MEMOIRS
 of the
 ISSN 0065-9266 (print) ISSN 1947-6221 (online)

American Mathematical Society

Number 1267

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Carles Broto
Jesper M. Møller
Bob Oliver

Automorphisms of Fusion Systems of Sporadic Simple Groups

Bob Oliver

MEMOIRS
 of the
 ISSN 0065-9266 (print) ISSN 1947-6221 (online)
 American Mathematical Society

Number 1267

Automorphisms of Fusion Systems
of Finite Simple Groups of Lie Type
Carles Broto
Jesper M. Møller
Bob Oliver

Automorphisms of Fusion Systems of Sporadic Simple Groups

Bob Oliver

Library of Congress Cataloging-in-Publication Data

Cataloging-in-Publication Data has been applied for by the AMS.
See http://www.loc.gov/publish/cip/.
DOI: https://doi.org/10.1090/memo/1267

Memoirs of the American Mathematical Society

This journal is devoted entirely to research in pure and applied mathematics.
Subscription information. Beginning with the January 2010 issue, Memoirs is accessible from www.ams.org/journals. The 2019 subscription begins with volume 257 and consists of six mailings, each containing one or more numbers. Subscription prices for 2019 are as follows: for paper delivery, US\$1041 list, US $\$ 832.80$ institutional member; for electronic delivery, US\$916 list, US $\$ 732.80$ institutional member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US $\$ 20$ for delivery within the United States; US $\$ 80$ for outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information. Each number may be ordered separately; please specify number when ordering an individual number.

Back number information. For back issues see www.ams.org/backvols.
Subscriptions and orders should be addressed to the American Mathematical Society, P. O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org
Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

Memoirs of the American Mathematical Society (ISSN 0065-9266 (print); 1947-6221 (online)) is published bimonthly (each volume consisting usually of more than one number) by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage paid at Providence, RI. Postmaster: Send address changes to Memoirs, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.
(C) 2019 by the American Mathematical Society. All rights reserved.

This publication is indexed in Mathematical Reviews ${ }^{\circledR}$, Zentralblatt MATH, Science Citation Index ${ }^{\circledR}$, Science Citation Index ${ }^{T M}$-Expanded, ISI Alerting Services ${ }^{S M}$, SciSearch ${ }^{\circledR}$, Research Alert ${ }^{\circledR}$, CompuMath Citation Index ${ }^{\circledR}$, Current Contents ${ }^{\circledR} /$ Physical, Chemical 8 Earth Sciences. This publication is archived in Portico and CLOCKSS.

Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/
$10987654321 \quad 242322212019$

Contents

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type
by Carles Broto, Jesper M. Møller, and Bob Oliver 1
Introduction 3
Tables of substitutions for Theorem B 8
Chapter 1. Tame and reduced fusion systems 13
Chapter 2. Background on finite groups of Lie type 23
Chapter 3. Automorphisms of groups of Lie type 31
Chapter 4. The equicharacteristic case 37
Chapter 5. The cross characteristic case: I 51
Chapter 6. The cross characteristic case: II 79
Appendix A. Injectivity of μ_{G} by Bob Oliver 93
A.1. Classical groups of Lie type in odd characteristic 96
A.2. Exceptional groups of Lie type in odd characteristic 98
Bibliography for Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type 115
Automorphisms of Fusion Systems of Sporadic Simple Groups by Bob Oliver 119
Introduction 121
Chapter 1. Automorphism groups of fusion systems: Generalities 127
Chapter 2. Automorphisms of 2 -fusion systems of sporadic groups 131
Chapter 3. Tameness at odd primes 137
Chapter 4. Tools for comparing automorphisms of fusion and linking systems 145
Chapter 5. Injectivity of μ_{G}151
Bibliography for Automorphisms of Fusion Systems of Sporadic Simple Groups 161

Abstract

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type by Carles Broto, Jesper M. Møller, and Bob Oliver

For a finite group G of Lie type and a prime p, we compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex, but can always be reduced to a case where the natural map from $\operatorname{Out}(G)$ to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of $B G_{p}^{\wedge}$ in terms of $\operatorname{Out}(G)$.

Received by the editor January 18, 2016 and, in revised form, January 27, 2017 and February 1, 2017.

Article electronically published on December 27, 2019.
DOI: https://doi.org/10.1090/memo/1267
2010 Mathematics Subject Classification. [Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type] Primary 20D06. Secondary 20D20, 20D45, 20E42, 55R35; [Automorphisms of Fusion Systems of Sporadic Simple Groups] Primary: 20E25, 20D08. Secondary: 20D20, 20D05, 20D45.

Key words and phrases. [Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type] Groups of Lie type, fusion systems, automorphisms, classifying spaces; [Automorphisms of Fusion Systems of Sporadic Simple Groups] Fusion systems, sporadic groups, Sylow subgroups, finite simple groups.
C. Broto is partially supported by MICINN grant MTM2010-20692 and MINECO grant MTM2013-42293-P. He is affiliated with the Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. Email: broto@mat.uab.es.
J. Møller is partially supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92) and by Villum Fonden through the project Experimental Mathematics in Number Theory, Operator Algebras, and Topology. He is affiliated with the Matematisk Institut, Universitetsparken 5, DK-2100 København, Denmark. Email: moller@math.ku.dk.
B. Oliver is partially supported by UMR 7539 of the CNRS, and by project ANR BLAN082_338236, HGRT. He is affiliated with the Université Paris 13, Sorbonne Paris Cité, LAGA, UMR 7539 du CNRS, 99, Av. J.-B. Clément, 93430 Villetaneuse, France. Email: bobol@math.univparis13.fr.

All three authors wish to thank Københavns Universitet, the Universitat Autònoma de Barcelona, and especially the Centre for Symmetry and Deformation in Copenhagen, for their hospitality while much of this work was carried out.

Automorphisms of Fusion Systems of Sporadic Simple Groups by Bob Oliver

We prove here that with a very small number of exceptions, when G is a sporadic simple group and p is a prime such that the Sylow p-subgroups of G are nonabelian, then $\operatorname{Out}(G)$ is isomorphic to the outer automorphism groups of the fusion and linking systems of G. In particular, the p-fusion system of G is tame in the sense of AOV1, and is tamely realized by G itself except when $G \cong M_{11}$ and $p=2$. From the point of view of homotopy theory, these results also imply that $\operatorname{Out}(G) \cong \operatorname{Out}\left(B G_{p}^{\wedge}\right)$ in many (but not all) cases.

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

by Carles Broto, Jesper M. Møller, and Bob Oliver

Introduction

When p is a prime, G is a finite group, and $S \in \operatorname{Syl}_{p}(G)$, the fusion system of G at S is the category $\mathcal{F}_{S}(G)$ whose objects are the subgroups of S, and whose morphisms are those homomorphisms between subgroups induced by conjugation in G. In this paper, we are interested in comparing automorphisms of G, when G is a simple group of Lie type, with those of the fusion system of G at a Sylow p-subgroup of G (for different primes p).

Rather than work with automorphisms of $\mathcal{F}_{S}(G)$ itself, it turns out to be more natural in many situations to study the group $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right)$ of outer automorphisms of the centric linking system of G. We refer to Chapter 1 for the definition of $\mathcal{L}_{S}^{c}(G)$, and to Definition 1.2 for precise definitions of $\operatorname{Out}\left(\mathcal{F}_{S}(G)\right)$ and $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right)$. These are defined in such a way that there are natural homomorphisms

$$
\operatorname{Out}(G) \xrightarrow{\kappa_{G}} \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \xrightarrow{\mu_{G}} \operatorname{Out}\left(\mathcal{F}_{S}(G)\right) \quad \text { and } \quad \bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G} .
$$

For example, if S controls fusion in G (i.e., if S has a normal complement), then $\operatorname{Out}\left(\mathcal{F}_{S}(G)\right)=\operatorname{Out}(S)$, and $\bar{\kappa}_{G}$ is induced by projection to S. The fusion system $\mathcal{F}_{S}(G)$ is tamely realized by G if κ_{G} is split surjective, and is tame if it is tamely realized by some finite group G^{*} where $S \in \operatorname{Syl}_{p}\left(G^{*}\right)$ and $\mathcal{F}_{S}(G)=\mathcal{F}_{S}\left(G^{*}\right)$. Tameness plays an important role in Aschbacher's program for shortening parts of the proof of the classification of finite simple groups by classifying simple fusion systems over finite 2-groups. We say more about this later in the introduction, just before the statement of Theorem C

By [BLO1, Theorem B], $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \cong \operatorname{Out}\left(B G_{p}^{\wedge}\right)$: the group of homotopy classes of self homotopy equivalences of the p-completed classifying space of G. Thus one of the motivations for this paper is to compute $\operatorname{Out}\left(B G_{p}^{\wedge}\right)$ when G is a finite simple group of Lie type (in characteristic p or in characteristic different from $p)$, and compare it with $\operatorname{Out}(G)$.

Following the notation used in GLS3, for each prime p, we let $\mathfrak{L i c}(p)$ denote the class of finite groups of Lie type in characteristic p, and let $\mathfrak{L i e}$ denote the union of the classes $\mathfrak{L i e}(p)$ for all primes p. (See Definition 2.1 for the precise definition.) We say that $G \in \mathfrak{L i e}(p)$ is of adjoint type if $Z(G)=1$, and is of universal type if it has no nontrivial central extensions which are in $\mathfrak{L i v}(p)$. For example, for $n \geq 2$ and q a power of $p, P S L_{n}(q)$ is of adjoint type and $S L_{n}(q)$ of universal type.

Our results can be most simply stated in the "equi-characteristic case": when working with p-fusion of $G \in \mathfrak{L i e}(p)$.

Theorem A. Let p be a prime. Assume that $G \in \mathfrak{L i e}(p)$ and is of universal or adjoint type, and also that $(G, p) \neq(\mathrm{Sz}(2), 2)$. Fix $S \in \operatorname{Syl}_{p}(G)$. Then the composite homomorphism

$$
\bar{\kappa}_{G}: \operatorname{Out}(G) \xrightarrow{\kappa_{G}} \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \xrightarrow{\mu_{G}} \operatorname{Out}\left(\mathcal{F}_{S}(G)\right)
$$

is an isomorphism, and κ_{G} and μ_{G} are isomorphisms except when $G \cong P S L_{3}(2)$.

Proof. Assume G is of adjoint type. When $G \not \approx G L_{3}(2), \mu_{G}$ is an isomorphism by [O1, Proposition 4.3] or [O2, Theorems C \& 6.2]. The injectivity of $\bar{\kappa}_{G}=$ $\mu_{G} \circ \kappa_{G}$ (in all cases) is shown in Lemma 4.3. The surjectivity of κ_{G} is shown in Proposition 4.5 when G has Lie rank at least three, and in Proposition 4.8 when G has Lie rank 1 and $G \neq \operatorname{Sz}(2)$. When G has Lie rank $2, \kappa_{G}$ is onto (when $\left.G \not \approx S L_{3}(2)\right)$ by Proposition 4.12, 4.14, 4.15, 4.16, or 4.17, (See Notation 4.1(H) for the definition of Lie rank used here.)

If G is of universal type, then by Proposition 3.8, $G / Z(G) \in \mathfrak{L i e}(p)$ is of adjoint type where $Z(G)$ has order prime to p. Also, $\operatorname{Out}(G) \cong \operatorname{Out}(G / Z(G))$ by GLS3, Theorem 2.5.14(d)]. Hence $\mathcal{F}_{S}(G) \cong \mathcal{F}_{S}(G / Z(G))$ and $\mathcal{L}_{S}^{c}(G) \cong \mathcal{L}_{S}^{c}(G / Z(G))$; and κ_{G} and/or $\bar{\kappa}_{G}$ is an isomorphism if $\kappa_{G / Z(G)}$ and/or $\bar{\kappa}_{G / Z(G)}$, respectively, is an isomorphism.

When $G=P S L_{3}(2)$ and $p=2, \operatorname{Out}(G) \cong \operatorname{Out}\left(\mathcal{F}_{S}(G)\right) \cong C_{2}\left(\right.$ and $\bar{\kappa}_{G}$ is an isomorphism), while $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \cong C_{2}^{2}$. When $G=\mathrm{Sz}(2) \cong C_{5} \rtimes C_{4}$ and $p=2$, $\operatorname{Out}(G)=1$, while $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \cong \operatorname{Aut}\left(C_{4}\right) \cong C_{2}$. Thus these groups are exceptions to Theorem A

To simplify the statement of the next theorem, for finite groups G and H, we write $G \sim_{p} H$ to mean that there are Sylow subgroups $S \in \operatorname{Syl}_{p}(G)$ and $T \in$ $\operatorname{Syl}_{p}(H)$, together with an isomorphism $\varphi: S \xrightarrow{\cong} T$ which induces an isomorphism of categories $\mathcal{F}_{S}(G) \cong \mathcal{F}_{T}(H)$ (i.e., φ is fusion preserving in the sense of Definition 1.2).

Theorem B. Fix a pair of distinct primes p and q_{0}, and a group $G \in \mathfrak{L i e}\left(q_{0}\right)$ of universal or adjoint type. Assume that the Sylow p-subgroups of G are nonabelian. Then there is a prime $q_{0}^{*} \neq p$, and a group $G^{*} \in \mathfrak{L i v}\left(q_{0}^{*}\right)$ of universal or adjoint type, respectively, as described in Tables 2.2 0.3, such that $G^{*} \sim_{p} G$ and $\kappa_{G^{*}}$ is split surjective. If, furthermore, p is odd or G^{*} has universal type, then $\mu_{G^{*}}$ is an isomorphism, and hence $\bar{\kappa}_{G^{*}}$ is also split surjective.

Proof. Case 1: Assume p is odd and G is of universal type. Since μ_{G} is an isomorphism by [01, Theorem C], κ_{G} or $\kappa_{G^{*}}$ is (split) surjective if and only if $\bar{\kappa}_{G}$ or $\bar{\kappa}_{G^{*}}$ is.

By Proposition 6.8, we can choose a prime q_{0}^{*} and a group $G^{*} \in \mathfrak{L i e}\left(q_{0}^{*}\right)$ such that either
(1.a) $G^{*} \cong \mathbb{G}\left(q^{*}\right)$ or ${ }^{2} \mathbb{G}\left(q^{*}\right)$, for some \mathbb{G} with Weyl group W and q^{*} a power of q_{0}^{*}, and has a σ-setup which satisfies the conditions in Hypotheses 5.1 and 5.11 and
(1.a.1) $-\operatorname{Id} \notin W$ and G^{*} is a Chevalley group, or
(1.a.2) $-\mathrm{Id} \in W$ and q^{*} has even order in \mathbb{F}_{p}^{\times}; or
(1.b) $p=3, q_{0}^{*}=2, G \cong{ }^{3} D_{4}(q)$ or ${ }^{2} F_{4}(q)$ for q some power of q_{0}, and $G^{*} \cong$ ${ }^{3} D_{4}\left(q^{*}\right)$ or ${ }^{2} F_{4}\left(q^{*}\right)$ for q^{*} some power of 2 .

[^0]Also (by the same proposition), if $p=3$ and $G^{*}=F_{4}\left(q^{*}\right)$, then we can assume $q_{0}^{*}=2$.

In case (1.b), $\bar{\kappa}_{G^{*}}$ is split surjective by Proposition 6.9. In case (1.a), it is surjective by Proposition 5.15. In case (1.a.1), $\bar{\kappa}_{G^{*}}$ is split by Proposition5.16(b,c). In case (1.a.2), if G^{*} is a Chevalley group, then $\bar{\kappa}_{G^{*}}$ is split by Proposition 5.16(c).

This leaves only case (1.a.2) when G^{*} is a twisted group. The only irreducible root systems which have nontrivial graph automorphisms and for which $-\operatorname{Id} \in W$ are those of type D_{n} for even n. Hence $G^{*}=\operatorname{Spin}_{2 n}^{-}\left(q^{*}\right)$ for some even $n \geq 4$. By the last statement in Proposition 6.8, G^{*} is one of the groups listed in Proposition 1.10, and so $q^{n} \equiv-1(\bmod p)$. Hence $\bar{\kappa}_{G^{*}}$ is split surjective by Example 6.6(a), and we are done also in this case.
Case 2: Now assume $p=2$ and G is of universal type. By Proposition 6.2, there is an odd prime q_{0}^{*}, a group $G^{*} \in \mathfrak{L i e}\left(q_{0}^{*}\right)$, and $S^{*} \in \operatorname{Syl}_{p}\left(G^{*}\right)$, such that $\mathcal{F}_{S}(G) \cong \mathcal{F}_{S^{*}}\left(G^{*}\right)$ and G^{*} has a σ-setup which satisfies Hypotheses 5.1 and 5.11 . By the same proposition, if $G^{*} \cong G_{2}\left(q^{*}\right)$, then we can arrange that $q^{*}=5$ or $q_{0}^{*}=3$. If $G^{*} \cong G_{2}(5)$, then by Propositions 6.3 and A.6, $G^{*} \sim_{2} G_{2}(3), \bar{\kappa}_{G_{2}(3)}$ is split surjective, and $\mu_{G_{2}(3)}$ is injective.

In all remaining cases (i.e., $G^{*} \not \neq G_{2}\left(q^{*}\right)$ or $\left.q_{0}^{*}=3\right), \bar{\kappa}_{G^{*}}$ is split surjective by Proposition 5.16(a). If G^{*} is a linear, symplectic, or orthogonal group, or an exceptional Chevalley group, then $\mu_{G^{*}}$ is injective by Proposition A.3 or A.12, respectively. If $G^{*} \cong S U_{n}\left(q^{*}\right)$ or ${ }^{2} E_{6}\left(q^{*}\right)$, then by Theorem $1.8(\mathrm{~d}), \mathcal{F}_{S^{*}}\left(G^{*}\right)$ is isomorphic to the fusion system of $S L_{n}\left(q^{\vee}\right)$ or $E_{6}\left(q^{\vee}\right)$ for some odd prime power q^{\vee}, and so $\mu_{G^{*}}$ is injective by A.3 or A.12 again. Since neither the triality groups ${ }^{3} D_{4}(q)$ nor the Suzuki or Ree groups satisfy Hypotheses 5.1, this shows that $\mu_{G^{*}}$ is injective in all cases, and hence that $\kappa_{G^{*}}$ is also split surjective.
Case 3: Now assume G is of adjoint type. Then $G \cong G_{u} / Z$ for some $G_{u} \in \mathfrak{L i e}\left(q_{0}\right)$ of universal type and $Z \leq Z\left(G_{u}\right)$. By Proposition 3.8, $Z=Z\left(G_{u}\right)$ and has order prime to q_{0}.

By Case 1 or 2 , there is a prime $q_{0}^{*} \neq p$ and a group $G_{u}^{*} \in \mathfrak{L i} \mathfrak{e}\left(q_{0}^{*}\right)$ of universal type such that $G_{u}^{*} \sim_{p} G_{u}$ and $\kappa_{G_{u}^{*}}$ is split surjective. Also, G_{u}^{*} is p-perfect by definition of $\mathfrak{L i e}\left(q_{0}^{*}\right)$ (and since $q_{0}^{*} \neq p$), and $H^{2}\left(G_{u}^{*} ; \mathbb{Z} / p\right)=0$ by Proposition 3.8. Set $G^{*}=G_{u}^{*} / Z\left(G_{u}^{*}\right)$. By Proposition 1.7, with $G_{u}^{*} / O_{p^{\prime}}\left(G_{u}^{*}\right)$ in the role of $G, \kappa_{G^{*}}$ is also split surjective.

It remains to check that $G \sim_{p} G^{*}$. Assume first that G_{u} and G_{u}^{*} have σ setups which satisfy Hypotheses 5.1. Fix $S \in \operatorname{Syl}_{p}\left(G_{u}\right)$ and $S^{*} \in \operatorname{Syl}_{p}\left(G_{u}^{*}\right)$, and a fusion preserving isomorphism $\varphi: S \longrightarrow S^{*}$ (Definition 1.2(a)). By Corollary 5.10. $Z\left(\mathcal{F}_{S}\left(G_{u}\right)\right)=O_{p}\left(Z\left(G_{u}\right)\right)$ and $Z\left(\mathcal{F}_{S^{*}}\left(G_{u}^{*}\right)\right)=O_{p}\left(Z\left(G_{u}^{*}\right)\right)$. Since φ is fusion preserving, it sends $Z\left(\mathcal{F}_{S}\left(G_{u}\right)\right)$ onto $Z\left(\mathcal{F}_{S^{*}}\left(G_{u}^{*}\right)\right)$, and thus sends $O_{p}\left(Z\left(G_{u}\right)\right)$ onto $O_{p}\left(Z\left(G_{u}^{*}\right)\right)$. Hence φ induces a fusion preserving isomorphism between Sylow subgroups of $G=G_{u} / Z\left(G_{u}\right)$ and $G^{*}=G_{u}^{*} / Z\left(G_{u}^{*}\right)$.

The only cases we considered where G or G^{*} does not satisfy Hypotheses 5.1 were those in case (1.b) above. In those cases, $G \cong{ }^{2} F_{4}(q)$ or ${ }^{3} D_{4}(q)$ and $G^{*} \cong$ ${ }^{2} F_{4}\left(q^{*}\right)$ or ${ }^{3} D_{4}\left(q^{*}\right)$ for some q and q^{*}, hence G and G^{*} are also of universal type $(d=1$ in the notation of $\mathbf{C a}$, Lemma 14.1.2(iii)]), and so there is nothing more to prove.

Since the strategy for replacing G by G^{*} is quite elaborate, we summarize these replacements in Tables $2.2,0.2$ and 0.3 at the end of the introduction.

The last statement in Theorem [B is not true in general when G^{*} is of adjoint type. For example, if $G^{*} \cong P S L_{2}(9), p=2$, and $S^{*} \in \operatorname{Syl}_{2}\left(G^{*}\right)$, then $\operatorname{Out}\left(G^{*}\right) \cong$ $\operatorname{Out}\left(\mathcal{L}_{S^{*}}^{c}\left(G^{*}\right)\right) \cong C_{2}^{2}$, while $\operatorname{Out}\left(S^{*}, \mathcal{F}_{S^{*}}\left(G^{*}\right)\right) \cong C_{2}$. By comparison, if $\widetilde{G}^{*} \cong$ $S L_{2}(9)$ is the universal group, then $\operatorname{Out}\left(\widetilde{S}^{*}, \mathcal{F}_{\widetilde{S}^{*}}\left(\widetilde{G}^{*}\right)\right) \cong C_{2}^{2}$, and $\kappa_{\widetilde{G}^{*}}$ and $\mu_{\widetilde{G}^{*}}$ are isomorphisms.

As noted briefly above, a fusion system $\mathcal{F}_{S}(G)$ is called tame if there is a finite group G^{*} such that $G^{*} \sim_{p} G$ and $\kappa_{G^{*}}$ is split surjective. In this situation, we say that G^{*} tamely realizes the fusion system $\mathcal{F}_{S}(G)$. By AOV, Theorem B], if $\mathcal{F}_{S}(G)$ is not tame, then some extension of it is an "exotic" fusion system; i.e., an abstract fusion system not induced by any finite group. (See Chapter 1 for more details.) The original goal of this paper was to determine whether all fusion systems of simple groups of Lie type (at all primes) are tame, and this follows as an immediate consequence of Theorems A and B. Hence this approach cannot be used to construct new, exotic fusion systems.

Determining which simple fusion systems over finite 2 -groups are tame, and tamely realizable by finite simple groups, plays an important role in Aschbacher's program for classifying simple fusion systems over 2-groups (see AKO, Part II] or A3]). Given such a fusion system \mathcal{F} over a 2 -group S, and an involution $x \in S$, assume that the centralizer fusion system $C_{\mathcal{F}}(x)$ contains a normal quasisimple subsystem $\mathcal{E} \unlhd C_{\mathcal{F}}(x)$. If \mathcal{E} is tamely realized by a finite quasisimple group K, then under certain additional assumptions, one can show that the entire centralizer $C_{\mathcal{F}}(x)$ is the fusion system of some finite extension of K. (See, e.g., O6, Corollaries $2.4 \& 2.5]$.) This is part of our motivation for looking at this question, and is also part of the reason why we try to give as much information as possible as to which groups tamely realize which fusion systems.

Theorem C. For any prime p and any $G \in \mathfrak{L i e}$ of universal or adjoint type, the p-fusion system of G is tame. If the Sylow p-subgroups of G are nonabelian, or if p is the defining characteristic and $G \neq \mathrm{Sz}(2)$, then its fusion system is tamely realized by some other group in $\mathfrak{L i e}$.

Proof. If $S \in \operatorname{Syl}_{p}(G)$ is abelian, then the p-fusion in G is controlled by $N_{G}(S)$, and $\mathcal{F}_{S}(G)$ is tame by Proposition 1.6. If $p=2$ and $G \cong S L_{3}(2)$, then the fusion system of G is tamely realized by $P S L_{2}(9)$. In all other cases, the claims follow from Theorems A and B

We have stated the above three theorems only for groups of Lie type, but in fact, we proved at the same time the corresponding results for the Tits group:

Theorem D. Set $G={ }^{2} F_{4}(2)$ (the Tits group). Then for each prime p, the p-fusion system of G is tame. If $p=2$ or $p=3$, then κ_{G} is an isomorphism.

Proof. The second statement is shown in Proposition 4.17 when $p=2$, and in Proposition 6.9 when $p=3$. When $p>3$, the Sylow p-subgroups of G are abelian $\left(|G|=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13\right)$, so G is tame by Proposition 1.6(b).

As one example, if $p=2$ and $G=P S L_{2}(17)$, then κ_{G} is not surjective, but $G^{*}=P S L_{2}$ (81) (of adjoint type) has the same 2-fusion system and $\kappa_{G^{*}}$ is an isomorphism [BLO1, Proposition 7.9]. Also, $\bar{\kappa}_{G^{*}}$ is non-split surjective with kernel generated by the field automorphism of order two by [BLO1, Lemma 7.8]. However, if we consider the universal group $\widetilde{G}^{*}=S L_{2}(81)$, then $\bar{\kappa}_{\widetilde{G}^{*}}$ and $\kappa_{\widetilde{G}^{*}}$ are
both isomorphisms by [BL Proposition 5.5] (note that $\operatorname{Out}(\mathcal{F})=\operatorname{Out}(S)$ in this situation).

As another, more complicated example, consider the case where $p=41$ and $G=\operatorname{Spin}_{4 k}^{-}(9)$. By [St1, (3.2)-(3.6)], $\operatorname{Outdiag}(G) \cong C_{2}$, and $\operatorname{Out}(G) \cong C_{2} \times C_{4}$ is generated by a diagonal element of order 2 and a field automorphism of order 4 (whose square is a graph automorphism of order 2). Also, μ_{G} is an isomorphism by Proposition A.3, so κ_{G} is surjective, or split surjective, if and only if $\bar{\kappa}_{G}$ is. We refer to the proof of Lemma 6.5 and to Table 6.1 in that proof, for details of a σ-setup for G in which the normalizer of a maximal torus contains a Sylow p-subgroup S. In particular, S is nonabelian if $k \geq 41$. By Proposition 5.16(d) and Example 6.6(a,b), when $k \geq 41, \bar{\kappa}_{G}$ is surjective, $\bar{\kappa}_{G}$ is split ($\left.\operatorname{with} \operatorname{Ker}\left(\bar{\kappa}_{G}\right)=\operatorname{Outdiag}(G)\right)$ when k is odd, and $\bar{\kappa}_{G}$ is not $\operatorname{split}\left(\operatorname{Ker}\left(\bar{\kappa}_{G}\right) \cong C_{2} \times C_{2}\right)$ when k is even. By Proposition 1.9(c), when k is even, $G \sim_{41} G^{*}$ for $G^{*}=\operatorname{Spin}_{4 k-1}(9)$, and $\kappa_{G^{*}}$ is split surjective (with $\operatorname{Ker}\left(\kappa_{G^{*}}\right)=\operatorname{Outdiag}\left(G^{*}\right)$) by Proposition 5.16(c). Thus $\mathcal{F}_{S}(G)$ is tame in all cases: tamely realized by G itself when k is odd and by $\operatorname{Spin}_{4 k-1}(9)$ when k is even. Note that when k is odd, since the graph automorphism does not act trivially on any Sylow p-subgroup, the p-fusion system of G (equivalently, of $S O_{4 k}^{-}(9)$) is not isomorphic to that of the full orthogonal group $O_{4 k}^{-}(9)$, so by [BMO, Proposition A.3(b)], it is not isomorphic to that of $\operatorname{Spin}_{4 k+1}(9)$ either (nor to that of $\operatorname{Spin}_{4 k-1}(9)$ since its Sylow p-subgroups are smaller).

Other examples are given in Examples 5.17 and 6.6 For more details, in the situation of Theorem B about for which groups G the homomorphism $\bar{\kappa}_{G}$ is surjective or split surjective, see Propositions 5.15 and 5.16

The following theorem was shown while proving Theorem B and could be of independent interest. It is closely related to [Ma2, Theorem 5.19]. The case where p is odd was handled by Gorenstein and Lyons [GL 10-2(1,2)].

Theorem E. Assume $G \in \mathfrak{L i e}\left(q_{0}\right)$ is of universal type for some odd prime q_{0}. Fix $S \in \operatorname{Syl}_{2}(G)$. Then S contains a unique abelian subgroup of maximal order, except when $G \cong S p_{2 n}(q)$ for some $n \geq 1$ and some $q \equiv \pm 3(\bmod 8)$.

Proof. Assume S is nonabelian; otherwise there is nothing to prove. Since q_{0} is odd, and since the Sylow 2-subgroups of ${ }^{2} G_{2}\left(3^{2 k+1}\right)$ are abelian for all $k \geq 1$ Ree, Theorem 8.5], G must be a Chevalley or Steinberg group. If $G \cong{ }^{3} D_{4}(q)$, then (up to isomorphism) $S \in \operatorname{Syl}_{2}\left(G_{2}(q)\right)$ by BMO, Example 4.4]. So we can assume that $G \cong{ }^{r} \mathbb{G}(q)$ for some odd prime power q, some \mathbb{G}, and $r=1$ or 2 .

If $q \equiv 3(\bmod 4)$, then choose another prime power $q^{*} \equiv 1(\bmod 4)$ such that $v_{2}\left(q^{*}-1\right)=v_{2}(q+1)$ (where $v_{2}(m)=k$ if $2^{k} \mid n$ and $\left.2^{k+1} \nmid n\right)$. Then $\overline{\left\langle q^{*}\right\rangle}=\overline{\langle-q\rangle}$ and $\overline{\left\langle-q^{*}\right\rangle}=\overline{\langle q\rangle}$ as closed subgroups of $\left(\mathbb{Z}_{2}\right)^{\times}$. By BMO, Theorem A] (see also Theorem [1.8), there is a group $G^{*} \cong{ }^{t} \mathbb{G}\left(q^{*}\right)$ (where $t \leq 2$) whose 2-fusion system is equivalent to that of G. We can thus assume that $q \equiv 1(\bmod 4)$. So by Lemma 6.1. G has a σ-setup which satisfies Hypotheses 5.1. By Proposition 5.13(a), S contains a unique abelian subgroup of maximal order, unless $q \equiv 5(\bmod 8)$ and $G \cong S p_{2 n}(q)$ for some $n \geq 1$.

In fact, when $G \cong S p_{2 n}(q)$ for $q \equiv \pm 3(\bmod 8)$, then $S \in \operatorname{Syl}_{2}(G)$ is isomorphic to $\left(Q_{8}\right)^{n} \rtimes P$ for $P \in \operatorname{Syl}_{2}\left(\Sigma_{n}\right), S$ contains 3^{n} abelian subgroups of maximal order $2^{2 n}$, and all of them are conjugate to each other in $N_{G}(S)$.

The main definitions and results about tame and reduced fusion systems are given in Chapter 1. We then set up our general notation for finite groups of Lie
type in Chapters 2 and 3, deal with the equicharacteristic case in Chapter 4, and with the cross characteristic case in Chapters 5 and 6 . The kernel of μ_{G}, and thus the relation between automorphism groups of the fusion and linking systems, is handled in an appendix.

The third author would like to thank Richard Weiss for explaining how to apply the Delgado-Stellmacher paper [DS to simplify some of our arguments (see Chapter (4), and also thank Andy Chermak and Sergei Shpectorov for first pointing out this connection. All three authors would especially like to thank the referee for reading the paper very thoroughly and for the many suggestions for improvements.

Notation: In general, when \mathcal{C} is a category and $x \in \operatorname{Ob}(\mathcal{C})$, we let $\operatorname{Aut}_{\mathcal{C}}(x)$ denote the group of automorphisms of x in \mathcal{C}. When \mathcal{F} is a fusion system and $P \in \operatorname{Ob}(\mathcal{F})$, we set $\operatorname{Out}_{\mathcal{F}}(P)=\operatorname{Aut}_{\mathcal{F}}(P) / \operatorname{Inn}(P)$.

For any group G and $g \in G, c_{g} \in \operatorname{Aut}(G)$ denotes the automorphism $c_{g}(h)=$ $g h g^{-1}$. Thus for $H \leq G,{ }^{g} H=c_{g}(H)$ and $H^{g}=c_{g}^{-1}(H)$. When G, H, K are all subgroups of a group Γ, we define

$$
\begin{aligned}
T_{G}(H, K) & =\left\{\left.g \in G\right|^{g} H \leq K\right\} \\
\operatorname{Hom}_{G}(H, K) & =\left\{c_{g} \in \operatorname{Hom}(H, K) \mid g \in T_{G}(H, K)\right\} .
\end{aligned}
$$

We let $\operatorname{Aut}_{G}(H)$ be the group $\operatorname{Aut}_{G}(H)=\operatorname{Hom}_{G}(H, H)$. When $H \leq G$ (so $\operatorname{Aut}_{G}(H) \geq \operatorname{Inn}(H)$), we also write $\operatorname{Out}_{G}(H)=\operatorname{Aut}_{G}(H) / \operatorname{Inn}(H)$.

Tables of substitutions for Theorem B

We now present tables which describe the strategy for replacing G by G^{*} in the context of Theorem B In all three tables, an entry within the column G^{*} means that the given group is p-locally equivalent to G and tamely realizes its fusion system, while an entry " $G \sim_{p} X$ " carried over two columns means that the group X is p-locally equivalent to G but does not tamely realize its fusion system. In other words, in the latter case, X is one step towards finding the appropriate group G^{*}, but one must continue, following the information in the tables for $G=X$.

Whenever G^{*} is listed as satisfying (III.1), (III.2), or (III.3), this holds by Lemma 6.1, Lemma 6.4, or Lemma 6.5 or 6.7, respectively.

The following notation is used in Table 2.2 (the case $p=2$):

- $q_{0}^{*}=3$ or 5 , and $q_{0}^{*}=3$ when $\mathbb{G}=G_{2}$;
- $q^{*}=\left(q_{0}^{*}\right)^{2^{k}}$ is such that $\overline{\langle q\rangle}=\overline{\left\langle q^{*}\right\rangle}$; and
- $q^{\vee}=\left(q_{0}^{*}\right)^{2}$ is such that $\overline{\langle-q\rangle}=\overline{\left\langle q^{\vee}\right\rangle}$ (equivalently, $\overline{\langle q\rangle}=\overline{\left\langle-q^{\vee}\right\rangle}$).

In all cases except when $G^{*} \cong G_{2}(3), G^{*}$ satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1, and $\bar{\kappa}_{G^{*}}$ is split surjective by Proposition 5.16(a). When $G^{*} \cong$ $G_{2}(3), \bar{\kappa}_{G^{*}}$ is an isomorphism by Proposition 6.3. For all odd $q,{ }^{3} D_{4}(q) \sim_{2} G_{2}(q)$ by BMO, Example 4.4(a)].

\mathbb{G}	G	q	G^{*}	$G \sim_{2} G^{*}$
$\begin{gathered} A_{n}, E_{6} \\ D_{n}(n \text { odd }) \end{gathered}$	$\mathbb{G}(q)$	$1(\bmod 4)$	$\mathbb{G}\left(q^{*}\right)$	Thm. 1.8(a)
		$3(\bmod 4)$	${ }^{2} \mathbb{G}\left(q^{\vee}\right)$	Thm. 1.8(d)
$\begin{gathered} B_{n}, C_{n}, D_{2 m}, \\ F_{4}, E_{7}, E_{8} \end{gathered}$	$\mathbb{G}(q)$	$1(\bmod 4)$	$\mathbb{G}\left(q^{*}\right)$	Thm. 1.8(c)
		$3(\bmod 4)$	$\mathbb{G}\left(q^{\vee}\right)$	
	$\begin{gathered} G_{2}(q) \\ { }^{3} D_{4}(q) \end{gathered}$	$1(\bmod 8)$	$\mathbb{G}\left(q^{*}\right)$	Thm. 1.8(c)
		$7(\bmod 8)$	$\mathbb{G}\left(q^{\vee}\right)$	
		$3,5(\bmod 8)$	$G_{2}(3)$	
$\begin{gathered} A_{n}, E_{6} \\ D_{n}(n \text { odd }) \end{gathered}$	${ }^{2} \mathbb{G}(q)$	$1(\bmod 4)$	${ }^{2} \mathbb{G}\left(q^{*}\right)$	Thm. 1.8(b)
		$3(\bmod 4)$	$\mathbb{G}\left(q^{\vee}\right)$	Thm. 1.8(d)
$\begin{gathered} D_{n} \\ (n \text { even }) \end{gathered}$	${ }^{2} D_{n}(q)$	$1(\bmod 4)$	${ }^{2} D_{n}\left(q^{*}\right)$	Thm. 1.8(c)
		$3(\bmod 4)$	${ }^{2} D_{n}\left(q^{\vee}\right)$	
	${ }^{2} G_{2}(q)$	S abelian		

Table 0.1. Substitutions in cross-characteristic for $p=2$

The following notation is used in Tables 0.2 and 0.3 , where p is always an odd prime:

- q_{0}^{*} is any given odd prime whose class generates $\left(\mathbb{Z} / p^{2}\right)^{\times}$.
- $q^{*}=\left(q_{0}^{*}\right)^{b}$ is such that $\overline{\langle q\rangle}=\overline{\left\langle q^{*}\right\rangle}$ and $b \mid(p-1) p^{\ell}$ for some $\ell \geq 0$.
- $q^{\vee}=\left(q_{0}^{*}\right)^{c}$ is such that $\overline{\langle-q\rangle}=\overline{\left\langle q^{\vee}\right\rangle}$ and $c \mid(p-1) p^{\ell}$ for some $\ell \geq 0$.

G	q, p	G^{*}	Hyp 5.1	$\bar{\kappa}_{G^{*}}$ split surj.	$G \sim_{p} G^{*}$
$S L_{n}(q)$	all cases	$S L_{n}\left(q^{*}\right)$	(III.1,3)	Prop. 5.16(b, c)	Th. 1.8 (a)
$S U_{n}(q)$	all cases	$S L_{n}\left(q^{\vee}\right)$	(III.1,3)		Th. 1.8(d)
$\begin{gathered} S p_{2 n}(q) \text { or } \\ \operatorname{Spin}_{2 n+1}(q) \end{gathered}$	$\operatorname{ord}_{p}(q)$ even	$S L_{2 n}\left(q^{*}\right)$	(III.3)		Prop. 1.9 (a,b)
	$\operatorname{ord}_{p}(q)$ odd	$S L_{2 n}\left(q^{\vee}\right)$	(III.3)		$\begin{aligned} & \text { Prop. } 1.9(\mathrm{a}, \mathrm{~b}) \\ & \text { Th. } 1.8(\mathrm{c}) \end{aligned}$
$\operatorname{Spin}_{2 n}^{\varepsilon}(q)$	$q^{n} \not \equiv \equiv \varepsilon(\bmod p)$	$G \sim_{p} \operatorname{Spin}_{2 n-1}(q)$		-	Prop. 1.9 (c)
	$\begin{gathered} q^{n} \equiv \varepsilon(\bmod p) \\ n \text { odd, } \varepsilon=1 \end{gathered}$	$\operatorname{Spin}_{2 n}^{+}\left(q^{*}\right)$	(III.1,3)	Prop. 5.16 b, c)	Th. 1.8 (a)
	$\begin{gathered} q^{n} \equiv \varepsilon(\bmod p) \\ n \text { odd, } \varepsilon=-1 \end{gathered}$	$\operatorname{Spin}_{2 n}^{+}\left(q^{\vee}\right)$	(III.1,3)		Th. 1.8(d)
	$\begin{aligned} & q^{n} \equiv \varepsilon(\bmod p) \\ & n, \operatorname{ord}_{p}(q) \text { even } \end{aligned}$	$\operatorname{Spin}_{2 n}^{\varepsilon}\left(q^{*}\right)$	(III.3)	$\begin{aligned} & \text { Prop. } 5.16 \text { (c) } \\ & \text { Ex. } 6.6 \text { (a) } \end{aligned}$	Th. 1.8(a,b)
	$\begin{gathered} q^{n} \equiv \varepsilon(\bmod p) \\ n \text { even, } \varepsilon=1 \\ \operatorname{ord}_{p}(q) \text { odd } \end{gathered}$	$\operatorname{Spin}_{2 n}^{+}\left(q^{\vee}\right)$	(III.3)	Prop. 5.16(c)	Th. 1.8 (c)

Table 0.2. Substitutions in cross-characteristic for p odd: classical groups

G	p	景	G^{*}	Hyp 5.1	$\bar{\kappa}_{G^{*}}$ split surj.	$G \sim_{p} G^{*}$
${ }^{2} B_{2}(q)$	all cases		S abelian			
${ }^{3} D_{4}(q)$	3	1	${ }^{3} D_{4}\left(q^{*}\right)$	$\left(q_{0}^{*}=2\right)$	Prop. 6.9	Theorem 1.8(b)
	3	2	${ }^{3} D_{4}\left(q^{*}\right)$			
	≥ 5	-	S abelian			
$G_{2}(q)$	3	1	$G_{2}\left(q^{\vee}\right)$	(III.2)	Prop. 5.16(c)	Theorem 1.8(c)
	3	2	$G_{2}\left(q^{*}\right)$			
	≥ 5	-	S abelian			
${ }^{2} G_{2}(q)$	all cases		S abelian			
$F_{4}(q)$	3	1	$F_{4}\left(q^{\vee}\right)$	(III.2)	Prop. 5.16(c)	Theorem 1.8(c)
	3	2	$F_{4}\left(q^{*}\right)$	$\left(q_{0}^{*}=2\right)$		
	≥ 5	-	S abelian			
$\begin{aligned} & { }^{2} F_{4}(q) \text { or } \\ & { }^{2} F_{4}(2)^{\prime} \end{aligned}$	3	2	${ }^{2} F_{4}\left(q^{*}\right)$	-	Prop. 6.9	Prop. 6.8(b)
	≥ 5		S abelian			
$E_{6}(q)$	3,5	1	$E_{6}\left(q^{*}\right)$	(III.1)	Prop. 5.16(b)	Theorem 1.8(a)
	3	2	$G \sim_{p} F_{4}\left(q^{2}\right)$		-	$\begin{aligned} & \text { Theorem [1.8(d) } \\ & \text { BMO Ex. } 4.4] \\ & \hline \end{aligned}$
	other cases		S abelian			
${ }^{2} E_{6}(q)$	all cases		$G \sim_{p} E_{6}\left(q^{\vee}\right)$		-	Theorem 1.8(d)
$E_{7}(q)$	3,5,7	1	$E_{7}\left(q^{\vee}\right)$	(III.2)	Prop. 5.16(c)	Theorem 1.8(c)
	3,5,7	2	$E_{7}\left(q^{*}\right)$			
	other cases		S abelian			
$E_{8}(q)$	3,5,7	1	$E_{8}\left(q^{\vee}\right)$	(III.2)	Prop. 5.16(c)	Theorem 1.8(c)
	3,5,7	2	$E_{8}\left(q^{*}\right)$			
	5	4	$E_{8}\left(q^{*}\right)$	(III.3)	Prop. 5.16(c)	Theorem 1.8(a)
	other cases		S abelian			

Table 0.3. Substitutions in cross-characteristic for p odd: exceptional groups

CHAPTER 1

Tame and reduced fusion systems

Throughout this chapter, p always denotes a fixed prime. Before defining tameness of fusion systems more precisely, we first recall the definitions of fusion and linking systems of finite groups, and of automorphism groups of fusion and linking systems.

Definition 1.1. Fix a finite group G and a Sylow p-subgroup $S \leq G$.
(a) The fusion system of G is the category $\mathcal{F}_{S}(G)$ whose objects are the subgroups of S, and where $\operatorname{Mor}_{\mathcal{F}_{S}(G)}(P, Q)=\operatorname{Hom}_{G}(P, Q)$ for each $P, Q \leq S$.
(b) A subgroup $P \leq S$ is p-centric in G if $Z(P) \in \operatorname{Syl}_{p}\left(C_{G}(P)\right)$; equivalently, if $C_{G}(P)=Z(P) \times C_{G}^{\prime}(P)$ for a (unique) subgroup $C_{G}^{\prime}(P)$ of order prime to p.
(c) The centric linking system of G is the category $\mathcal{L}_{S}^{c}(G)$ whose objects are the p centric subgroups of G, and where $\operatorname{Mor}_{\mathcal{L}_{S}^{c}(G)}(P, Q)=T_{G}(P, Q) / C_{G}^{\prime}(P)$ for each pair of objects P, Q. Let $\pi: \mathcal{L}_{S}^{c}(G) \longrightarrow \mathcal{F}_{S}(G)$ denote the natural functor: π is the inclusion on objects, and sends the class of $g \in T_{G}(P, Q)$ to $c_{g} \in$ $\operatorname{Mor}_{\mathcal{F}_{S}(G)}(P, Q)$.
(d) For $P, Q \leq S$ p-centric in G and $g \in T_{G}(P, Q)$, we let $\llbracket g \rrbracket_{P, Q} \in \operatorname{Mor}_{\mathcal{L}_{S}^{c}(G)}(P, Q)$ denote the class of g, and set $\llbracket g \rrbracket_{P}=\llbracket g \rrbracket_{P, P}$ if $g \in N_{G}(P)$. For each subgroup $H \leq N_{G}(P), \llbracket H \rrbracket_{P}$ denotes the image of H in $\operatorname{Aut}_{\mathcal{L}}(P)=N_{G}(P) / C_{G}^{\prime}(P)$.

The following definitions of automorphism groups are taken from AOV, Definition 1.13 \& Lemma 1.14], where they are formulated more generally for abstract fusion and linking systems.

Definition 1.2. Let G be a finite group with $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$ and $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$.
(a) If H is another finite group with $T \in \operatorname{Syl}_{p}(H)$, then an isomorphism $\varphi: S \xrightarrow{\cong} T$ is called fusion preserving (with respect to G and H) if for each $P, Q \leq S$,

$$
\operatorname{Hom}_{H}(\varphi(P), \varphi(Q))=\varphi \circ \operatorname{Hom}_{G}(P, Q) \circ \varphi^{-1} .
$$

(Composition is from right to left.) Equivalently, φ is fusion preserving if it induces an isomorphism of categories $\mathcal{F}_{S}(G) \xrightarrow{\cong} \mathcal{F}_{T}(H)$.
(b) Let $\operatorname{Aut}(\mathcal{F}) \leq \operatorname{Aut}(S)$ be the group of fusion preserving automorphisms of S. $\operatorname{Set} \operatorname{Out}(\mathcal{F})=\operatorname{Aut}(\mathcal{F}) / \operatorname{Aut}_{\mathcal{F}}(S)$.
(c) For each pair of objects $P \leq Q$ in \mathcal{L}, set $\iota_{P, Q}=\llbracket 1 \rrbracket_{P, Q} \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$, which we call the inclusion in \mathcal{L} of P in Q. For each P, we call $\llbracket P \rrbracket=\llbracket P \rrbracket_{P} \leq \operatorname{Aut}_{\mathcal{L}}(P)$ the distinguished subgroup of $\operatorname{Aut}_{\mathcal{L}}(P)$.
(d) Let $\operatorname{Aut}(\mathcal{L})$ be the group of automorphisms α of the category \mathcal{L} such that α sends inclusions to inclusions and distinguished subgroups to distinguished subgroups. For $\gamma \in \operatorname{Aut}_{\mathcal{L}}(S)$, let $c_{\gamma} \in \operatorname{Aut}(\mathcal{L})$ be the automorphism which sends an object P to $\pi(\gamma)(P)$, and sends $\psi \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$ to $\gamma^{\prime} \psi\left(\gamma^{\prime \prime}\right)^{-1}$ where γ^{\prime} and $\gamma^{\prime \prime}$ are appropriate restrictions of γ. Set

$$
\operatorname{Out}(\mathcal{L})=\operatorname{Aut}(\mathcal{L}) /\left\{c_{\gamma} \mid \gamma \in \operatorname{Aut}_{\mathcal{L}}(S)\right\}
$$

(e) Let $\kappa_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}(\mathcal{L})$ be the homomorphism which sends the class $[\alpha]$, for $\alpha \in \operatorname{Aut}(G)$ such that $\alpha(S)=S$, to the class of $\beta \in \operatorname{Aut}\left(\mathcal{L}_{S}^{c}(G)\right)$, where $\beta(P)=\alpha(P)$ for an object P, and $\beta\left(\llbracket g \rrbracket_{P, Q}\right)=\llbracket \alpha(g) \rrbracket_{\alpha(P), \alpha(Q)}$ for $g \in T_{G}(P, Q)$.
(f) Define $\mu_{G}: \operatorname{Out}(\mathcal{L}) \longrightarrow \operatorname{Out}(\mathcal{F})$ by restriction: $\mu_{G}([\beta])=\left[\left.\beta_{S}\right|_{S}\right]$ for $\beta \in$ $\operatorname{Aut}\left(\mathcal{L}_{S}^{c}(G)\right)$, where β_{S} is the induced automorphism of $\operatorname{Aut}_{\mathcal{L}}(S)$, and $\left.\beta_{S}\right|_{S} \in$ $\operatorname{Aut}(S)$ is its restriction to S when we identify S with its image in $\operatorname{Aut}_{\mathcal{L}}(S)=$ $N_{G}(S) / C_{G}^{\prime}(S)$.
(g) Set $\bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}(\mathcal{F}):$ the homomorphism which sends the class of $\alpha \in N_{\operatorname{Aut}(G)}(S)$ to the class of $\left.\alpha\right|_{S}$.
By AOV Lemma 1.14], the above definition of $\operatorname{Out}(\mathcal{L})$ is equivalent to that in BLO2, and by BLO2, Lemma 8.2], both are equivalent to that in BLO1. So by [BLO1, Theorem 4.5(a)], $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \cong \operatorname{Out}\left(B G_{p}^{\wedge}\right)$: the group of homotopy classes of self homotopy equivalences of the space $B G_{p}^{\wedge}$.

We refer to AOV § 2.2] and AOV § 1.3] for more details about the definitions of κ_{G} and μ_{G} and the proofs that they are well defined. Note that μ is defined there for an arbitrary linking system, not necessarily one realized by a group.

We are now ready to define tameness. Again, we restrict attention to fusion systems of finite groups, and refer to [AOV § 2.2] for the definition in the more abstract setting.

Definition 1.3. For a finite group G and $S \in \operatorname{Syl}_{p}(G)$, the fusion system $\mathcal{F}_{S}(G)$ is tame if there is a finite group G^{*} which satisfies:

- there is a fusion preserving isomorphism $S \xrightarrow{\cong} S^{*}$ for some $S^{*} \in \operatorname{Syl}_{p}\left(G^{*}\right)$; and
- the homomorphism $\kappa_{G^{*}}: \operatorname{Out}\left(G^{*}\right) \longrightarrow \operatorname{Out}_{\text {typ }}\left(\mathcal{L}_{S}^{c}\left(G^{*}\right)\right) \cong \operatorname{Out}\left(B G_{p}^{*}\right)$ is split surjective.
In this situation, we say that G^{*} tamely realizes the fusion system $\mathcal{F}_{S}(G)$.
The above definition is complicated by the fact that two finite groups can have isomorphic fusion systems but different outer automorphism groups. For example, set $G=P S L_{2}(9) \cong A_{6}$ and $H=P S L_{2}(7) \cong G L_{3}(2)$. The Sylow subgroups of both groups are dihedral of order 8 , and it is not hard to see that any isomorphism between Sylow subgroups is fusion preserving. But $\operatorname{Out}(G) \cong C_{2}^{2}$ while $\operatorname{Out}(H) \cong$ C_{2} (see Theorem 3.4 below). Also, κ_{G} is an isomorphism, while κ_{H} fails to be onto (see BLO1, Proposition 7.9]). In conclusion, the 2 -fusion system of both groups is tame, even though κ_{H} is not split surjective.

This definition of tameness was motivated in part in AOV by an attempt to construct new, "exotic" fusion systems (abstract fusion systems not realized by any finite group) as extensions of a known fusion system by an automorphism. Very
roughly, if $\alpha \in \operatorname{Aut}\left(\mathcal{L}_{S}^{c}(G)\right)$ is not in the image of κ_{G}, and not in the image of $\kappa_{G^{*}}$ for any other finite group G^{*} which has the same fusion and linking systems, then one can construct and extension of $\mathcal{F}_{S}(G)$ by α which is not isomorphic to the fusion system of any finite group. This shows why we are interested in the surjectivity of κ_{G}; to see the importance of its being split, we refer to the proof of AOV Theorem B].

It is usually simpler to work with automorphisms of a p-group which preserve fusion than with automorphisms of a linking system. So in most cases, we prove tameness for the fusion system of a group G by first showing that $\bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G}$ is split surjective, and then showing that μ_{G} is injective. The following elementary lemma will be useful.

Lemma 1.4. Fix a finite group G and $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. Then
(a) $\bar{\kappa}_{G}$ is surjective if and only if each $\varphi \in \operatorname{Aut}(\mathcal{F})$ extends to some $\bar{\varphi} \in \operatorname{Aut}(G)$, and
(b) $\operatorname{Ker}\left(\bar{\kappa}_{G}\right) \cong C_{\operatorname{Aut}(G)}(S) / \operatorname{Aut}_{C_{G}(S)}(G)$.

Proof. This follows from the following diagram

with exact rows.
The next lemma can be useful when κ_{G} or $\bar{\kappa}_{G}$ is surjective but not split.
Lemma 1.5. Fix a prime p, a finite group G, and $S \in \operatorname{Syl}_{p}(G)$.
(a) Assume $\widehat{G} \geq G$ is such that $G \unlhd \widehat{G}, p \nmid|\widehat{G} / G|$, and $\operatorname{Out}_{\widehat{G}}(G) \leq \operatorname{Ker}\left(\bar{\kappa}_{G}\right)$. Then $\mathcal{F}_{S}(\widehat{G})=\mathcal{F}_{S}(G)$ and $\mathcal{L}_{S}^{c}(\widehat{G}) \cong \mathcal{L}_{S}^{c}(G)$.
(b) If κ_{G} is surjective and $\operatorname{Ker}\left(\kappa_{G}\right)$ has order prime to p, then there is $\widehat{G} \geq$ $G / O_{p^{\prime}}(Z(G))$ such that $\mathcal{F}_{S}(\widehat{G})=\mathcal{F}_{S}(G)$ (where we identify S with its image in $\left.G / O_{p^{\prime}}(G)\right)$ and $\kappa_{\widehat{G}}$ is split surjective. In particular, $\mathcal{F}_{S}(G)$ is tame, and is tamely realized by \widehat{G}.

Proof. (a) Since $\operatorname{Out}_{\widehat{G}}(G) \leq \operatorname{Ker}\left(\bar{\kappa}_{G}\right)$, each coset of G in \widehat{G} contains an element which centralizes S. (Recall that $\bar{\kappa}_{G}$ is induced by the restriction homomorphism from $N_{\text {Aut }(G)}(S)$ to $\operatorname{Aut}(\mathcal{F})$.) Thus $\mathcal{F}_{S}(\widehat{G})=\mathcal{F}_{S}(G)$ and $\mathcal{L}_{S}^{c}(\widehat{G})=\mathcal{L}_{S}^{c}(G)$.
(b) Since G and $G / O_{p^{\prime}}(Z(G))$ have isomorphic fusion systems at p, we can assume that $Z(G)$ is a p-group. Set $K=\operatorname{Ker}\left(\kappa_{G}\right) \leq \operatorname{Out}(G)$. Since $H^{i}(K ; Z(G))=$ 0 for $i=2,3$, by the obstruction theory for group extensions [McL Theorems IV.8.7-8], there is an extension \widehat{G} of G by K such that $G \unlhd \widehat{G}$ and $\widehat{G} / G \cong K=$ Out $_{\widehat{G}}(G)$. In particular, $C_{\widehat{G}}(G) \leq G$. Since $K=\operatorname{Ker}\left(\kappa_{G}\right) \leq \operatorname{Ker}\left(\bar{\kappa}_{G}\right), \mathcal{F}_{S}(\widehat{G})=$ $\mathcal{F}_{S}(G)$, and $\mathcal{L}_{S}^{c}(\widehat{G})=\mathcal{L}_{S}^{c}(G)$ by (a).

By [OV, Lemma 1.2], and since $K \unlhd \operatorname{Out}(G)$ and $H^{i}(K ; Z(G))=0$ for $i=$ 1,2 , each automorphism of G extends to an automorphism of \widehat{G} which is unique modulo inner automorphisms. Thus $\operatorname{Out}(\widehat{G})$ contains a subgroup isomorphic to
$\operatorname{Out}(G) / K$, and $\kappa_{\widehat{G}}$ sends this subgroup isomorphically onto $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(\widehat{G})\right)$. So $\kappa_{\widehat{G}}$ is split surjective, and $\mathcal{F}_{S}(G)$ is tame.

The next proposition is really a result about constrained fusion systems (cf. AKO Definition I.4.8]): it says that every constrained fusion system is tame. Since we are dealing here only with fusion systems of finite groups, we state it instead in terms of p-constrained groups.

Proposition 1.6. Fix a finite group G and a Sylow subgroup $S \in \operatorname{Syl}_{p}(G)$.
(a) If $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$, then κ_{G} and μ_{G} are both isomorphisms:

$$
\operatorname{Out}(G) \xrightarrow{\kappa_{G}} \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \xrightarrow{\mu_{G}} \operatorname{Out}\left(\mathcal{F}_{S}(G)\right)
$$

(b) If S is abelian, or more generally if $N_{G}(S)$ controls p-fusion in G, then $\mathcal{F}_{S}(G)$ is tame, and is tamely realized by $N_{G}(S) / O_{p^{\prime}}\left(C_{G}(S)\right)$.
Proof. (a) Set $Q=O_{p}(G), \mathcal{F}=\mathcal{F}_{S}(G)$, and $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$. Then $\operatorname{Aut}_{\mathcal{L}}(Q)=$ G, so $\left(\alpha \mapsto \alpha_{Q}\right)$ defines a homomorphism

$$
\Phi: \operatorname{Aut}(\mathcal{L}) \longrightarrow \operatorname{Aut}\left(\operatorname{Aut}_{\mathcal{L}}(Q)\right)=\operatorname{Aut}(G)
$$

whose image lies in $N_{\operatorname{Aut}(G)}(S)$. For each $\alpha \in \operatorname{Ker}(\Phi), \alpha_{Q}=\operatorname{Id}_{G}$ and hence $\alpha=\operatorname{Id}_{\mathcal{L}}$. (Here, it is important that α sends inclusions to inclusions.) Thus Φ is a monomorphism. Also, $\alpha=c_{\gamma}$ for some $\gamma \in \operatorname{Aut}_{\mathcal{L}}(S)$ if and only if $\alpha_{Q}=c_{g}$ for some $g \in N_{G}(S)$, so Φ factors through a monomorphism $\bar{\Phi}$ from $\operatorname{Out}(\mathcal{L})$ to $N_{\operatorname{Aut}(G)}(S) / \operatorname{Aut}_{G}(S) \cong \operatorname{Out}(G)$, and $\bar{\Phi}_{G} \circ \kappa_{G}=\operatorname{Id}_{\text {Out }(G)}$. Thus κ_{G} is an isomorphism.

In the terminology in AKO § I.4], G is a model for $\mathcal{F}=\mathcal{F}_{S}(G)$. By the uniqueness of models (cf. AKO, Theorem III.5.10(c)]), each $\beta \in \operatorname{Aut}(\mathcal{F})$ extends to some $\chi \in \operatorname{Aut}(G)$, and χ is unique modulo $\operatorname{Aut}_{Z(S)}(G)$. Hence $\bar{\kappa}_{G}$ is an isomorphism, and so is μ_{G}.
(b) If $N_{G}(S)$ controls p-fusion in G, then $N_{G}(S) \sim_{p} G$. Also, $N_{G}(S) \sim_{p} G^{*}$ where $G^{*}=N_{G}(S) / O_{p^{\prime}}\left(C_{G}(S)\right)$, G^{*} satisfies the hypotheses of (a), and hence tamely realizes $\mathcal{F}_{S}(G)$. In particular, this holds whenever S is abelian by Burnside's theorem.

When working with groups of Lie type when p is not the defining characteristic, it is easier to work with the universal groups rather than those in adjoint form (μ_{G} is better behaved in such cases). The next proposition is needed to show that tameness for fusion systems of groups of universal type implies the corresponding result for groups of adjoint type.

Proposition 1.7. Let G be a finite p-perfect group such that $O_{p^{\prime}}(G)=1$ and $H_{2}(G ; \mathbb{Z} / p)=0$ (i.e., such that each central extension of G by a finite p-group splits). Choose $S \in \operatorname{Syl}_{p}(G)$, and set $Z=Z(G) \leq S$. If $\mathcal{F}_{S}(G)$ is tamely realized by G, then $\mathcal{F}_{S / Z}(G / Z)$ is tamely realized by G / Z.

Proof. Let \mathcal{H} be the set of all $P \leq S$ such that $P \geq Z$ and P / Z is p-centric in G / Z, and let $\mathcal{L}_{S}^{\mathcal{H}}(G) \subseteq \mathcal{L}_{S}^{c}(G)$ be the full subcategory with object set \mathcal{H}. By AOV Lemma 2.17], $\mathcal{L}_{S}^{\mathcal{H}}(G)$ is a linking system associated to $\mathcal{F}_{S}(G)$ in the sense of [AOV, Definition 1.9]. Hence the homomorphism

$$
R: \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \xrightarrow{\cong} \operatorname{Out}\left(\mathcal{L}_{S}^{\mathcal{H}}(G)\right)
$$

induced by restriction is an isomorphism by [AOV, Lemma 1.17].

Set $\mathcal{F}=\mathcal{F}_{S}(G), \mathcal{L}=\mathcal{L}_{S}^{\mathcal{H}}(G), \bar{G}=G / Z, \bar{S}=S / Z, \overline{\mathcal{F}}=\mathcal{F}_{\bar{S}}(\bar{G})$, and $\overline{\mathcal{L}}=\mathcal{L}_{\bar{S}}^{c}(\bar{G})$ for short. Consider the following square:

Here, μ sends the class of an automorphism of G to the class of the induced automorphism of $\bar{G}=G / Z(G)$.

Assume that ν has been defined so that (1) commutes and ν is injective. If κ_{G} is onto, then ν is onto and hence an isomorphism, so $\kappa_{\bar{G}}$ is also onto. Similarly, if κ_{G} is split surjective, then $\kappa_{\bar{G}}$ is also split surjective. Thus $\overline{\mathcal{F}}$ is tamely realized by \bar{G} if \mathcal{F} is tamely realized by G, which is what we needed to show.

It thus remains to construct the monomorphism ν, by sending the class of $\alpha \in \operatorname{Aut}(\overline{\mathcal{L}})$ to the class of a lifting of α to \mathcal{L}. So in the rest of the proof, we show the existence and uniqueness of such a lifting.

Let pr: $\mathcal{L} \longrightarrow \overline{\mathcal{L}}$ denote the projection. Let $\operatorname{End}(\mathcal{L})$ be the monoid of functors from \mathcal{L} to itself which send inclusions to inclusions and distinguished subgroups into distinguished subgroups. (Thus $\operatorname{Aut}(\mathcal{L})$ is the group of elements of $\operatorname{End}(\mathcal{L})$ which are invertible.) We will prove the following two statements:
(2) For each $\alpha \in \operatorname{Aut}(\overline{\mathcal{L}})$, there is a functor $\widetilde{\alpha} \in \operatorname{End}(\mathcal{L})$ such that $\operatorname{pr} \circ \widetilde{\alpha}=\alpha \circ \operatorname{pr}$.
(3) If $\beta \in \operatorname{End}(\mathcal{L})$ is such that $\operatorname{pr} \circ \beta=\operatorname{pr}$, then $\beta=\operatorname{Id}_{\mathcal{L}}$.

Assume that (22) and (3) hold; we call $\widetilde{\alpha}$ a "lifting" of α in the situation of (2). For each $\alpha \in \operatorname{Aut}(\overline{\mathcal{L}})$, there are liftings $\widetilde{\alpha}$ of α and $\widetilde{\alpha}^{*}$ of α^{-1} in $\operatorname{End}(\mathcal{L})$, and these are inverses to each other by (3). Hence $\widetilde{\alpha} \in \operatorname{Aut}(\mathcal{L})$, and is the unique such lifting of α by (3) again.

Define $\nu: \operatorname{Out}(\overline{\mathcal{L}}) \longrightarrow \operatorname{Out}(\mathcal{L})$ by setting $\nu([\alpha])=[\widetilde{\alpha}]$ when $\widetilde{\alpha}$ is the unique lifting of α. This is well defined as a homomorphism on $\operatorname{Aut}(\overline{\mathcal{L}})$ by the existence and uniqueness of the lifting; and it factors through $\operatorname{Out}(\overline{\mathcal{L}})$ since conjugation by $\bar{\gamma} \in \operatorname{Aut}_{\overline{\mathcal{L}}}(\bar{S})$ lifts to conjugation by $\gamma \in \operatorname{Aut}_{\mathcal{L}}(S)$ for any $\gamma \in \operatorname{pr}_{S}^{-1}(\bar{\gamma})$.

Thus ν is a well defined homomorphism, and is clearly injective. The square (1) commutes since for each $\beta \in \operatorname{Aut}(G)$ such that $\beta(S)=S, \kappa_{G}([\beta])$ and $\nu \kappa_{\bar{G}} \mu([\beta])$ are the classes of liftings of the same automorphism of $\overline{\mathcal{L}}$.

It remains to prove (2) and (3).
Proof of (2): For each $\alpha \in \operatorname{Aut}(\overline{\mathcal{L}})$, consider the pullback diagram

Each functor in (4) is bijective on objects, and the diagram restricts to a pullback square of morphism sets for each pair of objects in $\overline{\mathcal{L}}$ (and their inverse images in \mathcal{L} and $\widetilde{\mathcal{L}})$.

Since the natural projection $G \longrightarrow \bar{G}$ is a central extension with kernel Z, the projection functor pr: $\mathcal{L} \longrightarrow \overline{\mathcal{L}}$ is also a central extension of linking systems in the sense of [5a2] Definition 6.9] with kernel Z. Since ρ_{2} is the pullback of a central extension, it is also a central extension of linking systems by [5a2, Proposition 6.10], applied with $\omega=\operatorname{pr}^{*} \alpha^{*}\left(\omega_{0}\right) \in Z^{2}(\mathcal{L} ; Z)$, where ω_{0} is a 2 -cocycle on $\overline{\mathcal{L}}$ which determines the extension pr. By [BLO1, Proposition 1.1], $H^{2}\left(|\mathcal{L}| ; \mathbb{F}_{p}\right) \cong H^{2}\left(G ; \mathbb{F}_{p}\right)$, where the last group is zero by assumption. Hence $H^{2}(|\mathcal{L}| ; Z)=0$, so ω is a coboundary, and ρ_{2} is the product extension by [5a2, Theorem 6.13]. In other words, $\widetilde{\mathcal{L}} \cong \mathcal{L}_{Z}^{c}(Z) \times \mathcal{L}$, where $\mathcal{L}_{Z}^{c}(Z)$ has one object and automorphism group Z, and there is a subcategory $\mathcal{L}_{0} \subseteq \widetilde{\mathcal{L}}$ (with the same objects) which is sent isomorphically to \mathcal{L} by ρ_{2}. Set $\widetilde{\alpha}=\rho_{1} \circ\left(\rho_{2} \mid \mathcal{L}_{0}\right)^{-1}$.

We first check that $\widetilde{\alpha}$ sends distinguished subgroups to distinguished subgroups. Let $\operatorname{pr}_{S}: S \longrightarrow \bar{S}=S / Z$ be the projection. Fix an object P in \mathcal{L}, and set $Q=\widetilde{\alpha}(P)$. Then $Q / Z=\alpha(P / Z)$, and $\alpha_{P / Z}(\llbracket P / Z \rrbracket)=\llbracket Q / Z \rrbracket$, so $\widetilde{\alpha}_{P}(\llbracket P \rrbracket) \leq$ $\operatorname{pr}_{S}^{-1}(\llbracket Q / Z \rrbracket)=\llbracket Q \rrbracket$.

For each subgroup $P \in \operatorname{Ob}(\mathcal{L})$, there is a unique element $z_{P} \in Z$ such that $\widetilde{\alpha}\left(\iota_{P, S}\right)=\iota_{\widetilde{\alpha}(P), S} \circ \llbracket z_{P} \rrbracket_{\widetilde{\alpha}(P)}$. Note that $z_{S}=1$. Define a new functor $\beta: \mathcal{L} \longrightarrow \mathcal{L}$ by setting $\beta(P)=\widetilde{\alpha}(P)$ on objects and for each $\varphi \in \operatorname{Mor}_{\mathcal{L}}(P, Q), \beta(\varphi)=\llbracket z_{Q} \rrbracket \widetilde{\alpha}(Q)^{\circ}$ $\widetilde{\alpha}(\varphi) \circ \llbracket z_{P} \rrbracket_{\tilde{\alpha}(P)}^{-1}$. Then β is still a lifting of α, and for each P :

$$
\beta\left(\iota_{P, S}\right)=\llbracket z_{S} \rrbracket_{S} \circ \widetilde{\alpha}\left(\iota_{P, S}\right) \circ \llbracket z_{P} \rrbracket_{\widetilde{\alpha}(P)}^{-1}=\iota_{\widetilde{\alpha}(P), S} \circ \llbracket z_{P} \rrbracket_{\widetilde{\alpha}(P)} \circ \llbracket z_{P} \rrbracket_{\widetilde{\alpha}(P)}^{1}=\iota_{\widetilde{\alpha}(P), S} .
$$

For arbitrary $P \leq Q$, since $\iota_{\widetilde{\alpha}(P), \widetilde{\alpha}(Q)}$ is the unique morphism whose composite with $\iota_{\widetilde{\alpha}(Q), S}$ is $\iota_{\widetilde{\alpha}(P), S}$ (see BLO2, Lemma 1.10(a)]), β sends $\iota_{P, Q}$ to $\iota_{\widetilde{\alpha}(P), \widetilde{\alpha}(Q) \text {. }}$

Thus, upon replacing $\widetilde{\alpha}$ by β, we can assume that $\widetilde{\alpha}$ sends inclusions to inclusions. This finishes the proof of (21).
Proof of (3): Assume that $\beta \in \operatorname{End}(\mathcal{L})$ is a lift of the identity on $\overline{\mathcal{L}}$. Let $\mathcal{B}(Z)$ be the category with one object $*$ and with morphism group Z. Define a functor $\chi: \mathcal{L} \longrightarrow \mathcal{B}(Z)$ by sending all objects in \mathcal{L} to $*$, and by sending a morphism $\llbracket g \rrbracket \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$ to the unique element $z \in Z$ such that $\beta_{P, Q}(\llbracket g \rrbracket)=\llbracket g z \rrbracket=\llbracket z g \rrbracket$. (Recall that $Z \leq Z(G)$.)

Now,

$$
H^{1}\left(|\mathcal{L}| ; \mathbb{F}_{p}\right) \cong H^{1}\left(\left|\mathcal{L}_{S}^{c}(G)\right| ; \mathbb{F}_{p}\right) \cong H^{1}\left(B G ; \mathbb{F}_{p}\right) \cong H^{1}\left(G ; \mathbb{F}_{p}\right)=0
$$

where the first isomorphism holds by [5a1, Theorem B] and the second by BLO1, Proposition 1.1]. Hence $\operatorname{Hom}\left(\pi_{1}(|\mathcal{L}|), \mathbb{F}_{p}\right) \cong \operatorname{Hom}\left(H_{1}(|\mathcal{L}|), \mathbb{F}_{p}\right) \cong H^{1}\left(|\mathcal{L}| ; \mathbb{F}_{p}\right)=0$, where the second isomorphism holds by the universal coefficient theorem (cf. [McL Theorem III.4.1]), and so $\operatorname{Hom}\left(\pi_{1}(|\mathcal{L}|), Z\right)=0$. In particular, the homomorphism $\widehat{\chi}: \pi_{1}(|\mathcal{L}|) \longrightarrow \pi_{1}(|\mathcal{B}(Z)|) \cong Z$ induced by χ is trivial.

Thus for each $\psi \in \operatorname{Mor}_{\mathcal{L}}(P, Q)$, the loop in $|\mathcal{L}|$ formed by ψ and the inclusions $\iota_{P, S}$ and $\iota_{Q, S}$ is sent to $1 \in Z$. Since β sends inclusions to inclusions, this proves that $\chi_{P, Q}(\psi)=1$, and hence that $\beta_{P, Q}(\psi)=\psi$. Thus $\beta=\operatorname{Id}_{\mathcal{L}}$.

By Proposition 1.7, when proving tameness for fusion systems of simple groups of Lie type, it suffices to look at the universal groups (such as $S L_{n}(q), S U_{n}(q)$) rather than the simple groups $\left(P S L_{n}(q), P S U_{n}(q)\right)$. However, it is important to note that the proposition is false if we replace automorphisms of the linking systems by those of the fusion system. For example, set $G=S L_{2}\left(3^{4}\right)$ and $\bar{G}=P S L_{2}\left(3^{4}\right)$. Then
$S \cong Q_{32}$ and $\bar{S} \cong D_{16}, \operatorname{Out}\left(\mathcal{F}_{S}(G)\right)=\operatorname{Out}(S) \cong \operatorname{Out}(G) \cong C_{4} \times C_{2}$ (and $\bar{\kappa}_{G}$ is an isomorphism), while $\operatorname{Out}(\bar{G}) \cong C_{4} \times C_{2}$ and $\operatorname{Out}\left(\bar{S}, \mathcal{F}_{\bar{S}}(\bar{G})\right)=\operatorname{Out}(\bar{S}) \cong C_{2} \times C_{2}$.

We already gave one example of two groups which have the same fusion system but different outer automorphism groups. That is a special case of the main theorem in our earlier paper, where we construct many examples of different groups of Lie type with isomorphic fusion systems. Since this plays a crucial role in Chapter 6. where we handle the cross characteristic case, we restate the theorem here.

As in the introduction, we write $G \sim_{p} H$ to mean that there is a fusion preserving isomorphism from a Sylow p-subgroup of G to one of H.

Theorem 1.8 ($\mathbf{B M O}$, Theorem A]). Fix a prime p, a connected reductive group scheme \mathbb{G} over \mathbb{Z}, and a pair of prime powers q and q^{*} both prime to p. Then the following hold.
(a) $\mathbb{G}(q) \sim_{p} \mathbb{G}\left(q^{*}\right)$ if $\overline{\langle q\rangle}=\overline{\left\langle q^{*}\right\rangle}$ as subgroups of \mathbb{Z}_{p}^{\times}.
(b) If \mathbb{G} is of type A_{n}, D_{n}, or E_{6}, and τ is a graph automorphism of \mathbb{G}, then ${ }^{\tau} \mathbb{G}(q) \sim_{p}{ }^{\tau} \mathbb{G}\left(q^{*}\right)$ if $\overline{\langle q\rangle}=\overline{\left\langle q^{*}\right\rangle}$ as subgroups of \mathbb{Z}_{p}^{\times}.
(c) If the Weyl group of \mathbb{G} contains an element which acts on the maximal torus by inverting all elements, then $\mathbb{G}(q) \sim_{p} \mathbb{G}\left(q^{*}\right)$ (or ${ }^{\tau} \mathbb{G}(q) \sim_{p}{ }^{\tau} \mathbb{G}\left(q^{*}\right)$ for τ as in (b)) if $\overline{\langle-1, q\rangle}=\overline{\left\langle-1, q^{*}\right\rangle}$ as subgroups of \mathbb{Z}_{p}^{\times}.
(d) If \mathbb{G} is of type A_{n}, D_{n} for n odd, or E_{6}, and τ is a graph automorphism of \mathbb{G} of order two, then $\tau_{\mathbb{G}(q)} \sim_{p} \mathbb{G}\left(q^{*}\right)$ if $\overline{\langle-q\rangle}=\overline{\left\langle q^{*}\right\rangle}$ as subgroups of \mathbb{Z}_{p}^{\times}.
The next proposition is of similar type, but much more elementary.
Proposition 1.9. Fix an odd prime p, a prime power q prime to $p, n \geq 2$, and $\varepsilon \in\{ \pm 1\}$. Then
(a) $S p_{2 n}(q) \sim_{p} S L_{2 n}(q)$ if $\operatorname{ord}_{p}(q)$ is even;
(b) $S p_{2 n}(q) \sim_{p} \operatorname{Spin}_{2 n+1}(q)$; and
(c) $\operatorname{Spin}_{2 n}^{\varepsilon}(q) \sim_{p} \operatorname{Spin}_{2 n-1}(q)$ if q is odd and $q^{n} \not \equiv \varepsilon(\bmod p)$.

Proof. If we replace $\operatorname{Spin}_{m}^{ \pm}(q)$ by $S O_{m}^{ \pm}(q)$ in (b) and (c), then these three points are shown in [BMO, Proposition A.3] as points (d), (a), and (c), respectively. When q is a power of 2 , (b) holds because the groups are isomorphic (see $\mathbf{T a}$ Theorem 11.9]). So it remains to show that

$$
\operatorname{Spin}_{m}^{\varepsilon}(q) \sim_{p} \Omega_{m}^{\varepsilon}(q) \sim_{p} S O_{m}^{\varepsilon}(q)
$$

for all $m \geq 3$ (even or odd) and q odd. The first equivalence holds since p is odd and $\Omega_{m}^{\varepsilon}(q) \cong \operatorname{Spin}_{m}^{\varepsilon}(q) / K$ where $|K|=2$. The second holds by Lemma 1.5)(a), and since Out ${ }_{S O_{m}^{\varepsilon}(q)}\left(\Omega_{m}^{\varepsilon}(q)\right)$ is generated by the class of a diagonal automorphism of order 2 (see, e.g., GLS3, §2.7]) and hence can be chosen to commute with a Sylow p-subgroup. This last statement is shown in Lemma 5.9 below, and holds since for appropriate choices of algebraic group \bar{G} containing the given group G, and of maximal torus $\bar{T} \leq \bar{G}$, a Sylow p-subgroup of G is contained in $N_{\bar{G}}(\bar{T})$ (see GLS3. Theorem 4.10.2]) and the diagonal automorphisms of G are induced by conjugation by elements in $N_{\bar{T}}(G)$ (see Proposition 3.5(c)).

Theorem 1.8 and Proposition 1.9, together with some other, similar relations in [BMO, lead to the following proposition, which when p is odd provides a relatively
short list of " p-local equivalence class representatives" for groups of Lie type in characteristic different from p.

Proposition 1.10. Fix an odd prime p, and assume $G \in \mathfrak{L i e}\left(q_{0}\right)$ is of universal type for some prime $q_{0} \neq p$. Assume also that the Sylow p-subgroups of G are nonabelian. Then there is a group $G^{*} \in \mathfrak{L i c}\left(q_{0}^{*}\right)$ of universal type for some $q_{0}^{*} \neq p$, such that $G^{*} \sim_{p} G$ and G^{*} is one of the groups in the following list:
(a) $S L_{n}\left(q^{*}\right)$ for some $n \geq p$; or
(b) $\operatorname{Spin}_{2 n}^{\varepsilon}\left(q^{*}\right)$, where $n \geq p, \varepsilon= \pm 1,\left(q^{*}\right)^{n} \equiv \varepsilon(\bmod p)$, and $\varepsilon=+1$ if n is odd; or
(c) ${ }^{3} D_{4}\left(q^{*}\right)$ or ${ }^{2} F_{4}\left(q^{*}\right)$, where $p=3$ and q^{*} is a power of 2 ; or
(d) $\mathbb{G}\left(q^{*}\right)$, where $\mathbb{G}=G_{2}, F_{4}, E_{6}, E_{7}$, or $E_{8}, p| | W(\mathbb{G}) \mid$, and $q^{*} \equiv 1(\bmod p)$; or
(e) $E_{8}\left(q^{*}\right)$, where $p=5$ and $q^{*} \equiv \pm 2(\bmod 5)$.

Furthermore, in all cases except (c), we can take q_{0}^{*} to be any given prime whose class generates $\left(\mathbb{Z} / p^{2}\right)^{\times}$, and choose G^{*} so that $q^{*}=\left(q_{0}^{*}\right)^{b}$ where $b \mid(p-1) p^{\ell}$ for some ℓ.

Proof. Let q be such that $G \cong{ }^{\tau} \mathbb{G}(q)$ for some τ and some \mathbb{G}. Thus q is a power of q_{0}. Fix a prime q_{0}^{*} as specified above. By Lemma 1.11(a), there are positive integers b, c, and powers $q^{*}=\left(q_{0}^{*}\right)^{b}$ and $q^{\vee}=\left(q_{0}^{*}\right)^{c}$ such that $\overline{\langle q\rangle}=\overline{\left\langle q^{*}\right\rangle}$, $\overline{\langle-q\rangle}=\overline{\left\langle q^{\vee}\right\rangle}$, and $b, c \mid(p-1) p^{\ell}$ for some $\ell \geq 0$.
(i) Assume $G \cong \operatorname{Sz}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q)$, or $G \cong{ }^{3} D_{4}(q)$. Since $p \neq q_{0}$, and since $S \in \operatorname{Syl}_{p}(G)$ is nonabelian, p divides the order of the Weyl group W of \mathbb{G} by [GL, 10-1(3)]. The Weyl group of B_{2} is a 2 -group, and 2 and 3 are the only primes which divide the orders of the Weyl groups of G_{2}, F_{4}, and D_{4}. Hence $p=3, G \not \not^{2} G_{2}(q)$ since that is defined only in characteristic 3 , and so $G \cong{ }^{2} F_{4}(q)$ or ${ }^{3} D_{4}(q)$. Set $G^{*}={ }^{2} F_{4}\left(q^{*}\right)$ or ${ }^{3} D_{4}\left(q^{*}\right)$, respectively, where $q_{0}^{*}=2$. Then $G^{*} \sim_{p} G$, and we are in case (c).
(ii) If $G=S U_{n}(q)$ or ${ }^{2} E_{6}(q)$, then by Theorem 1.8(d), $G \sim_{p} G^{*}$ where $G^{*} \cong$ $S L_{n}\left(q^{\vee}\right)$ or $E_{6}\left(q^{\vee}\right)$, respectively. So we can replace G by a Chevalley group in these cases.
(iii) Assume $G=S p_{2 n}(q)$ for some n and q. If $\operatorname{ord}_{p}(q)$ is even, then by Proposition 1.9(a), $G \sim_{p} S L_{2 n}(q)$. If $\operatorname{ord}_{p}(q)$ is odd, then $\operatorname{ord}_{p}\left(q^{\vee}\right)$ is even since $\left\langle q^{\vee}\right\rangle=$ $\langle-q\rangle$ in \mathbb{F}_{p}^{\times}, and $G \sim_{p} S p_{2 n}\left(q^{\vee}\right)$ by Theorem 1.8(c). So G is always p-locally equivalent to a linear group in this case.
(iv) Assume $G=\operatorname{Spin}_{2 n+1}(q)$ for some n and q. Then $G \sim_{p} S p_{2 n}(q)$ by Proposition 1.9(b). So G is p-locally equivalent to a linear group by (iii).
(v) If $G=S L_{n}(q)$, set $G^{*}=S L_{n}\left(q^{*}\right)$. Then $G^{*} \sim_{p} G$ by Theorem 1.8(a), $n \geq p$ since the Sylow p-subgroups of G are nonabelian, and we are in the situation of (a).
(vi) Assume $G=\operatorname{Spin}_{2 n}^{\varepsilon}(q)$ for some n and q, and $\varepsilon= \pm 1$. If q is a power of 2 , then by using point (a) or (b) of Theorem (1.8) we can arrange that q be odd. If $q^{n} \not \equiv \varepsilon(\bmod p)$, then $G \sim_{p} \operatorname{Spin}_{2 n-1}(q)$ by Proposition 1.9(c), and this is p-equivalent to a linear group by (iv). So we are left with the case where
$q^{n} \equiv \varepsilon(\bmod p)$. If n is odd and $\varepsilon=-1$, set $G^{*}=\operatorname{Spin}_{2 n}^{+}\left(q^{\vee}\right) \sim_{p} G$ (Theorem 1.8(d)). Otherwise, set $G^{*}=\operatorname{Spin}_{2 n}^{\varepsilon}\left(q^{*}\right) \sim_{p} G$ (Theorem 1.8(a,b)). In either case, we are in the situation of (b).
We are left with the cases where $G=\mathbb{G}(q)$ for some exceptional Lie group \mathbb{G}. By [GL 10-1(3)] and since the Sylow p-subgroups of G are nonabelian, $p||W(\mathbb{G})|$. If $\operatorname{ord}_{p}(q)=1$, then $G^{*}=\mathbb{G}\left(q^{*}\right) \sim_{p} G$ by Theorem 1.8(a). If $\operatorname{ord}_{p}(q)=2$ and $\mathbb{G} \neq E_{6}$, then $G^{*}=\mathbb{G}\left(q^{\vee}\right) \sim_{p} G$ by Theorem 1.8(c), where $q^{\vee} \equiv 1(\bmod p)$. In either case, we are in the situation of (d).

