalizer of a maximal torus of a connected finite loop space.

To study finite loop spaces, Dwyer and Wilkerson introduced the notion of p–
compact groups in their influential paper [5]. A loop space X is a p–compact group
if the classifying space BX is p–complete and if X is Fp–finite, i.e. H∗(X ; Fp) is
finite [5]. The completion of a connected finite loop space always gives a p–compact
group. For nonconnected finite loop spaces one has to assume that the group of
the components is a finite p–group.

The p–compact groups behave very much like compact Lie groups. For example,
a p–compact group always has a maximal torus in the sense of [5]. Dwyer and
Wilkerson also constructed a normalizer N(TX) of the maximal torus TX → X
which satisfies the analogous properties as in Lemma 1.3 of [5] (see also Section
2). The classifying space BN(TX) fits into a fibration BTX → BN(TX)→ BWX .
In particular, BN(TX) is a fiberwise complete space with respect to this fibration.
For details see Section 2.

For a fibration F → E → B we denote by E◦
p the fiberwise p–adic completion

[4].

1.8 Proposition. Let L be a connected finite loop space.
1. For any prime p the triple (L∧p , BL∧p , e∧p ) is a p–compact group.
2. If T → L is a maximal torus of L, then completion gives rise to a maxi-

mal torus T∧
p → L∧p and induces a natural isomorphism WL

∼= WL∧
p

and a
homotopy equivalence BN(TL)◦p ' BN(T ∧

Lp ).

The Weyl group WX of a p–compact group X acts on L∗T ∧
Xp := H∗(BTX ; Z∧p )

and gives rise to a representation WX → Gl(L∗T ∧
Xp ). By the above lemma

the completion of a connected finite loop space with maximal torus gives a con-
nected p–compact group with maximal torus. We say that a connected p–compact
group X has the p–adic Weyl group type of a compact connected Lie group G if
rk(X) = rk(G) =: n and if the associated representations WX , WG → Gl(n, Z∧p )
are conjugate.

The next statement is the completed version of Theorem 1.6.

1.9 Theorem. Let G be a compact connected Lie group satisfying condition (Tp)
if p is odd or (C2) if p = 2. Let X be a connected p–compact group. Then the
following conditions are equivalent:

1. X has the same p–adic Weyl group type as G.
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CONNECTED FINITE LOOP SPACES WITH MAXIMAL TORI 3487

2. BN(TG)◦p and BN(TX) are homotopy equivalent.
3. BG∧

p and BX are homotopy equivalent, i.e. G∧
p and X are isomorphic p–

compact groups.

Using the p–adic result, we are able to prove Theorem 1.6.

Proof of Theorem 1.6. Let us assume that (1) is satisfied, i.e. L and G have the
same Weyl group type. The Weyl group type of a connected finite loop space de-
termines the p–adic Weyl group type of the associated connected p–compact group.
By Theorem 1.9 this implies that BL∧p ' BG∧

p for every prime p. Moreover,
we also have a rational equivalence, because both spaces are rationally a prod-
uct of Eilenberg–Mac Lane spaces, and because H∗(BL; Q) ∼= H∗(BTG; Q)WG ∼=
H∗(BG; Q) (Theorem 1.2). That is to say that BL and BG have the same adic
genus. By assumption L has a maximal torus, which implies that there exists a
compact connected Lie group H such that BL ' BH [14]. Because the two asso-
ciated representations of the Weyl groups are isomorphic, we also have K(BG) ∼=
K(BTG)WG ∼= K(BTH)WH ∼= K(BH) as λ–rings. The compact connected Lie
group G satisfies condition (C2). Because every quotient of a Spin–group has 2–
torsion in the integral cohomology, the finite cover Gs × T of G cannot contain a
factor isomorphic to Spin(n) for some n. In this situation we can apply [15, 1.6] to
conclude that BX ' BG. This is condition (4).

If BL ' BG, then BN(TG)◦p ' BN(TL)◦p for any prime (Theorem 1.9). This
is really an equivalence of the associated fibrations, and implies therefore that
BN(TG) ' BN(TL) [16, proof of 3.6], which is condition (3). By [16, Theorem A],
a homotopy equivalence BN(TG) ' BN(TL) establishes an isomorphism N(TG) ∼=
N(TL) as compact Lie groups, which is condition (2).

If N(TG) ∼= N(TL) as compact Lie groups, then it is obvious that G and L have
the same Weyl group type. This completes a circle of implications.

The paper is organized as follows: Section 2 is devoted to p–compact groups.
From [5] we will recall how notions of (Lie) group theory translate to p–compact
groups. We also recall necessary results from [6] and [13]. In Section 3 we discuss
the (integral) Weyl group of finite loop spaces and prove Theorem 1.2, Proposition
1.4 and Proposition 1.8. Section 4 provides some more results about p–compact
groups necessary for the proof of Theorem 1.9. In particular, we study homotopy
classes of liftings of maps into a connected p–compact group to the maximal torus.
The last three sections are devoted to the proof of Theorem 1.9, which is split into
several cases. First we discuss uniqueness results for products of unitary groups
(Section 5), then for simply connected compact Lie groups (Section 6), and finally
in the general case (Section 7). Section 7 also contains a proof of Theorem 1.9.

Completion and localization are always meant in the sense of Bousfield and Kan
[4].

2. p–compact groups

In this section we recall the basic notions and the fundamental results about p–
compact groups from [5]. Most of the notions are motivated by classical Lie group
theory and by passing to classifying spaces. To keep things short, and because the
analogy to compact Lie groups is discussed in [5], [6] and [13], we omit motivations.
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2.1 Homomorphisms, monomorphisms, isomorphisms, subgroups and ex-
act sequences. A homomorphism f : Y → X of p–compact groups is a pointed
map BY → BX . The map f is called an isomorphism if Bf : BY → BX is
an equivalence. A sequence X

f−→ Y
g−→ Z of p–compact groups is short exact if

the associated sequence BX
Bf−−→ BY

Bg−−→ BZ is a fibration up to homotopy. A
monomorphism of p–compact groups is a map BX → BY whose homotopy fiber,
denoted by Y/X , is Fp–finite. A subgroup Y → X of a p–compact group X is a
monomorphism of p–compact groups.

2.2 p–compact toral groups. A p–compact toral group P is a p–compact group
P fitting into a short exact sequence T → P → π, where T is a p–adic torus and
where π is a finite p–group (as a p–compact group ), i.e. Bπ ' K(π, 1) and π is an
honest finite group. For every p-compact toral group P , there exists a locally finite
group P∞, which actually is the union of finite groups, and a map BP∞ → BP
which becomes an equivalence after completion. P∞ → P is called the p–discrete
approximation of P [5, 6.4].