If $\operatorname{ord}_{p}(q)=2$ and $G=E_{6}(q)$, then $\overline{\langle q\rangle}=\overline{\left\langle-q^{2}\right\rangle}$ as closed subgroups of \mathbb{Z}_{p}^{\times} (note that $v_{p}\left(q^{2}-1\right)=v_{p}\left(\left(-q^{2}\right)^{2}-1\right)$). So by Theorem 1.8(d) and Example 4.4 in BMO, $G=E_{6}(q) \sim_{p}{ }^{2} E_{6}\left(q^{2}\right) \sim_{p} F_{4}\left(q^{2}\right)$. So we can choose G^{*} satisfying (d) as in the last paragraph.

Assume $\operatorname{ord}_{p}(q)>2$. By [GL, 10-1(3)], for $S \in \operatorname{Syl}_{p}(G)$ to be nonabelian, there must be some $n \geq 1$ such that $p \cdot \operatorname{ord}_{p}(q) \mid n$, and such that $q^{n}-1$ appears as a factor in the formula for $|\mathbb{G}(q)|$ (see, e.g., [GL, Table 4-2] or Ca, Theorem 9.4.10 \& Proposition 10.2.5]). Since $\operatorname{ord}_{p}(q) \mid(p-1)$, this shows that the case $\operatorname{ord}_{p}(q)>2$ appears only for the group $E_{8}(q)$, and only when $p=5$ and $\operatorname{ord}_{p}(q)=4$. In particular, $q, q^{*} \equiv \pm 2(\bmod 5)$. Set $G^{*}=E_{8}\left(q^{*}\right)$; then $G^{*} \sim_{p} G$ by Theorem 1.8(a), and we are in the situation of (e).

The following lemma was needed in the proof of Proposition 1.10 to reduce still further the prime powers under consideration.

Lemma 1.11. Fix a prime p, and an integer q prime to p such that $q \neq \pm 1$.
(a) If p is odd, then for any prime r_{0} whose class generates $\left(\mathbb{Z} / p^{2}\right)^{\times}$, there is $b \geq 1$ such that $\overline{\langle q\rangle}=\overline{\left\langle\left(r_{0}\right)^{b}\right\rangle}$, and $b \mid(p-1) p^{\ell}$ for some ℓ.
(b) If $p=2$, then either $\overline{\langle q\rangle}=\overline{\langle 3\rangle}$, or $\overline{\langle q\rangle}=\overline{\langle 5\rangle}$, or there are $\varepsilon= \pm 1$ and $k \geq 1$ such that $\varepsilon \equiv q(\bmod 8)$ and $\overline{\langle q\rangle}=\overline{\left\langle\varepsilon \cdot 3^{2^{k}}\right\rangle}$.

Proof. Since $q \in \mathbb{Z}$ and $|q|>1, \overline{\langle q\rangle}$ is infinite.
(a) If p is odd, then for each $n \geq 1,\left(\mathbb{Z} / p^{n}\right)^{\times} \cong(\mathbb{Z} / p)^{\times} \times\left(\mathbb{Z} / p^{n-1}\right)$ is cyclic and generated by the class of r_{0}. Hence $\mathbb{Z}_{p}^{\times} \cong(\mathbb{Z} / p)^{\times} \times\left(\mathbb{Z}_{p},+\right)$, and $\overline{\left\langle r_{0}\right\rangle}=\mathbb{Z}_{p}^{\times}$. Also, $\overline{\langle q\rangle} \geq 1+p^{\ell} \mathbb{Z}_{p}$ for some $\ell \geq 1$, since each infinite, closed subgroup of $\left(\mathbb{Z}_{p},+\right)$ contains $p^{k} \mathbb{Z}_{p}$ for some k.

Set $b=\left[\mathbb{Z}_{p}^{\times}: \overline{\langle q\rangle}\right]=\left[\left(\mathbb{Z} / p^{\ell}\right)^{\times}:\left\langle q+p^{\ell} \mathbb{Z}\right\rangle\right] \mid(p-1) p^{\ell-1}$. Then $\overline{\langle q\rangle}=\overline{\left\langle\left(r_{0}\right)^{b}\right\rangle}$.
(b) If $p=2$, then $\mathbb{Z}_{2}^{\times}=\{ \pm 1\} \times \overline{\langle 3\rangle}$, where $\overline{\langle 3\rangle} \cong\left(\mathbb{Z}_{2},+\right)$. Hence the only infinite closed subgroups of $\overline{\langle 3\rangle}$ are those of the form $\overline{\left\langle 3^{2^{k}}\right\rangle}$ for some $k \geq 0$. So $\overline{\langle q\rangle}=\overline{\left\langle\varepsilon \cdot 3^{2^{k}}\right\rangle}$ for some $k \geq 0$ and some $\varepsilon= \pm 1$, and the result follows since $\overline{\langle 5\rangle}=\overline{\langle-3\rangle}$.

We also note, for use in Chapter [4 the following more technical result.
Lemma 1.12. Let G be a finite group, fix $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. Let $P \leq S$ be such that $C_{G}(P) \leq P$ and $N_{S}(P) \in \operatorname{Syl}_{p}\left(N_{G}(P)\right)$. Then for each $\varphi \in \operatorname{Aut}(\mathcal{F})$ such that $\varphi(P)=P,\left.\varphi\right|_{N_{S}(P)}$ extends to an automorphism $\bar{\varphi}$ of $N_{G}(P)$.

Proof. Since $C_{G}(P) \leq P$ and $N_{S}(P) \in \operatorname{Syl}_{p}\left(N_{G}(P)\right), N_{G}(P)$ is a model for the fusion system $\mathcal{E}=\mathcal{F}_{N_{S}(P)}\left(N_{G}(P)\right)$ in the sense of [AKO Definition I.4.8].

By the strong uniqueness property for models [AKO, Theorem I.4.9(b)], and since $\left.\varphi\right|_{N_{S}(P)}$ preserves fusion in $\mathcal{E},\left.\varphi\right|_{N_{S}(P)}$ extends to an automorphism of the model.

The following elementary lemma will be useful in Chapters 5 and 6 for example, when computing orders of Sylow subgroups of groups of Lie type.

Lemma 1.13. Fix a prime p. Assume $q \equiv 1(\bmod p)$, and $q \equiv 1(\bmod 4)$ if $p=2$. Then for each $n \geq 1, v_{p}\left(q^{n}-1\right)=v_{p}(q-1)+v_{p}(n)$.

Proof. Set $r=v_{p}(q-1)$, and let k be such that $q=1+p^{r} k$. Then $q^{n}=$ $1+n p^{r} k+\xi$, where $v_{p}\left(n p^{r} k\right)=v_{p}(n)+r$, and where each term in ξ has strictly larger valuation.

CHAPTER 2

Background on finite groups of Lie type

In this chapter and the next, we fix the notation to be used for finite groups of Lie type, and list some of the (mostly standard) results which will be needed later. We begin by recalling the following concepts used in GLS3. We do not repeat the definitions of maximal tori and Borel subgroups in algebraic groups, but refer instead to GLS3 §§ 1.4-1.6].

Definition 2.1 (GLS3, Definitions 1.7.1, 1.15.1, 2.2.1]). Fix a prime q_{0}.

(a) A connected algebraic group \bar{G} over $\overline{\mathbb{F}}_{q_{0}}$ is simple if $[\bar{G}, \bar{G}] \neq 1$, and all proper closed normal subgroups of \bar{G} are finite and central. If \bar{G} is simple, then it is of universal type if it is simply connected, and of adjoint type if $Z(\bar{G})=1$.
(b) A Steinberg endomorphism of a connected simple algebraic group \bar{G} is a surjective algebraic endomorphism $\sigma \in \operatorname{End}(\bar{G})$ whose fixed subgroup is finite.
(c) A σ-setup for a finite group G is a pair (\bar{G}, σ), where \bar{G} is a simple algebraic group over $\overline{\mathbb{F}}_{q_{0}}$, and where σ is a Steinberg endomorphism of \bar{G} such that $G=O^{q{ }^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$.
(d) Let $\mathfrak{L i e}\left(q_{0}\right)$ denote the class of finite groups with σ-setup (\bar{G}, σ) where \bar{G} is simple and is defined in characteristic q_{0}, and let $\mathfrak{L i e}$ be the union of the classes $\mathfrak{L i e}\left(q_{0}\right)$ for all primes q_{0}. We say that G is of universal (adjoint) type if \bar{G} is of universal (adjoint) type.

If \bar{G} is universal, then $C_{\bar{G}}(\sigma)$ is generated by elements of q_{0}-power order (see [St3, Theorem 12.4]), and hence $G=C_{\bar{G}}(\sigma)$ in (c) above. In general, $C_{\bar{G}}(\sigma)=$ $G \cdot C_{\bar{T}}(\sigma)(c f$. GLS3, Theorem 2.2.6]).

A root group in a connected algebraic group \bar{G} over $\overline{\mathbb{F}}_{q_{0}}$ with a given maximal torus \bar{T} is a one-parameter closed subgroup (thus isomorphic to $\overline{\mathbb{F}}_{q_{0}}$) which is normalized by \bar{T}. The roots of \bar{G} are the characters for the \bar{T}-actions on the root groups, and lie in the \mathbb{Z}-lattice $X(\bar{T})=\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}\right)$ of characters of \bar{T}. (Note that this is the group of algebraic homomorphisms, and that $\operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \cong \mathbb{Z}$.) The roots are regarded as lying in the \mathbb{R}-vector space $V=\mathbb{R} \otimes_{\mathbb{Z}} X(\bar{T})$. We refer to [GLS3, §1.9] for details about roots and root subgroups of algebraic groups, and to [Brb, Chapitre VI] for a detailed survey of root systems.

The following notation and hypotheses will be used throughout this paper, when working with a finite group of Lie type defined via a σ-setup.

Notation 2.2. Let (\bar{G}, σ) be a σ-setup for the finite group G, where \bar{G} is a connected, simple algebraic group over $\overline{\mathbb{F}}_{q_{0}}$ for a prime q_{0}. When convenient, we also write $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, where \mathbb{G} is a group scheme over \mathbb{Z}.
(A) The maximal torus and Weyl group of $\overline{\boldsymbol{G}}$. Fix a maximal torus \bar{T} in \bar{G} such that $\sigma(\bar{T})=\bar{T}$. Let $W=N_{\bar{G}}(\bar{T}) / \bar{T}$ be the Weyl group of \bar{G} (and of \mathbb{G}).
(B) The root system of $\overline{\boldsymbol{G}}$. Let Σ be the set of all roots of \bar{G} with respect to \bar{T}, and let $\bar{X}_{\alpha}<\bar{G}$ denote the root group for the root $\alpha \in \Sigma$. Thus $\bar{X}_{\alpha}=$ $\left\{x_{\alpha}(u) \mid u \in \overline{\mathbb{F}}_{q_{0}}\right\}$ with respect to some fixed Chevalley parametrization of \bar{G}. Set $V=\mathbb{R} \otimes_{\mathbb{Z}} X(\bar{T})$: a real vector space with inner product $(-,-)$ upon which the Weyl group W acts orthogonally. Let $\Pi \subseteq \Sigma$ be a fundamental system of roots, and let $\Sigma_{+} \subseteq \Sigma$ be the set of positive roots with respect to Π. For each $\alpha \in \Sigma_{+}$, let ht (α) denote the height of α : the number of summands in the decomposition of α as a sum of fundamental roots.

For each $\alpha \in \Sigma$, let $w_{\alpha} \in W$ be the reflection in the hyperplane $\alpha^{\perp} \subseteq V$.
For $\alpha \in \Sigma$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}$, let $n_{\alpha}(\lambda) \in\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}\right\rangle$ and $h_{\alpha}(\lambda) \in \bar{T} \cap$ $\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}\right\rangle$ be as defined in [Ca, § 6.4] or [GLS3, Theorem 1.12.1]: the images of $\left(\begin{array}{cc}0 & \lambda \\ -\lambda^{-1} & 0\end{array}\right)$ and $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, respectively, under the homomorphism $S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right) \longrightarrow$ \bar{G} that sends $\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right)$ to $x_{\alpha}(u)$ and $\left(\begin{array}{lll}1 & 0 \\ v & 1\end{array}\right)$ to $x_{-\alpha}(v)$. Equivalently, $n_{\alpha}(\lambda)=$ $x_{\alpha}(\lambda) x_{-\alpha}\left(-\lambda^{-1}\right) x_{\alpha}(\lambda)$ and $h_{\alpha}(\lambda)=n_{\alpha}(\lambda) n_{\alpha}(1)^{-1}$.
(C) The maximal torus, root system and Weyl group of G. Set $T=\bar{T} \cap G$. Let $\tau \in \operatorname{Aut}(V)$ and $\rho \in \operatorname{Aut}(\Sigma)$ be the orthogonal automorphism and permutation, respectively, such that for each $\alpha \in \Sigma, \sigma\left(\bar{X}_{\alpha}\right)=\bar{X}_{\rho(\alpha)}$ and $\rho(\alpha)$ is a positive multiple of $\tau(\alpha)$. Set $W_{0}=C_{W}(\tau)$.
If $\rho(\Pi)=\Pi$, then set $V_{0}=C_{V}(\tau)$, and let $\mathrm{pr}_{V_{0}}^{\perp}$ be the orthogonal projection of V onto V_{0}. Let $\widehat{\Sigma}$ be the set of equivalence classes in Σ determined by τ, where $\alpha, \beta \in \Sigma$ are equivalent if $\mathrm{pr}_{V_{0}}^{\perp}(\alpha)$ is a positive scalar multiple of $\mathrm{pr}_{V_{0}}^{\perp}(\beta)$ (see GLS3, Definition 2.3.1] or $\mathbf{C a}, \S 13.2]$). Let $\widehat{\Pi} \subseteq \widehat{\Sigma}_{+}$denote the images in $\widehat{\Sigma}$ of $\Pi \subseteq \Sigma_{+}$.
For each $\widehat{\alpha} \in \widehat{\Sigma}$, set $\bar{X}_{\widehat{\alpha}}=\left\langle\bar{X}_{\alpha} \mid \alpha \in \widehat{\alpha}\right\rangle$ and $X_{\widehat{\alpha}}=C_{\bar{X}_{\widehat{\alpha}}}(\sigma)$. When $\alpha \in \Sigma$ is of minimal height in its class $\widehat{\alpha} \in \widehat{\Sigma}$, and $q^{\prime}=\left|X_{\widehat{\alpha}}^{\mathrm{ab}}\right|$, then for $u \in \mathbb{F}_{q^{\prime}}$, let $\widehat{x}_{\alpha}(u) \in X_{\widehat{\alpha}}$ be an element whose image under projection to X_{α} is $x_{\alpha}(u)$ (uniquely determined modulo $\left[X_{\widehat{\alpha}}, X_{\widehat{\alpha}}\right]$).
For $\alpha \in \Pi$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$, let $\widehat{h}_{\alpha}(\lambda) \in T$ be an element in $G \cap\left\langle h_{\beta}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right) \mid \beta \in \widehat{\alpha}\right\rangle$ whose component in $h_{\alpha}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right)$is $h_{\alpha}(\lambda)$ (if there is such an element).

To see that τ and ρ exist as defined in point (C), recall that the root groups \bar{X}_{α} for $\alpha \in \Sigma$ are the unique closed subgroups of \bar{G} which are isomorphic to ($\overline{\mathbb{F}}_{q_{0}},+$) and normalized by \bar{T} (see, e.g., GLS3, Theorem 1.9.5(a,b)]). Since σ is algebraic (hence continuous) and bijective, σ^{-1} sends root subgroups to root subgroups, and σ permutes the root subgroups (hence the roots) since there are only finitely many of them. Using Chevalley's commutator formula, one sees that this permutation ρ of Σ preserves angles between roots, and hence (up to positive scalar multiple) extends to an orthogonal automorphism of V.

These definitions of $\widehat{x}_{\alpha}(u) \in X_{\widehat{\alpha}}$ and $\widehat{h}_{\alpha}(\lambda) \in T$ are slightly different from the definitions in GLS3, § 2.4] of elements $x_{\widehat{\alpha}}(u)$ and $h_{\widehat{\alpha}}(\lambda)$. We choose this notation to emphasize that these elements depend on the choice of $\alpha \in \Sigma$, not only on its class $\widehat{\alpha} \in \widehat{\Sigma}$. This will be important in some of the relations we need to use in Chapter 5

Lemma 2.3. Under the assumptions of Notation [2.2, the action of W on \bar{T} restricts to an action of W_{0} on T, and the natural isomorphism $N_{\bar{G}}(\bar{T}) / \bar{T} \cong W$ restricts to an isomorphism

$$
\left(N_{G}(T) \cap N_{\bar{G}}(\bar{T})\right) / T \cong C_{W}(\tau)=W_{0}
$$

Proof. For each $\alpha \in \Sigma, n_{\alpha}(1)=x_{\alpha}(1) x_{-\alpha}(-1) x_{\alpha}(1)$ represents the reflection $w_{\alpha} \in W$, and hence $\sigma\left(n_{\alpha}\right) \in\left\langle X_{\rho(\alpha)}, X_{-\rho(\alpha)}\right\rangle \cap N_{\bar{G}}(\bar{T})$ represents the reflection $w_{\rho(\alpha)}={ }^{\tau}\left(w_{\alpha}\right)$. Since W is generated by the w_{α} for $\alpha \in \Sigma$, we conclude that σ and τ have the same action on W.

Thus the identification $N_{\bar{G}}(\bar{T}) / \bar{T} \cong W$ restricts to the following inclusions:

$$
\left(N_{G}(T) \cap N_{\bar{G}}(\bar{T})\right) / T \leq C_{N_{\bar{G}}(\bar{T})}(\sigma) / C_{\bar{T}}(\sigma) \leq C_{N_{\bar{G}}(\bar{T}) / \bar{T}}(\sigma) \cong C_{W}(\tau)=W_{0}
$$

If $w \in W_{0}$ represents the $\operatorname{coset} x \bar{T} \subseteq N_{\bar{G}}(\bar{T})$, then $x^{-1} \sigma(x) \in \bar{T}$. By the LangSteinberg theorem, each element of \bar{T} has the form $t^{-1} \sigma(t)$ for some $t \in \bar{T}$, and hence we can choose x such that $\sigma(x)=x$. Then $x \in C_{\bar{G}}(\sigma)$, and hence x normalizes $G=O^{q_{0}^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$ and $T=G \cap \bar{T}$. Since $C_{\bar{G}}(\sigma)=G C_{\bar{T}}(\sigma)$ (see GLS3, Theorem $2.2 .6(\mathrm{~g})$] or [St3, Corollary 12.3(a)]), some element of $x \bar{T}$ lies in $N_{G}(T)$. So the above inclusions are equalities.

The roots in \bar{G} are defined formally as characters of its maximal torus \bar{T}. But it will be useful to distinguish the (abstract) root $\alpha \in \Sigma$ from the character $\theta_{\alpha} \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \subseteq V$.

For each root $\alpha \in \Sigma \subseteq V$, let $\alpha^{\vee} \in V^{*}$ be the corresponding co-root (dual root): the unique element such that $\left(\alpha^{\vee}, \alpha\right)=2$ and w_{α} is reflection in the hyperplane $\operatorname{Ker}\left(\alpha^{\vee}\right)$. Since we identify $V=V^{*}$ via a W-invariant inner product, $\alpha^{\vee}=2 \alpha /(\alpha, \alpha)$. Point (ㄷC) of the next lemma says that $\alpha^{\vee}=h_{\alpha}$, when we regard $h_{\alpha} \in \operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \bar{T}\right)$ as an element in V^{*}.

Lemma 2.4. Assume we are in the situation of (A) and (B) in Notation 2.2.
(a) We have $C_{\bar{G}}(\bar{T})=\bar{T}$. In particular, $Z(\bar{G}) \leq \bar{T}$, and is finite of order prime to the defining characteristic q_{0}.
(b) The maximal torus \bar{T} in \bar{G} is generated by the elements $h_{\alpha}(\lambda)$ for $\alpha \in \Pi$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. If \bar{G} is universal, and $\lambda_{\alpha} \in \overline{\mathbb{F}}_{q_{0}}$ are such that $\prod_{\alpha \in \Pi} h_{\alpha}\left(\lambda_{\alpha}\right)=1$, then $\lambda_{\alpha}=1$ for each $\alpha \in \Pi$. Thus

$$
\bar{T}=\prod_{\alpha \in \Pi} h_{\alpha}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right)
$$

and h_{α} is injective for each α.
(c) For each $\beta \in \Sigma$, let $\theta_{\beta} \in X(\bar{T})=\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}\right)$ be the character such that

$$
{ }^{t} x_{\beta}(u)=x_{\beta}\left(\theta_{\beta}(t) \cdot u\right)
$$

for $t \in \bar{T}$ and $u \in \overline{\mathbb{F}}_{q_{0}}$ ．Then

$$
\theta_{\beta}\left(h_{\alpha}(\lambda)\right)=\lambda^{\left(\alpha^{\vee}, \beta\right)} \quad \text { for } \beta, \alpha \in \Sigma, \lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times} .
$$

The product homomorphism $\theta_{\Pi}=\prod \theta_{\beta}: \bar{T} \longrightarrow \prod_{\beta \in \Pi} \overline{\mathbb{F}}_{q_{0}}^{\times}$is surjective，and $\operatorname{Ker}\left(\theta_{\Pi}\right)=Z(\bar{G})$.
（d）If $\alpha, \beta_{1}, \ldots, \beta_{k} \in \Sigma$ and $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ are such that $\alpha^{\vee}=n_{1} \beta_{1}^{\vee}+\ldots+n_{k} \beta_{k}^{\vee}$ ， then for each $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}, h_{\alpha}(\lambda)=h_{\beta_{1}}\left(\lambda^{n_{1}}\right) \cdots h_{\beta_{k}}\left(\lambda^{n_{k}}\right)$ ．
（e）For each $w \in W, \alpha \in \Sigma$ ，and $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$，and each $n \in N_{\bar{G}}(\bar{T})$ such that $n \bar{T}=w \in N_{\bar{G}}(\bar{T}) / \bar{T} \cong W,{ }^{n}\left(\bar{X}_{\alpha}\right)=\bar{X}_{w(\alpha)}$ and ${ }^{n}\left(h_{\alpha}(\lambda)\right)=h_{w(\alpha)}(\lambda)$ ．For each $\alpha, \beta \in \Sigma$ and each $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$，

$$
w_{\alpha}\left(h_{\beta}(\lambda)\right)=h_{w_{\alpha}(\beta)}(\lambda)=h_{\beta}(\lambda) h_{\alpha}\left(\lambda^{-\left(\beta^{\vee}, \alpha\right)}\right) .
$$

Hence $w_{\alpha}(t)=t \cdot h_{\alpha}\left(\theta_{\alpha}(t)\right)^{-1}$ for each $t \in \bar{T}$ ．
Proof．（回）By $\mathbf{H u}$ ，Proposition 24．1．A］，the maximal torus \bar{T} is regular（i．e．， contained in only finitely many Borel subgroups）．So $C_{\bar{G}}(\bar{T})=\bar{T}$ by Hu，Corollary 26．2．A］．Hence $Z(\bar{G}) \leq \bar{T}$ ，it is finite since \bar{G} is assumed simple，and so it has order prime to the defining characteristic q_{0} ．

We claim that it suffices to prove the relations in（ㅈC）－（四）in the adjoint group $\bar{G} / Z(\bar{G})$ ，and hence that we can use the results in［Ca，$\S \S 7.1-2$ ］．For relations in \bar{T} ， this holds since \bar{T} is infinitely divisible and $Z(\bar{G})$ is finite（thus each homomorphism to $\bar{T} / Z(\bar{G})$ has at most one lifting to $\bar{T})$ ．For relations in a root group \bar{X}_{α} ，this holds since each element of $\bar{X}_{\alpha} Z(\bar{G})$ of order q_{0} lies in \bar{X}_{α} ，since $|Z(\bar{G})|$ is prime to q_{0} by（回）．
（b）This is stated without proof in GLS3，Theorem 1．12．5（b）］，and with a brief sketch of a proof in［St4，p．122］．We show here how it follows from the classification of reductive algebraic groups in terms of root data（see，e．g．， $\mathbf{S p}, \S 10]$ ）．

Consider the homomorphism

$$
h_{\Pi}: \widetilde{T} \stackrel{\text { def }}{=} \prod_{\alpha \in \Pi} \overline{\mathbb{F}}_{q_{0}}^{\times} \longrightarrow \bar{T}
$$

which sends $\left(\lambda_{\alpha}\right)_{\alpha \in \Pi}$ to $\prod_{\alpha} h_{\alpha}\left(\lambda_{\alpha}\right)$ ．Then h_{Π} is surjective with finite kernel（see ［Ca，§7．1］）．It remains to show that it is an isomorphism when G is of universal type．
 datum $\left(X(\bar{T}), \Sigma, X^{\vee}(\bar{T}), \Sigma^{\vee}\right)$ ，where
$X(\bar{T})=\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right), X^{\vee}(\bar{T})=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \bar{T}\right), \Sigma^{\vee}=\left\{\alpha^{\vee}=h_{\alpha} \mid \alpha \in \Sigma\right\} \subseteq X^{\vee}(\bar{T})$.
As noted before，$X(\bar{T})$ and $X^{\vee}(\bar{T})$ are groups of algebraic homomorphisms，and are free abelian groups of finite rank dual to each other．Recall that $\Sigma \subseteq X(\bar{T})$ ， since we identify a root α with the character θ_{α} ．

Set $Y^{\vee}=\mathbb{Z} \Sigma^{\vee} \subseteq X^{\vee}(\bar{T})$ ，and let $Y \supseteq X(\bar{T})$ be its dual．Then $\left(Y, \Sigma, Y^{\vee}, \Sigma^{\vee}\right)$ is still a root datum as defined in［Sp，§7．4］．By［Sp Proposition 10．1．3］and its proof，it is realized by a connected algebraic group \widetilde{G} with maximal torus \widetilde{T} ，which
lies in a central extension $f: \widetilde{G} \longrightarrow \bar{G}$ which extends h_{Π}. Since \bar{G} is of universal type, f and hence h_{Π} are isomorphisms.
(c) Let $\mathbb{Z} \Sigma \leq V$ be the additive subgroup generated by Σ. In the notation of [Ca, pp. 97-98], for each $\alpha \in \Sigma$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}, h_{\alpha}(\lambda)=h\left(\chi_{\alpha, \lambda}\right)$ where

$$
\chi_{\alpha, \lambda} \in \operatorname{Hom}\left(\mathbb{Z} \Sigma, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \quad \text { is defined by } \quad \chi_{\alpha, \lambda}(v)=\lambda^{2(\alpha, v) /(\alpha, \alpha)}=\lambda^{\left(\alpha^{\vee}, v\right)} .
$$

Also, by [Ca p. 100], for each $\chi \in \operatorname{Hom}\left(\mathbb{Z} \Sigma, \overline{\mathbb{F}}_{q_{0}}^{\times}\right), \beta \in \Sigma$, and $u \in \overline{\mathbb{F}}_{q_{0}},{ }^{h(\chi)} x_{\beta}(u)=$ $x_{\beta}(\chi(\beta) \cdot u)$. Thus there are homomorphisms $\theta_{\beta} \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$, for each $\beta \in \Sigma$, such that ${ }^{t} x_{\beta}(u)=x_{\beta}\left(\theta_{\beta}(t) \cdot u\right)$, and $\theta_{\beta}(h(\chi))=\chi(\beta)$ for each χ. For each $\alpha \in \Sigma$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}$,

$$
\begin{equation*}
\theta_{\beta}\left(h_{\alpha}(\lambda)\right)=\theta_{\beta}\left(h\left(\chi_{\alpha, \lambda}\right)\right)=\chi_{\alpha, \lambda}(\beta)=\lambda^{\left(\alpha^{\vee}, \beta\right)} . \tag{1}
\end{equation*}
$$

Assume $t \in \operatorname{Ker}\left(\theta_{\Pi}\right)$. Thus $t \in \operatorname{Ker}\left(\theta_{\alpha}\right)$ for all $\alpha \in \Pi$, and hence for all $\alpha \in \Sigma \subseteq \mathbb{Z} \Pi$. So $\left[t, X_{\alpha}\right]=1$ for all $\alpha \in \Sigma$, these root subgroups generate \bar{G} (see $\mathbf{\mathbf { S p }}$, Corollary 8.2.10]), and this proves that $t \in Z(\bar{G})$. The converse is clear: $t \in Z(\bar{G})$ implies $t \in \bar{T}$ by (a), and hence $\theta_{\beta}(t)=1$ for all $\beta \in \Pi$ by definition of θ_{β}.

It remains to show that θ_{Π} sends \bar{T} onto $\prod_{\beta \in \Pi} \overline{\mathbb{F}}_{q_{0}}$. Consider the homomorphisms

$$
\begin{equation*}
\widetilde{T} \stackrel{\text { def }}{=} \prod_{\alpha \in \Pi} \overline{\mathbb{F}}_{q_{0}}^{\times} \xrightarrow{h_{\Pi}} \bar{T} \xrightarrow{\theta_{\Pi}} \prod_{\beta \in \Pi} \overline{\mathbb{F}}_{q_{0}}^{\times}, \tag{2}
\end{equation*}
$$

where h_{Π} was defined in the proof of (B). We just saw that $\theta_{\Pi} \circ h_{\Pi}$ has matrix $\left(\left(\alpha^{\vee}, \beta\right)\right)_{\alpha, \beta \in \Pi}$, which has nonzero determinant since $\Pi \subseteq V$ and $\Pi^{\vee} \subseteq V^{*}$ are bases. Since $\overline{\mathbb{F}}_{q_{0}} \times$ is divisible and its finite subgroups are cyclic, this implies that $\theta_{\Pi} \circ h_{\Pi}$ is onto, and hence θ_{Π} is onto.
(d) This follows immediately from ((C), where we showed, for $\alpha \in \Sigma$, that α^{\vee} can be identified with h_{α} in $\operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \bar{T}\right) \subseteq V^{*}$.
(园) The first statement $\left({ }^{n}\left(\bar{X}_{\alpha}\right)=\bar{X}_{w(\alpha)}\right.$ and $\left.{ }^{n}\left(h_{\alpha}(\lambda)\right)=h_{w(\alpha)}(\lambda)\right)$ is shown in [Ca Lemma 7.2.1(ii) \& Theorem 7.2.2]. By the usual formula for an orthogonal reflection, $w_{\alpha}(\beta)=\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha=\beta-\left(\alpha^{\vee}, \beta\right) \alpha$. Here, we regard w_{α} as an automorphism of V (not of \bar{T}). Since $w_{\alpha}(\beta)$ and β have the same norm,

$$
w_{\alpha}(\beta)^{\vee}=\frac{2 w_{\alpha}(\beta)}{(\beta, \beta)}=\frac{2 \beta}{(\beta, \beta)}-\frac{2(\alpha, \beta)}{(\beta, \beta)} \cdot \frac{2 \alpha}{(\alpha, \alpha)}=\beta^{\vee}-\left(\beta^{\vee}, \alpha\right) \cdot \alpha^{\vee}
$$

and by (d),

$$
w_{\alpha}\left(h_{\beta}(\lambda)\right)=h_{w_{\alpha}(\beta)}(\lambda)=h_{\beta}(\lambda) h_{\alpha}\left(\lambda^{-\left(\beta^{\vee}, \alpha\right)}\right)=h_{\beta}(\lambda) h_{\alpha}\left(\theta_{\alpha}\left(h_{\beta}(\lambda)\right)^{-1}\right)
$$

where the last equality follows from (C). Since \bar{T} is generated by the $h_{\beta}(\lambda)$ by (B), this implies that $w_{\alpha}(t)=t \cdot h_{\alpha}\left(\theta_{\alpha}(t)\right)^{-1}$ for all $t \in \bar{T}$.

For any algebraic group H, H^{0} denotes its identity connected component. The following proposition holds for any connected, reductive group, but we state it only in the context of Notation [2.2] Recall the homomorphisms $\theta_{\beta} \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$, defined for $\beta \in \Sigma$ in Lemma 2.4(c).

Proposition 2.5. Assume Notation 2.2. For any subgroup $H \leq \bar{T}, C_{\bar{G}}(H)$ is an algebraic group, $C_{\bar{G}}(H)^{0}$ is reductive, and

$$
\begin{align*}
C_{\bar{G}}(H)^{0} & =\left\langle\bar{T}, \bar{X}_{\alpha} \mid \alpha \in \Sigma, H \leq \operatorname{Ker}\left(\theta_{\alpha}\right)\right\rangle \tag{3}\\
C_{\bar{G}}(H) & =C_{\bar{G}}(H)^{0} \cdot\left\{g \in N_{\bar{G}}(\bar{T}) \mid[g, H]=1\right\} .
\end{align*}
$$

If, furthermore, \bar{G} is of universal type, then $Z(\bar{G})=C_{\bar{T}}(W)$.
Proof. The description of $C_{\bar{G}}(H)^{0}$ is shown in [Ca2, Theorem 3.5.3] when H is finite and cyclic, and the proof given there also applies in the more general case. For each $g \in C_{\bar{G}}(H), c_{g}(\bar{T})$ is another maximal torus in $C_{\bar{G}}(H)^{0}$, so $g h \in$ $C_{N_{\bar{G}}(\bar{T})}(H)$ for some $h \in C_{\bar{G}}(H)^{0}$, and thus $C_{\bar{G}}(H)=C_{\bar{G}}(H)^{0} \cdot C_{N_{\bar{G}}(\bar{T})}(H)$.

Assume \bar{G} is of universal type. Since $Z(\bar{G}) \leq \bar{T}$ by Lemma 2.4(a), we have $Z(\bar{G}) \leq C_{\bar{T}}(W)$. Conversely, by Lemma 2.4(b), for each $t \in \bar{T}$ and each $\alpha \in \Sigma$, ${ }^{t}\left(x_{\alpha}(u)\right)=x_{\alpha}\left(\theta_{\alpha}(t) u\right)$, and $\theta_{-\alpha}(t)=\theta_{\alpha}(t)^{-1}$. Hence also ${ }^{t}\left(n_{\alpha}(1)\right)=n_{\alpha}\left(\theta_{\alpha}(t)\right)$ (see the formula for $n_{\alpha}(\lambda)$ in Notation 2.2(B)). If $t \in C_{\bar{T}}(W)$, then $\left[t, n_{\alpha}(1)\right]=1$ for each α, and since \bar{G} is of universal type, $\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}\right\rangle \cong S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$. Thus $\theta_{\alpha}(t)=1$ for all $\alpha \in \Sigma, t$ acts trivially on all root subgroups, and so $t \in Z(\bar{G})$.

We now look more closely at the lattice $\mathbb{Z} \Sigma^{\vee}$ generated by the dual roots.
Lemma 2.6. Assume Notation $2.2(\bar{A} \mid \bar{B})$, and also that \mathbb{G} (and hence \bar{G}) is of universal type.
(a) There is an isomorphism

$$
\Phi: \mathbb{Z} \Sigma^{\vee} \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{q_{0}}^{\times} \longrightarrow \bar{T}
$$

with the property that $\Phi\left(\alpha^{\vee} \otimes \lambda\right)=h_{\alpha}(\lambda)$ for each $\alpha \in \Sigma$ and each $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$.
Fix some $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$, and set $m=|\lambda|$. Set $\Phi_{\lambda}=\Phi(-, \lambda): \mathbb{Z} \Sigma^{\vee} \longrightarrow \bar{T}$.
(b) The map Φ_{λ} is $\mathbb{Z}[W]$-linear, $\operatorname{Ker}\left(\Phi_{\lambda}\right)=m \mathbb{Z} \Sigma^{\vee}$, and $\operatorname{Im}\left(\Phi_{\lambda}\right)=\left\{t \in \bar{T} \mid t^{m}=\right.$ $1\}$.
(c) Fix $t \in \bar{T}$ and $x \in \mathbb{Z} \Sigma^{\vee}$ such that $\Phi_{\lambda}(x)=t$, and also such that

$$
\|x\|<\frac{1}{2} m \cdot \min \left\{\left\|\alpha^{\vee}\right\| \mid \alpha \in \Pi\right\}
$$

Then $C_{W}(t)=C_{W}(x)$.
(d) If $m=|\lambda| \geq 4$, then for each $\alpha \in \Sigma, C_{W}\left(h_{\alpha}(\lambda)\right)=C_{W}(\alpha)$.

Proof. (a,b) Identify $\mathbb{Z} \Sigma^{\vee}$ as a subgroup of $\operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \bar{T}\right)$, and let

$$
\bar{\Phi}: \mathbb{Z} \Sigma^{\vee} \times \overline{\mathbb{F}}_{q_{0}}^{\times} \longrightarrow \bar{T}
$$

be the evaluation pairing. This is bilinear, hence induces a homomorphism on the tensor product, and $\bar{\Phi}\left(\alpha^{\vee}, \lambda\right)=h_{\alpha}(\lambda)$ by Lemma [2.4(cc). Since $\left\{\alpha^{\vee} \mid \alpha \in \Pi\right\}$ is a \mathbb{Z}-basis for $\mathbb{Z} \Sigma^{\vee}$ (since Σ^{\vee} is a root system by [Brb, $\S V I .1$, Proposition 2]), and since \bar{G} is of universal type, Φ is an isomorphism by Lemma 2.4(b).

In particular, for fixed $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$of order $m, \Phi(-, \lambda)$ induces an isomorphism from the quotient group $\mathbb{Z} \Sigma^{\vee} / m \mathbb{Z} \Sigma^{\vee}$ onto the m-torsion subgroup of \bar{T}.
(c) Clearly, $C_{W}(x) \leq C_{W}(t)$; it remains to prove the opposite inclusion. Fix $w \in C_{W}(t)$. By (a), $w(x) \equiv x\left(\bmod m \mathbb{Z} \Sigma^{\vee}\right)$.

Set $r=\min \left\{\left\|\alpha^{\vee}\right\| \mid \alpha \in \Pi\right\}$. For each $\alpha \in \Sigma,\left\|\alpha^{\vee}\right\|=\sqrt{k} \cdot r$ for some $k=$ $1,2,3$, and hence $\left(\alpha^{\vee}, \alpha^{\vee}\right) \in r^{2} \mathbb{Z}$. For each $\alpha, \beta \in \Sigma, 2\left(\alpha^{\vee}, \beta^{\vee}\right) /\left(\alpha^{\vee}, \alpha^{\vee}\right) \in \mathbb{Z}$ (cf. [Ca, Definition 2.1.1]), and hence $\left(\alpha^{\vee}, \beta^{\vee}\right) \in \frac{1}{2} r^{2} \mathbb{Z}$. Thus $(x, x) \in r^{2} \mathbb{Z}$ for each $x \in \mathbb{Z} \Sigma^{\vee}$, and in particular, $\min \left\{\|x\| \mid 0 \neq x \in \mathbb{Z} \Sigma^{\vee}\right\}=r$.

By assumption, $\|w(x)\|=\|x\|<m r / 2$, so $\|w(x)-x\|<m r$. Since each nonzero element in $m \mathbb{Z} \Sigma^{\vee}$ has norm at least $m r$, this proves that $w(x)-x=0$, and hence that $w \in C_{W}(x)$.
(d) This is the special case of (c), where $x=\alpha^{\vee}$ and $t=h_{\alpha}(\lambda)$.

Lemma 2.7. Assume Notation [2.2, and assume also that \mathbb{G} is of universal type. Let $\Gamma<\operatorname{Aut}(V)$ be any finite group of isometries of (V, Σ). Then there is an action of Γ on \bar{T}, where $g\left(h_{\alpha}(u)\right)=h_{g(\alpha)}(u)$ for each $g \in \Gamma, \alpha \in \Sigma$, and $u \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. Fix $m \geq 3$ such that $q_{0} \nmid m$, and set $T_{m}=\left\{t \in \bar{T} \mid t^{m}=1\right\}$. Then Γ acts faithfully on T_{m}. If $1 \neq g \in \Gamma$ and $\ell \in \mathbb{Z}$ are such that $g(t)=t^{\ell}$ for each $t \in T_{m}$, then $\ell \equiv-1$ (mod m).

Proof. The action of Γ on \bar{T} is well defined by the relations in Lemma 2.4 (d|b).
Now fix $m \geq 3$ prime to q_{0}, and let $T_{m}<\bar{T}$ be the m-torsion subgroup. It suffices to prove the rest of the lemma when $m=p$ is an odd prime, or when $m=4$ and $p=2$. Fix $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$of order m, and let $\Phi_{\lambda}: \mathbb{Z} \Sigma^{\vee} \longrightarrow \bar{T}$ be the homomorphism of Lemma 2.6(b). By definition of Φ_{λ}, it commutes with the actions of Γ on $\mathbb{Z} \Sigma^{\vee}<V$ and on T_{m}.

Assume $1 \neq g \in \Gamma$ and $\ell \in \mathbb{Z}$ are such that $g(t)=t^{\ell}$ for each $t \in T_{m}$. Set $r=\operatorname{dim}(V)$, and let $B \in G L_{r}(\mathbb{Z})$ be the matrix for the action of g on $\mathbb{Z} \Sigma^{\vee}$, with respect to some \mathbb{Z}-basis of $\mathbb{Z} \Sigma^{\vee}$. Then $|g|=|B|$, and $B \equiv \ell I\left(\bmod m M_{r}(\mathbb{Z})\right)$. If $p=2(m=4)$, let $\mu \in\{ \pm 1\}$ be such that $\ell \equiv \mu(\bmod 4)$. If p is odd (so $m=p)$, then let $\mu \in\left(\mathbb{Z}_{p}\right)^{\times}$be such that $\mu \equiv \ell(\bmod p)$ and $\mu^{p-1}=1$. Set $B^{\prime}=\mu^{-1} B \in G L_{r}\left(\mathbb{Z}_{p}\right)$. Thus B^{\prime} also has finite order, and $B^{\prime} \equiv I\left(\bmod m M_{r}\left(\mathbb{Z}_{p}\right)\right)$.

The logarithm and exponential maps define inverse bijections

$$
I+m M_{r}\left(\mathbb{Z}_{p}\right) \underset{\exp }{\stackrel{\ln }{\rightleftarrows}} m M_{r}\left(\mathbb{Z}_{p}\right) .
$$

They are not homomorphisms, but they do have the property that $\ln \left(M^{k}\right)=$ $k \ln (M)$ for each $M \in I+m M_{r}\left(\mathbb{Z}_{p}\right)$ and each $k \geq 1$. In particular, the only element of finite order in $I+m M_{r}\left(\mathbb{Z}_{p}\right)$ is the identity. Thus $B^{\prime}=I$, so $B=\mu I$. Since $\mu \in \mathbb{Z}$ and $B \neq I$, we have $\mu=-1$ and $B=-I$.

The following lemma about the lattice $\mathbb{Z} \Sigma^{\vee}$ will also be useful when working with the Weyl group action on certain subgroups of \bar{T}.

Lemma 2.8. Assume Notation 2.2(A)B). Set $\Lambda=\mathbb{Z} \Sigma^{\vee}$: the lattice in V generated by the dual roots. Assume that there are $b \in W$ of order 2 , and a splitting $\Lambda=\Lambda_{+} \times \Lambda_{-}$, such that $\Lambda_{+}, \Lambda_{-} \neq 0$ and b acts on $\Lambda_{ \pm}$via $\pm \mathrm{Id}$. Then $\mathbb{G} \cong C_{n}$ ($=S p_{2 n}$) for some $n \geq 2$.

Proof. Fix $b \in W$ and a splitting $\Lambda=\Lambda_{+} \times \Lambda_{-}$as above. When considering individual cases, we use the notation of Bourbaki $[\mathbf{B r b}$, Planches I-IX] to describe the (dual) roots, lattice, and Weyl group.

- If $\mathbb{G}=A_{n}(n \geq 2)$, then $\Lambda=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1} \mid a_{0}+\ldots+a_{n}=0\right\}$, and b exchanges certain coordinates pairwise. Choose $v \in \Lambda$ with coordinates $1,-1$, and otherwise 0 ; where the two nonzero entries are in separate orbits of b of which at least one is nonfixed. Then $v \notin \Lambda_{+} \times \Lambda_{-}$, a contradiction.
- If $\mathbb{G}=G_{2}$, then as described in [Brb, Planche IX], Λ is generated by the dual fundamental roots $(1,-1,0)$ and $\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right)$, and does not have an orthogonal basis.
- If $\mathbb{G}=B_{n}(n \geq 3), D_{n}(n \geq 4)$, or F_{4}, then $\Lambda<\mathbb{Z}^{n}$ is the sublattice of n-tuples the sum of whose coordinates is even. Also, b acts by permuting the coordinates and changing sign (or we can assume it acts this way in the F_{4} case). Choose v with two 1 's and the rest 0 , where the 1 's are in separate b-orbits, of which either at least one is nonfixed, or both are fixed and exactly one is negated. Then $v \notin \Lambda_{+} \times \Lambda_{-}$, a contradiction.
- If $\mathbb{G}=E_{8}$, then $\Lambda=\Lambda\left(E_{8}\right)<\mathbb{R}^{8}$ is generated by $\frac{1}{2}(1,1, \ldots, 1)$ and the n-tuples of integers whose sum is even. We can assume (up to conjugation) that b acts as a signed permutation. Choose v as in the last case.
- If $\mathbb{G}=E_{7}$, then $\Lambda<\mathbb{R}^{8}$ is the lattice of all $x=\left(x_{1}, \ldots, x_{8}\right) \in \Lambda\left(E_{8}\right)$ such that $x_{7}=-x_{8}$. Up to conjugation, b can be again be assumed to act on A via a signed permutation (permuting only the first six coordinates), and v can be chosen as in the last case.
- If $\mathbb{G}=E_{6}$, then $\Lambda<\mathbb{R}^{8}$ is the lattice of all $x=\left(x_{1}, \ldots, x_{8}\right) \in \Lambda\left(E_{8}\right)$ such that $x_{6}=x_{7}=-x_{8}$. Also, W contains a subgroup isomorphic to $2^{4}: S_{5}$ with odd index which acts on the remaining five coordinates via signed permutations. So b and v can be taken as in the last three cases.
We finish the chapter with a very elementary lemma.
It will be useful to know, in certain situations, that each coset of \bar{T} in $N_{\bar{G}}(\bar{T})$ contains elements of G.

Lemma 2.9. Assume that we are in the situation of Notation 2.2 (AB). Assume also that σ acts on \bar{T} via $\left(t \mapsto t^{m}\right)$ for some $1 \neq m \in \mathbb{Z}$. Then for each $g \in N_{\bar{G}}(\bar{T}), g \bar{T} \cap C_{\bar{G}}(\sigma) \neq \varnothing$.

Proof. Since $\left.\sigma\right|_{\bar{T}} \in Z(\operatorname{Aut}(\bar{T}))$, we have $g^{-1} \sigma(g) \in C_{\bar{G}}(\bar{T})=\bar{T}$, the last equality by Lemman2.4(a). So for each $t \in \bar{T}, \sigma(g t)=g t$ if and only if $g^{-1} \sigma(g)=$ t^{1-m}. Since $\bar{T} \cong\left(\overline{\mathbb{F}}_{q_{0}}\right)^{r}$ for some r, and $\overline{\mathbb{F}}_{q_{0}}$ is algebraically complete (and $1-m \neq$ 0), this always has solutions.

CHAPTER 3

Automorphisms of groups of Lie type

Since automorphisms of G play a central role in this paper, we need to fix our notation (mostly taken from GLS3) for certain subgroups and elements of $\operatorname{Aut}(G)$. We begin with automorphisms of the algebraic group \bar{G}.

Definition 3.1. Let \bar{G} and its root system Σ be as in Notation 2.2(A|B).
(a) When q is any power of q_{0} (the defining characteristic of \bar{G}), let $\psi_{q} \in \operatorname{End}(\bar{G})$ be the field endomorphism defined by $\psi_{q}\left(x_{\alpha}(u)\right)=x_{\alpha}\left(u^{q}\right)$ for each $\alpha \in \Sigma$ and each $u \in \overline{\mathbb{F}}_{q_{0}}$. Set $\Phi_{\bar{G}}=\left\{\psi_{q_{0}^{b}} \mid b \geq 1\right\}$: the monoid of all field endomorphisms of \bar{G}.
(b) Let $\Gamma_{\bar{G}}$ be the group or set of graph automorphisms of \bar{G} as defined in GLS3, Definition 1.15.5(e)]. Thus when $\left(\mathbb{G}, q_{0}\right) \neq\left(B_{2}, 2\right),\left(G_{2}, 3\right)$, nor $\left(F_{4}, 2\right), \Gamma_{\bar{G}}$ is the group of all $\gamma \in \operatorname{Aut}(\bar{G})$ of the form $\gamma\left(x_{\alpha}(u)\right)=x_{\rho(\alpha)}(u)$ (all $\alpha \in \pm \Pi$ and $u \in \overline{\mathbb{F}}_{q_{0}}$) for some isometry ρ of Σ such that $\rho(\Pi)=\Pi$. If $\left(\mathbb{G}, q_{0}\right)=$ $\left(B_{2}, 2\right),\left(G_{2}, 3\right)$, or $\left(F_{4}, 2\right)$, then $\Gamma_{\bar{G}}=\{1, \psi\}$, where for the angle-preserving permutation ρ of Σ which exchanges long and short roots and sends Π to itself, $\psi\left(x_{\alpha}(u)\right)=x_{\rho(\alpha)}(u)$ when α is a long root and $\psi\left(x_{\alpha}(u)\right)=x_{\rho(\alpha)}\left(u^{q_{0}}\right)$ when α is short.
(c) A Steinberg endomorphism σ of \bar{G} is "standard" if $\sigma=\psi_{q} \circ \gamma=\gamma \circ \psi_{q}$, where q is a power of q_{0} and $\gamma \in \Gamma_{\bar{G}}$. A σ-setup (\bar{G}, σ) for a finite subgroup $G<\bar{G}$ is standard if σ is standard.

By GLS3, Theorem 2.2.3], for any G with σ-setup (\bar{G}, σ) as in Notation [2.2, G is \bar{G}-conjugate to a subgroup G^{*} which has a standard σ-setup. This will be made more precise in Proposition 3.6(a).

Most of the time in this paper, we will be working with standard σ-setups. But there are a few cases where we will need to work with setups which are not standard, which is why this condition is not included in Notation 2.2 ,

Following the usual terminology, we call G a "Chevalley group" if it has a standard σ-setup where $\gamma=\mathrm{Id}$ in the notation of Definition 3.1 i.e., if $G \cong \mathbb{G}(q)$ where q is some power of q_{0}. In this case, the root groups $X_{\widehat{\alpha}}$ are all abelian and isomorphic to \mathbb{F}_{q}. When G has a standard σ-setup with $\gamma \neq \mathrm{Id}$, we refer to G as a "twisted group", and the different possible structures of its root groups are described in GLS3, Table 2.4]. We also refer to G as a "Steinberg group" if $\gamma \neq \mathrm{Id}$ and is an algebraic automorphism of \bar{G}; i.e., if G is a twisted group and not a Suzuki or Ree group.

The following lemma will be useful in Chapters 5 and 6

Lemma 3.2. Assume \bar{G} is as in Notation 2.2(A|B). Then for each algebraic automorphism γ of \bar{G} which normalizes \bar{T}, there is an orthogonal automorphism τ of V such that $\tau(\Sigma)=\Sigma$, and

$$
\gamma\left(\bar{X}_{\alpha}\right)=\bar{X}_{\tau(\alpha)} \quad \text { and } \quad \gamma\left(h_{\alpha}(\lambda)\right)=h_{\tau(\alpha)}(\lambda)
$$

for each $\alpha \in \Sigma$ and each $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. In particular, $|\gamma|_{\bar{T}}|=|\tau|<\infty$. If, in addition, γ normalizes each of the root groups \bar{X}_{α} (i.e., $\tau=\mathrm{Id}$), then $\gamma \in \operatorname{Aut}_{\bar{T}}(\bar{G})$.

Proof. By GLS3, Theorem 1.15.2(b)], and since γ is an algebraic automorphism of $\bar{G}, \gamma=c_{g} \circ \gamma_{0}$ for some $g \in \bar{G}$ and some $\gamma_{0} \in \Gamma_{\bar{G}}$. Furthermore, γ_{0} has the form: $\gamma_{0}\left(x_{\alpha}(u)\right)=x_{\chi(\alpha)}(u)$ for all $\alpha \in \Sigma$ and $u \in \overline{\mathbb{F}}_{q_{0}}$, and some isometry $\chi \in \operatorname{Aut}(V)$ such that $\chi(\Pi)=\Pi$. Since γ and γ_{0} both normalize \bar{T}, we have $g \in N_{\bar{G}}(\bar{T})$.

Thus by Lemma 2.4(el), there is $\tau \in \operatorname{Aut}(V)$ such that $\tau(\Sigma)=\Sigma$, and $\gamma\left(\bar{X}_{\alpha}\right)=$ $\bar{X}_{\tau(\alpha)}$ and $\gamma\left(h_{\alpha}(\lambda)\right)=h_{\tau(\alpha)}(\lambda)$ for each $\alpha \in \Sigma$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. In particular, $|\gamma|_{\bar{T}} \mid=$ $|\tau|$.

If $\tau=\mathrm{Id}$, then $\gamma_{0}=\mathrm{Id}$ and $g \in \bar{T}$. Thus $\gamma \in \operatorname{Aut}_{\bar{T}}(\bar{G})$.
We next fix notation for automorphisms of G.
Definition 3.3. Let \bar{G} and G be as in Notation $2.2(\mathrm{~A}|\mathrm{~B}|$, where in addition, we assume the σ-setup is standard.
(a) $S e t$

$$
\operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{T}}(G) \operatorname{Inn}(G) \quad \text { and } \quad \operatorname{Outdiag}(G)=\operatorname{Inndiag}(G) / \operatorname{Inn}(G)
$$

(b) Set $\Phi_{G}=\left\{\left.\psi_{q}\right|_{G} \mid q=q_{0}^{b}, b \geq 1\right\}$, the group of field automorphisms of G.
(c) If G is a Chevalley group, set $\Gamma_{G}=\left\{\left.\gamma\right|_{G} \mid \gamma \in \Gamma_{\bar{G}}\right\}$, the group of graph automorphisms of G. Set $\Gamma_{G}=1$ if G is a twisted group (a Steinberg, Suzuki, or Ree group).

Note that in GLS3, Definition 2.5.13], when G has a standard σ-setup (\bar{G}, σ), Inndiag (G) is defined to be the group of automorphisms induced by conjugation by elements of $C_{\bar{G} / Z(\bar{G})}(\sigma)$ (lifted to \bar{G}). By GLS3, Lemma 2.5.8], this is equal to $\operatorname{Inndiag}(G)$ as defined above when \bar{G} is of adjoint form, and hence also in the general case (since $Z(\bar{G}) \leq \bar{T})$.

Steinberg's theorem on automorphisms of groups of Lie type can now be stated.
Theorem 3.4 ($\mathbf{\mathbf { S t 1 }}, \S 3]$). Let G be a finite group of Lie type. Assume that (\bar{G}, σ) is a standard σ-setup for G, where \bar{G} is in adjoint or universal form. Then

$$
\operatorname{Aut}(G)=\operatorname{Inndiag}(G) \Phi_{G} \Gamma_{G},
$$

where $\operatorname{Inndiag}(G) \unlhd \operatorname{Aut}(G)$ and $\operatorname{Inndiag}(G) \cap\left(\Phi_{G} \Gamma_{G}\right)=1$.
Proof. See, e.g., GLS3, Theorem 2.5.12(a)] (together with GLS3, Theorem 2.5.14(d)]). Most of this follows from the main result in [St1, and from [St2, Theorems $30 \& 36]$.

We also need the following characterizations of $\operatorname{Inndiag}(G)$ which are independent of the choice of σ-setup.

Proposition 3.5. Assume the hypotheses and notation in 2.2. Then
(a) $C_{\bar{G}}(G)=Z(\bar{G})$;
(b) $N_{\bar{G}}(G)=G N_{\bar{T}}(G)$; and
(c) $\operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{T}}(G) \operatorname{Inn}(G)=\operatorname{Aut}_{\bar{G}}(G)$ and hence $\operatorname{Outdiag}(G)=\operatorname{Out}_{\bar{T}}(G)$. In fact, (b) and (c) hold if we replace \bar{T} by any σ-invariant maximal torus in \bar{G}.

Proof. (a) Since the statement is independent of the choice of σ-setup, we can assume that σ is standard. Set $\bar{U}=\prod_{\alpha \in \Sigma_{+}} \bar{X}_{\alpha}$ and $\bar{U}^{*}=\prod_{\alpha \in \Sigma_{+}} \bar{X}_{-\alpha}$.

Fix $g \in C_{\bar{G}}(G)$. Since \bar{G} has a $B N$-pair (see Ca Proposition 8.2.1]), it has a Bruhat decomposition $\bar{G}=\bar{B} \bar{N} \bar{B}=\bar{U} \bar{N} \bar{U}$ Ca Proposition 8.2.2(i)], where $\bar{B}=\bar{T} \bar{U}$ and $\bar{N}=N_{\bar{G}}(\bar{T})$. Write $g=u n v$, where $u, v \in \bar{U}$ and $n \in \bar{N}$. For each $x \in \bar{U} \cap G,{ }^{g} x={ }^{u}\left({ }^{n v} x\right) \in \bar{U}$ implies that ${ }^{n v} x={ }^{n}\left({ }^{v} x\right) \in \bar{U}$.

Since $n \in N_{\bar{G}}(\bar{T})$, conjugation by n permutes the root groups of \bar{G}, in a way determined by the class $w=n \bar{T} \in W=N_{\bar{G}}(\bar{T}) / \bar{T}$. Thus w sends each (positive) root in the decomposition of ${ }^{v} x$ to a positive root. For each $\alpha \in \Sigma_{+}, \widehat{x}_{\alpha}(1) \in G$, ${ }^{v}\left(\widehat{x}_{\alpha}(1)\right)$ has α in its decomposition, and hence $w(\alpha) \in \Sigma_{+}$.

Thus w sends all positive roots to positive roots, so $w(\Pi)=\Pi$, and $w=1$ by Ca, Corollary 2.2.3]. So $n \in \bar{T}$, and $g=u n v \in \bar{T} \bar{U}$.

By the same argument applied to the negative root groups, $g \in \bar{T} \bar{U}^{*}$. Hence $g \in \bar{T}$.

For each $\alpha \in \Sigma, g \in \bar{T}$ commutes with $\widehat{x}_{\alpha}(1) \in G$, and hence g centralizes \bar{X}_{β} for each $\beta \in \widehat{\alpha}$ (Lemma 2.4(c)). Thus g centralizes all root groups in \bar{G}, so $g \in Z(\bar{G})$.
(b) Let \bar{T}^{*} be any σ-invariant maximal torus in \bar{G}. Fix $g \in N_{\bar{G}}(G)$. Then $g^{-1} \cdot \sigma(g) \in C_{\bar{G}}(G)=Z(\bar{G}) \leq \bar{T}^{*}$ by (a). By Lang's theorem GLS3, Theorem 2.1.1], there is $t \in \bar{T}^{*}$ such that $g^{-1} \cdot \sigma(g)=t^{-1} \cdot \sigma(t)$. Hence $g t^{-1} \in C_{\bar{G}}(\sigma)=$ $G \cdot C_{\bar{T}^{*}}(\sigma)$, where the last equality holds by [GLS3, Theorem 2.2.6(g)]. So $g \in G \bar{T}^{*}$, and $g \in G N_{\bar{T}^{*}}(G)$ since g normalizes G.
(c) $\operatorname{By}(\mathrm{b}), \operatorname{Aut}_{\bar{G}}(G)=\operatorname{Aut}_{\bar{T}^{*}}(G) \operatorname{Inn}(G)$ for each σ-invariant maximal torus \bar{T}^{*}. By definition, $\operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{T}^{*}}(G) \operatorname{Inn}(G)$ when \bar{T}^{*} is the maximal torus in a standard σ-setup for G. Hence $\operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{G}}(G)=\operatorname{Aut}_{\bar{T}^{*}}(G) \operatorname{Inn}(G)$ for all such \bar{T}^{*}.

We refer to GLS3, Definitions 1.15.5(a,e) \& 2.5.10] for more details about the definitions of Φ_{G} and Γ_{G}. The next proposition describes how to identify these subgroups when working in a nonstandard setup.

Proposition 3.6. Assume \bar{G}, \bar{T}, and the root system of \bar{G}, are as in Notation $2.2(\mathrm{~A} \mid \mathrm{B})$. Let σ be any Steinberg endomorphism of \bar{G}, and set $G=O^{q_{0}^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$.
(a) There is a standard Steinberg endomorphism σ^{*} of \bar{G} such that if we set $G^{*}=$ $O^{q_{0}^{\prime}}\left(C_{\bar{G}}\left(\sigma^{*}\right)\right)$, then there is $x \in \bar{G}$ such that $G={ }^{x}\left(G^{*}\right)$.

Fix G^{*}, σ^{*}, and x as in (a). Let $\operatorname{Inndiag}\left(G^{*}\right), \Phi_{G^{*}}$, and $\Gamma_{G^{*}}$ be as in Definition 3.3 (with respect to the σ-setup $\left(\bar{G}, \sigma^{*}\right)$). Set $\operatorname{Inndiag}(G)=c_{x} \operatorname{Inndiag}\left(G^{*}\right) c_{x}^{-1}$, $\Phi_{G}=c_{x} \Phi_{G^{*}} c_{x}^{-1}$, and $\Gamma_{G}=c_{x} \Gamma_{G^{*}} c_{x}^{-1}$, all as subgroups of $\operatorname{Aut}(G)$. Then the following hold.
(b) $\operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{G}}(G)$.
(c) For each $\bar{\alpha} \in \Phi_{\bar{G}} \Gamma_{\bar{G}}$ such that $\left.\bar{\alpha}\right|_{G^{*}} \in \Phi_{G^{*}} \Gamma_{G^{*}}$, and each $\beta \in \bar{\alpha} \cdot \operatorname{Inn}(\bar{G})$ such that $\beta(G)=G,\left.\beta\right|_{G} \equiv c_{x}(\bar{\alpha}) c_{x}^{-1}(\bmod \operatorname{Inndiag}(G))$.
(d) If $\psi_{q_{0}}$ normalizes G, then $\operatorname{Inndiag}(G) \Phi_{G}=\operatorname{Inndiag}(G)\left\langle\psi_{q_{0}} \mid G\right\rangle$.

Thus the subgroups Φ_{G} and Γ_{G} are well defined modulo $\operatorname{Inndiag}(G)$, independently of the choice of standard σ-setup for G.

Proof. (a) See, e.g., GLS3, Theorem 2.2.3]: for any given choice of maximal torus, positive roots, and parametrizations of the root groups, each Steinberg automorphism of \bar{G} is conjugate, by an element of $\operatorname{Inn}(\bar{G})$, to a Steinberg automorphism of standard type.
(b) This follows immediately from Proposition 3.5(c).
(c) By assumption, $\beta \equiv \bar{\alpha} \equiv c_{x} \bar{\alpha} c_{x}^{-1}(\bmod \operatorname{Inn}(\bar{G}))$. Since β and $c_{x} \bar{\alpha} c_{x}^{-1}$ both normalize $G,\left.\beta\right|_{G} \equiv c_{x} \alpha^{*} c_{x}^{-1}$ modulo Aut $\bar{G}^{(G)}=\operatorname{Inndiag}(G)$.
(d) If $\psi_{q_{0}}$ normalizes G, then (c), applied with $\bar{\alpha}=\beta=\psi_{q_{0}}$, implies that as elements of $\operatorname{Aut}(G) / \operatorname{Inndiag}(G),\left[\left.\psi_{q_{0}}\right|_{G}\right]=\left[c_{x}\left(\left.\psi_{q_{0}}\right|_{G^{*}}\right) c_{x}^{-1}\right]$ generates the image of Φ_{G}.

Lemma 3.7. Assume $\bar{G}, \bar{T}, \sigma, G=O^{q_{0}^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$, and the root system of \bar{G}, are as in Notation $2.2(\mathrm{AB})$. Assume that $\varphi \in \operatorname{Aut}(\bar{T})$ is the restriction of an algebraic automorphism of \bar{G} such that $\left[\varphi,\left.\sigma\right|_{\bar{T}}\right]=1$. Then there is an algebraic automorphism $\bar{\varphi} \in \operatorname{Aut}(\bar{G})$ such that $\left.\bar{\varphi}\right|_{\bar{T}}=\varphi,[\bar{\varphi}, \sigma]=1$, and $\bar{\varphi}(G)=G$.

Proof. By assumption, there is $\bar{\varphi} \in \operatorname{Aut}(\bar{G})$ such that $\left.\bar{\varphi}\right|_{\bar{T}}=\varphi$. Also, $[\bar{\varphi}, \sigma]$ is an algebraic automorphism of \bar{G} by [GLS3, Theorem 1.15.7(a)], it is the identity on \bar{T}, and hence $[\bar{\varphi}, \sigma]=c_{t}$ for some $t \in \bar{T}$ by Lemma [3.2, Using the Lang-Steinberg theorem, upon replacing $\bar{\varphi}$ by $c_{u} \bar{\varphi}$ for appropriate $u \in \bar{T}$, we can arrange that $[\bar{\varphi}, \sigma]=1$. In particular, $\bar{\varphi}(G)=G$.

The following proposition is well known, but it seems to be difficult to find references where it is proven.

Proposition 3.8. Fix a prime q_{0}, and a group $G \in \mathfrak{L i c}\left(q_{0}\right)$ of universal type. Then $Z(G)$ has order prime to $q_{0}, G / Z(G) \in \mathfrak{L i e}\left(q_{0}\right)$ and is of adjoint type, and $Z(G / Z(G))=1$. If $G / Z(G)$ is simple, then each central extension of G by a group of order prime to q_{0} splits (equivalently, $H^{2}(G ; \mathbb{Z} / p)=0$ for all primes $\left.p \neq q_{0}\right)$.

Proof. Let (\bar{G}, σ) be a σ-setup for G, and choose a maximal torus and positive roots in \bar{G}. We can thus assume Notation 2.2, By Lemma 2.4(a), $Z(\bar{G})$ is finite of order prime to q_{0}. Since $Z(G) \leq C_{\bar{G}}(G)=Z(\bar{G})$ by Proposition $3.5($ a), $Z(G)$ also has order prime to q_{0}.

Set $\bar{G}_{a}=\bar{G} / Z(\bar{G})$ and let $G_{a}<\bar{G}_{a}$ be the image of G under projection. Thus \bar{G}_{a} is an algebraic group of adjoint type, and $G_{a}=O^{q_{0}{ }^{\prime}}\left(C_{\bar{G}_{a}}\left(\sigma_{a}\right)\right) \in \mathfrak{L i e}\left(q_{0}\right)$ where
$\sigma_{a} \in \operatorname{End}\left(\bar{G}_{a}\right)$ is induced by σ. Also, $Z\left(G_{a}\right) \leq Z\left(\bar{G}_{a}\right)=1$ by Proposition 3.5(a) again.

It remains to prove the statement about central extensions. When G is a Chevalley group, this was shown in $[\mathbf{S t 4}$, Théorème 4.5]. It was shown in $\mathbf{S t 6}$, Corollary 6.2] when $G \cong{ }^{2} A_{n}(q)$ for n even, and in AG when $G \cong{ }^{2} G_{2}(q)$ or $\operatorname{Sz}(q)$. The remaining cases follow by similar arguments (see [St5, $9.4 \& 12.4]$). (See also Cu, §1], as well as Theorem 6.1.4 and Tables 6.1.2 and 6.1.3 in GLS3.)

The next proposition shows that in most cases, $C_{\bar{G}}(T)=\bar{T}$. In Chapter 5, we will see some conditions which imply that $C_{\bar{G}}\left(O_{p}(T)\right)=\bar{T}$ when p is a prime different from the defining characteristic.

Proposition 3.9. Let (\bar{G}, σ) be a σ-setup for G, where \bar{G} and G are of universal type. Assume Notation 2.2, and in particular, that we have fixed a maximal torus \bar{T} and a root system Σ in \bar{G}.
(a) Assume that $C_{\bar{G}}(T)^{0} \supsetneqq \bar{T}$, where $(-)^{0}$ denotes the connected component of the identity. Then there is $\alpha \in \Sigma_{+}$such that $\theta_{\alpha}(T)=1$. Also, there is $\beta \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$such that $\theta_{\alpha}=\beta^{-1} \sigma^{*}(\beta)$; i.e., $\theta_{\alpha}(t)=\beta\left(t^{-1} \sigma(t)\right)$ for each $t \in \bar{T}$.
(b) If the σ-setup is standard, then $C_{\bar{G}}(T)^{0}=\bar{T}$ except possibly when $G \cong{ }^{r} \mathbb{G}(2)$ for some \mathbb{G} and some $r \leq 3$, or when $G \cong A_{1}(3), C_{n}(3)$ for $n \geq 2$, or ${ }^{2} G_{2}(3)$.
(c) If $C_{\bar{G}}(T)^{0}=\bar{T}$, then $N_{G}(T) / T \cong W_{0}$.

Proof. (a) By Proposition 2.5, and since $C_{\bar{G}}(T)^{0}>\bar{T}$, there is $\alpha \in \Sigma$ such that $T \leq \operatorname{Ker}\left(\theta_{\alpha}\right)$ (equivalently, $\left[T, \bar{X}_{\alpha}\right]=1$). Since $\operatorname{Ker}\left(\theta_{-\alpha}\right)=\operatorname{Ker}\left(\theta_{\alpha}\right)$, we can assume that $\alpha \in \Sigma_{+}$.

Since G is of universal type, $G=C_{\bar{G}}(\sigma)$ and $T=C_{\bar{T}}(\sigma)$. Hence there is a short exact sequence

$$
1 \longrightarrow T \longrightarrow \bar{T} \xrightarrow{t \mapsto t^{-1} \sigma(t)} \bar{T}
$$

where the last map is onto by the Lang-Steinberg theorem. Upon dualizing, and regarding $\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$additively, we get an exact sequence

$$
0 \longrightarrow \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \xrightarrow{\sigma^{*}-\mathrm{Id}} \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \xrightarrow{\text { restr }} \operatorname{Hom}\left(T, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)
$$

(see also $\mathbf{C a 2}$, Proposition 3.2 .3$])$, where $\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$is the group of algebraic homomorphisms. Since θ_{α} is in the kernel of the restriction map, by assumption, it has the form $\beta^{-1} \sigma^{*}(\beta)$ for some $\beta \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}\right)$.
(b) Let $P(\Sigma)$ and $Q(\Sigma)$ be as in [Brb, $§$ VI.1.9] (but with Σ in place of R to denote the root system). Thus $Q(\Sigma)=\mathbb{Z} \Sigma$, the integral lattice generated by Σ, and

$$
P(\Sigma)=\left\{v \in V \mid\left(v, \alpha^{\vee}\right) \in \mathbb{Z} \text { for all } \alpha \in \Sigma\right\} \geq Q(\Sigma)
$$

For each $v \in P(\Sigma)$, define $\theta_{v} \in X(\bar{T})=\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$by setting $\theta_{v}\left(h_{\alpha}(\lambda)\right)=$ $\lambda^{\left(v, \alpha^{\vee}\right)}$ for $\alpha \in \Pi$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}$. Since G is of universal type, this is a well defined homomorphism by Lemma 2.4(b), and the same formula holds for all $\alpha \in \Sigma$ by Lemma 2.4(d). By Lemma 2.4(c), this extends our definition of θ_{β} for $\beta \in \Sigma \subseteq$ $P(\Sigma)$.

Recall that $\operatorname{Hom}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \cong \mathbb{Z}$. For each $\theta \in X(\bar{T})$ and each $\alpha \in \Sigma$, let $n_{\theta, \alpha} \in \mathbb{Z}$ be such that $\theta\left(h_{\alpha}(\lambda)\right)=\lambda^{n_{\theta, \alpha}}$ for all $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. For given θ, there is $v \in P(\Sigma)$ such that $\left(v, \alpha^{\vee}\right)=n_{\theta, \alpha}$ for all $\alpha \in \Pi$, and hence (by Lemma 2.4(d)) for all $\alpha \in \Sigma$. Then $\theta=\theta_{v}$ as defined above. In this way, we identify $P(\Sigma)$ with the lattice $X(\bar{T})$ of characters for \bar{T}, while identifying $Q(\Sigma)$ with $\mathbb{Z} \Sigma$.

From the appendix to Chapter VI in Brb (Planches I-IX), we obtain the following table:

root system Σ	A_{n}	C_{n}	B_{n}, D_{n}	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}		
$\min \{\\|v\\| \mid v \in P(\Sigma)\}$	$\sqrt{n /(n+1)}$	1	$\min \{\sqrt{n / 4}, 1\}$	$\sqrt{2}$	1	$\sqrt{4 / 3}$	$\sqrt{2}$	$\sqrt{2}$		
$\max \{\\|\alpha\\| \mid \alpha \in \Sigma\}$	$\sqrt{2}$	2	$\sqrt{2}$	$\sqrt{6}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$		

Here, the norms are given with respect to the descriptions of these lattices in [Brb] as subgroups of Euclidean spaces.

Assume $C_{\bar{G}}(T)^{0} \nexists \bar{T}$. By (a), there are $\alpha \in \Sigma_{+}$and $\beta \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}^{\times}\right)$such that $\alpha=\beta^{-1} \sigma^{*}(\beta)$. If we regard α and β as elements in the normed vector space V, then $\|\alpha\|=\left\|\sigma^{*}(\beta)-\beta\right\| \geq\left\|\sigma^{*}(\beta)\right\|-\|\beta\|$. If $G={ }^{r} \mathbb{G}(q)$ (and σ is a standard setup), then $\left\|\sigma^{*}(\beta)\right\|=q\|\beta\|$, except when G is a Suzuki or Ree group in which case $\left\|\sigma^{*}(\beta)\right\|=\sqrt{q}\|\beta\|$. Thus

$$
\frac{\|\alpha\|}{\|\beta\|}+1 \geq \begin{cases}q & \text { if } G \text { is a Chevalley or Steinberg group } \\ \sqrt{q} & \text { if } G \text { is a Suzuki or Ree group. }\end{cases}
$$

By the above table, this is possible only if $q=2$, or if G is isomorphic to one of the groups $A_{1}(3), B_{2}(3), C_{n}(3)(n \geq 3),{ }^{2} G_{2}(3)$, or ${ }^{2} B_{2}(8)$.

Assume $G \cong{ }^{2} B_{2}(8) \cong \mathrm{Sz}(8)$. It is most convenient to use the root system for C_{2} constructed in $\mathbf{B r b}$: $P(\Sigma)=\mathbb{Z}^{2}$, and $\Sigma=\{(\pm 2,0),(0, \pm 2),(\pm 1, \pm 1)\}$. Then α and β satisfy the above inequality only if $\|\alpha\|=2,\|\beta\|=1$, and $\|\alpha+\beta\|=\sqrt{8}$. So $(\alpha, \beta)=\frac{3}{2}$, which is impossible for $\alpha, \beta \in \mathbb{Z}^{2}$. Hence $C_{\bar{G}}(T)^{0}=\bar{T}$ in this case.
(c) If $C_{\bar{G}}(T)^{0}=\bar{T}$, then $N_{\bar{G}}(T) \leq N_{\bar{G}}(\bar{T})$, and so $N_{G}(T) / T \cong W_{0}$ by Lemma 2.3

The following, more technical lemma will be needed in Chapter 6 .
Lemma 3.10. Assume the hypotheses and notation in 2.2, and also that the σ-setup (\bar{G}, σ) is standard. Then under the action of W_{0} on $\widehat{\Sigma}$, each orbit contains elements of $\widehat{\Pi}$.

Proof. When $\rho=\mathrm{Id}$, this is $\mathbf{C a}$, Proposition 2.1.8]. When $\rho \neq \mathrm{Id}$, it follows from the descriptions of W_{0} and $\widehat{\Sigma}$ in [Ca, $\left.\S \S 13.2-13.3\right]$.

CHAPTER 4

The equicharacteristic case

The following notation will be used in this chapter.
Notation 4.1. Assume the notation in 2.2, and also that $\rho(\Pi)=\Pi, q_{0}=p$, and $Z(\bar{G})=1$. Thus $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{p}\right)$ is a connected, simple group over $\overline{\mathbb{F}}_{p}$ in adjoint form, σ is a Steinberg endomorphism of \bar{G} of standard form, and $G=O^{p^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$.
(D) Set $\bar{U}=\left\langle\bar{X}_{\alpha} \mid \alpha \in \Sigma_{+}\right\rangle$and $\bar{B} \stackrel{\text { def }}{=} N_{\bar{G}}(\bar{U})=\bar{U} \bar{T}$ (the Borel subgroup of \bar{G}). Set
$U=C_{\bar{U}}(\sigma)=\left\langle X_{\widehat{\alpha}} \mid \widehat{\alpha} \in \widehat{\Sigma}_{+}\right\rangle, \quad B=N_{G}(U), \quad$ and $\quad T=\bar{T} \cap G$.
Thus $U=\prod_{\widehat{\alpha} \in \widehat{\Sigma}_{+}} X_{\widehat{\alpha}} \in \operatorname{Syl}_{p}(G)$, and $B=U T$. (See, e.g., GLS3, Theorems 2.3.4(d) \& 2.3.7], or Ca, Theorems 5.3.3(ii) \& 9.4.10] in the case of Chevalley groups.) When $\widehat{J} \varsubsetneqq \widehat{\Pi}$ is the image in $\widehat{\Sigma}_{+}$of a τ-invariant subset $J \varsubsetneqq \Pi$, let $U_{\widehat{J}} \leq U$ be the subgroup generated by root groups for positive roots in $\Sigma_{+} \backslash\langle J\rangle$ (the unipotent radical subgroup associated to \widehat{J}), and set $\mathfrak{P}_{\widehat{J}}=N_{G}\left(U_{\widehat{J}}\right)=$ $B\left\langle X_{-\widehat{\alpha}} \mid \alpha \in\langle J\rangle\right\rangle$ (the parabolic subgroup associated to \widehat{J}). Thus $U=U_{\varnothing}$ and $B=\mathfrak{P}_{\varnothing}$. We also write $U_{\widehat{\alpha}}=U_{\{\widehat{\alpha}\}}$ and $\mathfrak{P}_{\widehat{\alpha}}=\mathfrak{P}_{\{\widehat{\alpha}\}}$ for each $\widehat{\alpha} \in \widehat{\Pi}$.
(E) The height of a positive root $\alpha=\sum_{\gamma \in \Pi} n_{\gamma} \gamma \in \Sigma_{+}\left(n_{\gamma} \geq 0\right)$ is defined by $\operatorname{ht}(\alpha)=\sum_{\gamma \in \Pi} n_{\gamma}$. The height ht $(\widehat{\alpha})$ of a class of roots $\widehat{\alpha} \in \widehat{\Sigma}_{+}$is the minimum of the heights of roots in the class $\widehat{\alpha}$.
(F) Set $\mathcal{F}=\mathcal{F}_{U}(G)$ and $\mathcal{L}=\mathcal{L}_{U}^{c}(G)$.
(G) Set $U_{0}=\left\langle X_{\widehat{\alpha}} \mid \widehat{\alpha} \in \widehat{\Sigma}_{+}, \widehat{\alpha} \cap \Pi=\varnothing\right\rangle=\left\langle X_{\widehat{\alpha}} \mid \operatorname{ht}(\widehat{\alpha}) \geq 2\right\rangle$.
(H) The Lie rank of G is equal to $|\widehat{\Pi}|$; equivalently, to the number of maximal parabolic subgroups containing B.

For example, assume $\sigma=\psi_{q} \circ \gamma$, where $\gamma \in \operatorname{Aut}(\bar{G})$ is a graph automorphism which induces $\rho \in \operatorname{Aut}\left(\Sigma_{+}\right)$, and ψ_{q} is the field automorphism induced by $t \mapsto t^{q}$. Then for $\widehat{\alpha} \in \widehat{\Sigma}, X_{\widehat{\alpha}} \cong \mathbb{F}_{q}$ when $\widehat{\alpha}=\{\alpha\}$ contains only one root, $X_{\widehat{\alpha}} \cong \mathbb{F}_{q^{a}}$ if $\widehat{\alpha}=\left\{\rho^{i}(\alpha)\right\}$ is the ρ-orbit of α with length a, and $X_{\widehat{\alpha}}$ is nonabelian if $\widehat{\alpha}$ contains a root α and sums of roots in its ρ-orbit.

We need the following, stronger version of Theorem 3.4.
Theorem 4.2 (St1, § 3]). Assume G is as in Notation [2.2 and 4.1. If $\alpha \in$ $\operatorname{Aut}(G)$ is such that $\alpha(U)=U$, then $\alpha=c_{u} d f g$ for unique automorphisms $c_{u} \in$ $\operatorname{Aut}_{U}(G), d \in \operatorname{Inndiag}(G)=\operatorname{Aut}_{\bar{T}}(G), f \in \Phi_{G}$, and $g \in \Gamma_{G}$.

Proof. Let $N_{\text {Aut }(G)}(U) \leq \operatorname{Aut}(G)$ and $N_{\text {Inndiag }(G)}(U) \leq \operatorname{Inndiag}(G)$ be the subgroups of those automorphisms that send U to itself. Since $\Phi_{G} \Gamma_{G} \leq N_{\text {Aut }(G)}(U)$
by definition, Theorem 3.4 implies that $N_{\text {Aut }(G)}(U)=N_{\text {Inndiag }(G)}(U) \cdot\left(\Phi_{G} \Gamma_{G}\right)$, a semidirect product. Since $\Phi_{G} \cap \Gamma_{G}=1$, it remains to show that $N_{\text {Inndiag }(G)}(U)=$ $\operatorname{Aut}_{U}(G) \operatorname{Aut}_{\bar{T}}(G)$ and $\operatorname{Aut}_{U}(G) \cap \operatorname{Aut}_{\bar{T}}(G)=1$. The first is immediate: since $\operatorname{Aut}_{\bar{T}}(G) \leq N_{\text {Aut }(G)}(U)$ and $N_{G}(U)=T U$,

$$
\begin{aligned}
N_{\text {Inndiag }(G)}(U) & =\left(\operatorname{Inn}(G) \operatorname{Aut}_{\bar{T}}(G)\right) \cap N_{\operatorname{Aut}(G)}(U) \\
& =\operatorname{Aut}_{N_{G}(U)}(G) \operatorname{Aut}_{\bar{T}}(G)=\operatorname{Aut}_{U}(G) \operatorname{Aut}_{\bar{T}}(G) .
\end{aligned}
$$

Finally, if $c_{u}=c_{t} \in \operatorname{Aut}(G)$ where $u \in U$ and $t \in \bar{T}$, then $c_{u}=\operatorname{Id}_{G}$, since u has p-power order and t has order prime to p.

Lemma 4.3. Assume $G \in \mathfrak{L i e}(p)$. Then for $U \in \operatorname{Syl}_{p}(G), \bar{\kappa}_{G}$ sends $\operatorname{Out}(G)$ injectively into $\operatorname{Out}(\mathcal{F})$.

Proof. Assume that $\bar{\kappa}_{G / Z(G)}$ is injective. We claim that $\operatorname{Aut}(G)$ injects into $\operatorname{Aut}(G / Z(G))$, and hence that $\bar{\kappa}_{G}$ is also injective. To see this, fix $\alpha \in \operatorname{Aut}(G)$ such that $[\alpha, G] \leq Z(G)$. Recall that $Z(G)$ has order prime to p (Proposition 3.8). For each $g \in G$ of p-power order, $\alpha(g)=g z$ for some $z \in Z(G)$, and $z=1$ since otherwise $|z g|>|g|$. Since G is generated by such elements by definition of $\mathfrak{L i e}(p)$, $\alpha=\mathrm{Id}_{G}$, proving the claim. It thus suffices to prove the lemma when G is in adjoint form.

We can thus assume Notation 4.1. By Lemma 1.4 it will suffice to prove that $C_{\operatorname{Aut}(G)}(U) \leq \operatorname{Inn}(G)$. Fix $\beta \in \operatorname{Aut}(G)$ such that $\left.\beta\right|_{U}=\operatorname{Id}_{U}$. By Theorem 4.2, there are unique automorphisms $c_{u} \in \operatorname{Aut}_{U}(G), d \in \operatorname{Aut}_{\bar{T}}(G), f \in \Phi_{G}$, and $g \in \Gamma_{G}$ such that $\beta=c_{u} d f g$.

If $g \neq \mathrm{Id}$, then it permutes the fundamental root groups nontrivially, while $\left.c_{u} d f\right|_{U}$ sends each such group to itself modulo higher root groups and commutators. Hence $g=$ Id. Similarly, $f=\mathrm{Id}$, since otherwise β would act on the fundamental root groups (modulo higher root groups) via some automorphism other than a translation.

Thus $\beta=c_{u} d$, where $d=c_{t}$ for some $t \in N_{\bar{T}}(G)$. Then u has p-power order while t has order prime to p, so $\left.d\right|_{U}=\left.c_{t}\right|_{U}=$ Id. By Lemma [2.4(c), c_{t} sends each root group in \bar{U} to itself via $x_{\alpha}(u) \mapsto x_{\alpha}\left(\theta_{\alpha}(t) \cdot u\right)$ for some character $\theta_{\alpha} \in \operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{p}^{\times}\right)$which is linear in α. For each $\widehat{\alpha} \in \widehat{\Sigma}_{+},\left.c_{t}\right|_{X_{\widehat{\alpha}}}=$ Id implies that $\theta_{\alpha}(t)=1$ for all $\alpha \in \widehat{\alpha}$. Thus $\theta_{\alpha}(t)=1$ for all $\alpha \in \Sigma_{+}$, so $c_{t}=\operatorname{Id}_{\bar{G}}$, and $\beta=c_{u} \in \operatorname{Inn}(G)$.

It now remains, when proving Theorem to show the surjectivity of κ_{G}. This will be done case-by-case. We first handle groups of Lie rank at least three, then those of rank one, and finally those of rank two.

For simplicity, we state the next two propositions only for groups of adjoint type, but they also hold without this restriction. The first implies that each element of $\operatorname{Aut}(\mathcal{F})$ permutes the subgroups $U_{\widehat{J}}$ (as defined in Notation 4.1), and that each element of $\operatorname{Aut}\left(\mathcal{L}_{S}^{c}(G)\right)$ induces an automorphism of the amalgam of parabolics $\mathfrak{P}_{\widehat{J}}$ for $\widehat{J} \varsubsetneqq \widehat{\Pi}$.

Proposition 4.4. Assume Notation 4.1. For $1 \neq P \leq U$, the following are equivalent:
(i) $\quad P=U_{\widehat{J}}$ for some $\widehat{J} \varsubsetneqq \widehat{\Pi}$;
(ii) $P \unlhd B, C_{U}(P) \leq P$, and $O_{p}\left(\operatorname{Out}_{\mathcal{F}}(P)\right)=1$; and
(iii) $P \unlhd B, C_{G}(P) \leq P$, and $O_{p}\left(N_{G}(P)\right)=P$.

Hence for each $\varphi \in \operatorname{Aut}(\mathcal{F})$, φ permutes the subgroups $U_{\widehat{J}}$, and in particular permutes the subgroups $U_{\widehat{\alpha}}$ for $\widehat{\alpha} \in \widehat{\Pi}$.
Proof. (i) \Longrightarrow (iii): For each $\widehat{J} \varsubsetneqq \widehat{\Pi}, C_{G}\left(U_{\widehat{J}}\right)=Z\left(U_{\widehat{J}}\right)$ by GLS3, Theorem $2.6 .5(\mathrm{e})]$ (recall that G is of adjoint type). Also, $O_{p}\left(N_{G}\left(U_{\widehat{J}}\right)\right)=O_{p}\left(\mathfrak{P}_{\widehat{J}}\right)=U_{\widehat{J}}$, and $U_{\widehat{J}}$ is normal in B since $N_{G}\left(U_{\widehat{J}}\right)=\mathfrak{P}_{\widehat{J}} \geq B$.
(iii) \Longrightarrow (ii): This holds since $\operatorname{Out}_{\mathcal{F}}(P) \cong N_{G}(P) / P C_{G}(P)$.
(ii) \Longrightarrow (i): In this case, $P \unlhd B$, so $N_{G}(P) \geq B$, and $N_{G}(P)=\mathfrak{P}_{\widehat{J}}$ for some $\widehat{J} \varsubsetneqq$ $\widehat{\Pi}\left(\right.$ cf. Ca, Theorem 8.3.2]). Then $P \leq O_{p}\left(\mathfrak{P}_{\widehat{J}}\right)=U_{\widehat{J}}$. Also, $U_{\widehat{J}} C_{G}(P) / P C_{G}(P) \leq$ $O_{p}\left(N_{G}(P) / P C_{G}(P)\right)=1$, so $U_{\widehat{J}} \leq P C_{G}(P)$. Since $U_{\widehat{J}} \leq U$, this implies that $U_{\widehat{J}} \leq P C_{U}(P)=P$; i.e., that $P=U_{\widehat{J}}$. So (i) holds.

The last statement follows from the equivalence of (i) and (ii).
When G has large Lie rank, Theorem A now follows from properties of Tits buildings.

Proposition 4.5. Assume $G \in \mathfrak{L i e}(p)$ is of adjoint type and has Lie rank at least 3. Fix $U \in \operatorname{Syl}_{p}(G)$. Then κ_{G} is split surjective.

Proof. Set $\mathcal{L}=\mathcal{L}_{U}^{c}(G)$. By Proposition 4.4, for each $\alpha \in \operatorname{Aut}(\mathcal{L}), \alpha$ permutes the subgroups $U_{\widehat{J}}$ for $\widehat{J} \varsubsetneqq \widehat{\Pi}$. For each such $\widehat{J}, C_{G}\left(U_{\widehat{J}}\right)=Z\left(U_{\widehat{J}}\right)$, so $\operatorname{Aut}_{\mathcal{L}}\left(U_{\widehat{J}}\right)=$ $N_{G}\left(U_{\widehat{J}}\right)=\mathfrak{P}_{\widehat{J}}$. Thus α induces an automorphism of the amalgam of parabolic subgroups $\mathfrak{P}_{\widehat{J}}$. Since G is the amalgamated sum of these subgroups by a theorem of Tits (see [Ti, Theorem 13.5] or [Se, p. 95, Corollary 3]), α extends to a unique automorphism $\bar{\alpha}$ of G.

Thus $\alpha \mapsto \bar{\alpha}$ defines a homomorphism $\widehat{s}: \operatorname{Aut}(\mathcal{L}) \longrightarrow \operatorname{Aut}(G)$. If $\alpha=c_{\gamma}$ for $\gamma \in \operatorname{Aut}_{\mathcal{L}}(U)=N_{G}(U)$, then $\bar{\alpha}$ is conjugation by $\gamma \in G$ and hence lies in $\operatorname{Inn}(G)$. Hence \widehat{s} factors through $s: \operatorname{Out}(\mathcal{L}) \longrightarrow \operatorname{Out}(G), \kappa_{G} \circ s=\operatorname{Id}_{\operatorname{Out}(\mathcal{L})}$, and thus κ_{G} is split surjective.

Before we can handle the rank 1 case, two elementary lemmas are needed.
Lemma 4.6. Let G be a finite group with normal Sylow p-subgroup $S \unlhd G$ such that $C_{G}(S) \leq S$. Fix subgroups $1=S_{0}<S_{1}<\cdots<S_{k}=S$ normal in G such that (i) $\quad S_{k-1} \leq \operatorname{Fr}(S)$; and
(ii) for each $1 \leq i \leq k-1, S_{i}$ is characteristic in $G,\left[S, S_{i}\right] \leq S_{i-1}, S_{i} / S_{i-1}$ has exponent p, and $\operatorname{Hom}_{\mathbb{F}_{p}[G / S]}\left(S / \operatorname{Fr}(S), S_{i} / S_{i-1}\right)=0$ (i.e., no irreducible $\mathbb{F}_{p}[G / S]$-submodule of S_{i} / S_{i-1} appears as a submodule of $S / \operatorname{Fr}(S)$).
Let $\alpha \in \operatorname{Aut}(G)$ be such that $[\alpha, S] \leq S_{k-1}$. Then $\alpha \in \operatorname{Aut}_{S}(G)$.
Proof. For $1 \neq g \in G$ of order prime to p, the conjugation action of g on S is nontrivial since $C_{G}(S) \leq S$, and hence the conjugation action on $S / \operatorname{Fr}(S)$ is also nontrivial (see [G, Theorem 5.3.5]). Thus G / S acts faithfully on $S / \operatorname{Fr}(S)$. Since α induces the identity on $S / \operatorname{Fr}(S), \alpha$ also induces the identity on G / S.

Assume first that $\left.\alpha\right|_{S}=$ Id. Since S is a p-group and G / S has order prime to $p, H^{1}(G / S ; Z(S))=0$. So by $\mathbf{O V}$, Lemma 1.2], $\alpha \in \operatorname{Inn}(G)$. If $g \in G$ is such that $\alpha=c_{g}$, then $[g, S]=1$ since $\left.\alpha\right|_{S}=\mathrm{Id}$, and $g \in S$ since $C_{G}(S) \leq S$. Thus $\alpha \in \operatorname{Aut}_{S}(G)$ in this case.

In particular, this proves the lemma when $k=1$. So assume $k \geq 2$. We can assume inductively that the lemma holds for G / S_{1}, and hence can arrange (after
composing by an appropriate element of $\left.\operatorname{Aut}_{S}(G)\right)$ that α induces the identity on G / S_{1}.

Let $\varphi \in \operatorname{Hom}\left(S, S_{1}\right)$ be such that $\alpha(x)=x \varphi(x)$ for each $x \in S$ (a homomorphism since $\left.S_{1} \leq Z(S)\right)$. Then φ factors through $\bar{\varphi} \in \operatorname{Hom}\left(S / \operatorname{Fr}(S), S_{1}\right)$ since S_{1} is elementary abelian, and $\bar{\varphi}$ is a homomorphism of $\mathbb{F}_{p}[G / S]$-modules since $\alpha(g) \equiv g\left(\bmod S_{1}\right)$ for each $g \in G\left(\right.$ and $\left.S_{1} \leq Z(S)\right)$. Thus $\varphi=1$ since $\operatorname{Hom}_{G / S}\left(S_{k} / S_{k-1}, S_{1}\right)=0$ by (ii), so $\left.\alpha\right|_{S}=\mathrm{Id}$, and we already showed that this implies $\alpha \in \operatorname{Aut}_{S}(G)$.

The next lemma will be useful when checking the hypotheses of Lemma 4.6
Lemma 4.7. Fix a prime p and $e \geq 1$, and set $q=p^{e}$ and $\Gamma=\mathbb{F}_{q}^{\times}$. For each $a \in \mathbb{Z}$, set $V_{a}=\mathbb{F}_{q}$, regarded as an $\mathbb{F}_{p} \Gamma$-module with action $\lambda(x)=\lambda^{a} x$ for $\lambda \in \Gamma$ and $x \in \mathbb{F}_{q}$.
(a) For each a, V_{a} is $\mathbb{F}_{p} \Gamma$-irreducible if and only if a $/ \operatorname{gcd}(a, q-1)$ does not divide $p^{t}-1$ for any $t \mid e, t<e$.
(b) For each $a, b \in \mathbb{Z}, V_{a} \cong V_{b}$ as $\mathbb{F}_{p} \Gamma$-modules if and only if $a \equiv b p^{i}(\bmod q-1)$ for some $i \in \mathbb{Z}$.

Proof. (a) Set $d=\operatorname{gcd}(a, q-1)$, and let t be the order of p in $\left(\mathbb{Z} / \frac{q-1}{d}\right)^{\times}$. Thus $t \mid e$ since $\left.\frac{q-1}{d} \right\rvert\,\left(p^{e}-1\right)$. If $t<e$, then $\lambda^{a} \in \mathbb{F}_{p^{t}}$ for each $\lambda \in \mathbb{F}_{q}$, so $0 \neq \mathbb{F}_{p^{t}} \varsubsetneqq V_{a}$ is a proper $\mathbb{F}_{p} \Gamma$-submodule, and V_{a} is reducible.

Conversely, if V_{a} is reducible, then it contains a proper submodule $0 \neq W \varsubsetneqq V_{a}$ of dimension i, some $0<i<e$. All Γ-orbits in $V_{a} \backslash 0$, hence in $W \backslash 0$, have length $\frac{q-1}{d}$, so $\left.\frac{q-1}{d} \right\rvert\,\left(p^{i}-1\right)$, and $t \leq i<e$.
(b) For each $a \in \mathbb{Z}$, let $\bar{V}_{a} \cong \mathbb{F}_{q}$ be the $\mathbb{F}_{q} \Gamma$-module where Γ acts via $\lambda(x)=\lambda^{a} x$. Then $\mathbb{F}_{q} \otimes_{\mathbb{F}_{p}} V_{a} \cong \bar{V}_{a} \oplus \bar{V}_{a p} \oplus \cdots \oplus \bar{V}_{a p^{e-1}}$ as $\mathbb{F}_{q} \Gamma$-modules. Since $\bar{V}_{b} \cong \bar{V}_{a}$ if and only if $b \equiv a(\bmod q-1), V_{b} \cong V_{a}$ if and only if $b \equiv a p^{i}(\bmod q-1)$ for some i.

In principle, we don't need to look at the fusion systems of the simple groups of Lie rank 1 if we only want to prove tameness. Their fusion is controlled by the Borel subgroup, so their fusion systems are tame by Proposition 1.6 But the following proposition is needed when proving Theorem A in its stronger form, and will also be used when working with groups of larger Lie rank.

Proposition 4.8. Fix a prime p, and a group $G \in \mathfrak{L i e}(p)$ of Lie rank 1. Assume $(G, p) \nsubseteq(\mathrm{Sz}(2), 2)$. Then each $\varphi \in \operatorname{Aut}(\mathcal{F})$ extends to an automorphism of G. Also, if $[\varphi, U] \leq[U, U]$, then $\varphi \in \operatorname{Inn}(U)$.

Proof. If G is of universal form, then $Z(G)$ is cyclic of order prime to p by Proposition 3.8, For each $Z \leq Z(G)$, $\operatorname{Out}(G / Z) \cong \operatorname{Out}(G)$ by GLS3, Theorem 2.5.14(d)], and $\operatorname{Out}\left(\mathcal{F}_{U}(G / Z)\right) \cong \operatorname{Out}\left(\mathcal{F}_{U}(G)\right)$ since G and G / Z have the same p-fusion systems. It thus suffices to prove the proposition when G has adjoint form.

Assume first $G=P S L_{2}(q)$. Thus $U \cong \mathbb{F}_{q}$ (as an additive group), $T \cong C_{(q-1) / \varepsilon}$ where $\varepsilon=\operatorname{gcd}(q-1,2)$, and $\Gamma \stackrel{\text { def }}{=} \operatorname{Aut}_{T}(U)$ is the subgroup of index ε in \mathbb{F}_{q}^{\times}. If $\varphi \in$ $\operatorname{Aut}(U)$ is fusion preserving, then under these identifications, there is $\alpha \in \operatorname{Aut}(\Gamma)$ such that $\alpha(u) \varphi(v)=\varphi(u v)$ for each $u \in \Gamma \leq \mathbb{F}_{q}^{\times}$and $v \in \mathbb{F}_{q}$. After composing with an appropriate diagonal automorphism (conjugation by a diagonal element of $P G L_{2}(q)$), we can assume that $\varphi(1)=1$. Hence the above formula (with $v=1$) implies that $\alpha=\left.\varphi\right|_{\Gamma}$, and thus that $\varphi(u v)=\varphi(u) \varphi(v)$ for each $u, v \in \mathbb{F}_{q}$ with
$u \in \Gamma$. If $\varepsilon=1$, then φ acts as a field automorphism on U, hence is the restriction of a field automorphism of G, and we are done. Otherwise, there is $u \in \Gamma$ such that $\mathbb{F}_{q}=\mathbb{F}_{p}(u), u$ and $\varphi(u)$ have the same minimal polynomial over \mathbb{F}_{p}, and there is $\psi \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ (a field automorphism) such that $\psi(u)=\varphi(u)$. Thus $\psi\left(u^{i}\right)=\varphi\left(u^{i}\right)$ for each i, so $\psi=\varphi$ since both are additive homomorphisms, and hence φ extends to a field automorphism of G. (Note that this argument also holds when $q=3$ and $\Gamma=1$.)

Next assume $G=P S U_{3}(q)$. Following the conventions in [H. Satz II.10.12(b)], we identify

$$
\begin{array}{lll}
U=\left\{\llbracket a, b \rrbracket \mid a, b \in \mathbb{F}_{q^{2}}, b+b^{q}=-a^{q+1}\right\} & \text { where } \quad \llbracket a, b \rrbracket=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & -a^{q} \\
0 & 0 & 1
\end{array}\right) ; \\
T=\left\{d(\lambda) \mid \lambda \in \mathbb{F}_{q^{2}}^{\times}\right\} & \text {where } & d(\lambda)=\operatorname{diag}\left(\lambda^{-q}, \lambda^{q-1}, \lambda\right) .
\end{array}
$$

Here, whenever we write a matrix, we mean its class in $P S U_{3}(q)$. Then $B=U T=$ $N_{G}(U) \leq G$ (see [H] Satz II.10.12(b)]), and
$\llbracket a, b \rrbracket \cdot \llbracket c, d \rrbracket=\llbracket a+c, b+d-a c^{q} \rrbracket \quad$ and $\quad d(\lambda) \llbracket a, b \rrbracket=\llbracket \lambda^{1-2 q} a, \lambda^{-1-q} b \rrbracket$.
Set $\varepsilon=\operatorname{gcd}\left(2 q-1, q^{2}-1\right)=\operatorname{gcd}\left(2 q-1, q^{2}-2 q\right)=\operatorname{gcd}(q+1,3)$. Then $d(\lambda)=1$ exactly when $\lambda^{\varepsilon}=1, C_{T}(U)=1$, and hence $|T|=\left|\operatorname{Aut}_{B}(U / Z(U))\right|=\left(q^{2}-1\right) / \varepsilon$. If $q>2$, then $|T|$ does not divide $p^{i}-1$ for any power $1<p^{i}<q^{2}$, and by Lemma 4.7(a), $U / Z(U)$ and $Z(U)$ are both irreducible as $\mathbb{F}_{p}[T]$-modules. (Note, in particular, the cases $q=5$ and $q=8$, where $(U / Z(U), T)$ is isomorphic to $\left(\mathbb{F}_{25}, C_{8}\right)$ and (\mathbb{F}_{64}, C_{21}), respectively.)

Fix $\varphi \in \operatorname{Aut}(\mathcal{F})$, and extend it to $\alpha \in \operatorname{Aut}(B)$ (Lemma 1.12). Via the same argument as that used when $G=P S L_{2}(q)$, we can arrange (without changing the class of φ modulo $\left.\operatorname{Im}\left(\bar{\kappa}_{G}\right)\right)$ that $\varphi \equiv \operatorname{Id}(\bmod [U, U])$. If $q>2$, then the hypotheses of Lemma 4.6 hold (with $[U, U]<U<B$ in the role of $S_{1}<S_{2}=S<G$), so $\alpha \in \operatorname{Aut}_{U}(B)$ and $\varphi \in \operatorname{Inn}(U)$.

If $G \cong \operatorname{PSU}_{3}(2) \cong C_{3}^{2} \rtimes Q_{8}$ (cf. TTa, p. 123-124]), then $U \cong Q_{8}$ and $T=1$, so $\operatorname{Out}(\mathcal{F})=\operatorname{Out}(U) \cong \Sigma_{3}$. By Theorem 3.4 (or by direct computation), $\operatorname{Out}(G)=$ $\operatorname{Outdiag}(G) \Phi_{G}$ has order six, since $|\operatorname{Outdiag}(G)|=\operatorname{gcd}(3, q+1)=3$ and $\left|\Phi_{G}\right|=2$. Thus $\bar{\kappa}_{G}$ is an isomorphism, since it is injective by Lemma 4.3.

The proof when $G=S z(q)$ is similar. Set $\theta=\sqrt{2 q}$. We follow the notation in [HB, §XI.3], and identify U as the group of all $S(a, b)$ for $a, b \in \mathbb{F}_{q}$ and $T<B=$ $N_{G}(U)$ as the group of all $d(\lambda)$ for $\lambda \in \mathbb{F}_{q}^{\times}$, with relations

$$
S(a, b) \cdot S(c, d)=S\left(a+c, b+d+a^{\theta} c\right) \quad \text { and } \quad d(\lambda) S(a, b)=S\left(\lambda a, \lambda^{1+\theta} b\right) .
$$

As in the last case, we can arrange that $\varphi \in \operatorname{Aut}(\mathcal{F})$ is the identity modulo $[U, U]$. Since $q \geq 8(q \neq 2$ by hypothesis), $Z(U)$ and $U / Z(U)$ are nonisomorphic, irreducible $\mathbb{F}_{2} T$-modules by Lemma 4.7(a,b) (and since $Z(U) \cong V_{1+\theta}$ and $U / Z(U) \cong V_{1}$ in the notation of that lemma). We can thus apply Lemma 4.6 to show that $\varphi \in \operatorname{Inn}(U)$.

It remains to handle the Ree groups ${ }^{2} G_{2}(q)$, where $q=3^{m}$ for some odd $m \geq 1$. Set $\theta=\sqrt{3 q}$. We use the notation in [HB. Theorem XI.13.2], and identify $U=\left(\mathbb{F}_{q}\right)^{3}$ with multiplication given by
$\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+x_{1} \cdot x_{2}^{\theta}, z_{1}+z_{2}-x_{1} \cdot y_{2}+y_{1} \cdot x_{2}-x_{1} \cdot x_{1}^{\theta} \cdot x_{2}\right)$.
Note that $x^{\theta^{2}}=x^{3}$. Let $T \leq B=N_{G}(U)$ be the set of all $d(\lambda)$ for $\lambda \in \mathbb{F}_{q}^{\times}$, acting on U via

$$
{ }^{d(\lambda)}(x, y, z)=\left(\lambda x, \lambda^{\theta+1} y, \lambda^{\theta+2} z\right) .
$$

Again, we first reduce to the case where $\varphi \in \operatorname{Aut}(\mathcal{F})$ is such that $[\varphi, U] \leq[U, U]$, and extend φ to $\alpha \in \operatorname{Aut}(B)$. If $q>3$, then $U /[U, U] \cong V_{1},[U, U] / Z(U) \cong V_{\theta+1}$, and $Z(U) \cong V_{\theta+2}$ are irreducible and pairwise nonisomorphic as $\mathbb{F}_{3} T$-modules by Lemma 4.7 (for V_{a} as defined in that lemma), since neither $\theta+1$ nor $\theta+2$ is a power of 3 . So $\varphi \in \operatorname{Inn}(U)$ by Lemma 4.6.

If $q=3$, then $U=\langle a, b\rangle$, where $|a|=9,|b|=3$, and $[a, b]=a^{3}$. Set $Q_{i}=$ $\left\langle a b^{i}\right\rangle \cong C_{9}(i=0,1,2)$: the three subgroups of U isomorphic to C_{9}. Let Aut ${ }^{0}(U) \leq$ $\operatorname{Aut}(U)$ be the group of those $\alpha \in \operatorname{Aut}(U)$ which send each Q_{i} to itself. For each such α, the induced action on $U / Z(U)$ sends each subgroup of order three to itself, hence is the identity or $\left(g \mapsto g^{-1}\right)$, and the latter is seen to be impossible using the relation $[a, b]=a^{3}$. Thus each $\alpha \in \operatorname{Aut}^{0}(U)$ induces the identity on $U / Z(U)$ and on $Z(U)$, and has the form $\alpha(g)=g \varphi(g)$ for some $\varphi \in \operatorname{Hom}(U / Z(U), Z(U))$. So Aut ${ }^{0}(U)=$ $\operatorname{Inn}(U)$ since they both have order 9 (and clearly $\operatorname{Inn}(U) \leq \operatorname{Aut}^{0}(U)$). The action of $\operatorname{Aut}(U)$ on $\left\{Q_{0}, Q_{1}, Q_{2}\right\}$ thus defines an embedding of $\operatorname{Out}(U)$ into Σ_{3}, and the automorphisms $(a, b) \mapsto(a b, b)$ and $(a, b) \mapsto\left(a^{-1}, b\right)$ show that $\operatorname{Out}(U) \cong \Sigma_{3}$. Since $\left|\operatorname{Out}_{\mathcal{F}}(U)\right|=2 \operatorname{and} \operatorname{Aut}_{\mathcal{F}}(U) \unlhd \operatorname{Aut}(\mathcal{F})$, it follows that $\operatorname{Out}(\mathcal{F})=1=\operatorname{Out}(G)$. (See also [BC, Theorem 2] for more discussion about $\operatorname{Aut}(U)$.)

It remains to show that κ_{G} (at the prime p) is surjective when $G \in \mathfrak{L i e}(p)$ has Lie rank 2, with the one exception when $G \cong S L_{3}(2)$. Our proof is based on ideas taken from the article of Delgado and Stellmacher [DS , even though in the end, we do not actually need to refer to any of their results in our argument. The third author would like to thank Richard Weiss for explaining many of the details of how to apply the results in [DS, and also to Andy Chermak and Sergey Shpectorov for first pointing out the connection.

Fix a prime p, and a finite group $G \in \mathfrak{L i e}(p)$ of Lie rank two. We assume Notation 2.2 and 4.1 In particular, (\bar{G}, σ) is a σ-setup for $G, \bar{T} \leq \bar{G}$ is a maximal torus, $U \in \operatorname{Syl}_{p}(G)$ is generated by the positive root subgroups, and $B=N_{G}(U)$ is a Borel subgroup. Set $\widehat{\Pi}=\left\{\widehat{\alpha}_{1}, \widehat{\alpha}_{2}\right\}$, and set $\mathfrak{P}_{1}=\mathfrak{P}_{\widehat{\alpha}_{1}}=\left\langle B, X_{-\widehat{\alpha}_{1}}\right\rangle$ and $\mathfrak{P}_{2}=\mathfrak{P}_{\widehat{\alpha}_{2}}=\left\langle B, X_{-\widehat{\alpha}_{2}}\right\rangle$: the two maximal parabolic subgroups of G containing B. Our proofs are based on the following observation:

Lemma 4.9. Assume, for $G \in \mathfrak{L i e}(p)$ of rank 2 and its amalgam of parabolics as above, that
each automorphism of the amalgam $\left(\mathfrak{P}_{1}>B<\mathfrak{P}_{2}\right)$ extends to an automorphism of G.
Then κ_{G} is surjective.
Here, by an automorphism of the amalgam, we mean a pair (χ_{1}, χ_{2}), where either $\chi_{i} \in \operatorname{Aut}\left(\mathfrak{P}_{i}\right)$ for $i=1,2$ or $\chi_{i} \in \operatorname{Iso}\left(\mathfrak{P}_{i}, \mathfrak{P}_{3-i}\right)$ for $i=1,2$, and also $\left.\chi_{1}\right|_{B}=\left.\chi_{2}\right|_{B}$.

Proof. Set $\mathcal{L}=\mathcal{L}_{U}^{c}(G)$ and $U_{i}=O_{p}\left(\mathfrak{P}_{i}\right)$. By Proposition 4.4 each $\chi \in$ $\operatorname{Aut}(\mathcal{L})$ either sends U_{1} and U_{2} to themselves or exchanges them. For each $i=1,2$, $C_{G}\left(U_{i}\right) \leq U_{i}$, so $\operatorname{Aut}_{\mathcal{L}}\left(U_{i}\right)=N_{G}\left(U_{i}\right)=\mathfrak{P}_{i}$. Thus χ induces an automorphism of the amalgam ($\mathfrak{P}_{1}>B<\mathfrak{P}_{2}$). By assumption, this extends to an automorphism $\bar{\chi}$ of G, and $\kappa_{G}(\bar{\chi})=\xi$.

Set $\mathfrak{G}=\mathfrak{P}_{1} *{ }_{B} \mathfrak{P}_{2}$: the amalgamated free product over B. Let $\rho: \mathfrak{G} \longrightarrow G$ be the natural surjective homomorphism. Since each automorphism of the amalgam
induces an automorphism of \mathfrak{G}, (*) holds if for each automorphism of $\left(\mathfrak{P}_{1}>B<\right.$ \mathfrak{P}_{2}), the induced automorphism of \mathfrak{G} sends $\operatorname{Ker}(\rho)$ to itself.

Let Δ be the tree corresponding to the amalgam ($\mathfrak{P}_{1}>B<\mathfrak{P}_{2}$). Thus Δ has a vertex $\left[g \mathfrak{P}_{i}\right]$ for each coset $g \mathfrak{P}_{i}$ (for all $g \in \mathfrak{G}$ and $i=1,2$), and an edge $g\left(e_{B}\right)$ connecting $\left[g \mathfrak{P}_{1}\right]$ to $\left[g \mathfrak{R}_{2}\right]$ for each coset $g B$ in \mathfrak{G}. Also, \mathfrak{G} acts on Δ via its canonical action on the cosets, and in particular, it acts on $g\left(e_{B}\right)$ with stabilizer subgroup ${ }^{g} B$.

Similarly, let Δ_{G} be the graph of G with respect to the same amalgam: the graph with vertex set $\left(G / \mathfrak{P}_{1}\right) \cup\left(G / \mathfrak{P}_{2}\right)$ and edge set G / B. Equivalently, since \mathfrak{P}_{1}, \mathfrak{P}_{2}, and B are self-normalizing, Δ_{G} is the graph whose vertices are the maximal parabolics in G and whose edges are the Borel subgroups. Let $\widehat{\rho}: \Delta \longrightarrow \Delta_{G}$ be the canonical map which sends a vertex $\left[g \mathfrak{P}_{i}\right]$ in Δ to the vertex in Δ_{G} corresponding to the image of $g \mathfrak{P}_{i}$ in G.

Fix a subgroup $N \leq G$ such that (B, N) is a $B N$-pair for G, and such that $B \cap N=T$ and $N / T \cong W_{0}$ (where T and W_{0} are as defined in Notation (2.2). We refer to Ca, $\S \S 8.2,13.5]$ for the definition of $B N$-pairs, and the proof that G has a $B N$-pair (B, N) which satisfies these conditions. For $i=1,2$, choose $t_{i} \in\left(N \cap \mathfrak{P}_{i}\right) \backslash B=\left(N \cap \mathfrak{P}_{i}\right) \backslash T$. Since $\left(N \cap \mathfrak{P}_{i}\right) / T \cong C_{2}$ and $N=\left\langle N \cap \mathfrak{P}_{1}, N \cap \mathfrak{P}_{2}\right\rangle$, we have $N=T\left\langle t_{1}, t_{2}\right\rangle$, consistent with the notation in [DS. Note that T can be the trivial subgroup. We also regard the $t_{i} \in \mathfrak{P}_{i}$ as elements of \mathfrak{G}, and $T \leq B$ as a subgroup of \mathfrak{G}, when appropriate.

Let \mathscr{T} be the union of the edges in the $T\left\langle t_{1}, t_{2}\right\rangle$-orbit of e_{B}. Thus \mathscr{T} is a path of infinite length in Δ of the following form:

Thus $\widehat{\rho}(\mathscr{T})$ is an apartment in the building Δ_{G} under Tits's definition and construction of these structures in [Ti, 3.2.6].

A path in Δ is always understood not to double back on itself.
Lemma 4.10. Let G, Δ, $\left(T, t_{1}, t_{2}\right)$, and \mathscr{T} be as above, and let $n \in\{3,4,6,8\}$ be such that $W_{0} \cong D_{2 n}$. Then each path in Δ of length at most $n+1$ is contained in $g(\mathscr{T})$ for some $g \in \mathfrak{G}$.

Proof. A path of length 1 is an edge, and is in the \mathfrak{G}-orbit of e_{B} which has stabilizer group B. If e_{B} is extended to a path of length 2 with the edge $t_{i}\left(e_{B}\right)$ ($i=1$ or 2), then this path has stabilizer group

$$
B \cap{ }^{t_{i}} B=\prod_{\widehat{\alpha} \in \widehat{\Sigma}_{+} \backslash\left\{\widehat{\alpha}_{i}\right\}} X_{\widehat{\alpha}} \cdot T .
$$

(Recall that ${ }^{t_{i}} X_{\widehat{\alpha}_{i}}=X_{-\widehat{\alpha}_{i}}$, and $X_{-\widehat{\alpha}_{i}} \cap B=1$ by Ca, Lemma 7.1.2].) Thus the stabilizer subgroup has index p^{j} in B, where $p^{j}=\left|X_{\widehat{\alpha}_{i}}\right|$. Furthermore, $\left|\mathfrak{P}_{i} / B\right|=$ $1+p^{j}$, since by Ca, Proposition 8.2.2(ii)],

$$
\mathfrak{P}_{i}=B \cup\left(B t_{i} B\right) \quad \text { where } \quad\left|B t_{i} B\right|=|B| \cdot\left|B /\left(B \cap{ }^{t_{i}} B\right)\right|=|B| \cdot p^{j} .
$$

Hence there are exactly p^{j} extensions of e_{B} to a path of length 2 containing the vertex $\left[\mathfrak{P}_{i}\right]$ in the interior, and these are permuted transitively by B.

Upon continuing this argument, we see inductively that for all $2 \leq k \leq n+1$, the paths of length k starting at e_{B} with endpoint $\left[\mathfrak{P}_{3-i}\right]$ are permuted transitively by B, and of them, the one contained in \mathscr{T} has stabilizer subgroup the product of
T with $(n+1-k)$ root subgroups in U. (Recall that $B=T U$, and U is the product of n root subgroups.) Since \mathfrak{G} acts transitively on the set of edges in Δ, each path of length k is in the \mathfrak{G}-orbit of one which begins with e_{B} (and with endpoint $\left[\mathfrak{P}_{1}\right]$ or $\left[\mathfrak{P}_{2}\right]$), and hence in the \mathfrak{G}-orbit of a subpath of \mathscr{T}.

Proposition 4.11. Let G, \mathfrak{G}, and $\left(T, t_{1}, t_{2}\right)$ be as above, and let $n \in\{3,4,6,8\}$ be such that $W_{0} \cong D_{2 n}$. Assume that
for each $\left(\chi_{1}, \chi_{2}\right) \in \operatorname{Aut}\left(\mathfrak{P}_{1}>B<\mathfrak{P}_{2}\right)$, where $\chi_{i} \in \operatorname{Aut}\left(\mathfrak{P}_{i}\right)$ or
$\chi_{i} \in \operatorname{Iso}\left(\mathfrak{P}_{i}, \mathfrak{P}_{3-i}\right)$ for $i=1,2$, we have $\left(\chi_{1}\left(t_{1}\right) \chi_{2}\left(t_{2}\right)\right)^{n} \in \chi_{1}(T) \leq G$.
Then (困) holds (each automorphism of $\left(\mathfrak{P}_{1}>B<\mathfrak{P}_{2}\right)$ extends to an automorphism of G), and hence κ_{G} is onto.

Proof. Let \approx be the equivalence relation on the set of vertices in Δ generated by setting $x \approx y$ if x and y are of distance $2 n$ apart in some path in the \mathfrak{G} orbit of \mathscr{T}. Since $T\left\langle t_{1}, t_{2}\right\rangle / T \cong D_{2 n}$ as a subgroup of $N_{G}(T) / T$, the natural map $\widehat{\rho}: \Delta \longrightarrow \Delta_{G}$ sends \mathscr{T} to a loop of length $2 n$, and hence sends all apartments in the \mathfrak{G}-orbit of \mathscr{T} to loops of length $2 n$. Hence $\widehat{\rho}: \Delta \longrightarrow \Delta_{G}$ factors through Δ / \approx. We will show that $\widehat{\rho}$ induces an isomorphism $(\Delta / \approx) \cong \Delta_{G}$ of graphs, and then use that and (\ddagger) to prove the proposition.

We claim that
(1) Δ_{G} contains no loops of length strictly less than $2 n$; and each pair of points in Δ / \approx is connected by a path of length at most n.

Assume (1) does not hold: let L be a loop of minimal length $2 k(k<n)$. Fix edges $\sigma_{i}=\left[x_{i}, y_{i}\right]$ in $L(i=1,2)$ such that the shortest path from x_{i} to y_{3-i} in L has length $k-1$, and let $L_{0} \subseteq L$ be the path of length $k+1$ from x_{1} through y_{1} and x_{2} to y_{2}. Then L_{0} lifts to a path of length $k+1 \leq n$ in Δ, this is contained in some apartment in the \mathfrak{G}-orbit of \mathscr{T} by Lemma 4.10, and hence $L_{0} \subseteq \Sigma$, where $\Sigma \subseteq \Delta_{G}$ is an apartment in the G-orbit of $\widehat{\rho}(\mathscr{T})$. By [Ti, Theorem 3.3] or [Br p. 86], there is a retraction of Δ_{G} onto Σ. Hence the path from y_{2} to x_{1} in Σ has length at most $k-1$, which is impossible since Σ is a loop of length $2 n$ and L_{0} is a path of length $k+1 \leq n$ in Σ. (See also [Br, § IV.3, Exercise 1]. Point (1) also follows since Δ_{G} is a generalized n-gon in the sense of Tits $[\mathbf{B r}, ~ p .117]$, and hence any two vertices are joined by at most one path of length less than n.)

Now assume (2) does not hold: let x, y be vertices in Δ such that the shortest path between their classes in Δ / \approx has length $k \geq n+1$. Upon replacing x and y by other vertices in their equivalence classes, if needed, we can assume that the path $[x, y]$ in Δ has length k. Let z be the vertex in the path $[x, y]$ of distance $n+1$ from x. By Lemma 4.10, $[x, z]$ is contained in $g(\mathscr{T})$ for some $g \in \mathfrak{G}$; let x^{\prime} be the vertex in $g(\mathscr{T})$ of distance $2 n$ from x and distance $n-1$ from z. Then $x^{\prime} \approx x$, and $\left[x^{\prime}, y\right]$ has length at most $(n-1)+(k-n-1)=k-2$, a contradiction. This proves (2).

Assume the map $(\Delta / \approx) \longrightarrow \Delta_{G}$ induced by $\widehat{\rho}$ is not an isomorphism of graphs, and let x and y be distinct vertices in Δ / \approx whose images are equal in Δ_{G}. By (2), there is a path from x to y of length at most n, and of even length since the graph is bipartite. This path cannot have length 2 since $\widehat{\rho}: \Delta \longrightarrow \Delta_{G}$ preserves valence, so its image in Δ_{G} is a loop of length at most n, and this contradicts (11). We conclude that $\Delta_{G} \cong \Delta / \approx$.

Let $\left(\chi_{1}, \chi_{2}\right)$ be an automorphism of the amalgam $\left(\mathfrak{P}_{1}>B<\mathfrak{P}_{2}\right)$, let $\chi \in$ Aut(\mathfrak{G}) be the induced automorphism of the amalgamated free product, and let
$\widehat{\chi} \in \operatorname{Aut}(\Delta)$ be the automorphism which sends a vertex $\left[g \mathfrak{P}_{i}\right]$ to $\left[\chi\left(g \mathfrak{P}_{i}\right)\right]$ ．By \dagger ，

$$
\left(\chi_{1}\left(t_{1}\right) \chi_{2}\left(t_{2}\right)\right)^{n} \in \chi_{1}(T)=\chi_{2}(T) \leq C_{G}(\widehat{\rho}(\widehat{\chi}(\mathscr{T})))
$$

where $\chi_{1}\left(t_{1}\right) \chi_{2}\left(t_{2}\right)$ acts on $\widehat{\chi}(\mathscr{T})$ by translating it by distance 2 ．Hence $\widehat{\rho}(\widehat{\chi}(\mathscr{T}))$ is a loop of length $2 n$ in Δ_{G} ．So $\widehat{\rho} \circ \widehat{\chi}$ factors through $(\Delta / \approx) \cong \Delta_{G}$ ，and since Δ_{G} is a finite graph，the induced map $\Delta_{G} \longrightarrow \Delta_{G}$ is an automorphism of Δ_{G} ．So χ sends $\operatorname{Ker}[\mathfrak{G} \xrightarrow{\rho} G]$ to itself，and thus induces an automorphism of G ．The last statement（ κ_{G} is onto）now follows from Lemma 4．9，

It remains to find conditions under which（（ ）holds．The following proposition handles all but a small number of cases．

Proposition 4．12．Assume $N=N_{G}(T)$（and hence $N_{G}(T) / T$ is dihedral of order $2 n$ ）．Then \ddagger holds，and hence each automorphism of the amalgam $\left(\mathfrak{P}_{1}>\right.$ $B<\mathfrak{P}_{2}$ ）extends to an automorphism of G ．In particular，（ \ddagger and（娄）hold，and hence κ_{G} is onto，whenever $G={ }^{r} X_{n}(q) \in \mathfrak{L i e}(p)$ has Lie rank 2 for $q>2$ and $G \not \approx S p_{4}(3)$ ．

Proof．Assume that $N_{G}(T)=N=T\left\langle t_{1}, t_{2}\right\rangle$ ．Then the choices of the t_{i} are unique modulo T ．Also，any two choices of T are B－conjugate，so each automor－ phism of the amalgam is B－conjugate to one which sends \mathscr{T} to itself．Thus \boxplus holds，and so（娄）follows from Proposition 4.11

The last statement now follows from Proposition 3．9．Note that if（ \ddagger holds for G of universal type，then it also holds for $G / Z(G)$ of adjoint type．

What can go wrong，and what does go wrong when $G=S L_{3}(2)$ ，is that an automorphism of the amalgam can send t_{1}, t_{2} to another pair of elements whose product（modulo T ）has order strictly greater than $2 n$ ．This happens when \mathscr{T} is sent to another path not in the \mathfrak{G}－orbit of \mathscr{T} ：one whose image in Δ_{G} is a loop of a different length．

Example 4．13．Assume $G=S L_{3}(2)$ ．In particular，$T=1$ ．Let B be the group of upper triangular matrices，let t_{1} and t_{2} be the permutation matrices for（12）and （23），respectively，and set $\mathfrak{P}_{i}=\left\langle B, t_{i}\right\rangle$ ．

Consider the automorphism α of the amalgam which is the identity on \mathfrak{P}_{1} （hence on B ），and which is conjugation by e_{13}（the involution in $Z(B)$ ）on \mathfrak{P}_{2} ．Set $t_{i}^{\prime}=\alpha\left(t_{i}\right)$ ．Thus

$$
t_{1}^{\prime}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad t_{2}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

One checks that $t_{1}^{\prime} t_{2}^{\prime}$ has order 4 ，so that $\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle \cong D_{8}$ while $\left\langle t_{1}, t_{2}\right\rangle \cong D_{6}$ ．In other words，α sends the lifting（from Δ_{G} to Δ ）of a loop of length 6 to the lifting of a loop of length 8 ，hence is not compatible with the relation \approx ，hence does not extend to an automorphism of G ．

We are left with seven cases：four cases with $n=4$ ，two with $n=6$ ，and one with $n=8$ ．Those with $n=4$ are relatively easy to handle．

Proposition 4．14．Assume G is one of the groups $S p_{4}(2), P S p_{4}(3), P S U_{4}(2)$ ， or $\operatorname{PSU}_{5}(2)$ ．Then（\＃）holds，and hence（娄）also holds and κ_{G} is onto．

Proof．In all cases，we work in the universal groups $S p_{4}(q)$ and $S U_{n}(2)$ ，but the arguments are unchanged if we replace the subgroups described below by their images in the adjoint group．Recall that p is always the defining characteristic，
so the second and third cases are distinct, even though $P S p_{4}(3) \cong S U_{4}(2)$ (see [Wi, §3.12.4] or Ta, Corollary 10.19]).

Let (χ_{1}, χ_{2}) be an automorphism of $\left(\mathfrak{P}_{1}>B<\mathfrak{P}_{2}\right)$. Since all subgroups of B isomorphic to T are conjugate to T by the Schur-Zassenhaus theorem, we can also assume that $\chi_{i}(T)=T$. Set $\chi_{0}=\left.\chi_{1}\right|_{B}=\left.\chi_{2}\right|_{B}$ and $t_{i}^{*}=\chi_{i}\left(t_{i}\right)$ for short; we must show that $\left|t_{1}^{*} t_{2}^{*}\right|=n=4$. Note that $t_{1}^{*} t_{2}^{*}$ has order at least 4 , since otherwise Δ_{G} would contain a loop of length strictly less than $8=2 n$, which is impossible by point (1) in the proof of Proposition 4.11
$\boldsymbol{G}=\boldsymbol{S} \boldsymbol{p}_{\mathbf{4}}(\mathbf{2}) \cong \boldsymbol{\Sigma}_{\mathbf{6}}: \quad$ Set $G^{\prime}=[G, G]$: the subgroup of index 2. The elements $x_{\gamma}(1)$ for $\gamma \in \Sigma$ are all $\operatorname{Aut}(G)$-conjugate: the long roots and the short roots are all W-conjugate and a graph automorphism exchanges them. Since these elements generate G, none of them are in G^{\prime}. Hence for $i=1,2$, all involutions in

$$
\left\langle x_{\alpha_{i}}(1), x_{-\alpha_{i}}(1)\right\rangle \cong G L_{2}(2) \cong \Sigma_{3}
$$

lie in $G \backslash G^{\prime}$, and in particular, $t_{i} \in G \backslash G^{\prime}$.
Each automorphism of the amalgam sends the focal subgroup to itself (as a subgroup of B), and hence also sends the intersections $\mathfrak{P}_{i} \cap G^{\prime}$ to themselves. So $t_{1}^{*}, t_{2}^{*} \in G \backslash G^{\prime}$, and $t_{1}^{*} t_{2}^{*} \in G^{\prime} \cong A_{6}$. It follows that $\left|t_{1}^{*} t_{2}^{*}\right| \leq 5$, and $\left|t_{1}^{*} t_{2}^{*}\right|=4$ since every dihedral subgroup of order 10 in Σ_{6} is contained in A_{6}.
$\boldsymbol{G}=\boldsymbol{S} \boldsymbol{p}_{4}(\mathbf{3}):$ In this case, $T \cong C_{2}^{2}$, and $N_{G}(T) \cong S L_{2}(3)$ < C_{2}. Hence $N_{G}(T) / T \cong$ A_{4} < C_{2} contains elements of order $2,3,4$, and 6 , but no dihedral subgroups of order 12. Since $t_{1}^{*} t_{2}^{*}$ has order at least $4,\left|t_{1}^{*} t_{2}^{*}\right|=4$, and condition (\boxplus holds.
$\boldsymbol{G}=\boldsymbol{S} \boldsymbol{U}_{n}(2)$ for $n=4$ or 5 : We regard these as matrix groups via

$$
S U_{n}(2)=\left\{M \in S L_{n}(4) \mid \bar{M}^{t}=M^{-1}\right\} \quad \text { where } \quad \overline{\left(a_{i j}\right)^{t}}=\left(\overline{a_{n+1-j, n+1-i}}\right),
$$

and where $\bar{x}=x^{2}$ for $x \in \mathbb{F}_{4}$. We can then take B to be the group of upper triangular matrices in $S U_{n}(2), U$ the group of strict upper triangular matrices, and T the group of diagonal matrices. We thus have

$$
\begin{array}{ll}
T=\left\{\operatorname{diag}\left(x, x^{-1}, x^{-1}, x\right) \mid x \in \mathbb{F}_{4}\right\} \cong C_{3} & \text { if } n=4 \\
T=\left\{\operatorname{diag}(x, y, x y, y, x) \mid x, y \in \mathbb{F}_{4}\right\} \cong C_{3}^{2} & \text { if } n=5 .
\end{array}
$$

Since $N_{G}(T)$ must permute the eigenspaces of the action of T on \mathbb{F}_{4}^{n}, we have $N_{G U_{n}(2)}(T) \cong G U_{2}(2)$) C_{2} (if $n=4$) or $\left(G U_{2}(2) 乙 C_{2}\right) \times \mathbb{F}_{4}^{\times}$(if $\left.n=5\right)$. So in both cases,

$$
N_{G}(T) / T \cong P G U_{2}(2) \zeta C_{2} \cong \Sigma_{3} 乙 C_{2} \cong C_{3}^{2} \rtimes D_{8}
$$

Set $Q=N_{G}(T) / O_{3}\left(N_{G}(T)\right) \cong D_{8}$, and let $\psi: N_{G}(T) \longrightarrow Q$ be the natural projection. Set $Q_{0}=\psi\left(C_{G}(T)\right)$. Since $C_{G}(T) / T \cong \Sigma_{3} \times \Sigma_{3}$ (the subgroup of elements which send each eigenspace to itself), $Q_{0} \cong C_{2}^{2}$ and $C_{G}(T)=\psi^{-1}\left(Q_{0}\right)$.

Choose the indexing of the parabolics such that \mathfrak{P}_{1} is the subgroup of elements which fix an isotropic point and \mathfrak{P}_{2} of those which fix an isotropic line. Thus

$$
\mathfrak{P}_{1}=\left\{\left.\left(\begin{array}{ccc}
u & v & x \\
0 & A & w \\
0 & 0 & u
\end{array}\right) \right\rvert\, A \in G U_{n-2}(2)\right\}
$$

and

$$
\mathfrak{P}_{2}= \begin{cases}\left\{\left.\left(\begin{array}{cc}
A & X \\
0 & \left(\bar{A}^{t}\right)^{-1}
\end{array}\right) \right\rvert\, A \in S L_{2}(4)\right\} & \text { if } n=4 \\
\left\{\left.\left(\begin{array}{cc}
A & v \\
0 & w \\
0 & u
\end{array}\right) \right\rvert\, A \in G L_{2}(4)\right\} & \text { if } n=5 .\end{cases}
$$

Then $\psi\left(N_{\mathfrak{P}_{1}}(T)\right) \leq Q_{0}$: no matrix in \mathfrak{P}_{1} can normalize T and exchange its eigenspaces. Also, $N_{B}(T)$ contains $C_{U}(T)=\left\langle e_{1, n}(1), e_{2, n-1}(1)\right\rangle$, where $e_{i, j}(u)$ denotes the elementary matrix with unique off-diagonal entry u in position (i, j). Thus $Q_{0} \geq \psi\left(N_{\mathfrak{P}_{1}}(T)\right) \geq \psi\left(N_{B}(T)\right) \cong C_{2}^{2}$, so these inclusions are all equalities. Also, \mathfrak{P}_{2} contains the permutation matrix for the permutation $(12)(n-1 n)$, this element exchanges the eigenspaces of rank 2 for T, and so $\psi\left(N_{\mathfrak{P}_{2}}(T)\right)=Q$.

Since $T\left\langle t_{1}, t_{2}\right\rangle / T \cong D_{8},\left\langle\psi\left(t_{1}\right), \psi\left(t_{2}\right)\right\rangle=Q$, and so $\psi\left(t_{1}\right) \in Q_{0} \backslash Z(Q)$ and $\psi\left(t_{2}\right) \in Q \backslash Q_{0}$. Since (χ_{1}, χ_{2}) induces an automorphism of the amalgam $(Q>$ $Q_{0}=Q_{0}$, this implies that $\psi\left(t_{1}^{*}\right) \in Q_{0} \backslash Z(Q)$ and $\psi\left(t_{2}^{*}\right) \in Q \backslash Q_{0}$. But then $\left\langle\psi\left(t_{1}^{*}\right), \psi\left(t_{2}^{*}\right)\right\rangle=Q$ since these elements generate modulo $Z(Q)$, so $\left|t_{1}^{*} t_{2}^{*}\right| \in 4 \mathbb{Z}$, and $\left|t_{1}^{*} t_{2}^{*}\right|=4$ since $N_{G}(T) / T \cong \Sigma_{3}$ C C_{2} contains no elements of order 12.

It remains to handle the groups $G_{2}(2),{ }^{3} D_{4}(2)$, and ${ }^{2} F_{4}(2)$. In the first two cases, if t_{i}^{*} is an arbitrary involution in $N_{\mathfrak{P}_{i}}(T) \backslash N_{B}(T)$ for $i=1,2$, then $t_{1}^{*} t_{2}^{*}$ can have order $6,7,8$, or 12 when $G=G_{2}(2)$, or order 6 or 8 when $G={ }^{3} D_{4}(2)$, and there does not seem to be any way to prove condition \ddagger short of analyzing automorphisms of the amalgam sufficiently to prove (娄) directly.

Let $\{\alpha, \beta\}$ be a fundamental system in the root system of G_{2} where α is the long root. Let $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ be the three long positive roots, and $\beta, \beta^{\prime}, \beta^{\prime \prime}$ the three short positive roots, as described in (3) below.

Let $\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ denote the four fundamental roots in the D_{4} root system, where γ_{0} is in the center of the Dynkin diagram, and the other three are permuted cyclically by the triality automorphism. Set $\gamma_{i j}=\gamma_{i}+\gamma_{j}$ (when it is a root), etc. We identify the six classes of positive roots in ${ }^{3} D_{4}$ with the roots in G_{2} by identifying the following two diagrams:

${ }^{3} D_{4}$

The following list gives all nontrivial commutator relations among root subgroups of $G_{2}(q)$ or ${ }^{3} D_{4}(q)$ (see GLS3, Theorems 1.12.1(b) \& 2.4.5(b)]):

$$
\begin{array}{rlr}
{\left[x_{\alpha}(u), x_{\beta}(v)\right]} & \equiv x_{\beta^{\prime}}(\pm u v) x_{\beta^{\prime \prime}}\left(\pm u v^{1+q}\right) & \left(\bmod X_{\alpha^{\prime}} X_{\alpha^{\prime \prime}}\right) \\
{\left[x_{\beta^{\prime}}(u), x_{\beta}(v)\right]} & \equiv x_{\beta^{\prime \prime}}\left(\pm\left(u v^{q}+u^{q} v\right)\right) & \left(\bmod X_{\alpha^{\prime}} X_{\alpha^{\prime \prime}}\right) \\
{\left[x_{\alpha}(u), x_{\alpha^{\prime}}(v)\right]} & =x_{\alpha^{\prime \prime}}(\pm u v) & \\
{\left[x_{\beta^{\prime}}(u), x_{\beta^{\prime \prime}}(v)\right]} & =x_{\alpha^{\prime \prime}}\left(\pm \operatorname{Tr}\left(u v^{q}\right)\right) \\
{\left[x_{\beta^{\prime \prime}}(u), x_{\beta}(v)\right]} & =x_{\alpha^{\prime}}\left(\pm \operatorname{Tr}\left(u^{q} v\right)\right) . & \tag{8}
\end{array}
$$

Again, $\operatorname{Tr}: \mathbb{F}_{q^{3}} \longrightarrow \mathbb{F}_{q}$ denotes the trace. Note that when $G=G_{2}(q)$, then $u, v \in$ \mathbb{F}_{q} in all cases, and hence $u^{q}=u^{q^{2}}=u, u^{q+q^{2}}=u^{2}$, and $\operatorname{Tr}(u)=3 u$. When $G={ }^{3} D_{4}(q)$, the notation $x_{\beta}(-), x_{\beta^{\prime}}(-)$, and $x_{\beta^{\prime \prime}}(-)$ is somewhat ambiguous
(and formula (5) depends on making the right choice), but this doesn't affect the arguments given below.

Proposition 4.15. Assume $p=2$ and $G=G_{2}(2)$. Then (囷) holds: each automorphism of the amalgam $\left(\mathfrak{P}_{\alpha}>B<\mathfrak{P}_{\beta}\right)$ extends to an automorphism of G. (In fact, each automorphism of the amalgam is conjugation by some element of B.) In particular, κ_{G} is onto.

Proof. In this case, $T=1$, and

$$
\mathfrak{P}_{\alpha} \cong\left(C_{4} \times C_{4}\right) \rtimes D_{12} \quad \text { and } \quad \mathfrak{P}_{\beta} \cong\left(Q_{8} \times_{C_{2}} Q_{8}\right) \rtimes \Sigma_{3} .
$$

Also, $B=U$ has presentation $U=A \rtimes\langle r, t\rangle$, where

$$
A=\langle a, b\rangle \cong C_{4} \times C_{4},\langle r, t\rangle \cong C_{2}^{2},{ }^{r} a=a^{-1},{ }^{r} b=b^{-1},{ }^{t} a=b,{ }^{t} b=a .
$$

In terms of the generators $x_{\gamma}=x_{\gamma}(1)$ for $\gamma \in \Sigma_{+}$, we have $A=\left\langle x_{\beta^{\prime}} x_{\beta}, x_{\beta^{\prime \prime}} x_{\beta}\right\rangle$ and $\Omega_{1}(A)=\left\langle x_{\alpha^{\prime}}, x_{\alpha^{\prime \prime}}\right\rangle$, and we can take $r=x_{\beta^{\prime \prime}}, t=x_{\alpha}$, and $a=x_{\beta} x_{\beta^{\prime \prime}}$ (and then $b={ }^{t} a$). Note that (5) takes the more precise form $\left[x_{\beta^{\prime}}, x_{\beta}\right]=x_{\alpha^{\prime}} x_{\alpha^{\prime \prime}}$ in this case. Also,

$$
\begin{aligned}
U_{\alpha} & =A\langle r\rangle \cong\left(C_{4} \times C_{4}\right) \rtimes C_{2} \\
U_{\beta} & =\left\langle a b^{-1}, a^{2} t\right\rangle \times_{\left\langle a^{2} b^{2}\right\rangle}\left\langle a b, a^{2} r t\right\rangle \cong Q_{8} \times_{C_{2}} Q_{8} \\
U \cap G^{\prime} & =A\langle t\rangle \cong C_{4}\left\langle C_{2} .\right.
\end{aligned}
$$

The last formula holds since $G^{\prime}=[G, G] \cong S U_{3}(3)$ has index two in G (see $\mathbf{W i}$, §4.4.4] or [Di, pp. 146-150]), since $x_{\alpha}, x_{\alpha^{\prime}}, x_{\alpha^{\prime \prime}} \in G^{\prime}\left(\right.$ note that $\left.x_{\alpha}=\left[x_{-\beta}, x_{\beta^{\prime}}\right]\right)$, and since $x_{\beta}, x_{\beta^{\prime}}$, and $x_{\beta^{\prime \prime}}$ are all G-conjugate and hence none of them lies in G^{\prime}.

Fix an automorphism $\left(\chi_{\alpha}, \chi_{\beta}\right)$ of the amalgam $\left(\mathfrak{P}_{\alpha}>B<\mathfrak{P}_{\beta}\right)$, and set $\chi_{0}=$ $\left.\chi_{\alpha}\right|_{B}=\left.\chi_{\beta}\right|_{B} \in \operatorname{Aut}(B)$. Then χ_{0} normalizes each of the subgroups U_{α}, U_{β}, and $U \cap$ G^{\prime}. Also, χ_{0} normalizes $U_{\alpha} \cap G^{\prime}=A$, and since $U_{\beta} \cap G^{\prime}=\left\langle a b, a b^{-1}, t\right\rangle \cong Q_{8} \times_{C_{2}} C_{4}$ contains a unique quaternion subgroup, χ_{0} normalizes each of the two quaternion subgroups in U_{β}. After composing by an appropriate element of $\operatorname{Aut}_{U}\left(\mathfrak{P}_{\beta}\right)$, we can arrange that $\chi_{0}(a b)=a b$ and $\chi_{0}\left(a b^{-1}\right)=a b^{-1}$. In particular, χ_{0} induces the identity on $\Omega_{1}(A)$ and hence also on $A / \Omega_{1}(A)$.

Let $g \in \mathfrak{P}_{\alpha}$ be an element of order 3 , chosen so that ${ }^{g}\left(a^{2}\right)=b^{2}$ and ${ }^{g}\left(b^{2}\right)=a^{2} b^{2}$. The image of $\langle g\rangle$ in $\mathfrak{P}_{\alpha} / A \cong D_{12}$ is normal, so $\chi_{\alpha}(g) \in A g$. Let $x \in \Omega_{1}(A)$ be such that $\chi_{\alpha}(b)=\chi_{0}(b)=a x$. Then ${ }^{g} b \in\left\langle a b, b^{2}\right\rangle \leq C_{A}\left(\chi_{0}\right)$, so ${ }^{g} b=\chi_{\alpha}\left({ }^{g} b\right)={ }^{g}(b x)$ implies that ${ }^{g} x=1$ and hence $x=1$. Thus $\left.\chi_{0}\right|_{A}=\mathrm{Id}$. Also, $\chi_{\alpha}(\langle g\rangle) \in \operatorname{Syl}_{3}\left(\mathfrak{P}_{\alpha}\right)$ is conjugate to $\langle g\rangle$ by an element of A, so we can arrange that $\chi_{\alpha}(\langle g\rangle)=\langle g\rangle$ and hence that $\left.\chi_{\alpha}\right|_{A\langle g\rangle}=\mathrm{Id}$. But then χ_{α} is the identity modulo $C_{\mathfrak{P}_{\alpha}}(A\langle g\rangle)=Z(A\langle g\rangle)=1$, so $\chi_{\alpha}=\mathrm{Id}_{\mathfrak{P}_{\alpha}}$.

Since $\left.\chi_{\beta}\right|_{U_{\beta}}=\mathrm{Id}, \chi_{\beta}$ induces the identity modulo $C_{\mathfrak{P}_{\beta}}\left(U_{\beta}\right)=Z\left(U_{\beta}\right) \cong C_{2}$. It thus has the form $\chi_{\beta}(x)=x \psi(x)$ for some $\psi \in \operatorname{Hom}\left(\mathfrak{P}_{\beta}, Z\left(U_{\beta}\right)\right)$. Hence $\chi_{\beta}=\mathrm{Id}$, since it is the identity on $U \in \operatorname{Syl}_{2}\left(\mathfrak{P}_{\beta}\right)$.

Proposition 4.16. Assume $p=2$ and $G={ }^{3} D_{4}(2)$. Then (娄) holds, and κ_{G} is onto.

Proof. In this case, $T \cong \mathbb{F}_{8}^{\times} \cong C_{7}, \mathfrak{P}_{\alpha} / U_{\alpha} \cong C_{7} \times \Sigma_{3}$, and $\mathfrak{P}_{\beta} / U_{\beta} \cong S L_{2}(8)$. Also, by (6) and (7), U_{β} is extraspecial with center $X_{\alpha^{\prime \prime}}$. Fix an automorphism $\left(\chi_{\alpha}, \chi_{\beta}\right)$ of the amalgam $\left(\mathfrak{P}_{\alpha}>B<\mathfrak{P}_{\beta}\right)$, and set $\chi_{0}=\left.\chi_{\alpha}\right|_{B}=\left.\chi_{\beta}\right|_{B}$. We must show that χ_{α} and χ_{β} are the restrictions of some automorphism of G.

By Theorem 3.4 and since $\operatorname{Outdiag}\left(S L_{2}(8)\right)=1=\Gamma_{S L_{2}(8)}, \operatorname{Out}\left(\mathfrak{P}_{\beta} / U_{\beta}\right) \cong$ $\operatorname{Out}\left(S L_{2}(8)\right)$ is generated by field automorphisms, and hence automorphisms which are restrictions of field automorphisms of G. So we can compose χ_{β} and χ_{α} by restrictions of elements of $\operatorname{Aut}_{B}(G) \Phi_{G}=N_{\text {Aut }_{\mathfrak{P}_{\beta}(G)}}(U) \Phi_{G}$, to arrange that χ_{β} induces the identity on $\mathfrak{P}_{\beta} / U_{\beta}$. Then, upon composing them by some element of Aut $_{U}(G)$, we can also arrange that $\chi_{0}(T)=T$. Since $X_{\beta^{\prime}}$ and $X_{\beta^{\prime \prime}}$ are dual to each other by (7) and hence nonisomorphic as $\mathbb{F}_{2}[T]$-modules, χ_{0} sends each of them to itself.

Since $\chi_{0}(T)=T, \chi_{0}$ sends $C_{U}(T)=X_{\alpha} X_{\alpha^{\prime}} X_{\alpha^{\prime \prime}} \cong D_{8}$ to itself. It cannot exchange the two subgroups $X_{\alpha} X_{\alpha^{\prime \prime}}$ and $X_{\alpha^{\prime}} X_{\alpha^{\prime \prime}}$ (the first is not contained in U_{α} and the second is), so $\left.\chi_{0}\right|_{C_{U}(T)} \in \operatorname{Inn}\left(C_{U}(T)\right)$. Hence after composing by an element of $\operatorname{Aut}_{C_{U}(T)}(G)$, we can arrange that χ_{0} is the identity on this subgroup. Also, by applying (4) with $u=1$, and since $\left.\chi_{0}\right|_{X_{\beta}} \equiv \operatorname{Id}\left(\bmod U_{\beta}\right)$ and $\left[X_{\alpha}, U_{\beta}\right] \leq X_{\alpha^{\prime \prime}}$, we see that χ_{0} is the identity on $X_{\beta^{\prime}} X_{\beta^{\prime \prime}}$. We conclude that χ_{0} is the identity on U_{β}.

Since χ_{β} induces the identity on U_{β} and on $\mathfrak{P}_{\beta} / U_{\beta}$, it has the form $\chi_{\beta}(x)=$ $x \psi(x)$ (all $x \in \mathfrak{P}_{\beta}$) for some

$$
\psi \in \operatorname{Hom}\left(\mathfrak{P}_{\beta} / U_{\beta} ; Z\left(U_{\beta}\right)\right) \cong \operatorname{Hom}\left(S L_{2}(8), C_{2}\right)=1
$$

So $\chi_{\beta}=\mathrm{Id}_{\mathfrak{P}_{\beta}}$.
Now, $C_{\mathfrak{P}_{\alpha}}(T) \cong \Sigma_{4} \times C_{7}$, and $\operatorname{Out}\left(\Sigma_{4}\right)=1$. Hence $\left.\chi_{\alpha}\right|_{C_{\mathfrak{P}_{\alpha}}(T)}$ must be conjugation by some element $z \in Z\left(C_{U}(T)\right)=X_{\alpha^{\prime \prime}}=Z\left(\mathfrak{P}_{\beta}\right)$. After composing χ_{α} and χ_{β} by restrictions of c_{z}, we can thus assume that χ_{α} is the identity on $C_{\mathfrak{P}_{\alpha}}(T)$ (and still $\left.\chi_{\beta}=\mathrm{Id}_{\mathfrak{P}_{\beta}}\right)$. Since $\left.\chi_{\alpha}\right|_{U}=\mathrm{Id}$ and $\mathfrak{P}_{\alpha}=\left\langle U, C_{\mathfrak{P}_{\alpha}}(T)\right\rangle$, we have $\chi_{\alpha}=\mathrm{Id}_{\mathfrak{P}_{\alpha}}$.

It remains only to handle ${ }^{2} F_{4}(2)$ and the Tits group.
Proposition 4.17. Assume $G={ }^{2} F_{4}(2)^{\prime}$ or ${ }^{2} F_{4}(2)$. Then κ_{G} is an isomorphism.

Proof. By the pullback square in AOV, Lemma 2.15] (and since Out (\mathcal{L}) is independent of the choice of objects in \mathcal{L} by AOV Lemma 1.17]), κ_{G} is an isomorphism when $G={ }^{2} F_{4}(2)$ if it is an isomorphism when G is the Tits group. So from now on, we assume $G={ }^{2} F_{4}(2)^{\prime}$.

We adopt the notation for subgroups of G used by Parrott $\mathbf{P a}$. Fix $T \in$ $\operatorname{Syl}_{2}(G)$, and set $Z=Z(T) \cong C_{2}, H=C_{G}(Z)$, and $J=O_{2}(H)$. Let $z \in Z$ be a generator. Then H is the parabolic subgroup of order $2^{11} \cdot 5,|J|=2^{9}$, and $H / J \cong$ $C_{5} \rtimes C_{4}$. Set $E=[J, J]$. By $\mathbf{P a}$ Lemma 1], $E=Z_{2}(J)=\operatorname{Fr}(J) \cong C_{2}^{5}$, and by the proof of that lemma, the Sylow 5 -subgroups of H act irreducibly on $J / E \cong C_{2}^{4}$ and on $E / Z \cong C_{2}^{4}$. Since each element of $\operatorname{Aut}_{H / J}(J / E)$ sends $C_{J / E}(T / J) \cong C_{2}$ to itself,
(9) $\operatorname{Aut}_{H / J}(J / E)=\left\{\operatorname{Id}_{J / E}\right\}$ and

$$
\left|\operatorname{Hom}_{H / J}(J / E, E / Z)\right| \leq\left|\operatorname{Hom}_{H / J}(J / E, J / E)\right|=2
$$

Let $N>T$ be the other parabolic, and set $K=O_{2}(N)$. Thus $N / K \cong \Sigma_{3}$, and $[T: K]=2$.

Fix $P \in \operatorname{Syl}_{5}(H) \subseteq \operatorname{Syl}_{5}(G)\left(\right.$ so $\left.P \cong C_{5}\right)$. By [Pa, p. 674], $H / E=(J / E)$. $\left(N_{G}(P) / Z\right)$, where $N_{G}(P) / Z \cong H / J \cong C_{5} \rtimes C_{4}$. For each $\beta \in \operatorname{Aut}(H)$ such that $\beta(T)=T$, there is $\beta_{1} \equiv \beta\left(\bmod \operatorname{Aut}_{J}(H)\right)$ such that $\beta_{1}(P)=P$. Since each automorphism of H / J which sends $T / J \cong C_{4}$ to itself is conjugation by an element of T / J, there is $\beta_{2} \equiv \beta_{1}\left(\bmod \operatorname{Aut}_{N_{T}(P)}(H)\right)$ such that β_{2} induces
the identity on H / J. By (9), β_{2} also induces the identity on J / E, and hence on $H / E=(J / E) \cdot\left(N_{G}(P) / Z\right)$. Thus

$$
\begin{equation*}
N_{\operatorname{Aut}(H)}(T)=\operatorname{Aut}_{T}(H) \cdot\{\beta \in \operatorname{Aut}(H) \mid \beta(P)=P,[\beta, H] \leq E\} \tag{10}
\end{equation*}
$$

Now set $\mathcal{L}=\mathcal{L}_{T}^{c}(G)$ for short, and identify $N=\operatorname{Aut}_{\mathcal{L}}(K)$ and $H=\operatorname{Aut}_{\mathcal{L}}(J)$. For each $\alpha \in \operatorname{Aut}(\mathcal{L})$, let $\alpha_{H} \in \operatorname{Aut}(H)$ and $\alpha_{N} \in \operatorname{Aut}(N)$ be the induced automorphisms, and set $\alpha_{T}=\left.\alpha_{H}\right|_{T}=\left.\alpha_{N}\right|_{T}$. Set

$$
\mathcal{A}_{0}=\left\{\alpha \in \operatorname{Aut}(\mathcal{L}) \mid\left[\alpha_{H}, H\right] \leq E \text { and }\left.\alpha_{H}\right|_{P}=\operatorname{Id}_{P}\right\}
$$

By (10), each class in $\operatorname{Out}(\mathcal{L})$ contains at least one automorphism in \mathcal{A}_{0}.
Fix $\alpha \in \mathcal{A}_{0}$. Since $\left[\alpha_{H}, H\right]$ must be normal in H, we have $\left[\alpha_{H}, H\right] \in\{E, Z, 1\}$. If $\left[\alpha_{H}, H\right]=Z$, then $\left.\alpha_{H}\right|_{J P}=\mathrm{Id}$, so $\left[\alpha_{H}, K\right]=\left[\alpha_{N}, K\right]=Z$, which is impossible since Z is not normal in N by $[\mathbf{P a}$, Lemma 6] (or since $z \notin Z(G)$ and $G=\langle H, N\rangle$). Thus either $\alpha_{H}=\mathrm{Id}$, or $\left[\alpha_{H}, H\right]=E$.

If $\alpha_{H}=\operatorname{Id}_{H}$, then $\left.\alpha_{N}\right|_{T}=$ Id. In this case, α_{N} determines an element of $H^{1}(N / K ; Z(K))$ whose restriction to $H^{1}(T / K ; Z(K))$ is trivial, and since this restriction map for $H^{1}(-; Z(K))$ is injective (since $\left.T / K \in \operatorname{Syl}_{2}(N / K)\right), \alpha_{N} \in \operatorname{Inn}(N)$ (see, e.g., OV, Lemma 1.2]). Hence $\alpha_{N} \in \operatorname{Aut}_{Z}(N)$ since $\left.\alpha_{N}\right|_{T}=\operatorname{Id}$ (and $Z=Z(T))$. So $\alpha \in \operatorname{Aut}_{Z}(\mathcal{L})$ in this case, and $[\alpha]=1 \in \operatorname{Out}(\mathcal{L})$.

Set $\bar{H}=H / Z$, and similarly for subgroups of H. Let $\bar{\alpha}_{H} \in \operatorname{Aut}(\bar{H})$ and $\bar{\alpha}_{T} \in \operatorname{Aut}(\bar{T})$ be the automorphisms induced by α_{H} and α_{T}, and set $\beta=\left.\bar{\alpha}_{T}\right|_{\bar{J}}$. Then $\bar{E}=Z(\bar{J})$ since $E=Z_{2}(J)$, so $\beta(g)=g \varphi(\widehat{g})$ for some $\varphi \in \operatorname{Hom}_{H / J}(J / E, \bar{E})$. If $\varphi=1$, so that $[\alpha, J] \leq Z$, then since $\left.\alpha\right|_{P}=$ Id, we have $\left[\alpha_{H}, H\right]<E$ and so $\alpha_{H}=\mathrm{Id}$.

We have now constructed a homomorphism from \mathcal{A}_{0} to $\operatorname{Hom}_{H / J}(J / E, \bar{E})$ with kernel $\operatorname{Aut}_{Z}(\mathcal{L})$. Thus

$$
|\operatorname{Out}(\mathcal{L})| \leq\left|\mathcal{A}_{0} / \operatorname{Aut}_{Z}(\mathcal{L})\right| \leq\left|\operatorname{Hom}_{H / J}(J / E, \bar{E})\right| \leq 2
$$

where the last inequality holds by (91). Since $|\operatorname{Out}(G)|=2$ by [GrL Theorem 2], and since κ_{G} is injective by Lemma 4.3, this proves that κ_{G} is an isomorphism.

Alternatively, this can be shown using results in $\left[\mathbf{F n}\right.$. Since $T /[T, T] \cong C_{2} \times C_{4}$ by the above description of T / E (where $E \leq[T, T]$), $\operatorname{Aut}(T)$ and hence $\operatorname{Out}(\mathcal{L})$ are 2-groups. So each automorphism of the amalgam $H>T<N$ determines a larger amalgam. Since the only extension of this amalgam is to that of ${ }^{2} F_{4}(2)$ by $[$ Fn, Theorem 1], $|\operatorname{Out}(\mathcal{L})|=2$.

CHAPTER 5

The cross characteristic case: I

Throughout this chapter, we will work with groups $G=C_{\bar{G}}(\sigma)$ which satisfy the conditions in Hypotheses 5.1 below. In particular, 5.1(I) implies that G is not a Suzuki or Ree group. We will see in Chapter [6(Proposition (6.8) that while these hypotheses are far from including all finite Chevalley and Steinberg groups, their fusion systems at the prime p do include almost all of those we need to consider.

For any finite abelian group B, we denote its "scalar automorphisms" by

$$
\psi_{k}^{B} \in \operatorname{Aut}(B), \quad \psi_{k}^{B}(g)=g^{k} \quad \text { for all } k \text { such that }(k,|B|)=1
$$

and define the group of its scalar automorphisms

$$
\operatorname{Aut}_{\mathrm{sc}}(B)=\left\{\psi_{k}^{B} \mid(k,|B|)=1\right\} \leq Z(\operatorname{Aut}(B)) .
$$

Hypotheses 5.1. Assume we are in the situation of Notation 2.2 (A]B|C).
(I) Let p be a prime distinct from q_{0} such that $p\left|\left|W_{0}\right|\right.$. Assume also that $\sigma=$ $\psi_{q} \circ \gamma=\gamma \circ \psi_{q} \in \operatorname{End}(\bar{G})$, where

- q is a power of the prime q_{0};
- $\psi_{q} \in \Phi_{\bar{G}}$ is the field automorphism (see Definition 3.1(a)); and
- $\gamma \in \operatorname{Aut}(\bar{G})$ is an algebraic automorphism of finite order which sends \bar{T} to itself and commutes with $\psi_{q_{0}}$ (so that $\psi_{q_{0}}(G)=G$).
Also, there is a free $\langle\tau\rangle$-orbit of the form

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\} \quad \text { or } \quad\left\{ \pm \alpha_{1}, \pm \alpha_{2}, \ldots, \pm \alpha_{s}\right\}
$$

in Σ such that the set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ is linearly independent in V.
(II) The algebraic group \bar{G} is of universal type, and $N_{G}(T)$ contains a Sylow psubgroup of G. Set $A=O_{p}(T)$, and fix $S \in \operatorname{Syl}_{p}\left(N_{G}(T)\right) \subseteq \operatorname{Syl}_{p}(G)$; thus $A \leq S$.
(III) Assume one of the following holds: either
(III.1) $q \equiv 1(\bmod p), q \equiv 1(\bmod 4)$ if $p=2,|\gamma| \leq 2$, and $\gamma \in \Gamma_{\bar{G}}$ (thus $\rho(\Pi)=\Pi)$; or
(III.2) p is odd, $q \equiv-1(\bmod p), G$ is a Chevalley group (i.e., $\gamma \in \operatorname{Inn}(\bar{G})$), and $\gamma(t)=t^{-1}$ for each $t \in \bar{T}$; or
(III.3) p is odd, $|\tau|=\operatorname{ord}_{p}(q) \geq 2, C_{A}\left(O_{p^{\prime}}\left(W_{0}\right)\right)=1, C_{S}\left(\Omega_{1}(A)\right)=A$, $\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$,

$$
N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right) \leq \operatorname{Aut}_{\mathrm{sc}}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A)
$$

$$
\begin{gathered}
w h e r e \operatorname{Aut}_{\operatorname{Aut}(G)}(A)=\left\{\left.\delta\right|_{A} \mid \delta \in \operatorname{Aut}(G), \delta(A)=A\right\}, \text { and } \\
\operatorname{Aut}_{W_{0}}(A) \cap \operatorname{Aut}_{\mathrm{sc}}(A) \leq \begin{cases}\left\langle\left.\gamma\right|_{A}\right\rangle & \text { if } 2 \mid \operatorname{ord}_{p}(q) \text { or }-\mathrm{Id} \notin W \\
\left\langle\left.\gamma\right|_{A}, \psi_{-1}^{A}\right\rangle & \text { otherwise, }\end{cases}
\end{gathered}
$$

Since W_{0} acts on T by Lemma 2.3, it also acts on $A=O_{p}(T)$.
We will see in Lemma 5.3 that the conditions $C_{S}\left(\Omega_{1}(A)\right)=A\left(\right.$ or $C_{S}(A)=A$ when $p=2$) and $\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$, both assumed here in (III.3), also hold in cases (III.1) and (III.2).

Recall, in the situation of (III.3), that $|\tau|=|\gamma|_{\bar{T}} \mid$ by Lemma 3.2.
Note that the above hypotheses eliminate the possibility that G be a Suzuki or Ree group. Since we always assume the Sylow p-subgroups are nonabelian, the only such case which needs to be considered here (when $q_{0} \neq p$) is that of ${ }^{2} F_{4}(q)$ when $p=3$, and this will be handled separately.

By Lemma 3.2, whenever $\sigma=\psi_{q} \circ \gamma$, and γ is an algebraic automorphism of \bar{G} which normalizes \bar{T}, there is $\tau \in \operatorname{Aut}(V)$ such that $\tau(\Sigma)=\Sigma$ and $\sigma\left(\bar{X}_{\alpha}\right)=\bar{X}_{\tau(\alpha)}$ for each $\alpha \in \Sigma$. So under Hypotheses 5.1, the condition at the beginning of Notation 2.2 (C) holds automatically, and with $\rho=\left.\tau\right|_{\Sigma}$. To simplify the notation, throughout this chapter and the next, we write $\tau=\rho$ to denote this induced permutation of Σ.

The following notation will be used throughout this chapter, in addition to that in Notation [2.2. Note that $\widehat{\Pi}$ and $\widehat{\Sigma}$ are defined in Notation 2.2 (C) only when $\rho(\Pi)=\Pi$, and hence only in case (III.1) of Hypotheses 5.1. It will be convenient, in some of the proofs in this chapter, to extend this definition to case (III.2).

Recall (Notation 2.2) that for $\alpha \in \Sigma, w_{\alpha} \in W$ denotes the reflection in the hyperplane $\alpha^{\perp} \subseteq V$.

Notation 5.2. Assume we are in the situation of Notation 2.2 and Hypotheses 5.1.
(D) If (III.2) holds, then set $\widehat{\Sigma}=\Sigma, \widehat{\Pi}=\Pi$, and $V_{0}=V$. Note that $W_{0}=W$ in this case.
(E) If (III.1) holds, then for each $\widehat{\alpha} \in \widehat{\Sigma}$, let $w_{\widehat{\alpha}} \in W_{0}$ be the element in $\left\langle w_{\alpha}\right| \alpha \in$ $\widehat{\alpha}\rangle$ which acts on V_{0} as the reflection across the hyperplane $\langle\widehat{\alpha}\rangle^{\perp}$, and which exchanges the positive and negative roots in the set $\langle\widehat{\alpha}\rangle \cap \Sigma$. (Such an element exists and lies in W_{0} by $\mathbf{C a}$, Proposition 13.1.2].)
(F) If (III.1) or (III.2) holds, then for each $\alpha \in \Sigma$ and each $\widehat{\alpha} \in \widehat{\Sigma}$, set

$$
\begin{array}{ll}
\bar{K}_{\alpha}=\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}\right\rangle & \bar{T}_{\alpha}=h_{\alpha}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right) \\
\bar{K}_{\widehat{\alpha}}=\left\langle\bar{K}_{\alpha} \mid \alpha \in \widehat{\alpha}\right\rangle & \bar{T}_{\widehat{\alpha}}=\left\langle\bar{T}_{\alpha} \mid \alpha \in \widehat{\alpha}\right\rangle
\end{array}
$$

(G) Set $N=N_{G}(T) / O_{p^{\prime}}(T)$, and identify $A=O_{p}(T)$ with $T / O_{p^{\prime}}(T) \unlhd N$. If (III.1) or (III.2) holds, then for $\widehat{\alpha} \in \widehat{\Sigma}$, set $A_{\widehat{\alpha}}=A \cap \bar{T}_{\widehat{\alpha}}$.
(H) Set $\mathcal{F}=\mathcal{F}_{S}(G)$, and

$$
\operatorname{Aut}(A, \mathcal{F})=\left\{\beta \in \operatorname{Aut}(A)|\beta=\bar{\beta}|_{A}, \text { some } \bar{\beta} \in \operatorname{Aut}(\mathcal{F})\right\}
$$

Set $\operatorname{Aut}_{\operatorname{diag}}(\mathcal{F})=C_{\operatorname{Aut}(\mathcal{F})}(A)=\left\{\beta \in \operatorname{Aut}(\mathcal{F})|\beta|_{A}=\operatorname{Id}\right\}$, and let $\operatorname{Out}_{\operatorname{diag}}(\mathcal{F})$ be the image of $\operatorname{Aut}_{\operatorname{diag}}(\mathcal{F})$ in $\operatorname{Out}(\mathcal{F})$.

Note that when (\bar{G}, σ) is a standard setup (i.e., in case (III.1), W_{0} acts faithfully on V_{0} (see Ca, Lemma 13.1.1]).

Recall that $N=N_{G}(T) / O_{p^{\prime}}(T)$. We identify $A=O_{p}(T)$ with $T / O_{p^{\prime}}(T) \unlhd N$.
Lemma 5.3. Assume Hypotheses 5.1 and Notation 5.2.
(a) If condition (III.1) or (III.2) holds, then $C_{W}(A)=1, C_{\bar{G}}(A)=C_{\bar{G}}(T)=$ $\bar{T}, C_{G}(A)=T$, and $C_{S}(A)=A$. If p is odd, then $C_{W}\left(\Omega_{1}(A)\right)=1$ and $C_{S}\left(\Omega_{1}(A)\right)=A$.
(b) If $C_{\bar{G}}(A)^{0}=\bar{T}$ (in particular, if (III.1) or (III.2) holds), then $N_{G}(A)=$ $N_{G}(T) \leq N_{\bar{G}}(\bar{T})$, and the inclusion of $N_{G}(T)$ in $N_{\bar{G}}(\bar{T})$ induces isomorphisms $W_{0} \cong N_{G}(T) / T \cong N / A$. Thus $A u t_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$.
Proof. (a) Assume condition (III.1) or (III.2) holds. We first prove that $C_{W}(A)=$ 1 , and also that $C_{W}\left(\Omega_{1}(A)\right)=1$ when p is odd.

If p is odd, set $A_{0}=\Omega_{1}(A)$ and $\widehat{p}=p$. If $p=2$, set $A_{0}=\Omega_{2}(A)$ and $\widehat{p}=4$. Thus in all cases, A_{0} is the \widehat{p}-torsion subgroup of A. Set $\varepsilon=1$ if we are in case (III.1), or $\varepsilon=-1$ in case (III.2). By assumption, $\widehat{p} \mid(q-\varepsilon)$. Choose $\lambda \in \mathbb{F}_{q}^{\times}$(or $\lambda \in \mathbb{F}_{q^{2}}^{\times}$if $\varepsilon=-1$) of order \widehat{p}. Set $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. Fix $w \in C_{W}\left(A_{0}\right)$.

Assume first $G=\mathbb{G}(q)$, a Chevalley group. Then $T=\left\{t \in \bar{T} \mid t^{q-\varepsilon}=1\right\}$, and A_{0} contains all elements of order \widehat{p} in \bar{T}. So $w=1$ by Lemma 2.7.

Now assume that $\operatorname{Id} \neq \gamma \in \Gamma_{\bar{G}}$; i.e., G is one of the Steinberg groups ${ }^{2} A_{n}(q)$, ${ }^{2} D_{n}(q)$, or ${ }^{2} E_{6}(q)$. Then $C_{\bar{G}}(\gamma)$ is a simple algebraic group of type B_{m}, C_{m}, or $F_{4}\left(\right.$ cf. Ca, §13.1-3]) with root system $\widehat{\Sigma} \subseteq V_{0}=C_{V}(\tau)$, and A_{0} contains all \widehat{p}-torsion in $C_{\bar{T}}(\gamma)$. By Lemma 2.7 again, $\left.w\right|_{V_{0}}=$ Id. Since w and τ are both orthogonal, w also sends the (-1)-eigenspace for the action of τ to itself, and thus $w \in C_{W}(\tau)=W_{0}$. But W_{0} acts faithfully on V_{0} (see, e.g., Ca, 13.1.1]), so $w=1$.