2.3 Conjugation and subconjugation. Two homomorphisms f, g : Y → X of
p–compact groups are called conjugate if the induced maps Bf, Bg : BY → BX
are freely homotopic.

For a homomorphism f : Y → X of p–compact groups and for a p–compact
toral subgroup i : P → X we say that P is subconjugate to Y if there exists a
homomorphism j : P → Y such that fj and i are conjugate.

2.4 Centralizers. For a homomorphism f : Y → X between p–compact groups,
the centralizer CX(f(Y )) is defined to be the loop space given by the triple

CX(f(Y )) := (Ωmap(BY, BX)Bf , map(BY, BX)Bf , id) .

The evaluation at the basepoint ev : map(BY, BX)Bf → BX establishes a ho-
momorphism CX(f(Y )) → X of loop spaces. If Y is a p–compact toral group,
then the centralizer CX(f(Y )) is again a p–compact group and the evaluation
CX(f(Y ))→ X is a monomorphism [5, 5.1, 5.2 and 6.1].

2.5 Maximal tori. The maximal torus of a p–compact group X is a monomor-
phism TX → X of a p-compact torus into X such that the centralizer CX(TX) is
a p-compact toral group whose component of the unit is given by TX [5]. Because
TX centralizes itself, there is a homomorphism TX → CX(TX)

2.6 Theorem [5, 8.11, 8.13 and 9.1]. Let X be a p–compact group.
1. X has a maximal torus TX → X.
2. Any subtorus T → X of X is subconjugated to the maximal torus TX → X.
3. Any two maximal tori of X are conjugate.
4. If X is connected, then TX → CX(TX) is an isomorphism.
5. If X is connected, then every finite cyclic subgroup Z/pn → X of X is sub-

conjugate to TX .

2.7 Proposition. Let X be a p–compact group, and let T → X be a monomor-
phism of a p-compact torus into X. Then the following conditions are equivalent:

1. rk(T ) = rk(X).
2. The homomorphism T → X is a maximal torus.
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Proof. Let T → X be a subtorus satisfying condition (1). By Theorem 2.6, there
exists a maximal torus TX → X , and T → X lifts up to conjugation to a monomor-
phism T → TX . This is an isomorphism because of the rank condition, and T → X
is a maximal torus.

If TX → X is a maximal torus, then rk(X) = rk(T ) (Theorem 2.9 (2)), and
hence T → X satisfies condition (1).

2.8 Weyl spaces and Weyl groups. Let TX → X be a maximal torus of a
p–compact group. We think of BTX → BX as being a fibration. The Weyl space
WT (X) is defined to be the mapping space of all fiber maps over the identity
on BX . Then each component of WT (X) is contractible and the Weyl group
WT (X) := π0(WT (X)) is a finite group under composition [5, 9.5].

2.9 Theorem [5, 9.5 and 9.7]. Let TX → X be the maximal torus of a connected
p–compact group X.

1. The action of WX on BTX induces representations

WX → Aut(H2(BTX ; Z∧p )⊗Q) ∼= Gl(n, Q∧
p )

and

WX → Aut(H2(BTX ; Z∧p )⊗Q) ∼= Gl(n, Q∧
p )

which are monomorphisms whose images are generated by pseudo reflections.
2. The map H∗

Q∧
p
(BX)→ H∗

Q∧
p
(BTX)WX is an isomorphism.

Here, we define H∗
Q∧

p
(−) := H∗(−; Z∧p )⊗Q.

2.10 Proposition. Let X be a connected p–compact group. Then H2(BX ; Z∧p )→
H2(BTX ; Z∧p )WX is an isomorphism.

Proof. The statement is true for simply connected X , because H2(BTX ; Z∧p )WX

⊂ H2
Q∧

p
(BTX)WX ∼= H2

Q∧
p
(BX) = 0 in this case.

For the general case, we recall [13] that there exists a diagram of exact sequences

1 // K // TXs × T
q

//

��

TX
//

��

1

1 // K // Xs × T
q

// X // 1

of p–compact groups, where Xs is simply connected , where T is a p-compact torus
and where K → Xs × T is a central finite subgroup. The projection induces an
isomorphism WXs

∼= WX =: W between the Weyl groups, which we identify via
this map. Then, the upper horizontal line is W equivariant (up to homotopy).

Applying the Serre spectral sequence to both fibrations and passing to invariants
establishes a diagram

0 −−−−→ H2(BTX ; Z∧p )W −−−−→ H2(BTXs ×BT ; Z∧p )W −−−−→ H2(BK; Z∧p )x x ∥∥∥
0 −−−−→ H2(BX ; Z∧p ) −−−−→ H2(BXs ×BT ; Z∧p ) −−−−→ H2(BK; Z∧p )

Both rows are exact. The middle terms in both rows are isomorphic to H2(BT ; Z∧p ).
For the top row, this follows from Theorem 2.9. Hence, the right and middle vertical
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arrows are isomorphisms, and so is the left one by the five lemma. This finishes the
proof.

2.11 Proposition. Let p be an odd prime and X a p–compact group. If the asso-
ciated representation WX → Gl(H2(BTX ; Z∧p ) is a pseudo reflection group, then X
is connected.

Proof. Because WX is a p–adic pseudo reflection group, it is generated by elements
of order coprime to p. By [13, 3.8] there exists an epimorphism WX → π0(X).
Because π0(X) is a finite p–group, this homomorphism is also the trivial map.
Thus, X is connected.

2.12 Remark. Let X be a p–compact group. The proof of Proposition 2.11 shows
that X is connected if any homomorphism WX → π, from the Weyl group into
a finite p–group, always has a kernel which is not a pseudo reflection group. For
example, this is true if p = 2 and if X has the 2–adic Weyl group type of G, where
G is a quotient of a product of SU(n)’s, n ≥ 3, and of a torus. In particular this is
true if G satisfies condition (C2).

2.13 Normalizers and p–normalizers of maximal tori and p–toral Sylow
subgroups. Let i : TX → X be a maximal torus of a p–compact group X . Again
we think of BTX → BX as being a fibration. The Weyl space WX acts on BTX

via fiber maps. This establishes a monoid homomorphism WX → HE(BTX),
where HE(BTX) denotes the monoid of all self-equivalences of BTX . Passing to
classifying spaces establishes a map BWX → BHE(BTX), which can be thought
of as being a classifying map of a fibration BTX → BN(TX) → BWX . The total
space gives the classifying space of the normalizer N(TX) of TX . This is always a
finite extension of the p-compact torus TX .

Let Wp be the union of those components of WX corresponding to a p–Sylow
subgroup Wp of WX . The restriction of the above construction to Wp gives the
classifying space of the p–normalizer Np(TX).