Thus $C_{W}\left(A_{0}\right)=1$. Hence $C_{\bar{G}}\left(A_{0}\right)=\bar{T}$ by Proposition [2.5, and the other statements follow immediately.
(b) If $C_{\bar{G}}(A)^{0}=\bar{T}$, then $N_{\bar{G}}(T) \leq N_{\bar{G}}(A) \leq N_{\bar{G}}(\bar{T})$ (recall that A is the p-power torsion in T). If $g \in N_{\bar{G}}(\bar{T})$ and $\sigma(g)=g$, then g also normalizes $T=C_{\bar{T}}(\sigma)$. Thus $N_{G}(T)=N_{G}(A) \leq N_{\bar{G}}(\bar{T})$, and hence $N_{G}(T) / T \cong W_{0}$ by Lemma 2.3. The identification $N / A \cong N_{G}(T) / T$ is immediate from the definition of N.

We next look at the centralizer of the Weyl group acting on \bar{T} or T.
Lemma 5.4. Assume Hypotheses 5.1, case (III.1), and Notation 5.2.
(a) Assume that all classes in $\widehat{\Sigma}$ have order 1 or 2 . (Equivalently, $\tau(\alpha)=\alpha$ or $\tau(\alpha) \perp \alpha$ for each $\alpha \in \Sigma$.) Then $C_{\bar{T}}\left(W_{0}\right)=C_{\bar{T}}(W)=Z(\bar{G})$, and $Z(G)=$ $C_{T}\left(W_{0}\right)$.
(b) Assume that $\widehat{\Sigma}$ contains classes of order 3 . Then $\bar{G} \cong S L_{2 n-1}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ and $G \cong$ $S U_{2 n-1}(q)$ for some $n \geq 2$. Also, $C_{\bar{T}}\left(W_{0}\right) \cong \overline{\mathbb{F}}_{q_{0}}^{\times}$, and $\sigma(t)=t^{-q}$ for all $t \in C_{\bar{T}}\left(W_{0}\right)$.
Proof. (a) Assume that $\tau(\alpha)=\alpha$ or $\tau(\alpha) \perp \alpha$ for each $\alpha \in \Sigma$. We first show, for each $\widehat{\alpha}=\{\alpha, \tau(\alpha)\} \in \widehat{\Pi}$, that $C_{\bar{T}}\left(w_{\widehat{\alpha}}\right)=C_{\bar{T}}\left(w_{\alpha}, w_{\tau(\alpha)}\right)$. This is clear if $\alpha=\tau(\alpha)$. If $\alpha \perp \tau(\alpha)$, then $w_{\widehat{\alpha}}=w_{\alpha} w_{\tau(\alpha)}$, so if $t \in C_{\bar{T}}\left(w_{\widehat{\alpha}}\right)$, then $w_{\alpha}(t)=w_{\tau(\alpha)}(t)$
and $t^{-1} w_{\alpha}(t)=t^{-1} w_{\tau(\alpha)}(t)$. Also, $t^{-1} w_{\alpha}(t) \in \bar{T}_{\alpha}$ and $t^{-1} w_{\tau(\alpha)}(t) \in \bar{T}_{\tau(\alpha)}$ by Lemma 2.4(e). Since $\bar{T}_{\alpha} \cap \bar{T}_{\tau(\alpha)}=1$ by Lemma 2.4(b), $t^{-1} w_{\alpha}(t)=1$, and hence $t \in C_{\bar{T}}\left(w_{\alpha}, w_{\tau(\alpha)}\right)$.

Since $W=\left\langle w_{\alpha} \mid \alpha \in \Pi\right\rangle$, this proves that $C_{\bar{T}}\left(W_{0}\right)=C_{\bar{T}}(W)$. Since \bar{G} is universal, $C_{\bar{T}}(W)=Z(\bar{G})$ by Proposition 2.5. In particular, $C_{T}\left(W_{0}\right) \leq G \cap Z(\bar{G}) \leq$ $Z(G)$; while $Z(G) \leq C_{T}\left(W_{0}\right)$ since $C_{G}(T)=T$ by Lemma 5.3(a).
(b) Assume $\widehat{\Sigma}$ contains a class of order 3 . Then by GLS3, (2.3.2)], $\gamma \neq \mathrm{Id}$, $\mathbb{G} \cong S L_{2 n-1}$, and $G \cong S U_{2 n-1}(q)$ (some $n \geq 2$). Also, if we identify

$$
\bar{T}=\left\{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n-1}\right) \mid \lambda_{i} \in \overline{\mathbb{F}}_{q_{0}}^{\times}, \lambda_{1} \lambda_{2} \cdots \lambda_{2 n-1}=1\right\},
$$

and identify $W=\Sigma_{2 n-1}$ with its action on \bar{T} permuting the coordinates, then

$$
\gamma\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n-1}\right)\right)=\operatorname{diag}\left(\lambda_{2 n-1}^{-1}, \ldots, \lambda_{1}^{-1}\right),
$$

and $W_{0} \cong C_{2}\left\langle\Sigma_{n-1}\right.$ is generated by the permutations $(i 2 n-i)$ and $(i j)(2 n-i 2 n-j)$ for $i, j<n$. So $C_{\bar{T}}\left(W_{0}\right)$ is the group of all matrices $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n-1}\right)$ such that $\lambda_{i}=\lambda_{1}$ for all $i \neq n$ and $\lambda_{n}=\lambda_{1}^{-(2 n-2)}$, and $C_{\bar{T}}\left(W_{0}\right) \cong \overline{\mathbb{F}}_{q_{0}}^{\times}$. Also, γ inverts $C_{\bar{T}}\left(W_{0}\right)$, so $\sigma(t)=t^{-q}$ for $t \in C_{\bar{T}}\left(W_{0}\right)$.

Recall (Notation 5.2.FI) that when case (III.1) of Hypotheses 5.1 holds (in particular, when $p=2$), we set $\bar{K}_{\widehat{\alpha}}=\left\langle\bar{K}_{\alpha} \mid \alpha \in \widehat{\alpha}\right\rangle$ for $\widehat{\alpha} \in \widehat{\Sigma}$, where $\bar{K}_{\alpha}=$ $\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}\right\rangle$. The conditions in (III.1) imply that each class in $\widehat{\Sigma}$ is of the form $\{\alpha\},\{\alpha, \tau(\alpha)\}$, or $\{\alpha, \tau(\alpha), \alpha+\tau(\alpha)\}$ for some α. This last case occurs only when $G \cong S U_{n}(q)$ for some odd $n \geq 3$ and some $q \equiv 1(\bmod p$ or $\bmod 4)$.

Lemma 5.5. Assume Hypotheses 5.1, case (III.1), and Notation 5.2. For each $\alpha \in \Sigma, \bar{K}_{\alpha} \cong S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$. For each $\widehat{\alpha} \in \widehat{\Sigma}, \bar{K}_{\widehat{\alpha}} \cong S L_{2}\left(\mathbb{F}_{q_{0}}\right), S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right) \times S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, or $S L_{3}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ whenever the class $\widehat{\alpha}$ has order 1 , 2, or 3, respectively. Also, $G \cap \bar{K}_{\widehat{\alpha}}$ is isomorphic to $S L_{2}(q), S L_{2}\left(q^{2}\right)$, or $S U_{3}(q)$, respectively, in these three cases.

Proof. By Lemma 3.10 each class in $\widehat{\Sigma}$ is in the W_{0}-orbit of a class in $\widehat{\Pi}$. So it suffices to prove the statements about \bar{K}_{α} and $\bar{K}_{\widehat{\alpha}}$ when $\alpha \in \Pi$, and when $\widehat{\alpha} \in \widehat{\Pi}$ is its equivalence class.

By Lemma 2.4 (and since \bar{G} is universal), $\bar{K}_{\alpha} \cong S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ for each $\alpha \in \Pi$. So when $\alpha=\tau(\alpha)($ when $|\widehat{\alpha}|=1), \bar{K}_{\widehat{\alpha}}=\bar{K}_{\alpha} \cong S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$.

When $\alpha \neq \tau(\alpha)$ and they are not orthogonal, then $\bar{G} \cong S L_{2 n+1}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ for some n, and the inclusion of $S L_{3}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ is clear. When $\alpha \perp \tau(\alpha)$, then $\left[\bar{K}_{\alpha}, \bar{K}_{\tau(\alpha)}\right]=1$, and $\bar{K}_{\alpha} \cap \bar{K}_{\tau(\alpha)}=1$ by Lemma 2.4(b) and since G is universal, and since the intersection is contained in the centers of the two factors and hence in the maximal tori. Hence $\bar{K}_{\widehat{\alpha}}=\left\langle\bar{X}_{ \pm \alpha}, \bar{X}_{ \pm \tau(\alpha)}\right\rangle \cong \bar{K}_{\alpha} \times \bar{K}_{\tau(\alpha)} \cong S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right) \times S L_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$.

In all cases, since \bar{G} is universal, $G \cap \bar{K}_{\widehat{\alpha}}=C_{\bar{G}}(\sigma) \cap \bar{K}_{\widehat{\alpha}}=C_{\bar{K}_{\widehat{\alpha}}}(\sigma)$. If $\alpha=$ $\tau(\alpha)$, then γ acts trivially on $\bar{K}_{\widehat{\alpha}}$, and $C_{\bar{K}_{\widehat{\alpha}}}(\sigma) \cong S L_{2}(q)$. If $\alpha \perp \tau(\alpha)$ then γ exchanges the two factors and $C_{\bar{K}_{\widehat{\alpha}}}(\sigma) \cong S L_{2}\left(q^{2}\right)$. Finally, if $\alpha \neq \tau(\alpha)$ and they are not orthogonal, then γ is the graph automorphism of $S L_{3}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, so $C_{\bar{K}_{\widehat{\alpha}}}(\sigma) \cong$ $S U_{3}(q)$.

Recall, for $\widehat{\alpha} \in \widehat{\Sigma}$, that $A_{\widehat{\alpha}}=A \cap \bar{T}_{\widehat{\alpha}}$, where $\bar{T}_{\widehat{\alpha}}=\left\langle h_{\alpha}\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right) \mid \alpha \in \widehat{\alpha}\right\rangle$. These subgroups are described in the next lemma.

Lemma 5.6. Assume that G and (\bar{G}, σ) satisfy Hypotheses 5.1, case (III.1) or (III.2). Assume also Notation 5.2.
(a) If $\tau \neq \mathrm{Id}$ (hence we are in Case (III.1), then for each $\widehat{\alpha} \in \widehat{\Sigma}$,

$$
\begin{gathered}
w_{\widehat{\alpha}}^{=} \begin{cases}w_{\alpha} & \text { if } \widehat{\alpha}=\{\alpha\} \\
w_{\alpha} w_{\tau(\alpha)} & \text { if } \widehat{\alpha}=\{\alpha, \tau(\alpha)\}, \alpha \perp \tau(\alpha) \\
w_{\alpha+\tau(\alpha)}=w_{\alpha} w_{\tau(\alpha)} w_{\alpha} & \text { if } \widehat{\alpha}=\{\alpha, \tau(\alpha), \alpha+\tau(\alpha)\}\end{cases} \\
\bar{T}_{\widehat{\alpha}}= \begin{cases}\bar{T}_{\alpha} & \text { if } \widehat{\alpha}=\{\alpha\} \\
\bar{T}_{\alpha} \times \bar{T}_{\tau(\alpha)} & \text { if } \alpha, \tau(\alpha) \in \widehat{\alpha}, \alpha \neq \tau(\alpha)\end{cases}
\end{gathered}
$$

and

$$
\widehat{h}_{\alpha}(\lambda)= \begin{cases}h_{\alpha}(\lambda) & \text { if } \widehat{\alpha}=\{\alpha\}, \lambda \in \mathbb{F}_{q}^{\times} \\ h_{\alpha}(\lambda) h_{\tau(\alpha)}\left(\lambda^{q}\right) & \text { if } \alpha, \tau(\alpha) \in \widehat{\alpha}, \alpha \neq \tau(\alpha), \lambda \in \mathbb{F}_{q^{2}}^{\times}\end{cases}
$$

(b) In all cases, $T=C_{\bar{T}}\left(\psi_{q} \gamma\right)=\prod_{\widehat{\alpha} \in \widehat{\Pi}} C_{\bar{T}_{\widehat{\alpha}}}\left(\psi_{q} \gamma\right)$ and hence $A=\prod_{\widehat{\alpha} \in \widehat{\Pi}} A_{\widehat{\alpha}}$ (direct products).
(c) Set $\varepsilon=1$ if we are in case (III.1), or $\varepsilon=-1$ if we are in case (III.2). Set $m=v_{p}(q-\varepsilon)$. For each $\widehat{\alpha} \in \widehat{\Sigma}$,
$G \cap \bar{T}_{\widehat{\alpha}}= \begin{cases}\left\{h_{\alpha}(\lambda) \mid \lambda \in \mathbb{F}_{q^{2}}^{\times}, \lambda^{\varepsilon q}=\lambda\right\} \cong C_{q-\varepsilon} & \text { if } \widehat{\alpha}=\{\alpha\} \\ \widehat{h}_{\alpha}\left(\mathbb{F}_{q^{2}}^{\times}\right) \cong C_{q^{2}-1} & \text { if } \alpha, \tau(\alpha) \in \widehat{\alpha}, \alpha \neq \tau(\alpha) .\end{cases}$
In particular,

$$
A_{\widehat{\alpha}} \cong C_{p^{m}} \text { if } p \text { is odd; } \quad A_{\widehat{\alpha}} \cong \begin{cases}C_{2^{m}} & \text { if } p=2 \text { and }|\widehat{\alpha}|=1 \\ C_{2^{m+1}} & \text { if } p=2 \text { and }|\widehat{\alpha}| \geq 2\end{cases}
$$

Proof. Recall that $\widehat{\Sigma}$ and $\widehat{\Pi}$ are defined in Notation 2.2 (C) only when $\rho(\Pi)=$ Π; i.e., in case (III.1) of Hypotheses 5.1 In case (III.2), they were defined in Notation 5.2(D) by setting $\widehat{\Sigma}=\Sigma$ and $\widehat{\Pi}=\Pi$ (and also $W_{0}=W$ in this case).
(\mathbf{a}, \mathbf{c}) If we are in case (III.1) of Hypotheses 5.1 (where the σ-setup is standard), then by Lemma 3.10, each orbit of W_{0} under its action on $\widehat{\Sigma}$ contains an element of $\widehat{\Pi}$. If we are in case (III.2), then since $W_{0}=W, \widehat{\Sigma}=\Sigma$, and $\widehat{\Pi}=\Pi$, the same statement follows from $\mathbb{C a}$, Proposition 2.1.8]. So it suffices to prove these two points when $\widehat{\alpha} \in \widehat{\Pi}$.

The formulas for $w_{\widehat{\alpha}}, \bar{T}_{\widehat{\alpha}}$, and $\widehat{h}_{\alpha}(\lambda)$, and the description of $G \cap \bar{T}_{\widehat{\alpha}}=C_{\bar{T}_{\widehat{\alpha}}}(\sigma)$, are clear when $\widehat{\alpha}=\{\alpha\}$. So assume now that $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$ or $\{\alpha, \tau(\alpha), \alpha+\tau(\alpha)\}$, where $\alpha \neq \tau(\alpha)$.

By the definition in Notation 5.2(E),$w_{\widehat{\alpha}} \in\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle$ acts on $V_{0}=C_{V}(\tau)$ as the reflection across the hyperplane $\langle\widehat{\alpha}\rangle^{\perp}$, and exchanges the positive and negative roots in $\langle\widehat{\alpha}\rangle \cap \Sigma$. If $\alpha \perp \tau(\alpha)$, then $\left[w_{\alpha}, w_{\tau(\alpha)}\right]=1$, and hence $w_{\widehat{\alpha}}$ is the product of these reflections. If $|\widehat{\alpha}|=3$, then $\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle \cong \Sigma_{3}$, and one sees by inspection that $w_{\alpha+\tau(\alpha)}=w_{\alpha} w_{\tau(\alpha)} w_{\alpha}$ is the only element which satisfies the above conditions.

If $|\widehat{\alpha}|=3$, then $\bar{T}_{\alpha+\tau(\alpha)} \leq \bar{T}_{\alpha} \bar{T}_{\tau(\alpha)}$ by Lemma 2.4(d). Hence $\bar{T}_{\widehat{\alpha}}=\bar{T}_{\alpha} \bar{T}_{\tau(\alpha)}$ whenever $\alpha \neq \tau(\alpha) \in \widehat{\alpha}$. We can assume $\alpha, \tau(\alpha) \in \Pi$, and so $\bar{T}_{\alpha} \cap \bar{T}_{\tau(\alpha)}=1$ by Lemma 2.4(b).

By definition (see Notation 2.2(C)), for $\lambda \in \overline{\mathbb{F}}_{q_{0}}$, if $\widehat{h}_{\alpha}(\lambda)$ is defined, it has the form $h_{\alpha}(\lambda) h_{\tau(\alpha)}(\mu)$ for some $\mu \in \overline{\mathbb{F}}_{q_{0}}$. Since

$$
\sigma\left(h_{\alpha}(\lambda) h_{\tau(\alpha)}(\mu)\right)=h_{\alpha}\left(\mu^{q}\right) h_{\tau(\alpha)}\left(\lambda^{q}\right),
$$

this element lies in G if and only if $\mu=\lambda^{q}$ and $\lambda^{q^{2}}=\lambda$; i.e., $\lambda \in \mathbb{F}_{q^{2}}^{\times}$.
This proves the formulas for $\widehat{h}_{\alpha}(\lambda)$ in (a), and also the description of $G \cap \bar{T}_{\widehat{\alpha}}$ in (c). The last statement in (c) is now immediate, since $v_{p}\left(q^{2}-1\right)=m+v_{p}(q+1)=m$ (if p is odd) or $m+1$ (if $p=2$).
(b) By Lemma 2.4(b), $\bar{T}=\prod_{\alpha \in \Pi} \bar{T}_{\alpha}=\prod_{\widehat{\alpha} \in \widehat{\Pi}} \bar{T}_{\widehat{\alpha}}$ (a direct product), the last equality by (a). The direct product decompositions for T and $A=O_{p}(T)$ follow immediately.

We would like to know that fusion preserving automorphisms of S (i.e., elements of $\operatorname{Aut}\left(\mathcal{F}_{S}(G)\right)$) permute the subgroups $A_{\widehat{\alpha}} \leq S$. We next characterize (when possible) these subgroups in terms of fusion in S. Recall the definition of the focal subgroup of a saturated fusion system \mathcal{F} over a finite p-group S :

$$
\left.\mathfrak{f o c}(\mathcal{F})=\left\langle x y^{-1}\right| x, y \in S, x \text { is } \mathcal{F} \text {-conjugate to } y\right\rangle .
$$

By the focal subgroup theorem for groups (cf. G, Theorem 7.3.4]), if $\mathcal{F}=\mathcal{F}_{S}(G)$ for some finite group G with $S \in \operatorname{Syl}_{p}(G)$, then $\mathfrak{f o c}(\mathcal{F})=S \cap[G, G]$.

Lemma 5.7. Assume Hypotheses 5.1, case (III.1) or (III.2), and Notation 5.2,
(a) If p is odd, then $\left[w_{\widehat{\alpha}}, A\right]=A_{\widehat{\alpha}}$ for each $\widehat{\alpha} \in \widehat{\Sigma}$. If $p=2$, then for each $\widehat{\alpha} \in \widehat{\Sigma}$, $\left[w_{\widehat{\alpha}}, A\right] \leq A_{\widehat{\alpha}}$ with index at most 2 , and $\left[w_{\widehat{\alpha}}, A\right]=A_{\widehat{\alpha}}$ with the following exceptions:

- $\tau=\mathrm{Id}, \mathbb{G} \cong A_{1}$, and $\widehat{\alpha}=\{\alpha\}$; or
- $\tau=\mathrm{Id}, \mathbb{G} \cong C_{n}$ for $n \geq 2$ (or B_{2}), and $\widehat{\alpha}=\{\alpha\}$ where α is a long root; or
- $|\tau|=2, \mathbb{G} \cong D_{n}$ for $n \geq 3$ (or A_{3}), and $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$ where $\alpha \perp \tau(\alpha)$; or
- $|\tau|=2, \mathbb{G} \cong A_{2 n}$ for $n \geq 1$, and $|\widehat{\alpha}|=3$.
(b) For each $w \in W_{0}$ of order $2, w=w_{\widehat{\alpha}}$ for some $\widehat{\alpha} \in \widehat{\Sigma}$ if and only if $[w, A]$ is cyclic.
(c) If $p=2$, then for each $\widehat{\alpha} \in \widehat{\Sigma}$,

$$
C_{\bar{G}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)= \begin{cases}\bar{T} \bar{K}_{\widehat{\alpha}} & \text { if }|\widehat{\alpha}| \leq 2 \tag{1}\\ \bar{T} \bar{K}_{\alpha+\tau(\alpha)} & \text { if } \widehat{\alpha}=\{\alpha, \tau(\alpha), \alpha+\tau(\alpha)\} .\end{cases}
$$

If in addition, $|\widehat{\alpha}| \leq 2$, then

$$
A_{\widehat{\alpha}}=A \cap\left[C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right), C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right]=A \cap \mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)
$$

Proof. As in the proof of Lemma 5.6, we can assume in the proofs of (a) and (c) that $\widehat{\alpha} \in \widehat{\Pi}$.
(a) Fix $\alpha \in \Pi$, and let $\widehat{\alpha} \in \widehat{\Pi}$ be its class. By Lemma 2.4(0) and since $w_{\widehat{\alpha}} \in$ $\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle$, we have $\left[w_{\widehat{\alpha}}, A\right] \leq A \cap \bar{T}_{\widehat{\alpha}}=A_{\widehat{\alpha}}$ in all cases. By the same lemma,
$w_{\widehat{\alpha}}\left(\widehat{h}_{\alpha}(\lambda)\right)=\widehat{h}_{\alpha}\left(\lambda^{-1}\right)$ for all $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$if $|\widehat{\alpha}| \leq 2$; and $w_{\widehat{\alpha}}\left(\widehat{h}_{\alpha}(\lambda)\right)=\widehat{h}_{\alpha}\left(\lambda^{-q}\right)$ for $\lambda \in \mathbb{F}_{q^{2}}^{\times}$if $|\widehat{\alpha}|=3$. So $\left[w_{\widehat{\alpha}}, A\right]=A_{\widehat{\alpha}}$ if p is odd, and (since $A_{\widehat{\alpha}}$ is cyclic by Lemma 5.6(c)) $\left[w_{\widehat{\alpha}}, A\right]$ has index at most 2 in $A_{\widehat{\alpha}}$ if $p=2$.

Assume now that $p=2$, and hence that $q \equiv 1(\bmod 4)$. If $\tau=\mathrm{Id}$ (and hence $\widehat{\alpha}=\{\alpha\})$, then for each $\beta \in \Pi$ and each $\lambda \in \mathbb{F}_{q}^{\times}$, Lemma 2.4(或) implies that

$$
w_{\alpha}\left(h_{\beta}(\lambda)\right)= \begin{cases}h_{\beta}(\lambda) & \text { if } \beta \perp \alpha \\ h_{\beta}(\lambda) h_{\alpha}(\lambda) & \text { if } \beta \not \perp \alpha,\|\beta\| \geq\|\alpha\| \\ h_{\beta}(\lambda) h_{\alpha}\left(\lambda^{k}\right) & \text { if } \beta \not \perp \alpha,\|\alpha\|=\sqrt{k} \cdot\|\beta\|, k=1,2,3 .\end{cases}
$$

(Note that $w_{\alpha}\left(\beta^{\vee}\right)=\beta^{\vee}, \beta^{\vee}+\alpha^{\vee}$, or $\beta^{\vee}+k \alpha^{\vee}$, respectively, in these three cases.) Since T is generated by the $h_{\beta}(\lambda)$ for $\beta \in \Pi$ and $\lambda \in \mathbb{F}_{q}^{\times}$, it follows that $\left[w_{\alpha}, A\right]$ has index 2 in A_{α} exactly when $|\Pi|=1$, or there are roots with two lengths and ratio $\sqrt{2}, \alpha$ is a long root, and is orthogonal to all other long roots in Π. This happens only when $\mathbb{G} \cong A_{1}$ or C_{n}.

Now assume $|\tau|=2$. In particular, all roots in Σ have the same length. By Lemmas 2.4(©®) and 5.6(a), for each $\beta \in \Pi \backslash \widehat{\alpha}$ such that $\beta \not \perp \alpha$ and with class $\widehat{\beta} \in \widehat{\Pi}$, we have

$$
w_{\widehat{\alpha}}\left(\widehat{h}_{\beta}(\lambda)\right)= \begin{cases}\widehat{h}_{\beta}(\lambda) \widehat{h}_{\alpha}(\lambda) & \text { if }|\widehat{\beta}|=1 \text { and } \lambda \in \mathbb{F}_{q}^{\times} \\ \widehat{h}_{\beta}(\lambda) \widehat{h}_{\alpha}(\lambda) & \text { if }|\widehat{\beta}| \geq 2,|\widehat{\alpha}|=2, \text { and } \lambda \in \mathbb{F}_{q^{2}}^{\times} \\ \widehat{h}_{\beta}(\lambda) \widehat{h}_{\alpha}\left(\lambda^{q+1}\right) & \text { if }|\widehat{\beta}| \geq 2,|\widehat{\alpha}|=1 \text { or } 3, \text { and } \lambda \in \mathbb{F}_{q^{2}}^{\times}\end{cases}
$$

By these formulas and Lemma 5.6(c), $\left[w_{\widehat{\alpha}}, A\right]=A_{\widehat{\alpha}}$ exactly when $|\widehat{\alpha}|=1$, or $|\widehat{\alpha}|=2$ and there is some $\beta \in \Pi$ such that $\beta \not \perp \alpha$ and $\beta \neq \tau(\beta)$. The only cases where this does not happen are when $\mathbb{G} \cong D_{n}$ or A_{3} and $|\widehat{\alpha}|=2$, and when $\mathbb{G} \cong A_{2 n}$ and $|\widehat{\alpha}| \geq 3$.
(b) For each $\widehat{\alpha} \in \widehat{\Sigma},\left[w_{\widehat{\alpha}}, A\right] \leq A_{\widehat{\alpha}}$ by (a), and hence is cyclic. It remains to prove the converse.

Recall (Notation 5.2(D)) that when we are in case (III.2) (and hence the setup is not standard), we define $V_{0}=V$. By assumption, G is always a Chevalley group in this case.

Let $w \in W_{0}$ be an element of order 2 which is not equal to $w_{\widehat{\alpha}}$ for any $\widehat{\alpha}$. If G is a Chevalley group (if $W_{0}=W$ and $V_{0}=V$), then $C_{V}(w)$ contains no points in the interior of any Weyl chamber, since W permutes freely the Weyl chambers (see [Brb § V.3.2, Théorème 1(iii)]). Since w is not the reflection in a root hyperplane, it follows that $\operatorname{dim}\left(V / C_{V}(w)\right) \geq 2$. If G is a Steinberg group (thus in case (III.1) with a standard setup), then W_{0} acts on V_{0} as the Weyl group of a certain root system on V_{0} (see $\left.\mathbb{C a}, 13.3\right]$), so $\operatorname{dim}\left(V_{0} / C_{V_{0}}(w)\right) \geq 2$ by a similar argument.

Set $\varepsilon=+1$ if we are in case (III.1) or $\varepsilon=-1$ if we are in case (III.2). Set $m=v_{p}(q-\varepsilon)$, and choose $\lambda \in\left(\mathbb{F}_{q^{2}}\right)^{\times}$of order p^{m}. Set $\Lambda=\mathbb{Z} \Sigma^{\vee}$, regarded as the lattice in V with \mathbb{Z}-basis $\Pi^{\vee}=\left\{\alpha^{\vee} \mid \alpha \in \Pi\right\}$. Let

$$
\Phi_{\lambda}: \Lambda / p^{m} \Lambda \longrightarrow \bar{T}
$$

be the $\mathbb{Z}[W]$-linear monomorphism of Lemma [2.6(b) with image the p^{m}-torsion in \bar{T}. Thus $\Phi_{\lambda}\left(\alpha^{\vee}\right)=h_{\alpha}(\lambda)$ for each $\alpha \in \Sigma$. Also, $\sigma\left(h_{\alpha}(\lambda)\right)=h_{\tau(\alpha)}(\lambda)$ for each $\alpha \in \Sigma$ ($\lambda^{q}=\lambda$ by assumption), and thus Φ_{λ} commutes with the actions of τ on $\Lambda<V$ and of σ on \bar{T}.

Set $\Lambda_{0}=C_{\Lambda}(\tau)$ in case (III.1), or $\Lambda_{0}=\Lambda$ in case (III.2). Then $C_{\Lambda / p^{m} \Lambda}(\tau)=$ $\Lambda_{0} / p^{m} \Lambda_{0}$ in case (III.1) since τ permutes the basis Π^{\vee} of Λ. We claim that Φ_{λ} restricts to a $\mathbb{Z}\left[W_{0}\right]$-linear isomorphism

$$
\Phi_{0}: \Lambda_{0} / p^{m} \Lambda_{0} \xrightarrow{\cong} \Omega_{m}(A),
$$

where $\Omega_{m}(A)$ is the p^{m}-torsion subgroup of A and hence of $T=C_{\bar{T}}(\sigma)$. If G is a Chevalley group (in either case (III.1) or (III.2)), then $\Lambda_{0}=\Lambda$, so $\operatorname{Im}\left(\Phi_{0}\right)$ is the p^{m}-torsion subgroup of \bar{T} and equal to $\Omega_{m}(A)$. If G is a Steinberg group, then $\varepsilon=+1$, each element of order dividing p^{m} in \bar{T} is fixed by ψ^{q}, and hence lies in $\Omega_{m}(A)$ if and only if it is fixed by γ (thus in $\Phi_{\lambda}\left(C_{\Lambda / p^{m} \Lambda}(\tau)\right)$).

Thus $[w, A] \geq\left[w, \Omega_{m}(A)\right] \cong\left[w, \Lambda_{0} / p^{m} \Lambda_{0}\right]$. Set $B=\Lambda_{0} / p^{m} \Lambda_{0}$ for short; we will show that $[w, B]$ is noncyclic. Set

$$
r=\operatorname{rk}\left(\Lambda_{0}\right)=\operatorname{dim}\left(V_{0}\right) \quad \text { and } \quad s=\operatorname{rk}\left(C_{\Lambda_{0}}(w)\right)=\operatorname{dim}_{\mathbb{R}}\left(C_{V_{0}}(w)\right) \leq r-2 .
$$

For each $b \in C_{B}(w)$, and each $v \in \Lambda_{0}$ such that $b=v+p^{m} \Lambda_{0}, v+w(v) \in C_{\Lambda_{0}}(w)$ maps to $2 b \in C_{B}(w)$. Thus $B \cong\left(\mathbb{Z} / p^{m}\right)^{r}$, while $\left\{2 b \mid b \in C_{B}(w)\right\}$ is contained in $C_{\Lambda_{0}}(w) / p^{m} C_{\Lambda_{0}}(w) \cong\left(\mathbb{Z} / p^{m}\right)^{s}$. Since $p^{m}>2$ by assumption (and $r-s \geq 2$), it follows that $B / C_{B}(w) \cong[w, B]$ is not cyclic.
(c) Fix $\widehat{\alpha} \in \widehat{\Sigma}$. We set up our notation as follows.

Case (1): $|\widehat{\alpha}|=1$ or 3 . Set $\alpha^{*}=\alpha$ if $\widehat{\alpha}=\{\alpha\}$ (where $\tau(\alpha)=\alpha$), or $\alpha^{*}=$ $\alpha+\tau(\alpha)$ if $\widehat{\alpha}=\{\alpha, \tau(\alpha), \alpha+\tau(\alpha)\}$. Set $w_{\widehat{\alpha}}=w_{\alpha^{*}}, W_{\widehat{\alpha}}=\left\langle w_{\widehat{\alpha}}\right\rangle$, and $\Delta=\left\{ \pm \alpha^{*}\right\} \subseteq \Sigma$.
Case (2): $|\widehat{\alpha}|=2$. Thus $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$, where $\alpha \perp \tau(\alpha)$. Set $w_{\widehat{\alpha}}=w_{\alpha} w_{\tau(\alpha)}$, $W_{\widehat{\alpha}}=\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle$, and $\Delta=\{ \pm \alpha, \pm \tau(\alpha)\} \subseteq \Sigma$.
In case (1), by Lemma 2.4 (cle),

$$
C_{\bar{T}}\left(w_{\widehat{\alpha}}\right)=C_{\bar{T}}\left(w_{\alpha^{*}}\right)=\operatorname{Ker}\left(\theta_{\alpha^{*}}\right)=C_{\bar{T}}\left(\bar{X}_{\alpha^{*}}\right)=C_{\bar{T}}\left(\bar{X}_{-\alpha^{*}}\right) .
$$

Hence $C_{\bar{G}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right) \geq C_{\bar{G}}\left(C_{\bar{T}}\left(w_{\widehat{\alpha}}\right)\right) \geq \bar{T}\left\langle\bar{X}_{\alpha^{*}}, \bar{X}_{-\alpha^{*}}\right\rangle=\bar{T} \bar{K}_{\alpha^{*}}$. In case (2), by the same lemma,

$$
C_{\bar{T}}\left(w_{\widehat{\alpha}}\right)=C_{\bar{T}}\left(\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle\right)=C_{\bar{T}}\left(\left\langle\bar{X}_{\alpha}, \bar{X}_{-\alpha}, \bar{X}_{\tau(\alpha)}, \bar{X}_{-\tau(\alpha)}\right\rangle\right)=C_{\bar{T}}\left(\bar{K}_{\alpha} \bar{K}_{\tau(\alpha)}\right)
$$

so that $C_{\bar{G}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right) \geq \bar{T} \bar{K}_{\widehat{\alpha}}$. This proves one of the inclusions in (11). By Proposition [2.5, the opposite inclusion will follow once we show that

$$
\begin{equation*}
C_{W}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right) \leq W_{\widehat{\alpha}} \tag{2}
\end{equation*}
$$

Fix $w \in C_{W}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)$.

- Let $\beta \in \Sigma \cap \Delta^{\perp}$ be such that $\beta=\tau(\beta)$. Then $h_{\beta}(\lambda) \in C_{A}\left(w_{\widehat{\alpha}}\right)$ for $\lambda \in \overline{\mathbb{F}}_{q_{0}}$ of order 4 , so $w\left(h_{\beta}(\lambda)\right)=h_{\beta}(\lambda)$, and $\beta \in C_{V}(w)$ by Lemma 2.6(d).
- Let $\beta \in \Sigma \cap \Delta^{\perp}$ be such that $\beta \neq \tau(\beta)$, and set $\beta^{\prime}=\tau(\beta)$ for short. Let $r \geq 2$ be such that $q \equiv 1+2^{r}\left(\bmod 2^{r+1}\right)$, and choose $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$of order 2^{r+1}. Set $a=1-2^{r}$, so $\lambda^{a}=\lambda^{q}$. Then

$$
h_{\beta}(\lambda) h_{\beta^{\prime}}\left(\lambda^{a}\right), h_{\beta}\left(\lambda^{a}\right) h_{\beta^{\prime}}(\lambda) \in C_{A}\left(w_{\widehat{\alpha}}\right) \leq C_{\bar{T}}(w) .
$$

Also, $\left\|\beta+a \beta^{\prime}\right\|=\left\|a \beta+\beta^{\prime}\right\|<(1-a)\|\beta\|=\frac{1}{2}|\lambda|\|\beta\|$ since $a<0$ and $\beta^{\prime} \neq-\beta$ (since $\tau\left(\Sigma_{+}\right)=\Sigma_{+}$). Thus $\beta+a \beta^{\prime}, a \beta+\beta^{\prime} \in C_{V}(w)$ by Lemma 2.6(c), so $\beta, \beta^{\prime} \in C_{V}(w)$.

- Let $\beta \in \Sigma$ be such that $\beta=\tau(\beta)$ and $\beta \notin \Delta^{\perp}$, and set $\eta=\beta+w_{\widehat{\alpha}}(\beta)$. Since $w_{\widehat{\alpha}} \tau=\tau w_{\widehat{\alpha}}$ in $\operatorname{Aut}(V), \tau(\eta)=\eta$. Since $\beta \notin \Delta^{\perp}=C_{V}\left(w_{\widehat{\alpha}}\right)$, we have $w_{\widehat{\alpha}}(\beta) \neq \beta$, and hence $\|\eta\|<2\|\beta\|$. For $\lambda \in \overline{\mathbb{F}}_{q_{0}}$ of order $4, t=h_{\beta}(\lambda) h_{w_{\widehat{\alpha}}(\beta)}(\lambda) \in C_{A}\left(w_{\widehat{\alpha}}\right)$, so $w(t)=t$, and $\eta=\beta+w_{\hat{\alpha}}(\beta) \in C_{V}(w)$ by Lemma 2.6(c).
Consider the set

$$
\Sigma^{*}=\left(\Sigma \cap \Delta^{\perp}\right) \cup\left\{\beta+w_{\widehat{\alpha}}(\beta) \mid \beta \in \Sigma, \tau(\beta)=\beta, \beta \not \perp \Delta\right\} \subseteq V .
$$

We have just shown that $w(\eta)=\eta$ for each $\eta \in \Sigma^{*}$, and hence that $\left.w\right|_{\left\langle\Sigma^{*}\right\rangle}=\mathrm{Id}$. We next claim that

$$
\begin{equation*}
\Sigma \cap\left(\Sigma^{*}\right)^{\perp}=\Delta \quad \text { except when } \mathbb{G} \cong A_{2} \text { and }|\tau|=2 \tag{3}
\end{equation*}
$$

From the description of the root systems in $[\mathbf{B r b}$, Planches I-IX], whenever \mathbb{G} is not of type A_{n}, we get that $\left\langle\Sigma \cap \beta^{\perp}\right\rangle$ is a hyperplane in V for each $\beta \in \Sigma$. (It suffices to check this for one root in Σ, or for one short root and one long root.) In particular, (3) holds whenever $|\widehat{\alpha}|=1$ or 3 and \mathbb{G} is of one of these types. If $|\widehat{\alpha}|=2$, so $|\tau|=2$ and $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$ where $\alpha \perp \tau(\alpha)$, and $\mathbb{G}=D_{n}$ or E_{6}, then a similar check shows that $\left\langle\Sigma \cap\{\alpha, \tau(\alpha)\}^{\perp}\right\rangle$ has codimension 2 in V, and hence that (3) holds. For example, when $\mathbb{G}=E_{6}$, it suffices to check this with the roots $\alpha=\alpha_{3}=\varepsilon_{2}-\varepsilon_{1}$ and $\tau(\alpha)=\alpha_{5}=\varepsilon_{4}-\varepsilon_{3}$ in the notation of [Brb, Planche V].

Now assume $\mathbb{G} \cong A_{n}$ for some n. If $n \geq 3$, then $\left\langle\Sigma \cap \beta^{\perp}\right\rangle$ has codimension 2 for $\beta \in \Sigma$, but the only roots in the orthogonal complement of this space are $\pm \beta$. Thus (3) holds for A_{n} when $n \geq 3$ and $|\widehat{\alpha}|=1$ or 3 , and the cases $n=1,2$ are easily checked. If $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$ where $\alpha \perp \tau(\alpha)$, then $n \geq 3$, and we can take $\alpha=\varepsilon_{1}-\varepsilon_{2}$ and $\tau(\alpha)=\varepsilon_{n}-\varepsilon_{n+1}$ in the notation of [Brb, Planche I], where $\tau\left(x_{1}, \ldots, x_{n+1}\right)=\left(-x_{n+1}, \ldots,-x_{1}\right)$. In this case, Σ^{*} contains all roots $\varepsilon_{i}-\varepsilon_{j}$ for $3 \leq i<j \leq n-1$ as well as $\left(\varepsilon_{1}-\varepsilon_{n+1}\right)+\left(\varepsilon_{2}-\varepsilon_{n}\right)$, and these elements suffice to show that $\pm \alpha$ and $\pm \tau(\alpha)$ are the only roots in $\left(\Sigma^{*}\right)^{\perp}$. This finishes the proof of (3).

By (3), when $G \not \approx S U_{3}(q)$, the only reflection hyperplanes which contain $\left\langle\Sigma^{*}\right\rangle$ are those in the set $\left\{\beta^{\perp} \mid \beta \in \Delta\right\}$. Fix a "generic" element $v \in\left\langle\Sigma^{*}\right\rangle$; i.e., one which is not contained in any other hyperplane. In case (1), v is contained in only the one reflection hyperplane $\alpha^{* \perp}$, and hence is in the closure of exactly two Weyl chambers for (Σ, W) : chambers which are exchanged by $w_{\hat{\alpha}}$. In case (2), v is contained in the two reflection hyperplanes α^{\perp} and $\tau(\alpha)^{\perp}$, and hence in the closure of four Weyl chambers which are permuted freely and transitively by $W_{\widehat{\alpha}}=\left\langle w_{\alpha}, w_{\tau(\alpha)}\right\rangle$. Since W permutes the Weyl chambers freely and transitively (see Brb] § V.3.2, Théorème 1(iii)]), and since $\left\langle w, W_{\widehat{\alpha}}\right\rangle$ permutes the chambers whose closures contain v, we have $w \in W_{\widehat{\alpha}}$.

This proves (21) when $G \not \approx S U_{3}(q)$. If $G \cong S U_{3}(q)$, then $h_{\alpha^{*}}(-1) \in C_{A}\left(w_{\widehat{\alpha}}\right)$. But no element of order 2 in $\bar{T}<S L_{3}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ centralizes the full Weyl group $W \cong \Sigma_{3}$, so (2) also holds in this case. This finishes the proof of (1).

If $|\widehat{\alpha}| \leq 2$, then

$$
C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=G \cap C_{\bar{G}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=T\left(G \cap \bar{K}_{\widehat{\alpha}}\right)
$$

where by Lemma 5.5, $G \cap \bar{K}_{\widehat{\alpha}} \cong S L_{2}(q)$ or $S L_{2}\left(q^{2}\right)$. Hence $C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)$ has commutator subgroup $G \cap \bar{K}_{\widehat{\alpha}}$, and focal subgroup $A_{\widehat{\alpha}}$. Since $C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)$ is the fusion system of $C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)$ (cf. AKO, Proposition I.5.4]), this proves the last statement.

Recall (Notation 5.2(H)) that $\operatorname{Aut}(A, \mathcal{F})$ is the group of automorphisms of A which extend to elements of $\operatorname{Aut}(\mathcal{F})$. The next result describes the structure of $\operatorname{Aut}(A, \mathcal{F})$ for a group G in the situation of case (III.1) or (III.2) of Hypotheses 5.1. Recall that W_{0} acts faithfully on A by Lemma 5.3(a), and hence that $W_{0} \cong \operatorname{Aut}_{N}(A)=\operatorname{Aut}_{N_{G}(T)}(A)$ by Lemma 5.3(b). It will be convenient to identify W_{0} with this subgroup of $\operatorname{Aut}(A)$. Since each element of $\operatorname{Aut}(A, \mathcal{F})$ is fusion preserving, this group normalizes and hence acts on W_{0}, and $W_{0} \operatorname{Aut}(A, \mathcal{F})$ is a subgroup of $\operatorname{Aut}(A)$.

For convenience, we set $\operatorname{Aut}_{\operatorname{Aut}(G)}(A)=\left\{\left.\delta\right|_{A} \mid \delta \in \operatorname{Aut}(G), \delta(A)=A\right\}$.
Lemma 5.8. Assume that G and (\bar{G}, σ) satisfy Hypotheses 5.1, case (III.1)] or (III.2), Assume also Notation 5.2.
(a) $C_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{0}\right) \leq W_{0} \operatorname{Aut}_{\text {sc }}(A)$.
(b) $\operatorname{Aut}(A, \mathcal{F}) \leq \operatorname{Aut}_{\text {sc }}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A)$, with the exceptions

- $(G, p) \cong\left({ }^{2} E_{6}(q), 3\right)$, or
- $(G, p) \cong\left(G_{2}(q), 2\right)$ and $q_{0} \neq 3$, or
- $(G, p) \cong\left(F_{4}(q), 3\right)$ and $q_{0} \neq 2$.
(c) In all cases, the index of $\operatorname{Aut}(A, \mathcal{F}) \cap \operatorname{Aut}_{\text {sc }}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A)$ in $\operatorname{Aut}(A, \mathcal{F})$ is at most 2 .

Proof. Recall that in Notation 2.2(C), $V_{0}, \widehat{\Sigma}$, and $\widehat{\Pi}$ are defined when $\rho(\Pi)=$ Π, and hence in case (III.1) of Hypotheses 5.1. In case (III.2) we defined $V_{0}=V$, $\widehat{\Sigma}=\Sigma$, and $\widehat{\Pi}=\Pi$ in Notation 5.2(D). So under the hypotheses of the lemma (and since G is always a Chevalley group in case (III.2), we have $V_{0}=V$ and $\widehat{\Pi}=\Pi$ if and only if G is a Chevalley group.

Set $\varepsilon=1$ if we are in case (III.1), $\varepsilon=-1$ if we are in case (III.2) and $m=v_{p}(q-\varepsilon)$.
Step 1: We first prove that

$$
\begin{equation*}
\varphi \in C_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{0}\right) \quad \Longrightarrow \quad \varphi\left(A_{\widehat{\alpha}}\right)=A_{\widehat{\alpha}} \text { for all } \widehat{\alpha} \in \widehat{\Sigma} . \tag{4}
\end{equation*}
$$

If p is odd, then $A_{\widehat{\alpha}}=\left[w_{\widehat{\alpha}}, A\right]$ by Lemma 5.7(a), so (4) is immediate.
Next assume that $p=2$, and also that $|\widehat{\alpha}| \leq 2$. Write $\varphi=w \circ \varphi_{0}$, where $w \in W_{0}$ and $\varphi_{0} \in \operatorname{Aut}(A, \mathcal{F})$. Then $\varphi_{0}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=w^{-1}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=C_{A}\left(w_{\widehat{\beta}}\right)$, where $\widehat{\beta}=w^{-1}(\widehat{\alpha})$. By definition of $\operatorname{Aut}(A, \mathcal{F})$ (Notation 5.2), $\varphi_{0}=\left.\bar{\varphi}_{0}\right|_{A}$ for some $\bar{\varphi}_{0} \in \operatorname{Aut}(\mathcal{F})$. Since $\bar{\varphi}_{0}$ is fusion preserving, it sends $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)$ onto $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\beta}}\right)\right)\right)$. Since these focal subgroups are $A_{\widehat{\alpha}}$ and $A_{\widehat{\beta}}$, respectively, by Lemma 5.7(c), $\varphi\left(A_{\widehat{\alpha}}\right)=w\left(A_{\widehat{\beta}}\right)=A_{w(\widehat{\beta})}=A_{\widehat{\alpha}}$ also in this case (the second equality by Lemma 2.4(e)).

It remains to consider the case where $p=2$ and $|\widehat{\alpha}|=3$, and thus where $G \cong S U_{2 n+1}(q)$ for some $n \geq 1$. There is a subgroup ($H_{1} \times \cdots \times H_{n}$) $\Sigma_{n}<G$ of odd index, where $H_{i} \cong G U_{2}(q)$. Fix $S_{i} \in \operatorname{Syl}_{2}\left(H_{i}\right)$; then $S_{i} \cong S D_{2^{k}}$ where $k=v_{2}\left(q^{2}-1\right)+1 \geq 4$. Let $A_{i}, Q_{i}<S_{i}$ denote the cyclic and quaternion subgroups of index 2 in S_{i}. Then we can take $A=A_{1} \times \cdots \times A_{n} \cong\left(C_{2^{k-1}}\right)^{n}, N=\left(S_{1} \times \cdots \times\right.$ $\left.S_{n}\right) \rtimes \Sigma_{n}$, and $S \in \operatorname{Syl}_{2}(N)$.

There are exactly n classes $\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{n} \in \widehat{\Sigma}_{+}$of order 3 , which we label so that $\left[w_{\widehat{\alpha}_{i}}, A\right] \leq A_{i}\left(\left[w_{\widehat{\alpha}_{i}}, A\right]=A \cap Q_{i}\right)$. Equivalently, these are chosen so that $w_{\widehat{\alpha}_{i}}$ acts
on A via conjugation by an element of $S_{i} \backslash A_{i}$. Let $\alpha_{i}^{*} \in \Sigma_{+}$be the root in the class $\widehat{\alpha}_{i}$ which is the sum of the other two.

Write $\varphi=w \circ \varphi_{0}$, where $w \in W_{0}$ and $\varphi_{0} \in \operatorname{Aut}(A, \mathcal{F})$, and let $\bar{\varphi}_{0} \in \operatorname{Aut}(\mathcal{F})$ be such that $\varphi_{0}=\left.\bar{\varphi}_{0}\right|_{A}$. For each $1 \leq i \leq n, \varphi_{0}\left(C_{A}\left(w_{\widehat{\alpha}_{i}}\right)\right)=w^{-1}\left(C_{A}\left(w_{\widehat{\alpha}_{i}}\right)\right)=$ $C_{A}\left(w_{\widehat{\alpha}_{f(i)}}\right)$, where $f \in \Sigma_{n}$ is such that $\widehat{\alpha}_{f(i)}=w^{-1}\left(\widehat{\alpha}_{i}\right)$. Since $\bar{\varphi}_{0}$ is fusion preserving, it sends $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}_{i}}\right)\right)\right)$ onto $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}_{f(i)}}\right)\right)\right)$. By Lemma 5.7(c), $C_{G}\left(C_{A}\left(w_{\widehat{\alpha}_{i}}\right)\right)=G \cap\left(\bar{T} \bar{K}_{\alpha_{i}^{*}}\right)$, its commutator subgroup is $G \cap \bar{K}_{\alpha_{i}^{*}} \cong S L_{2}(q)$, and hence $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}_{i}}\right)\right)\right)=Q_{i}$. Thus $\bar{\varphi}_{0}\left(Q_{i}\right)=Q_{f(i)}$.

For each i, set $Q_{i}^{*}=\left\langle Q_{j} \mid j \neq i\right\rangle$. Then $C_{G}\left(Q_{i}^{*}\right)$ is the product of $G \cap$ $\bar{K}_{\widehat{\alpha}_{i}} \cong S L_{3}(q)\left(\right.$ Lemma 5.5) with $Z\left(Q_{i}^{*}\right)$. Thus $\bar{\varphi}_{0}$ sends $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(Q_{i}^{*}\right)\right)=S_{i}$ to $\mathfrak{f o c}\left(C_{\mathcal{F}}\left(Q_{f(i)}^{*}\right)\right)=S_{f(i)}$, and hence $\varphi_{0}\left(A_{i}\right)=A_{f(i)}$. So $\varphi\left(A_{i}\right)=w\left(A_{f(i)}\right)=A_{i}$ for each i where $A_{i}=A_{\widehat{\alpha}_{i}}$, and this finishes the proof of (4).
Step 2: We next prove point (a): that $C_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{0}\right) \leq W_{0} \operatorname{Aut}_{\mathrm{sc}}(A)$. Let $\varphi \in W_{0} \operatorname{Aut}(A, \mathcal{F})$ be an element which centralizes $\operatorname{Aut}_{N}(A) \cong N / A \cong W_{0}$. By (4), $\varphi\left(A_{\widehat{\alpha}}\right)=A_{\widehat{\alpha}}$ for each $\widehat{\alpha} \in \widehat{\Sigma}$. Since $A_{\widehat{\alpha}}$ is cyclic for each $\widehat{\alpha} \in \widehat{\Sigma}_{+}$by Lemma 5.6(c), $\left.\varphi\right|_{A_{\widehat{\alpha}}}$ is multiplication by some unique $u_{\widehat{\alpha}} \in\left(\mathbb{Z} / q_{\widehat{\alpha}}\right)^{\times}$, where $q_{\widehat{\alpha}}=\left|A_{\widehat{\alpha}}\right|$. We must show that $u_{\widehat{\alpha}}$ is independent of $\widehat{\alpha}$.

Assume first that $\tau=$ Id. By Lemma [5.6(c), $\left|A_{\alpha}\right|=p^{m}$ for each $\alpha \in \Pi$. Fix $\alpha_{1}, \alpha_{2} \in \Pi$ and $\beta \in \Sigma_{+}$such that $\frac{1}{k} \beta=\frac{1}{k} \alpha_{1}+\alpha_{2}$, where either

- $k=1$ and all three roots have the same length; or
- $k \in\{2,3\}$ and $\|\beta\|=\left\|\alpha_{1}\right\|=\sqrt{k} \cdot\left\|\alpha_{2}\right\|$.

The relation between the three roots is chosen so that $h_{\beta}(\lambda)=h_{\alpha_{1}}(\lambda) h_{\alpha_{2}}(\lambda)$ for all $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$by Lemma 2.4(d). Hence $u_{\alpha_{1}} \equiv u_{\beta} \equiv u_{\alpha_{2}}\left(\bmod p^{m}\right)$ by Lemma [5.6(b). By the connectivity of the Dynkin diagram, the u_{α} for $\alpha \in \Pi$ are all equal, and $\varphi \in \operatorname{Aut}_{\text {sc }}(A)$.

Now assume $|\tau|=2$; the argument is similar but slightly more complicated. By assumption, \mathbb{G} is of type A_{n}, D_{n}, or E_{n}; i.e., all roots have the same length. Set $m^{\prime}=v_{p}\left(q^{2}-1\right)$; then $m^{\prime}=m$ if p is odd, and $m^{\prime}=m+1$ if $p=2$. Fix $\alpha_{1}, \alpha_{2} \in \Pi$ such that $\alpha_{1} \neq \tau\left(\alpha_{2}\right)$ and $\beta \stackrel{\text { def }}{=} \alpha_{1}+\alpha_{2} \in \Sigma_{+}$. Choose $\lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$of order $p^{m^{\prime}}$.

If $\alpha_{1} \neq \tau\left(\alpha_{1}\right)$ and $\alpha_{2} \neq \tau\left(\alpha_{2}\right)$, then $\left|A_{\widehat{\alpha}_{1}}\right|=\left|A_{\widehat{\alpha}_{2}}\right|=p^{m^{\prime}}$ by Lemma55.6(c), and

$$
\begin{aligned}
\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}(\lambda) & =h_{\alpha_{1}}(\lambda) h_{\tau\left(\alpha_{1}\right)}\left(\lambda^{q}\right) h_{\alpha_{2}}(\lambda) h_{\tau\left(\alpha_{2}\right)}\left(\lambda^{q}\right) \\
& =h_{\beta}(\lambda) h_{\tau(\beta)}\left(\lambda^{q}\right)=\widehat{h}_{\beta}(\lambda) \in A_{\widehat{\beta}} .
\end{aligned}
$$

Hence

$$
\left(\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}(\lambda)\right)^{u_{\widehat{\beta}}}=\varphi\left(\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}(\lambda)\right)=\widehat{h}_{\alpha_{1}}(\lambda)^{u_{\widehat{\alpha}_{1}}} \cdot \widehat{h}_{\alpha_{2}}(\lambda)^{u_{\widehat{\alpha}_{2}}}
$$

and together with Lemma [5.6(b), this proves that $u_{\widehat{\alpha}_{1}} \equiv u_{\widehat{\beta}} \equiv u_{\widehat{\alpha}_{2}}\left(\bmod p^{m^{\prime}}\right)$.
If $\tau\left(\alpha_{i}\right)=\alpha_{i}$ for $i=1,2$, then a similar argument shows that $u_{\widehat{\alpha}_{1}} \equiv u_{\widehat{\beta}} \equiv u_{\widehat{\alpha}_{2}}$ $\left(\bmod p^{m}\right)$. It remains to handle the case where $\alpha_{1} \neq \tau\left(\alpha_{1}\right)$ and $\alpha_{2}=\tau\left(\alpha_{2}\right)$. In this case, $\left|A_{\widehat{\alpha}_{1}}\right|=p^{m^{\prime}}$ and $\left|A_{\widehat{\alpha}_{2}}\right|=p^{m}$ by Lemma[5.6(c), and these groups are generated by $\widehat{h}_{\alpha_{1}}(\lambda)=h_{\alpha_{1}}(\lambda) h_{\tau\left(\alpha_{1}\right)}\left(\lambda^{q}\right)$ and $h_{\alpha_{2}}\left(\lambda^{q+1}\right)$, respectively. Then

$$
\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}\left(\lambda^{q+1}\right)=h_{\alpha_{1}}(\lambda) h_{\tau\left(\alpha_{1}\right)}\left(\lambda^{q}\right) h_{\alpha_{2}}\left(\lambda^{q+1}\right)=h_{\beta}(\lambda) h_{\tau(\beta)}\left(\lambda^{q}\right)=\widehat{h}_{\beta}(\lambda) \in A_{\widehat{\beta}},
$$

so

$$
\left(\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}\left(\lambda^{q+1}\right)\right)^{u_{\widehat{\beta}}}=\varphi\left(\widehat{h}_{\alpha_{1}}(\lambda) \widehat{h}_{\alpha_{2}}\left(\lambda^{q+1}\right)\right)=\widehat{h}_{\alpha_{1}}(\lambda)^{u_{\widehat{\alpha}_{1}}} \cdot h_{\alpha_{2}}\left(\lambda^{q+1}\right)^{u_{\widehat{\alpha}_{2}}}
$$

and $u_{\widehat{\alpha}_{1}} \equiv u_{\widehat{\beta}} \equiv u_{\widehat{\alpha}_{2}}\left(\bmod p^{m}\right)$ by Lemma 5.6(b) again.

Since the Dynkin diagram is connected, and since the subdiagram of nodes in free orbits in the quotient diagram is also connected, this shows that the $u_{\widehat{\alpha}}$ are all congruent for $\widehat{\alpha} \in \widehat{\Pi}$ (modulo p^{m} or $p^{m^{\prime}}$, depending on where they are defined), and hence that $\varphi \in \operatorname{Aut}_{\mathrm{sc}}(A)$.
Step 3: Consider the subset $W_{\widehat{\Pi}}=\left\{w_{\widehat{\alpha}} \mid \widehat{\alpha} \in \widehat{\Pi}\right\}$. We need to study the subgroup $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$: the group of elements of $W_{0} \operatorname{Aut}(A, \mathcal{F})$ which permute the set $W_{\widehat{\Pi}}$. Note that $W_{0}=\left\langle W_{\widehat{\Pi}}\right\rangle$ (see, e.g., Ca, Proposition 13.1.2], and recall that $W_{0}=W$ and $\widehat{\Pi}=\Pi$ in case (III.2). We first show that

$$
\begin{equation*}
\operatorname{Aut}(A, \mathcal{F}) \leq W_{0} N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right) \tag{5}
\end{equation*}
$$

Write $\widehat{\Pi}=\left\{\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{k}\right\}$, ordered so that for each $2 \leq i \leq k, \widehat{\alpha}_{i}$ is orthogonal to all but one of the $\widehat{\alpha}_{j}$ for $j<i$. Here, $\widehat{\alpha}_{i} \perp \widehat{\alpha}_{j}$ means orthogonal as vectors in V_{0}. Thus $w_{\widehat{\alpha}_{i}}$ commutes with all but one of the $w_{\widehat{\alpha}_{j}}$ for $j<i$. By inspection of the Dynkin diagram of \mathbb{G} (or the quotient of that diagram by τ), this is always possible.

Fix $\varphi \in \operatorname{Aut}(A, \mathcal{F})$. In particular, φ normalizes W_{0} (recall that we identify $\left.W_{0}=\operatorname{Aut}_{W_{0}}(A)\right)$ since φ is fusion preserving. (Recall that $\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$ by Lemma 5.3(b).) We must show that some element of φW_{0} normalizes the set $W_{\widehat{\Pi}}$.

By definition of $\operatorname{Aut}(A, \mathcal{F})$ (Notation 5.2), $\varphi=\left.\bar{\varphi}\right|_{A}$ for some $\bar{\varphi} \in \operatorname{Aut}(\mathcal{F})$. Since $\bar{\varphi}$ is fusion preserving, φ normalizes $\operatorname{Aut}_{\mathcal{F}}(A)=\operatorname{Aut}_{G}(A)$, where $\operatorname{Aut}_{G}(A) \cong$ $N / A \cong W_{0}$ since $C_{N}(A)=A$ by Lemma 5.3(a). Thus there is a unique automorphism $\widehat{\varphi} \in \operatorname{Aut}\left(W_{0}\right)$ such that $\widehat{\varphi}(w)=\varphi \circ w \circ \varphi^{-1}$ for each $w \in W_{0}$.

For each i, since $\left|\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right)\right|=2$ and $\left[\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right), A\right] \cong\left[w_{\widehat{\alpha}_{i}}, A\right]$ is cyclic, $\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right)=w_{\widehat{\alpha}_{i}^{\prime}}$ for some $\widehat{\alpha}_{i}^{\prime} \in \widehat{\Sigma}$ by Lemma 5.7 (b), where $\widehat{\alpha}_{i}^{\prime}$ is uniquely determined only up to sign. For $i \neq j$,

$$
\widehat{\alpha}_{i} \perp \widehat{\alpha}_{j} \Longleftrightarrow\left[w_{\widehat{\alpha}_{i}}, w_{\widehat{\alpha}_{j}}\right]=1 \Longleftrightarrow\left[\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right), \widehat{\varphi}\left(w_{\widehat{\alpha}_{j}}\right)\right]=1 \Longleftrightarrow \widehat{\alpha}_{i}^{\prime} \perp \widehat{\alpha}_{j}^{\prime} .
$$

So via the assumption about orthogonality, we can choose successively elements $\widehat{\alpha}_{1}^{\prime}, \widehat{\alpha}_{2}^{\prime}, \ldots, \widehat{\alpha}_{k}^{\prime}$ such that $\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right)=w_{\widehat{\alpha}_{i}^{\prime}}$ for each i, and $\left\langle\widehat{\alpha}_{i}^{\prime}, \widehat{\alpha}_{j}^{\prime}\right\rangle \leq 0$ for $i \neq j$.

For each $i \neq j$, since $\left|w_{\widehat{\alpha}_{i}} w_{\widehat{\alpha}_{j}}\right|=\left|w_{\widehat{\alpha}_{i}^{\prime}} w_{\widehat{\alpha}_{j}^{\prime}}\right|$, the angle (in V_{0}) between $\widehat{\alpha}_{i}$ and $\widehat{\alpha}_{j}$ is equal to that between $\widehat{\alpha}_{i}^{\prime}$ and $\widehat{\alpha}_{j}^{\prime}$ (by assumption, both angles are between $\pi / 2$ and π). The roots $\widehat{\alpha}_{i}^{\prime}$ for $1 \leq i \leq k$ thus generate $\widehat{\Sigma}$ as a root system on V_{0} with Weyl group W_{0}, and hence are the fundamental roots for another Weyl chamber for $\widehat{\Sigma}$. (Recall that $\widehat{\Sigma}=\Sigma, V_{0}=V$, and $W_{0}=W$ in case (III.2).) Since W_{0} permutes the Weyl chambers transitively [Brb §VI.1.5, Theorem 2(i)], there is $w \in W_{0}$ which sends the set $\left\{w_{\widehat{\alpha}_{i}}\right\}$ onto $\left\{\widehat{\varphi}\left(w_{\widehat{\alpha}_{i}}\right)\right\}$. Thus $c_{w}^{-1} \circ \varphi \in N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$, so $\varphi \in W_{0} N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$, and this proves (5).
Step 4: $\quad \operatorname{Set} \operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)=N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right) / C_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$: the group of permutations of the set $W_{\widehat{\Pi}}$ which are induced by elements of $W_{0} \operatorname{Aut}(A, \mathcal{F})$. By (a) (Step 2) and (5), and since $W_{0}=\left\langle W_{\widehat{\Pi}}\right\rangle$, there is a surjection

$$
\begin{equation*}
\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right) \xrightarrow{\text { onto }} \frac{W_{0} N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)}{W_{0} C_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)}=\frac{W_{0} \operatorname{Aut}(A, \mathcal{F})}{W_{0} \operatorname{Aut}_{\mathrm{sc}}(A)} . \tag{6}
\end{equation*}
$$

To finish the proof of the lemma, we must show that each element of the group $\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ is represented by an element of $\operatorname{Aut}_{\operatorname{Aut}(G)}(A)$ (i.e., the restriction of an automorphism of G), with the exceptions listed in point (b).

In the proof of Step 3, we saw that each element of $\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ preserves angles between the corresponding elements of $\widehat{\Pi}$, and hence induces an automorphism of the Coxeter diagram for $\left(V_{0}, \widehat{\Sigma}\right)$ (i.e., the Dynkin diagram without orientation on the edges).
Case 1: Assume $G=\mathbb{G}(q)$ is a Chevalley group. The automorphisms of the Coxeter diagram of \mathbb{G} are well known, and we have

$$
\left|\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)\right| \leq \begin{cases}6 & \text { if } \mathbb{G} \cong D_{4} \tag{7}\\ 2 & \text { if } \mathbb{G} \cong A_{n}(n \geq 2), D_{n}(n \geq 5), E_{6}, B_{2}, G_{2}, \text { or } F_{4} \\ 1 & \text { otherwise }\end{cases}
$$

In case (III.1) (i.e., when the setup is standard), all of these automorphisms are realized by restrictions of graph automorphisms in Γ_{G} (see [Ca, $\left.\S \S 12.2-4\right]$), except possibly when $G \cong B_{2}(q), G_{2}(q)$, or $F_{4}(q)$. In case (III.2) with the same three exceptions, each such automorphism is realized by some graph automorphism $\varphi \in$ $\Gamma_{\bar{G}}$, and $\left.\varphi\right|_{\bar{T}}$ commutes with $\left.\sigma\right|_{\bar{T}} \in Z(\operatorname{Aut}(\bar{T}))$. Hence by Lemma 3.7, $\left.\varphi\right|_{T}$ extends to an automorphism of G whose restriction to A induces the given symmetry of the Coxeter diagram. Together with (6), this proves the lemma for Chevalley groups, with the above exceptions.

If $G \cong B_{2}(q)$ or $F_{4}(q)$ and $p \neq 2$, then $\left|\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)\right|=2$, and the nontrivial element is represented by an element of $\operatorname{Aut}_{\Gamma_{G}}(A)$ exactly when $q_{0}=2$. This proves the lemma in these cases, and a similar argument holds when $G \cong G_{2}(q)$ and $p \neq 3$.

It remains to check the cases where $(G, p) \cong\left(B_{2}(q), 2\right),\left(G_{2}(q), 3\right)$, or $\left(F_{4}(q), 2\right)$. We claim that $\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)=1$ in these three cases; then the three groups in (6) are trivial, and so $\operatorname{Aut}(A, \mathcal{F}) \leq W_{0} \operatorname{Aut}_{\text {sc }}(A)$. If $(\mathbb{G}, p)=\left(B_{2}, 2\right)$ or $\left(G_{2}, 3\right)$, then with the help of Lemma 2.4 d|b]), one shows that the subgroups $\Omega_{1}\left(A_{\alpha}\right)$ are all equal for α a short root, and are all distinct for the distinct (positive) long roots. More precisely, of the $p+1$ subgroups of order p in $\Omega_{1}(A) \cong C_{p}^{2}$, one is equal to A_{α} when α is any of the short roots in Σ_{+}, while each of the other p is equal to A_{α} for one distinct long root α. Since $\Omega_{1}\left(A_{\alpha}\right)=\Omega_{1}\left(\left[w_{\alpha}, A\right]\right)$ for each α, no element of $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ can exchange the long and short roots, so $\operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)=1$.

Now assume ($\mathbb{G}, p)=\left(F_{4}, 2\right)$. Let $\alpha, \beta \in \Pi$ be such that α is long, β is short, and $\alpha \not \perp \beta$. Then α and β generate a root system of type B_{2}, and by the argument in the last paragraph, no element of $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ can exchange them. Thus no element in $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ can exchange the long and short roots in \mathbb{G}, so $\operatorname{again} \operatorname{Aut}_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)=1$.
Case 2: Assume G is a Steinberg group. In particular, we are in case (III.1) The Coxeter diagram for the root system $\left(V_{0}, \widehat{\Sigma}\right)$ has type B_{n}, C_{n}, or F_{4} (recall that we excluded the triality groups ${ }^{3} D_{4}(q)$ in Hypotheses (5.1), and hence has a nontrivial automorphism only when it has type B_{2} or F_{4}. It thus suffices to consider the groups $G={ }^{2} A_{3}(q),{ }^{2} A_{4}(q)$, and ${ }^{2} E_{6}(q)$.

For these groups, the elements $\widehat{h}_{\alpha}(\lambda)$ for $\lambda \in \mathbb{F}_{q}^{\times}$, and hence the $(q-1)$ torsion in the subgroups $T_{\widehat{\alpha}}$ for $\widehat{\alpha} \in \widehat{\Sigma}_{+}$, have relations similar to those among the corresponding subgroups of T when $G=B_{2}(q)$ or $F_{4}(q)$. This follows from Lemma 2.6(b): if $\lambda \in \mathbb{F}_{q}^{\times}$is a generator, then Φ_{λ} restricts to an isomorphism from
$C_{\mathbb{Z} \Sigma^{\vee}}(\tau) /(q-1)$ to the $(q-1)$-torsion in T, and the elements in $\widehat{\Pi}$ can be identified in a natural way with a basis for $C_{\mathbb{Z} \Sigma^{\vee}}(\tau)$. Hence when $p=2$, certain subgroups $\Omega_{1}\left(A_{\widehat{\alpha}}\right)$ are equal for distinct $\widehat{\alpha} \in \widehat{\Sigma}_{+}$, proving that no element in $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)$ can exchange the two classes of roots. Thus the same argument as that used in Case 1 when $(G, p)=\left(B_{2}(q), 2\right)$ or $\left(F_{4}(q), 2\right)$ applies to prove that $N_{W_{0} \operatorname{Aut}(A, \mathcal{F})}\left(W_{\widehat{\Pi}}\right)=$ $\operatorname{Aut}_{\mathrm{sc}}(A)$ in these cases.

Since $p \|\left|W_{0}\right|$ by Hypotheses 5.1(I), we are left only with the case where $p=3$ and $G={ }^{2} E_{6}(q)$ for some $q \equiv 1(\bmod 3)$. Then $\left(V_{0}, \widehat{\Sigma}\right)$ is the root system of F_{4}, so $\operatorname{Aut}(A, \mathcal{F}) \cap W_{0} \operatorname{Aut}_{\mathrm{sc}}(A)$ has index at most $2 \operatorname{in} \operatorname{Aut}(A, \mathcal{F})$ by (6) and (7). Thus (c) holds in this case. (In fact, the fusion system of G is isomorphic to that of $F_{4}(q)$ by [BMO, Example 4.4], and does have an "exotic" graph automorphism.)

We now look at groups which satisfy any of the cases (III.1), (III.2), or (III.3) in Hypotheses 5.1. Recall that $\bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}(\mathcal{F})$.

Lemma 5.9. Assume Hypotheses 5.1 and Notation 5.2. Then each element $\varphi \in \operatorname{Aut}_{\text {diag }}(\mathcal{F})$ is the restriction of a diagonal automorphism of G. More precisely, $\bar{\kappa}_{G}$ restricts to an epimorphism from $\operatorname{Outdiag}(G)$ onto $\operatorname{Out}_{\text {diag }}(\mathcal{F})$ whose kernel is the p^{\prime}-torsion subgroup. Also, $C_{A}\left(W_{0}\right)=O_{p}(Z(G))$.

Proof. In general, whenever H is a group and $B \unlhd H$ is a normal abelian subgroup, we let $\operatorname{Aut}_{\text {diag }}(H, B)$ be the group of all $\varphi \in \operatorname{Aut}(H)$ such that $\left.\varphi\right|_{B}=\operatorname{Id}_{B}$ and $[\varphi, H] \leq B$, and let $\operatorname{Out}_{\text {diag }}(H, B)$ be the image of $\operatorname{Aut}_{\text {diag }}(H, B)$ in $\operatorname{Out}(H)$. There is a natural isomorphism $\operatorname{Aut}_{\text {diag }}(H, B) / \operatorname{Aut}_{B}(H) \xrightarrow[\cong]{\eta_{H, B}} H^{1}(H / B ; B)$ (cf. [Sz1, 2.8.7]), and hence $H^{1}(H / B ; B)$ surjects onto $\operatorname{Out}_{\text {diag }}(H, B)$. If B is centric in H (if $\left.C_{H}(B)=B\right)$, then $\operatorname{Out}_{\text {diag }}(H, B) \cong H^{1}(H / B ; B)$ since $\operatorname{Aut}_{B}(H)=\operatorname{Inn}(H) \cap$ $\operatorname{Aut}_{\text {diag }}(H, B)$.

In particular, $\operatorname{Out}_{\text {diag }}(S, A)$ is a p-group since $H^{1}(S / A ; A)$ is a p-group. Also, $C_{S}(A)=A$ by Lemma [5.3(a) (or by assumption in case (III.3)), and hence we have $\operatorname{Out}_{\text {diag }}(S, A) \cong \operatorname{Aut}_{\text {diag }}(S, A) / \operatorname{Aut}_{A}(S)$. So $\operatorname{Aut}_{\text {diag }}(S, A)$ is a p-group, and its subgroup $\operatorname{Aut}_{\text {diag }}(\mathcal{F})$ is a p-group. It follows that

$$
\operatorname{Aut}_{\text {diag }}(\mathcal{F}) \cap \operatorname{Aut}_{G}(S)=\operatorname{Aut}_{\text {diag }}(\mathcal{F}) \cap \operatorname{Inn}(S)=\operatorname{Aut}_{A}(S),
$$

and thus $\operatorname{Out}_{\text {diag }}(\mathcal{F}) \cong \operatorname{Aut}_{\text {diag }}(\mathcal{F}) / \operatorname{Aut}_{A}(S)$.
Since Outdiag $(G)=\operatorname{Out}_{\bar{T}}(G)$ by Proposition 3.5(c), we get $\bar{\kappa}_{G}(\operatorname{Outdiag}(G)) \leq$ $\operatorname{Out}_{\text {diag }}(\mathcal{F})$. In particular, $\bar{\kappa}_{G}$ sends all torsion prime to p in $\operatorname{Outdiag}(G)$ to the identity. It remains to show that it sends $O_{p}(\operatorname{Outdiag}(G))$ isomorphically to $\operatorname{Out}_{\text {diag }}(\mathcal{F})$.

Consider the following commutative diagram of automorphism groups and cohomology groups:

Here, ρ_{2} is induced by restriction, and is injective by [CE, Theorem XII.10.1] and since $\operatorname{Aut}_{S}(A) \in \operatorname{Syl}_{p}\left(\operatorname{Aut}_{G}(A)\right)\left(\right.$ since $\left.A \unlhd S \in \operatorname{Syl}_{p}(G)\right)$. For each $\omega \in$ $\operatorname{Aut}_{\text {diag }}(\mathcal{F})$, since ω is fusion preserving, $\eta_{S, A}([\omega]) \in H^{1}\left(\operatorname{Aut}_{S}(A) ; A\right)$ is stable with respect to $\operatorname{Aut}_{G}(A)$-fusion, and hence by $\mathbf{C E}$, Theorem XII.10.1] is the restriction of a unique element $\chi([\omega]) \in H^{1}\left(\operatorname{Aut}_{G}(A) ; A\right)$.

The rest of the proof splits into two parts, depending on which of cases (III.1), (III.2), or (III.3) in Hypotheses 5.1 holds. Recall that $\operatorname{Aut}_{\mathcal{F}}(A)=\operatorname{Aut}_{G}(A)=$ $\operatorname{Aut}_{W_{0}}(A)$: the second equality by Lemma 5.3(b) in cases (III.1) or (III.2), or by assumption in case (III.3).
Cases (III.2) and (III.3): We show that in these cases, $\operatorname{Outdiag}(G), \operatorname{Out}_{\text {diag }}(\mathcal{F})$, $Z(G)$, and $C_{A}\left(W_{0}\right)$ all have order prime to p. Recall that p is odd in both cases. By hypothesis in case (III.3), and since $\left.\gamma\right|_{\bar{T}} \in O_{p^{\prime}}\left(W_{0}\right)$ inverts \bar{T} in case (III.2), $C_{A}\left(O_{p^{\prime}}\left(W_{0}\right)\right)=1$. In particular, $C_{A}\left(W_{0}\right)=1$. Since $Z(G) \leq Z(\bar{G})$ by Proposition 3.5)(a), and $Z(\bar{G}) \leq \bar{T}$ by Lemma 2.4(a), $Z(G) \leq G \cap C_{\bar{T}}(W) \leq C_{T}\left(W_{0}\right)$, so $O_{p}(Z(G)) \leq C_{A}\left(W_{0}\right)=1$. This proves the last statement.

Now, $O_{p}(\operatorname{Outdiag}(G))=1$ since $\operatorname{Outdiag}(G) \cong Z(G)$ (see GLS3, Theorem 2.5.12(c)]) and $O_{p}(Z(G))=1$. Also,

$$
\begin{aligned}
H^{1}\left(\operatorname{Aut}_{G}(A) ; A\right) & =H^{1}\left(\operatorname{Aut}_{W_{0}}(A) ; A\right) \\
& \cong H^{1}\left(\operatorname{Aut}_{W_{0}}(A) / \operatorname{Aut}_{O_{p^{\prime}}\left(W_{0}\right)}(A) ; C_{A}\left(O_{p^{\prime}}\left(W_{0}\right)\right)\right)=0
\end{aligned}
$$

since A is a p-group and $C_{A}\left(O_{p^{\prime}}\left(W_{0}\right)\right)=1$. Hence $\operatorname{Out}_{\text {diag }}(\mathcal{F})=1$ by diagram (8). Case (III.1): Since $C_{W}(A)=1$ by Lemma 5.3(a) (and since $\operatorname{Aut}_{G}(A)=$ Aut $_{W_{0}}(A)$), we can identify $H^{1}\left(\operatorname{Aut}_{G}(A) ; A\right)=H^{1}\left(W_{0} ; A\right)$. Consider the following commutative diagram of automorphism groups and cohomology groups

where R is induced by restriction to $N_{G}(T)$. By Lemma 5.3(a), T is centric in $N_{G}(T)$ and A is centric in N, so the three η 's are well defined and isomorphisms (i.e., $\operatorname{Out}_{\text {diag }}(N, A)=\operatorname{Aut}_{\text {diag }}(N, A) / \operatorname{Aut}_{A}(N)$, etc.). The maps σ_{i} are induced by dividing out by $O_{p^{\prime}}(T)$, and are isomorphisms since $A=O_{p}(T)$. The maps ρ_{i} are induced by restriction, and are injective since $S / A \in \operatorname{Syl}_{p}\left(W_{0}\right)$ (see CE Theorem XII.10.1]).

Consider the short exact sequence

$$
1 \longrightarrow T \longrightarrow \bar{T} \xrightarrow{\Psi} \bar{T} \longrightarrow 1,
$$

where $\Psi(t)=t^{-1} \cdot \gamma \psi_{q}(t)=t^{-1} \gamma\left(t^{q}\right)$ for $t \in \bar{T}$. Let

$$
\begin{equation*}
1 \longrightarrow C_{T}\left(W_{0}\right) \longrightarrow C_{\bar{T}}\left(W_{0}\right) \xrightarrow{\Psi_{*}} C_{\bar{T}}\left(W_{0}\right) \xrightarrow{\delta} H^{1}\left(W_{0} ; T\right) \xrightarrow{\theta} H^{1}\left(W_{0} ; \bar{T}\right) \tag{10}
\end{equation*}
$$

be the induced cohomology exact sequence for the W_{0}-action, and recall that $H^{1}\left(W_{0} ; A\right) \cong H^{1}\left(W_{0} ; T\right)_{(p)}$ by (9). We claim that
(11) $\left|O_{p}(\operatorname{Outdiag}(G))\right|=\left|\operatorname{Im}(\delta)_{(p)}\right|=\left|O_{p}(Z(G))\right|=\left|C_{A}\left(W_{0}\right)\right|$;
(12) R is injective; and
(13) $\chi\left(\operatorname{Out}_{\text {diag }}(\mathcal{F})\right) \leq \operatorname{Ker}(\theta)$.

These three points will be shown below. It then follows from the commutativity of diagram (9) (and since $\operatorname{Im}(\delta)=\operatorname{Ker}(\theta))$ that $\bar{\kappa}_{G}$ sends $O_{p}(\operatorname{Outdiag}(G))$ isomorphically onto $\operatorname{Out}_{\text {diag }}(\mathcal{F})$.
Proof of (11) and (12); Assume first that $\gamma \neq \mathrm{Id}$ and $\mathbb{G} \cong S L_{2 n-1}$ (some $n \geq 1$). Thus $G \cong S U_{2 n-1}(q)$. By [St1, 3.4], Outdiag (G) and $Z(G)$ are cyclic of order ($q+1,2 n-1$), and hence have no p-torsion (recall $p \mid(q-1)$). By Lemma 5.4(b), $C_{\bar{T}}\left(W_{0}\right) \cong \overline{\mathbb{F}}_{q_{0}}$, and $\sigma(u)=u^{-q}$ for $u \in C_{\bar{T}}\left(W_{0}\right)$. Thus $\Psi_{*}(u)=u^{-1} \sigma(u)=u^{-1-q}$ for $u \in C_{\bar{T}}\left(W_{0}\right)$, so Ψ_{*} is onto, and $\operatorname{Im}(\delta)=1 \cong O_{p}(\operatorname{Outdiag}(G))$ in this case. Also, $C_{T}\left(W_{0}\right)=\operatorname{Ker}\left(\Psi_{*}\right)$ has order $q+1$, so $C_{A}\left(W_{0}\right)=O_{p}\left(C_{T}\left(W_{0}\right)\right)=1$.

Now assume $\gamma=\mathrm{Id}$ or $\mathbb{G} \neq S L_{2 n-1}$. By Lemma 5.4 in all such cases,

$$
\begin{equation*}
C_{\bar{T}}\left(W_{0}\right)=C_{\bar{T}}(W)=Z(\bar{G}) \quad \text { and } \quad C_{T}\left(W_{0}\right)=Z(G) . \tag{14}
\end{equation*}
$$

In particular, these groups are all finite, and hence $|\operatorname{Im}(\delta)|=|Z(G)|$ by the exactness of (10). By [GLS3 Theorem 2.5.12(c)], Outdiag $(G) \cong Z(G)$ in all cases, and hence $|\operatorname{Outdiag}(G)|=|\operatorname{Im}(\delta)|$.

If $[\varphi] \in \operatorname{Ker}(R)$, then we can assume that it is the class of $\varphi \in \operatorname{Aut}_{\bar{T}}(G)$. Thus $\varphi=c_{x}$ for some $x \in N_{\bar{T}}(G)$, and $\left.\varphi\right|_{N_{G}(T)}=c_{y}$ for some $y \in N_{G}(T)$ which centralizes A. Then $y \in C_{G}(A)=T$ by Lemma 5.3(a), and upon replacing φ by $c_{y}^{-1} \circ \varphi$ and x by $y^{-1} x$ (without changing the class [φ]), we can arrange that $\left.\varphi\right|_{N_{G}(T)}=$ Id. Then $x \in C_{\bar{T}}\left(W_{0}\right)$ since it centralizes $N_{G}(T)$ (and since $N_{G}(T) / T \cong$ W_{0} by Lemma 5.3(b)), so $x \in Z(\bar{G})$ by (14), and hence $\varphi=\operatorname{Id}_{G}$. Thus R is injective.
Proof of (13); Fix $\varphi \in \operatorname{Aut}_{\text {diag }}(\mathcal{F})$. Choose $\bar{\varphi} \in \operatorname{Aut}_{\text {diag }}(N, A)$ such that $\left.\bar{\varphi}\right|_{S}=\varphi$ (i.e., such that $[\bar{\varphi}]=\chi_{0}([\varphi])$ in diagram (9)). Recall that $W_{0} \cong N / A$ by Lemma 5.3(b). Let $\underline{\mathbf{c}}: W_{0} \cong N / A \longrightarrow A$ be such that $\bar{\varphi}(g)=\underline{\mathbf{c}}(g A) \cdot g$ for each $g \in N$; thus $\eta_{N, A}([\varphi])=[\mathbf{c}]$. We must show that $\theta([\mathbf{c}])=1$: that this is a consequence of φ being fusion preserving.

For each $\widehat{\alpha} \in \widehat{\Pi}$, set $u_{\widehat{\alpha}}=\underline{\mathbf{c}}\left(w_{\widehat{\alpha}}\right)$. Thus for $g \in N, \bar{\varphi}(g)=u_{\widehat{\alpha}} g$ if $g \in w_{\widehat{\alpha}}$ (as a coset of A in N). Since $w_{\widehat{\alpha}}^{2}=1, g^{2}=\bar{\varphi}\left(g^{2}\right)=\left(u_{\widehat{\alpha}} g\right)^{2}$, and hence $w_{\widehat{\alpha}}\left(u_{\widehat{\alpha}}\right)=u_{\widehat{\alpha}}^{-1}$. We claim that $u_{\widehat{\alpha}} \in A_{\widehat{\alpha}}=A \cap \bar{K}_{\widehat{\alpha}}$ for each $\widehat{\alpha} \in \widehat{\Pi}$.

- If $p=2, w_{\widehat{\alpha}} \in S / A$, and $|\widehat{\alpha}| \leq 2$, choose $g_{\widehat{\alpha}} \in S \cap \bar{K}_{\widehat{\alpha}}$ such that $w_{\widehat{\alpha}}=g_{\widehat{\alpha}} A$. (For example, if we set $g=\prod_{\alpha \in \widehat{\alpha}} n_{\alpha}(1)$ (see Notation 2.2(B)), then $g \in N_{G}(T)$ represents the class $w_{\widehat{\alpha}} \in W_{0}$, and is T-conjugate to an element of $S \cap \bar{K}_{\widehat{\alpha}}$.) By Lemma 5.7(c), $C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=G \cap \bar{T} \bar{K}_{\widehat{\alpha}}$, where $G \cap \bar{K}_{\widehat{\alpha}} \cong S L_{2}(q)$ or $S L_{2}\left(q^{2}\right)$ by Lemma 5.5. Hence

$$
\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)=\mathfrak{f o c}\left(C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)=S \cap\left[G \cap \bar{T} \bar{K}_{\widehat{\alpha}}, G \cap \bar{T} \bar{K}_{\widehat{\alpha}}\right]=S \cap \bar{K}_{\widehat{\alpha}}
$$

(see the remarks before Lemma 5.7), and $g_{\widehat{\alpha}}$ lies in this subgroup. Since φ is fusion preserving, $\varphi\left(g_{\widehat{\alpha}}\right) \in \mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)$. By Lemma 5.7(c) again,

$$
u_{\widehat{\alpha}}=\varphi\left(g_{\widehat{\alpha}}\right) \cdot g_{\widehat{\alpha}}^{-1} \in A \cap \mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)=A_{\widehat{\alpha}} .
$$

- If $p=2, w_{\widehat{\alpha}} \in S / A$, and $\widehat{\alpha}=\left\{\alpha, \tau(\alpha), \alpha^{*}\right\}$ where $\alpha^{*}=\alpha+\tau(\alpha)$, then $w_{\widehat{\alpha}}=w_{\alpha^{*}}$. Choose $g_{\widehat{\alpha}} \in S \cap \bar{K}_{\alpha^{*}}$ such that $g_{\widehat{\alpha}} A=w_{\widehat{\alpha}} \in N / A$. (For example, there is such a $g_{\widehat{\alpha}}$ which is T-conjugate to $n_{\alpha^{*}}(1)$.) By Lemma 5.7(c), $C_{G}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)=$ $G \cap \bar{T} \bar{K}_{\alpha^{*}}, G \cap \bar{K}_{\alpha^{*}} \cong S L_{2}(q)$, and hence $g_{\widehat{\alpha}} \in \mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)$. So $\varphi\left(g_{\widehat{\alpha}}\right) \in$
$\mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)$ since $\left.\varphi\right|_{S}$ is fusion preserving. By Lemma 5.7(c),

$$
u_{\widehat{\alpha}}=\varphi\left(g_{\widehat{\alpha}}\right) \cdot g_{\widehat{\alpha}}^{-1} \in A \cap \mathfrak{f o c}\left(C_{\mathcal{F}}\left(C_{A}\left(w_{\widehat{\alpha}}\right)\right)\right)=A \cap \bar{K}_{\alpha^{*}} \leq A_{\widehat{\alpha}} .
$$

- If $p=2$ and $w_{\hat{\alpha}} \notin S / A \in \operatorname{Syl}_{2}\left(W_{0}\right)$, then it is W_{0}-conjugate to some other reflection $w_{\widehat{\beta}} \in S / A$ (for $\widehat{\beta} \in \widehat{\Sigma}_{+}$), $\mathbf{c}\left(w_{\widehat{\beta}}\right) \in A_{\widehat{\beta}}$ by the above argument, and hence $u_{\widehat{\alpha}}=\underline{\mathbf{c}}\left(w_{\widehat{\alpha}}\right) \in A_{\widehat{\alpha}}$.
Consider the homomorphism
$\Phi=\left(\Phi_{\alpha}\right)_{\alpha \in \Pi}: \bar{T} \longrightarrow \prod_{\alpha \in \Pi} \bar{T}_{\alpha} \quad$ where $\quad \Phi_{\alpha}(t)=t^{-1} w_{\alpha}(t) \quad \forall t \in \bar{T}, \alpha \in \Pi$.
Since $W=\left\langle w_{\alpha} \mid \alpha \in \Pi\right\rangle$, we have $\operatorname{Ker}(\Phi)=C_{\bar{T}}(W)=Z(\bar{G})$ is finite (Proposition 2.5). Thus Φ is (isomorphic to) a homomorphism from $\left(\overline{\mathbb{F}}_{q_{0}}\right)^{r}$ to itself with finite kernel (where $r=|\Pi|$), and any such homomorphism is surjective since $\overline{\mathbb{F}}_{q_{0}} \times$ has no subgroups of finite index.

Choose elements $v_{\alpha} \in \bar{T}_{\alpha}$ for $\alpha \in \Pi$ as follows.

- If $\widehat{\alpha}=\{\alpha\}$ where $\tau(\alpha)=\alpha$, we set $v_{\alpha}=u_{\widehat{\alpha}}$.
- If $\widehat{\alpha}=\{\alpha, \tau(\alpha)\}$, where $\alpha \perp \tau(\alpha)$, then $\bar{T}_{\widehat{\alpha}}=\bar{T}_{\alpha} \times \bar{T}_{\tau(\alpha)}$, and we let $v_{\alpha}, v_{\tau(\alpha)}$ be such that $v_{\alpha} v_{\tau(\alpha)}=u_{\widehat{\alpha}}$.
- If $\widehat{\alpha}=\left\{\alpha, \tau(\alpha), \alpha^{*}\right\}$ where $\alpha^{*}=\alpha+\tau(\alpha)$, then $u_{\widehat{\alpha}}=h_{\alpha}(\lambda) h_{\tau(\alpha)}\left(\lambda^{\prime}\right)$ for some $\lambda, \lambda^{\prime} \in \overline{\mathbb{F}}_{q_{0}}^{\times}$,

$$
w_{\widehat{\alpha}}\left(h_{\alpha}(\lambda) h_{\tau(\alpha)}\left(\lambda^{\prime}\right)\right)=h_{\alpha}\left(\lambda^{\prime-1}\right) h_{\tau(\alpha)}\left(\lambda^{-1}\right)
$$

by Lemma 2.4(目), and $\lambda=\lambda^{\prime}$ since $w_{\widehat{\alpha}}\left(u_{\widehat{\alpha}}\right)=u_{\widehat{\alpha}}^{-1}$. Set $v_{\alpha}=h_{\alpha}(\lambda)$ and $v_{\tau(\alpha)}=1$. (This depends on the choice of $\alpha \in \widehat{\alpha} \cap \Pi$.)
 $\widehat{\alpha} \in \widehat{\Pi}$. This is clear when $|\widehat{\alpha}| \leq 2$. If $\widehat{\alpha}=\left\{\alpha, \tau(\alpha), \alpha^{*}\right\}$ and λ are as above, then

$$
\begin{aligned}
w_{\widehat{\alpha}}(t)=w_{\alpha^{*}}(t) & =w_{\tau(\alpha)} w_{\alpha} w_{\tau(\alpha)}(t)=w_{\tau(\alpha)}\left(w_{\alpha}(t)\right)=w_{\tau(\alpha)}\left(t \cdot h_{\alpha}(\lambda)\right) \\
& =t \cdot w_{\tau(\alpha)}\left(h_{\alpha}(\lambda)\right)=t \cdot h_{\alpha^{*}}(\lambda)=t \cdot u_{\widehat{\alpha}}
\end{aligned}
$$

Thus $\underline{\mathbf{c}}\left(w_{\widehat{\alpha}}\right)=d t\left(w_{\widehat{\alpha}}\right)$ for each $\widehat{\alpha} \in \widehat{\Pi}$. Since $W_{0}=\left\langle w_{\widehat{\alpha}} \mid \widehat{\alpha} \in \widehat{\Pi}\right\rangle$ (and since $\underline{\mathbf{c}}$ and $d t$ are both cocycles), this implies that $\underline{\mathbf{c}}=d t$, and hence that $[\mathbf{c}]=0$ in $H^{1}\left(W_{0} ; \bar{T}\right)$.

As one consequence of Lemma 5.9, the Z^{*}-theorem holds for these groups. This is known to hold for all finite groups (see [GLS3, § 7.8]), but its proof for odd p depends on the classification of finite simple groups, which we prefer not to assume here.

Corollary 5.10. Assume that $G \in \mathfrak{L i e}\left(q_{0}\right), p \neq q_{0}$, and $S \in \operatorname{Syl}_{p}(G)$ satisfy Hypotheses 5.1. Then $Z\left(\mathcal{F}_{S}(G)\right)=O_{p}(Z(G))$.

Proof. By Lemma 5.9 $O_{p}(Z(G))=C_{A}\left(W_{0}\right)$. By Lemma 5.3(a,b), or by hypothesis in Case 5.1](III.3), $C_{S}(A)=A$ and $\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$. Hence $Z\left(\mathcal{F}_{S}(G)\right) \leq O_{p}(Z(G))$, while the other inclusion is clear.

We now need the following additional hypotheses, in order to be able to compare $\operatorname{Aut}_{\mathrm{sc}}(A)$ with the group of field automorphisms of G. With the help of Lemma1.11, we will see in Chapter 6 that we can always arrange for them to hold.

Hypotheses 5.11. Fix a prime p and a prime power q. Assume that $q=q_{0}^{b}$ where q_{0} is prime, $b \geq 1, q_{0} \neq p$, and
(i) $\quad q_{0} \equiv \pm 3(\bmod 8)$ if $p=2$;
(ii) the class of q_{0} generates $\left(\mathbb{Z} / p^{2}\right)^{\times}$if p is odd; and
(iii) $b \mid(p-1) p^{\ell}$ for some $\ell \geq 0$.

We will also say that " G satisfies Hypotheses 5.11" (for a given prime p) if $G \cong$ ${ }^{t} \mathbb{G}(q)$ for some t and \mathbb{G}, and some q which satisfies the above conditions.

By Hypothesis 5.1(I), $\psi_{q_{0}}(G)=G$, and thus all field endomorphisms of \bar{G} normalize G. When G has a standard σ-setup, Φ_{G} was defined to be the group of restrictions of such endomorphisms $\psi_{q_{0}^{a}} \in \Phi_{\bar{G}}$ for $a \geq 0$. Under our Hypotheses 5.1. this applies only when we are in case (III.1) (although Proposition 3.6 describes the relation between Φ_{G} and $\psi_{q_{0}}$ in the other cases). In what follows, it will be useful to set

$$
\widehat{\Phi}_{G}=\left\langle\left.\psi_{q_{0}}\right|_{G}\right\rangle \leq \operatorname{Aut}(G) .
$$

By Proposition [3.6(d), Inndiag $(G) \widehat{\Phi}_{G}=\operatorname{Inndiag}(G) \Phi_{G}$. However, $\widehat{\Phi}_{G}$ can be strictly larger than Φ_{G}, and $\widehat{\Phi}_{G} \cap \operatorname{Inndiag}(G)$ need not be trivial. For example, if $G=S L_{n}(q)$ where p does not divide $q-1$, then there is a σ-setup with $\sigma=c_{x} \psi_{q}$ for some $x \in N_{\bar{G}}(\bar{T})$ that satisfies Hypotheses 5.1 (see Lemma 6.5), and $\left.\psi_{q}\right|_{G}=\left.c_{x}^{-1}\right|_{G} \in \operatorname{Inndiag}(G)$. Note that since each element of $\widehat{\Phi}_{G}$ acts on \bar{T} via $\left(t \mapsto t^{r}\right)$ for some $r, \widehat{\Phi}_{G}$ normalizes T and each of its subgroups.

Recall that $\tau \in \operatorname{Aut}(V)$ is the automorphism induced by σ, and also denotes the induced permutation of Σ.

Lemma 5.12. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Let

$$
\chi_{0}: \widehat{\Phi}_{G} \longrightarrow \operatorname{Aut}(A, \mathcal{F})
$$

be the homomorphism induced by restriction from G to A. Set $m=|\tau|=|\gamma|_{\bar{T}} \mid$. Then the following hold.
(a) Either T has exponent $q^{m}-1$; or p is odd, $m=\operatorname{ord}_{p}(q), m$ is even, and $\left(q^{m / 2}+1\right)|\operatorname{expt}(T)|\left(q^{m}-1\right)$.
(b) If p is odd, then $\chi_{0}\left(\widehat{\Phi}_{G}\right)=\operatorname{Aut}_{\mathrm{sc}}(A)$. If $p=2$, then $\chi_{0}\left(\widehat{\Phi}_{G}\right)$ has index 2 in $\operatorname{Aut}_{\mathrm{sc}}(A)$, and $\operatorname{Aut}_{\mathrm{sc}}(A)=\operatorname{Im}\left(\chi_{0}\right)\left\langle\psi_{-1}^{A}\right\rangle$.
(c) If $p=2$, then χ_{0} is injective. If p is odd, then
$\operatorname{Ker}\left(\chi_{0}\right)= \begin{cases}\left\langle\left.\psi_{q}\right|_{G}\right\rangle=\left\langle\left.\gamma\right|_{G}\right\rangle & \text { in case (III.1) } \\ \left\langle\left(\left.\psi_{q}\right|_{G}\right)^{m}\right\rangle=\left\langle\left.\gamma^{m}\right|_{G}\right\rangle=\widehat{\Phi}_{G} \cap \operatorname{Aut}_{\bar{T}}(G) & \text { in cases (III.2) and (III.3). }\end{cases}$
Proof. We first recall some of the assumptions in cases (III.1-3) of Hypotheses 5.1.

case (III.1)	$\operatorname{ord}_{p}(q)=1, m=\|\gamma\|$, and $m \leq 2$	
case (III.2)	$\operatorname{ord}_{p}(q)=m=2$	p is odd
case (III.3)	$\operatorname{ord}_{p}(q)=m$	p is odd

(Recall that γ is a graph automorphsm in case (III.1), so $|\gamma|=|\tau|=m$.) In all of these cases, $p \mid\left(q^{m}-1\right)$ since $\operatorname{ord}_{p}(q) \mid m$.
(a) For each $t \in T=C_{\bar{T}}\left(\psi_{q} \circ \gamma\right), t^{q}=\psi_{q}(t)=\gamma^{-1}(t)$. Hence $t=\gamma^{-m}(t)=$ $\left(\psi_{q}\right)^{m}(t)=t^{q^{m}}$, and $t^{q^{m}-1}=1$. Thus $\operatorname{expt}(T) \mid\left(q^{m}-1\right)$.

By Hypotheses 5.1(I), there is a linearly independent subset $\Omega=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subseteq$ Σ such that either Ω or $\pm \Omega=\left\{ \pm \alpha_{1}, \ldots, \pm \alpha_{s}\right\}$ is a free $\langle\tau\rangle$-orbit in Σ. Assume Ω is a free orbit (this always happens in case (III.1)). In particular, $m=|\tau|=s$. For each $1 \neq \lambda \in \overline{\mathbb{F}}_{q_{0}}$ such that $\lambda^{q^{s}-1}=1$, the element

$$
t(\lambda)=\prod_{i=0}^{m-1} h_{\tau^{i}\left(\alpha_{1}\right)}\left(\lambda^{q^{i}}\right)
$$

is fixed by $\sigma=\psi_{q} \circ \gamma\left(\operatorname{recall} \sigma\left(h_{\beta}(\lambda)\right)=h_{\tau(\beta)}\left(\lambda^{q}\right)\right.$ for each $\beta \in \Sigma$ by Lemma 3.2). Hence $t(\lambda) \in T$, and $t(\lambda) \neq 1$ when $\lambda \neq 1$ by Lemma 2.4(d|b). Thus T contains the subgroup $\left\{t(\lambda) \mid \lambda^{q^{m}-1}=1\right\}$ of order $q^{m}-1$, this subgroup is cyclic (isomorphic to a subgroup of $\overline{\mathbb{F}}_{q_{0}}^{\times}$), and hence $\operatorname{expt}(T)=q^{m}-1$.

Assume now that $\pm \Omega$ is a free $\langle\tau\rangle$-orbit (thus $m=|\tau|=2 s$). In particular, we are not in case (III.1), so p is odd and $m=\operatorname{ord}_{p}(q)$. Then $\tau^{i}\left(\alpha_{1}\right)=-\alpha_{1}$ for some $0<i<2 s$, and $i=s$ since $\tau^{2 i}\left(\alpha_{1}\right)=\alpha_{1}$. For each $1 \neq \lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times}$such that $\lambda^{q^{s}+1}=1$,

$$
t(\lambda)=\prod_{i=0}^{s-1} h_{\tau^{i}\left(\alpha_{1}\right)}\left(\lambda^{q^{i}}\right)
$$

is fixed by $\sigma=\psi_{q} \circ \gamma$ by Lemma 3.2 and since $h_{\tau^{s}\left(\alpha_{1}\right)}\left(\lambda^{q^{s}}\right)=h_{-\alpha_{1}}\left(\lambda^{-1}\right)=h_{\alpha_{1}}(\lambda)$. Hence $t(\lambda) \in T$, and $t(\lambda) \neq 1$ when $\lambda \neq 1$ by Lemma 2.4again. Thus $\left\{t(\lambda) \mid \lambda^{q^{Q}+1}=\right.$ $1\} \leq T$ is cyclic of order $q^{s}+1$, and so $\left(q^{s}+1\right) \mid \operatorname{expt}(T)$.
(b) By definition, $\operatorname{Im}\left(\chi_{0}\right)=\chi_{0}\left(\widehat{\Phi}_{G}\right)$ is generated by $\chi_{0}\left(\psi_{q_{0}}\right)=\left.\psi_{q_{0}}\right|_{A}$, which acts on A via ($a \mapsto a^{q_{0}}$). If p is odd, then by Hypotheses 5.11 (ii), the class of q_{0} generates $\left(\mathbb{Z} / p^{2}\right)^{\times}$, and hence generates $\left(\mathbb{Z} / p^{k}\right)^{\times}$for each $k>0$. So $\operatorname{Im}\left(\chi_{0}\right)=\operatorname{Aut}_{\text {sc }}(A)$ in this case.

If $p=2$, then $q_{0} \equiv \pm 3(\bmod 8)$ by Hypotheses $5.11(\mathrm{i})$. So for each $k \geq 2$, $\left\langle q_{0}\right\rangle$ has index 2 in $\left(\mathbb{Z} / 2^{k}\right)^{\times}=\left\langle q_{0},-1\right\rangle$. Hence $\operatorname{Im}\left(\chi_{0}\right)=\left\langle\psi_{q_{0}} \mid A\right\rangle$ has index 2 in $\operatorname{Aut}_{\mathrm{sc}}(A)=\left\langle\psi_{q_{0}} \mid A, \psi_{-1}^{A}\right\rangle$.
(c) Set $\phi_{0}=\left.\psi_{q_{0}}\right|_{G}$, a generator of $\widehat{\Phi}_{G}$. Then $\left(\phi_{0}\right)^{b}=\left.\psi_{q}\right|_{G}=\left(\left.\gamma\right|_{G}\right)^{-1}$ since $G=$ $C_{\bar{G}}\left(\psi_{q} \circ \gamma\right)$, and so $\left|\phi_{0}\right|_{T} \mid$ divides $b|\gamma|_{\bar{T}} \mid=b m$. Also, $\left(\phi_{0}\right)^{b m}=\left(\left.\gamma\right|_{G}\right)^{-m} \in \operatorname{Aut}_{\bar{T}}(G)$ by Lemma 3.2

By (a), either $\operatorname{expt}(T)=q^{m}-1$; or m is even, p is odd, $\operatorname{ord}_{p}(q)=m$, and $\left(q^{m / 2}+1\right)|\operatorname{expt}(T)|\left(q^{m}-1\right)$. In the latter case, $v_{p}\left(q^{m / 2}+1\right)=v_{p}\left(q^{m}-1\right)>0$ since $p \nmid\left(q^{m / 2}-1\right)$. Thus

$$
\begin{equation*}
\operatorname{expt}(A)=p^{e} \quad \text { where } \quad e=v_{p}\left(q^{m}-1\right)=v_{p}\left(q_{0}^{b m}-1\right)>0 \tag{16}
\end{equation*}
$$

If $p=2$, then we are in case (III.1) In particular, $q=q_{0}^{b} \equiv 1(\bmod 4)$, and $m \leq 2$. Also, b (and hence $b m$) is a power of 2 by Hypotheses 5.11(iii). If $b m=1$, then $q=q_{0} \equiv 5(\bmod 8)$, so $e=v_{2}(q-1)=2$. If $b m$ is even, then $e=v_{2}\left(q_{0}^{b m}-1\right)=v_{2}\left(q_{0}^{2}-1\right)+v_{2}(b m / 2)=3+v_{2}(b m / 2)$ by Lemma 1.13. Thus in all cases, $e=2+v_{2}(b m)$. So $\operatorname{Im}\left(\chi_{0}\right) \leq \operatorname{Aut}_{\mathrm{sc}}(A) \cong\left(\mathbb{Z} / 2^{e}\right)^{\times}$has order $2^{e-2}=b m$. Since $\left(\left.\psi_{q_{0}}\right|_{G}\right)^{b m}=\left(\left.\psi_{q}\right|_{G}\right)^{m}=\left(\left.\gamma^{-1}\right|_{G}\right)^{m}=\operatorname{Id}_{G}$ (recall $m=|\gamma|$ in case (III.1),χ_{0} is injective.

Now assume p is odd, and set $m_{0}=\operatorname{ord}_{p}(q)$. Then $b \mid(p-1) p^{\ell}$ for some $\ell \geq 0$ by Hypotheses 5.11(iii), and $q=q_{0}^{b}$ where the class of q_{0} generates $\left(\mathbb{Z} / p^{k}\right)^{\times}$for
each $k \geq 1$. For $r \in \mathbb{Z}, q^{r}=q_{0}^{b r} \equiv 1(\bmod p)$ if and only if $(p-1) \mid b r$. Hence $b m_{0}=b \cdot \operatorname{ord}_{p}(q)=(p-1) p^{\ell}$ for some $\ell \geq 0$. Since $v_{p}\left(q_{0}^{p-1}-1\right)=1$, and since $m=m_{0}$ or $2 m_{0}$, Lemma 1.13 implies that

$$
e=v_{p}\left(q^{m}-1\right)=v_{p}\left(q_{0}^{b m}-1\right)=v_{p}\left(q_{0}^{b m_{0}}-1\right)=1+v_{p}\left(p^{\ell}\right)=1+\ell .
$$

Thus $\ell=e-1$, where $p^{e}=\operatorname{expt}(A)$ by (16), so $\left|\operatorname{Aut}_{\text {sc }}(A)\right|=(p-1) p^{e-1}=b m_{0}$. Since χ_{0} sends the generator ϕ_{0} of $\widehat{\Phi}_{G}$ to the generator $\chi_{0}\left(\phi_{0}\right)$ of $\operatorname{Aut}_{\mathrm{sc}}(A)$, this proves that $\operatorname{Ker}\left(\chi_{0}\right)=\left\langle\left.\psi_{q}^{m_{0}}\right|_{G}\right\rangle=\left\langle\left.\gamma^{m_{0}}\right|_{G}\right\rangle$. The descriptions in the different cases now follow immediately. Note that in cases (III.2) and (III.3) (where $m=m_{0}$), $\phi_{0}^{b m}=\left.\gamma^{-m}\right|_{G} \in \operatorname{Aut}_{\bar{T}}(G)$ by Lemma 3.2. The converse is immediate: $\widehat{\Phi}_{G} \cap$ $\operatorname{Aut}_{\bar{T}}(G) \leq \operatorname{Ker}\left(\chi_{0}\right)$.

Before applying these results to describe $\operatorname{Out}(\mathcal{F})$ and the homomorphism $\bar{\kappa}_{G}$, we need to know in which cases the subgroup A is characteristic in S.

Proposition 5.13. Assume Hypotheses 5.1 and Notation 5.2.

(a) If $p=2$, then A is characteristic in S, and is the unique abelian subgroup of S of order $|A|$, except when $q \equiv 5(\bmod 8)$ and $G \cong S p_{2 n}(q)$ for some $n \geq 1$.
(b) If p is odd, then A is characteristic in S, and $\Omega_{1}(A)$ is the unique elementary abelian subgroup of S of maximal rank, except when $p=3, q \equiv 1(\bmod 3)$, $v_{3}(q-1)=1$, and $G \cong S U_{3}(q)$ or $G_{2}(q)$.
In all cases, each normal subgroup of S isomorphic to A is $N_{G}(S)$-conjugate to A.
Proof. If p is odd, then by $\mathbf{G L}, 10-2(1,2)]$, there is a unique elementary p subgroup $E \leq S$ of rank equal to that of A (denoted $r_{m_{0}}$ in (GL), except when $p=3$ and G is isomorphic to one of the groups $S L_{3}(q)(q \equiv 1(\bmod 3)), S U_{3}(q)$ $(q \equiv-1(\bmod 3))$, or $G_{2}(q),{ }^{3} D_{4}(q)$, or ${ }^{2} F_{4}(q)(q \equiv \pm 1(\bmod 3))$. When there is a unique such subgroup E, then $A=C_{S}(E)$ by Lemma 5.3(a) (or by assumption in case (III.3), and hence A is characteristic in S.

Among the exceptions, $S L_{3}(q)$ and $G_{2}(q)$ are the only ones which satisfy Hypotheses 5.1. In both cases, S is an extension of $A \cong\left(C_{3} \ell\right)^{2}$ by C_{3}, where $\ell=v_{3}(q-1)$, and where $Z(S)=C_{A}(S)$ has order 3. If $\ell>1$, then A is the unique abelian subgroup of index p in S. If $\ell=1$, then S is extraspecial of order 3^{3} and exponent 3. By Theorem 1.8(a), we can assume $q=4$ without changing the isomorphism type of the fusion system, so G contains $S U_{3}(2)$. This is a semidirect product $S \rtimes Q_{8}$ (cf. Ta, p. 123-124]), and hence the four subgroups of S of order 9 are $N_{G}(S)$-conjugate.

It remains to prove the proposition when $p=2$. We use [03, § 2] as a reference for information about best offenders, since this contains what we need in a brief presentation. Assume A is not the unique abelian subgroup of S of order $|A|$. Then there is an abelian subgroup $1 \neq B \leq W_{0}$ such that $|B| \cdot\left|C_{A}(B)\right| \geq|A|$. In other words, the action of the Weyl group W_{0} on A has a nontrivial best offender O3 Definition 2.1(b)]. Hence by Timmesfeld's replacement theorem [O3, Theorem 2.5], there is a quadratic best offender $1 \neq B \leq W_{0}$: an offender such that $[B,[B, A]]=1$.

We consider three different cases.
Case 1: $G \cong \mathbb{G}(q)$ is a Chevalley group, where either $q \equiv 1(\bmod 8)$, or $\boldsymbol{G} \not \neq \boldsymbol{S} \boldsymbol{p}_{2 \boldsymbol{n}}(\boldsymbol{q})$ for any $\boldsymbol{n} \geq \mathbf{1}$. Set $n=\operatorname{rk}(A)=\operatorname{rk}(T)$: the Lie rank of G (or of $\mathbb{G})$. Set $\ell=v_{2}(q-1) \geq 2$. Then $A \cong\left(C_{2} \ell\right)^{n}$ is the group of all 2^{ℓ}-torsion elements
in T (or in $\bar{T})$. Since the result is clear when $n=1\left(G \cong S L_{2}(q) \cong S p_{2}(q), A \cong C_{2^{\ell}}\right.$, and $S \cong Q_{2^{\ell+1}}$), we assume $n \geq 2$.

Let $\Lambda=\mathbb{Z} \Sigma^{\vee}$ be the lattice in V generated by the dual roots. By Lemma 2.6(b), there are $\mathbb{Z}[W]$-linear isomorphisms $A \cong \Lambda / 2^{\ell} \Lambda$ and $\Omega_{1}(A) \cong \Lambda / 2 \Lambda$.

Assume first that B acts faithfully on $\Omega_{1}(A)$. Since B has quadratic action, it is elementary abelian O3, Lemma 2.4]. Set $k=\operatorname{rk}(B)$; thus $B \cong C_{2}^{k}$ and $\left|A / C_{A}(B)\right| \leq 2^{k}$.

Since the B-action on V is faithful, the characters $\chi \in \operatorname{Hom}(B,\{ \pm 1\})$ which have nontrivial eigenspace on V generate the dual group B^{*}. So we can choose a basis $\chi_{1}, \ldots, \chi_{k}$ for B^{*} such that each χ_{i} has nontrivial eigenspace. Let $b \in B$ be the unique element such that $\chi_{i}(b)=-1$ for each $i=1, \ldots, k$. Let V_{+}, V_{-}be the ± 1-eigenspaces for the b-action on V, and set $\Lambda_{ \pm}=\Lambda \cap V_{ \pm}$. By construction, $\operatorname{dim}\left(V_{-}\right) \geq k$.

Let $v \in \Lambda$ be an element whose class modulo $2^{\ell} \Lambda$ is fixed by b, and write $v=$ $v_{+}+v_{-}$where $v_{ \pm} \in V_{ \pm}$. Then $2 v_{-}=v-b(v) \in 2^{\ell} \Lambda \cap V_{-}=2^{\ell} \Lambda_{-}$, so $v_{-} \in 2^{\ell-1} \Lambda_{-}$ and $v_{+}=v-v_{-} \in \Lambda \cap V_{+}=\Lambda_{+}$. Thus $C_{\Lambda / 2^{\ell} \Lambda}(b)=\left(\Lambda_{+} \times 2^{\ell-1} \Lambda_{-}\right) / 2^{\ell} \Lambda$. Set $r=\operatorname{rk}\left(\Lambda_{-}\right)=\operatorname{dim}\left(V_{-}\right) \geq k$; then

$$
\begin{aligned}
2^{k} \geq\left|A / C_{A}(B)\right| \geq\left|A / C_{A}(b)\right|=\left|\Lambda /\left(\Lambda_{+} \times 2^{\ell-1} \Lambda_{-}\right)\right| & =2^{r(\ell-1)} \cdot\left|\Lambda /\left(\Lambda_{+} \times \Lambda_{-}\right)\right| \\
& \geq 2^{k(\ell-1)} \cdot\left|\Lambda /\left(\Lambda_{+} \times \Lambda_{-}\right)\right|
\end{aligned}
$$

In particular, $\Lambda=\Lambda_{+} \times \Lambda_{-}$. But then b acts trivially on $\Lambda / 2 \Lambda$, hence on $\Omega_{1}(A)$, which contradicts our assumption.

Thus B does not act faithfully on $\Omega_{1}(A)$. Set $B_{0}=C_{B}\left(\Omega_{1}(A)\right) \cong C_{B}(\Lambda / 2 \Lambda) \neq$ 1. If $-\operatorname{Id}_{V} \in B_{0}$, then it inverts $A,\left[B, \Omega_{1}(A)\right] \leq\left[B,\left[B_{0}, A\right]\right]=1$ since B acts quadratically, so $B=B_{0}$, and $\left|B_{0}\right| \geq\left|A / C_{A}(B)\right| \geq\left|A / \Omega_{1}(A)\right|=2^{(\ell-1) n}$. If $b \in B_{0}$ is such that $b^{2}=-\operatorname{Id}_{V}$, then b defines a \mathbb{C}-vector space structure on V, and hence does not induce the identity on $\Lambda / 2 \Lambda$, a contradiction.

Thus there is $b \in B_{0}$ which does not act on V via \pm Id. Let $V_{ \pm} \neq 0$ be the ± 1-eigenspaces for the b-action on V, and set $\Lambda_{ \pm}=\Lambda \cap V_{ \pm}$. For each $v \in \Lambda$, $v-b(v) \in 2 \Lambda$ since b acts trivially on $\Omega_{1}(A) \cong \Lambda / 2 \Lambda$. Set $v=v_{+}+v_{-}$, where $v_{ \pm} \in V_{ \pm}$. Then $2 v_{-}=v-b(v) \in 2 \Lambda \cap V_{-}=2 \Lambda_{-}$implies that $v_{-} \in \Lambda_{-}$, and hence $v_{+} \in \Lambda_{+}$. Thus $v \in \Lambda_{+} \times \Lambda_{-}$, so by Lemma 2.8, $\mathbb{G} \cong C_{n}$. By assumption, $q \equiv 1(\bmod 8)$, so $\ell \geq 3$, and $\left[b,\left[b, \Lambda / 2^{\ell} \Lambda\right]\right] \geq 4 \Lambda_{-} / 2^{\ell} \Lambda_{-} \neq 1$, contradicting the assumption that B acts quadratically on A.
Case 2: $G \cong S p_{2 n}(q)$ for some $n \geq 1$ and some $q \equiv 5(\bmod 8)$. Fix subgroups $H_{i} \leq G(1 \leq i \leq n)$ and $K<G$ such that $H_{i} \cong S p_{2}(q)$ for each i, $K \cong \Sigma_{n}$ is the group of permutation matrices (in 2×2 blocks), and K normalizes $H=H_{1} \times \cdots \times H_{n}$ and permutes the factors in the obvious way. We can also fix isomorphisms $\chi_{i}: H_{i} \xrightarrow{\cong} S p_{2}(q)$ such that the action of K on the H_{i} commutes with the χ_{i}.

Fix subgroups $\widehat{A}<\widehat{Q}<S p_{2}(q)$, where $\widehat{Q} \cong Q_{8}$ (a Sylow 2-subgroup), and $\widehat{A} \cong C_{4}$ is contained in the maximal torus. Set $Q_{i}=\chi_{i}^{-1}(\widehat{Q})$ and $A_{i}=\chi_{i}^{-1}(\widehat{A})$, and set $Q=Q_{1} Q_{2} \cdots Q_{n}$ and $A=A_{1} A_{2} \cdots A_{n}$. Thus $A=O_{2}(T)$ is as in Hypotheses 5.1(III): the 2-power torsion in the maximal torus of G. By [CF, $\S \mathrm{I}], S=Q R$ for some $R \in \operatorname{Syl}_{2}(K)$. Also, $W \cong Q K / A \cong C_{2}\left\langle\Sigma_{n}\right.$ acts on A via signed permutations of the coordinates.

Let B be any nontrivial best offender in W on A. Consider the action of B on the set $\{1,2, \ldots, n\}$, let X_{1}, \ldots, X_{k} be the set of orbits, and set $d_{i}=\left|X_{i}\right|$. For
$1 \leq i \leq k$, let $A_{i} \leq A$ be the subgroup of elements whose coordinates vanish except for those in positions in X_{i}; thus $A_{i} \cong\left(C_{4}\right)^{d_{i}}$ and $A=A_{1} \times \cdots \times A_{k}$. Set $B_{i}=B / C_{B}\left(A_{i}\right)$; then $|B| \leq \prod_{i=1}^{k}\left|B_{i}\right|$. Since B is abelian, either $\left|B_{i}\right|=d_{i}$ and B_{i} permutes the coordinates freely, or $\left|B_{i}\right|=2 d_{i}$ and there is a unique involution in B_{i} which inverts all coordinates in A_{i}. In the first case, $\left|C_{A_{i}}\left(B_{i}\right)\right|=4$, and so $\left|B_{i}\right| \cdot\left|C_{A_{i}}\left(B_{i}\right)\right|=d_{i} \cdot 4 \leq 4^{d_{i}}=\left|A_{i}\right|$ with equality only if $d_{i}=1$. In the second case, $\left|C_{A_{i}}\left(B_{i}\right)\right|=2$, and again $\left|B_{i}\right| \cdot\left|C_{A_{i}}\left(B_{i}\right)\right|=2 d_{i} \cdot 2 \leq 4^{d_{i}}=\left|A_{i}\right|$ with equality only if $d_{i}=1$. Since

$$
\prod_{i=1}^{k}\left|A_{i}\right|=|A| \leq|B| \cdot\left|C_{A}(B)\right|=|B| \cdot \prod_{i=1}^{k}\left|C_{A_{i}}\left(B_{i}\right)\right| \leq \prod_{i=1}^{k}\left(\left|B_{i}\right| \cdot\left|C_{A_{i}}\left(B_{i}\right)\right|\right)
$$

we conclude that $d_{i}=1$ for all i, and hence that B acts only by changing signs in certain coordinates.

For each $1 \leq i \leq n$, let $\mathrm{pr}_{i}: Q \longrightarrow Q_{i}$ be the projection onto the i-th factor. If $A^{*} \leq S$ is abelian of order 4^{n}, then $A^{*} A / A$ is a best offender in W on A, and hence $A^{*} \leq Q$ by the last paragraph. Also, $\operatorname{pr}_{i}\left(A^{*}\right)$ is cyclic of order at most 4 for each i, and since $\left|A^{*}\right|=4^{n}, \operatorname{pr}_{i}\left(A^{*}\right) \cong C_{4}$ for each i and $A^{*}=\prod_{i=1}^{n} \operatorname{pr}_{i}\left(A^{*}\right)$. Thus there are exactly 3^{n} such subgroups.

Now assume $A^{*} \unlhd S$, and set $A_{i}^{*}=\operatorname{pr}_{i}\left(A^{*}\right) \leq Q_{i}$ for short. Since A^{*} is normal, the subgroups $\chi_{i}\left(A_{i}^{*}\right) \leq \widehat{Q}<S p_{2}(q)$ are equal for all i lying in any R orbit of the set $\{1,2, \ldots, n\}$. Hence we can choose elements $x_{1}, x_{2}, \ldots, x_{n}$, where $x_{i} \in N_{H_{i}}\left(Q_{i}\right) \cong S L_{2}(3)$ and ${ }^{x_{i}}\left(A_{i}\right)=A_{i}^{*}$ for each i, and such that $\chi_{i}\left(x_{i}\right) \in S p_{2}(q)$ is constant on each R-orbit. Set $x=x_{1} x_{2} \cdots x_{n}$; then ${ }^{x} A=A^{*}$, and $x \in N_{G}(S)$.
Case 3: \boldsymbol{G} is a Steinberg group. Assume $\gamma \in \Gamma_{\bar{G}}$ is a graph automorphism of order 2, and that $G=C_{\bar{G}}(\sigma)$ where $\sigma=\gamma \psi_{q}$. Set $G_{0}=C_{\bar{G}}\left(\gamma, \psi_{q}\right)$; thus $G_{0} \leq G$. Set $\ell=v_{2}(q-1) \geq 2$. We must again show that the action of W_{0} on A has no nontrivial best offenders.

If $G \cong{ }^{2} E_{6}(q)$ or $\operatorname{Spin}_{2 n}^{-}(q)(n \geq 4)$, then $G_{0} \cong F_{4}(q)$ or $\operatorname{Spin}_{2 n-1}(q)$, respectively, and W_{0} is the Weyl group of G_{0}. If $1 \neq B \leq W_{0}$ is a best offender in W_{0} on A, then it is also a best offender on $\Omega_{\ell}(A) \leq G_{0}$ (see [O3, Lemma 2.2(a)]), which is impossible by Case 1 .

If $G \cong S U_{2 n+1}(q) \cong{ }^{2} A_{2 n}(q)$, then $S \cong\left(S D_{2^{\ell+2}}\right)^{n} \rtimes R$ for some $R \in \operatorname{Syl}_{2}\left(\Sigma_{n}\right)$ [CF] pp. 143-144]. Thus $A \cong\left(C_{2^{\ell+1}}\right)^{n}, W_{0} \cong C_{2} \backslash \Sigma_{n}, \Sigma_{n}<W_{0}$ acts on A by permuting the coordinates, and the subgroup $W_{1} \cong\left(C_{2}\right)^{n}$ in W_{0} has a basis each element of which acts on one coordinate by $\left(a \mapsto a^{2^{2}-1}\right)$. If $B \leq W_{0}$ is a nontrivial quadratic best offender on A, then it is also a best offender on $\Omega_{\ell}(A)$ [03, Lemma 2.2(a)], hence is contained in W_{1} by the argument in Case 2, which is impossible since no nontrivial element in this subgroup acts quadratically. Thus A is characteristic in this case.

It remains to consider the case where $G \cong S U_{2 n}(q) \cong{ }^{2} A_{2 n-1}(q)$. Since the case $S U_{2}(q) \cong S p_{2}(q)$ has already been handled, we can assume $n \geq 2$. Set $\widehat{G}=$ $G U_{2 n}(q)>G$, set $G_{0}=G U_{2}(q) \times \cdots \times G U_{2}(q) \leq \widehat{G}$, and set $G_{1}=N_{\widehat{G}}\left(G_{0}\right) \cong$ $G U_{2}(q)$ 亿 Σ_{n}. Then G_{1} has odd index in \widehat{G} [CF, pp. 143-144], so we can assume $S \leq G_{1} \cap G$. Fix $H_{0} \in \operatorname{Syl}_{2}\left(G_{0}\right)$; thus $H_{0} \cong\left(S D_{2^{\ell+2}}\right)^{n}$. Since $v_{2}(q+1)=1$, and since the Sylow 2-subgroups of $S U_{2}(q)$ are quaternion,

$$
G \cap H_{0}=\operatorname{Ker}\left[H_{0} \cong\left(S D_{2^{\ell+2}}\right)^{n} \xrightarrow{\chi^{n}} C_{2}^{n} \xrightarrow{\text { sum }} C_{2}\right],
$$

where $\chi: S D_{2^{\ell+2}} \longrightarrow C_{2}$ is the surjection with quaternion kernel. As in the last case, $W_{0} \cong C_{2}$ 亿 Σ_{n} with normal subgroup $W_{1} \cong C_{2}^{n}$. If $B \leq W_{0}$ is a nontrivial quadratic best offender on A, then it is also a best offender on $\Omega_{\ell}(A)$ O3, Lemma $2.2(\mathrm{a})$], so $B \leq W_{1}$ by the argument used in Case 2. Since no nontrivial element in W_{1} acts quadratically on A, we conclude that A is characteristic in this case.

The next lemma is needed to deal with the fact that not all restrictions to A of automorphisms of G lie in $\operatorname{Aut}(A, \mathcal{F})$ (since they need not normalize S).

Lemma 5.14. Let G be any finite group, fix $S \in \operatorname{Syl}_{p}(G)$, and let $S_{0} \unlhd S$ be a normal subgroup. Let $\varphi \in \operatorname{Aut}(G)$ be such that $\varphi\left(S_{0}\right)=S_{0}$ and $\left.\varphi\right|_{S_{0}} \in$ $N_{\operatorname{Aut}\left(S_{0}\right)}\left(\operatorname{Aut}_{S}\left(S_{0}\right)\right)$. Then there is $\varphi^{\prime} \in \operatorname{Aut}(G)$ such that $\left.\varphi^{\prime}\right|_{S_{0}}=\left.\varphi\right|_{S_{0}}, \varphi^{\prime}(S)=S$, and $\varphi^{\prime} \equiv \varphi(\bmod \operatorname{Inn}(G))$.

Proof. Since $\left.\varphi\right|_{S_{0}}$ normalizes $\operatorname{Aut}_{S}\left(S_{0}\right)$, and $c_{\varphi(g)}=\varphi c_{g} \varphi^{-1}$ for each $g \in G$, we have $\operatorname{Aut}_{\varphi(S)}\left(S_{0}\right)={ }^{\varphi} \operatorname{Aut}_{S}\left(S_{0}\right)=\operatorname{Aut}_{S}\left(S_{0}\right)$. Hence $\varphi(S) \leq C_{G}\left(S_{0}\right) S$. Since S normalizes $C_{G}\left(S_{0}\right)$ and $S \in \operatorname{Syl}_{p}\left(C_{G}\left(S_{0}\right) S\right)$, we have $\varphi(S)={ }^{x} S$ for some $x \in$ $C_{G}\left(S_{0}\right)$. Set $\varphi^{\prime}=c_{x}^{-1} \circ \varphi \in \operatorname{Aut}(G) ;$ then $\varphi^{\prime}(S)=S$ and $\left.\varphi^{\prime}\right|_{S_{0}}=\left.\varphi\right|_{S_{0}}$.

In the next two propositions, we will be referring to the short exact sequence

$$
\begin{equation*}
1 \longrightarrow \operatorname{Aut}_{\text {diag }}(\mathcal{F}) \longrightarrow N_{\text {Aut }(\mathcal{F})}(A) \xrightarrow{R} \operatorname{Aut}(A, \mathcal{F}) \longrightarrow 1 \tag{17}
\end{equation*}
$$

Here, R is induced by restriction, and $\operatorname{Aut}(A, \mathcal{F})=\operatorname{Im}(R)$ and $\operatorname{Aut}_{\text {diag }}(\mathcal{F})=$ $\operatorname{Ker}(R)$ by definition of these two groups (Notation 5.2, (H)). By the last statement in Proposition 5.13, in all cases, each class in $\operatorname{Out}(\mathcal{F})$ is represented by elements of $N_{\text {Aut }(\mathcal{F})}(A)$.

Proposition 5.15. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Then $\bar{\kappa}_{G}$ is surjective, except in the following cases:

- $(G, p) \cong\left({ }^{2} E_{6}(q), 3\right)$, or
- $(G, p) \cong\left(G_{2}(q), 2\right)$ and $q_{0} \neq 3$, or
- $(G, p) \cong\left(F_{4}(q), 3\right)$ and $q_{0} \neq 2$.

In the exceptional cases, $\left|\operatorname{Coker}\left(\bar{\kappa}_{G}\right)\right| \leq 2$.
Proof. We first claim that for $\varphi \in \operatorname{Aut}(\mathcal{F})$,

$$
\begin{equation*}
\varphi(A)=A \quad \text { and }\left.\quad \varphi\right|_{A} \in \operatorname{Aut}_{\mathrm{sc}}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A) \quad \Longrightarrow \quad[\varphi] \in \operatorname{Im}\left(\bar{\kappa}_{G}\right) \tag{18}
\end{equation*}
$$

To see this, fix such a φ. By Lemma 5.12(b), each element of $\operatorname{Aut}_{\mathrm{sc}}(A)$, or of $\operatorname{Aut}_{\mathrm{sc}}(A) /\left\langle\psi_{-1}^{A}\right\rangle$ if $p=2$, is the restriction of an element of $\widehat{\Phi}_{G}$. If $p=2$, then we are in case (III.1) the σ-setup is standard, and hence the inversion automorphism ψ_{-1}^{A} is the restriction of an inner automorphism of G (if $-\mathrm{Id}_{V} \in W$) or an element of $\operatorname{Inn}(G) \Gamma_{G}$. Thus $\left.\varphi\right|_{A}$ extends to an automorphism of G.

Now, $\left.\varphi\right|_{A}$ normalizes $\operatorname{Aut}_{S}(A)$ since $\varphi(S)=S$. So by Lemma 5.14 $\left.\varphi\right|_{A}$ is the restriction of an automorphism of G which normalizes S, and hence is the restriction of an element $\psi \in \operatorname{Aut}(\mathcal{F})$ such that $[\psi] \in \operatorname{Im}\left(\bar{\kappa}_{G}\right)$. Then $\varphi \psi^{-1} \in$ $\operatorname{Ker}(R)=\operatorname{Aut}_{\text {diag }}(\mathcal{F})$ by the exactness of (17), and $\left[\varphi \psi^{-1}\right] \in \operatorname{Im}\left(\bar{\kappa}_{G}\right)$ by Lemma 5.9. So $[\varphi] \in \operatorname{Im}\left(\bar{\kappa}_{G}\right)$, which proves (18).

By Proposition 5.13, each class in $\operatorname{Out}(\mathcal{F})$ is represented by an element of $N_{\text {Aut }(\mathcal{F})}(A)$. Hence by (18), $\left|\operatorname{Coker}\left(\bar{\kappa}_{G}\right)\right|$ is at most the index of $\operatorname{Aut}(A, \mathcal{F}) \cap$ $\operatorname{Aut}_{\mathrm{sc}}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A)$ in $\operatorname{Aut}(A, \mathcal{F})$. So by Lemma 5.8, $\left|\operatorname{Coker}\left(\bar{\kappa}_{G}\right)\right| \leq 2$, and $\bar{\kappa}_{G}$ is surjective with the exceptions listed above.

We now want to refine Proposition 5.15, and finish the proof of Theorem B by determining $\operatorname{Ker}\left(\bar{\kappa}_{G}\right)$ in each case where 5.1 and 5.11 hold and checking whether it is split. In particular, we still want to show that each of these fusion systems is tamely realized by some finite group of Lie type (and not just an extension of such a group by outer automorphisms).

Since $O_{p^{\prime}}(\operatorname{Outdiag}(G)) \leq \operatorname{Ker}\left(\bar{\kappa}_{G}\right)$ in all cases by Lemma 5.9, $\bar{\kappa}_{G}$ induces a quotient homomorphism

$$
\stackrel{\circ}{\kappa}_{G}: \operatorname{Out}(G) / O_{p^{\prime}}(\operatorname{Outdiag}(G)) \longrightarrow \operatorname{Out}(\mathcal{F}),
$$

and it is simpler to describe $\operatorname{Ker}\left({ }_{\kappa}^{\circ}\right)$ than $\operatorname{Ker}\left(\bar{\kappa}_{G}\right)$. The projection of $\operatorname{Out}(G)$ onto the quotient $\operatorname{Out}(G) / O_{p^{\prime}}(\operatorname{Outdiag}(G))$ is always split: by Steinberg's theorem (Theorem 3.4), it splits back to $O_{p}(\operatorname{Outdiag}(G)) \Phi_{G} \Gamma_{G}$ as defined with respect to some choice of standard setup. (Recall that Outdiag (G) is independent of the σ setup by Propositions 3.5(c) and 3.6(a).) Hence ${ }_{\kappa}{ }_{G}$ is split surjective if and only if $\bar{\kappa}_{G}$ is split surjective.

Proposition 5.16. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Assume also that none of the following hold: neither

- $(G, p) \cong\left({ }^{2} E_{6}(q), 3\right)$, nor
- $(G, p) \cong\left(G_{2}(q), 2\right)$ and $q_{0} \neq 3$, nor
- $(G, p) \cong\left(F_{4}(q), 3\right)$ and $q_{0} \neq 2$.
(a) If $p=2$, then $\stackrel{\circ}{\kappa}_{G}$ is an isomorphism, and $\bar{\kappa}_{G}$ is split surjective.
(b) Assume that p is odd, and that we are in the situation of case (III.1) of Hypotheses 5.1, Then $\sqrt{q} \in \mathbb{N}$, and

$$
\operatorname{Ker}\left(\kappa_{G}\right)= \begin{cases}\left\langle\left[\psi_{\sqrt{q}}\right]\right\rangle \cong C_{2} & \text { if } \gamma=\operatorname{Id} \text { and }-\mathrm{Id} \in W \\ \left\langle\left[\gamma_{0} \psi_{\sqrt{7}}\right]\right\rangle \cong C_{2} & \text { if } \gamma=\operatorname{Id} \text { and }-\mathrm{Id} \notin W \\ \left\langle\left[\psi_{\sqrt{q}}\right]\right\rangle \cong C_{4} & \text { if } \gamma \neq \operatorname{Id}(G \text { is a Steinberg group })\end{cases}
$$

where in the second case, $\gamma_{0} \in \Gamma_{G}$ is a graph automorphism of order 2. Hence $\bar{\kappa}_{G}$ and $\stackrel{\circ}{\kappa}_{G}$ are split surjective if and only if either $\gamma=\mathrm{Id}$ and $-\mathrm{Id} \notin W$, or $p \equiv 3(\bmod 4)$ and \mathbb{G} is not F_{4}.
(c) Assume that p is odd, and that we are in the situation of case (III.2) or (III.3) of Hypotheses 5.1, Assume also that G is a Chevalley group $(\gamma \in \operatorname{Inn}(\bar{G}))$, and that $\operatorname{ord}_{p}(q)$ is even or $-\operatorname{Id} \notin W_{0}$. Let $\Phi_{G}, \Gamma_{G} \leq \operatorname{Aut}(G)$ be as in Proposition 3.6. Then $\Phi_{G} \cap \operatorname{Ker}\left(\circ^{\kappa}\right)=1$, so $\left|\operatorname{Ker}\left(\circ_{G}\right)\right| \leq\left|\Gamma_{G}\right|$, and $\bar{\kappa}_{G}$ and $\stackrel{\circ}{\kappa}_{G}$ are split surjective.
(d) Assume that p is odd, and that we are in the situation of case (III.3) of Hypotheses 5.1, Assume also that G is a Steinberg group $(\gamma \notin \operatorname{Inn}(\bar{G}))$, and that $\operatorname{ord}_{p}(q)$ is even. Then

$$
\operatorname{Ker}\left(\AA_{\kappa_{G}}\right)= \begin{cases}\left\langle\left[\gamma \mid{ }_{G}\right]\right\rangle \cong C_{2} & \text { if }\left.\gamma\right|_{A} \in \operatorname{Aut}_{W_{0}}(A) \\ 1 & \text { otherwise } .\end{cases}
$$

Hence $\bar{\kappa}_{G}$ and $\stackrel{\circ}{\kappa}_{G}$ are split surjective if and only if q is an odd power of q_{0} or $\operatorname{Ker}\left(\bar{\kappa}_{G}\right)=O_{p^{\prime}}(\operatorname{Outdiag}(G))$. If $\bar{\kappa}_{G}$ is not split surjective, then its kernel contains a graph automorphism of order 2 in $\operatorname{Out}(G) / \operatorname{Outdiag}(G)$.

Proof. In all cases, κ_{G} is surjective by Proposition 5.15 (with the three exceptions listed above).

By definition and Proposition 5.13

$$
\operatorname{Out}(\mathcal{F})=\operatorname{Aut}(\mathcal{F}) / \operatorname{Aut}_{\mathcal{F}}(S) \cong N_{\operatorname{Aut}(\mathcal{F})}(A) / N_{\operatorname{Aut}_{\mathcal{F}}(S)}(A)
$$

Also, $\operatorname{Out}_{\text {diag }}(\mathcal{F})$ is the image in $\operatorname{Out}(\mathcal{F})$ of $\operatorname{Aut}_{\text {diag }}(\mathcal{F})$. Since $N_{\text {Aut }_{\mathcal{F}}(S)}(A)$ is the group of automorphisms of S induced by conjugation by elements in $N_{G}(S) \cap N_{G}(A)$, the short exact sequence (17) induces a quotient exact sequence

$$
\begin{equation*}
1 \longrightarrow \operatorname{Out}_{\text {diag }}(\mathcal{F}) \longrightarrow \operatorname{Out}(\mathcal{F}) \xrightarrow{\bar{R}} \operatorname{Aut}(A, \mathcal{F}) / \operatorname{Aut}_{N_{G}(S)}(A) \longrightarrow 1 \tag{19}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\operatorname{Aut}_{N_{G}(S)}(A)=\operatorname{Aut}(A, \mathcal{F}) \cap \operatorname{Aut}_{G}(A) \tag{20}
\end{equation*}
$$

That $\operatorname{Aut}_{N_{G}(S)}(A)$ is contained in the two other groups is clear. Conversely, assume $\alpha \in \operatorname{Aut}(A, \mathcal{F}) \cap \operatorname{Aut}_{G}(A)$. Then $\alpha=\left.c_{g}\right|_{A}$ for some $g \in N_{G}(A)$, and $\alpha \in N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{S}(A)\right)$ since it is the restriction of an element of $\operatorname{Aut}(\mathcal{F})$. Hence g normalizes $S C_{G}(A)$, and since $S \in \operatorname{Syl}_{p}\left(S C_{G}(A)\right)$, there is $h \in C_{G}(A)$ such that $h g \in N_{G}(S)$. Thus $\alpha=\left.c_{g}\right|_{A}=\left.c_{h g}\right|_{A} \in \operatorname{Aut}_{N_{G}(S)}(A)$, and this finishes the proof of (20).

By Lemma $5.9 \bar{\kappa}_{G}$ sends $\operatorname{Outdiag}(G)$ onto $\operatorname{Out}_{\text {diag }}(\mathcal{F})$ with kernel the subgroup $O_{p^{\prime}}(\operatorname{Outdiag}(G))$. Hence by the exactness of (19), restriction to A induces an isomorphism

$$
\begin{array}{r}
\operatorname{Ker}\left(\stackrel{\circ}{\kappa}_{G}\right) \xrightarrow[\cong]{\stackrel{\bar{R}_{0}}{\cong}} \operatorname{Ker}\left[\operatorname{Out}(G) / \operatorname{Outdiag}(G) \longrightarrow \operatorname{Aut}(A, \mathcal{F}) / \operatorname{Aut}_{N_{G}(S)}(A)\right] \tag{21}\\
=\operatorname{Ker}\left[\operatorname{Out}(G) / \operatorname{Outdiag}(G) \longrightarrow N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{G}(A)\right) / \operatorname{Aut}_{G}(A)\right],
\end{array}
$$

where the equality holds by (20).
Recall that for each ℓ prime to $p, \psi_{\ell}^{A} \in \operatorname{Aut}_{\mathrm{sc}}(A)$ denotes the automorphism $\left(a \mapsto a^{\ell}\right)$.
(a,b) Under either assumption (a) or (b), we are in case (III.1) of Hypotheses 5.1 . In particular, (\bar{G}, σ) is a standard σ-setup for G. Set $k=v_{p}(q-1)$; then $k \geq 1$, and $k \geq 2$ if $p=2$.

If p is odd, then by Hypotheses 5.11(ii), the class of q_{0} generates $(\mathbb{Z} / p)^{\times}$. Since $q=q_{0}^{b} \equiv 1(\bmod p)$, this implies that $(p-1) \mid b$. In particular, b is even and $\sqrt{q}=q_{0}^{b / 2} \in \mathbb{N}$ in this case. Also, for arbitrary p, Hypotheses 5.11 (iii) implies that

$$
\begin{equation*}
b=(p-1) p^{\ell} \quad \text { for some } \ell \geq 0 \tag{22}
\end{equation*}
$$

Since $\operatorname{Out}(G) / \operatorname{Outdiag}(G) \cong \Phi_{G} \Gamma_{G}$ by Theorem 3.4, where $\Phi_{G} \Gamma_{G}$ normalizes T and hence A, and since $\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A)$ by Lemma 5.3(b), (21) takes the form

$$
\begin{equation*}
\operatorname{Ker}\left(\stackrel{\circ}{\kappa}_{G}\right) \cong\left\{\varphi \in \Phi_{G} \Gamma_{G}|\varphi|_{A} \in \operatorname{Aut}_{W_{0}}(A)\right\} \tag{23}
\end{equation*}
$$

In fact, when $\operatorname{Ker}\left(\kappa_{G}\right)$ has order prime to p (which is the case for all examples considered here), the isomorphism in (23) is an equality since the quotient $\operatorname{Outdiag}(G) / O_{p^{\prime}}(\operatorname{Outdiag}(G))$ is a p-group.

Assume first that $G=\mathbb{G}(q)$ is a Chevalley group. Thus $\sigma=\psi_{q}$ where $q \equiv 1$ $(\bmod p)$, and $A=\left\{t \in \bar{T} \mid t^{p^{k}}=1\right\}$. Set

$$
\Gamma_{G}^{0}= \begin{cases}\Gamma_{G} & \text { if } \mathbb{G} \text { is not one of } B_{2}, F_{4}, \text { or } G_{2} \\ 1 & \text { if } \mathbb{G} \cong B_{2}, F_{4}, \text { or } G_{2}\end{cases}
$$

and similarly for $\Gamma_{\bar{G}}^{0}$. By Lemma2.7(applied with $m=p^{k} \geq 3$), we have Aut ${ }_{W}(\bar{T}) \cap$ $\operatorname{Aut}_{\Gamma_{\bar{G}}^{0}}(\bar{T})=1$, the $\operatorname{group}^{\operatorname{Aut}_{W}}(\bar{T}) \operatorname{Aut}_{\Gamma_{\bar{G}}^{0}}(\bar{T})$ acts faithfully on A, and its action intersects Aut ${ }_{\text {sc }}(A)$ only in $\left\langle\psi_{-1}^{A}\right\rangle$. By Lemma 5.12 (b,c), restriction to A sends $\widehat{\Phi}_{G}$ isomorphically onto $\operatorname{Aut}_{\mathrm{sc}}(A)$ if p is odd, and with index 2 and ψ_{-1}^{A} not in the image if $p=2$. So $\Phi_{G} \Gamma_{G}^{0}$ acts faithfully on A, and

$$
\left\{\varphi \in \Phi_{G} \Gamma_{G}^{0}|\varphi|_{A} \in \operatorname{Aut}_{W_{0}}(A)\right\}= \begin{cases}1 & \text { if } p=2 \tag{24}\\ \left\langle\psi_{\sqrt{q}}\right\rangle & \text { if } p \text { is odd and }-\operatorname{Id} \in W \\ \left\langle\gamma_{0} \psi_{\sqrt{q}}\right\rangle & \text { if } p \text { is odd and }-\operatorname{Id} \notin W\end{cases}
$$

where in the last case, $\gamma_{0} \in \Gamma_{G}$ is a graph automorphism such that the coset $\gamma_{0} W$ contains -Id. (Recall that $b=(p-1) p^{\ell}$ for some $\ell \geq 0$ by (22). Hence $\sqrt{q} \equiv-1$ $\operatorname{modulo} p^{k}=\operatorname{expt}(A)$, and $\left.\psi_{\sqrt{q}}\right|_{A}=\psi_{-1}^{A}$.)

Thus by (23) and (24), if \mathbb{G} is not B_{2}, F_{4}, or G_{2}, then κ_{G} is injective if $p=2$, and $\left|\operatorname{Ker}\left({ }_{\kappa}{ }_{G}\right)\right|=2$ if p is odd. When p is odd, since $\operatorname{Ker}\left(\kappa_{G}\right)$ is normal of order prime to p in $\operatorname{Out}(G)$ (hence of order prime to $\left.\left|O_{p}(\operatorname{Outdiag}(G))\right|\right), \operatorname{Ker}\left({ }_{\kappa}{ }_{G}\right)$ is generated by $\left[\psi_{\sqrt{q}}\right]$ if $-\mathrm{Id} \in W$ (i.e., if there is an inner automorphism which inverts \bar{T} and hence A), or by $\left[\gamma_{0} \psi_{\sqrt{q}}\right]$ if $-\mathrm{Id} \notin W$ and γ_{0} is as above. In the latter case, $\stackrel{\circ}{\kappa}_{G}$ is split since it sends $O_{p}(\operatorname{Outdiag}(G)) \Phi_{G}$ isomorphically onto $\operatorname{Out}(\mathcal{F})$ (note that in this case, $\mathbb{G} \cong A_{n}, D_{n}$ for n odd, or E_{6}, and hence $\left.\Gamma_{G} \cong C_{2}\right)$. When $\operatorname{Ker}\left({ }_{\kappa}^{\circ}{ }_{G}\right)=\left\langle\left[\psi_{\sqrt{q}}\right]\right\rangle$, the map is split if and only if $4 \nmid\left|\Phi_{G}\right|=b$, and since $b=(p-1) p^{m}$ for some m by (22), this holds exactly when $p \equiv 3(\bmod 4)$.

If $(G, p) \cong\left(B_{2}(q), 2\right),\left(F_{4}(q), 2\right)$, or $\left(G_{2}(q), 3\right)$, then since $q_{0} \neq p, \Gamma_{G}=1=\Gamma_{G}^{0}$. So (23) and (24) again imply that $\operatorname{Ker}\left(\kappa_{G}\right)=1$, 1 , or $\left\langle\left[\psi_{\sqrt{q}}\right]\right\rangle \cong C_{2}$, respectively, and that \AA_{G} is split in all cases.

Next assume $G=G_{2}(q)$, where $p=2, q=3^{b}$, and b is a power of 2 . Then $b \geq 2$ since $q \equiv 1(\bmod 4)$. By (23) and (24) again, $\Phi_{G} \operatorname{injects}$ into $\operatorname{Out}(\mathcal{F})$. Since $\operatorname{Out}(G)$ is cyclic of order $2 b$, generated by a graph automorphism whose square generates Φ_{G} (and since $\left.2 \mid b\right)$, $\operatorname{Out}(G)$ injects into $\operatorname{Out}(\mathcal{F})$.

If $G=F_{4}(q)$, where $p=3, q=2^{b}$, and $b=2 \cdot 3^{\ell}$ for some $\ell \geq 0$, then by (23) and (24), $\operatorname{Ker}\left(\left.\stackrel{\circ}{\kappa}_{G}\right|_{\Phi(G)}\right)=\langle\psi \sqrt{q}\rangle \cong C_{2}$. Fix $1 \neq \gamma \in \Gamma_{G}$. If $\left|\operatorname{Ker}\left(\stackrel{\circ}{\kappa}_{G}\right)\right|>2$, then since $\operatorname{Aut}_{\text {sc }}\left(\Omega_{1}(A)\right)=\{ \pm \mathrm{Id}\} \leq \operatorname{Aut}_{W}\left(\Omega_{1}(A)\right)$, we have $\left.w \gamma\right|_{\Omega_{1}(A)}=\mathrm{Id}$ for some $w \in W$. Since W acts faithfully on $\Omega_{1}(A)$ (Lemma 2.7), this would imply that $[w \gamma, W]=1$ in $W\langle\gamma\rangle$, and hence that γ acts on W as an inner automorphism, which is impossible since the action of γ exchanges reflections in W for long and short roots, unlike any inner automorphism. Thus $\operatorname{Ker}\left(\kappa_{G}\right)=\left\langle\psi_{\sqrt{q}}\right\rangle \cong C_{2}$. Since $\operatorname{Out}(G)$ is cyclic of order $2 b=4 \cdot 3^{\ell}$, neither ${ }_{\kappa}{ }_{G}$ nor κ_{G} splits.

It remains to handle the Steinberg groups. Let \mathbb{H} be such that $C_{\bar{G}}(\gamma)=\mathbb{H}\left(\overline{\mathbb{F}}_{q_{0}}\right)$: a simple algebraic group by GLS3, Theorem 1.15.2(d)]. In particular, $G \geq H=$ $\mathbb{H}(q)$. Also, W_{0} is the Weyl group of \mathbb{H} by GLS3, Theorem 1.15.2(d)] (or by the
proof of [St3, Theorem 8.2]). For $a \in A$,

$$
a \in H \Longleftrightarrow \gamma(a)=a \Longleftrightarrow \psi_{q}(a)=a^{q}=a \Longleftrightarrow a \in \Omega_{k}(A) .
$$

Thus $\Omega_{k}(A)=A \cap H$. So by Lemma 2.7 applied to $\mathbb{H}\left(\overline{\mathbb{F}}_{q_{0}}\right), W_{0}$ acts faithfully on $\Omega_{k}(A)$, and intersects $\operatorname{Aut}_{\text {sc }}(A)$ at most in $\left\langle\psi_{-1}^{A}\right\rangle$.

If $p=2$, then by Lemma 5.12(b), ψ_{-1}^{A} is not the restriction of an element in Φ_{G}. Also, $\Phi_{G} \cong C_{2 b}$ is sent injectively into $\operatorname{Aut}_{\text {sc }}(A)$ by Lemma 5.12(c), so $\stackrel{\circ}{K}_{G}$ is injective by (23).

If p is odd, then $A=\Omega_{k}(A) \leq H$ since $v_{p}\left(q^{2}-1\right)=v_{p}(q-1)=k$, and W_{0} acts on A as the Weyl group of B_{m} or C_{m} (some m) or of F_{4} (see GLS3, Proposition 2.3.2(d)] or [Ca, §13.3]). Also, $\left.\psi_{q_{0}}\right|_{A}$ has order b in $\operatorname{Aut}_{\mathrm{sc}}(A)$ by Lemma 5.12(c). Since $\left(\psi_{q_{0}}\right)^{b / 2}=\psi_{\sqrt{q}}$ where $\sqrt{q} \equiv-1(\bmod p)\left(\right.$ recall $b=(p-1) p^{\ell}$ for some ℓ by (22)), and since $-\mathrm{Id}_{V_{0}} \in W_{0}$ by the above remarks, $\left.\psi_{q_{0}}\right|_{A}$ has order $b / 2$ modulo Aut $_{W_{0}}(A)$. So by (231) and the remark afterwards, and since Φ_{G} is cyclic of order $2 b$, $\operatorname{Ker}\left(\kappa_{\kappa}\right)=\left\langle\left[\psi_{\sqrt{q}}\right]\right\rangle \cong C_{4}$. In particular, $\stackrel{\circ}{\kappa}_{G}$ is split only if $b / 2$ is odd; equivalently, $p \equiv 3(\bmod 4)$.
(\mathbf{c}, \mathbf{d}) In both of these cases, p is odd, either $\operatorname{ord}_{p}(q)$ is even or $-\mathrm{Id} \notin W_{0}$, and we are in the situation of case (III.2) or (III.3) in Hypothesis 5.1. Then $\left.\gamma\right|_{G}=\left(\left.\psi_{q}\right|_{G}\right)^{-1}$ since $G \leq C_{\bar{G}}\left(\gamma \psi_{q}\right)$. Also, $\psi_{q_{0}}(G)=G$ by 5.1(I), and hence $\gamma(G)=G$. Since $\psi_{q_{0}}$ and γ both normalize \bar{T} by assumption or by construction, they also normalize $T=G \cap \bar{T}$ and $A=O_{p}(T)$. By Proposition 3.6(d), $\left[\psi_{q_{0}}\right]$ generates the image of Φ_{G} in $\operatorname{Out}(G) / \operatorname{Outdiag}(G)$.

We claim that in all cases,

$$
\begin{equation*}
\operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A) \quad \text { and } \quad \operatorname{Aut}_{G}(A) \cap \operatorname{Aut}_{\text {sc }}(A) \leq\left\langle\left.\gamma\right|_{A}\right\rangle . \tag{25}
\end{equation*}
$$

This holds by assumption in case (III.3), and since ord ${ }_{p}(q)$ is even or $-\operatorname{Id} \notin W_{0}$. In case (III.2), the first statement holds by Lemma 5.3(b), and the second by Lemma 2.7 (and since $W_{0}=W$ and A contains all p^{k}-torsion in \bar{T}).
(c) Assume in addition that G is a Chevalley group. Thus $\gamma \in \operatorname{Inn}(\bar{G})$, so $\left.\gamma\right|_{G} \in \operatorname{Inndiag}(G)=\operatorname{Inn}(G) \operatorname{Aut}_{\bar{T}}(G)$ by Proposition [3.6(b), and hence $\left.\gamma\right|_{A} \in$ $\operatorname{Aut}_{G}(A)$. Also, $\left.\gamma\right|_{A}=\left(\left.\psi_{q}\right|_{A}\right)^{-1}=\left(\left.\psi_{q_{0}}\right|_{A}\right)^{-b}$ since $\sigma=\gamma \psi_{q}$ centralizes $G \geq$ A. Since $\left.\psi_{q_{0}}\right|_{A}$ has order $b \cdot \operatorname{ord}_{p}(q)$ in $\operatorname{Aut}_{\mathrm{sc}}(A)$ by Lemma 5.12(c), its class in $N_{\text {Aut }(A)}\left(\operatorname{Aut}_{G}(A)\right) / \operatorname{Aut}_{G}(A)$ has order b by (25).

Thus by (21), $\stackrel{\circ}{\kappa}_{G}$ sends $O_{p}(\operatorname{Outdiag}(G)) \Phi_{G}$ injectively into $\operatorname{Out}(\mathcal{F})$. Since Γ_{G} is isomorphic to $1, C_{2}$, or Σ_{3} (and since $\stackrel{\circ}{\kappa}_{G}$ is onto by Proposition 5.15), ${ }_{\kappa}^{\circ}$ G and $\bar{\kappa}_{G}$ are split.
(d) Assume G is a Steinberg group and $\operatorname{ord}_{p}(q)$ is even. In this case, $\gamma \notin \operatorname{Inn}(\bar{G})$, and $\operatorname{Out}(G) / \operatorname{Outdiag}(G) \cong \Phi_{G}$ is cyclic of order $2 b$, generated by the class of $\left.\psi_{q_{0}}\right|_{G}$. Hence by (21), $\operatorname{Ker}\left(\stackrel{\circ}{\kappa}_{G}\right)$ is isomorphic to the subgroup of those $\psi \in \Phi_{G}$ such that $\left.\psi\right|_{A} \in \operatorname{Aut}_{G}(A)$. By (25) and since $\left.\psi_{q}\right|_{A}=\left.\gamma^{-1}\right|_{A}, \operatorname{Aut}_{G}(A) \cap \operatorname{Aut}_{\text {sc }}(A) \leq\left\langle\psi_{q}^{A}\right\rangle$. Thus $\left|\operatorname{Ker}\left(\kappa_{\kappa_{G}}\right)\right| \leq 2$, and

$$
\left|\operatorname{Ker}\left(\stackrel{\circ}{\kappa}_{G}\right)\right|=\left.2 \quad \Longleftrightarrow \quad \gamma\right|_{A} \in \operatorname{Aut}_{G}(A)=\operatorname{Aut}_{W_{0}}(A) .
$$

When $\operatorname{Ker}\left(\circ_{G}\right) \neq 1, \stackrel{\circ}{\kappa}_{G}$ is split if and only if $4 \nmid\left|\Phi_{G}\right|=2 b$; i.e., when b is odd.
In the situation of Proposition 5.16(c), if $-\operatorname{Id} \notin W$, then $\operatorname{Ker}\left({ }_{\kappa}{ }_{G}\right)=\left\langle\left[\gamma_{0} \psi_{\sqrt{q}}\right]\right\rangle$ where γ_{0} is a nontrivial graph automorphism. If $-\operatorname{Id} \in W\left(\right.$ hence $\operatorname{ord}_{p}(q)$ is even $)$,
then $\stackrel{\circ}{\kappa}_{G}$ is always injective: either because $\Gamma_{G}=1$, or by the explicit descriptions in the next chapter of the setups when $\operatorname{ord}_{p}(q)=2(\operatorname{Lemma} 6.4)$, or when $\operatorname{ord}_{p}(q)>2$ and $\mathbb{G} \cong D_{2 n}$ (Lemma 6.5).

The following examples help to illustrate some of the complications in the statement of Proposition 5.16.

Example 5.17. Set $p=5$. If $G=\operatorname{Spin}_{4 k}^{-}\left(3^{4}\right), S p_{2 k}\left(3^{4}\right)$, or $S U_{k}\left(3^{4}\right)(k \geq 5)$, then by Proposition 5.16(b), $\bar{\kappa}_{G}$ is surjective but not split. (These groups satisfy case (III.1) of Hypotheses 5.1 by Lemma 6.1.) The fusion systems of the last two are tamely realized by $S p_{2 \ell}\left(3^{2}\right)$ and $S L_{n}\left(3^{2}\right)$, respectively (these groups satisfy case (III.2) by Lemma 6.4, hence Proposition 5.16(c) applies). The fusion system of $\operatorname{Spin}_{4 k}^{-}\left(3^{4}\right)$ is also realized by $\operatorname{Spin}_{4 k}^{-}\left(3^{2}\right)$, but not tamely (Example 6.6(b)). It is tamely realized by $\operatorname{Spin}_{4 k-1}\left(3^{2}\right)$ (see Propositions 1.9 (c) and 5.16(c)).

CHAPTER 6

The cross characteristic case: II

In Chapter 5 we established certain conditions on a finite group G of Lie type in characteristic q_{0}, on a σ-setup for G, and on a prime $p \neq q_{0}$, and then proved that the p-fusion system of G is tame whenever those conditions hold. It remains to prove that for each G of Lie type and each p different from the characteristic, there is another group G^{*} whose p-fusion system is tame by the results of Chapter 5 and is isomorphic to that of G.

We first list the groups which satisfy case (III.1) of Hypotheses 5.1.

Lemma 6.1. Fix a prime p and a prime power $q \equiv 1(\bmod p)$, where $q \equiv 1$ $(\bmod 4)$ if $p=2$. Assume $G \cong \mathbb{G}(q)$ for some simple group scheme \mathbb{G} over \mathbb{Z} of universal type, or $G \cong{ }^{2} \mathbb{G}(q)$ for $\mathbb{G} \cong A_{n}, D_{n}$, or E_{6} of universal type. Then G has a σ-setup (\bar{G}, σ) such that Hypotheses 5.1, case (III.1) holds.

Proof. Set $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{q}\right)$, and let $\psi_{q} \in \Phi_{\bar{G}}$ be the field automorphism. Set $\sigma=\gamma \psi_{q} \in \operatorname{End}(\bar{G})$, where $\gamma=\operatorname{Id}$ if $G \cong \mathbb{G}(q)$, and $\gamma \in \Gamma_{\bar{G}}$ has order 2 if $G \cong{ }^{2} \mathbb{G}(q)$.
$\boldsymbol{N}_{\boldsymbol{G}}(T)$ contains a Sylow p-subgroup of \boldsymbol{G}. If $\gamma=\mathrm{Id}$, then by Ca, Theorem 9.4.10] (and since G is in universal form), $|G|=q^{N} \prod_{i=1}^{r}\left(q^{d_{i}}-1\right)$ for some integers $N, d_{1}, \ldots, d_{r}(r=\operatorname{rk}(\mathbb{G}))$, where $d_{1} d_{2} \cdots d_{r}=|W|$ by [Ca, Theorem 9.3.4]. Also, $|T|=(q-1)^{r}, N_{G}(T) / T \cong W$, and so

$$
\begin{aligned}
v_{p}(|G|)=\sum_{i=1}^{r} v_{p}\left(q^{d_{i}}-1\right) & =\sum_{i=1}^{r}\left(v_{p}(q-1)+v_{p}\left(d_{i}\right)\right) \\
& =v_{p}(|T|)+v_{p}(|W|)=v_{p}\left(N_{G}(T)\right)
\end{aligned}
$$

where the second equality holds by Lemma 1.13
If $|\gamma|=2$, then by $\mathbf{C a} \S 14.2-3]$, for N and d_{i} as above, there are $\varepsilon_{i}, \eta_{i} \in\{ \pm 1\}$ for $1 \leq i \leq r$ such that $|G|=q^{N} \prod_{i=1}^{r}\left(q^{d_{i}}-\varepsilon_{i}\right)$ and $|T|=\prod_{i=1}^{r}\left(q-\eta_{i}\right)$. (More precisely, the η_{i} are the eigenvalues of the γ-action on V, and polynomial generators $I_{1}, \ldots, I_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{r}\right]^{W}$ can be chosen such that $\operatorname{deg}\left(I_{i}\right)=d_{i}$ and $\tau\left(I_{i}\right)=\varepsilon_{i} I_{i}$.) By [Ca, Proposition 14.2.1],

$$
\left|W_{0}\right|=\lim _{t \rightarrow 1} \prod_{i=1}^{r}\left(\frac{1-\varepsilon_{i} t^{d_{i}}}{1-\eta_{i} t}\right) \quad \Longrightarrow \quad \begin{aligned}
& \left|\left\{1 \leq i \leq r \mid \varepsilon_{i}=1\right\}\right|=\left|\left\{1 \leq i \leq r \mid \eta_{i}=1\right\}\right| \\
& \text { and }\left|W_{0}\right|=\prod\left\{d_{i} \mid \varepsilon_{i}=+1\right\} .
\end{aligned}
$$

Also, $v_{p}\left(q^{d}+1\right)=v_{p}(q+1)$ for all $d \geq 1$: they are both 0 if p is odd, and both 1 if $p=2$. Hence

$$
\begin{aligned}
v_{p}(|G|)-v_{p}(|T|) & =\sum_{\substack{i=1 \\
\varepsilon_{i}=+1}}^{r} v_{p}\left(\frac{q^{d_{i}}-1}{q-1}\right) \\
& =\sum_{\substack{i=1 \\
\varepsilon_{i}=+1}}^{r} v_{p}\left(d_{i}\right)=v_{p}\left(\left|W_{0}\right|\right)=v_{p}\left(\left|N_{G}(T)\right|\right)-v_{p}(|T|)
\end{aligned}
$$

by Lemma 1.13 again, and so $N_{G}(T)$ contains a Sylow p-subgroup of G.
The free $\langle\gamma\rangle$-orbit $\{\alpha\}$ (if $\gamma=$ Id) or $\{\alpha, \tau(\alpha)\}$ (if $|\gamma|=2$ and $\alpha \neq \tau(\alpha)$), for any $\alpha \in \Sigma$, satisfies the hypotheses of this condition.
$\left[\gamma, \psi_{\boldsymbol{q}_{0}}\right]=\mathbf{I d}$ since $\gamma \in \Gamma_{\bar{G}}$.
We are now ready to describe the reduction, when $p=2$, to groups with σ setups satisfying Hypotheses 5.1 .

Proposition 6.2. Assume $G \in \mathfrak{L i e}\left(q_{0}\right)$ is of universal type for some odd prime q_{0}. Fix $S \in \operatorname{Syl}_{2}(G)$, and assume S is nonabelian. Then there is an odd prime q_{0}^{*}, a group $G^{*} \in \mathfrak{L i e}\left(q_{0}^{*}\right)$ of universal type, and $S^{*} \in \operatorname{Syl}_{2}\left(G^{*}\right)$, such that $\mathcal{F}_{S}(G) \cong$ $\mathcal{F}_{S^{*}}\left(G^{*}\right)$, and G^{*} has a σ-setup which satisfies case (III.1) of Hypotheses 5.1 and also Hypotheses 5.11. Moreover, if $G^{*} \cong G_{2}\left(q^{*}\right)$ where q^{*} is a power of q_{0}^{*}, then we can arrange that either $q^{*}=5$ or $q_{0}^{*}=3$.

Proof. Since q_{0} is odd, and since the Sylow 2 -subgroups of ${ }^{2} G_{2}\left(3^{2 k+1}\right)$ are abelian for all $k \geq 1$ [Ree, Theorem 8.5], G must be a Chevalley or Steinberg group. If $G \cong{ }^{3} D_{4}(q)$, then \mathcal{F} is also the fusion system of $G_{2}(q)$ by [BMO, Example 4.5]. So we can assume that $G \cong{ }^{\tau} \mathbb{G}(q)$ for some odd prime power q, some \mathbb{G}, and some graph automorphism τ of order 1 or 2 .

Let $\varepsilon \in\{ \pm 1\}$ be such that $q \equiv \varepsilon(\bmod 4)$. By Lemma 1.11, there is a prime q_{0}^{*} and $k \geq 0$ such that $\overline{\langle q\rangle}=\left\langle\varepsilon \cdot\left(q_{0}^{*}\right)^{2^{k}}\right\rangle$, where either $q_{0}^{*}=5$ and $k=0$, or $q_{0}^{*}=3$ and $k \geq 1$.

If $\varepsilon=1$, then set $G^{*}={ }^{\tau} \mathbb{G}\left(\left(q_{0}^{*}\right)^{2^{k}}\right)$, and fix $S^{*} \in \operatorname{Syl}_{2}\left(G^{*}\right)$. Then $\mathcal{F}_{S^{*}}\left(G^{*}\right) \cong$ $\mathcal{F}_{S}(G)$ by Theorem [1.8(a), G^{*} satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 (and since $\left(q_{0}^{*}\right)^{2^{k}} \equiv 1(\bmod 4)$), and G^{*} also satisfies Hypotheses 5.11 .

Now assume $\varepsilon=-1$. If -Id is in the Weyl group of G, then set $G^{*}=$ ${ }^{\tau} \mathbb{G}\left(\left(q_{0}^{*}\right)^{2^{k}}\right)$. If -Id is not in the Weyl group, then $\mathbb{G} \cong A_{n}, D_{n}$ for n odd, or E_{6}, and we set $G^{*}=\mathbb{G}\left(\left(q_{0}^{*}\right)^{2^{k}}\right)$ if $\tau \neq \mathrm{Id}$, and $G^{*}={ }^{2} \mathbb{G}\left(\left(q_{0}^{*}\right)^{2^{k}}\right)$ if $G=\mathbb{G}(q)$. In all cases, for $S^{*} \in \operatorname{Syl}_{p}\left(G^{*}\right), \mathcal{F}_{S^{*}}\left(G^{*}\right) \cong \mathcal{F}_{S}(G)$ by Theorem 1.8(c,d), G^{*} satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 again, and also satisfies Hypotheses 5.11

By construction, if $\mathbb{G} \cong G_{2}$, then either $q_{0}^{*}=3$ or $\left(q_{0}^{*}\right)^{2^{k}}=5$.
When $G \cong G_{2}(5)$ and $p=2, G$ satisfies Hypotheses 5.1 and 5.11 but $\bar{\kappa}_{G}$ is not shown to be surjective in Proposition 5.15 (and in fact, it is not surjective). Hence this case must be handled separately.

Proposition 6.3. Assume $p=2$. Set $G=G_{2}(5)$ and $G^{*}=G_{2}(3)$, and fix $S \in \operatorname{Syl}_{2}(G)$ and $S^{*} \in \operatorname{Syl}_{2}\left(G^{*}\right)$. Then $\mathcal{F}_{S^{*}}\left(G^{*}\right) \cong \mathcal{F}_{S}(G)$ as fusion systems, and $\bar{\kappa}_{G^{*}}=\mu_{G^{*}} \circ \kappa_{G^{*}}$ is an isomorphism from $\operatorname{Out}\left(G^{*}\right) \cong C_{2}$ onto $\operatorname{Out}\left(S^{*}, \mathcal{F}_{S^{*}}\left(G^{*}\right)\right)$.

Proof. The first statement follows from Theorem 1.8(c). Also, $|\operatorname{Out}(G)|=1$ and $\left|\operatorname{Out}\left(G^{*}\right)\right|=2$ by Theorem [3.4] and since G and G^{*} have no field automorphisms and all diagonal automorphisms are inner (cf. [St1, 3.4]), and $G^{*}=G_{2}(3)$ has a nontrivial graph automorphism while $G=G_{2}(5)$ does not [St1, 3.6]. Since G satisfies Hypotheses 5.1 and 5.11, $\left|\operatorname{Coker}\left(\bar{\kappa}_{G}\right)\right| \leq 2$ by Proposition 5.15 so $\left|\operatorname{Out}\left(\mathcal{F}_{S}(G)\right)\right| \leq 2$.