Since the action of WX respects the map BTX → BX , the monomorphism
TX → X extends to a loop map N(TX)→ X .

2.14 Proposition. For a p–compact group X, the map

H∗(BX ; Fp)→ H∗(BNp(TX); Fp)

is a monomorphism.

Proof. This follows from [5, proof of 2.3 and 9.13].

2.15 Centers. A subgroup Z → X of a p–compact group X is called central [5] if
the homomorphism CX(Z)→ X is an isomorphism. The center Z(X) of X is the
maximal central subgroup of X [6, 1.2], [13, 4.3, 4.4]. To give an explicit definition
we use a result of Dwyer and Wilkerson [6, 1.3]. For every p–compact group X , the
centralizer CX(X) is a p–compact group and Z(X) := CX(X) → X is the center
of X .

For every p–compact group X there exists a short exact sequence Z(X)→ X →
X/Z(X) =: PX of p–compact groups, and, if X is connected, the quotient PX has
a trivial center [13, 4.7]. We call a p–compact group X centerfree if Z(X) is the
trivial group.

For connected p–compact groups, there is another description of the center in
terms of the fixed point set of the Weyl group action on the maximal torus. Let
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TX → X be the maximal torus of a connected p–compact group X . The Weyl group
WX acts on the p-discrete approximation Ť ⊂ TX of TX . Here, we can consider Ť
as an honest locally finite group with an honest WX–action. Then we define T WX

X

to be the p–compact group given by the equivalence BT WX

X ' B(Ť WX )∧p between
the classifying spaces.

2.16 Proposition. Let X be a connected p–compact group. If one of the following
three conditions is satisfied, then T WX

X → X is the center of X.
1. p is odd.
2. T WX

X is connected; i.e. T WX

X is a p-compact torus.
3. H∗(BX ; Fp) ∼= H∗(BTX ; Fp)WX .

Proof. If p is odd, this is proved in [6, 7.7]. If T WX

X is a p-compact torus, then
C := CX(T WX

X ) is connected [13, 3.11] with Weyl group WC = WX . Therefore,
C → X induces an isomorphism in rational cohomology between the classifying
spaces (Theorem 2.9) and between the spaces itself, and is even an isomorphism
between connected p–compact groups [13, 3.7].

If H∗(BX ; Fp) ∼= H∗(BTX ; Fp)WX , then

H∗(BCX(T WX

X ); Fp) ∼= H∗(BTX ; Fp)W ′

[15, 10.1]. Here, the subgroup W ′ ⊂WX consists of all elements acting trivially on
T WX

X . That is to say that W ′ = WX . Therefore, BCX(T WX

X )→ BX is a homotopy
equivalence and CX(T WX

X )→ X an isomorphism.

3. The Weyl group of a connected finite loop space

In this section L always denotes a connected finite loop space with maximal
torus f : TL → L. We are going to discuss the Weyl group WL of L. In particular
we will prove Theorem 1.2.

Passing to completion at a prime p, we get a p–compact group L∧p with max-
imal torus T ∧

Lp → L∧p and Weyl group WL∧
p
. These pieces satisfy the identity

H∗
Q∧

p
(BL∧p ) ∼= H∗

Q∧
p
(BT ∧

Lp )WL∧p by Theorem 2.9. That is to say that the monomor-
phism H∗

Q∧
p
(BL∧p ) → H∗

Q∧
p
(BT ∧

Lp ) is a Galois extension of integral domains which
are integrally closed with Galois group WL∧

p
. An integral domain is called integrally

closed if it is integrally closed in its field of fractions.
To get global information we have to study the rational situation. First we have

to clarify and to fix some notions and notations about integral ring extensions.
We denote by FF (A) the field of fractions of an integral domain A. An integral
extension A → B of integral domains is called normal, separable or Galois if the
associated extension FF (A)→ FF (B) of the field of fractions is normal, separable
or Galois.

3.1 Lemma. Let A→ B be a Galois extension of integral domains A and B, and
let W be the Galois group of FF (A) → FF (B). If A and B are integrally closed,
then A = BW .

Proof. Because A→ B is an integral extension and because B is integrally closed,
B is also the integral closure of A in FF (B). Therefore, by naturality, W acts on
B.

If b ∈ BW , then b is integral over A and b ∈ FF (A). This implies that b ∈ A,
and hence A = BW .
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3.2 Proposition. Let L be a connected finite loop space with maximal torus f :
TL → L. The map H∗(BL; Q) → H∗(BTL) is a monomorphism and an integral
Galois extension of integrally closed domains.

Proof. Let A := H∗(BL; Q) and B := H∗(BTL; Q). Then, A and B are polynomial
rings on n = rk(L) = rk(TL) generators. In particular, they are integrally closed
domains and noetherian. Because the homogeneous space L/TL is Z–finite, a Serre
spectral sequence argument shows that B is a finitely generated A–module. Because
A and B have the same transcendence degree over Q, the map A → B is an
inclusion. This shows that A→ B is an integral ring extension [10, XI, §1].

The characteristic of Q is zero, and therefore all extensions are separable. So it
only remains to show that A → B is normal. Tensoring with Z∧p yields A⊗ Z∧p ∼=
H∗

Q∧
p
(BL∧p ) and B ⊗ Z∧p ∼= H∗

Q∧
p
(BT ∧

Lp ). Therefore, by Theorem 2.9, A ⊗ Z∧p ∼=
(B⊗Z∧p )WL∧p → B⊗Z∧p is an integral Galois extension of integrally closed domains.
Now we can proceed as in [18, 3.5] to show that A → B is normal and hence a
Galois extension.

Proof of Proposition 1.8. Part (1) is obvious, as Z–finiteness implies Fp–finiteness
and for a simply connected space Y we have Ω(Y ∧

p ) ' (ΩY )∧p [4, VI, 6.5]. For (2),
the same argument shows that T ∧

Lp → L∧p is a maximal torus. The isomorphism
between the Weyl groups is shown in the proof of Theorem 1.2 below.

Proof of Theorem 1.2. Let WQ be the Galois group of the extension H∗(BL; Q)→
H∗(BTL; Q). The Weyl group W∧

p of the p–compact group L∧p is the Galois group of
H∗(BL; Q)⊗Z∧p → H∗(BTL; Q)⊗Z∧p (Theorem 2.9). So, the functor ⊗Z∧p induces
a group homomorphism WQ → W∧

p . Because the completion T∧
p → L∧p of the

maximal torus of L is a maximal torus of L∧p (Proposition 1.8), both groups WQ and
W∧

p are faithfully represented by the action on H∗(BT ; Q)⊗Z∧p ∼= H∗(BT∧
p ; Z∧p )⊗Q.