By [O5, Proposition 4.2], S^{*} contains a unique subgroup $Q \cong Q_{8} \times_{C_{2}} Q_{8}$ of index 2. Let $x \in Z(Q)=Z\left(S^{*}\right)$ be the central involution. Set $\bar{G}=G_{2}\left(\overline{\mathbb{F}}_{3}\right)>$ G^{*}. Then $C_{\bar{G}}(x)$ is connected since \bar{G} is of universal type [St3. Theorem 8.1], so $C_{\bar{G}}(x) \cong S L_{2}\left(\overline{\mathbb{F}}_{3}\right) \times_{C_{2}} S L_{2}\left(\overline{\mathbb{F}}_{3}\right)$ by Proposition [2.5, Furthermore, any outer (graph) automorphism which centralizes x exchanges the two central factors $S L_{2}\left(\overline{\mathbb{F}}_{3}\right)$. Hence for each $\alpha \in \operatorname{Aut}\left(G^{*}\right) \backslash \operatorname{Inn}\left(G^{*}\right)$ which normalizes S^{*}, α exchanges the two factors Q_{8}, and in particular, does not centralize S^{*}. Thus $\bar{\kappa}_{G^{*}}$ is injective, and hence an isomorphism since $\left|\operatorname{Out}\left(G^{*}\right)\right|=2$ and $\left|\operatorname{Out}\left(S^{*}, \mathcal{F}_{S^{*}}\left(G^{*}\right)\right)\right|=\left|\operatorname{Out}\left(\mathcal{F}_{S}(G)\right)\right| \leq 2$.

We now turn to case (III.2) of Hypotheses 5.1.
Lemma 6.4. Fix an odd prime p, and an odd prime power q prime to p such that $q \equiv-1(\bmod p)$. Let G be one of the groups $S p_{2 n}(q), \operatorname{Spin}_{2 n+1}(q), \operatorname{Spin}_{4 n}^{+}(q)$ $(n \geq 2), G_{2}(q), F_{4}(q), E_{7}(q)$, or $E_{8}(q)$ (i.e., $G=\mathbb{G}(q)$ for some \mathbb{G} whose Weyl group contains -Id), and assume that the Sylow p-subgroups of G are nonabelian. Then G has a σ-setup (\bar{G}, σ) such that Hypotheses 5.1, case (III.2), hold.

Proof. Assume $q=q_{0}^{b}$ where q_{0} is prime and $b \geq 1$. Set $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, and let $\bar{T}<\bar{G}$ be a maximal torus. Set $r=\operatorname{rk}(\bar{T})$ and $k=v_{p}(q+1)$.

In all of these cases, $-\mathrm{Id} \in W$, so there is a coset $w_{0} \in N_{\bar{G}}(\bar{T}) / \bar{T}$ which inverts \bar{T}. Fix $g_{0} \in N_{\bar{G}}(\bar{T})$ such that $g_{0} \bar{T}=w_{0}$ and $\psi_{q_{0}}\left(g_{0}\right)=g_{0}$ (Lemma 2.9). Set $\gamma=c_{g_{0}}$ and $\sigma=\gamma \circ \psi_{q}$. We identify $G=O^{q_{0}^{\prime}}\left(C_{\bar{G}}(\sigma)\right), T=G \cap \bar{T}$, and $A=O_{p}(T)$. Since $\sigma(t)=t^{-q}$ for each $t \in \bar{T}, T \cong\left(C_{q+1}\right)^{r}$ is the $(q+1)$-torsion subgroup of \bar{T}, and $A \cong\left(C_{p^{k}}\right)^{r}$.
$N_{G}(T)$ contains a Sylow p-subgroup of G. In all cases, by Ca, Theorem 9.4.10] (and since G is in universal form), $|G|=q^{N} \prod_{i=1}^{r}\left(q^{d_{i}}-1\right)$, where $d_{1} d_{2} \cdots d_{r}=|W|$ by [Ca, Theorem 9.3.4]. Also, the d_{i} are all even in the cases considered here (see [St2, Theorem 25] or Ca, Corollary 10.2.4 \& Proposition 10.2.5]). Hence by Lemma 1.13 and since p is odd,

$$
\begin{aligned}
v_{p}(|G|) & =\sum_{i=1}^{r} v_{p}\left(q^{d_{i}}-1\right)=\sum_{i=1}^{r} v_{p}\left(\left(q^{2}\right)^{d_{i} / 2}-1\right)=\sum_{i=1}^{r}\left(v_{p}\left(q^{2}-1\right)+v_{p}\left(d_{i} / 2\right)\right) \\
& =r \cdot v_{p}(q+1)+\sum_{i=1}^{r} v_{p}\left(d_{i}\right)=v_{p}(|T|)+v_{p}(|W|)=v_{p}\left(\left|N_{G}(T)\right|\right) .
\end{aligned}
$$

$\left[\gamma, \psi_{\boldsymbol{q}_{0}}\right]=\mathbf{I d}$ since $\gamma=c_{g_{0}}$ and $\psi_{q_{0}}\left(g_{0}\right)=g_{0}$.
A free $\langle\gamma\rangle$-orbit in $\boldsymbol{\Sigma}$. For each $\alpha \in \Sigma,\{ \pm \alpha\}$ is a free $\langle\gamma\rangle$-orbit.
We now consider case (III.3) of Hypotheses 5.1. By [GL, 10-1,2], when p is odd, each finite group of Lie type has a σ-setup for which $N_{G}(T)$ contains a Sylow p-subgroup of G. Here, we need to construct such setups explicitly enough to be able to check that the other conditions in Hypotheses 5.1 hold.

When p is a prime, A is a finite abelian p-group, and $\operatorname{Id} \neq \xi \in \operatorname{Aut}(A)$ has order prime to p, we say that ξ is a reflection in A if $[A, \xi]$ is cyclic. In this case, there is a direct product decomposition $A=[A, \xi] \times C_{A}(\xi)$, and we call $[A, \xi]$ the reflection subgroup of ξ. This terminology will be used in the proofs of the next two lemmas.

Lemma 6.5. Fix an odd prime p, and an odd prime power q prime to p such that $q \not \equiv 1(\bmod p)$. Let G be one of the classical groups $S L_{n}(q), S p_{2 n}(q), \operatorname{Spin}_{2 n+1}(q)$, or $\operatorname{Spin}_{2 n}^{ \pm}(q)$, and assume that the Sylow p-subgroups of G are nonabelian. Then G has a σ-setup (\bar{G}, σ) such that case (III.3) of Hypotheses 5.1 holds.

Proof. Set $m=\operatorname{ord}_{p}(q) ; m>1$ by assumption. We follow Notation 2.2, except that we have yet to fix the σ-setup for G. Thus, for example, q_{0} is the prime of which q is a power.

When defining and working with the σ-setups for the spinor groups, it is sometimes easier to work with orthogonal groups than with their 2-fold covers. For this reason, throughout the proof, we set $\mathbb{G}_{c}=S O_{\ell}$ when $\mathbb{G}=\operatorname{Spin}_{\ell}$, set $\bar{G}_{c}=S O_{\ell}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ when $\bar{G}=\operatorname{Spin}_{\ell}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, and let $\chi: \bar{G} \longrightarrow \bar{G}_{c}$ be the natural surjection. We then set $G_{c}=C_{\bar{G}_{c}}(\sigma) \cong S O_{\ell}^{ \pm}(q)$, once σ has been chosen so that $G=C_{\bar{G}}(\sigma) \cong \operatorname{Spin}_{\ell}^{ \pm}(q)$, and set $\bar{T}_{c}=\chi(\bar{T})$ and $T_{c}=C_{\bar{T}_{c}}(\sigma)$. Also, in order to prove the lemma without constantly considering these groups as a separate case, we set $\bar{G}_{c}=\bar{G}, G_{c}=G$, $\chi=\mathrm{Id}$, etc. when G is linear or symplectic. Thus G_{c} and \bar{G}_{c} are classical groups in all cases.

Regard \bar{G}_{c} as a subgroup of $\operatorname{Aut}(\bar{V}, \mathfrak{b})$, where \bar{V} is an $\overline{\mathbb{F}}_{q_{0}}$-vector space of dimension $n, 2 n$, or $2 n+1$, and \mathfrak{b} is a bilinear form. Explicitly, $\mathfrak{b}=0$ if $\mathbb{G}=S L_{n}$, and \mathfrak{b} has matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)^{\oplus n}$ if $\mathbb{G}=S p_{2 n},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{\oplus n}$ if $\mathbb{G}=\operatorname{Spin}_{2 n}$, or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{\oplus n} \oplus(1)$ if $\mathbb{G}=\operatorname{Spin}_{2 n+1}$. Let \bar{T}_{c} be the group of diagonal matrices in \bar{G}_{c}, and set

$$
\left[\lambda_{1}, \ldots, \lambda_{n}\right]= \begin{cases}\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & \text { if } \mathbb{G}=S L_{n} \\ \operatorname{diag}\left(\lambda_{1}, \lambda_{1}^{-1}, \ldots, \lambda_{n}, \lambda_{n}^{-1}\right) & \text { if } \mathbb{G}=S p_{2 n} \text { or } \operatorname{Spin}_{2 n} \\ \operatorname{diag}\left(\lambda_{1}, \lambda_{1}^{-1}, \ldots, \lambda_{n}, \lambda_{n}^{-1}, 1\right) & \text { if } \mathbb{G}=\operatorname{Spin}_{2 n+1}\end{cases}
$$

In this way, we identify the maximal torus $\bar{T}_{c}<\bar{G}_{c}$ with $\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right)^{n}$ in the symplectic and orthogonal cases, and with a subgroup of $\left(\overline{\mathbb{F}}_{q_{0}}\right)^{n}$ in the linear case.

Set $W^{*}=W$ (the Weyl group of \mathbb{G} and of \mathbb{G}_{c}), except when $\mathbb{G}=\operatorname{Spin}_{2 n}$, in which case we let $W^{*}<\operatorname{Aut}\left(\bar{T}_{c}\right)$ be the group of all automorphisms which permute and invert the coordinates. Thus in this last case, $W^{*} \cong\{ \pm 1\} \imath \Sigma_{n}$, while W is the group of signed permutations which invert an even number of coordinates (so $\left[W^{*}: W\right]=2$). Since W^{*} induces a group of isometries of the root system for $\operatorname{Spin}_{2 n}$ and contains W with index 2, it is generated by W and the restriction to \bar{T}_{c} of a graph automorphism of order 2 (see, e.g., Brb, § VI.1.5, Proposition 16]).

We next introduce some notation in order to identify certain elements in W^{*}. For each r, s such that $r s \leq n$, let $\boldsymbol{\tau}_{r}^{s} \in \operatorname{Aut}\left(\bar{T}_{c}\right)$ be the Weyl group element induced by the permutation $(1 \cdots r)(r+1 \cdots 2 r) \cdots((s-1) r+1 \cdots s r)$; i.e.,

$$
\begin{aligned}
& \boldsymbol{\tau}_{r}^{s}\left(\left[\lambda_{1}, \ldots, \lambda_{n}\right]\right)= \\
& \quad\left[\lambda_{r}, \lambda_{1}, \ldots, \lambda_{r-1}, \lambda_{2 r}, \lambda_{r+1}, \ldots, \lambda_{s r}, \lambda_{(s-1) r+1}, \ldots, \lambda_{s r-1}, \lambda_{s r+1}, \ldots\right]
\end{aligned}
$$

For $1 \leq i \leq n$, let $\boldsymbol{\xi}_{i} \in \operatorname{Aut}(\bar{T})$ be the automorphism which inverts the i-th coordinate. Set $\boldsymbol{\tau}_{r,+1}^{s}=\boldsymbol{\tau}_{r}^{s}$ and $\boldsymbol{\tau}_{r,-1}^{s}=\boldsymbol{\tau}_{r}^{s} \boldsymbol{\xi}_{r} \boldsymbol{\xi}_{2 r} \cdots \boldsymbol{\xi}_{s r}$. Thus for $\theta= \pm 1$,

$$
\begin{aligned}
& \boldsymbol{\tau}_{r, \theta}^{s}\left(\left[\lambda_{1}, \ldots, \lambda_{n}\right]\right)= \\
& \quad\left[\lambda_{r}^{\theta}, \lambda_{1}, \ldots, \lambda_{r-1}, \lambda_{2 r}^{\theta}, \lambda_{r+1}, \ldots \lambda_{s r}^{\theta}, \lambda_{(s-1) r+1}, \ldots, \lambda_{s r-1}, \lambda_{s r+1}, \ldots\right] .
\end{aligned}
$$

Recall that $m=\operatorname{ord}_{p}(q)$. Define parameters μ, θ, k, and κ as follows:

$$
\begin{array}{cllll}
\text { if } m \text { is odd }: & \mu=m & \theta=1 & k=[n / m] & \kappa=[n / \mu]=[n / m] \\
\text { if } m \text { is even }: & \mu=m / 2 & \theta=-1 & & \kappa=[n / \mu]=[2 n / m]
\end{array}
$$

We can now define our σ-setups for G and G_{c}. Recall that we assume $m>1$. In Table 6.1 we define an element $w_{0} \in W^{*}$, and then describe $T_{c}=C_{\bar{T}_{c}}\left(w_{0} \circ \psi_{q}\right)$ and $W_{0}^{*}=C_{W^{*}}\left(w_{0}\right)$ (where $W_{0}=C_{W}\left(w_{0}\right)$ has index at most 2 in $\left.W_{0}^{*}\right)^{c}$. In all

G_{c}	conditions	$w_{0}=\left.\gamma\right\|_{\bar{T}_{c}}$	T_{c}	W_{0}^{*}
$S L_{n}(q)$		$\boldsymbol{\tau}_{m}^{k}$	$\left(C_{q^{m}-1}\right)^{k} \times C_{q-1}^{n-m k-1}$	$\left(C_{m} \backslash \Sigma_{k}\right) \times H$
$S p_{2 n}(q)$		$\tau_{\mu, \theta}^{\kappa}$	$\left(C_{q^{\mu}-\theta}\right)^{\kappa} \times C_{q-1}^{n-\kappa \mu}$	$\left(C_{2 \mu} \imath \Sigma_{\kappa}\right) \times H$
$S O_{2 n+1}(q)$				
$\mathrm{SO}_{2 n}^{\varepsilon}(\mathrm{q})$	$\varepsilon=\theta^{\kappa}$			
	$\varepsilon \neq \theta^{\kappa}, \mu \nmid n$	$\boldsymbol{\tau}_{\mu, \theta}^{\kappa} \boldsymbol{\xi}_{n}$	$\left(C_{q^{\mu}-\theta}\right)^{\kappa} \times C_{q-1}^{n-\kappa \mu-1} \times C_{q+1}$	$\left(C_{2 \mu}\right.$ 乙 $\left.\Sigma_{\kappa}\right) \times H$
	$\begin{gathered} \varepsilon \neq \theta^{\kappa}, \mu \mid n \\ \theta=-1 \end{gathered}$	$\boldsymbol{\tau}_{\mu, \theta}^{\kappa-1}$	$\left(C_{q^{\mu}-\theta}\right)^{\kappa-1} \times C_{q-1}^{\mu}$	$\left(C_{2 \mu}\right.$ \} \Sigma _ { \kappa - 1 }) \times H
	$\begin{gathered} \varepsilon \neq \theta^{\kappa}, \mu \mid n \\ \theta=+1 \end{gathered}$	$\boldsymbol{\tau}_{\mu, \theta}^{\kappa-1} \boldsymbol{\xi}_{n}$	$\left(C_{q^{\mu}-\theta}\right)^{\kappa-1} \times C_{q-1}^{\mu-1} \times C_{q+1}$	
In all cases, $T \xrightarrow{\chi} T_{c}$ has kernel and cokernel of order ≤ 2, and so $A=O_{p}(T) \cong O_{p}\left(T_{c}\right)$.				

Table 6.1
cases, we choose $\gamma \in \operatorname{Aut}\left(\bar{G}_{c}\right)$ as follows. Write $w_{0}=\left.w_{0}^{\prime} \circ \gamma_{0}\right|_{\bar{T}_{c}}$ for some $w_{0}^{\prime} \in W$ and $\gamma_{0} \in \Gamma_{\bar{G}_{c}}$ (possibly $\gamma_{0}=\mathrm{Id}$). Choose $g_{0} \in N_{\bar{G}_{c}}\left(\bar{T}_{c}\right)$ such that $g_{0} \bar{T}_{c}=w_{0}^{\prime}$ and $\psi_{q_{0}}\left(g_{0}\right)=g_{0}$ (Lemma [2.9), and set $\gamma=c_{g_{0}} \circ \gamma_{0}$. Then $\left[\gamma, \psi_{q_{0}}\right]=\operatorname{Id}_{\bar{G}_{c}}$, since $c_{g_{0}}$ and γ_{0} both commute with $\psi_{q_{0}}$, and we set $\sigma=\gamma \circ \psi_{q}=\psi_{q} \circ \gamma$. When $\mathbb{G}=\operatorname{Spin}_{2 n}$ or $\operatorname{Spin}_{2 n+1}$, since \bar{G} is a perfect group and $\operatorname{Ker}(\chi) \leq Z(\bar{G}), \gamma$ and σ lift to unique endomorphisms of \bar{G} which we also denote γ and σ (and still $\left[\gamma, \psi_{q_{0}}\right]=1$ in $\left.\operatorname{Aut}(\bar{G})\right)$.

Thus $G \cong C_{\bar{G}}(\sigma)$ and $G_{c} \cong C_{\bar{G}_{c}}(\sigma)$ in all cases, and we identify these groups. Set $T=C_{\bar{T}}(\sigma), T_{c}=C_{\bar{T}_{c}}(\sigma), W_{0}^{*}=C_{W^{*}}(\gamma)$, and $W_{0}=C_{W}(\gamma)$. If $\mathbb{G}=\operatorname{Spin}_{2 n+1}$ or $\operatorname{Spin}_{2 n}$, then $\chi(T)$ is the kernel of the homomorphism $T_{c} \rightarrow \operatorname{Ker}(\chi)$ which sends $\chi(t)$ to $t^{-1} \sigma(t)$, and thus has index at most 2 in T_{c}. Since p is odd, this proves the statement in the last line of Table 6.1.

In the description of W_{0}^{*} in Table 6.1, H always denotes a direct factor of order prime to p. The first factor in the description of W_{0}^{*} acts on the first factor in that of T, and H acts on the other factors.

When $G_{c}=S L_{n}(q)$ and $m \mid n$, the second factor C_{q-1}^{-1} in the description of T doesn't make sense. It should be interpreted to mean that T is "a subgroup of index $q-1$ in the first factor $\left(C_{q^{m}-1}\right)^{k}$ ".

Recall that $T_{c}=C_{\bar{T}_{c}}\left(\gamma \circ \psi_{q}\right)$. When $U=\left(\overline{\mathbb{F}}_{q_{0}}\right)^{\mu}$, then

$$
\begin{aligned}
C_{U}\left(\boldsymbol{\tau}_{\mu, \theta}^{1} \circ \psi_{q}\right) & =\left\{\left(\lambda, \lambda^{q}, \lambda^{q^{2}}, \ldots, \lambda^{q^{\mu-1}}\right) \mid\left(\lambda^{q^{\mu-1}}\right)^{q \theta}=\lambda\right\} \\
& =\left\{\left(\lambda, \lambda^{q}, \lambda^{q^{2}}, \ldots, \lambda^{q^{\mu-1}}\right) \mid \lambda^{q^{\mu}-\theta}=1\right\} \cong C_{q^{\mu}-\theta} .
\end{aligned}
$$

This explains the description of T_{c} in the symplectic and orthogonal cases: it is always the direct product of $\left(C_{q^{\mu}-\theta}\right)^{\kappa}$ or $\left(C_{q^{\mu}-\theta}\right)^{\kappa-1}$ with a group of order prime to p. (Note that $p \mid(q+1)$ only when $m=2$; i.e., when $\theta=-1$ and $1=\mu \mid n$.)

Since the cyclic permutation $(12 \cdots \mu)$ generates its own centralizer in Σ_{μ}, the centralizer of $\boldsymbol{\tau}_{\mu, \theta}^{1}$ in $\{ \pm 1\} \geqslant \Sigma_{\mu}<\operatorname{Aut}\left(\left(\overline{\mathbb{F}}_{q_{0}}\right)^{\mu}\right)$ is generated by $\boldsymbol{\tau}_{\mu, \theta}^{1}$ and $\psi_{-1}^{\bar{T}}$. If $\theta=-1$, then $\left(\boldsymbol{\tau}_{\mu, \theta}^{1}\right)^{\mu}=\psi_{-1}^{\bar{T}}$, while if $\theta=1$, then $\boldsymbol{\tau}_{\mu, \theta}^{1}$ has order μ. Since $m=\mu$ is odd in the latter case, the centralizer is cyclic of order 2μ in both cases. This is why, in the symplectic and orthogonal cases, the first factor in W_{0}^{*} is always a wreath product of $C_{2 \mu}$ with a symmetric group.

We are now ready to check the conditions in case (III.3) of Hypotheses 5.1. $N_{G}(T)$ contains a Sylow p-subgroup of G. Set

$$
e=v_{p}\left(q^{m}-1\right)=v_{p}\left(q^{\mu}-\theta\right) .
$$

The second equality holds since if $2 \mid m$, then $p \nmid\left(q^{\mu}-1\right)$ and hence $e=v_{p}\left(q^{\mu}+1\right)$. Recall also that $m \mid(p-1)$, so $v_{p}(m)=0$. Consider the information listed in Table 6.2, where the formulas for $v_{p}(|T|)=v_{p}\left(\left|T_{c}\right|\right)$ and $v_{p}\left(\left|W_{0}\right|\right)$ follow from Table 6.1] and those for $|G|$ are shown in [St2, Theorems $25 \& 35]$ and also in [Ca, Corollary 10.2.4, Proposition 10.2.5 \& Theorem 14.3.2].

G	cond.	$v_{p}(\|G\|)$	$v_{p}(\|T\|)$	$v_{p}\left(\left\|W_{0}\right\|\right)$
$S L_{n}(q)$		$\sum_{i=2}^{n} v_{p}\left(q^{i}-1\right)$	ke	$v_{p}(k!)$
$S p_{2 n}(q)$		$\sum_{i=1}^{n} v_{p}\left(q^{2 i}-1\right)$	κe	$v_{p}(\kappa!)$
$\operatorname{Spin}_{2 n+1}(q)$				
$\operatorname{Spin}_{2 n}^{\varepsilon}(q)$	$\varepsilon=\theta^{\kappa}$			
	$\varepsilon \neq \theta^{\kappa}, \mu \nmid n$	-1		
	$\varepsilon \neq \theta^{\kappa}, \mu \mid n$		$(\kappa-1) e$	$v_{p}((\kappa-1)!)$

TABLE 6.2

For all $i>0$, we have

$$
v_{p}\left(q^{i}-1\right)= \begin{cases}e+v_{p}(i / m) & \text { if } m \mid i \\ 0 & \text { if } m \nmid i\end{cases}
$$

The first case follows from Lemma 1.13, and the second case since $m=\operatorname{ord}_{p}(q)$. Using this, we check that $v_{p}\left(q^{2 i}-1\right)=v_{p}\left(q^{i}-1\right)$ for all i whenever m is odd, and
that

$$
v_{p}\left(q^{n}-\varepsilon\right)= \begin{cases}e+v_{p}(2 n / m) & \text { if } m \mid 2 n \text { and } \varepsilon=(-1)^{2 n / m} \\ 0 & \text { otherwise. }\end{cases}
$$

So in all cases, $v_{p}(|G|)=v_{p}(|T|)+v_{p}\left(\left|W_{0}\right|\right)$ by the above relations and the formulas in Table 6.2. Since $N_{G}(T) / T \cong W_{0}$ by Lemma 5.3(b), this proves that $v_{p}(|G|)=$ $v_{p}\left(\left|N_{G}(T)\right|\right)$, and hence that $N_{G}(T)$ contains a Sylow p-subgroup of G.
$|\gamma|_{\bar{T}}\left|=|\tau|=\operatorname{ord}_{p}(q) \geq 2\right.$ and $\left[\gamma, \psi_{q_{0}}\right]=\mathbf{I d}$ by construction. Note, when G is a spinor group, that these relations hold in \bar{G} if and only if they hold in \bar{G}_{c}.
$C_{S}\left(\Omega_{1}(A)\right)=A$ by Table 6.1 and since $p \nmid|H|$.
$\boldsymbol{C}_{\boldsymbol{A}}\left(\boldsymbol{O}_{\boldsymbol{p}^{\prime}}\left(\boldsymbol{W}_{\mathbf{0}}\right)\right)=1$. By Table 6.1, in all cases, there are $r, t \geq 1$ and $1 \neq s \mid(p-1)$ such that $A \cong\left(C_{p^{t}}\right)^{r}$, and $\operatorname{Aut}_{W_{0}^{*}}(A) \cong C_{s}\left\langle\Sigma_{r}\right.$ acts on A by acting on and permuting the cyclic factors. In particular, $\operatorname{Aut}_{O_{p^{\prime}}\left(W_{0}\right)}(A)$ contains a subgroup of index at most 2 in $\left(C_{s}\right)^{r}$, this subgroup acts nontrivially on each of the cyclic factors in A, and hence $C_{A}\left(O_{p^{\prime}}\left(W_{0}\right)\right)=1$.
A free $\langle\gamma\rangle$-orbit in $\boldsymbol{\Sigma}$. This can be defined as described in Table 6.3. In each case, we use the notation of Bourbaki [Brb, pp. 250-258] for the roots of \mathbb{G}. Thus, for example, the roots of $S L_{n}$ are the $\pm\left(\varepsilon_{i}-\varepsilon_{j}\right)$ for $1 \leq i<j \leq n$, and the roots of $S O_{2 n}$ the $\pm \varepsilon_{i} \pm \varepsilon_{j}$. Note that since S is assumed nonabelian, $p\left|\left|W_{0}\right|\right.$, and hence $n \geq p m$ in the linear case, and $n \geq p \mu$ in the other cases.

G	$\theta=1$	$\theta=-1$
$S L_{n}(q)$	$\varepsilon_{i}-\varepsilon_{m+i} \mid 1 \leq i \leq m$	
$S p_{2 n}(q)$	$\left\{2 \varepsilon_{i} \mid 1 \leq i \leq \mu\right\}$	$\left\{ \pm 2 \varepsilon_{i} \mid 1 \leq i \leq \mu\right\}$
$\operatorname{Spin}_{2 n+1}(q)$	$\left\{\varepsilon_{i} \mid 1 \leq i \leq \mu\right\}$	$\left\{ \pm \varepsilon_{i} \mid 1 \leq i \leq \mu\right\}$
$\operatorname{Spin}_{2 n}^{\varepsilon}(q)$	$\left\{\varepsilon_{i}-\varepsilon_{\mu+i} \mid 1 \leq i \leq \mu\right\}$	$\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{\mu+i}\right) \mid 1 \leq i \leq \mu\right\}$

Table 6.3
$\operatorname{Aut}_{W_{0}}(A) \cap \operatorname{Aut}_{\text {sc }}(A) \leq \begin{cases}\left\langle\left.\gamma\right|_{A}\right\rangle & \text { if } \operatorname{ord}_{p}(q) \text { even or }-\mathbf{I d} \notin \boldsymbol{W}_{0} \\ \left\langle\left.\gamma\right|_{A}, \psi_{-1}^{A}\right\rangle & \text { otherwise. }\end{cases}$
Set $K^{*}=\operatorname{Aut}_{W_{0}^{*}}(A) \cap \operatorname{Aut}_{\mathrm{sc}}(A)$ and $K=\operatorname{Aut}_{W_{0}}(A) \cap \operatorname{Aut}_{\mathrm{sc}}(A)$ for short. By Table 6.1, $\left|K^{*}\right|=m$ if $G \cong S L_{n}(q)$, and $\left|K^{*}\right|=2 \mu$ otherwise. Also, $\left\langle\left.\gamma\right|_{A}\right\rangle=\left\langle\left.\psi_{q}^{-1}\right|_{A}\right\rangle$ has order $\operatorname{ord}_{p}(q)$. Thus $K \leq K^{*}=\left\langle\left.\gamma\right|_{A}\right\rangle$ except when G is symplectic or orthogonal and $m=\operatorname{ord}_{p}(q)$ is odd. In this last case, $K=K^{*}$ (so $|K|=2 \mu=2 m$) if W_{0} contains an element which inverts A (hence which inverts T and \bar{T}); and $\left|K^{*} / K\right|=2$ ($|K|=m$) otherwise.
$\operatorname{Aut}_{\boldsymbol{G}}(\boldsymbol{A})=\operatorname{Aut}_{W_{\mathbf{0}}}(\boldsymbol{A})$. Since $A=O_{p}(T) \cong O_{p}\left(T_{c}\right)$ by Table 6.1, it suffices to prove this for G_{c}. Fix $g \in N_{G_{c}}(A)$. Since \bar{T}_{c} is a maximal torus in the algebraic group $C_{\bar{G}_{c}}(A)$ (Proposition 2.5), there is $b \in C_{\bar{G}_{c}}(A)$ such that ${ }^{b} \bar{T}_{c}={ }^{g} \bar{T}_{c}$. Set $a=b^{-1} g \in N_{\bar{G}_{c}}\left(\bar{T}_{c}\right) ;$ thus $c_{a}=c_{g} \in \operatorname{Aut}(A)$. Set $w=a \bar{T}_{c} \in W=N_{\bar{G}_{c}}\left(\bar{T}_{c}\right) / \bar{T}_{c} ;$ thus $w \in N_{W}(A)$, and $\left.w\right|_{A}=\left.c_{g}\right|_{A}$.

By the descriptions in Table 6.1, we can factor $\bar{T}_{c}=\bar{T}_{1} \times \bar{T}_{2}$, where γ and each element of $N_{W}(A)$ send each factor to itself, $\left.\gamma\right|_{\bar{T}_{2}}=\mathrm{Id}, A \leq \bar{T}_{1}$, and $\left[C_{W}(A), \bar{T}_{1}\right]=$

1. Since $\sigma(g)=g, \sigma(a) \equiv a\left(\bmod C_{\bar{G}_{c}}(A)\right)$, and so $\tau(w) \equiv w\left(\bmod C_{W}(A)\right)$. Thus $\left.\tau(w)\right|_{\bar{T}_{1}}=\left.w\right|_{\bar{T}_{1}}$ since $C_{W}(A)$ acts trivially on this factor, $\left.\tau(w)\right|_{\bar{T}_{2}}=\left.w\right|_{\bar{T}_{2}}$ since $\left.\gamma\right|_{\bar{T}_{2}}=\mathrm{Id}$, and so $w \in W_{0}=C_{W}(\tau)$.
$N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right) \leq \operatorname{Aut}_{\text {sc }}(A) \operatorname{Aut}_{\operatorname{Aut}(G)}(A)$. By Table 6.1 for some $r, t \geq 1, A=A_{1} \times \cdots \times A_{r}$, where $A_{i} \cong C_{p^{t}}$ for each i. Also, for some $1 \neq s \mid(p-1)$, $\left.\operatorname{Aut}_{W_{0}^{*}}(A) \cong C_{s}\right\rangle \Sigma_{r}$ acts on A via faithful actions of C_{s} on each A_{i} and permutations of the A_{i}.

Let $\operatorname{Aut}_{W_{0}^{*}}^{0}(A) \unlhd \operatorname{Aut}_{W_{0}^{*}}(A)$ and $\operatorname{Aut}_{W_{0}}^{0}(A) \unlhd \operatorname{Aut}_{W_{0}}(A)$ be the subgroups of elements which normalize each cyclic subgroup A_{i}. Thus Aut ${ }_{W_{0}^{*}}^{0}(A) \cong\left(C_{s}\right)^{r}$, and contains Aut $_{W_{0}}^{0}(A)$ with index at most 2.
Case 1: Assume first that $\operatorname{Aut}_{W_{0}}^{0}(A)$ is characteristic in $\operatorname{Aut}_{W_{0}}(A)$. Fix some $\alpha \in N_{\text {Aut }(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right)$. We first show that $\alpha \in \operatorname{Aut}_{W_{0}^{*}}(A) \operatorname{Aut}_{\mathrm{sc}}(A)$.

Since α normalizes $\operatorname{Aut}_{W_{0}}(A)$, it also normalizes $\operatorname{Aut}_{W_{0}}^{0}(A)$. For each $\beta \in$ $\operatorname{Aut}_{W_{0}}^{0}(A),[\beta, A]$ is a product of A_{i} 's. Hence the factors A_{i} are characterized as the minimal nontrivial intersections of such $[\beta, A]$, and are permuted by α. So after composing with an appropriate element of $\operatorname{Aut}_{W_{0}^{*}}(A)$, we can assume that $\alpha\left(A_{i}\right)=A_{i}$ for each i.

After composing α by an element of $\operatorname{Aut}_{\mathrm{sc}}(A)$, we can assume that $\left.\alpha\right|_{A_{1}}=\mathrm{Id}$. Fix $i \neq 1(2 \leq i \leq r)$, let $u \in \mathbb{Z}$ be such that $\left.\alpha\right|_{A_{i}}=\psi_{u}^{A_{i}}=\left(a \mapsto a^{u}\right)$, and choose $w \in \operatorname{Aut}_{W_{0}}(A)$ such that $w\left(A_{1}\right)=A_{i}$. Then $w^{-1} \alpha w \alpha^{-1} \in \operatorname{Aut}_{W_{0}}(A)$ since α normalizes $\operatorname{Aut}_{W_{0}}(A)$, and $\left.\left(w^{-1} \alpha w \alpha^{-1}\right)\right|_{A_{1}}=\psi_{u}^{A_{1}}$. Hence $u^{s} \equiv 1\left(\bmod p^{t}=\left|A_{1}\right|\right)$, and since this holds for each $i, \alpha \in \operatorname{Aut}_{W_{0}^{*}}(A)$.

Thus $N_{\text {Aut }(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right) \leq \operatorname{Aut}_{W_{0}^{*}}(A) \operatorname{Aut}_{\text {sc }}(A)$. By Table 6.1 each element of $\operatorname{Aut}_{W_{0}^{*}}(A)$ extends to some $\varphi \in \operatorname{Aut}_{W^{*}}(\bar{T})$ which commutes with $\left.\sigma\right|_{\bar{T}}$. So $\operatorname{Aut}_{W_{0}^{*}}(A) \leq \operatorname{Aut}_{\operatorname{Aut}(G)}(A)$ by Lemma 3.7, and this finishes the proof of the claim. Case 2: Now assume that $\operatorname{Aut}_{W_{0}}^{0}(A)$ is not characteristic in Aut $W_{0}(A)$. Then $r \leq 4$, and since $p \leq r$, we have $p=3$ and $r=3,4$. Also, $s=2$ since $s \mid(p-1)$ and $s \neq 1$. Thus $r=4$, since $\operatorname{Aut}_{W_{0}}^{0}(A)=O_{2}\left(\operatorname{Aut}_{W_{0}}(A)\right)$ if $r=3$. Thus $\operatorname{Aut}_{W_{0}}(A) \cong$ $C_{2}^{3} \rtimes \Sigma_{4}$: the Weyl group of D_{4}. Also, $m=2$ since $p=3$, so (in the notation used in the tables) $\mu=1, \theta=-1$, and $\kappa=n$. By Table 6.1 $G \cong S O_{8}(q)$ for some $q \equiv 2$ $(\bmod 3)\left(\operatorname{and} W_{0}=W\right)$.

Now, $O_{2}(W) \cong Q_{8} \times_{C_{2}} Q_{8}$, and so $\operatorname{Out}\left(O_{2}(W)\right) \cong \Sigma_{3}$ C_{2}. Under the action of $W / O_{2}(W) \cong \Sigma_{3}$, the elements of order 3 act on both central factors and those of order 2 exchange the factors. (This is seen by computing their centralizers in $O_{2}(W)$.) It follows that $N_{\text {Out }\left(O_{2}(W)\right)}\left(\operatorname{Out}_{W}\left(O_{2}(W)\right)\right) / \operatorname{Out}_{W}\left(O_{2}(W)\right) \cong \Sigma_{3} \cong \Gamma_{G}$, and all classes in this quotient extend to graph automorphisms of $G \cong \operatorname{Spin}_{8}(q)$. So for each $\alpha \in N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W}(A)\right)$, after composing with a graph automorphism of G we can arrange that α commutes with $O_{2}(W)$, and in particular, normalizes Aut ${ }_{W}^{0}(A)$. Hence by the same argument as used in Case $1, \alpha \in \operatorname{Aut}_{\mathrm{sc}}(A) \operatorname{Aut}_{\mathrm{Aut}(G)}(A)$.

This finishes the proof that this σ-setup for G satisfies case (III.3) of Hypotheses 5.1.

Example 6.6. Fix distinct odd primes p and q_{0}, and a prime power $q=q_{0}^{b}$ where b is even and $\operatorname{ord}_{p} q$ is even. Set $G=\operatorname{Spin}_{4 k}^{-}(q)$ for some $k \geq 2$. Let (\bar{G}, σ) be the setup for G of Lemma [6.5, where $\sigma=\psi_{q} \gamma$ for $\gamma \in \operatorname{Aut}(\bar{G})$. In the notation of

Table 6.1, $m=\operatorname{ord}_{p}(q), \mu=m / 2, \theta=-1=\varepsilon, n=2 k$, and $\kappa=[2 k / \mu]=[4 k / m]$. There are three cases to consider:
(a) If $q^{2 k} \equiv-1(\bmod p)$; equivalently, if $m \mid 4 k$ and $\kappa=4 k / m$ is odd, then $\varepsilon=\theta^{\kappa}$, $w_{0}=\left.\gamma\right|_{\bar{T}_{c}}=\tau_{\mu, \theta}^{\kappa}, \operatorname{rk}(A)=\kappa$, and $W_{0}^{*} \cong C_{m} \imath \Sigma_{\kappa}$. Then W_{0}^{*} acts faithfully on A while $w_{0} \in W_{0}^{*} \backslash W_{0}$, and so $\left.\gamma\right|_{A} \notin \operatorname{Aut}_{W_{0}}(A)$. Hence by Proposition 5.16(d), $\bar{\kappa}_{G}$ is split.
(b) If $q^{2 k} \equiv 1(\bmod p)$; equivalently, if $m \mid 4 k$ and $\kappa=4 k / m$ is even, then $\varepsilon \neq$ $\theta^{\kappa},\left.\gamma\right|_{\bar{T}_{c}}=\tau_{\mu, \theta}^{\kappa-1}, \operatorname{rk}(A)=\kappa-1$, and $W_{0}^{*} \cong\left(C_{m} \backslash \Sigma_{\kappa-1}\right) \times H$ where $H \cong$ $\left(C_{2} \succ \Sigma_{\mu}\right)$. Then H acts trivially on A and contains elements in $W_{0}^{*} \backslash W_{0}$, so $\left.\gamma\right|_{A} \in \operatorname{Aut}_{W_{0}}(A)$. Hence $\bar{\kappa}_{G}$ is not split.
(c) If $q^{2 k} \not \equiv \pm 1(\bmod p)$; equivalently, if $m \nmid 4 k$, then in either case (κ even or odd), the factor H in the last column of Table 6.1 is nontrivial, acts trivially on A, and contains elements in $W_{0}^{*} \backslash W_{0}$. Hence $\left.\gamma\right|_{A} \in \operatorname{Aut}_{W_{0}}(A)$ in this case, and $\bar{\kappa}_{G}$ is not split.

We also need the following lemma, which handles the only case of a Chevalley group of exceptional type which we must show satisfies case (III.3) of Hypotheses 5.1.

Lemma 6.7. Set $p=5$, let q be an odd prime power such that $q \equiv \pm 2$ (mod 5), and set $G=E_{8}(q)$. Then G has a σ-setup which satisfies Hypotheses 5.1 (case (III.3).

Proof. We use the notation in 2.2. where q is a power of the odd prime q_{0}, and $\bar{G}=E_{8}\left(\overline{\mathbb{F}}_{q_{0}}\right)$.

By [Brb, Planche VII], the of roots of E_{8} can be given the following form, where $\left\{\varepsilon_{1}, \ldots, \varepsilon_{8}\right\}$ denotes the standard orthonormal basis of \mathbb{R}^{8} :

$$
\Sigma=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq 8\right\} \cup\left\{\left.\frac{1}{2} \sum_{i=1}^{8}(-1)^{m_{i}} \varepsilon_{i} \right\rvert\, \sum_{i=1}^{8} m_{i} \text { even }\right\} \subseteq \mathbb{R}^{8}
$$

By the same reference, the Weyl group W is the group of all automorphisms of \mathbb{R}^{8} which permute $\Sigma\left(A(R)=W(R)\right.$ in the notation of Brb). Give \mathbb{R}^{8} a complex structure by setting $i \varepsilon_{2 k-1}=\varepsilon_{2 k}$ and $i \varepsilon_{2 k}=-\varepsilon_{2 k-1}$, and set $\varepsilon_{k}^{*}=\varepsilon_{2 k-1}$ for $1 \leq k \leq 4$. Multiplication by i permutes Σ, and hence is the action of an element $w_{0} \in W$. Upon writing the elements of Σ with complex coordinates, we get the following equivalent subset $\Sigma^{*} \subseteq \mathbb{C}^{4}$:

$$
\begin{aligned}
& \Sigma^{*}=\left\{(\pm 1 \pm i) \varepsilon_{k}^{*} \mid 1 \leq k \leq 4\right\} \cup\left\{i^{m} \varepsilon_{k}^{*}+i^{n} \varepsilon_{\ell}^{*} \mid 1 \leq k<\ell \leq 4, m, n \in \mathbb{Z}\right\} \\
& \cup\left\{\left.\frac{1+i}{2} \sum_{k=1}^{4} i^{m_{k}} \varepsilon_{k}^{*} \right\rvert\, \sum m_{k} \text { even }\right\} .
\end{aligned}
$$

Let $\mathbb{Z} \Sigma \subseteq \mathbb{R}^{8}$ be the lattice generated by Σ. By Lemma 2.4(d) (and since $(\alpha, \alpha)=2$ for all $\alpha \in \Sigma)$, we can identify $\bar{T} \cong \mathbb{Z} \Sigma \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{q_{0}} \times$ by sending $h_{\alpha}(\lambda)$ to $\alpha \otimes \lambda$ for $\alpha \in \Sigma$ and $\lambda \in \overline{\mathbb{F}}_{q_{0}}$. Set $\Lambda_{0}=\mathbb{Z} \Sigma \cap \mathbb{Z}^{8}$, a lattice in \mathbb{R}^{8} of index 2 in $\mathbb{Z} \Sigma$ and in \mathbb{Z}^{8}. The inclusions of lattices induce homomorphisms

$$
\bar{T} \cong \mathbb{Z} \Sigma \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{q_{0}}^{\times} \stackrel{\chi_{1}}{\longleftrightarrow} \Lambda_{0} \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{q_{0}}^{\times} \xrightarrow{\chi_{2}} \mathbb{Z}^{8} \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{q_{0}}^{\times} \cong\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right)^{8}
$$

each of which is surjective with kernel of order $2\left(\right.$ since $\left.\operatorname{Tor}_{\mathbb{Z}}^{1}\left(\mathbb{Z} / 2, \overline{\mathbb{F}}_{q_{0}}^{\times}\right) \cong \mathbb{Z} / 2\right)$. We can thus identify $\bar{T}=\left(\overline{\mathbb{F}}_{q_{0}}^{\times}\right)^{8}$, modulo 2-power torsion, in a way so that

$$
\alpha=\sum_{i=1}^{8} k_{i} \varepsilon_{i} \in \Sigma, \lambda \in \overline{\mathbb{F}}_{q_{0}}^{\times} \quad \Longrightarrow \quad h_{\alpha}(\lambda)=\left(\lambda^{k_{1}}, \ldots, \lambda^{k_{8}}\right) .
$$

Under this identification, by the formula in Lemma 2.4(cc),

$$
\begin{equation*}
\beta=\sum_{i=1}^{8} \ell_{i} \varepsilon_{i} \in \Sigma \quad \Longrightarrow \quad \theta_{\beta}\left(\lambda_{1}, \ldots, \lambda_{8}\right)=\lambda_{1}^{\ell_{1}} \cdots \lambda_{8}^{\ell_{8}} \tag{1}
\end{equation*}
$$

for $\lambda_{1}, \ldots, \lambda_{8} \in \overline{\mathbb{F}}_{q_{0}}^{\times}$. Also,

$$
w_{0}\left(\lambda_{1}, \ldots, \lambda_{8}\right)=\left(\lambda_{2}^{-1}, \lambda_{1}, \lambda_{4}^{-1}, \lambda_{3}, \ldots, \lambda_{8}^{-1}, \lambda_{7}\right)
$$

for each $\left(\lambda_{1}, \ldots, \lambda_{8}\right)$.
Choose $g_{0} \in N_{\bar{G}}(\bar{T})$ such that $g_{0} \bar{T}=w_{0}$ and $\psi_{q_{0}}\left(g_{0}\right)=g_{0}$ (Lemma 2.9), and set $\gamma=c_{g_{0}} \in \operatorname{Inn}(\bar{G})$. Thus $\sigma=\psi_{q} \circ \gamma=\gamma \circ \psi_{q}, G=C_{\bar{G}}(\sigma)$, and $T=C_{\bar{T}}(\sigma)$. By the Lang-Steinberg theorem [St3, Theorem 10.1], there is $h \in \bar{G}$ such that $g=h \psi_{q}\left(h^{-1}\right)$; then $\sigma=c_{h} \psi_{q} c_{h}^{-1}$ and $G \cong C_{\bar{G}}\left(\psi_{q}\right)=E_{8}(q)$. It remains to check that the setup (\bar{G}, σ) satisfies the list of conditions in Hypotheses 5.1 .

We identify $W_{0}=C_{W}\left(w_{0}\right)$ with the group of \mathbb{C}-linear automorphisms of \mathbb{C}^{4} which permute Σ^{*}. The order of W_{0} is computed in [Ca3, Table 11] (the entry $\Gamma=D_{4}\left(a_{1}\right)^{2}$), but since we need to know more about its structure, we describe it more precisely here. Let $W_{2} \leq G L_{4}(\mathbb{C})$ be the group of monomial matrices with nonzero entries ± 1 or $\pm i$, and with determinant ± 1. Then $W_{2} \leq W_{0},\left|W_{2}\right|=$ $\frac{1}{2} \cdot 4^{4} \cdot 4!=2^{10} \cdot 3$, and W_{2} acts on Σ^{*} with three orbits corresponding to the three subsets in the above description of Σ^{*}. The (complex) reflection of order 2 in the hyperplane orthogonal to $\frac{1+i}{2}\left(\varepsilon_{1}^{*}+\varepsilon_{2}^{*}+\varepsilon_{3}^{*}+\varepsilon_{4}^{*}\right)$ sends $(1+i) \varepsilon_{1}^{*}$ to $\frac{1+i}{2}\left(\varepsilon_{1}^{*}-\varepsilon_{2}^{*}-\varepsilon_{3}^{*}-\varepsilon_{4}^{*}\right)$, and it sends $\left(\varepsilon_{1}^{*}+i \varepsilon_{2}^{*}\right)$ to $\frac{1+i}{2}\left(i^{3} \varepsilon_{1}^{*}+i \varepsilon_{2}^{*}-\varepsilon_{3}^{*}-\varepsilon_{4}^{*}\right)$. Thus W_{0} acts transitively on Σ^{*}.

Let $\bar{\Sigma} \subseteq P\left(\mathbb{C}^{4}\right)$ be the set of projective points representing elements of Σ^{*}, and let $[\alpha] \in \bar{\Sigma}$ denote the class of $\alpha \in \Sigma^{*}$. To simplify notation, we also write $[x]=[\alpha]$ for $x \in \mathbb{C}^{4}$ representing the same point, also when $x \notin \Sigma^{*}$. Let \sim denote the relation on $\bar{\Sigma}:[\alpha] \sim[\beta]$ if $\alpha=\beta$, or if $\alpha \perp \beta$ and the projective line $\langle[\alpha],[\beta]\rangle \subseteq P\left(\mathbb{C}^{4}\right)$ contains four other points in $\bar{\Sigma}$. By inspection, $\left[\varepsilon_{j}^{*}\right] \sim\left[\varepsilon_{k}^{*}\right]$ for all $j, k \in\{1,2,3,4\}$, and these are the only elements $[\alpha]$ such that $[\alpha] \sim\left[\varepsilon_{j}^{*}\right]$ for some j. Since this relation is preserved by W_{0}, and W_{0} acts transitively on $\bar{\Sigma}$, we see that \sim is an equivalence relation on $\bar{\Sigma}$ with 15 classes of four elements each. Set $\Delta=\bar{\Sigma} / \sim$, and let $[\alpha]_{\Delta}$ denote the class of $[\alpha]$ in Δ. Thus $|\bar{\Sigma}|=\frac{1}{4}|\Sigma|=60$ and $|\Delta|=15$. Since W_{2} is the stabilizer subgroup of $\left[\varepsilon_{1}^{*}\right]_{\Delta}$ under the transitive W_{0}-action on Δ, we have $\left|W_{0}\right|=\left|W_{2}\right| \cdot 15=2^{10} \cdot 3^{2} \cdot 5$.

Let $W_{1} \unlhd W_{0}$ be the subgroup of elements which act trivially on Δ. By inspection, $W_{1} \leq W_{2},\left|W_{1}\right|=2^{6}$, and W_{1} is generated by $w_{0}=\operatorname{diag}(i, i, i, i)$, $\operatorname{diag}(1,1,-1,-1), \operatorname{diag}(1,-1,1,-1)$, and the permutation matrices for the permutations (12)(34) and (13)(24). Thus $W_{1} \cong C_{4} \times_{C_{2}} D_{8} \times_{C_{2}} D_{8}$.

By the above computations, $\left|W_{0} / W_{1}\right|=2^{4} \cdot 3^{2} \cdot 5=\left|S p_{4}(2)\right|$. There is a bijection from Δ to the set of maximal isotropic subspaces in $W_{1} / Z\left(W_{1}\right)$ which sends a class
$[\alpha]_{\Delta}$ to the subgroup of those elements in W_{1} which send each of the four projective points in $[\alpha]_{\Delta}$ to itself. Hence for each $w \in C_{W_{0}}\left(W_{1}\right), w$ acts via the identity on Δ, and so $w \in W_{1}$ by definition. Thus W_{0} / W_{1} injects into $\operatorname{Out}\left(W_{1}\right) \cong \Sigma_{6} \times C_{2}$, and injects into the first factor since $Z\left(W_{1}\right)=Z\left(W_{0}\right)\left(\cong C_{4}\right)$. So by counting, $W_{0} / W_{1} \cong \Sigma_{6}$. Also, $W_{1}=O_{2}\left(W_{0}\right)$.

Set $a=v_{5}\left(q^{4}-1\right)=v_{5}\left(q^{2}+1\right)$, and fix $u \in \overline{\mathbb{F}}_{q_{0}}$ of order 5^{a}. Let A be as in Notation 5.2(G): the subgroup of elements in T of 5 -power order. Thus

$$
\begin{equation*}
A=\left\{\left(u_{1}, u_{1}^{q}, u_{2}, u_{2}^{q}, u_{3}, u_{3}^{q}, u_{4}, u_{4}^{q}\right) \mid u_{1}, u_{2}, u_{3}, u_{4} \in\langle u\rangle\right\} \cong\left(C_{5^{a}}\right)^{4} . \tag{2}
\end{equation*}
$$

By (21) and (11), there is no $\beta \in \Sigma$ such that $A \leq \operatorname{Ker}\left(\theta_{\beta}\right)$. Hence $C_{\bar{G}}(A)^{0}=\bar{T}$ by Proposition [2.5 So by Lemma 5.3(b),

$$
\begin{equation*}
N_{G}(A)=N_{G}(T) \quad \text { and } \quad N_{G}(T) / T=W_{0} . \tag{3}
\end{equation*}
$$

We are now ready to check the conditions in Case (III.3) of Hypotheses 5.1.
$N_{G}(T)$ contains a Sylow p-subgroup of G. Let S be a Sylow p-subgroup of $N_{G}(T)$ which contains A. Since $N_{G}(T) / T=W_{0}$ by (3), $A \cong\left(C_{5^{a}}\right)^{4}$, and $W_{0} / O_{2}\left(W_{0}\right) \cong \Sigma_{6},|S|=5^{4 a+1}$. By [St2, Theorem 25] or [Ca, Corollary 10.2.4 \& Proposition 10.2.5], and since $v_{5}\left(q^{k}-1\right)=0$ when $4 \nmid k$ and $v_{5}\left(q^{4 \ell}-1\right)=a+v_{5}(\ell)$ (Lemma 1.13),

$$
v_{5}(|G|)=v_{5}\left(\left(q^{24}-1\right)\left(q^{20}-1\right)\left(q^{12}-1\right)\left(q^{8}-1\right)\right)=4 a+1
$$

Thus $S \in \operatorname{Syl}_{p}(G)$.
$|\gamma|_{\overline{\boldsymbol{T}}} \mid=\operatorname{ord}_{\boldsymbol{p}}(\boldsymbol{q}) \geq 2$ and $\left[\gamma, \psi_{q_{0}}\right]=$ Id. \quad The first is clear, and the second holds since $\gamma=c_{g_{0}}$ where $\psi_{q_{0}}\left(g_{0}\right)=g_{0}$.
$C_{S}\left(\boldsymbol{\Omega}_{1}(\boldsymbol{A})\right)=\boldsymbol{A}$ by the above description of the action of W_{0} on A.
$\boldsymbol{C}_{\boldsymbol{A}}\left(\boldsymbol{O}_{\boldsymbol{p}^{\prime}}\left(\boldsymbol{W}_{\mathbf{0}}\right)\right)=\mathbf{1}$ since $w_{0} \in O_{5^{\prime}}\left(W_{0}\right)$ and $C_{A}\left(w_{0}\right)=1$.
A free $\langle\gamma\rangle$-orbit in $\boldsymbol{\Sigma}$. The subset $\left\{ \pm\left(\varepsilon_{1}+\varepsilon_{3}\right), \pm\left(\varepsilon_{2}+\varepsilon_{4}\right)\right\} \subseteq \Sigma$ is a free $\langle\gamma\rangle$-orbit.
$\operatorname{Aut}_{W_{\mathbf{0}}}(\boldsymbol{A}) \cap \boldsymbol{A u t}_{\mathbf{s c}}(\boldsymbol{A}) \leq\left\langle\left.\gamma\right|_{\boldsymbol{A}}\right\rangle$. Recall that $|\gamma|_{\bar{T}} \mid=4$ and $\left|\operatorname{Aut}_{\mathrm{sc}}(A)\right|=4 \cdot 5^{k}$ for some k, and W_{0} acts faithfully on A. So if this is not true, then there is an element of order 5 in $Z\left(W_{0}\right)$, which is impossible by the above description of W_{0}.
$\operatorname{Aut}_{G}(\boldsymbol{A})=\operatorname{Aut}_{W_{0}}(\boldsymbol{A})$ by (3).
$\boldsymbol{N}_{\text {Aut }(\boldsymbol{A})}\left(\operatorname{Aut}_{W_{0}}(\boldsymbol{A})\right) \leq \operatorname{Aut}_{\mathbf{s c}}(\boldsymbol{A}) \operatorname{Aut}_{W_{0}}(\boldsymbol{A})$. For $j=1,2,3,4$, let $A_{j}<A$ be the cyclic subgroup of all elements as in (2) where $u_{k}=1$ for $k \neq j$. The group W_{0} contains as subgroup C_{2} 〕 Σ_{4} : the group which permutes pairs of coordinates up to sign. So each of the four subgroups A_{j} is the reflection subgroup of some reflection in W_{0}.

For each $\varphi \in C_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right), \varphi\left(A_{j}\right)=A_{j}$ for each j, and $\varphi(a)=a^{n_{j}}$ for some $n_{j} \in\left(\mathbb{Z} / 5^{a}\right)^{\times}$. Also, $n_{1}=n_{2}=n_{3}=n_{4}$ since the A_{j} are permuted transitively by elements of W_{0}, and hence $\varphi \in \operatorname{Aut}_{\text {sc }}(A)$.

Now assume $\varphi \in N_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right)$. Since φ centralizes $Z\left(W_{1}\right)=\left\langle w_{0}\right\rangle=$ $\langle\operatorname{diag}(i, i, i, i)\rangle($ since $\operatorname{diag}(i, i, i, i) \in Z(\operatorname{Aut}(A))),\left.c_{\varphi}\right|_{W_{1}} \in \operatorname{Inn}\left(W_{1}\right)$, and we can assume (after composing by an appropriate element of W_{1}) that $\left[\varphi, W_{1}\right]=1$. So $c_{\varphi} \in \operatorname{Aut}\left(W_{0}\right)$ has the form $c_{\varphi}(g)=g \chi(\bar{g})$, where $\bar{g} \in W_{0} / W_{1} \cong \Sigma_{6}$ is the class of $g \in W_{0}$, and where $\chi \in \operatorname{Hom}\left(W_{0} / W_{1}, Z\left(W_{1}\right)\right) \cong \operatorname{Hom}\left(\Sigma_{6}, C_{4}\right) \cong C_{2}$ is some homomorphism. Since $\left(w_{0}\right)^{2}$ inverts the torus T, composition with $\left(w_{0}\right)^{2}$ does not send reflections (in A) to reflections, and so we must have $c_{\varphi}=\mathrm{Id}_{W_{0}}$. Thus $\varphi \in C_{\operatorname{Aut}(A)}\left(\operatorname{Aut}_{W_{0}}(A)\right)=\operatorname{Aut}_{\mathrm{sc}}(A)\left(\operatorname{modulo~}^{A u t_{W_{0}}}(A)\right)$.

The following lemma now reduces the proof of Theorem B to the cases considered in Chapter 5, together with certain small cases handled at the end of this chapter. As before, when p is a prime and $p \nmid n$, $\operatorname{ord}_{p}(n)$ denotes the multiplicative order of n in \mathbb{F}_{p}^{\times}.

Proposition 6.8. Fix an odd prime p, and assume $G \in \mathfrak{L i e}\left(q_{0}\right)$ is of universal type for some prime $q_{0} \neq p$. Fix $S \in \operatorname{Syl}_{p}(G)$, and assume S is nonabelian. Then there is a prime $q_{0}^{*} \neq p$, a group $G^{*} \in \mathfrak{L i e}\left(q_{0}^{*}\right)$ of universal type, and $S^{*} \in \operatorname{Syl}_{p}\left(G^{*}\right)$, such that $\mathcal{F}_{S}(G) \cong \mathcal{F}_{S^{*}}\left(G^{*}\right)$, and one of the following holds: either
(a) G^{*} has a σ-setup which satisfies Hypotheses 5.1 and [5.11, $G^{*} \cong \mathbb{G}\left(q^{*}\right)$ or ${ }^{2} \mathbb{G}\left(q^{*}\right)$ where q^{*} is a power of q_{0}^{*}, and
(a.1) - $\operatorname{Id} \notin W$ and G^{*} is a Chevalley group, or
(a.2) $-\operatorname{Id} \in W$ and $\operatorname{ord}_{p}\left(q^{*}\right)$ is even
where W is the Weyl group of \mathbb{G}; or
(b) $p=3, q_{0}^{*}=2, G \cong{ }^{3} D_{4}(q)$ or ${ }^{2} F_{4}(q)$ for q some power of q_{0}, and $G^{*} \cong{ }^{3} D_{4}\left(q^{*}\right)$ or ${ }^{2} F_{4}\left(q^{*}\right)$ for q^{*} some power of 2 .
Moreover, if $p=3$ and $G^{*}=F_{4}\left(q^{*}\right)$ where q^{*} is a power of q_{0}^{*}, then we can assume $q_{0}^{*}=2$. In all cases, we can choose G^{*} to be either one of the groups listed in Proposition $1.10(a-e)$, or one of $E_{7}\left(q^{*}\right)$ or $E_{8}\left(q^{*}\right)$ for some $q^{*} \equiv-1(\bmod p)$.

Proof. We can assume that $G=\mathbb{G}(q)$ is one of the groups listed in one of the five cases (a)-(e) of Proposition 1.10. In all cases except 1.10(c), we can also assume that G satisfies Hypotheses 5.11, with $q_{0}=2$ if $p=3$ and $\mathbb{G}=F_{4}$, and with q_{0} odd in cases (a) and (b) of 1.10 If $G=S L_{n}(q)$ or $\operatorname{Spin}_{2 n}^{ \pm}(q)$ where $p \mid(q-1)$, or G is in case (d), then G satisfies Hypotheses 5.1 by Lemma 6.1. If $G \cong S L_{n}(q)$ or $\operatorname{Spin}_{2 n}^{ \pm}(q)$ where $p \nmid(q-1)$, then G satisfies Hypotheses 5.1 by Lemma 6.5 This leaves only case (c) in Proposition 1.10, which corresponds to case (b) here, and case (e) $\left(p=5, G=E_{8}(q), q \equiv \pm 2(\bmod 5)\right)$ where G^{*} satisfies Hypotheses 5.1 by Lemma 6.7

We next show, in cases ($\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$) of Proposition 1.10, that we can arrange for one of the conditions (a.1) or (a.2) to hold. If $-\mathrm{Id} \notin W$, then $\mathbb{G}=A_{n}, D_{n}$ for n odd, or E_{6}, and G is a Chevalley group by the assumptions in cases (a,b,d) of Proposition 1.10. So (a.1) holds. If $-\operatorname{Id} \in W$ and $\operatorname{ord}_{p}(q)$ is even, then (a.2) holds. If $-\operatorname{Id} \in W, \operatorname{ord}_{p}(q)$ is odd, and $G=\mathbb{G}(q)$ is a Chevalley group, then by Theorem 1.8(c), $G \sim_{p} \mathbb{G}\left(q^{*}\right)$ for some $q^{*}=q_{0}^{c}$ such that $\overline{\left\langle q^{*}\right\rangle}=\overline{\langle-q\rangle}$, and $\operatorname{ord}_{p}\left(q^{*}\right)$ is even. So we can replace G by $\mathbb{G}\left(q^{*}\right)$ in this last case, and (a.2) holds.

This leaves the case where $-\operatorname{Id} \in W, \operatorname{ord}_{p}(q)$ is odd, and G is not a Chevalley group. By inspection, the first and third conditions both hold only when $G=$ ${ }^{2} D_{n}(q)$ for n even. So we are in the situation of Proposition 1.10 (b), where we also assume $q^{n} \equiv-1(\bmod p)$. But then $\operatorname{ord}_{p}(q)$ is even, so this case cannot occur.

We now consider the two families of groups which appear in Proposition 6.8(b): those not covered by Hypotheses 5.1.

Proposition 6.9. Let G be one of the groups ${ }^{3} D_{4}(q)$ where q is a prime power prime to $3,{ }^{2} F_{4}\left(2^{2 m+1}\right)$ for $m \geq 0$, or ${ }^{2} F_{4}(2)$ '. Then the 3 -fusion system of G is tame. If $G \cong{ }^{3} D_{4}\left(2^{n}\right)(n \geq 1),{ }^{2} F_{4}\left(2^{2 m+1}\right)(m \geq 0)$, or ${ }^{2} F_{4}(2)^{\prime}$, then κ_{G} is split surjective, and $\operatorname{Ker}\left(\kappa_{G}\right)$ is the subgroup of field automorphisms of order prime to 3 .

Proof. Fix $S \in \operatorname{Syl}_{3}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$.

If G is the Tits group ${ }^{2} F_{4}(2)^{\prime}$, then S is extraspecial of order 3^{3} and exponent 3, so $\operatorname{Out}(S) \cong G L_{2}(3)$. Also, $\operatorname{Out}_{G}(S) \cong D_{8}$ and $\operatorname{Out}_{\text {Aut }(G)}(S) \cong S D_{16}$, since the normalizer in ${ }^{2} F_{4}(2)$ of an element of order 3 (the element t_{4} in $\mathbf{S h}$) has the form $S U_{3}(2): 2 \cong 3_{+}^{1+2}: S D_{16}$ by [Sh, Table IV] or Ma1 Proposition 1.2]. Hence $\operatorname{Out}(\mathcal{F}) \leq N_{\mathrm{Out}(S)}\left(\operatorname{Out}_{G}(S)\right) / \operatorname{Out}_{G}(S)$ has order at most 2 , and $\bar{\kappa}_{G}$ sends $\operatorname{Out}(G) \cong C_{2}\left(\mathbf{G r L}\right.$, Theorem 2]) isomorphically to $\operatorname{Out}(\mathcal{F})$. If $G={ }^{2} F_{4}(2)$, then Out $_{G}(S) \cong S D_{16}$, so $\operatorname{Out}(\mathcal{F})=1$ by a similar argument, and κ_{G} is an isomorphism between trivial groups.

Assume now that $G \cong{ }^{2} F_{4}\left(2^{n}\right)$ for odd $n \geq 3$ or $G \cong{ }^{3} D_{4}(q)$ where $3 \nmid q$. In order to describe the Sylow 3 -subgroups of these groups, set $\zeta=e^{2 \pi i / 3}, R=\mathbb{Z}[\zeta]$, and $\mathfrak{p}=(1-\zeta) R$. Let S_{k} be the semidirect product $R / \mathfrak{p}^{k} \rtimes C_{3}$, where the quotient acts via multiplication by ζ. Explicitly, set

$$
S_{k}=\left\{(x, i) \mid x \in R / \mathfrak{p}^{k}, i \in \mathbb{Z} / 3\right\} \quad \text { and } \quad A_{k}=R / \mathfrak{p}^{k} \times\{0\}
$$

where $(x, i)(y, j)=\left(x+\zeta^{i} y, i+j\right)$. Thus $\left|S_{k}\right|=3^{k+1}$. Set $s=(0,1)$, so that $s(x, 0) s^{-1}=(\zeta x, 0)$ for each $x \in R / \mathfrak{p}^{k}$.

Assume $k \geq 3$, so that A_{k} is the unique abelian subgroup of index three in S_{k}. Set $S=S_{k}$ and $A=A_{k}$ for short. We want to describe $\operatorname{Out}(S)$. Define automorphisms $\xi_{a}\left(a \in\left(R / \mathfrak{p}^{k}\right)^{\times}\right), \omega, \eta$, and ρ by setting

$$
\begin{equation*}
\xi_{a}(x, i)=(x a, i), \quad \eta=\xi_{-1}, \quad \omega(x, i)=(-\bar{x},-i), \quad \rho(x, i)=(x+\lambda(i), i) . \tag{4}
\end{equation*}
$$

Here, $x \mapsto \bar{x}$ means complex conjugation, and $\lambda(i)=1+\zeta+\ldots+\zeta^{i-1}$. Note, when checking that ρ is an automorphism, that $\lambda(i)+\zeta^{i} \lambda(j)=\lambda(i+j)$. Note that $\rho^{3} \in \operatorname{Inn}(S)$: it is (left) conjugation by $\left(1-\zeta^{2}, 0\right)$.

Let $\operatorname{Aut}^{0}(S) \unlhd \operatorname{Aut}(S)$ be the subgroup of automorphisms which induce the identity on $S /[S, S]=S /[s, A]$, and set $\operatorname{Out}^{0}(S)=\operatorname{Aut}^{0}(S) / \operatorname{Inn}(S)$. Each element in $s \cdot[s, A]$ is conjugate to s, and thus each class in $\operatorname{Out}^{0}(S)$ is represented by an automorphism which sends s to itself, which is unique modulo $\left\langle c_{s}\right\rangle$. If $\varphi \in \operatorname{Aut}(S)$ and $\varphi(s)=s$, then $\left.\varphi\right|_{A}$ commutes with c_{s}, thus is R-linear under the identification $A \cong R / \mathfrak{p}^{k}$, and hence $\varphi=\xi_{a}$ for some $a \in 1+\mathfrak{p} / \mathfrak{p}^{k}$. Moreover, since

$$
\left(1+\mathfrak{p} / \mathfrak{p}^{k}\right)^{\times}=\left(1+\mathfrak{p}^{2} / \mathfrak{p}^{k}\right)^{\times} \times\langle\zeta\rangle=\left(1+3 R / \mathfrak{p}^{k}\right)^{\times} \times\langle\zeta\rangle
$$

as multiplicative groups (just compare orders, noting that the groups on the right have trivial intersection), each class in $\operatorname{Out}^{0}(S)$ is represented by ξ_{a} for some unique $a \in 1+3 R / \mathfrak{p}^{k}$.

Since the images of η, ω, and ρ generate $\operatorname{Aut}(S) / \operatorname{Aut}^{0}(S)$ (the group of automorphisms of $S /[s, A] \cong C_{3}^{2}$ which normalize $\left.A /[s, A] \cong C_{3}\right)$, this shows that Out (S) is generated by the classes of the automorphisms in (44). In fact, a straightforward check of the relations among them shows that
$\operatorname{Out}(S) \cong\left(\operatorname{Out}^{0}(S) \rtimes \underset{[\omega]}{C_{2}}\right) \times \underset{[\rho],[\eta]}{\Sigma_{3}} \quad$ where $\quad \operatorname{Out}^{0}(S)=\left\{\left[\xi_{a}\right] \mid a \in\left(1+3 R / \mathfrak{p}^{k}\right)^{\times}\right\}$.
Also, $\omega \xi_{a} \omega^{-1}=\xi_{\bar{a}}$ for $a \in\left(1+3 R / \mathfrak{p}^{k}\right)^{\times}$.
For each $x \in 1+3 R$ such that $\bar{x} \equiv x\left(\bmod \mathfrak{p}^{k}\right)$, we can write $x=r+s \zeta$ with $r, s \in \mathbb{Z}$, and then $s(\zeta-\bar{\zeta}) \in \mathfrak{p}^{k}$, so $s \in \mathfrak{p}^{k-1}$, and $x \in r+s+\mathfrak{p}^{k} \subseteq 1+3 \mathbb{Z}+\mathfrak{p}^{k}$. This proves that

$$
C_{\mathrm{Out}(S)}(\omega)=\left\{\left[\xi_{a}\right] \mid a \in \mathbb{Z}\right\} \times\langle[\omega]\rangle \times\langle[\rho],[\eta]\rangle
$$

For any group G with $S \in \operatorname{Syl}_{3}(G)$ and $S \cong S_{k}$, Out $_{G}(S)$ has order prime to 3 , and hence is a 2 -group and conjugate to a subgroup of $\langle\omega, \eta\rangle \in \operatorname{Syl}_{2}(\operatorname{Out}(S))$. If $\left|\operatorname{Out}_{G}(S)\right|=4$, then we can identify S with S_{k} in a way so that $\operatorname{Out}_{G}(S)=\langle[\omega],[\eta]\rangle$. Then

$$
\begin{aligned}
\operatorname{Out}(\mathcal{F}) & \leq N_{\operatorname{Out}(S)}(\langle[\omega],[\eta]\rangle) /\langle[\omega],[\eta]\rangle \\
& =C_{\operatorname{Out}(S)}(\langle[\omega],[\eta]\rangle) /\langle[\omega],[\eta]\rangle=\left\{\left[\xi_{a}\right] \mid a \in \mathbb{Z}\right\}=\left\langle\left[\xi_{2}\right]\right\rangle,
\end{aligned}
$$

where the first equality holds since $O_{3}(\operatorname{Out}(S))$ has index four in $\operatorname{Out}(S)$.
We are now ready to look at the individual groups. Assume $G={ }^{2} F_{4}(q)$, where $q=2^{n}$ and $n \geq 3$ is odd. By [St1, 3.2-3.6], $\operatorname{Out}(G)$ is cyclic of order n, generated by the field automorphism ψ_{2}. By the main theorem in Ma1, there is a subgroup $\mathcal{N}_{G}\left(T_{8}\right) \cong\left(C_{q+1}\right)^{2} \rtimes G L_{2}(3)$, the normalizer of a maximal torus, which contains a Sylow 3 -subgroup. Hence if we set $k=v_{3}(q+1)=v_{3}\left(4^{n}-1\right)=1+v_{3}(n)$ (Lemma 1.13), we have $S \cong S_{2 k} \cong\left(C_{3^{k}}\right)^{2} \rtimes C_{3}$, and $\operatorname{Out}_{G}(S)=\langle\omega, \eta\rangle$ up to conjugacy. So $\operatorname{Out}(\mathcal{F})$ is cyclic, generated by $\xi_{2}=\kappa_{G}\left(\psi_{2}\right)$. Since $A \cong\left(C_{3^{k}}\right)^{2}$, and since $\xi_{-1} \in \operatorname{Out}_{G}(S),|\operatorname{Out}(\mathcal{F})|=\left|\left[\xi_{2}\right]\right|=3^{k-1}$ where $k-1=v_{3}(n)$. Thus $\bar{\kappa}_{G}$ is surjective, and is split since the Sylow 3 -subgroup of $\operatorname{Out}(G) \cong C_{n}$ is sent isomorphically to $\operatorname{Out}(\mathcal{F})$.

Next assume $G={ }^{3} D_{4}(q)$, where $q=2^{n}$ for $n \geq 1$. By [St1, 3.2-3.6], Out (G) is cyclic of order $3 n$, generated by the field automorphism ψ_{2} (and where the field automorphism $\psi_{2^{n}}$ of order three is also a graph automorphism). Set $k=v_{3}\left(q^{2}-\right.$ 1) $=v_{3}\left(2^{2 n}-1\right)=1+v_{3}(n)\left(\right.$ Lemma 1.13). Then $S \cong S_{2 k+1}$: this follows from the description of the Sylow structure in G in $\mathbf{G L}, 10-1(4)]$, and also from the description (based on [Kl) of its fusion system in [O4 Theorem 2.8] (case (a.ii) of the theorem). Also, $\operatorname{Out}_{G}(S)=\langle\omega, \eta\rangle$ up to conjugacy. So $\operatorname{Out}(\mathcal{F})$ is cyclic, generated by $\xi_{2}=\kappa_{G}\left(\psi_{2}\right)$. Since $A \cong C_{3^{k}} \times C_{3^{k+1}}$, and since $\xi_{-1} \in \operatorname{Out}_{G}(S)$, $|\operatorname{Out}(\mathcal{F})|=\left|\left[\xi_{2}\right]\right|=3^{k}$. Thus $\bar{\kappa}_{G}$ is surjective, and is split since the Sylow 3subgroup of $\operatorname{Out}(G) \cong C_{3 n}$ is sent isomorphically to $\operatorname{Out}(\mathcal{F})$.

By Theorem 1.8(b) and Lemma 1.11(a), for each prime power q with $3 \nmid q$, the 3 -fusion system of ${ }^{3} D_{4}(q)$ is isomorphic to that of ${ }^{3} D_{4}\left(2^{n}\right)$ for some n. By O1, Theorem C], μ_{G} is injective in all cases. Thus the 3 -fusion systems of all of these groups are tame.

APPENDIX A

Injectivity of μ_{G}

by Bob Oliver

Recall that for any finite group G and any $S \in \operatorname{Syl}_{p}(G)$,

$$
\mu_{G}: \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \longrightarrow \operatorname{Out}\left(\mathcal{F}_{S}(G)\right)
$$

is the homomorphism which sends the class of $\beta \in \operatorname{Aut}\left(\mathcal{L}_{S}^{c}(G)\right)$ to the class of $\left.\beta_{S}\right|_{S}$, where β_{S} is the induced automorphism of $\operatorname{Aut}_{\mathcal{L}_{S}^{c}(G)}(S)=N_{G}(S) / O_{p^{\prime}}\left(C_{G}(S)\right)$. We need to develop tools for computing $\operatorname{Ker}\left(\mu_{G}\right)$, taking as starting point AOV, Proposition 4.2].

As usual, for a finite group G and a prime p, a proper subgroup $H<G$ is strongly p-embedded in G if $p||H|$, and $p \nmid| H \cap{ }^{g} H \mid$ for $g \in G \backslash H$. The following properties of groups with strongly embedded subgroups will be needed.

Lemma A.1. Fix a prime p and a finite group G.
(a) If G contains a strongly p-embedded subgroup, then $O_{p}(G)=1$.
(b) If $H<G$ is strongly p-embedded, and $K \unlhd G$ is a normal subgroup of order prime to p such that $K H<G$, then $H K / K$ is strongly p-embedded in G / K.

Proof. (a) See, e.g., AKO Proposition A.7(c)].
(b) Assume otherwise. Thus there is $g \in G \backslash H K$ such that $p \|\left({ }^{g} H K / K\right) \cap$ $(H K / K) \mid$, and hence $x \in{ }^{g} H K \cap H K$ of order p. Then $H \cap K\langle x\rangle$ and ${ }^{g} H \cap K\langle x\rangle$ have order a multiple of p, so there are elements $y \in H$ and $z \in{ }^{g} H$ of order p such that $y \equiv x \equiv z(\bmod K)$.

Since $\langle y\rangle,\langle z\rangle \in \operatorname{Syl}_{p}(K\langle x\rangle)$, there is $k \in K$ such that $\langle y\rangle={ }^{k}\langle z\rangle$. Then $y \in$ $H \cap{ }^{k g} H$, and $k g \notin H$ since $k \in K$ and $g \notin H K$. But this is impossible, since H is strongly p-embedded.

For the sake of possible future applications, we state the next proposition in terms of abstract fusion and linking systems. We refer to AOV, and also to Chapters I. 2 and III. 4 in AKO, for the basic definitions. Recall that if \mathcal{F} is a fusion system over a finite p-group S, and $P \leq S$, then

- P is \mathcal{F}-centric if $C_{S}(Q) \leq Q$ for each Q which is \mathcal{F}-conjugate to P;
- P is fully normalized in \mathcal{F} if $\left|N_{S}(P)\right| \geq\left|N_{S}(Q)\right|$ whenever Q is \mathcal{F}-conjugate to P; and
- P is \mathcal{F}-essential if $P<S, P$ is \mathcal{F}-centric and fully normalized in \mathcal{F}, and if $\operatorname{Out}_{\mathcal{F}}(P)$ contains a strongly p-embedded subgroup.

For any saturated fusion system \mathcal{F} over a finite p-group S, set

$$
\begin{aligned}
\widehat{\mathcal{Z}}(\mathcal{F})= & \{E \leq S \mid E \text { elementary abelian, fully normalized in } \mathcal{F}, \\
& \left.E=\Omega_{1}\left(Z\left(C_{S}(E)\right)\right), \operatorname{Aut}_{\mathcal{F}}(E) \text { has a strongly } p \text {-embedded subgroup }\right\} .
\end{aligned}
$$

The following proposition is our main tool for proving that $\mu_{\mathcal{L}}$ is injective in certain cases. Point (a) will be used to handle the groups $\operatorname{Spin}_{n}^{ \pm}(q)$, point (c) the linear and symplectic groups, and point (b) the exceptional Chevalley groups.

Proposition A.2. Fix a saturated fusion system \mathcal{F} over a p-group S and an associated centric linking system \mathcal{L}. Let $E_{1}, \ldots, E_{k} \in \widehat{\mathcal{Z}}(\mathcal{F})$ be such that each $E \in \widehat{\mathcal{Z}}(\mathcal{F})$ is \mathcal{F}-conjugate to E_{i} for some unique i. For each i, set $P_{i}=C_{S}\left(E_{i}\right)$ and $Z_{i}=Z\left(P_{i}\right)$. Then the following hold.
(a) If $k=0(\widehat{\mathcal{Z}}(\mathcal{F})=\varnothing)$, then $\operatorname{Ker}\left(\mu_{\mathcal{L}}\right)=1$.
(b) If $k=1, E_{1} \unlhd S$, and $\operatorname{Aut}_{\mathcal{F}}\left(\Omega_{1}(Z(S))\right)=1$, then $\operatorname{Ker}\left(\mu_{\mathcal{L}}\right)=1$.
(c) Assume, for each $\left(g_{i}\right)_{i=1}^{k} \in \prod_{i=1}^{k} C_{Z_{i}}\left(\operatorname{Aut}_{S}\left(P_{i}\right)\right)$, that there is an element $g \in$ $C_{Z(S)}\left(\operatorname{Aut}_{\mathcal{F}}(S)\right)$ such that $g_{i} \in g \cdot C_{Z_{i}}\left(\operatorname{Aut}_{\mathcal{F}}\left(P_{i}\right)\right)$ for each i. Then $\operatorname{Ker}\left(\mu_{\mathcal{L}}\right)=$ 1.
(d) If $\alpha \in \operatorname{Aut}(\mathcal{L})$ is the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$, and on $\operatorname{Aut}_{\mathcal{L}}\left(P_{i}\right)$ for each $1 \leq i \leq k$, then $\alpha=\operatorname{Id}_{\mathcal{L}}$.

Proof. We first prove point (d). The other three points then follow quickly from that together with AOV Proposition 4.2].

We will need to refer a few times to the extension axiom for fusion systems, as stated, e.g., in AKO Proposition I.2.5]. As one special case, this says that for $P \leq S$ and $P C_{S}(P) \leq Q \leq N_{S}(P)$, each automorphism in $N_{\operatorname{Aut}_{\mathcal{F}}(P)}\left(\operatorname{Aut}_{Q}(P)\right)$ extends to one in $\operatorname{Aut}_{\mathcal{F}}(Q)$ (a consequence of the Sylow theorems when $\mathcal{F}=\mathcal{F}_{S}(G)$ for $S \in \operatorname{Syl}_{p}(G)$).
(d) Fix $\alpha \in \operatorname{Aut}(\mathcal{L})$ such that $\alpha_{S}=\operatorname{Id}_{\operatorname{Aut}_{\mathcal{L}}(S)}$. By AOV Proposition 4.2], there are elements $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{S}(P)\right)$, defined for each $P \in \operatorname{Ob}(\mathcal{L})$ which is fully normalized, such that
(i) $\quad \alpha_{P} \in \operatorname{Aut}\left(\operatorname{Aut}_{\mathcal{L}}(P)\right)$ is conjugation by $\llbracket g_{P} \rrbracket_{P}$; and
(ii) $\quad \alpha_{P}=\operatorname{Id}$ if and only if $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)$.

Note that if we are in an abstract linking system, $\llbracket g_{P} \rrbracket_{P} \in \operatorname{Aut}_{\mathcal{L}}(P)$ should be replaced by $\delta_{P}\left(g_{P}\right)$. Furthermore, for each such P and each $\psi \in \operatorname{Aut}_{\mathcal{L}}(P)$,

$$
\begin{equation*}
\alpha_{P}(\psi)=\psi \quad \Longleftrightarrow \quad \pi(\psi)\left(g_{P}\right)=g_{P} \tag{1}
\end{equation*}
$$

where $\pi: \mathcal{L} \longrightarrow \mathcal{F}$ denotes the canonical functor (so $\pi(\llbracket g \rrbracket)=c_{g}$ if $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$ and $\left.\mathcal{F}=\mathcal{F}_{S}(G)\right)$. By (i) above, $\alpha_{P}(\psi)=\psi$ if and only if ψ commutes with $\llbracket g_{P} \rrbracket_{P}$ in $\operatorname{Aut}_{\mathcal{L}}(P)$, and this is equivalent to $\pi(\psi)\left(g_{P}\right)=g_{P}$ by axiom (C) in the definition of a linking system (see, e.g., AKO Definition III.4.1]) and since ($g \mapsto \llbracket g \rrbracket_{P}$) is injective. We leave it as an easy exercise to check this when $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$ and $\psi=\llbracket h \rrbracket_{P}$ for some $h \in N_{G}(P)$ (note that $\left[h, g_{P}\right] \in Z(P)$ since $g_{P} \in Z(P)$).

Now assume $\alpha_{P_{i}}$ is the identity on $\operatorname{Aut}_{\mathcal{L}}\left(P_{i}\right)$ for each $1 \leq i \leq k$. If $\alpha \neq \operatorname{Id}_{\mathcal{L}}$, then by Alperin's fusion theorem for linking systems (see AOV Theorem 4.1]), there is $Q<S$ such that $\alpha_{Q} \neq \mathrm{Id}$, while α is the identity on $\operatorname{Mor}_{\mathcal{L}}\left(P, P^{*}\right)$ for all $P, P^{*} \in \operatorname{Ob}(\mathcal{L})$ such that $|P|,\left|P^{*}\right|>|Q|$. Also, for each $Q^{*} \in Q^{\mathcal{F}}$, there
is (by Alperin's fusion theorem again) an isomorphism $\chi \in \operatorname{Iso}_{\mathcal{L}}\left(Q, Q^{*}\right)$ which is a composite of isomorphisms each of which extends to an isomorphism between strictly larger subgroups, and hence is such that $\alpha(\chi)=\chi$. Thus

$$
\begin{equation*}
Q^{*} \in Q^{\mathcal{F}} \quad \Longrightarrow \quad \alpha_{Q^{*}} \neq \mathrm{Id} \tag{2}
\end{equation*}
$$

Set $E=\Omega_{1}(Z(Q))$. Let $\varphi \in \operatorname{Hom}_{\mathcal{F}}\left(N_{S}(E), S\right)$ be such that $\varphi(E)$ is fully normalized (cf. [AKO, Lemma I.2.6(c)]). Then $N_{S}(Q) \leq N_{S}(E)$, so $\left|N_{S}(\varphi(Q))\right| \geq$ $\left|N_{S}(Q)\right|$, and $\varphi(Q)$ is fully normalized since Q is. Since $\alpha_{Q^{*}} \neq \mathrm{Id}$ by (2), we can replace Q by Q^{*} and E by E^{*}, and arrange that Q and E are both fully normalized in \mathcal{F} (and Q is still \mathcal{F}-essential).

We will show that $Q=C_{S}(E)$ and $E \in \widehat{\mathcal{Z}}(\mathcal{F})$. Then $E \in\left(E_{i}\right)^{\mathcal{F}}$ for some unique $1 \leq i \leq k$, and $Q \in\left(P_{i}\right)^{\mathcal{F}}$ by the extension axiom (and since E and E_{i} are both fully centralized). But then $\alpha_{P_{i}} \neq$ Id by (2), contradicting the original assumption about α. We conclude that $\alpha=\mathrm{Id}$, finishing the proof of (d).