Because

(H∗(BT ; Q)⊗ Z∧p )WQ ∼= H∗(BL; Q)⊗ Z∧p ∼= (H∗(BT∧
p ; Z∧p )⊗Q)W∧

p ,

the homomorphism WQ →W∧
p is an isomorphism.

In the diagram

1 // W //

��

[BT, BT ] //

��

[BT, BL]

��

1 // W∧
p

// [BT∧
p , BT∧

p ] // [BT∧
p , BL∧p ]

both rows are exact. For the top row this follows from the definition, and for the
bottom row from Theorem 2.9. Hence, the third term in the rows contains the
quotient of the first two terms as a subset. Here, W denotes the Weyl monoid of
L. Therefore, p–completion induces for every prime p a monoid homomorphism
W →W∧

p which is injective. This map is also surjective. For let wp ∈W∧
p for some

prime p. We choose elements w0 ∈ WQ and wq ∈ W∧
q corresponding under the

isomorphisms W∧
q
∼= WQ ∼= W∧

p . We realize w0 as a self map of BTQ over BLQ, and
let wq denote the associated self map of BT∧

q over BL∧q . Since H2(BT∧
p ; Z∧p )⊗Q ∼=

H2(BTQ; Q) ⊗ Z∧p for all primes, an arithmetic square argument shows that there
exists a self map w : BT → BT over BL such that w∧

q ' wq ∈ [BT∧
q , BT∧

q ]. In
particular, we have W ∼= W∧

p , and W is a group, which is part (1).
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Because W is a subgroup of [BT, BT ], the integral cohomology group H2(BT ; Z)
gives an invariant sublattice of H2(BT ; Q). Moreover, we have H∗(BT ; Q)W ∼=
H∗(BT ; Q)WQ ∼= H∗(BL; Q). Because H∗(BL; Q) is a polynomial ring, the action
of W on H2(BT ; Q) represents W as a reflection group. This proves the last two
parts of the statement.

The proof of Theorem 1.2 shows that the integral Weyl group WL and the p–
adic Weyl groups WL∧

p
of a connected finite loop space L with maximal torus

TL → L are isomorphic for every prime p. We identify all these Weyl groups via
this isomorphism. Using this fact one also can construct an integral normalizer of
the maximal torus TL → L, which is the claim of Proposition 1.4.

Fibrations of the form BTL → Y → BWL are classified by cohomology classes
in H3(BWL; LTL), where WL acts on LTL = H2(BTL; Z) via the action on the
maximal torus. Fibrations over BW with fiber BT ∧

Lp are classified by cohomol-
ogy classes in H3(BWL; LT ∧

Lp ). In both cases this follows from obstruction the-
ory. Because WL is a finite group we have an isomorphism H3(BWL; LTL) ∼=∏

p H3(BWL; LT ∧
Lp ). This isomorphism is given by the product over all p–adic

fiberwise completions. Hence there exists a fibration BTL → BN → BW , such
that fiberwise completion induces an equivalence BN◦

p ' BN(TL∧
p
). Moreover, by

[16, 3.2], the space BN is the classifying space of a uniquely determined compact
Lie group N fitting into a short exact sequence 1 → TL → N → W → 1. In
particular, the group N gives a finite loop space, which we call the normalizer of
the maximal torus TL → L of L.

Next we want to construct a map BN → BL. By the construction of N , for
every prime p, there exists a map BN → BL∧p which is an extension of the map
BTL → BL∧p and which induces an isomorphism H∗

Q∧
p
(BN) ∼= H∗

Q∧
p
(BL). The

isomorphism between the cohomology groups follows from the Serre spectral se-
quence for calculating the cohomology of BN and Theorem 2.9. The same argu-
ment using Theorem 1.2 instead of Theorem 2.9 shows that there exists an iso-
morphism H∗(BN ; Q) ∼= H∗(BL; Q). Because BLQ is a product of Eilenberg-Mac
Lane spaces, this last isomorphism can be realized by a map BN → BLQ. All co-
herence conditions for using an arithmetic square are controlled by cohomology and
are therefore satisfied by construction. This establishes a map BN → BL which,
again by construction, is an extension of BTL → BL. We collect the properties
of the group N , now called N(TL), in the following statement, which also includes
Proposition 1.4.

3.4 Proposition. Let L be a connected finite loop space with maximal torus TL →
L and Weyl group WL. Then the following hold:

1. The triple (N(TL), BN(TL), e) is a finite loop space. In particular, N(TL)
is isomorphic to a uniquely determined compact Lie group given as a finite
extension of TL by WL.

2. There exists a homomorphism N(TL) → L of finite loop spaces which is an
extension of TL → L.

Finally we show, as promised in the introduction, that any two maximal tori of
a finite loop space are conjugate.

3.5 Proposition. Let T
g−→ L be a homomorphism of a torus into a connected finite

loop space L with maximal torus TL
f−→ L. Then T is subconjugate to TL

f−→ L.
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Proof. Let A := H∗(BL; Q), B := H∗(BTL; Q) and C := H∗(BT ; Q), and let
A∧

p , B∧
p and C∧

p denote the associated cohomology groups given by the theory
H∗

Q∧
p
( ). After completion at a prime p, we already know that T is subconjugate to

T ∧
Lp → L∧p via a homomorphism T∧

p

h∧p−−→ T ∧
Lp . Therefore, the diagram

B
Bh∗

// C∧
p

A

Bf∗

OO

// A∧
p

Bg∗

OO
(*)

commutes. Let p(t) ∈ A[t] be a monic polynomial which splits into linear factors
over B. By the diagram (∗), the polynomial Bg∗(p(t)) ∈ C[t] also splits into linear
factors after completion at every prime. Now we can argue as in the proof of [18, 3.5]
to show that Bg∗(p(t)) already splits into linear factors over C. Because A→ B is
an integral Galois extension, there exists an extension φ : B → C of Bg∗ : A→ C.
Because all involved spaces are rationally products of Eilenberg–Mac Lane spaces,
the map φ has a geometric realization Bh0 : BT0 → (BTL)0 which is a lift of

BT0
Bg−−→ BL0.

Over the adeles, the maps Bh0 and Bh∧p differ only by an Weyl group element
[2]. Hence we can assume that they are equal over the adeles. In this case, the
coherence conditions for glueing all the maps together by an arithmetic square are
satisfied. We get a map Bh : BT → BTL, such that the diagram

BT
Bg

""D
D
D
D
D
D
D
D

Bh
// BTL

Bf
||xx
x
x
x
x
x
x

BL

commutes up to homotopy.

The following corollary is obvious.

3.6 Corollary. Let T1, T2 → L be two maximal tori of a connected finite loop space.
Then T1 and T2 are conjugate.

In particular, this corollary says that the definition of the Weyl group does not
depend in an essential way on the chosen maximal torus.