Set $\Gamma=\operatorname{Aut}_{\mathcal{F}}(Q)$, and set

$$
\begin{aligned}
& \Gamma_{0}=C_{\Gamma}(E)=\left\{\varphi \in \operatorname{Aut}_{\mathcal{F}}(Q)|\varphi|_{E}=\operatorname{Id}_{E}\right\} \unlhd \Gamma \\
& \left.\Gamma_{1}=\langle\varphi \in \Gamma| \varphi=\left.\bar{\varphi}\right|_{Q} \text { for some } \bar{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(R, S), R>Q\right\rangle
\end{aligned}
$$

Then $\operatorname{Aut}_{S}(Q) \leq \Gamma_{1}$, since each element of $\operatorname{Aut}_{S}(Q)$ extends to $N_{S}(Q)$ and $N_{S}(Q)>$ Q (see [Sz1, Theorem 2.1.6]). Hence

$$
\Gamma_{0} \Gamma_{1}=O^{p}\left(\Gamma_{0}\right) \cdot \operatorname{Aut}_{S}(Q) \cdot \Gamma_{1}=O^{p}\left(\Gamma_{0}\right) \Gamma_{1}
$$

For each $\varphi \in \Gamma_{0}$ of order prime to $p,\left.\varphi\right|_{Z(Q)}=\operatorname{Id}_{Z(Q)}$ since φ is the identity on $E=\Omega_{1}(Z(Q))$ (cf. G Theorem 5.2.4]). Thus $g_{Q} \in C_{Z(Q)}\left(O^{p}\left(\Gamma_{0}\right)\right)$. If $\varphi \in$ $\operatorname{Aut}_{\mathcal{F}}(Q)$ extends to $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(R, S)$ for some $R>Q$, then by the maximality of Q, $\alpha(\bar{\psi})=\bar{\psi}$ for each $\bar{\psi} \in \operatorname{Mor}_{\mathcal{L}}(R, S)$ such that $\pi(\bar{\psi})=\bar{\varphi}$, and since α commutes with restriction (it sends inclusions to themselves), α_{Q} is the identity on $\left.\bar{\psi}\right|_{Q, Q} \in \pi_{Q}^{-1}(\varphi)$. So by (1), $\varphi\left(g_{Q}\right)=g_{Q}$. Thus $\varphi\left(g_{Q}\right)=g_{Q}$ for all $\varphi \in \Gamma_{1}$. Since $\alpha_{Q} \neq \mathrm{Id}$ by assumption, there is some $\varphi \in \operatorname{Aut}_{\mathcal{F}}(Q)$ such that $\varphi\left(g_{Q}\right) \neq g_{Q}$ (by (11) again), and we conclude that

$$
\begin{equation*}
g_{Q} \in C_{Z(Q)}\left(\Gamma_{0} \Gamma_{1}\right) \quad \text { and } \quad \Gamma_{0} \Gamma_{1}<\Gamma=\operatorname{Aut}_{\mathcal{F}}(Q) \tag{3}
\end{equation*}
$$

Set $Q^{*}=N_{C_{S}(E)}(Q) \geq Q . \quad \operatorname{Then}_{\operatorname{Aut}_{Q^{*}}}(Q)=\Gamma_{0} \cap \operatorname{Aut}_{S}(Q) \in \operatorname{Syl}_{p}\left(\Gamma_{0}\right)$ since $\operatorname{Aut}_{S}(Q) \in \operatorname{Syl}_{p}(\Gamma)$, and by the Frattini argument, $\Gamma=N_{\Gamma}\left(\operatorname{Aut}_{Q^{*}}(Q)\right) \Gamma_{0}$. If $Q^{*}>Q$, then for each $\varphi \in N_{\Gamma}\left(\operatorname{Aut}_{Q^{*}}(Q)\right), \varphi$ extends to $\bar{\varphi} \in \operatorname{Aut}_{\mathcal{F}}\left(Q^{*}\right)$ by the extension axiom. Thus $N_{\Gamma}\left(\operatorname{Aut}_{Q^{*}}(Q)\right) \leq \Gamma_{1}$ in this case, so $\Gamma=\Gamma_{1} \Gamma_{0}$, contradicting (3). We conclude that $Q^{*}=N_{C_{S}(E)}(Q)=Q$, and hence that $C_{S}(E)=Q$ (cf. [Sz1, Theorem 2.1.6]).

The homomorphism $\Gamma=\operatorname{Aut}_{\mathcal{F}}(Q) \longrightarrow \operatorname{Aut}_{\mathcal{F}}(E)$ induced by restriction is surjective by the extension axiom, so $\operatorname{Aut}_{\mathcal{F}}(E) \cong \Gamma / \Gamma_{0}$. By AKO, Proposition I.3.3(b)], $\Gamma_{1} / \operatorname{Inn}(Q)$ is strongly p-embedded in $\Gamma / \operatorname{Inn}(Q)=\operatorname{Out}_{\mathcal{F}}(Q)$; and $\Gamma_{0} \Gamma_{1}<$ Γ by (3). Also, $p \nmid\left|\Gamma_{0} / \operatorname{Inn}(Q)\right|$, since otherwise we would have $\Gamma_{1} \geq N_{\Gamma}(T)$ for some $T \in \operatorname{Syl}_{p}\left(\Gamma_{0}\right)$, in which case $\Gamma_{1} \Gamma_{0} \geq N_{\Gamma}(T) \Gamma_{0}=\Gamma$ by the Frattini argument. Thus $\Gamma_{1} \Gamma_{0} / \Gamma_{0}$ is strongly p-embedded in $\Gamma / \Gamma_{0} \cong \operatorname{Aut}_{\mathcal{F}}(E)$ by Lemma A.1(b).

Now, $\Omega_{1}\left(Z\left(C_{S}(E)\right)\right)=\Omega_{1}(Z(Q))=E$, and thus $E \in \widehat{\mathcal{E}}(\mathcal{F})$. We already showed that this implies (d).
(c) Now assume that the hypothesis in (c) holds, and fix $[\alpha] \in \operatorname{Ker}\left(\mu_{\mathcal{L}}\right)$. By AOV Proposition 4.2], there is $\alpha \in \operatorname{Aut}(\mathcal{L})$ in the class $[\alpha]$ such that $\alpha_{S}=\operatorname{Id}$. For
each $1 \leq i \leq k$, let $g_{P_{i}} \in C_{Z\left(P_{i}\right)}\left(\operatorname{Aut}_{S}\left(P_{i}\right)\right)$ be as in the proof of (d). By assumption, there is $g \in C_{Z(S)}\left(\operatorname{Aut} \mathcal{F}_{\mathcal{F}}(S)\right)$ such that $g_{P_{i}} \equiv g\left(\bmod C_{Z\left(P_{i}\right)}\left(\operatorname{Aut}_{\mathcal{F}}\left(P_{i}\right)\right)\right)$ for each i.

Let $\beta \in \operatorname{Aut}(\mathcal{L})$ be conjugation by $\llbracket g \rrbracket_{S} \in \operatorname{Aut}_{S}(\mathcal{L})$ and its restrictions (or by $\delta_{S}(g)$ if \mathcal{L} is an abstract linking system). Upon replacing α by $\beta^{-1} \circ \alpha$ and hence $g_{P_{i}}$ by $g^{-1} g_{P_{i}}$ for each i, we can arrange that $g_{P_{i}} \in C_{Z\left(P_{i}\right)}\left(\operatorname{Aut}_{\mathcal{F}}\left(P_{i}\right)\right)$ for each i, and hence by (ii) that $\alpha_{P_{i}}=\operatorname{Id}$ for each i. Then $\alpha=\operatorname{Id}$ by (d), so $[\alpha]=1$. Thus $\operatorname{Ker}\left(\mu_{\mathcal{L}}\right)=1$, proving (c).
(a) This is a special case of (c).
(b) If $k=1, E_{1} \unlhd S$, and $\operatorname{Aut}_{\mathcal{F}}\left(\Omega_{1}(Z(S))\right)=1$, then the $\operatorname{group}^{\operatorname{Out}_{\mathcal{F}}(S)}$ of order prime to p acts trivially on $\Omega_{1}(Z(S))$, and hence acts trivially on $Z(S)$ (cf. [G] Theorem 5.2.4]). Also, $P_{1}=C_{S}\left(E_{1}\right) \unlhd S$, so $C_{Z_{1}}\left(\operatorname{Aut}_{S}\left(P_{1}\right)\right)=Z(S)=$ $C_{Z(S)}\left(\operatorname{Aut}_{\mathcal{F}}(S)\right)$, and $\operatorname{Ker}\left(\mu_{\mathcal{L}}\right)=1$ by (c).

A.1. Classical groups of Lie type in odd characteristic

Throughout this section, we fix an odd prime power q and an integer $n \geq 1$. We want to show $\operatorname{Ker}\left(\mu_{G}\right)=1$ when G is one of the quasisimple classical groups of universal type over \mathbb{F}_{q}. By Theorem 1.8(d), we need not consider the unitary groups.

Proposition A.3. Fix an odd prime power q. Let G be isomorphic to one of the quasisimple groups $S L_{n}(q), S p_{n}(q)(n=2 m)$, or $\operatorname{Spin}_{n}^{ \pm}(q)(n \geq 3)$. Then $\operatorname{Ker}\left(\mu_{G}\right)=1$.

Proof. Let V, \mathfrak{b}, and $\widehat{G}=\operatorname{Aut}(V, \mathfrak{b})$ be such that $G=[\widehat{G}, \widehat{G}]$ if $G \cong S p_{n}(q)$ or $G \cong S L_{n}(q)$, and $G /\langle z\rangle=[\widehat{G}, \widehat{G}]$ for some $z \in Z(\widehat{G})$ if $G \cong \operatorname{Spin}_{n}^{ \pm}(q)$ (where $z \in Z(G))$. Thus V is a vector space of dimension n over the field $K=\mathbb{F}_{q}, \mathfrak{b}$ is a trivial, symplectic, or quadratic form, and \widehat{G} is one of the groups $G L_{n}(q), S p_{2 n}(q)$, or $O_{n}^{ \pm}(q)$.

Fix $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. Set $\widehat{\mathcal{Z}}=\widehat{\mathcal{Z}}(\mathcal{F})$ for short.
Case 1: Assume $G=\operatorname{Spin}(V, \mathfrak{b})$, where \mathfrak{b} is nondegenerate and symmetric. Set $Z=Z(G)$, and let $z \in Z$ be such that $G /\langle z\rangle=\Omega(V, \mathfrak{b})$. We claim that $\widehat{\mathcal{Z}}=\varnothing$ in this case, and hence that $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition A.2 (a).

Fix an elementary abelian 2-subgroup $E \leq G$ where $E \geq Z$. Let $V=\bigoplus_{i=1}^{m} V_{i}$ be the decomposition as a sum of eigenspaces for the action of E on V. Fix indices $j, k \in\{1, \ldots, m\}$ such that either $\operatorname{dim}\left(V_{j}\right) \geq 2$, or the subspaces have the same discriminant (modulo squares). (Since $\operatorname{dim}(V) \geq 3$, this can always be done.) Then there is an involution $\gamma \in S O(V, \mathfrak{b})$ such that $\gamma\left(V_{i}\right)=V_{i}$ for all $i,\left.\gamma\right|_{V_{i}}=\operatorname{Id}$ for $i \neq j, k, \operatorname{det}\left(\left.\gamma\right|_{V_{j}}\right)=\operatorname{det}\left(\left.\gamma\right|_{V_{k}}\right)=-1$, and such that the (-1)eigenspace of γ has discriminant a square. This last condition ensures that $\gamma \in$ $\Omega(V, \mathfrak{b})$ (cf. [LO, Lemma A.4(a)]), so we can lift it to $g \in G$. Then for each $x \in E$, $c_{g}(x)=x$ if x has the same eigenvalues on V_{j} and V_{k}, and $c_{g}(x)=z x$ otherwise (see, e.g., LO Lemma A.4(c)]). Since z is fixed by all elements of $\operatorname{Aut}_{\mathcal{F}}(E)$, $c_{g} \in O_{2}\left(\operatorname{Aut}_{\mathcal{F}}(E)\right)$, and hence $\operatorname{Aut}_{\mathcal{F}}(E)$ has no strongly 2 -embedded subgroups by Lemma A. 1 (a). Thus $E \notin \widehat{\mathcal{Z}}$.
Case 2: Now assume G is linear or symplectic, and fix $S \in \operatorname{Syl}_{2}(G)$. For each $\mathcal{V}=\left\{V_{1}, \ldots, V_{k}\right\}$ such that $V=\bigoplus_{i=1}^{k} V_{i}$, and such that $V_{i} \perp V_{j}$ for $i \neq j$ if G is symplectic, set

$$
E(\mathcal{V})=\left\{\varphi \in G|\varphi|_{V_{i}}= \pm \operatorname{Id} \text { for each } i\right\} .
$$

We claim that each subgroup in $\widehat{\mathcal{Z}}$ has this form. To see this, fix $E \in \widehat{\mathcal{Z}}$, and let $\mathcal{V}=\left\{V_{1}, \ldots, V_{k}\right\}$ be the eigenspaces for the nonzero characters of E. Then $E \leq E(\mathcal{V}), V=\bigoplus_{i=1}^{k} V_{i}$, and this is an orthogonal decomposition if G is symplectic. Also, $C_{\widehat{G}}(E)$ is the product of the groups $\operatorname{Aut}\left(V_{i},\left.\mathfrak{b}\right|_{V_{i}}\right)$. Since $E=\Omega_{1}(Z(P))$ where $P=C_{S}(E), E$ contains the 2-torsion in the center of $C_{G}(E)$, and thus $E=E(\mathcal{V})$. Furthermore, the action of P on each V_{i} must be irreducible (otherwise $\left.\Omega_{1}(Z(P))>E\right)$, so $\operatorname{dim}\left(V_{i}\right)$ is a power of 2 for each i.

Again assume $E=E(\mathcal{V}) \in \widehat{\mathcal{Z}}$ for some \mathcal{V}. Then $\operatorname{Aut}_{\widehat{G}}(E)$ is a product of symmetric groups: if \mathcal{V} contains n_{i} subspaces of dimension i for each $i \geq 1$, then Aut $_{\widehat{G}}(E(\mathcal{V})) \cong \prod_{i \geq 1} \Sigma_{n_{i}}$. Each such permutation can be realized by a self map of determinant one (if G is linear), so $\operatorname{Aut}_{G}(E)=\operatorname{Aut}_{\widehat{G}}(E)$. Since Aut ${ }_{G}(E)$ contains a strongly 2 -embedded subgroup by definition of $\widehat{\mathcal{Z}}$ (and since a direct product of groups of even order contains no strongly 2 -embedded subgroup), $\operatorname{Aut}_{G}(E)=$ $\operatorname{Aut}_{\widehat{G}}(E) \cong \Sigma_{3}$.

Write $n=\operatorname{dim}(V)=2^{k_{0}}+2^{k_{1}}+\ldots+2^{k_{m}}$, where $0 \leq k_{0}<k_{1}<\cdots<k_{m}$. There is an (orthogonal) decomposition $V=\bigoplus_{i=0}^{m} V_{i}$, where S acts irreducibly on each V_{i}, and where $\operatorname{dim}\left(V_{i}\right)=2^{k_{i}}$ (see [CF, Theorem 1]). For each $1 \leq i \leq m$, fix an (orthogonal) decomposition \mathcal{W}_{i} of V_{i} whose components have dimensions $2^{k_{i-1}}, 2^{k_{i-1}}, 2^{k_{i-1}+1}, \ldots, 2^{k_{i}-1}$, and set

$$
\mathcal{V}_{i}=\left\{V_{j} \mid j \neq i\right\} \cup \mathcal{W}_{i}
$$

and $E_{i}=E\left(\mathcal{V}_{i}\right)$. Thus \mathcal{V}_{i} contains exactly three subspaces of dimension $2^{k_{i-1}}$, and the dimensions of the other subspaces are distinct. Hence $\operatorname{Aut}_{G}\left(E_{i}\right) \cong \Sigma_{3}$, and $E_{i} \in \widehat{\mathcal{Z}}$. Conversely, by the above analysis (and since the conjugacy class of $E \in \widehat{\mathcal{Z}}$ is determined by the dimensions of its eigenspaces), each subgroup in $\widehat{\mathcal{Z}}$ is G-conjugate to one of the E_{i}.

For each $1 \leq i \leq m$, set $P_{i}=C_{S}\left(E_{i}\right)$ and $Z_{i}=Z\left(P_{i}\right)$ (so $\left.E_{i}=\Omega_{1}\left(Z_{i}\right)\right)$. Since each element of $N_{G}\left(P_{i}\right) \leq N_{G}\left(E_{i}\right)$ permutes members of \mathcal{V}_{i} of equal dimension, and the elements of $N_{S}\left(P_{i}\right)$ do so only within each of the V_{j}, we have

$$
\begin{align*}
Z_{i} & =\left\{z \in G|z|_{X}=\lambda_{X}^{(z)} \operatorname{Id}_{X} \text { for all } X \in \mathcal{V}_{i}, \text { some } \lambda_{X}^{(z)} \in O_{2}\left(\mathbb{F}_{q}^{\times}\right)\right\} \tag{4}\\
C_{Z_{i}}\left(\operatorname{Aut}_{S}\left(P_{i}\right)\right) & =\left\{z \in Z_{i} \mid \lambda_{X_{i}}^{(z)}=\lambda_{X_{i}^{\prime}}^{(z)}\right\} \\
C_{Z_{i}}\left(\operatorname{Aut}_{G}\left(P_{i}\right)\right) & =\left\{z \in Z_{i} \mid \lambda_{X_{i}}^{(z)}=\lambda_{X_{i}^{\prime}}^{(z)}=\lambda_{V_{i-1}}^{(z)}\right\},
\end{align*}
$$

where X_{i}, X_{i}^{\prime}, and V_{i-1} are the three members of the decomposition \mathcal{V}_{i} of dimension $2^{k_{i-1}}$ (and $\left.X_{i}, X_{i}^{\prime} \in \mathcal{W}_{i}\right)$.

Fix $\left(g_{i}\right)_{i=1}^{m} \in \prod_{i=1}^{m} C_{Z_{i}}\left(\operatorname{Aut}_{S}\left(P_{i}\right)\right)$. Then $g_{i} \in C_{Z_{i}}\left(\operatorname{Aut}_{G}\left(P_{i}\right)\right)$ if and only if $\lambda_{V_{i-1}}^{\left(g_{i}\right)}=\lambda_{X_{i}}^{\left(g_{i}\right)}$. Choose $g \in \widehat{G}$ such that $\left.g\right|_{V_{i}}=\eta_{i} \cdot$ Id for each i, where the $\eta_{i} \in O_{2}\left(\mathbb{F}_{q}^{\times}\right)$ are chosen so that $\eta_{i} / \eta_{i-1}=\lambda_{X_{i}}^{\left(g_{i}\right)} / \lambda_{V_{i-1}}^{\left(g_{i}\right)}$ for each $1 \leq i \leq m$. If G is linear, then $\operatorname{det}(g)=\theta^{2^{k_{0}}}$ for some $\theta \in O_{2}\left(\mathbb{F}_{q}^{\times}\right)$, and upon replacing g by $g \circ \theta^{-2^{k_{0}} / n} \operatorname{Id}_{V}$ (recall $\left.k_{0}=v_{2}(n)\right)$ we can assume $g \in G$. Then $g \in C_{Z(S)}\left(\operatorname{Aut}_{G}(S)\right)$ since it is a multiple of the identity on each V_{i} and has 2-power order. By construction and (4), $g \equiv g_{i}$ $\left(\bmod C_{Z_{i}}\left(\operatorname{Aut}_{G}\left(P_{i}\right)\right)\right)$ for each i; so $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition A.2(c).

A.2. Exceptional groups of Lie type in odd characteristic

Throughout this section, q_{0} is an odd prime, and q is a power of q_{0}. We show that $\operatorname{Ker}\left(\mu_{G}\right)=1$ when G is one of the groups $G_{2}(q), F_{4}(q), E_{6}(q), E_{7}(q)$, or $E_{8}(q)$ and is of universal type.

The following proposition is a special case of [GLS3, Theorem 2.1.5], and is stated and proven explicitly in [02, Proposition 8.5]. It describes, in many cases, the relationship between conjugacy classes and normalizers in a connected algebraic group and those in the subgroup fixed by a Steinberg endomorphism.

Proposition A.4. Let \bar{G} be a connected algebraic group over $\overline{\mathbb{F}}_{q_{0}}$, let σ be a Steinberg endomorphism of \bar{G}, and set $G=C_{\bar{G}}(\sigma)$. Let $H \leq G$ be any subgroup, and let \mathcal{H} be the set of G-conjugacy classes of subgroups \bar{G}-conjugate to H. Let $N_{\bar{G}}(H)$ act on $\pi_{0}\left(C_{\bar{G}}(H)\right)$ by sending g to $x g \sigma(x)^{-1}\left(\right.$ for $\left.x \in N_{\bar{G}}(H)\right)$. Then there is a bijection

$$
\omega: \mathcal{H} \xrightarrow{\cong} \pi_{0}\left(C_{\bar{G}}(H)\right) / N_{\bar{G}}(H),
$$

defined by setting $\omega\left(\left[{ }^{x} H\right]\right)=\left[x^{-1} \sigma(x)\right]$ whenever ${ }^{x} H \leq C_{\bar{G}}(\sigma)$. Also, for each $x \in \bar{G}$ such that ${ }^{x} H \leq G, \operatorname{Aut}_{G}\left({ }^{x} H\right)$ is isomorphic to the stabilizer of $\left[x^{-1} \sigma(x)\right] \in$ $\pi_{0}\left(C_{\bar{G}}(H)\right) / C_{\bar{G}}(H)$ under the action of $\mathrm{Aut}_{\bar{G}}(H)$ on this set.

Since we always assume \bar{G} is of universal type in this section, the group $G=$ $C_{\bar{G}}(\sigma)$ of Proposition A.4 is equal to the group $G=O^{q_{0}^{\prime}}\left(C_{\bar{G}}(\sigma)\right)$ of Definition 2.1 and Notation 2.2 ,

The following definitions will be useful when applying Proposition A.4 For any finite group G, set

$$
\begin{aligned}
\mathcal{S E}(G) & =\{H \leq G \mid H \text { has a strongly } 2 \text {-embedded subgroup }\} \\
\delta(G) & = \begin{cases}\min \{[G: H] \mid H \in \mathcal{S E}(G)\} & \text { if } \mathcal{S E}(G) \neq \varnothing \\
\infty & \text { if } \mathcal{S E}(G)=\varnothing\end{cases}
\end{aligned}
$$

Thus by Proposition A.4 if $H<\bar{G}$ is such that $\left|\pi_{0}\left(C_{\bar{G}}(H)\right)\right|>\delta\left(\operatorname{Out}_{\bar{G}}(H)\right)$, then no subgroup $H^{*} \leq C_{\bar{G}}(\sigma)$ which is \bar{G}-conjugate to H has the property that $\operatorname{Aut}_{C_{\bar{G}}(\sigma)}\left(H^{*}\right)$ has a strongly 2-embedded subgroup. The next lemma provides some tools for finding lower bounds for $\delta(G)$.

Lemma A.5. (a) For any finite group $G, \delta(G) \geq\left|O_{2}(G)\right| \cdot \delta\left(G / O_{2}(G)\right)$.
(b) If $G=G_{1} \times G_{2}$ is finite, and $\delta\left(G_{i}\right)<\infty$ for $i=1,2$, then

$$
\delta(G)=\min \left\{\delta\left(G_{1}\right) \cdot \eta\left(G_{2}\right), \delta\left(G_{2}\right) \cdot \eta\left(G_{1}\right)\right\}
$$

where $\eta\left(G_{i}\right)$ is the smallest index of any odd order subgroup of G_{i}.
(c) If $\delta(G)<\infty$, and there is a faithful $\mathbb{F}_{2}[G]$-module V of rank n, then

$$
2^{v_{2}(|G|)-[n / 2]} \mid \delta(G)
$$

(d) More concretely, $\delta\left(G L_{3}(2)\right)=28, \delta\left(G L_{4}(2)\right)=112, \delta\left(G L_{5}(2)\right)=2^{8} \cdot 7 \cdot 31$, and $\delta\left(S O_{4}^{+}(2)\right)=2=\delta\left(S O_{4}^{-}(2)\right)$. Also, $2^{4} \leq \delta\left(S O_{6}^{+}(2)\right)<\infty$ and $2^{6} \leq$ $\delta\left(S O_{7}(2)\right)<\infty$.

Proof. (a) If $H \in \mathcal{S E}(G)$, then $H \cap O_{2}(G)=1$ by Lemma A.1(a). Hence there is a subgroup $H^{*} \leq G / O_{2}(G)$ isomorphic to H, and

$$
[G: H]=\left|O_{2}(G)\right| \cdot\left[G / O_{2}(G): H^{*}\right] \geq\left|O_{2}(G)\right| \cdot \delta\left(G / O_{2}(G)\right)
$$

(b) If a finite group H has a strongly 2 -embedded subgroup, then so does its direct product with any odd order group. Hence $\delta(G) \leq \delta\left(G_{i}\right) \eta\left(G_{3-i}\right)$ for $i=1,2$.

Assume $H \leq G$ has a strongly 2 -embedded subgroup $K<H$. Set $H_{i}=H \cap G_{i}$ for $i=1,2$. Since all involutions in H are H-conjugate (see [Sz2, 6.4.4]), H_{1} and H_{2} cannot both have even order. Assume $\left|H_{2}\right|$ is odd. Let pr_{1} be projection onto the first factor. If $\operatorname{pr}_{1}(K)=\operatorname{pr}_{1}(H)$, then there is $x \in(H \backslash K) \cap H_{2}$, and this commutes with all Sylow 2-subgroups of H since they lie in G_{1}, contradicting the assumption that K is strongly 2 -embedded in H. Thus $\operatorname{pr}_{1}(K)<\operatorname{pr}_{1}(H)$. Then $\mathrm{pr}_{1}(H)$ has a strongly 2 -embedded subgroup by Lemma A.1(b), and hence

$$
[G: H]=\left[G_{1}: \operatorname{pr}_{1}(H)\right] \cdot\left[G_{2}: H_{2}\right] \geq \delta\left(G_{1}\right) \cdot \eta\left(G_{2}\right)
$$

So $\delta(G) \geq \delta\left(G_{i}\right) \eta\left(G_{3-i}\right)$ for $i=1$ or 2 .
(c) This follows from OV Lemma 1.7(a)]: if $H<G$ has a strongly 2-embedded subgroup, $T \in \operatorname{Syl}_{2}(H)$, and $|T|=2^{k}$, then $\operatorname{dim}(V) \geq 2 k$.
(d) The formulas for $\delta\left(S O_{4}^{ \pm}(2)\right)$ hold since $S O_{4}^{+}(2) \cong \Sigma_{3}$ C C_{2} contains a subgroup isomorphic to $C_{3}^{2} \rtimes C_{4}$ and $S_{4}^{-}(2) \cong \Sigma_{5}$ a subgroup isomorphic to A_{5}. Since $4 \mid \delta\left(G L_{3}(2)\right)$ by (c), and since $7 \mid \delta\left(G L_{3}(2)\right)$ (there are no subgroups of order 14 or 42), we have $28 \mid \delta\left(G L_{3}(2)\right)$, with equality since Σ_{3} has index 28 . The last two (very coarse) estimates follow from (c), and the 6 - and 7 -dimensional representations of these groups.

Fix $n=4,5$, and set $G_{n}=G L_{n}(2)$. Assume $H \leq G_{n}$ has a strongly embedded subgroup, where $7||H|$ or 31$||H|$. By (c), $2^{4} \mid \delta\left(G_{4}\right)$ and $2^{8} \mid \delta\left(G_{5}\right)$, and thus $8 \nmid|H|$. If H is almost simple, then $H \cong A_{5}$ by Bender's theorem (see [Sz2, Theorem 6.4.2]), contradicting the assumption about $|H|$. So by the main theorem in A1, H must be contained in a member of one of the classes $\mathcal{C}_{i}(1 \leq i \leq 8)$ defined in that paper. One quickly checks that since $(7 \cdot 31,|H|) \neq 1, H$ is contained in a member of \mathcal{C}_{1}. Thus H is reducible, and since $O_{2}(H)=1$, either H is isomorphic to a subgroup of $G L_{3}(2) \times G L_{n-3}(2)$, or $n=5$ and $H<G L_{4}(2)$. By (b) and since $7\left|\mid \delta\left(G L_{3}(2)\right)\right.$, we must have $H \cong \Sigma_{3} \times\left(C_{7} \rtimes C_{3}\right)$, in which case $|H|<180=\left|G L_{2}(4)\right|$. Thus $7 \mid \delta\left(G_{n}\right)$ for $n=4,5$, and $31 \mid \delta\left(G_{5}\right)$. Since $G L_{4}(2)$ contains a subgroup isomorphic to $G L_{2}(4) \cong C_{3} \times A_{5}$, we get $\delta\left(G_{4}\right)=2^{4} \cdot 7$ and $\delta\left(G_{5}\right)=2^{8} \cdot 7 \cdot 31$.

We illustrate the use of the above proposition and lemma by proving the injectivity of μ_{G} when $G=G_{2}(q)$.

Proposition A.6. If $G=G_{2}(q)$ for some odd prime power q, then $\operatorname{Ker}\left(\mu_{G}\right)=$ 1.

Proof. Assume q is a power of the prime q_{0}, set $\bar{G}=G_{2}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, and fix a maximal torus \bar{T}. We identify $G=C_{\bar{G}}\left(\psi_{q}\right)$, where ψ_{q} is the field automorphism, and acts via $\left(t \mapsto t^{q}\right)$ on \bar{T}. Fix $S \in \operatorname{Syl}_{2}(G)$, and set $\widehat{\mathcal{Z}}=\widehat{\mathcal{Z}}\left(\mathcal{F}_{S}(G)\right)$.

Let $E \cong C_{2}^{2}$ be the 2-torsion subgroup of \bar{T}. By Proposition 2.5, $C_{\bar{G}}(E)=\bar{T}\langle\theta\rangle$ where $\theta \in N_{\bar{G}}(\bar{T})$ inverts the torus. Thus by Proposition A.4 there are two G conjugacy classes of subgroups \bar{G}-conjugate to E, represented by $E^{ \pm}\left(E^{+}=E\right)$, where $\operatorname{Aut}_{G}\left(E^{ \pm}\right)=\operatorname{Aut}\left(E^{ \pm}\right) \cong \Sigma_{3}$ and $C_{G}\left(E^{ \pm}\right)=\left(C_{q \mp 1}\right)^{2} \rtimes C_{2}$. The subgroups
in one of these classes have centralizer in S isomorphic to C_{2}^{3}, hence are not in $\widehat{\mathcal{Z}}$, while those in the other class do lie in $\widehat{\mathcal{Z}}$. The latter also have normalizer of order $12(q \pm 1)^{2}$ and hence of odd index in G, and thus are normal in some choice of Sylow 2-subgroup.

By $\mathbf{G r}$. Table I], for each nontoral elementary abelian 2-subgroup $E \leq \bar{G}$, $\operatorname{rk}(E)=3, C_{\bar{G}}(E)=E$, and $\operatorname{Aut}_{\bar{G}}(E) \cong G L_{3}(2)$. By Proposition A.4 and since $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right)=28>\left|C_{\bar{G}}(E)\right|$ by Lemma A.5, $\operatorname{Aut}_{G}(E)$ contains no strongly 2embedded subgroup, and thus $E \notin \widehat{\mathcal{Z}}$.

Thus $\widehat{\mathcal{Z}}$ is contained in a unique G-conjugacy class of subgroups of rank 2 , and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition A.2(b).

Throughout the rest of this section, fix an odd prime power q, and let \mathbb{G} be one of the groups F_{4}, E_{6}, E_{7}, or E_{8}.

Hypotheses A.7. Assume $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ and $G \cong \mathbb{G}(q)$, where q is a power of the odd prime q_{0}, and where $\mathbb{G}=F_{4}, E_{6}, E_{7}$, or E_{8} and is of universal type. Fix a maximal torus $\bar{T}<\bar{G}$.
(I) Set $T_{(2)}=\left\{t \in \bar{T} \mid t^{2}=1\right\}$. Let $\mathbf{2 A}$ and $\mathbf{2 B}$ denote the two \bar{G}-conjugacy classes of noncentral involutions in \bar{G}, as defined in $\mathbf{G r}$, Table VI], except that when $\mathbb{G}=E_{7}$, they denote the classes labelled $\mathbf{2 B}$ and $\mathbf{2 C}$, respectively, in that table.
For each elementary abelian 2-subgroup $E<\bar{G}$, define

$$
\mathfrak{q}_{E}: E \longrightarrow \mathbb{F}_{2}
$$

by setting $\mathfrak{q}(x)=0$ if $x \in \mathbf{2 B} \cup\{1\}$, and $\mathfrak{q}(x)=1$ if $x \in \mathbf{2 A} \cup(Z(\bar{G}) \backslash 1)$.
(II) Assume $G=C_{\bar{G}}\left(\psi_{q}\right)$, where ψ_{q} is the field endomorphism with respect to some root structure with maximal torus \bar{T}. Thus $\psi_{q}(t)=t^{q}$ for all $t \in \bar{T}$. Fix $S \in \operatorname{Syl}_{2}(G)$, and set $\widehat{\mathcal{Z}}=\widehat{\mathcal{Z}}\left(\mathcal{F}_{S}(G)\right)$.
By $\mathbf{G r}$, Lemma 2.16], $\mathfrak{q}_{T_{(2)}}$ is a quadratic form on $T_{(2)}$ in all cases, and hence \mathfrak{q}_{E} is quadratic for each $E \leq T_{(2)}$. In general, \mathfrak{q}_{E} need not be quadratic when E is not contained in a maximal torus. In fact, Griess showed in (Gr, Theorems 7.3, $8.2, \& 9.2]$ that in many (but not all) cases, E is contained in a torus if and only if \mathfrak{q}_{E} is quadratic $(\operatorname{cx}(E) \leq 2$ in his terminology).

With the above choices of notation for noncentral involutions, all of the inclusions $F_{4} \leq E_{6} \leq E_{7} \leq E_{8}$ restrict to inclusions of the classes $2 \mathbf{A}$ and of the classes 2B. This follows since the forms are quadratic, and also (for $E_{7}<E_{8}$) from [Gr, Lemma 2.16(iv)].

Lemma A.8. Assume Hypotheses A.7, and let \mathfrak{b} be the bilinear form associated to \mathfrak{q}. Define

$$
\begin{aligned}
& V_{0}=\left\{v \in T_{(2)} \mid \mathfrak{b}\left(v, T_{(2)}\right)=0, \mathfrak{q}(v)=0\right\} \\
& \gamma_{x}=(v \mapsto v+\mathfrak{b}(v, x) x) \in \operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right) \quad \text { for } x \in T_{(2)} \text { with } \mathfrak{q}(x)=1, x \not \not \not T_{(2)}
\end{aligned}
$$

Then the following hold.
(a) $\operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)=\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$.
(b) For each nonisotropic $x \in T_{(2)} \backslash T_{(2)}^{\perp}$, γ_{x} is the restriction to $T_{(2)}$ of a Weyl reflection on \bar{T}. If $\alpha \in \Sigma$ is such that $\gamma_{x}=\left.w_{\alpha}\right|_{T_{(2)}}$, then $\theta_{\alpha}(v)=(-1)^{\mathfrak{b}(x, v)}$ for each $v \in T_{(2)}$.
(c) If $\mathbb{G}=E_{r}(r=6,7,8)$, then \mathfrak{q} is nondegenerate $\left(V_{0}=0\right)$, and the restriction to $T_{(2)}$ of each Weyl reflection is equal to γ_{x} for some nonisotropic $x \in T_{(2)} \backslash T_{(2)}^{\perp}$.
(d) If $\mathbb{G}=F_{4}$, then $\operatorname{dim}\left(V_{0}\right)=2$, and $\mathfrak{q}(v)=1$ for all $v \in T_{(2)} \backslash V_{0}$.

Proof. (a) Since $\operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)$ has to preserve \bar{G}-conjugacy classes, it is contained in $\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$. Equality will be shown while proving (c) and (d).
(c) If $\mathbb{G}=E_{r}$ for $r=6,7,8$, then \mathfrak{q} is nondegenerate by $\mathbf{G r}$ Lemma 2.16]. Hence the only orthogonal transvections are of the form γ_{x} for nonisotropic x, and each Weyl reflection restricts to one of them. By a direct count (using the tables in $(\mathbf{B r b})$, the number of pairs $\{ \pm \alpha\}$ of roots in \mathbb{G} (hence the number of Weyl reflections) is equal to 36,63 , or 120 , respectively. This is equal to the number of nonisotropic elements in $T_{(2)} \backslash T_{(2)}^{\perp}=T_{(2)} \backslash Z(\bar{G})$ (see the formula in Ta, Theorem 11.5] for the number of isotropic elements). So all transvections are restrictions of Weyl reflections, and $\operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)=\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$.
(d) Assume $\mathbb{G}=F_{4}$. Then $\operatorname{dim}\left(V_{0}\right)=2$ and $\mathfrak{q}^{-1}(1)=T_{(2)} \backslash V_{0}$ by Gr, Lemma 2.16]. Thus $\left|\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)\right|=4^{2} \cdot\left|G L_{2}(2)\right|^{2}=2^{6} \cdot 3^{2}=\frac{1}{2}|W|$ (see Brb, Planche VIII]), so $\operatorname{Aut}_{W}\left(T_{(2)}\right)=\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$ since W also contains -Id.

There are three conjugacy classes of transvections $\gamma \in \operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$: one of order 36 containing those where $\left.\gamma\right|_{V_{0}} \neq \mathrm{Id}$ (and hence $\left[\gamma, T_{(2)}\right] \leq V_{0}$), and two of order 12 containing those where $\left.\gamma\right|_{V_{0}}=\operatorname{Id}$ (one where $\left[\gamma, T_{(2)}\right] \leq V_{0}$ and one where $\left[\gamma, T_{(2)}\right] \not \leq V_{0}$). Since there are two W-orbits of roots (long and short), each containing 12 pairs $\pm \alpha$, the corresponding Weyl reflections must restrict to the last two classes of transvections, of which one is the set of all γ_{x} for $x \in T_{(2)} \backslash V_{0}$.
(b) We showed in the proofs of (c) and (d) that each orthogonal transvection γ_{x} is the restriction of a Weyl reflection. If $\gamma_{x}=w_{\alpha} \mid T_{(2)}$ for some root $\alpha \in \Sigma$, then $\theta_{\alpha} \in$ $\operatorname{Hom}\left(\bar{T}, \overline{\mathbb{F}}_{q_{0}}\right)($ Lemma 2.4(C)$)$, so $\left[T_{(2)}: \operatorname{Ker}\left(\left.\theta_{\alpha}\right|_{T_{(2)}}\right)\right] \leq 2$. Also, $\operatorname{Ker}\left(\theta_{\alpha}\right) \leq C_{\bar{T}}\left(w_{\alpha}\right)$ by Lemma 2.4((e)), so $\operatorname{Ker}\left(\left.\theta_{\alpha}\right|_{T_{(2)}}\right) \leq C_{T_{(2)}}\left(w_{\alpha}\right)=C_{T_{(2)}}\left(\gamma_{x}\right)=x^{\perp}$, with equality since $\left[T_{(2)}: x^{\perp}\right]=2$. Since $\theta_{\alpha}\left(T_{(2)}\right) \leq\{ \pm 1\}$, it follows that $\theta_{\alpha}(v)=(-1)^{\mathfrak{b}(x, v)}$ for each $v \in T_{(2)}$.

We are now ready to list the subgroups in $\widehat{\mathcal{Z}}(\mathbb{G}(q))$ in all cases. The proof of the following lemma will be given at the end of the section.

Lemma A.9. Let $\bar{G}=\mathbb{G}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ and $G=\mathbb{G}(q)$ be as in Hypotheses A.7. Assume $E \in \widehat{\mathcal{Z}}(G)$. Then either $\mathbb{G} \neq E_{7}, \operatorname{rk}(E)=2$, and $\mathfrak{q}_{E}=0$; or $\mathbb{G}=E_{7}, Z=Z(\bar{G}) \cong$ C_{2}, and $E=Z \times E_{0}$ where $\operatorname{rk}\left(E_{0}\right)=2$ and $\mathfrak{q}_{E_{0}}=0$. In all cases, $\operatorname{Aut}_{\bar{G}}(E) \cong \Sigma_{3}$.

Proof. This will be shown in Lemmas A. 14 and A.15.
The next two lemmas will be needed to apply Proposition A.2(b) to these groups. The first is very elementary.

Lemma A.10. Let V be an \mathbb{F}_{2}-vector space of dimension k, and let $\mathfrak{q}: V \longrightarrow \mathbb{F}_{2}$ be a quadratic form on V. For $m \geq 1$ such that $k>2 m$, the number of totally isotropic subspaces of dimension m in V is odd.

Proof. This will be shown by induction on m, starting with the case $m=1$. Since $k \geq 3$, there is an orthogonal splitting $V=V_{1} \perp V_{2}$ where $V_{1}, V_{2} \neq 0$. Let k_{i} be the number of isotropic elements in V_{i} (including 0), and set $n_{i}=\left|V_{i}\right|$. The
number of isotropic elements in V is then $k_{1} k_{2}+\left(n_{1}-k_{1}\right)\left(n_{2}-k_{2}\right)$, and is even since the n_{i} are even. The number of 1-dimensional isotropic subspaces is thus odd.

Now fix $m>1$ (such that $k>2 m$), and assume the lemma holds for subspaces of dimension $m-1$. For each isotropic element $x \in V$, a subspace $E \leq V$ of dimension m containing x is totally isotropic if and only if $E \leq x^{\perp}$ and $E /\langle x\rangle$ is isotropic in $x^{\perp} /\langle x\rangle$ with the induced quadratic form. By the induction hypothesis, and since

$$
2 \cdot \operatorname{dim}(E /\langle x\rangle)=2(m-1)<k-2 \leq \operatorname{dim}\left(x^{\perp} /\langle x\rangle\right),
$$

the number of isotropic subspaces of dimension m which contain x is odd. Upon taking the sum over all x, and noting that each subspace has been counted $2^{m}-1$ times, we see that the number of isotropic subspaces of dimension m is odd.

Lemma A.11. Assume Hypotheses A.7(I). Let σ be a Steinberg endomorphism of \bar{G} such that for some $\varepsilon= \pm 1, \sigma(t)=t^{\varepsilon q}$ for each $t \in \bar{T}$. Set $G=C_{\bar{G}}(\sigma)$. Fix $E \leq T_{(2)}$ of rank 2 such that $\mathfrak{q}(E)=0$. Then the set of subgroups of G which are \bar{G}-conjugate to E, and the set of subgroups which are G-conjugate to E, both have odd order and contain all totally isotropic subgroups of rank 2 in $T_{(2)}$.

Proof. Let $\overline{\mathfrak{X}} \supseteq \mathfrak{X}$ be the sets of subgroups of G which are \bar{G}-conjugate to E or G-conjugate to E, respectively. Let \mathfrak{X}_{0} be the subset of all totally isotropic subgroups of $T_{(2)}$ of rank 2. If \mathfrak{q} is nondegenerate, then by Witt's theorem (see [Ta, Theorem 7.4]), $\operatorname{Aut}_{W}\left(T_{(2)}\right)=\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$ permutes \mathfrak{X}_{0} transitively, and hence all elements in \mathfrak{X}_{0} are G-conjugate to E by Lemma 2.9. If in addition, $\operatorname{dim}\left(T_{(2)}\right) \geq 5$, then $\left|\mathfrak{X}_{0}\right|$ is odd by Lemma A.10. Otherwise, by Lemma A.8(c,d), $\mathbb{G}=F_{4}$ and $\mathfrak{X}_{0}=\{E\}$. Thus in all cases, $\mathfrak{X}_{0} \subseteq \mathfrak{X}$ and $\left|\mathfrak{X}_{0}\right|$ is odd.

Assume $\mathbb{G}=E_{6}$. Then $C_{\bar{G}}\left(T_{(2)}\right)=\bar{T}$ by Proposition [2.5. Consider the conjugation action of $T_{(2)}$ on $\overline{\mathfrak{X}}$, and let \mathfrak{X}_{1} be its fixed point set. Since $T_{(2)} \leq G$ by the assumptions on σ, this action also normalizes \mathfrak{X}. For $F \in \mathfrak{X}_{1}$, either the action of $T_{(2)}$ fixes F pointwise, in which case $F \in \mathfrak{X}_{0}$, or there are $x, y \in F$ such that $\left[x, T_{(2)}\right]=1$ and $\left[y, T_{(2)}\right]=\langle x\rangle$. In particular, $c_{y} \in \operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)=S O\left(T_{(2)}, \mathfrak{q}\right)$. For each $v \in T_{(2)}$ such that $[y, v]=x, \mathfrak{q}(v)=\mathfrak{q}(v x)$ and $\mathfrak{q}(x)=0$ imply $x \perp v$, so $x \perp T_{(2)}$ since $T_{(2)}$ is generated by those elements. This is impossible since \mathfrak{q} is nondegenerate by Lemma A.8(c), and thus $\mathfrak{X}_{1}=\mathfrak{X}_{0}$.

Now assume $\mathbb{G}=F_{4}, E_{7}$, or E_{8}. Then $-\operatorname{Id} \in W$, so there is $\theta \in N_{\bar{G}}(\bar{T})$ which inverts \bar{T}. Then $C_{\bar{G}}\left(T_{(2)}\right)=\bar{T}\langle\theta\rangle$. By the Lang-Steinberg theorem, there is $g \in \bar{G}$ such that $g^{-1} \sigma(g) \in \theta \bar{T}$; then $\sigma\left(g t g^{-1}\right)=g t^{\mp q} g^{-1}$ for $t \in \bar{T}$, and thus σ acts on $g \bar{T} g^{-1}$ via $t \mapsto t^{\mp q}$. We can thus assume \bar{T} was chosen so that $G \cap \bar{T}=C_{\bar{T}}(\sigma)$ contains the 4 -torsion subgroup $\bar{T}_{(4)} \leq \bar{T}$. Let $\mathfrak{X}_{1} \subseteq \overline{\mathfrak{X}}$ be the fixed point set of the conjugation action of $\bar{T}_{(4)}$ on $\overline{\mathfrak{X}}$. For $F \in \mathfrak{X}_{1}$, either the action of $\bar{T}_{(4)}$ fixes F pointwise, in which case $F \in \mathfrak{X}_{0}$, or there are $x, y \in F$ such that $\left[x, \bar{T}_{(4)}\right]=1$ and $\left[y, \bar{T}_{(4)}\right]=\langle x\rangle$. But then $\left[F, \bar{T}_{(4)}^{*}\right]=1$ for some $\bar{T}_{(4)}^{*}<\bar{T}_{(4)}$ of index two, $\left[F, T_{(2)}\right]=1$ implies $F \leq T_{(2)}\langle\theta\rangle$; and $F \leq T_{(2)}$ since no element in $\bar{T}_{(4)} \backslash T_{(2)}$ commutes with any element of $T_{(2)} \theta$. So $\mathfrak{X}_{1}=\mathfrak{X}_{0}$ in this case.

Thus in both cases, \mathfrak{X}_{0} is the fixed point set of an action of a 2 -group on $\overline{\mathfrak{X}}$ which normalizes \mathfrak{X}. Since $\left|\mathfrak{X}_{0}\right|$ is odd, so are $|\overline{\mathfrak{X}}|$ and $|\mathfrak{X}|$.

We are now ready to prove:
Proposition A.12. Fix an odd prime power q. Assume G is a quasisimple group of universal type isomorphic to $G_{2}(q), F_{4}(q), E_{6}(q), E_{7}(q)$, or $E_{8}(q)$. Then $\operatorname{Ker}\left(\mu_{G}\right)=1$.

Proof. This holds when $G \cong G_{2}(q)$ by Proposition A.6, so we can assume Hypotheses A.7. Let \mathfrak{X} be the set of all elementary abelian 2-subgroups $E \leq G$ such that either $\mathbb{G} \neq E_{7}, \operatorname{rk}(E)=2$, and $\mathfrak{q}_{E}=0$; or $\mathbb{G}=E_{7}, \operatorname{rk}(E)=3$, and $E=Z(G) \times E_{0}$ where $\mathfrak{q}_{E_{0}}=0$. By Lemma A.11, $|\mathfrak{X}|$ is odd. In all cases, by Lemma A. $9 \widehat{\mathcal{Z}}(G) \subseteq \mathfrak{X}$. By Proposition $\mathbf{A . 2}(\mathrm{a}, \mathrm{b})$, to prove μ_{G} is injective, it remains to show that if $\widehat{\mathcal{Z}}(G) \neq \varnothing$, then $\widehat{\mathcal{Z}}(G)$ has odd order and is contained in a single G-conjugacy class, and $\operatorname{Aut}_{G}(Z(S))=1$.

Fix $E \in \mathfrak{X}$ such that $E \leq T_{(2)}$. We first claim that if $\mathbb{G}=F_{4}, E_{6}$, or E_{7}, then $C_{\bar{G}}(E)$ is connected, and hence all elements in \mathfrak{X} are G-conjugate to E by Proposition A.4 If $\mathbb{G}=E_{7}$, then $C_{\bar{G}}(E)$ is connected by [Gr Proposition 9.5(iii)(a)]. If $\mathbb{G}=F_{4}$ or E_{6}, then for $x \in E, C_{\bar{G}}(x) \cong \operatorname{Spin}_{9}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ or $\overline{\mathbb{F}}_{q_{0}} \times_{C_{4}} \operatorname{Spin}_{10}\left(\overline{\mathbb{F}}_{q_{0}}\right)$, respectively (see $[\mathbf{G r}$, Table VI]). Since the centralizer of each element in the simply connected groups $\operatorname{Spin}_{9}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ and $\operatorname{Spin}_{10}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ is connected [St3, Theorem 8.1], $C_{\bar{G}}(E)$ is connected in these cases.

Now assume $\mathbb{G}=E_{8}$. We can assume $G=C_{\bar{G}}\left(\psi_{q}\right)$, where ψ_{q} is the field automorphism; in particular, $\psi_{q}(t)=t^{q}$ for $t \in \bar{T}$. Fix $x, y \in E$ such that $E=$ $\langle x, y\rangle$. By $\mathbf{G r}$, Lemma 2.16(ii)], $\left(T_{(2)}, \mathfrak{q}\right)$ is of positive type (has a 4-dimensional totally isotropic subspace). Hence $E^{\perp}=E \times V_{1} \times V_{2}$, where $\operatorname{dim}\left(V_{i}\right)=2$ and $\mathfrak{q}\left(V_{i} \backslash 1\right)=1$ for $i=1,2$, and $V_{1} \perp V_{2}$. Thus $\left(\mathfrak{q}_{E^{\perp}}\right)^{-1}(1)=\bigcup_{i=1}^{2}\left(\left(V_{i} \backslash 1\right) \times E\right)$, and by Lemma A.8(b,c), these are the restrictions to $T_{(2)}$ of Weyl reflections w_{α} for $\alpha \in$ Σ such that $E \leq \operatorname{Ker}\left(\theta_{\alpha}\right)$. Also, $C_{W}(E) \cong W\left(D_{4}\right) \imath C_{2}$. By Proposition 2.5, $C_{\bar{G}}(E)^{0}$ has type $D_{4} \times D_{4}$ and $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=2$. More precisely, $C_{\bar{G}}(E)=\left(\bar{H}_{1} \times{ }_{E} \bar{H}_{2}\right)\langle\delta\rangle$, where $\bar{H}_{i} \cong \operatorname{Spin}_{8}\left(\overline{\mathbb{F}}_{q_{0}}\right)$ and $Z\left(\bar{H}_{i}\right)=E$ for $i=1,2$, and conjugation by $\delta \in N_{\bar{G}}(\bar{T})$ exchanges V_{1} and V_{2} and hence exchanges \bar{H}_{1} and \bar{H}_{2}.

By Proposition A.4 the two connected components in the centralizer give rise to two G-conjugacy classes of subgroups which are \bar{G}-conjugate to E, represented by E and $g E g^{-1}$ where $g^{-1} \sigma(g)$ lies in the nonidentity component of $C_{\bar{G}}(E)$. Then $C_{G}(E)$ contains a subgroup $\operatorname{Spin}_{8}^{+}(q) \times_{C_{2}^{2}} \operatorname{Spin}_{8}^{+}(q)$ with index 8 (the extension by certain pairs of diagonal automorphisms of the $\operatorname{Spin}_{8}^{+}(q)$-factors, as well as an automorphism which switches the factors). So $E=Z(T)$ for $T \in \operatorname{Syl}_{2}\left(C_{G}(E)\right)$, and $E \in \widehat{\mathcal{Z}}(G)$. Also, $g y g^{-1} \in C_{G}\left(g E g^{-1}\right)$ if and only if $y \in C_{\bar{G}}(E)$ and $\widetilde{\tau}(y)=y$ where $\widetilde{\tau}=c_{g^{-1} \sigma(g)} \circ \sigma$. Then $\widetilde{\tau}$ switches the central factors in $C_{\bar{G}}(E)$, and the group $C_{C_{\bar{G}}(E)}(\widetilde{\tau})$ splits as a product of E times the group of elements which are invariant after lifting $\widetilde{\tau}$ to the 4 -fold cover $\operatorname{Spin}_{8}\left(\overline{\mathbb{F}}_{q_{0}}\right)$) C_{2}. Since $g E g^{-1}$ intersects trivially with the commutator subgroup of $C_{G}\left(g E g^{-1}\right), \Omega_{1}(Z(T))>g E g^{-1}$ for any $T \in \operatorname{Syl}_{2}\left(C_{G}\left(g E g^{-1}\right)\right)$ (since $Z(T) \cap[T, T] \neq 1$); and thus $g E g^{-1} \notin \widehat{\mathcal{Z}}(G)$. Thus $\widehat{\mathcal{Z}}(G)$ is the G-conjugacy class of E, and has odd order by Lemma A. 11

Thus, in all cases, if $\widehat{\mathcal{Z}}(G)$ is nonempty, it has odd order and is contained in one G-conjugacy class. Also, $Z(S) \leq C_{E}\left(\operatorname{Aut}_{S}(E)\right)<E$ for $E \in \widehat{\mathcal{Z}}(G)$, so either
$|Z(S)|=2$, or $\mathbb{G}=E_{7}, Z(S) \cong C_{2}^{2}$, and the three involutions in $Z(S)$ belong to three different \bar{G}-conjugacy classes. Hence $\operatorname{Aut}_{G}(Z(S))=1$.

It remains to prove Lemma A.9, which is split into the two Lemmas A. 14 and A.15. The next proposition will be used to show that certain elementary abelian subgroups are not in $\widehat{\mathcal{Z}}$.

Proposition A.13. Assume Hypotheses A.7. Let $E \leq T_{(2)}$ and $x \in T_{(2)} \backslash E$ be such that the orbit of x under the $C_{W}(E)$-action on $T_{(2)}$ has odd order. Then no subgroup of S which is \bar{G}-conjugate to E is in $\widehat{\mathcal{Z}}$. More generally, if $\bar{E} \geq E$ is also elementary abelian, and is such that x is not $C_{\bar{G}}(E)$-conjugate to any element of \bar{E}, then for any $L \unlhd G$ which contains $\left\{g x g^{-1} \mid g \in \bar{G}\right\} \cap G$, no subgroup of S which is \bar{G}-conjugate to \bar{E} is in $\widehat{\mathcal{Z}}$.

Proof. In O2, an elementary abelian p-subgroup $E<G$ is called pivotal if $O_{p}\left(\operatorname{Aut}_{G}(E)\right)=1$, and $E=\Omega_{1}(Z(P))$ for some $P \in \operatorname{Syl}_{p}\left(C_{G}(E)\right)$. In particular, by Lemma A.1(a), the subgroups in $\widehat{\mathcal{Z}}$ are all pivotal. Note that $T_{(2)} \leq G$ by Hypotheses A.7. By O2, Proposition 8.9], no subgroup satisfying the above conditions can be pivotal, and hence they cannot be in $\widehat{\mathcal{Z}}$.

In the next two lemmas, we show that in all cases, $E \in \widehat{\mathcal{Z}} \operatorname{implies} \operatorname{rk}(E)=2$ and $\mathfrak{q}_{E}=0$ if $\mathbb{G} \neq E_{7}$, with a similar result when $\mathbb{G}=E_{7}$. We first handle those subgroups which are toral (contained in a maximal torus in \bar{G}), and then those which are not toral. By a $\mathbf{2} \mathbf{A}^{k}$-subgroup or subgroup of type $\mathbf{2} \mathbf{A}^{k}\left(\mathbf{2} \mathbf{B}^{k}\right.$-subgroup or subgroup of type $\mathbf{2} \mathbf{B}^{k}$) is meant an elementary abelian 2-subgroup of rank k all of whose nonidentity elements are in class $\mathbf{2 A}$ (class 2B).

Lemma A.14. Assume Hypotheses A.7. Fix some $E \in \widehat{\mathcal{Z}}$ which is contained in a maximal torus of \bar{G}. Then either $\mathbb{G} \neq E_{7}, \operatorname{rk}(E)=2$, and $\mathfrak{q}_{E}=0$; or $\mathbb{G}=E_{7}$, $Z=Z(\bar{G}) \cong C_{2}$, and $E=Z \times E_{0}$ where $\operatorname{rk}\left(E_{0}\right)=2$ and $\mathfrak{q}_{E_{0}}=0$. In all cases, $\operatorname{Aut}_{\bar{G}}(E) \cong \Sigma_{3}$.

Proof. Set $Z=O_{2}(Z(\bar{G})) \leq T_{(2)}$. Thus $|Z|=2$ if $\mathbb{G}=E_{7}$, and $|Z|=1$ otherwise. Recall that $\operatorname{Aut}_{G}\left(T_{(2)}\right)=\operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)=\operatorname{Aut}\left(T_{(2)}, \mathfrak{q}\right)$ by Lemmas 2.9 and A. 8 (a).

The following notation will be used to denote isomorphism types of quadratic forms over \mathbb{F}_{2}. Let $[\boldsymbol{n}]^{ \pm}$denote the isomorphism class of a nondegenerate form of rank n. When n is even, $[\boldsymbol{n}]^{+}$denotes the hyperbolic form (with maximal Witt index), and $[\boldsymbol{n}]^{-}$the form with nonmaximal Witt index. Finally, a subscript " $\left.\boldsymbol{k}\right)^{\prime}$ " denotes sum with a k-dimensional trivial form. By [Gr Lemma 2.16], $\mathfrak{q}_{T_{(2)}}$ has type $[\mathbf{2}]_{(\mathbf{2})}^{-},[\mathbf{6}]^{-},[\mathbf{7}]$, or $[\mathbf{8}]^{+}$when $\mathbb{G}=F_{4}, E_{6}, E_{7}$, or E_{8}, respectively.

Fix $E \leq T_{(2)}$; we want to determine whether E can be \bar{G}-conjugate to an element of $\overline{\mathcal{Z}}$. Set $E_{1}=E \cap E^{\perp}$ (the orthogonal complement taken with respect to $\mathfrak{q})$, and set $E_{0}=\operatorname{Ker}\left(\mathfrak{q}_{E_{1}}\right)$. Note that $E_{1}>E_{0}$ if $\mathbb{G}=E_{7}(E \geq Z)$.

Assume first that $E_{0}=1$. If $\mathbb{G}=F_{4}$, then $T_{(2)} \cap \mathbf{2 B}$ is a $C_{W}(E)$-orbit of odd order. If $\mathbb{G}=E_{r}$ and $E_{1}=1$, then $E \times E^{\perp}, E^{\perp}$ is $C_{W}(E)$-invariant, and hence there is $1 \neq x \in E^{\perp}$ whose $C_{W}(E)$-orbit has odd order. If $\mathbb{G}=E_{r}$ and $\operatorname{rk}\left(E_{1}\right)=1$, then $E \cap E^{\perp}=E_{1}$, there is an odd number of involutions in $E^{\perp} \backslash E_{1}$ of each type (isotropic or not), and again there is $1 \neq x \in E^{\perp}$ whose $C_{W}(E)$-orbit has odd
order. In all cases, x has the property that $C_{W}(\langle E, x\rangle)$ has odd index in $C_{W}(E)$. So by Proposition A.13 no subgroup of G which is \bar{G}-conjugate to E can be in $\widehat{\mathcal{Z}}$.

Thus $E_{0} \neq 1$. Set $k=\operatorname{rk}\left(E_{0}\right)$. Then

$$
\begin{align*}
& \left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=\left|C_{W}(E) /\left\langle w_{\alpha} \mid \alpha \in \Sigma, E \leq \operatorname{Ker}(\theta(\alpha))\right\rangle\right| \quad \text { [Proposition [2.5] } \\
& \quad \leq\left|C_{W}\left(T_{(2)}\right)\right| \cdot\left|C_{S O\left(T_{(2)}, \mathfrak{q}\right)}(E) /\left\langle\gamma_{v} \mid v \in \mathbf{2 A} \cap E^{\perp}\right\rangle\right| \text { [Lemma A.8 (a,b)] } \tag{5}\\
& \quad \leq\left|C_{W}\left(T_{(2)}\right)\right| \cdot\left|C_{S O\left(T_{(2)}, \mathfrak{q}\right)}\left(E_{0}^{\perp}\right)\right| \cdot\left|C_{S O\left(E_{0}^{\perp}, \mathfrak{q}\right)}(E) /\left\langle\gamma_{v} \mid v \in \mathbf{2 A} \cap E^{\perp}\right\rangle\right| .
\end{align*}
$$

The first factor is easily described:

$$
\left|C_{W}\left(T_{(2)}\right)\right|=2^{\varepsilon} \quad \text { where } \quad \varepsilon= \begin{cases}1 & \text { if }-\operatorname{Id} \in W\left(\text { if } \mathbb{G}=F_{4}, E_{7}, E_{8}\right) \tag{6}\\ 0 & \text { if }-\operatorname{Id} \notin W\left(\text { if } \mathbb{G}=E_{6}\right) .\end{cases}
$$

We next claim that

$$
\begin{equation*}
\left|C_{S O\left(T_{(2)}, \mathfrak{q}\right)}\left(E_{0}^{\perp}\right)\right| \leq 2^{\binom{k}{2}}, \tag{7}
\end{equation*}
$$

with equality except possibly when $\mathbb{G}=F_{4}$. To see this, let $F_{1}<T_{(2)}$ be a subspace complementary to E_{0}^{\perp}. Each $\alpha \in C_{\operatorname{Aut}\left(T_{(2)}\right)}\left(E_{0}^{\perp}\right)$ has the form $\alpha(x)=x \psi(x)$ for some $\psi \in \operatorname{Hom}\left(F_{1}, E_{0}\right)$, and α is orthogonal if and only if $x \perp \psi(x)$ for each x. The space of such homomorphisms has dimension at most $\binom{k}{2}$ (corresponding to symmetric $k \times k$ matrices with zeros on the diagonal); with dimension equal to $\binom{k}{2}$ if $\operatorname{dim}\left(F_{1}\right)=\operatorname{dim}\left(E_{0}\right)$ (which occurs if \mathfrak{q} is nondegenerate).

Write $\left(E_{0}\right)^{\perp}=E \times F_{2}$, where $E^{\perp}=E_{0} \times F_{2}$ and the form $\mathfrak{q}_{F_{2}}$ is nondegenerate. By Ta, Theorem 11.41], $S O\left(F_{2}, \mathfrak{q}_{F_{2}}\right)$ is generated by transvections unless $\mathfrak{q}_{F_{2}}$ is of type $[4]^{+}$, in which case the reflections generate a subgroup of $S O\left(F_{2}, \mathfrak{q}_{F_{2}}\right) \cong \Sigma_{3}\left\langle C_{2}\right.$ isomorphic to $\Sigma_{3} \times \Sigma_{3}$. Also, F_{2} is generated by nonisotropic elements except when $\mathfrak{q}_{F_{2}}$ is of type [2] ${ }^{+}$, and when this is the case, all automorphisms of $\left(E_{0}\right)^{\perp}$ which induce the identity on E and on $\left(E_{0}\right)^{\perp} / E_{0}$ are composites of transvections. (Look at the composites $\gamma_{v x} \circ \gamma_{v}$ for $v \in F_{2}$ and $x \in E_{0}$.) Hence

$$
\left|C_{S O\left(E_{0}^{\perp}, \mathfrak{q}\right)}(E) /\left\langle\gamma_{v} \mid v \in \mathbf{2} \mathbf{A} \cap E^{\perp}\right\rangle\right| \leq 2^{\eta}
$$

where $\eta=1$ if $\mathfrak{q}_{E^{\perp}}$ has type $[4]_{(\boldsymbol{k})}^{+}, \eta=k$ if $\mathfrak{q}_{E^{\perp}}$ has type $[\mathbf{2}]_{(\boldsymbol{k})}^{+}$, and $\eta=0$ otherwise. Together with (5), (6), and (7), this proves that

$$
\begin{equation*}
\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| \leq 2^{\binom{k}{2}+\varepsilon+\eta} \quad \text { where } \varepsilon \leq 1 \tag{8}
\end{equation*}
$$

Now, $N_{\bar{G}}(E) \leq C_{\bar{G}}(E)^{0} N_{\bar{G}}(\bar{T})$ by the Frattini argument: each maximal torus which contains E lies in $C_{\bar{G}}(E)^{0}$ and hence is $C_{\bar{G}}(E)^{0}$-conjugate to \bar{T}. So each element of $\operatorname{Aut}_{\bar{G}}(E)$ is represented by a coset of \bar{T} in $N_{\bar{G}}(\bar{T})$, and can be chosen to lie in G by Lemma 2.9. Thus the action described in Proposition A. 4 which determines the automizers $\operatorname{Aut}_{G}\left(E^{*}\right)$ for $E^{*} \bar{G}$-conjugate to E is the conjugation action of $\operatorname{Aut}_{\bar{G}}(E)$ on the set of conjugacy classes in $\pi_{0}\left(C_{\bar{G}}(E)\right)$. In particular, this action is not transitive, since the identity is fixed.

Set $\ell=\operatorname{rk}\left(E / E_{0}\right)-1$ if $\mathbb{G}=E_{7}$ and $\ell=\operatorname{rk}\left(E / E_{0}\right)$ otherwise. Every automorphism of E which induces the identity on $E_{0} Z$ and on E / E_{0} is orthogonal, and hence the restriction of an element of $O_{2}\left(C_{W}(E)\right)$. Thus $\left|O_{2}\left(\operatorname{Out}_{\bar{G}}(E)\right)\right| \geq 2^{k \ell}$. If $E^{*} \in \mathcal{Z}$ is \bar{G}-conjugate to E, then since $\mathrm{Aut}_{G}\left(E^{*}\right)$ has a strongly 2-embedded subgroup, $2^{k \ell} \leq \delta\left(\operatorname{Aut}_{\bar{G}}(E)\right)<\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$ by Proposition A. 4 and Lemma A.5(a), with strict inequality since the action of $N_{\bar{G}}(E)$ on $\pi_{0}\left(C_{\bar{G}}(E)\right)$ is not transitive.

Together with (8), and since $\varepsilon \leq 1$, this implies that $k \ell \leq\binom{ k}{2}+\eta \leq\binom{ k}{2}+k$. Thus $\ell \leq \frac{k+1}{2}$, and $\ell \leq \frac{k-1}{2}$ if $\eta=0$. By definition, $\eta=0$ whenever $\operatorname{rk}\left(E_{1} / E_{0}\right)=1$, which is the case if $\mathbb{G}=E_{7}$ or ℓ is odd. Since $2 k+\ell \leq 8$, we are thus left with the following possibilities.

- If $(k, \ell)=(3,2)$, then $\mathbb{G}=E_{8}, E$ has form of type $[\mathbf{2}]_{(3)}^{+}$, so $E^{\perp}=E_{0}$ has trivial form, and $\eta=0$. Thus $k \ell \not \subset\binom{k}{2}+\eta$, so this cannot occur.
- If $(k, \ell)=(3,1)$, then $\mathbb{G}=E_{8}, E$ has form of type $*+3$, and $\operatorname{rk}(E)=\operatorname{rk}\left(E_{1}\right)=4$. Then $\operatorname{Aut}_{\bar{G}}(E) \cong C_{2}^{3} \rtimes G L_{3}(2)$, so $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right) \geq 2^{3} \cdot 28$ by Lemma A.5 (a, d). Since $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| \leq 16$, this case is also impossible.
- If $(k, \ell)=(4,0)$, then $\mathbb{G}=E_{8}$ and $E=E_{0}$ is isotropic of rank 4. By Proposition [2.5 and Lemma A.8(c), $C_{\bar{G}}(E)^{0}=\bar{T}$. By [CG, Proposition 3.8(ii)], $\pi_{0}\left(C_{\bar{G}}(E)\right)$ is extraspecial of order 2^{7} and $\operatorname{Aut}_{\bar{G}}(E) \cong G L_{4}(2)$. (This is stated for subgroups of $E_{8}(\mathbb{C})$, but the same argument applies in our situation.) In particular, $\pi_{0}\left(C_{\bar{G}}(E)\right)$ has just 65 conjugacy classes. Since $\delta\left(G L_{4}(2)\right)=112$ by Lemma A.5 (d), Proposition A. 4 implies that $\operatorname{Aut}_{G}\left(E^{*}\right)$ cannot have a strongly 2-embedded subgroup.
- If $(k, \ell)=(3,0)$, then $E=Z \times E_{0}$ where $\operatorname{dim}\left(E_{0}\right)=3$, and Aut ${ }_{\bar{G}}(E) \cong G L_{3}(2)$. If $\mathbb{G}=E_{6}$ or E_{7}, then $E^{\perp}=E$, and $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| \leq 16$ by (8).

If $\mathbb{G}=E_{8}$, then $\left(E^{\perp}, \mathfrak{q}_{E^{\perp}}\right)$ has type $[2]_{(3)}^{+}$. By the arguments used to prove (8),

$$
\left|C_{W}(E)\right|=\left|C_{W}\left(T_{(2)}\right)\right| \cdot\left|C_{S O\left(T_{(2)}, \mathfrak{q}\right)}\left(E_{0}^{\perp}\right)\right| \cdot\left|C_{S O\left(E_{0}^{\perp}, \mathfrak{q}\right)}(E)\right|=2 \cdot 2^{3} \cdot 2^{7}=2^{11}
$$

Also, E^{\perp} contains exactly 8 nonisotropic elements, they are pairwise orthogonal, and hence determine 8 pairwise commuting transvections on $T_{(2)}$. These extend to 8 Weyl reflections which are pairwise commuting since no two can generate a dihedral subgroup of order 8 (this would imply two roots of different lengths). Hence by Proposition [2.5, $C_{\bar{G}}(E)^{0}$ has type $\left(A_{1}\right)^{8}$ and $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=2^{11} / 2^{8}=$ 2^{3}. Since $\delta\left(G L_{3}(2)\right)=28$ by Lemma A.5(c), this case cannot occur.

- If $(k, \ell)=(2,0)$, then $E=Z \times E_{0}$ where $\operatorname{dim}\left(E_{0}\right)=2$. Then E is as described in the statement of the lemma.

It remains to handle the nontoral elementary abelian subgroups.
Lemma A.15. Assume Hypotheses A.7. Let $E \leq G$ be an elementary abelian 2-group which is not contained in a maximal torus of \bar{G}. Then $E \notin \widehat{\mathcal{Z}}$.

Proof. To simplify notation, we write $\mathbb{K}=\overline{\mathbb{F}}_{q_{0}}$. Set $Z=O_{2}(Z(\bar{G})) \leq T_{(2)}$. Thus $|Z|=2$ if $\mathbb{G}=E_{7}$, and $|Z|=1$ otherwise. The maximal nontoral subgroups of \bar{G} are described in all cases by Griess $\mathbf{G r}$.
(A) If $\mathbb{G}=F_{4}$ or E_{6}, then by $\mathbf{G r}$ Theorems $\left.7.3 \& 8.2\right], \bar{G}$ contains a unique conjugacy class of maximal nontoral elementary abelian 2 -subgroups, represented by W_{5} of rank five. There is a subgroup $W_{2} \leq W_{5}$ of rank two such that $W_{5} \cap \mathbf{2 A}=W_{5} \backslash W_{2}$. Also, $\operatorname{Aut}_{\bar{G}}\left(E_{5}\right)=\operatorname{Aut}\left(E_{5}, \mathfrak{q}_{E_{5}}\right)$: the group of all automorphisms of W_{5} which normalize W_{2}. A subgroup $E \leq W_{5}$ is nontoral if and only if it contains a $\mathbf{2} \mathbf{A}^{3}$-subgroup.

When $\mathbb{G}=F_{4}$, we can assume $W_{5}=T_{(2)}\langle\theta\rangle$, where $\theta \in N_{\bar{G}}(\bar{T})$ inverts the torus.
(B) If $\mathbb{G}=E_{7}$, then by $[\mathbf{G r}$, Theorem $9.8(\mathrm{i})], \bar{G}$ contains a unique maximal nontoral elementary abelian 2-subgroup W_{6}, of rank six. For any choice of $E_{6}(\mathbb{K})<G, W_{5}<E_{6}(\mathbb{K})$ (as just described) has rank 5 , is nontoral since it contains a $\mathbf{2} \mathbf{A}^{3}$-subgroup, and so we can take $W_{6}=Z \times W_{5}$.

Each coset of Z of involutions in $\bar{G} \backslash Z$ contains one element of each class $\mathbf{2 A}$ and 2B. Together with the above description of E_{5}, this shows that all $\mathbf{2} \mathbf{A}^{2}$-subgroups of W_{6} are contained in W_{5}. Hence for each nontoral subgroup $E \leq W_{6}$ which contains $Z, E \cap W_{5}$ is the subgroup generated by $\mathbf{2} \mathbf{A}^{2}$-subgroups of E, thus is normalized by $\operatorname{Aut}_{\bar{G}}(E)$, and so

$$
\begin{aligned}
& \operatorname{Aut}_{\bar{G}}(E) \cong \operatorname{Aut}_{\bar{G}}\left(E \cap W_{5}\right)=\operatorname{Aut}\left(E \cap W_{5}, \mathfrak{q}_{E \cap W_{5}}\right) \cong \operatorname{Aut}\left(E, \mathfrak{q}_{E}\right) \\
& \operatorname{Aut}_{\bar{G}}\left(W_{6}\right) \cong \operatorname{Aut}\left(W_{6}, \mathfrak{q}_{W_{6}}\right) \cong C_{2}^{6} \rtimes\left(\Sigma_{3} \times G L_{3}(2)\right)
\end{aligned}
$$

For $Z \leq E \leq W_{6}$, the subgroup E is nontoral exactly when it contains a $\mathbf{2} \mathbf{A}^{3}$-subgroup. This is immediate from the analogous statement in (A) for $E_{6}(\mathbb{K})$.
(C) If $\mathbb{G}=E_{8}$, then by $[\mathbf{G r}$, Theorem 2.17], \bar{G} contains two maximal elementary abelian subgroups W_{8} and W_{9}, neither of which is toral [Gr, Theorem 9.2]. An elementary abelian 2-subgroup $E \leq \bar{G}$ is nontoral if and only if \mathfrak{q}_{E} is not quadratic or E has type $\mathbf{2 B}^{5}[\mathbf{G r}$, Theorem 9.2].

We refer to $\left[\mathbf{G r}\right.$, Theorem 2.17] for descriptions of W_{8} and W_{9}. There are subgroups $F_{0} \leq F_{1}, F_{2} \leq W_{8}$ such that $\operatorname{rk}\left(F_{0}\right)=2, \operatorname{rk}\left(F_{1}\right)=\operatorname{rk}\left(F_{2}\right)=5$, $F_{1} \cap F_{2}=F_{0}$, and $W_{8} \cap \mathbf{2 A}=\left(F_{1} \backslash F_{0}\right) \cup\left(F_{2} \backslash F_{0}\right)$. Also, $\operatorname{Aut}_{\bar{G}}\left(W_{8}\right)$ is the group of those automorphisms of W_{8} which leave F_{0} invariant, and either leave F_{1} and F_{2} invariant or exchange them.

We can assume that $W_{9}=T_{(2)}\langle\theta\rangle$, where $\theta \in N_{\bar{G}}(\bar{T})$ inverts \bar{T}. Also, $W_{9} \backslash T_{(2)} \subseteq \mathbf{2 B}$. Hence $T_{(2)}=\left\langle W_{9} \cap \mathbf{2 A}\right\rangle$ is Aut ${ }_{\bar{G}}\left(W_{9}\right)$-invariant. Each automorphism of W_{9} which is the identity on $T_{(2)}$ is induced by conjugation by some element of order 4 in \bar{T}, and thus $\operatorname{Aut}_{\bar{G}}\left(W_{9}\right)$ is the group of all automorphisms whose restriction to $T_{(2)}$ lies in $\operatorname{Aut}_{\bar{G}}\left(T_{(2)}\right)$.
We next list other properties of elementary abelian subgroups of \bar{G}, and of their centralizers and normalizers, which will be needed in the proof.
(D) If $\mathbb{G}=E_{8}, E \leq \bar{G}, E \cong C_{2}^{r}$, and $|E \cap \mathbf{2 A}|=m$, then $\operatorname{dim}\left(C_{\bar{G}}(E)\right)=$ $2^{8-r}+2^{5-r} m-8$.

This follows from character computations: if \mathfrak{g} denotes the Lie algebra of $\bar{G}=E_{8}(\mathbb{K})$, then $\operatorname{dim}\left(C_{\bar{G}}(E)\right)=\operatorname{dim}\left(C_{\mathfrak{g}}(E)\right)=|E|^{-1} \sum_{x \in E} \chi_{\mathfrak{g}}(x)$. By Gr, Table VI], $\chi_{\mathfrak{g}}(1)=\operatorname{dim}(\bar{G})=248$, and $\chi_{\mathfrak{g}}(x)=24$ or -8 when $x \in \mathbf{2 A}$ or 2 B , respectively.
(E) If $\mathbb{G}=E_{8}, E \leq \bar{G}$ is an elementary abelian 2-group, and $E_{t}<E$ has index 2 and is such that $E \backslash E_{t} \subseteq \mathbf{2 B}$, then there is $g \in \bar{G}$ such that ${ }^{g} E \leq W_{9}=T_{(2)}\langle\theta\rangle$ and ${ }^{g} E_{t} \leq T_{(2)}$.

It suffices to prove this when E is maximal among such such pairs $E_{t}<E$. We can assume that E is contained in W_{8} or W_{9}.

If $E \leq W_{8}$, then in the notation of (C),$F_{0} \leq E$ (since E is maximal), and either $\operatorname{rk}\left(E \cap F_{i}\right)=3$ for $i=1,2$ and $\operatorname{rk}(E)=6$, or $\operatorname{rk}\left(E \cap F_{i}\right)=4$ for $i=1,2$ and $\operatorname{rk}(E)=7$. These imply that $|E \cap \mathbf{2 A}|=8$ or 24 , respectively, and hence by (D) that $\operatorname{dim}\left(C_{\bar{G}}\left(E_{t}\right)\right)=8\left(C_{\bar{G}}\left(E_{t}\right)^{0}=\bar{T}\right)$ and $\operatorname{dim}\left(C_{\bar{G}}(E)\right)=0$. Hence in either case, if $g \in \bar{G}$ is such that ${ }^{g} E_{t} \leq T_{(2)}$, then ${ }^{g} E \backslash{ }^{g} E_{t} \subseteq \theta \bar{T}$, and there is $t \in \bar{T}$ such that ${ }^{t g} E \leq T_{(2)}\langle\theta\rangle=W_{9}$.

If $E \leq W_{9}$, set $E_{2}=\langle E \cap \mathbf{2 A}\rangle$. Then $E_{2} \leq E \cap T_{(2)}$ and $E_{2} \leq E_{t}$, so there is nothing to prove unless $\operatorname{rk}\left(E / E_{2}\right) \geq 2$. In this case, from the maximality of E, we see that $E_{t}=E_{a} \times E_{b}$, where $E_{a} \cong C_{2}^{2}$ has type $\mathbf{2 A B B}, E_{b}$ is a $\mathbf{2 B} \mathbf{B}^{3}$ group, and $E_{a} \perp E_{b}$ with respect to the form \mathfrak{q}. Thus $\operatorname{rk}(E)=6,|E \cap \mathbf{2 A}|=8$, and the result follows by the same argument as in the last paragraph.
(F) If $\mathbb{G}=E_{8}$, and $E \leq \bar{G}$ is a nontoral elementary abelian 2-group, then either E contains a $\mathbf{2 A}^{3}$-subgroup, or E is \bar{G}-conjugate to a subgroup of W_{9}.

Assume $E \leq W_{8}$ is nontoral and contains no $\mathbf{2} \mathbf{A}^{3}$-subgroup. We use the notation $F_{0}<F_{1}, F_{2}<W_{8}$ of (C). Set $E_{i}=E \cap F_{i}$ for $i=0,1,2$. Then $\mathfrak{q}_{E_{1} E_{2}}$ is quadratic: it is the orthogonal direct sum of $\mathfrak{q}_{E_{0}}, \mathfrak{q}_{E_{1} / E_{0}}$, and $\mathfrak{q}_{E_{2} / E_{0}}$, each of which is quadratic since $\operatorname{rk}\left(E_{i} / E_{0}\right) \leq 2$ for $i=1,2$ (E has no $\mathbf{2 A}^{3}$-subgroup). Hence $E>E_{1} E_{2} \geq\langle E \cap \mathbf{2 A}\rangle$ since E is nontoral, so E is conjugate to a subgroup of W_{9} by (E).
(G) Let $E \leq \bar{G}$ be an elementary abelian 2-subgroup, and let $E_{t} \leq E$ be maximal among toral subgroups of E. Assume that $E_{t} \cap E_{t}^{\perp} \cap \mathbf{2 B}=\varnothing$, and that either $\operatorname{rk}(\bar{T})-\operatorname{rk}\left(E_{t}\right) \geq 2$ or $E_{t} \cap E_{t}^{\perp}=1$. Then $E \notin \widehat{\mathcal{Z}}$.

To see this, choose $F \geq F_{t}$ which is \bar{G}-conjugate to $E \geq E_{t}$ and such that $F_{t}=F \cap T_{(2)}$. By maximality, no element of $F \backslash F_{t}$ is $C_{\bar{G}}\left(F_{t}\right)$-conjugate to an element of \bar{T}. If $F_{t} \cap F_{t}^{\perp}=1$, then some $C_{W}\left(F_{t}\right)$-orbit in $F_{t}^{\perp} \backslash 1$ has odd order. Otherwise, since \mathfrak{q} is linear on $F_{t} \cap F_{t}^{\perp}$, we have $F_{t} \cap F_{t}^{\perp}=\langle y\rangle$ for some $y \in \mathbf{2 A}$, in which case $\left|\mathfrak{q}_{F_{t}^{\perp}}^{-1}(0)\right|=\left|F_{t}^{\perp}\right| / 2$ is even since $\operatorname{rk}\left(F_{t}^{\perp}\right) \geq \operatorname{rk}(\bar{T})-\operatorname{rk}\left(F_{t}\right) \geq 2$. So again, some $C_{W}\left(F_{t}\right)$-orbit in $F_{t}^{\perp} \backslash 1$ has odd order in this case. Point (G) now follows from Proposition A.13.
(H) Assume $\mathbb{G}=E_{8}$. Let $1 \neq E_{0} \leq E \leq \bar{G}$ be elementary abelian 2-subgroups, where $\operatorname{rk}(E)=3$, and $E \cap \mathbf{2 A}=E_{0} \backslash 1$. Then

$$
C_{\bar{G}}(E) \cong \begin{cases}E \times F_{4}(\mathbb{K}) & \text { if } \operatorname{rk}\left(E_{0}\right)=3 \\ E \times P S p_{8}(\mathbb{K}) & \text { if } \operatorname{rk}\left(E_{0}\right)=2 \\ E \times P S O_{8}(\mathbb{K}) & \text { if } \operatorname{rk}\left(E_{0}\right)=1\end{cases}
$$

To see this, fix $1 \neq y \in E_{0}$, and identify $C_{\bar{G}}(y) \cong S L_{2}(\mathbb{K}) \times_{C_{2}} E_{7}(\mathbb{K})$. For each $x \in E \backslash\langle y\rangle$, since x and $x y$ are \bar{G}-conjugate, $x \neq(1, b)$ for $b \in E_{7}(\mathbb{K})$. Thus $x=(a, b)$ for some $a \in S L_{2}(\mathbb{K})$ and $b \in E_{7}(\mathbb{K})$ both of order 4 , and (in the notation of $\left[\mathbf{G r}\right.$, Table VI]) b is in class $\mathbf{4 A}$ or $\mathbf{4 H}$ since $b^{2} \in Z\left(E_{7}(\mathbb{K})\right)$.