4. The map [ , BTX ]→ [ , BX ]

In this section, X is a p–compact group with a fixed maximal torus f : TX → X .
For any p-compact toral group P , the Weyl group WX acts on the set [BP, BTX ]
of homotopy classes of maps and establishes a map

F : [BP, BTX ]/WX → [BP, BX ].

4.1 Proposition. Let P be a p-compact toral group. The map

F : [BP, BTX ]/WX → [BP, BX ]

is an injection.

Remark. In [12, 2.3] a similar but slightly weaker result is proved with different
methods.
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For the proof of this result we will use the following construction. Let A be
a p–compact abelian group and α : A → TX a homomorphism. Both classifying
spaces BA and BTX are loop spaces and carry a multiplication µ. Because α is a
homomorphism, this establish a commutative diagram

BA×BA
Bα×id

//

µ

��

BTX ×BA
id×Bα

//

µ(id×Bα)

��

BTX ×BTX

µ

��

BA
Bα

// BTX BTX

.

Taking adjoints in the vertical line yields a diagram

BA
Bα

//

��

BTX
Bf

//

��

BX

map(BA, BA)id
// map(BA, BTX)Bα

// map(BA, BX)Bf◦Bα

e

OO
(∗)

The right vertical arrow is given by the evaluation. Now let w ∈WX be an element
of the Weyl group. The diagram

BTX ×BTX
µ

//

w×w

��

BTX

w

��

BTX ×BTX
µ

// BTX

commutes up to homotopy and, taking adjoints again and combining it with (∗),
establishes another homotopy commutative diagram, namely

BA
Bα

// BTX
//

w

��

map(BA, BTX)Bα
//

map(id,w)

��

map(BA, BX)Bf◦Bα

BA
w◦Bα

// BTX
// map(BA, BTX)w◦Bα

// map(BA, BX)Bf◦w◦Bα

The component of map(BA, BTX) in the bottom row is determined by the homo-
topy commutative square

BTX
//

w

��

map(BA, BX)Bf◦Bα

��

BTX
// map(BA, BX)Bf◦w◦Bα.

Now we are prepared for the proof of Proposition 4.1.

Proof of Proposition 4.1. Let α, β : P → TX be two homomorphism such that f ◦α
and f ◦ β are conjugate. First of all this implies that α and β have the same kernel
which we can divide out. This follows from [17, §2]. There only the case of maps
with source given by the classifying space of a honest p–toral group is discussed,
but the same arguments are applicable in our situation. Hence, we can assume that
α and β are monomorphisms and that P is abelian as a subgroup of TX [13, 3.1
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and 3.5]. We get the following diagram:

BTX −−−−→ map(BP, BX)Bα −−−−→ map(BP, BX)f◦Bα
e−−−−→ BXyw

∥∥∥ ∥∥∥
BTX −−−−→ map(BP, BTX)Bβ −−−−→ map(BP, BX)f◦Bβ

e−−−−→ BX.

The top and the bottom row give two maximal tori of map(BP, BX)f◦Bα. Hence
the left vertical arrow exists and is given by a self equivalence. Because the outer
square commutes, this self equivalence is given by an element w ∈WX . The above
considerations imply that w ◦Bα ' Bβ, which finishes the proof.

Next we will discuss under which conditions the map is also a surjection. We
have the following generalization of well known results of Borel.

4.2 Theorem. Let X be a connected p–compact group with maximal torus f :
TX → X. Then the following hold:

1. The map H∗(BX ; Z∧p )
Bf∗−−→ H∗(BTX ; Z∧p )WX is an isomorphism if and only

if H∗(BX ; Z∧p ) is p–torsion free.
2. If H∗(BX ; Z∧p ) is p–torsion free, every elementary abelian subgroup V → X

is subconjugate to TX.
3. Let A be an abelian p–compact group. If H∗(BX ; Fp) ∼= H∗(BTX ; Fp)WX ,

then the map F : [BA, BTX ]/WX → [BA, BX ] is a bijection.

Proof. First let us assume that H∗(X ; Z∧p ) is not torsion free and that H∗(BX, Z∧p )
is torsion free. Let x ∈ H∗(X ; Z∧p ) be a torsion class of minimal degree. Then, in the
Serre spectral sequence of the fibration X → ∗ → BX this class can’t be killed by
any differential, which leads to a contradiction. Hence, if H∗(BX ; Z∧p ) is p–torsion
free then H∗(X ; Z∧p ) is also p–torsion free. Moreover, H∗(X ; Fp) ∼= E(y1, ..., yr) is
an exterior algebra, H∗(BX ; Fp) ∼= Fp[x1, ..., xr] and H∗(BX ; Z∧p ) ∼= Z∧p [x1, ..., xr]

are polynomial algebras, r is equal to the rank rkQ(X) of X and H∗(BX ; Z∧p )
Bf∗−−→

H∗(BTX ; Z∧p )WX is a monomorphism. All these facts follow from results of Hopf
and Borel (e.g. see [9]).

Let y ∈ H∗(BX ; Z∧p ). If Bf∗(y) ≡ 0 mod p then y ≡ 0 mod p. Otherwise we
would get an algebraic relation among the generators of the image of H∗(BX ; Fp)→
H∗(BTX ; Fp), which contradicts the fact that H∗(BTX ; Fp) is a finitely generated
module over H∗(BX ; Fp). On the other hand, for every x ∈ H∗(BTX ; Z∧p )WX ,
there exist n ∈ N and z ∈ H∗(BX ; Z∧p ) such that Bf∗(z) = pnx. This follows from
Theorem 2.9. If n > 0, then z is divisible by p by the above considerations, and
Bf∗(p−1z) = p−1x. This proves (1).

By (1) the map H∗(BX ; Fp) → H∗(BTX ; Fp) is an injection. For every el-
ementary abelian p–group V , the algebra H∗(BV ; Fp) is an injective object in
the category of unstable algebras over the Steenrod algebra. Thus, every map
H∗(BX ; Fp) → H∗(BV ; Fp) lifts to a map H∗(BTX ; Fp) → H∗(BV ; Fp). Because
in this situation the mod–p cohomology classifies the maps up to homotopy and
because every algebraic map has a realization [11], this proves part (2).

The third part is proved in [15, 10.1].
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5. p–compact groups with the Weyl group type of unitary groups

If X is a connected p–compact group with the same p–adic Weyl group type
as a compact connected Lie group G, then both have the same rank, and we can
identify the two maximal tori as well as the Weyl groups. That is to say, there
exists a homomorphism TG → X which is a maximal torus with Weyl group WG.
Here, we have to complete TG in order to get a p-compact torus. As already said
in Section 4, the Weyl group WG acts on the set [BY, BTG] of homotopy classes of
maps for any p–compact group Y .

5.1 Theorem. Let G be a product of unitary groups, and let X be a connected
p–compact group with the same p–adic Weyl group type as G. Then for any abelian
p–compact group A the following hold:

1. [BA, BT ∧
Gp ]→ [BA, BX ] is surjective.

2. [BA, BT ∧
Gp ]/WG → [BA, BX ] is a bijection.

3. For any homomorphism g : A → TG, the centralizer CX(g) is connected and
has the p–adic Weyl group type of CG(g), which is a product of unitary groups.

Proof. By Proposition 4.1, the first statement implies the second one.
To prove (1) and (3) we first assume that A is a finite abelian p–compact group,

i.e A is really a finite abelian p–group. Hence, A is isomorphic to a product A ∼=
A1 × · · · ×Ar such that Ai

∼= Z/pki . Moreover, every map BA→ BT ∧
Gp lifts to a

map BA→ BTG, and any map BA → BG∧
p lifts to BG. By [7] in both cases the

lifts are induced by a homomorphism A→ TG or A→ G of groups. For the proof
of (1) and (3) we will use an induction over the number of factors of A.

Let A ∼= Z/pk. Then the map g : A → X factors through the maximal torus,
because every finite cyclic group is subconjugated to the maximal torus (Theorem
2.6). This proves (1) in the case of a cyclic group.

Because A is a subgroup of TG, the centralizer CX(A) contains TG, which also
plays the role of the maximal torus of CX(A). Let WC denote the Weyl group of
CX(A), which is isomorphic to the isotropy group Iso(g) := {w ∈ WG|w ◦ Bg '
Bg}. By the assumptions this is also the Weyl group of CG(A), which is again
a product of unitary groups. Therefore, T WC

G is a p-compact torus and contains
A. Moreover, T WC

G → CX(A) is the center (Proposition 2.16 (2)), while CX(A) ∼=
CCX(A)(T

WC

G ) ∼= CX(T WC

G ) is a connected p–compact group [13, 3.11] and has the
p–adic Weyl group type of CG(A), which is a product of unitary groups. This is
condition (3).

Now let A be an abelian finite p–group. Then A splits into a product A0 × A1

such that A1
∼= Z/pk and such that A0 has less factors than A. Let g : A → X

be a homomorphism. By the induction hypothesis the restriction g|A0 : A0 → X
is subconjugate to the maximal torus, and CX(g(A0)) is connected and again of
the p–adic Weyl group type of a product of unitary groups. Passing to adjoints
yields a homomorphism g : A1 → CX(g(A0)). We can again apply the induction
hypothesis to show that A1 is subconjugate to TG in CX(g(A0)) which proves the
first statement, and also shows that CX(g(A)) = CCX (g(A0))(g(A1)) is connected
and of the p–adic Weyl group type of a product of unitary groups, which is part
(3).

Finally let A be an abelian p-compact toral group. Let A(k) → A be the
subgroup of elements of order pk. Then A(∞) :=

⋃
k A(k) → A is a p–discrete
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approximation. The map map(BA, BX) → lim←− kmap(BA(k), BX) is an equiv-
alence. Moreover, for every fixed homomorphism f : A → X , the sequence
map(BA(k), BX)Bf |BA(k)

stabilizes [5, 6.1, 6.7]. This proves the statement in the
general case.

For odd primes there is a more general result of this form.

5.2 Theorem. Let p be an odd prime, G a compact connected Lie group satisfying
condition (Tp), and X a connected p–compact group with the same p–adic Weyl
group type as G. Then the following hold:

1. [BA, BT ∧
Gp ]→ [BA, BX ] is an epimorphism.

2. [BA, BT ∧
Gp ]/WG → [BA, BX ] is an isomorphism.

3. For any homomorphism g : A → TG, the centralizer CX(g) is connected and
has the p–adic Weyl group type of CG(g). Moreover, CG(g) satisfies condition
(Tp).

Proof. We argue as in the above proof. Only one argument has to be replaced. We
use the same notation as above. In this case T WC

G may not be a torus. But by [15,
10.1] we have

H∗(BCG(g(A)); Fp) ∼= H∗(BTG; Fp)Iso(g),

where Iso(g) := {w ∈ WG|w ◦Bg ' Bg} is the isotropy group of g. In particular,
CG(g(A)) is connected with Weyl group WC

∼= Iso(g), the mod–p cohomology is
concentrated in even degrees, and CX(g(A)) is a p–compact group with the same
Weyl group type as CG(g(A)). Because WC is a reflection group and because p is
odd, CX(g(A)) is connected (Lemma 2.11). Using this argument, the induction of
the proof of Theorem 5.1 works and gives a proof of the statement.

One part of Theorem 1.9 for products of unitary groups is contained in the
following statement:

Theorem 5.3. Let X be a connected p–compact group with maximal torus, and
let G be a product of unitary groups. If BN(TX) and BN(TG)◦p are homotopy
equivalent, then the following hold:

1. BX is p–torsion free, i.e. the p–adic cohomology is p–torsion free.
2. H∗(BX ; Z∧p ) ∼= H∗(BTX ; Z∧p )WX .
3. BX and BG∧

p are homotopy equivalent.

Proof. Because the two normalizers BN(TX)◦p and BN(TG)◦p are equivalent, the
space X has the same p–adic Weyl group type as G. The mod–p cohomology of
BN(TG) is detected by elementary abelian p–subgroups [8]. The map H∗(BX ; Fp)
→ H∗(BN(TX); Fp) is a monomorphism (Proposition 2.14). Thus, the cohomology
H∗(BX ; Fp) is also detected by elementary abelian p–subgroups. By Theorem 5.1,
we know that every elementary abelian p–subgroup is subconjugate to the maximal
torus. This implies that H∗(BX ; Fp) is concentrated in even degrees and that
H∗(BX ; Z∧p ) is p–torsion free. By Theorem 4.2, it follows that

H∗(BX ; Z∧p ) ∼= H∗(BTG; Z∧p )WG .

Because H∗(BTG; Z∧p )WG ⊗ Fp
∼= H∗(BTG; Fp)WG we get isomorphisms

H∗(BX, Fp) ∼= H∗(BTG; Fp)WG ∼= H∗(BG; Fp).
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Because G is a product of unitary groups we can apply [15, 1.3] to conclude that BX
and BG∧

p are homotopy equivalent. That is what we need for all three statements.

For later purposes we need for odd primes a slightly more general result.

5.4 Theorem. Let p be an odd prime and G a product of unitary groups and
SU(p)’s. Let X be a connected p–compact group with the same p–adic Weyl group
type as G. If BN(TX) and BN(TG)◦p are homotopy equivalent, then the following
hold:

1. BX is p–torsion free, i.e. the p–adic cohomology is p–torsion free.
2. H∗(BX ; Z∧p ) ∼= H∗(BTX ; Z∧p )WX .
3. BX and BG∧

p are homotopy equivalent.

Proof. The proof is the same as above. We only have to ensure that the mod–p
cohomology of BN(TG) is detected by elementary abelian subgroups. But this is
also true for SU(p) [15, 12.6].

5.5 Proposition. Let G be a product of unitary groups, or, if p is odd, let G be
a compact connected Lie group satisfying condition (Tp). If X is a connected p–
compact group having the same p–adic Weyl group type as G, then BN(TX) and
B(NTG)◦p are homotopy equivalent.

Proof. For the proof we have to discuss extensions, i.e. fibrations, of the form

BT ∧
Gp → BN◦

p → BWG.(*)

Fibrations of this form are classified by cohomology classes in H3(BWG; π2(BTG
∧
p ))

[16, 3.1]. If p is odd and if G satisfies the condition (Tp), the obstruction group
vanishes [15, 5.3], and hence there is only one fibration up to fiber homotopy equiv-
alence. Hence, we have BN(TX) ' B(NTG)◦p.

Now let G be a product of unitary groups. Difficulties arise only for p = 2, be-
cause in this case there is more than one extension in general. By Proposition 2.10,
the map H2(BN(TX); Fp) → H2(BTX ; Fp)WG is an epimorphism. We can apply
[15, 11.5], which implies that BN(TX) is equivalent to the fiberwise completion of
the classifying space of the semidirect product TG o WG

∼= N(TG). This proves the
statement for products of unitary groups.

Finally we are prepared to prove Theorem 1.9 for products of unitary groups:

Proof of Theorem 1.9 for products of unitary groups. Condition (1) implies (2) by
Proposition 5.5, (2) implies (3) by Theorem 5.2, and (3) implies (1) because X and
G are isomorphic p–compact groups.

6. Connected p–compact group with the Weyl group type of pseudo

simply connected or simply connected compact Lie groups.

A pseudo simply connected compact Lie group is a product of unitary groups
and simple simply connected compact Lie groups not isomorphic to any SU(n).
That is why we replace the special unitary factors in a simply connected compact
Lie group by the associated unitary groups.
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6.1 Proposition. Let G be a pseudo simply connected compact Lie group satisfying
the condition (Cp). Then there exist an elementary abelian subgroup V → TG, a
compact connected Lie group H which is a product of unitary groups and SU(p)’s,
and an exact sequence

1→ K → H → CG(V )→ 1,

where K is a finite central subgroup of H of order coprime to p. The centralizer
CG(V ) is of maximal rank and the index of |WG : WCG(V )| is also coprime to
p. The two groups H and CG(V ) have the same Weyl group type, BN(TH)◦p '
BN(TCG(V ))◦p, and the mod–p cohomology of BN(TG) is detected by elementary
abelian p–groups.

Proof. This statement is Lemma 5.2 of [15]. Only the last three assertions need a
remark. They follow from what we have already said and from the fact that the
mod–p cohomolgy of BN(TH) is detected by elementary abelian subgroups [8], [15,
12.6].

6.2 Theorem. Let G be a pseudo simply connected compact Lie group satisfying
condition (Cp). Let X be a connected p–compact group with the same Weyl group
type as G. Then the following hold:

1. H∗(BX ; Z∧p ) ∼= H∗(BTG; Z∧p )WG .
2. BN(TG)◦p and BN(TX) are homotopy equivalent.
3. BX and BG∧

p are homotopy equivalent.

Proof. For p = 2, a pseudo simply connected compact Lie group is a product of
unitary groups. This case we already discussed in the last section. Therefore
we assume that p is odd. Part (2) follows from Proposition 5.5. The mod–p
cohomology of BN(TX) ' BN(TG)◦p is detected by elementary abelian subgroups.
This follows from Proposition 6.1. Now, using Theorem 5.2 instead of Theorem
5.1, we can argue analogously as in Theorem 5.3 or Theorem 5.4 to show that
H∗(BX ; Z∧p ) ∼= H∗(BTG; Z∧p )WG , and, using again [15, 1.3], that BX ' BG∧

p .
This is part (3) and also implies part (1).

To conclude this section we discuss the case of simply connected compact Lie
groups.

6.3 Theorem. Let G be a simply connected compact Lie group satisfying condition
(Cp). Let X be a connected p–compact group with the same Weyl group type as G.
Then the following hold:

1. H∗(BX ; Z∧p ) ∼= H∗(BTG; Z∧p )WG .
2. BN(TG)◦p and BN(TX) are homotopy equivalent.
3. BX and BG∧

p are homotopy equivalent.

Proof. We split G into a product G1 × G2, where G1 is the product of all factors
isomorphic to any SU(n) and G2 collects the other factors. By the assumptions,
SU(2) does not occur for p = 2. By Proposition 2.16, we have Z(X) ∼= (T WG

G )∧p =
Z(G1)∧p × Z(G2)∧p .

For each n there exists an exact sequence 1 → Z(SU(n)) → SU(n) × S1 →
U(n) → 1. Let T be a torus with one S1 for each factor in G1, and let Z(G1) →
T be the inclusion established by the above exact sequence. This gives rise to
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commutative diagrams of exact sequences

1 // Z(G1) // TG1 × T × TG2
//

��

TG1
× TG2 := TG

//

��

1

1 // Z(G1) // G1 × T ×G2
// G1 ×G2 := G // 1

and

1→ G→ G→ T → 1,

where Z(G1) → G2 is the trivial homomorphism, and where T := T/Z(G1). The
quotient G is a pseudo simply connected compact Lie group which also satisfies
condition (Cp). Moreover, the epimorphism G × T → G and the inclusion induce
an isomorphism WG

∼= WG, and TG × T → TG and TG → TG are equivariant.
Working with X instead of G, one gets similar exact sequences, namely

1 // Z(G1)∧p // TG1 × T × TG2
//

��

TG1
× TG2 := TG

//

��

1

1 // Z(G1)∧p // X × T∧
p

// X // 1

and

1→ X → X → T → 1.

This shows that X has the same Weyl group type as G and hence that BX ' BG
∧
p .

The maps BX → BT and BG→ BT are totally determined by H2( ; Z∧p ). And by
construction, this establishes a commutative diagram

BG∧
p

//

��

BG
∧
p

//

��

BT
∧
p

��

BX // BX // BT
∧
p

where the right and left vertical arrows are homotopy equivalences. And so is the
left one, which is part (3). The first and the second statement obviously follow
from this fact.

7. Connected p–compact group with the Weyl group type

of a general compact connected Lie group

In this section we want to prove a version of Theorem 6.3 for general compact
connected Lie groups. For this we need some preliminary remarks.

Let G be a compact connected Lie group. Then, the inclusion TG ⊂ G of a
maximal torus of G induces an isomorphism π1(TG)WG

∼= π1(G). Here, π1(TG)WG

denotes the covariants, i.e. the quotient of π1(TG) by the sublattice generated by
all elements of the form a − w(a) for a ∈ π1(TG) and w ∈ WG. This follows from
[1, Proposition 5.47] and the detailed description of the kernel of π1(TG)→ π1(G)
also given in [1, Section 5]. Since π1(T ∧

Gp ) ∼= π1(TG) ⊗ Z∧p ∼= H2(BT ; Z∧p ) ∼=
H2(BT ∧

Gp ; Z) are isomorphisms of WG–modules, since π1(G∧
p ) ∼= π1(G) ⊗ Z∧p ∼=
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H2(BG; Z∧p ) ∼= H2(BG∧
p ; Z∧p ), and since passing to covariants obviously commutes

with tensoring with Z∧p , we get an isomorphism H2(BT ∧
Gp ; Z)WG

∼= H2(BG∧
p ; Z).

Lemma 7.1. Let G be a compact connected Lie group satisfying condition (Cp).
Let X be a connected p–compact group with the same Weyl group type as G. Then
the following hold:

1. H2(BX ; Z) is torsion free.
2. For all r, the maps BT ∧

Gp → BG∧
p and BT ∧

Gp → BX induce isomorphisms
H2(BX ; Z/pr) ∼= H2(BT ∧

Gp ; Z/pr)WG ∼= H2(BG∧
p ; Z/pr).

Proof. Let L := H2(BT ∧
Gp ; Z) and let W := WG. Since G satisfies condition (Cp),

we have H∗(BG∧
p ; Z∧p ) ∼= H∗(BT ∧

Gp ; Z∧p )W . In particular, H∗(BG∧
p ; Z∧p ) is torsion

free, and so is LW
∼= H2(BG∧

p ; Z∧p ).
The maximal torus BT ∧

Gp → BX of the connected p–compact group X induces
epimorphisms LW → π1(X) and LW → H2(BX ; Z). The kernel of this map is
finite, since rationalizing gives an isomorphism LW ⊗ Q ∼= H2(BX ; Z) ⊗ Q. This
follows by dualizing the isomorphism of Proposition 2.9 (2) and from the fact that
dualizing transforms invariants into covariants. Because LW is torsion free, the
kernel is trivial and LW → H2(BX ; Z) an isomorphism.

Since G satisfies condition (Cp), we have H∗(BG∧
p ; Z/pr) ∼= H∗(BTG

∧
p ; Z/pr)W

for all r [15, 4.2]. An application of the universal coefficient theorem now proves
the second part.

As mentioned in the introduction, for every compact connected Lie group G,
there exists a finite covering 1 → K → G̃

q−→ G → 1, where G̃ ∼= Gs × T is a
product of a simply connected Lie group Gs and a torus T . The group K ⊂ G̃ is a
central subgroup. We call this covering universal finite. The group G̃ is uniquely
determined, but not the map q. One can compose q with a finite self-covering of T .

Every universal finite covering establishes two associated commutative diagrams
of exact sequences of compact Lie groups:

Ks −−−−→ Gs −−−−→ Gs/Ks := Gsy y y
K −−−−→ Gs × T −−−−→ Gy y y

K = K/Ks −−−−→ T −−−−→ T/Ks := T

and
Ks Ks −−−−→ ∗y y y
K −−−−→ Gs × T −−−−→ Gy y ∥∥∥
K −−−−→ Gs × T −−−−→ G ,

where Ks := K ∩ (Gs × {0}). Because H1(Gs; Z) = 0, the sequence Gs−→G−→T
induces isomorphisms H1(T ; Z) ∼= H1(G; Z) and H2(BT ; Z) ∼= H2(BG; Z). On the
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other hand, these isomorphisms determine the maps G−→T and BG−→BT , and
therefore also the fibration BGs−→BG−→BT .

If G satisfies condition (Tp), then, by [15, 4.1], BGs ×BT and BGs × T as well
as BGs and BGs are p–torsion free. The order |Ks| of Ks is coprime to p, because
π2(BGs) ∼= H2(BG; Z) ∼= Ks.

7.2 Theorem. Let G be a compact connected Lie group satisfying condition (Cp).
Let X be a connected p–compact group with the same Weyl group type as G. Then
the following hold:

1. H∗(BX ; Z∧p ) ∼= H∗(BTG; Z∧p )WG .
2. BN(TG)◦p and BN(TX) are homotopy equivalent.
3. BX and BG∧

p are homotopy equivalent.

Proof. The finite covering

K −→ Gs × T −→ G,

Gs simply connected and T a torus, establishes a fibration

BKp −→ BGs
∧
p ×BT∧

p −→ BG∧
p ,

where Kp is the p–Sylow subgroup of K. This fibration is classified by a map
BG∧

p−→BBKp. By Lemma 7.1, there is a corresponding map BX−→BBKp clas-
sifying the fibration

BKp → BY → BX.

The total space BY is simply connected and p–complete. Hence, Y := ΩBY is a
connected p–compact group [13, 3.3], and Y → X is a finite covering of connected
p–compact groups. The fibration fits into

BKp // BGs
∧
p ×BT∧

p
// BG∧

p

BKp // BTGs
∧
p
×BT∧

p

OO

//

��

BT ∧
Gp

OO

��

BKp // BY // BX

.

The Weyl group WG = WGs acts as Weyl group on BG ∧
sp ×BT∧

p → BY . Thus, Y
has the same p–adic Weyl group type as G ∧

sp × T∧
p . By Theorem 6.3, the spaces

BGs × BT and BY are homotopy equivalent. Moreover, this equivalence fits into
a diagram

BKp // BGs
∧
p ×BT∧

p
//

'
��

BG∧
p

BKp // BY // BX

.(*)

We have to fill in the arrow in the right column. This is done by the following trick.
The top row is a principal fibration [3, 7.2]. The composition BKp → BY → BX
is null homotopic and, because X has finite mod–p cohomology, the map BKp →
map(BKp, BX)const is an equivalence [17]. By a lemma of Zabrodsky [21] (for
details see also [3, 9.8 and the proof of 9.7]), we can fill in the arrow in the right
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column so as to make the diagram commutative up to homotopy. This arrow is an
equivalence, which is the third statement. The first two statements follow obviously
from the third.

Proof of Theorem 1.9. Part (1) implies (3) by Theorem 7.2. The implications from
(3) to (2) and from (2) to (1) are obvious.
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