By (D) and [Gr, Table VI],

$$
\operatorname{dim}\left(C_{\bar{G}}(E)\right)= \begin{cases}80=\operatorname{dim}\left(C_{E_{7}(\mathbb{K})}(\mathbf{4 H})\right)+1 & \text { if } E \text { has type 2AAAA } \\ 64=\operatorname{dim}\left(C_{E_{7}(\mathbb{K})}(\mathbf{4 A})\right)+1 & \text { if } E \text { has type 2ABB }\end{cases}
$$

and thus $x \in \mathbf{2 A}$ if $b \in \mathbf{4 H}$ and $x \in \mathbf{2 B}$ if $b \in \mathbf{4 A}$. Thus if $E=\left\langle y, x_{1}, x_{2}\right\rangle$, and $x_{i}=\left(a_{i}, b_{i}\right)$, then $\left\langle a_{1}, a_{2}\right\rangle \leq S L_{2}(\mathbb{K})$ and $\left\langle b_{1}, b_{2}\right\rangle \leq E_{7}(\mathbb{K})$ are both quaternion of order 8. Point (H) now follows using the description in [Gr, Proposition 9.5(i)] of centralizers of certain quaternion subgroups of $E_{7}(\mathbb{K})$. When combined with the description in [Gr, Table VI] of $C_{E_{7}(\mathbb{K})}(\mathbf{4 A})$, this also shows that

$$
\begin{equation*}
F \cong C_{2}^{2} \text { of type } \mathbf{2} \mathbf{A B B} \Longrightarrow C_{\bar{G}}(F)^{0} \text { is of type } A_{7} T^{1} \tag{9}
\end{equation*}
$$

(i.e., $C_{\bar{G}}(F)^{0} \cong\left(S L_{8}(\mathbb{K}) \times \mathbb{K}^{\times}\right) / Z$, for some finite subgroup $Z \leq Z\left(S L_{8}(\mathbb{K})\right) \times$ $\left.\mathbb{K}^{\times}\right)$.
(I) If $U<\bar{G}$ is a $\mathbf{2 A}^{3}$-subgroup, then $C_{\bar{G}}(U)=U \times H$, where H is as follows:

\mathbb{G}	F_{4}	E_{6}	E_{7}	E_{8}
H	$S O_{3}(\mathbb{K})$	$S L_{3}(\mathbb{K})$	$S p_{6}(\mathbb{K})$	$F_{4}(\mathbb{K})$

When $\mathbb{G}=E_{8}$, this is a special case of (\mathbb{H}). For $x \in \mathbf{2 A} \cap F_{4}(\mathbb{K})$, $C_{E_{8}(\mathbb{K})}(x) \cong S L_{2}(\mathbb{K}) \times_{C_{2}} E_{7}(\mathbb{K})$ by $\mathbf{G r}$, 2.14]. Since $C_{F_{4}(\mathbb{K})}(x) \cong S L_{2}(\mathbb{K}) \times{ }_{C_{2}}$ $S p_{6}(\mathbb{K})$, this shows that $C_{E_{7}(\mathbb{K})}(U) \cong U \times S p_{6}(\mathbb{K})$.

Similarly, $C_{E_{8}(\mathbb{K})}(y) \cong S L_{3}(\mathbb{K}) \times_{C_{3}} E_{6}(\mathbb{K})$ by [Gr , 2.14] again (where y is in class 3 B in his notation). There is only one class of element of order three in $F_{4}(\mathbb{K})$ whose centralizer contains a central factor $S L_{3}(\mathbb{K})-C_{F_{4}(\mathbb{K})}(y) \cong$ $S L_{3}(\mathbb{K}) \times{ }_{C_{3}} S L_{3}(\mathbb{K})$ for y of type $\mathbf{3 C}$ in $F_{4}(\mathbb{K})$ - and thus $C_{E_{6}(\mathbb{K})}(U) \cong$ $U \times S L_{3}(\mathbb{K})$.

If $\mathbb{G}=F_{4}$, then by [Gr, 2.14$]$, for $y \in \mathbf{3 C}, C_{\bar{G}}(y) \cong S L_{3}(\mathbb{K}) \times_{C_{3}} S L_{3}(\mathbb{K})$. Also, the involutions in one factor must all lie in the class 2 A and those in the other in 2B. This, together with Proposition 2.5, shows that for $U_{2}<U$ of rank $2, C_{\bar{G}}\left(U_{2}\right) \cong\left(T^{2} \times_{C_{3}} S L_{3}(\mathbb{K})\right)\langle\theta\rangle$, where θ inverts a maximal torus. Thus $C_{\bar{G}}(U)=U \times C_{S L_{3}(\mathbb{K})}(\theta)$, where by [Gr , Proposition 2.18], $C_{S L_{3}(\mathbb{K})}(\theta) \cong$ $\mathrm{SO}_{3}(\mathbb{K})$. This finishes the proof of (II).
For the rest of the proof, we fix a nontoral elementary abelian 2-subgroup $E<$ \bar{G}. We must show that $E \notin \widehat{\mathcal{Z}}$. In almost all cases, we do this either by showing that the hypotheses of (G) hold, or by showing that $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right)>\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$ (where $\delta(-)$ is as in Lemma A.5), in which case $\operatorname{Aut}_{G}(E)$ has no strongly 2-embedded subgroup by Proposition A.4 and hence $E \notin \widehat{\mathcal{Z}}$.

By (A), (B), and (E), either E contains a $\mathbf{2 A}^{3}$-subgroup of rank three, or $\mathbb{G}=E_{8}$ and E is \bar{G}-conjugate to a subgroup of W_{9}. These two cases will be handled separately.
Case 1: Assume first that E contains a $\mathbf{2 A}{ }^{3}$-subgroup $U \leq E$. From the lists in ($\mathrm{A}|\mathrm{B}| \mathrm{C}$) of maximal nontoral subgroups, there are the following possibilities.
$\mathbb{G}=F_{4}, E_{6}$, or $E_{7}:$ By $(\mathrm{A} \mid \mathrm{B})$, we can write $E=U \times E_{0} \times Z$, where E_{0} is a
$\mathbf{2 B}^{k}$ subgroup (some $k \leq 2$) and $U E_{0} \backslash E_{0} \subseteq \mathbf{2 A}$ (and where $Z=1$ unless $\mathbb{G}=E_{7}$). If $k=0$, then $E \notin \widehat{\mathcal{Z}}$ by (G), so assume $k \geq 1$. By (II), and since
each elementary abelian 2-subgroup of $S L_{3}(\mathbb{K})$ and of $S p_{6}(\mathbb{K})$ has connected centralizer, $\pi_{0}\left(C_{\bar{G}}(E)\right) \cong U$ if $\mathbb{G}=E_{6}$ or E_{7}. If $\mathbb{G}=F_{4}$, then by (II) again, and since the centralizer in $\mathrm{SO}_{3}(\mathbb{K}) \cong P S L_{2}(\mathbb{K})$ of any C_{2}^{k} has 2^{k} components, $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=2^{3+k}$.

By ($\overline{\mathrm{A} \mid \mathrm{B}}$) again, $\mathrm{Aut}_{\bar{G}}(E)$ is the group of all automorphisms which normalize E_{0} and $U E_{0}$ and fix Z. Hence

$$
\left|O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)\right|=2^{3 k} \quad \text { and } \quad \operatorname{Aut}_{\bar{G}}(E) / O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right) \cong G L_{3}(2) \times G L_{k}(2)
$$

So $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right) \geq 2^{3 k+3}>\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$ by Lemma A.5, and $E \notin \widehat{\mathcal{Z}}$.
$\underline{\mathbb{G}=E_{8}}: \operatorname{By}(\mathbb{I}), C_{\bar{G}}(U)=U \times H$ where $H \cong F_{4}(\mathbb{K})$. Set $E_{2}=E \cap H$, and let $E_{0}=\left\langle E_{2} \cap \mathbf{2 B}\right\rangle$. Set $k=\operatorname{rk}\left(E_{0}\right)$ and $\ell=\operatorname{rk}\left(E_{2} / E_{0}\right)$.

If $k=0$, then E_{2} has type $\mathbf{2} \mathbf{A}^{\ell}$, and $E \backslash\left(U \cup E_{2}\right) \subseteq \mathbf{2 B}$. So each maximal toral subgroup $E_{t}<E$ has the form $E_{t}=U_{1} \times U_{2}$, where $\operatorname{rk}\left(U_{1}\right)=2, \operatorname{rk}\left(U_{2}\right) \leq 2$, and $E_{t} \cap \mathbf{2 A}=\left(U_{1} \cup U_{2}\right) \backslash 1$. The hypotheses of (G) thus hold, and so $E^{*} \notin \widehat{\mathcal{Z}}$.

Thus $k=1,2$. If $\ell \leq 2$, then E_{2} is toral, and

$$
\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=8 \cdot\left|\pi_{0}\left(C_{H}\left(E_{2}\right)\right)\right| \leq 2^{3+k}
$$

by formula (8) in the proof of Lemma A.14. (Note that $\varepsilon=1$ and $\eta=0$ in the notation of that formula.) If $\ell=3$, then $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|=2^{6+k}$ by the argument just given for $F_{4}(\mathbb{K})$. Also, Aut $_{\bar{G}}(E)$ contains all automorphisms of E which normalize E_{0}, and either normalize $U E_{0}$ and E_{2} or (if $\ell=3$) exchange them: since in the notation of (C), each such automorphism extends to an automorphism of W_{8} which normalizes F_{1} and F_{2}. So $\left|O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)\right| \geq 2^{k(3+\ell)}$, and $\operatorname{Aut}_{\bar{G}}(E) / O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right) \cong G L_{3}(2) \times G L_{k}(2) \times G L_{\ell}(2)$ or (if $\left.\ell=3\right)\left(G L_{3}(2)\right.$ 乙 $\left.C_{2}\right) \times G L_{k}(2)$. In all cases, $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right) \geq 2^{3 k+\ell k+3}>\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$, so $E \notin \mathcal{Z}$.
Case 2: Now assume that $\mathbb{G}=E_{8}$, and that E is \bar{G}-conjugate to a subgroup of W_{9}. To simplify the argument, we assume that $E \leq W_{9}$, and then prove that no subgroup $E^{*} \in \widehat{\mathcal{Z}}$ can be \bar{G}-conjugate to E. Recall that $W_{9}=T_{(2)}\langle\theta\rangle$, where $\theta \in N_{\bar{G}}(\bar{T})$ inverts the torus and $\theta T_{(2)} \subseteq \mathbf{2 B}$.

If $E \cap \mathbf{2 A}=\varnothing$, then $\operatorname{rk}(E)=5$. In this case, $\operatorname{Aut}_{\bar{G}}(E) \cong G L_{5}(2)$ and $\left|C_{\bar{G}}(E)\right|=$ 2^{15} CG Proposition 3.8]. (Cohen and Griess work in $E_{8}(\mathbb{C})$, but their argument also holds in our situation.) Since $\delta\left(G L_{5}(2)\right)>2^{15}$ by Lemma A.5(d), no $E^{*} \in \widehat{\mathcal{Z}}$ can be \bar{G}-conjugate to E.

Now assume E has $\mathbf{2 A}$-elements, and set $E_{2}=\langle E \cap \mathbf{2 A}\rangle$. Then $E_{2} \leq T_{(2)}$ (hence $\mathfrak{q}_{E_{2}}$ is quadratic) by the above remarks. Set $E_{1}=E_{2}^{\perp} \cap E_{2}$ and $E_{0}=\operatorname{Ker}\left(\mathfrak{q}_{E_{1}}\right)$. If $E_{0}=1$ and $\operatorname{rk}\left(E_{2}\right) \neq 7$, then by (G), no subgroup of S which is \bar{G}-conjugate to E lies in $\widehat{\mathcal{Z}}$.

It remains to consider the subgroups E for which $E_{0} \neq 1$ or $\operatorname{rk}\left(E_{2}\right)=7$. Information about $\left|O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)\right|$ and $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$ for such E is summarized in TableA.1. By the "type of \mathfrak{q}_{E} " is meant the type of quadratic form, in the notation used in the proof of Lemma A.14

We first check that the table includes all cases. If $\operatorname{rk}\left(E / E_{2}\right)=1$, then $E_{2}=$ $E \cap T_{(2)}$, and the table lists all types which the form $\mathfrak{q}_{E_{2}}$ can have. Note that since E_{2} is generated by nonisotropic vectors, $\mathfrak{q}_{E_{2}}$ cannot have type $[\mathbf{2}]_{(\boldsymbol{k})}^{+}$. If

$\begin{gathered} \text { O} \\ \text { \%े } \\ \text { E } \end{gathered}$			$\frac{\text { 宾 }}{\text { 寺 }}$	$\begin{gathered} \mathfrak{q}_{E_{2}} \\ \text { type } \end{gathered}$			
1	1	7	0	[7]	$\leq 2^{9}$	2^{7}	$\geq 2^{13}$
2	1	6^{+}	1	$[6]_{(1)}^{+}$	$\leq 2^{9}$	2^{13}	$\geq 2^{17}$
3	1	5	1	$\left.{ }^{[5]}\right]_{(1)}$	$\leq 2^{10}$	2^{11}	$\geq 3 \cdot 2^{13}$
4	1	4^{+}	2	$[4]_{(2)}^{+}$	$\leq 2^{10}$	2^{14}	$\geq 2^{16}$
5	1	4^{+}	1	$[4]_{(1)}^{+}$	$\leq 2^{8}$	2^{9}	$\geq 2^{10}$
6	1	4^{-}	1	${ }^{[4]_{(1)}^{-}}$	$\leq 2^{7}$	2^{9}	$\geq 2^{10}$
7	1	3	2	$[3]_{(2)}$	$\leq 2^{6}$	2^{11}	$\geq 2^{12}$
8	1	3	1	$[3]_{(1)}$	$\leq 2^{5}$	2^{7}	$\geq 2^{7}$
9	1	2^{-}	2	${ }^{[2]_{(2)}^{-}}$	$\leq 2^{5}$	2^{8}	$\geq 2^{9}$
10	1	2^{-}	1	${ }^{[2]_{(1)}^{-}}$	$\leq 2^{4}$	2^{5}	$\geq 2^{5}$
11	2	1	3	$[1]_{(3)}$	$\leq 2^{12}$	2^{11}	$\geq 2^{14}$
12	2	1	2	$[1]_{(2)}$	$\leq 2^{8}$	2^{8}	$\geq 2^{9}$
13	2	1	1	$[1]_{(1)}$	$\leq 2^{5}$	2^{5}	$\geq 2^{5}$

Table A. 1
$\operatorname{rk}\left(E / E_{2}\right)=2$, then $\mathfrak{q}_{E_{2}}$ is linear, and must be one of the three types listed. Since $\mathfrak{q}_{E \cap T_{(2)}}$ is quadratic and \mathfrak{q}_{E} is not, E_{2} has index at most 2 in $E \cap T_{(2)}$.

We claim that

$$
E, F<W_{9}, \alpha \in \operatorname{Iso}(E, F) \text { such that } \alpha\left(E \cap T_{(2)}\right)=F \cap T_{(2)} \text { and }
$$

$$
\begin{align*}
& \alpha(E \cap \mathbf{2 A})=F \cap \mathbf{2 A} \Longrightarrow \alpha=c_{t g} \text { for some } t \in \bar{T} \text { and some } \tag{10}\\
& g \in N_{G}(\bar{T})=G \cap N_{\bar{G}}(\bar{T}) .
\end{align*}
$$

By (C) and Witt's theorem (see [Ta, Theorem 7.4]), there is $g \in N_{\bar{G}}(\bar{T})$ such that $\left.\alpha\right|_{E \cap T_{(2)}}=c_{g}$, and we can assume $g \in G$ by Lemma 2.9. Then ${ }^{g} E \backslash{ }^{g}\left(E \cap T_{(2)}\right) \leq \theta \bar{T}$ since $\theta \bar{T} \in Z\left(N_{\bar{G}}(\bar{T})\right) / \bar{T}$, so $\alpha=c_{t g}$ for some $t \in \bar{T}$. This proves (10). In particular, any two subgroups of W_{9} which have the same data as listed in the first three rows of Table A. 1 are \bar{G}-conjugate.

By (10), together with (E) when $\operatorname{rk}\left(E / E_{2}\right)=2$, we have $\operatorname{Aut}_{\bar{G}}(E)=\operatorname{Aut}\left(E, \mathfrak{q}_{E}\right)$ in all cases. Thus $\operatorname{Aut}_{\bar{G}}(E)$ is the group of all automorphisms of E which normalize E_{0} and E_{2} and preserve the induced quadratic form on E_{2} / E_{0}. This gives the value for $\left|O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)\right|$ in the table, and the lower bounds for $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right)$ then follow from Lemma A.5.

In cases 1-6, the upper bounds for $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$ given in the table are proven in [02, p. 78-79]. In all cases, $\left|\pi_{0}\left(C_{\bar{G}}\left(E_{2}\right)\right)\right|$ is first computed, using Proposition 2.5) or the upper bound given in formula (8) in the proof of the last lemma, and then $\mathbf{O 2}$ Proposition 8.8] is used to compute an upper bound for $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| /\left|\pi_{0}\left(C_{\bar{G}}\left(E_{2}\right)\right)\right|$. There is in fact an error in the table on [O2, p. 79] (the group $C_{G}\left(E_{0}\right)_{s}^{0}$ in the third-to-last column should be $S L_{2} \times S L_{2}$ up to finite cover), but correcting this gives in fact a better estimate $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| \leq 2^{9}$.

Case nr. 11 can be handled in a similar way. Set $E_{t}=E \cap T_{(2)}<E$, so that $\left|E / E_{t}\right|=2=\left|E_{t} / E_{2}\right|$. The form $\mathfrak{q}_{E_{t}}$ has type $\left[\mathbf{2}_{(\mathbf{3})}^{+}\right.$, while E_{t}^{\perp} has type $\mathbf{2 B}^{3}$. Hence $\left|\pi_{0}\left(C_{\bar{G}}\left(E_{t}\right)\right)\right| \leq 2^{4}$ by (8). By [O2, Proposition 8.8], $\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right| \leq 2^{4+r}$, where $r=\operatorname{dim}(\bar{T})=8$.

To handle the remaining cases, fix rank 2 subgroups $F_{1}, F_{2} \leq T_{(2)}<\bar{G}$ with involutions of type AAA and ABB, respectively, and consider the information in Table A.2 The description of $C_{\bar{G}}\left(F_{i}\langle\theta\rangle\right)$ follows from (H). The third through fifth

i	$C_{\bar{G}}\left(F_{i}\langle\theta\rangle\right)$	$\operatorname{dim}\left(C_{\bar{G}}\left(F_{i}\right)\langle\theta, g\rangle\right)$ for g as follows:				
		$-I_{4} \oplus I_{4}$	$-I_{2} \oplus I_{6}$	order 4	$\mathbf{2 A}$	2B
1		20	24	16	16	20
2		12	16	16	16	12

Table A. 2
columns give dimensions of centralizers of $F_{i}\langle\theta\rangle\langle g\rangle$, for g as described after lifting to $S p_{8}(\mathbb{K})$ or $S O_{8}(\mathbb{K})$. (Here, I_{m} denotes the $m \times m$ identity matrix.) The last two columns do this for $g \in \mathbf{2 A}$ or $\mathbf{2 B}$, respectively, when $g \in T_{(2)}$ is orthogonal to F_{i} with respect to the form \mathfrak{q}, and the dimensions follow from (D). Thus elements of class 2B lift to involutions in $\mathrm{Sp}_{8}(\mathbb{K})$ or $\mathrm{SO}_{8}(\mathbb{K})$ with 4-dimensional (-1)-eigenspace, while for $i=1$ at least, elements of class 2 A lift to elements of order 4 in $S p_{8}(\mathbb{K})$.

Thus in all of the cases nr. 7-13 in Table A.1 we can identify $E=F_{i}\langle\theta\rangle \times F^{*}$, where $i=1 \mathrm{in} \mathrm{nr} .7-10$ or $i=2 \mathrm{in} \mathrm{nr}$. 11-13, and where F^{*} lifts to an abelian subgroup of $\mathrm{Sp}_{8}(\mathbb{K})$ or $\mathrm{SO}_{8}(\mathbb{K})$ (elementary abelian except for nr. 7-8). This information, together with the following:
H a group, $Z \leq Z(H),|Z|=p, Z \leq P \leq H$ a p-subgroup

$$
\Longrightarrow\left|C_{H / Z}(P) / C_{H}(P) / Z\right| \leq|P / \operatorname{Fr}(P)|
$$

(applied with $H=S p_{8}(\mathbb{K})$ or $S O_{8}(\mathbb{K})$), imply the remaining bounds in the last line of Table A. 1

In all but the last case in Table A.1, $\delta\left(\operatorname{Aut}_{\bar{G}}(E)\right)>\left|\pi_{0}\left(C_{\bar{G}}(E)\right)\right|$, so no $E^{*} \in \widehat{\mathcal{Z}}$ is \bar{G}-conjugate to E by Proposition A.4 In the last case, by the same proposition, E can be \bar{G}-conjugate to some $E^{*} \in \widehat{\mathcal{Z}}$ only if $\operatorname{Aut}_{\bar{G}}(E)$ acts transitively on $\pi_{0}\left(C_{\bar{G}}(E)\right) \cong C_{2}^{5}$ with point stabilizers isomorphic to Σ_{3}. By (10), each class in $O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)$ is represented by some element $t g \in N_{\bar{G}}(E)$, where $g \in N_{G}(\bar{T})$
and $t \in \bar{T}$. In particular, $(\operatorname{tg}) \sigma(t g)^{-1}=t \sigma(t)^{-1} \in \bar{T}$. So each class in the $O_{2}\left(\operatorname{Aut}_{\bar{G}}(E)\right)$-orbit of $1 \in \pi_{0}\left(C_{\bar{G}}(E)\right)$ has nonempty intersection with \bar{T}. But by (9), $C_{\bar{G}}\left(F_{2}\right)^{0} \cap \theta \bar{T}=\varnothing$, so $\theta C_{\bar{G}}(E)^{0} \cap \bar{T}=\varnothing$. Thus the action is not transitive on $\pi_{0}\left(C_{\bar{G}}(E)\right)$, and hence $E^{*} \notin \widehat{\mathcal{Z}}$.

Bibliography for Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

[AG] J. L. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515-519. MR0193141
[AOV] K. K. S. Andersen, B. Oliver, and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87-152. MR2948790
[A1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469-514. MR746539
[A2] M. Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR2752788
[A3] M. Aschbacher, Classifying finite simple groups and 2-fusion systems, ICCM Not. 3 (2015), no. 1, 35-42. MR 3385504
[AKO] M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR2848834
[BC] J. N. S. Bidwell and M. J. Curran, Corrigendum to "The automorphism group of a split metacyclic p-group". [Arch. Math. 87 (2006) 488-497] [MR2283679], Arch. Math. (Basel) 92 (2009), no. 1, 14-18. MR2471983
[Brb] N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Hermann, Paris, 1972. Actualités Scientifiques et Industrielles, No. 1349. MR0573068
[5a1] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc. (3) 91 (2005), no. 2, 325-354. MR2167090
[5a2] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Extensions of p-local finite groups, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3791-3858. MR2302515
[BL] C. Broto and R. Levi, On spaces of self-homotopy equivalences of p-completed classifying spaces of finite groups and homotopy group extensions, Topology 41 (2002), no. 2, 229255. MR 1876889
[BLO1] C. Broto, R. Levi, and B. Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611-664. MR 1961340
[BLO2] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779-856. MR 1992826
[BMO] C. Broto, J. M. Møller, and B. Oliver, Equivalences between fusion systems of finite groups of Lie type, J. Amer. Math. Soc. 25 (2012), no. 1, 1-20. MR2833477
[Br] K. S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 969123
[BW] N. Burgoyne and C. Williamson, On a theorem of Borel and Tits for finite Chevalley groups, Arch. Math. (Basel) 27 (1976), no. 5, 489-491. MR0430091
[Bu] W. Burnside, The Theory of Groups of Finite Order, Cambridge Univ. Press (1897).
[CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR0077480
[Ca] R. W. Carter, Simple groups of Lie type, John Wiley \& Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR0407163
[Ca2] R. W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR794307
[Ca3] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59. MR 0318337
[CF] R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139-151. MR0166271
[CG] A. M. Cohen and R. L. Griess Jr., On finite simple subgroups of the complex Lie group of type E_{8}, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 367-405. MR. 933426
[Cu] C. W. Curtis, Central extensions of groups of Lie type, J. Reine Angew. Math. 220 (1965), 174-185. MR0188299
[DS] A. Delgado \& B. Stellmacher, Weak (B, N)-pairs of rank 2, Groups and graphs: new results and methods, Birkhäuser (1985), 58-244
[Di] L. E. Dickson, A new system of simple groups, Math. Ann. 60 (1905), no. 1, 137-150. MR 1511290
[Fn] P. S. Fan, Amalgams of prime index, J. Algebra 98 (1986), no. 2, 375-421. MR826134
[Gl] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR0202822
[Gl2] G. Glauberman, Global and local properties of finite groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969), Academic Press, London, 1971, pp. 1-64. MR0352241
[GLn] G. Glauberman and J. Lynd, Control of fixed points and existence and uniqueness of centric linking systems, Invent. Math. 206 (2016), no. 2, 441-484. MR3570297
[Gd] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377-406. MR569075
[G] D. Gorenstein, Finite groups, Harper \& Row, Publishers, New York-London, 1968. MR 0231903
[GL] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR690900
[GLS3] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR1303592
[Gr] R. L. Griess Jr., Elementary abelian p-subgroups of algebraic groups, Geom. Dedicata 39 (1991), no. 3, 253-305. MR 1123145
[GrL] R. L. Griess Jr. and R. Lyons, The automorphism group of the Tits simple group ${ }^{2} F_{4}(2)^{\prime}$, Proc. Amer. Math. Soc. 52 (1975), 75-78. MR0390054
[Hu] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR0396773
[H] B. Huppert, Endliche Gruppen. I (German), Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967. MR0224703
[HB] B. Huppert and N. Blackburn, Finite groups. $I I I$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 243, Springer-Verlag, Berlin-New York, 1982. MR662826
[Kl] P. B. Kleidman, The maximal subgroups of the Steinberg triality groups ${ }^{3} D_{4}(q)$ and of their automorphism groups, J. Algebra 115 (1988), no. 1, 182-199. MR937609
[LO] R. Levi and B. Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917-990. MR1943386
[McL] S. MacLane, Homology, 1st ed., Springer-Verlag, Berlin-New York, 1967. Die Grundlehren der mathematischen Wissenschaften, Band 114. MR0349792
[Ma1] G. Malle, The maximal subgroups of ${ }^{2} F_{4}\left(q^{2}\right)$, J. Algebra 139 (1991), no. 1, 52-69. MR 1106340
[Ma2] G. Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007), 192-220. MR2365640
[O1] B. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 321-347. MR2092063
[O2] B. Oliver, Equivalences of classifying spaces completed at the prime two, Mem. Amer. Math. Soc. 180 (2006), no. 848, vi+102. MR2203209
[O3] B. Oliver, Existence and uniqueness of linking systems: Chermak's proof via obstruction theory, Acta Math. 211 (2013), no. 1, 141-175. MR3118306
[O4] B. Oliver, Simple fusion systems over p-groups with abelian subgroup of index $p: I$, J. Algebra 398 (2014), 527-541. MR3123784
[O5] B. Oliver, Reduced fusion systems over 2-groups of sectional rank at most 4, Mem. Amer. Math. Soc. 239 (2016), no. 1131, v+100. MR3431946
[O6] B. Oliver, Reductions to simple fusion systems, Bull. Lond. Math. Soc. 48 (2016), no. 6, 923-934. MR 3608937
[OV] B. Oliver and J. Ventura, Saturated fusion systems over 2-groups, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6661-6728. MR 2538610
[Pa] D. Parrott, A characterization of the Tits' simple group, Canad. J. Math. 24 (1972), 672-685. MR 0325757
[Ree] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G_{2}), Amer. J. Math. 83 (1961), 432-462. MR0138680
[Se] J.-P. Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
[Sh] K.-i. Shinoda, The conjugacy classes of the finite Ree groups of type (F_{4}), J. Fac. Sci. Univ. Tokyo Sect. I A Math. 22 (1975), 1-15. MR 0372064
[Sp] T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR632835
[St1] R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615. MR0121427
[St4] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques (French), Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113-127. MR 0153677
[St5] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 0155937
[St2] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
[St3] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
[St6] R. Steinberg, Generators, relations and coverings of algebraic groups. II, J. Algebra 71 (1981), no. 2, 527-543. MR630615
[Sz1] M. Suzuki, Group theory. \bar{I}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin-New York, 1982. Translated from the Japanese by the author. MR648772
[Sz2] M. Suzuki, Group theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR815926
[Ta] D. E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR1189139
[Ti] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR0470099
[Wg] A. Wagner, The subgroups of $\operatorname{PSL}\left(5,2^{a}\right)$, Resultate Math. 1 (1978), no. 2, 207-226. MR559440
[Wi] R. A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag London, Ltd., London, 2009. MR2562037

Automorphisms of Fusion Systems of Sporadic Simple Groups

by Bob Oliver

Introduction

This paper is centered around the comparison of certain outer automorphism groups associated to a sporadic simple group: outer automorphisms of the group itself, those of its fusion at different primes, and those of its classifying space completed at different primes. In most, but not all cases (under conditions made precise in Theorem (A), these automorphism groups are all isomorphic. This comparison is important when studying extensions of fusion systems, and through that plays a role in Aschbacher's program (see, e.g., A5) for reproving certain parts of the classification theorem from the point of view of fusion systems.

When G is a finite group, p is a prime, and $S \in \operatorname{Syl}_{p}(G)$, the p-fusion system of G is the category $\mathcal{F}_{S}(G)$ whose objects are the subgroups of G, and which has morphism sets

$$
\operatorname{Mor}_{\mathcal{F}_{S}(G)}(P, Q)=\left\{\varphi \in \operatorname{Hom}(P, Q) \mid \varphi=c_{x}, \text { some } x \in G \text { with } x P x^{-1} \leq Q\right\} .
$$

A p-subgroup $P \leq G$ is called p-centric in G if $Z(P) \in \operatorname{Syl}_{p}\left(C_{G}(P)\right.$); equivalently, if $C_{G}(P)=Z(P) \times C_{G}^{\prime}(P)$ for some (unique) subgroup $C_{G}^{\prime}(P)$ of order prime to p. The centric linking system of G at p is the category $\mathcal{L}_{S}^{c}(G)$ whose objects are the subgroups of S which are p-centric in G, and where

$$
\operatorname{Mor}_{\mathcal{L}_{S}^{c}(G)}(P, Q)=T_{G}(P, Q) / C_{G}^{\prime}(P) \quad \text { where } \quad T_{G}(P, Q)=\left\{x \in G \mid x P x^{-1} \leq Q\right\} .
$$

Note that there is a natural functor $\pi: \mathcal{L}_{S}^{c}(G) \longrightarrow \mathcal{F}_{S}(G)$ which is the inclusion on objects, and which sends the class of $x \in T_{G}(P, Q)$ to $c_{x} \in \operatorname{Hom}(P, Q)$. Outer automorphism groups of these systems were defined in BLO and later papers (see below). We say that $\mathcal{F}=\mathcal{F}_{S}(G)$ is tamely realized by G if the natural homomorphism $\kappa_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right)$ is surjective and splits. The fusion system \mathcal{F} is tame if it is tamely realized by some finite group.

In terms of homotopy theory, it was shown in BLO Theorem B] that for a finite group G and $S \in \operatorname{Syl}_{p}(G)$, there is a natural isomorphism $\operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \cong$ $\operatorname{Out}\left(B G_{p}^{\wedge}\right)$. Here, $B G_{p}^{\wedge}$ is the p-completion, in the sense of Bousfield-Kan, of the classifying space of G, and $\operatorname{Out}(X)$ means the group of homotopy classes of self equivalences of the space X. Thus $\mathcal{F}_{S}(G)$ is tamely realized by G if the natural map from $\operatorname{Out}(G)$ to $\operatorname{Out}\left(B G_{p}^{\wedge}\right)$ is split surjective.

When $p=2$, our main result is easily stated: if G is a sporadic simple group, then the 2 -fusion system of G is simple except when $G \cong J_{1}$, and is tamely realized by G except when $G \cong M_{11}$. The 2 -fusion system of M_{11} is tamely realized by $P S L_{3}(3)$.

For p odd, information about fusion systems of the sporadic groups at odd primes is summarized in Table 0.3. In that table, for a given group G and prime p and $S \in \operatorname{Syl}_{p}(G)$,

- a dash "-" means that S is abelian or trivial;
- "constr." means that $\mathcal{F}_{S}(G)$ is constrained; and
- an almost simple group L in brackets means that $\mathcal{F}_{S}(G)$ is almost simple but not simple, and is shown in [A4, 16.10] to be isomorphic to the fusion system of L.
For all other pairs $(G, p), \mathcal{F}$ is simple by $\mathbf{A 4}, 16.10]$, and we indicate what is known about the nature of $\kappa_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right)$. In addition,
- a dagger $\left(^{\dagger}\right)$ marks the pairs (G, p) for which S is extraspecial of order p^{3}.

G	\mid Out(G)\|	$p=3$	$p=5$	$p=7$	$p \geq 11$
M_{12}	2	κ isom. ${ }^{\dagger}$	-	-	-
M_{24}	1	$\left[M_{12}: 2\right]^{\dagger}$	-	-	-
J_{2}	2	constr. ${ }^{\dagger}$	-	-	-
J_{3}	2	constr.	-	-	-
J_{4}	1	$\left[{ }^{2} F_{4}(2)\right]^{\dagger}$	-	-	11: constr. †
Co_{3}	1	κ isom.	constr. ${ }^{\dagger}$	-	-
Co_{2}	1	κ isom.	constr. ${ }^{\dagger}$	-	-
Co_{1}	1	κ isom.	$\left[\mathrm{SO}_{5}(5)\right]$	-	-
HS	2	-	constr. ${ }^{\dagger}$	-	-
$M c L$	2	κ isom.	constr. ${ }^{\dagger}$	-	-
Suz	2	κ isom.	-	-	-
He	2	$\operatorname{Out}(\mathcal{L})=1^{\dagger}$	-	κ isom. ${ }^{\dagger}$	-
Ly	1	κ isom.	κ isom.	-	-
Ru	1	$\left[{ }^{2} F_{4}(2)\right]^{\dagger}$	$\left[L_{3}(5): 2\right]^{\dagger}$	-	-
$O^{\prime} N$	2	-	-	κ isom. ${ }^{\dagger}$	-
$F i_{22}$	2	κ isom.	-	-	-
$F i_{23}$	1	κ isom.	-	-	-
$F i_{24}^{\prime}$	2	κ isom.	-	κ isom. ${ }^{\dagger}$	-
F_{5}	2	κ isom.	κ isom.	-	-
F_{3}	1	κ isom.	κ isom. ${ }^{\dagger}$	-	-
F_{2}	1	κ isom.	κ isom.	-	-
F_{1}	1	κ isom.	κ isom.	κ isom.	13: κ isom. ${ }^{\dagger}$

TABLE 0.3. Summary of results for odd p

Here, a fusion system $\mathcal{F}=\mathcal{F}_{S}(G)$ is constrained if it contains a normal p subgroup $Q \unlhd \mathcal{F}$ such that $C_{S}(Q) \leq Q$. The fusion system \mathcal{F} is simple if it has no proper nontrivial normal fusion subsystems. It is almost simple if it contains a proper normal subsystem $\mathcal{F}_{0} \unlhd \mathcal{F}$ which is simple, and such that $C_{\mathcal{F}}\left(\mathcal{F}_{0}\right)=1$. We refer to AKO, Definitions I.4.1 \& I.6.1] for the definitions of normal p-subgroups
and normal fusion subsystems, and to [A4, §6] for the definition of the centralizer of a normal subsystem.

Thus when G is a sporadic simple group and p is an odd prime such that the p-fusion system \mathcal{F} of G is simple, we show in all cases that \mathcal{F} is tamely realized by G, and in fact that $\operatorname{Out}(G) \cong \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right)$ except when $G \cong H e$ and $p=3$ (Theorem A).

Before going further, we need to define more precisely the automorphism groups which we are working with. All of the definitions given here apply to abstract fusion and linking systems (see, e.g., AKO, § III.4.3]), but for simplicity, we always assume that $\mathcal{F}=\mathcal{F}_{S}(G)$ and $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$ for some finite group G with $S \in \operatorname{Syl}_{p}(G)$.

Automorphisms of $\mathcal{F}=\mathcal{F}_{S}(G)$ are straightforward. An automorphism $\alpha \in$ Aut (S) is fusion preserving if it induces an automorphism of the category \mathcal{F} (i.e., a functor from \mathcal{F} to itself which is bijective on objects and on morphisms). Set

$$
\begin{aligned}
& \operatorname{Aut}(\mathcal{F})=\{\alpha \in \operatorname{Aut}(S) \mid \alpha \text { is fusion preserving }\} \\
& \operatorname{Out}(\mathcal{F})=\operatorname{Aut}(\mathcal{F}) / \operatorname{Aut}_{\mathcal{F}}(S)
\end{aligned}
$$

Here, by definition, $\operatorname{Aut}_{\mathcal{F}}(S)=\operatorname{Aut}_{G}(S)$: the automorphisms induced by conjugation in $N_{G}(S)$. These groups were denoted $\operatorname{Aut}(S, \mathcal{F})$ and $\operatorname{Out}(S, \mathcal{F})$ in earlier papers to emphasize that they are groups of automorphisms of S, but it seems more appropriate here to regard them as automorphisms of the fusion system \mathcal{F} (as opposed to the category \mathcal{F}).

Now assume $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$. For each $P \in \operatorname{Ob}(\mathcal{L})$, set $\iota_{P}=[1] \in \operatorname{Mor}_{\mathcal{L}}(P, S)$ (the "inclusion" of P in S in the category $\mathcal{L})$, and set $\llbracket P \rrbracket=\{[g] \mid g \in P\} \leq \operatorname{Aut}_{\mathcal{L}}(P)$. Define

$$
\begin{aligned}
& \operatorname{Aut}(\mathcal{L})=\left\{\beta \in \operatorname{Aut}_{\text {cat }}(\mathcal{L}) \mid \beta\left(\iota_{P}\right)=\iota_{\beta(P)}, \beta(\llbracket P \rrbracket)=\llbracket \beta(P) \rrbracket, \forall P \in \mathcal{F}^{c}\right\} \\
& \operatorname{Out}(\mathcal{L})=\operatorname{Aut}(\mathcal{L}) /\left\langle c_{x} \mid x \in N_{G}(S)\right\rangle
\end{aligned}
$$

Here, $\operatorname{Aut}_{\text {cat }}(\mathcal{L})$ is the group of automorphisms of \mathcal{L} as a category, and $c_{x} \in \operatorname{Aut}(\mathcal{L})$ for $x \in N_{G}(S)$ sends P to ${ }^{x} P$ and $[g]$ to $\left[{ }^{x} g\right]$. There are natural homomorphisms

$$
\operatorname{Out}(G) \xrightarrow[\cong]{\kappa_{G}} \operatorname{Out}(\mathcal{L}) \xrightarrow{\mu_{G}\left(B G_{\hat{p}}\right)} \operatorname{Out}(\mathcal{F}) \quad \text { and } \quad \bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G} .
$$

Here, κ_{G} is defined by sending the class of $\alpha \in \operatorname{Aut}(G)$, chosen so that $\alpha(S)=S$, to the class of $\widehat{\alpha} \in \operatorname{Aut}(\mathcal{L})$, where $\widehat{\alpha}(P)=\alpha(P)$ and $\widehat{\alpha}([g])=[\alpha(g)]$. For $\beta \in \operatorname{Aut}(\mathcal{L})$, μ_{G} sends the class of $\beta \in \operatorname{Aut}(\mathcal{L})$ to the class of

$$
\widehat{\beta}=\left(S \xrightarrow[\cong]{g \mapsto[g]} \llbracket S \rrbracket \xrightarrow[\cong]{\left.\beta\right|_{\llbracket S \rrbracket}} \llbracket S \rrbracket \xrightarrow[\cong]{\lfloor g] \mapsto g} S\right) \in \operatorname{Aut}(\mathcal{F}) \leq \operatorname{Aut}(S) .
$$

Then $\bar{\kappa}_{G}: \operatorname{Out}(G) \longrightarrow \operatorname{Out}(\mathcal{F})$ is induced by restriction to S. See AKO, § III.4.3] or [AOV1, §1.3] for more details on these definitions.

By recent work of Chermak, Oliver, and Glauberman and Lynd, the nature of μ_{G} is now fairly well known in all cases.

Proposition 0.1 ($\mathbf{0 2}$, Theorem C], GIL, Theorem 1.1]). For each prime p, and each finite group G with $S \in \operatorname{Syl}_{p}(G), \mu_{G}: \operatorname{Out}\left(\mathcal{L}_{S}^{c}(G)\right) \longrightarrow \operatorname{Out}\left(\mathcal{F}_{S}(G)\right)$ is surjective, and is an isomorphism if p is odd.

In fact, O2 and GIL show that the conclusion of Proposition 0.1 holds for all (abstract) fusion systems and associated linking systems.

When G is a sporadic simple group and p is odd, a more direct proof that μ_{G} is an isomorphism is given in [O1, Propositions $4.1 \& 4.4$].

The fusion system $\mathcal{F}=\mathcal{F}_{S}(G)$ is tamely realized by G if κ_{G} is split surjective, and is tame if it is tamely realized by some finite group G^{*} with $S \in \operatorname{Syl}_{p}\left(G^{*}\right)$ and $\mathcal{F}=\mathcal{F}_{S}\left(G^{*}\right)$. We refer to [AOV1, Theorems A \& B] or [AKO, § III.6.1] for the original motivation for this definition. In practice, it is in many cases easier to study the homomorphism $\bar{\kappa}_{G}$, which is why we include information about μ_{G} here. The injectivity of $\bar{\kappa}_{G}$, when $p=2$ and G is a sporadic simple group, follows from a theorem of Richard Lyons Ly2, Theorem 1.1] (see the proof of Proposition 2.2).

Fusion systems of alternating groups were shown to be tame in AOV1, Proposition 4.8], while those of finite groups of Lie type (including the Tits group) were shown to be tame in BMO, Theorems C \& D]. So the following theorem completes the study of tameness for fusion systems of the known finite nonabelian simple groups.

Theorem A. Fix a sporadic simple group G, a prime p which divides $|G|$, and $S \in \operatorname{Syl}_{p}(G)$. Set $\mathcal{F}=\mathcal{F}_{S}(G)$ and $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$. Then \mathcal{F} is tame. Furthermore, κ_{G} and μ_{G} are isomorphisms (hence \mathcal{F} is tamely realized by G) if $p=2$, or if p is odd and S is nonabelian, with the following two exceptions:
(a) $G \cong M_{11}$ and $p=2$, in which case $\operatorname{Out}(G)=1$ and $|\operatorname{Out}(\mathcal{F})|=|\operatorname{Out}(\mathcal{L})|=$ 2; and
(b) $G \cong$ He and $p=3$, in which case $|\operatorname{Out}(G)|=2$ and $\operatorname{Out}(\mathcal{F})=\operatorname{Out}(\mathcal{L})=$ 1.

Proof. By Proposition 0.1, μ_{G} is surjective in all cases, and is an isomorphism if p is odd. When $p=2, \mu_{G}$ is injective (hence an isomorphism) by Propositions 2.1 (when $|S| \leq 2^{9}$) and 5.1 (when $|S| \geq 2^{10}$). Thus in all cases, κ_{G} is an isomorphism if and only if $\bar{\kappa}_{G}=\mu_{G} \circ \kappa_{G}$ is an isomorphism.

When $p=2, \bar{\kappa}_{G}$ is an isomorphism, with the one exception $G \cong M_{11}$, by Propositions 2.1 (when $|S| \leq 2^{9}$) and 2.2 (when $|S| \geq 2^{10}$). When p is odd, S is nonabelian, and \mathcal{F} is not simple, then $\bar{\kappa}_{G}$ is an isomorphism by Proposition 3.1. When p is odd and \mathcal{F} is simple, $\bar{\kappa}_{G}$ is an isomorphism except when $G \cong H e$ and $p=3$ by Proposition 3.2 The two exceptional cases are handled in Propositions 2.1 and 3.2 .

In the first half of the paper, we compare $\operatorname{Out}(G)$ with $\operatorname{Out}(\mathcal{F})$: first listing some general results in Chapter 1, and then applying them to determine the nature of $\bar{\kappa}_{G}$ in Chapters 2 (for $p=2$) and 3 (for p odd). We then compare $\operatorname{Out}(\mathcal{F})$ with $\operatorname{Out}(\mathcal{L})$ (when $p=2$) in the last half of the paper: general techniques for determining $\operatorname{Ker}\left(\mu_{G}\right)$ are listed in Chapter 4, and these are applied in Chapter 5 to finish the proof of the main theorem.

The author plans, in a future paper with Jesper Grodal, to look more closely at the fundamental groups of geometric realizations of the categories $\mathcal{L}_{S}^{c}(G)$ when G is a sporadic group. This should give alternative proofs for several of the cases covered by Theorem A.

I would like to thank Michael Aschbacher for explaining to me the potential importance of these results. Kasper Andersen made some computer computations several years ago involving the Rudvalis sporadic group at $p=2$; while they're not used here, they probably gave me hints as to how to proceed in that case (one of the
hardest). I also thank the referee for his many suggestions which helped simplify or clarify several arguments. I would especially like to thank Richard Lyons for the notes Ly2 he wrote about automorphisms of sporadic groups, without which I might not have known how to begin this project.

Notation: We mostly use Atlas notation Atl § 5.2] for groups, extensions, extraspecial groups, etc., as well as for names ($\mathbf{2 A}, \mathbf{2 B}, \mathbf{3 A}, \ldots$) of conjugacy classes of elements. An elementary abelian 2-group has type $\mathbf{2} \mathbf{A}^{n}$ if it is $\mathbf{2 A}$-pure of rank n (similarly for an elementary abelian 3 -group of type $\mathbf{3} \mathbf{A}^{n}$); it has type $\mathbf{2} \mathbf{A}_{i} \mathbf{B}_{j} \ldots$ if it contains i elements of class $\mathbf{2 A}, j$ of class $\mathbf{2 B}$, etc. Also, A_{n} and S_{n} denote the alternating and symmetric groups on n letters, $E_{p^{k}}$ (for p prime) is an elementary abelian p-group of order p^{k}, and $U T_{n}(q)$ (for $n \geq 2$ and q a prime power) is the group of upper triangular matrices in $G L_{n}(q)$ with 1's on the diagonal. As usual, $G^{\#}=G \backslash\{1\}$ is the set of nonidentity elements of a group G, and $Z_{2}(S) \leq S$ (for a p-group S) is the subgroup such that $Z_{2}(S) / Z(S)=Z(S / Z(S)$). For groups $H \leq G$ and elements $g, h \in G,{ }^{g} h=g h g^{-1}$ and ${ }^{g} H=g H g^{-1}$. For each pair of groups $H \leq G$,

$$
\operatorname{Aut}_{G}(H)=\left\{\left(x \mapsto{ }^{g} x\right) \mid g \in N_{G}(H)\right\} \leq \operatorname{Aut}(H)
$$

and

$$
\operatorname{Out}_{G}(H)=\operatorname{Aut}_{G}(H) / \operatorname{Inn}(H)
$$

We assume in all cases the known order of $\operatorname{Out}(G)$ for sporadic groups G, without giving references each time.

CHAPTER 1

Automorphism groups of fusion systems: Generalities

We give here some techniques which will be used to determine the nature of $\bar{\kappa}_{G}$. We begin with the question of injectivity. Recall that $|\operatorname{Out}(G)| \leq 2$ for each sporadic simple group G.

Lemma 1.1. Fix a prime p. Let G be a finite group, fix $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$.
(a) For each $\alpha \in \operatorname{Aut}(G)$, the class $[\alpha] \in \operatorname{Out}(G)$ lies in $\operatorname{Ker}\left(\bar{\kappa}_{G}\right)$ if and only if there is $\alpha^{\prime} \in[\alpha]$ such that $|S|\left|\left|C_{G}\left(\alpha^{\prime}\right)\right|\right.$.
(b) Assume $|\operatorname{Out}(G)|=2$ and p is odd. If there is no $\alpha \in \operatorname{Aut}(G)$ such that $|\alpha|=2$ and $|S|\left|\left|C_{G}(\alpha)\right|\right.$, then $\bar{\kappa}_{G}$ is injective.
(c) Assume $|\operatorname{Out}(G)|=2$. If $\operatorname{Out}_{\operatorname{Aut}(G)}(Q)>\operatorname{Out}_{G}(Q)$ for some $Q \unlhd S$, then $\bar{\kappa}_{G}$ is injective.

Proof. (a) We can assume α is chosen so that $\alpha(S)=S$. If $[\alpha] \in \operatorname{Ker}\left(\bar{\kappa}_{G}\right)$, then $\left.\alpha\right|_{S} \in \operatorname{Aut}_{G}(S)$: conjugation by some $g \in N_{G}(S)$. Set $\alpha^{\prime}=\alpha \circ c_{g}^{-1} \in \operatorname{Aut}(G)$; then $\left[\alpha^{\prime}\right]=[\alpha]$ in $\operatorname{Out}(G)$, and $C_{G}\left(\alpha^{\prime}\right) \geq S$.

Conversely, assume $|S|\left|\left|C_{G}\left(\alpha^{\prime}\right)\right|\right.$. Then $C_{G}\left(\alpha^{\prime}\right) \geq{ }^{g} S$ for some $g \in G$. Set $\alpha^{\prime \prime}=c_{g} \circ \alpha^{\prime} \circ c_{g}$ (composing from right to left), where $c_{g} \in \operatorname{Inn}(G)$ and $c_{g}(S)={ }^{g} S$. Then $\left[\alpha^{\prime \prime}\right]=\left[\alpha^{\prime}\right]=[\alpha]$ in $\operatorname{Out}(G),\left.\alpha^{\prime \prime}\right|_{S}=\operatorname{Id}_{S}$, and hence $\bar{\kappa}_{G}([\alpha])=\bar{\kappa}_{G}\left(\left[\alpha^{\prime \prime}\right]\right)=1$.
(b) If $\bar{\kappa}_{G}$ is not injective, then by (a), there is $\alpha \in \operatorname{Aut}(G) \backslash \operatorname{Inn}(G)$ such that $|S|\left|\left|C_{G}(\alpha)\right|\right.$. Since $| \operatorname{Out}(G)|=2,|\alpha|=2 m$ for some $m \geq 1$. Thus $| \alpha^{m} \mid=2$, and $|S|\left|\left|C_{G}\left(\alpha^{m}\right)\right|\right.$.
(c) If $Q \unlhd S$ and $\operatorname{Out}_{\operatorname{Aut}(G)}(Q)>\operatorname{Out}_{G}(Q)$, then there is $\beta \in \operatorname{Aut}(G) \backslash \operatorname{Inn}(G)$ such that $\beta(Q)=Q$ and $\left.\beta\right|_{Q} \notin \operatorname{Aut}_{G}(Q)$. Since $S \in \operatorname{Syl}_{p}\left(N_{G}(Q)\right)$, we can arrange that $\beta(S)=S$ by replacing β by $c_{x} \circ \beta$ for some appropriate element $x \in N_{G}(Q)$. We still have $\left.\beta\right|_{Q} \notin \operatorname{Aut}_{G}(Q)$, so $\left.\beta\right|_{S} \notin \operatorname{Aut}_{G}(S)$, and $\bar{\kappa}_{G}([\beta]) \neq 1$. Thus $\bar{\kappa}_{G}$ is nontrivial, and is injective if $|\operatorname{Out}(G)|=2$.

A finite group H will be called strictly p-constrained if $C_{H}\left(O_{p}(H)\right) \leq O_{p}(H)$; equivalently, if $F^{*}(H)=O_{p}(H)$.

Lemma 1.2. Fix a prime p. Let G be a finite group, fix $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. Let $H<G$ be a subgroup which contains S.
(a) If H is strictly p-constrained, then κ_{H} and μ_{H} are isomorphisms.
(b) Assume $H=N_{G}(Q)$, where either Q is characteristic in S, or $|Q|=p$, $Q \leq Z(S)$, and $\operatorname{Aut}(\mathcal{F})$ sends each G-conjugacy class of elements of order p in $Z(S)$ to itself. Set $\mathcal{F}_{H}=\mathcal{F}_{S}(H)$ for short, and set $\operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right)=$
$\operatorname{Aut}\left(\mathcal{F}_{H}\right) \cap \operatorname{Aut}(\mathcal{F})$ and $\operatorname{Out}^{0}\left(\mathcal{F}_{H}\right)=\operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right) / \operatorname{Aut}_{H}(S)$. Then the inclusion of $\operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right)$ in $\operatorname{Aut}(\mathcal{F})$ induces a surjection of $\operatorname{Out}^{0}\left(\mathcal{F}_{H}\right)$ onto $\operatorname{Out}(\mathcal{F})$, and hence $|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}^{0}\left(\mathcal{F}_{H}\right)\right| \leq\left|\operatorname{Out}\left(\mathcal{F}_{H}\right)\right|$.

If in addition, H is strictly p-constrained or $\bar{\kappa}_{H}$ is onto, and we set $\operatorname{Out}^{0}(H)=\bar{\kappa}_{H}^{-1}\left(\operatorname{Out}^{0}\left(\mathcal{F}_{H}\right)\right)$, then $|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}^{0}(H)\right| \leq|\operatorname{Out}(H)|$.

Proof. (a) See, e.g., BMO Proposition 1.6(a)].
(b) We first claim that

$$
\begin{equation*}
\operatorname{Aut}(\mathcal{F})=\operatorname{Aut}_{G}(S) \cdot N_{\operatorname{Aut}(\mathcal{F})}(Q) \leq \operatorname{Aut}_{G}(S) \cdot \operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right) \tag{1}
\end{equation*}
$$

as subgroups of $\operatorname{Aut}(S)$. If Q is characteristic in S, then the equality is clear. If $|Q|=p, Q \leq Z(S)$, and each $\alpha \in \operatorname{Aut}(\mathcal{F})$ sends Q to a subgroup which is G conjugate to Q, then the equality follows from the Frattini argument (and since each subgroup of $Z(S)$ which is G-conjugate to Q is $N_{G}(S)$-conjugate to Q). If $\alpha \in \operatorname{Aut}(S)$ normalizes Q and preserves fusion in G, then it preserves fusion in $H=N_{G}(Q)$. Thus $N_{\operatorname{Aut}(\mathcal{F})}(Q) \leq \operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right)$, proving the second relation in (11).

Now, $\operatorname{Aut}_{H}(S) \leq \operatorname{Aut}_{G}(S) \cap \operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right)$. Together with (1), this implies that the natural homomorphism

$$
\operatorname{Out}^{0}\left(\mathcal{F}_{H}\right)=\operatorname{Aut}^{0}\left(\mathcal{F}_{H}\right) / \operatorname{Aut}_{H}(S) \longrightarrow \operatorname{Aut}(\mathcal{F}) / \operatorname{Aut}_{G}(S)=\operatorname{Out}(\mathcal{F})
$$

is well defined and surjective. The last statement now follows from (a).
The next lemma will be useful when determining $\operatorname{Out}(H)$ for the subgroups H which appear when applying Lemma 1.2 (b).

Lemma 1.3. Let H be a finite group, and let $Q \unlhd H$ be a characteristic subgroup such that $C_{H}(Q) \leq Q$. Set $H^{*}=\operatorname{Out}_{H}(Q) \cong H / Q$.
(a) There is an exact sequence
$1 \longrightarrow H^{1}\left(H^{*} ; Z(Q)\right) \longrightarrow \operatorname{Out}(H) \xrightarrow{R} N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}$,
where R sends the class of $\alpha \in \operatorname{Aut}(H)$ to the class of $\left.\alpha\right|_{Q}$.
(b) Assume $R \leq Z(Q)$ and $R \unlhd H$. Let $\alpha \in \operatorname{Aut}(H)$ be such that $\left.\alpha\right|_{R}=\operatorname{Id}_{R}$ and $[\alpha, H] \leq R$. Then there is $\psi \in \operatorname{Hom}_{H}(Q / R, R)$ such that $\alpha(g)=$ $g \psi(g R)$ for each $g \in Q$, and hence $\left.\alpha\right|_{Q}=\operatorname{Id}_{Q}$ if $\operatorname{Hom}_{H}(Q / R, R)=1$. If $\left.\alpha\right|_{Q}=\operatorname{Id}_{Q},[\alpha, H] \leq R$, and $H^{1}\left(H^{*} ; R\right)=0$, then $\alpha \in \operatorname{Aut}_{R}(H)$.
(c) Fix a prime p, assume Q is an extraspecial or elementary abelian p-group, and set $\bar{Q}=Q / \operatorname{Fr}(Q)$. Set $H_{0}^{*}=O^{p^{\prime}}\left(H^{*}\right)$, and $X=N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}$.
(c.i) If \bar{Q} is absolutely irreducible as an $\mathbb{F}_{p} H^{*}$-module, then there is $Y \unlhd X$ such that $Y \cong(\mathbb{Z} / p)^{\times} / Z\left(H^{*}\right)$ and X / Y is isomorphic to a subgroup of $\operatorname{Out}\left(H^{*}\right)$.
(c.ii) If \bar{Q} is absolutely irreducible as an $\mathbb{F}_{p} H_{0}^{*}$-module, then there is $Y \unlhd X$ such that $Y \cong(\mathbb{Z} / p)^{\times} / Z\left(H^{*}\right)$ and

$$
|X / Y| \leq\left|\operatorname{Out}\left(H_{0}^{*}\right)\right| /\left|\operatorname{Out}_{H^{*}}\left(H_{0}^{*}\right)\right| .
$$

Here, $Z\left(H^{*}\right)$ acts on \bar{Q} via multiplication by scalars, and we regard it as a subgroup of $(\mathbb{Z} / p)^{\times}$in that way.

Proof. (a) The exact sequence is a special case of [OV Lemma 1.2].
(b) By assumption, there is a function $\psi: Q / R \longrightarrow R$ such that $\alpha(g)=g \psi(g R)$ for each $g \in Q$, and ψ is a homomorphism since $R \leq Z(Q)$. For each $h \in H, \alpha(h)=r h$ for some $r \in R$. So for $g \in Q$, since $[r, Q]=1$, we get $\psi\left({ }^{h} g R\right)=\left({ }^{h} g\right)^{-1} \alpha\left({ }^{h} g\right)=$ $\left({ }^{h} g\right)^{-1 r h}(\alpha(g))={ }^{h}\left(g^{-1} \alpha(g)\right)={ }^{h} \psi(g R)$. Thus $\psi \in \operatorname{Hom}_{H}(Q / R, R)$.

If $\left.\alpha\right|_{Q}=\operatorname{Id}$ and $[\alpha, H] \leq R$, then there is $\chi: H^{*} \longrightarrow R$ such that $\alpha(g)=\chi(g Q) g$ for each $g \in H$. Then $\chi(g h Q)=\chi(g Q) \cdot{ }^{g} \chi(h Q)$ for all $g, h \in H$, so χ is a 1-cocycle. If $H^{1}\left(H^{*} ; R\right)=0$, then there is $r \in R$ such that $\chi(g Q)=r\left({ }^{g} r\right)^{-1}$ for each $g \in H$, and α is conjugation by r.
(c) If \bar{Q} is absolutely irreducible as an $\mathbb{F}_{p} H^{*}$-module, then $C_{\operatorname{Out}(Q)}\left(H^{*}\right) \cong(\mathbb{Z} / p)^{\times}$ consists of multiplication by scalars (see [A, 25.8]), so its image Y in the group $X=$ $N_{\mathrm{Out}(Q)}\left(H^{*}\right) / H^{*}$ is isomorphic to $(\mathbb{Z} / p)^{\times} / Z\left(H^{*}\right)$. Also, $X / Y \cong \operatorname{Out}_{\mathrm{Out}(Q)}\left(H^{*}\right)$: a subgroup of $\operatorname{Out}\left(H^{*}\right)$. This proves (c.i).

If \bar{Q} is absolutely irreducible as an $\mathbb{F}_{p} H_{0}^{*}$-module, then let Y be the image of $C_{\text {Out }(Q)}\left(H_{0}^{*}\right)$ in $X=N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}$. Then $Y \cong(\mathbb{Z} / p)^{\times} / Z\left(H^{*}\right)$ (by [A, 25.8] again), and

$$
\begin{aligned}
|X / Y| & =\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / C_{\operatorname{Out}(Q)}\left(H_{0}^{*}\right) \cdot H^{*}\right| \leq\left|N_{\operatorname{Out}(Q)}\left(H_{0}^{*}\right)\right| /\left|C_{\operatorname{Out}(Q)}\left(H_{0}^{*}\right) \cdot H^{*}\right| \\
& =\left|\operatorname{Aut} \operatorname{Out}(Q)\left(H_{0}^{*}\right)\right| /\left|\operatorname{Aut}_{H^{*}}\left(H_{0}^{*}\right)\right| \\
& \leq\left|\operatorname{Aut}\left(H_{0}^{*}\right)\right| /\left|\operatorname{Aut}_{H^{*}}\left(H_{0}^{*}\right)\right|=\left|\operatorname{Out}\left(H_{0}^{*}\right)\right| /\left|\operatorname{Out}_{H^{*}}\left(H_{0}^{*}\right)\right| .
\end{aligned}
$$

This proves (c.ii).
The next lemma provides some simple tools for showing that certain representations are absolutely irreducible.

Lemma 1.4. Fix a prime p, a finite group G, and an irreducible $\mathbb{F}_{p} G$-module V.
(a) The module V is absolutely irreducible if and only if $\operatorname{End}_{\mathbb{F}_{p} G}(V) \cong \mathbb{F}_{p}$.
(b) If $\operatorname{dim}_{\mathbb{F}_{p}}\left(C_{V}(H)\right)=1$ for some $H \leq G$, then V is absolutely irreducible.
(c) Assume $H \leq G$ is a subgroup such that $\left.V\right|_{H}$ splits as a direct sum of absolutely irreducible pairwise nonisomorphic $\mathbb{F}_{p} H$-submodules. Then V is absolutely irreducible.

Proof. (a) See, e.g., [A, 25.8].
(b) Set $\operatorname{End}_{\mathbb{F}_{p} G}(V)=K$: a finite extension of \mathbb{F}_{p}. Then V can be considered as a $K G$-module, so $\left[K: \mathbb{F}_{p}\right]$ divides $\operatorname{dim}_{\mathbb{F}_{p}}\left(C_{V}(H)\right)$ for each $H \leq G$. Since there is H with $\operatorname{dim}_{\mathbb{F}_{p}}\left(C_{V}(H)\right)=1$, this implies $K=\mathbb{F}_{p}$, and so V is absolutely irreducible by (a).
(c) The hypothesis implies that the ring $\operatorname{End}_{\mathbb{F}_{p} H}(V)$ is isomorphic to a direct product of copies of \mathbb{F}_{p}, one for each irreducible summand of $\left.V\right|_{H}$. Since $\operatorname{End}_{\mathbb{F}_{p} G}(V)$ is a subring of $\operatorname{End}_{\mathbb{F}_{p} H}(V)$, and is a field since V is irreducible, it must be isomorphic to \mathbb{F}_{p}. So V is absolutely irreducible by (a).

Lemma 1.5. Let G be a finite group, and let V be a finite $\mathbb{F}_{p} G$-module.
(a) If $C_{V}\left(O_{p^{\prime}}(G)\right)=0$, then $H^{1}(G ; V)=0$.
(b) $I f|V|=p$, and $G_{0}=C_{G}(V)$, then $H^{1}(G ; V) \cong \operatorname{Hom}_{G / G_{0}}\left(G_{0} /\left[G_{0}, G_{0}\right], V\right)$.

Proof. (a) Set $H=O_{p^{\prime}}(G)$ for short. Assume $W \geq V$ is an $\mathbb{F}_{p} G$-module such that $[G, W] \leq V$. Then $[H, W]=[H, V]=V$ since $C_{V}(H)=0$, and so $W=C_{W}(H) \oplus[H, W]=C_{W}(H) \oplus V$. Thus $H^{1}(G ; V) \cong \operatorname{Ext}_{\mathbb{F}_{p} G}^{1}\left(\mathbb{F}_{p}, V\right)=0$.

Alternatively, with the help of the obvious spectral sequence, one can show that $H^{i}(G ; V)=0$ for all $i \geq 0$.
(b) This is clear when G acts trivially on V. It follows in the general case since for $G_{0} \unlhd G$ of index prime to p and any $\mathbb{F}_{p} G$-module $V, H^{1}(G ; V)$ is the group of elements fixed by the action of G / G_{0} on $H^{1}\left(G_{0} ; V\right)$.

We end with a much more specialized lemma, which is needed when working with the Thompson group F_{3}.

Lemma 1.6. Set $H=A_{9}$. Assume V is an 8 -dimensional $\mathbb{F}_{2} H$-module such that for each 3 -cycle $g \in H, C_{V}(g)=0$. Then V is absolutely irreducible, $\operatorname{dim}\left(C_{V}(T)\right)=$ 1 for $T \in \operatorname{Syl}_{2}(H)$, and $N_{\operatorname{Aut}(V)}(H) / H=1$.

Proof. Consider the following elements in A_{9} :

$$
\begin{array}{llll}
a_{1} & =(123), & & a_{2}=(456),
\end{array} \quad \begin{array}{ll}
b_{3} & =(789), \\
b_{1} & =(12)(45),
\end{array}
$$

Set $A=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cong E_{27}$ and $B=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \cong D_{8}$. Set $\bar{V}=\overline{\mathbb{F}}_{2} \otimes_{\mathbb{F}_{2}} V$. As an $\overline{\mathbb{F}}_{2} A$ module, \bar{V} splits as a sum of 1-dimensional submodules, each of which has character $A \longrightarrow \overline{\mathbb{F}}_{2}^{\times}$for which none of the a_{i} is in the kernel. There are eight such characters, they are permuted transitively by B, and so each occurs with multiplicity 1 in the decomposition of \bar{V}. Thus \bar{V} is $A B$-irreducible, and hence H-irreducible (and V is absolutely irreducible). Also, $\operatorname{dim}_{\overline{\mathbb{F}}_{2}}\left(C_{\bar{V}}(B)\right)=1$, so $\operatorname{dim}\left(C_{V}(B)\right)=1$, and $\operatorname{dim}\left(C_{V}(T)\right)=1$ since $C_{V}(T) \neq 0$.

In particular, $C_{\operatorname{Aut}(V)}(H) \cong \mathbb{F}_{2}^{\times}=1$, and hence $N_{\operatorname{Aut}(V)}(H) / H$ embeds into $\operatorname{Out}(H)$. So if $N_{\operatorname{Aut}(V)}(H) / H \neq 1$, then the action of H extends to one of $\widehat{H} \cong S_{9}$. In that case, if we set $x=(12) \in \widehat{H}$, then $C_{V}(x)$ has rank 4 since x inverts a_{1} and $C_{V}\left(a_{1}\right)=0$. But the group $C_{\widehat{H}}(x) / x \cong S_{7}$ acts faithfully on $C_{V}(x)$, and this is impossible since $G L_{4}(2) \cong A_{8}$ contains no S_{7}-subgroup. (This argument is due to Richard Lyons Ly2.)

CHAPTER 2

Automorphisms of 2-fusion systems of sporadic groups

The main result in this chapter is that when G is a sporadic simple group and $p=2, \operatorname{Out}(\mathcal{F}) \cong \operatorname{Out}(G)$ in all cases except when $G \cong M_{11}$. The first proposition consists mostly of the cases where this was shown in earlier papers.

Proposition 2.1. Let G be a sporadic simple group whose Sylow 2-subgroups have order at most 2^{9}. Then the 2 -fusion system of G is tame. More precisely, κ_{G} and μ_{G} are isomorphisms except when $G \cong M_{11}$, in which case the 2-fusion system of G is tamely realized by $P S L_{3}(3)$.

Proof. Fix G as above, choose $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. There are eleven cases to consider.

If $G \cong \boldsymbol{M}_{\mathbf{1 1}}$, then $\operatorname{Out}(G)=1$. Also, \mathcal{F} is the unique simple fusion system over $S D_{16}$, so by AOV1, Proposition 4.4], $|\operatorname{Out}(\mathcal{F})|=2$, and $\kappa_{G^{*}}$ is an isomorphism for $G^{*}=\operatorname{PSU}_{3}(13)$ (and $\mu_{G^{*}}$ is an isomorphism by the proof of that proposition). Note that we could also take $G^{*}=P S L_{3}(3)$.

If $G \cong J_{1}$, then $\operatorname{Out}(G)=1$. Set $H=N_{G}(S)$. Since $S \cong E_{8}$ is abelian, fusion in G is controlled by $H \cong 2^{3}: 7: 3$, and so $\mathcal{F}=\mathcal{F}_{S}(H)$ and $\mathcal{L} \cong \mathcal{L}_{S}^{c}(H)$. Since H is strictly 2 -constrained, $\operatorname{Out}(\mathcal{L}) \cong \operatorname{Out}(\mathcal{F}) \cong \operatorname{Out}(H)=1$ by Lemma 1.2(a), and so κ_{G} and μ_{G} are isomorphisms.

If $G \cong M_{22}, M_{23}, J_{2}, J_{3}$, or $\boldsymbol{M c} \boldsymbol{L}$, then \mathcal{F} is tame, and κ_{G} is an isomorphism, by AOV1, Proposition 4.5]. Also, μ_{G} was shown to be an injective in the proof of that proposition, and hence is an isomorphism by Proposition 0.1 .

If $\boldsymbol{G} \cong \boldsymbol{M}_{\mathbf{1 2}}, \boldsymbol{L} \boldsymbol{y}, \boldsymbol{H S} \boldsymbol{S}$, or $\boldsymbol{O}^{\prime} \boldsymbol{N}$, then \mathcal{F} is tame, and κ_{G} and μ_{G} are isomorphisms, by AOV3, Lemmas $4.2 \& 5.2$ and Proposition 6.3].

It remains to consider the larger cases.
Proposition 2.2. Let G be a sporadic simple group whose Sylow 2-subgroups have order at least 2^{10}. Then $\bar{\kappa}_{G}$ is an isomorphism.

Proof. Fix G as above, choose $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. There are fifteen groups to consider, listed in Table 2.2

We first check that $\bar{\kappa}_{G}$ is injective in all cases. This follows from a theorem of Richard Lyons $\mathbf{L y 2}$, Theorem 1.1], which says that if $\operatorname{Out}(G) \neq 1$, then there is a 2subgroup of G whose centralizer in $\operatorname{Aut}(G)=G .2$ is contained in G Ly2, Theorem 1.1]. Since that paper has not been published, we give a different argument here: one which is based on Lemma 1.1(c), together with some well known (but hard-to-find-referenced) descriptions of certain subgroups of G and of Aut (G).

The groups G under consideration for which $|\operatorname{Out}(G)|=2$ are listed in Table 2.1. In each case, $N_{G}(R)$ has odd index in G (hence R can be assumed to be normal in S), and $\operatorname{Out}_{\operatorname{Aut}(G)}(R)>\operatorname{Out}_{G}(R)$. So $\bar{\kappa}_{G}$ is injective by Lemma 1.1(c).

G	$S u z$	$H e$	$F i_{22}$	$F i_{24}^{\prime}$	F_{5}
R	2_{-}^{1+6}	2^{4+4}	2^{5+8}	2_{+}^{1+12}	2_{+}^{1+8}
Out $_{G}(R)$	$\Omega_{6}^{-}(2)$	$S_{3} \times S_{3}$	$S_{3} \times A_{6}$	$3 \cdot U_{4}(3) .2$	$\left(A_{5} \times A_{5}\right) \cdot 2$
Out $_{G .2}(R)$	$S O_{6}^{-}(2)$	$3^{2}: D_{8}$	$S_{3} \times S_{6}$	$3 \cdot U_{4}(3) \cdot 2^{2}$	$\left(A_{5} \times A_{5}\right) \cdot 2^{2}$
Reference	$[\mathbf{G L}$, p.56]	$\boxed{\mathbf{W 7}, ~ § 5]}$	$\boxed{\mathbf{A 3} 3} 37.8 .2]$	$\mathbf{W 8}$, Th.E]	$\boxed{\mathbf{N W}, ~ T h .2]}$

Table 2.1

It remains to prove that $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(G)|$. Except when $G \cong R u$, we do this with the help of Lemma 1.2(b) applied with H as in Table [2.2. Set $Q=O_{2}(H)$, $\bar{Q}=Q / Z(Q)$, and $H^{*}=\operatorname{Out}_{H}(Q)$.

G	$\|S\|$	H	\|Out(H)\|	$\|\operatorname{Out}(\mathcal{F})\|$	$\|\operatorname{Out}(G)\|$	Reference
M_{24}	2^{10}	$2_{+}^{1+6} . L_{3}(2)$	$2=1 \cdot 2$	$1 *$	1	[A2, Lm. 39.1.1]
J_{4}	2^{21}	$2_{+}^{1+12} .3 M_{22}: 2$	$2=2 \cdot 1$	$1 *$	1	[KW, § 1.2]
Co_{3}	2^{10}	$2 \cdot S p_{6}(2)$	1	1	1	[Fi, Lm. 4.4]
Co_{2}	2^{18}	$2_{+}^{1+8} . S p_{6}(2)$	$1=1 \cdot 1$	1	1	W1, pp.113-14]
Co_{1}	2^{21}	$2^{11} . M_{24}$	$1=1 \cdot 1$	1	1	[A2, Lm. 46.12]
Suz	2^{13}	$2_{-}^{1+6} \cdot U_{4}(2)$	$2=1 \cdot 2$	2	2	W2, § 2.4]
He	2^{10}	$2_{+}^{1+6}: L_{3}(2)$	$2=1 \cdot 2$	2	2	[He, p. 253]
$R u$	2^{14}	$\begin{gathered} 2^{3+8} . L_{3}(2) \\ 2.2^{4+6} . S_{5} \end{gathered}$		1*	1	$\begin{aligned} & \text { A1, 12.12] } \\ & \text { (AS, Th. J.1.1] } \end{aligned}$
$F i_{22}$	2^{17}	$2^{10} . M_{22}$	$2=1 \cdot 2$	2	2	[A3, 25.7]
$F i_{23}$	2^{18}	$2^{11} \cdot M_{23}$	$1=1 \cdot 1$	1	1	[A3, 25.7]
$F i_{24}^{\prime}$	2^{21}	$2^{11} . M_{24}$	$2=2 \cdot 1$	2	2	[A3, 34.8, 34.9]
F_{5}	2^{14}	$2_{+}^{1+8} .\left(A_{5} \times A_{5}\right) \cdot 2$	$4=2 \cdot 2$	2^{*}	2	[NW] § 3.1]
F_{3}	2^{15}	$2_{+}^{1+8} \cdot A_{9}$	$1=1 \cdot 1$	1	1	W11 Thm. 2.2]
F_{2}	2^{41}	$2_{+}^{1+22} . \mathrm{Co}_{2}$	$1=1 \cdot 1$	1	1	[MS, Thm. 2]
F_{1}	2^{46}	$2_{+}^{1+24} . \mathrm{Co}_{1}$	$1=1 \cdot 1$	1	1	[MS, Thm. 1]

TABLE 2.2

When $\boldsymbol{G} \cong \boldsymbol{C o}_{3}$, and $H=N_{G}(Z(S)) \cong 2 \cdot S p_{6}(2)$ is quasisimple, $\operatorname{Out}(H)=1$ since $\operatorname{Out}(H / Z(H))=1$ by Steinberg's theorem (see GLS, Theorem 2.5.1]). Also, $\kappa_{H / Z(H)}$ is surjective by [BMO, Theorem A], so κ_{H} and $\bar{\kappa}_{H}$ are surjective by AOV1, Proposition 2.18]. Hence $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(H)|=1$ by Lemma 1.2(b).

If $\boldsymbol{G} \cong \boldsymbol{C o}_{1}, \boldsymbol{F i}_{\mathbf{2 2}}, \boldsymbol{F i}_{\mathbf{2 3}}$, or $\boldsymbol{F i} \boldsymbol{i}_{\mathbf{2 4}}^{\prime}$, then Q is elementary abelian, $H^{*} \cong M_{k}$ for $k=24,22,23$, or 24 , respectively, and Q is an absolutely irreducible $\mathbb{F}_{2} H^{*}$-module
by [A3, 22.5]. Also, $Q=J(S)$ (i.e., Q is the unique abelian subgroup of its rank) in each case: by A2, Lemma 46.12.1] when $G \cong C o_{1}$, and by A3, Exercise 11.1, 32.3, or 34.5] when G is one of the Fischer groups. By [MSt Lemma 4.1] (or by [A3, 22.7-8] when G is a Fischer group), $H^{1}\left(H^{*} ; Q\right)$ has order 2 when $G \cong F i_{24}^{\prime}$ (and Q is the Todd module for H^{*}), and has order 1 when G is one of the other Fischer groups (Q is again the Todd module) or C_{1} (Q is the dual Todd module). So

$$
|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(H)| \leq\left|H^{1}\left(H^{*} ; Q\right)\right| \cdot\left|\operatorname{Out}\left(H^{*}\right)\right|=|\operatorname{Out}(G)|
$$

the first inequality by Lemma 1.2 (b), the second by Lemmas 1.3 (a) and 1.3(c.i), and the equality by a case-by-case check (see Table 2.2).

In each of the remaining cases covered by Table 2.2 $H=N_{G}(Z(S))$ and is strictly 2 -constrained, and Q is extraspecial. We apply Lemma 1.3 (a) to get an upper bound for $|\operatorname{Out}(H)|$. This upper bound is listed in the fourth column of Table 2.2 in the form $m=a \cdot b$, where $\left|H^{1}\left(H^{*} ; Z(Q)\right)\right| \leq a$ and $\left|N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}\right| \leq b$. By Lemma 1.5(b), $H^{1}\left(H^{*} ; Z(Q)\right) \cong \operatorname{Hom}\left(H^{*}, C_{2}\right)=1$ except when $G \cong J_{4}$ or F_{5}, in which cases it has order 2. This explains the first factor in the fourth column. The second factor will be established case-by-case, as will be the difference between $|\operatorname{Out}(\mathcal{F})|$ and $|\operatorname{Out}(H)|$ when there is one (noted by an asterisk).

If $\boldsymbol{G} \cong \boldsymbol{M}_{\mathbf{2 4}}$ or $\boldsymbol{H e}$, then $H \cong 2_{+}^{1+6} . L_{3}(2)$, and \bar{Q} splits as a sum of two nonisomorphic absolutely irreducible $\mathbb{F}_{2} H^{*}$-modules which differ by an outer automorphism of H^{*}. Hence $N_{\text {Out }(Q)}\left(H^{*}\right) \cong L_{3}(2): 2$, and $|\operatorname{Out}(H)| \leq\left|N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}\right|=$ 2. These two irreducible submodules in \bar{Q} lift to rank 4 subgroups of Q, of which exactly one is radical (with automizer $S L_{4}(2)$) when $G \cong M_{24}$ (see A2, Lemma 40.5.2]). Since an outer automorphism of H exchanges these two subgroups, it does not preserve fusion in G when $G \cong M_{24}$, hence is not in $\operatorname{Out}^{0}(H)$ in the notation of Lemma 1.2(b). So $|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}^{0}(H)\right|=1$ in this case.

If $\boldsymbol{G} \cong \boldsymbol{J}_{\mathbf{4}}$, then $H \cong 2_{+}^{1+12} .3 M_{22}: 2$. The group $3 M_{22}$ has a 6 -dimensional absolutely irreducible representation over \mathbb{F}_{4}, which extends to an irreducible 12dimensional representation of $3 M_{22}: 2$ realized over \mathbb{F}_{2}. (See [KW] p. 487]: $3 M_{22}<$ $S U_{6}(2)<S O_{12}^{+}(2)$.) Hence $|\operatorname{Out}(H)| \leq 2$ by Lemmas 1.3(a,c) and 1.5)(b), generated by the class of $\beta \in \operatorname{Aut}(H)$ of order 2 which is the identity on $O^{2}(H)$ and on $H / Z(H)$.

By [KW Table 1], there is a four-group of type $\mathbf{2 A A B}$ in H, containing $Z(Q)=Z(H)$ (generated by an element of class 2A), whose image in $H / O_{2,3}(H) \cong$ $M_{22}: 2$ is generated by an outer involution of class $2 \mathbf{B}$ in $\operatorname{Aut}\left(M_{22}\right)$. Thus there are cosets of $Z(Q)$ in $H \backslash O^{2}(H)$ which contain 2A- and 2B-elements. Hence $\left.\beta\right|_{S}$ is not G-fusion preserving, so $|\operatorname{Out}(\mathcal{F})| \leq\left|\mathrm{Out}^{0}(H)\right|=1$ by Lemma 1.2(b).

If $\boldsymbol{G} \cong \boldsymbol{C o}_{2}$, then $H=N_{G}(z) \cong 2_{+}^{1+8} . S p_{6}(2)$. By [Sm, Lemma 2.1], the action of H / Q on \bar{Q} is transitive on isotropic points and on nonisotropic points, and hence is irreducible. If \bar{Q} is not absolutely irreducible, then $\operatorname{End}_{\mathbb{F}_{p}[H / Q]}(\bar{Q}) \geq \mathbb{F}_{4}$ by Lemma 1.4(a), so $H / Q \cong S p_{6}(2)$ embeds into $S L_{4}(4)$, which is impossible since $S p_{6}(2)$ contains a subgroup of type $7: 6$ while $S L_{4}(4)$ does not.

Alternatively, \bar{Q} is absolutely irreducible by a theorem of Steinberg (see GLS Theorem 2.8.2]), which says roughly that each irreducible $\overline{\mathbb{F}}_{2} S p_{6}\left(\overline{\mathbb{F}}_{2}\right)$-module which is "small enough" is still irreducible over the finite subgroup $S p_{6}(2)$.

Thus by Lemma 1.3(c.i), $N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}$ is isomorphic to a subgroup of $\operatorname{Out}\left(H^{*}\right)$, where $\operatorname{Out}\left(H^{*}\right)=1$ (see [GLS, Theorem 2.5.1]). This confirms the remaining entries for G in Table 2.2,

If $\boldsymbol{G} \cong \boldsymbol{S u z}$, then $H \cong 2_{-}^{1+6} . \Omega_{6}^{-}(2), H^{*}$ has index 2 in $\operatorname{Out}(Q) \cong S O_{6}^{-}(2)$, and $|\operatorname{Out}(H)| \leq 2$ by Lemmas 1.3 (a) and 1.5(b).

If $\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{5}}$, then $H=N_{G}(z) \cong 2_{+}^{1+8} .\left(A_{5}\right.$ 2 2$)$ for $z \in \mathbf{2 B}$. As described in [NW, §3.1] and in Ha Lemma 2.8], $O^{2}\left(H^{*}\right)$ acts on Q as $\Omega_{4}^{+}(4)$ for some $\mathbb{F}_{4^{-}}$ structure on \bar{Q}. Also, the 2B-elements in $Q \backslash Z(Q)$ are exactly those involutions which are isotropic under the \mathbb{F}_{4}-quadratic form on $\bar{Q} \cong \mathbb{F}_{4}^{4}$.

Now, H^{*} has index 2 in its normalizer $S O_{4}^{+}(4) .2^{2}$ in $\operatorname{Out}(Q) \cong S O_{8}^{+}(2)$, so $|\operatorname{Out}(H)| \leq 4$ by Lemmas 1.3(a) and 1.5)(b). Let $\beta \in \operatorname{Aut}(H)$ be the nonidentity automorphism which is the identity on $O^{2}(H)$ and on $H / Z(H)$. To see that $|\operatorname{Out}(\mathcal{F})| \leq 2$, we must show that β does not preserve fusion in S.

By [NW, p. 364], if $W=\langle z, g\rangle \cong E_{4}$ for $z \in Z(H)$ and $g \in H \backslash O^{2}(H)$, then W contains an odd number of $\mathbf{2 A}$-elements, and hence g and $z g$ are in different classes (see also [Ha, Lemma 2.9.ii]). Hence β is not fusion preserving since it doesn't preserve G-conjugacy classes. By Lemma $1.2(\mathrm{~b}),|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}^{0}(H)\right| \leq$ $2=|\operatorname{Out}(G)|$.

If $\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{3}}$, then $H \cong 2_{+}^{1+8} \cdot A_{9}$. By $[\mathbf{P a}, \S 3]$, the action of A_{9} on \bar{Q} is not the permutation representation, but rather that representation twisted by the triality automorphism of $S O_{8}^{+}(2)$. By [$\left.\mathbf{P a}, 3.7\right]$, if $x \in H^{*} \cong A_{9}$ is a 3 -cycle, then $C_{\bar{Q}}(x)=1$. Hence we are in the situation of Lemma 1.6 and $N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}=1$ by that lemma. So $\operatorname{Out}(H)=1$ by Lemmas 1.3(a) and 1.5(b), and $\operatorname{Out}(\mathcal{F})=1$.

If $\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{2}}$ or $\boldsymbol{F}_{\mathbf{1}}$, then $H=H_{1} \cong 2_{+}^{1+22} . \mathrm{Co}_{2}$ or 2_{+}^{1+24}. Co_{1}, respectively. Set $Q=O_{2}(H)$ and $\bar{Q}=Q / Z(Q)$. If $G \cong F_{1}$, then $\bar{Q} \cong \widetilde{\Lambda}$, the mod 2 Leech lattice, and is $C o_{1}$-irreducible by [A2, 23.3]. If $G \cong F_{2}$, then $\bar{Q} \cong v_{2}^{\perp} /\left\langle v_{2}\right\rangle$ where $v_{2} \in \widetilde{\Lambda}$ is the image of a 2 -vector. The orbit lengths for the action of Co_{2} on $\widetilde{\Lambda} /\left\langle v_{2}\right\rangle$ are listed in [W1, Table I], and from this one sees that $v_{2}^{\perp} /\left\langle v_{2}\right\rangle$ is the only proper nontrivial Co_{2}-linear subspace (the only union of orbits of order 2^{k} for $0<k<23$), and hence that \bar{Q} is Co_{2}-irreducible. The absolute irreducibility of \bar{Q} (in both cases) now follows from Lemma 1.4(b), applied with $H=C o_{2}$ or $U_{6}(2): 2$, respectively.

Since $\operatorname{Out}\left(C o_{1}\right) \cong \operatorname{Out}\left(C o_{2}\right)=1, N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}=1$ by Lemma 1.3(c.i), and so $\operatorname{Out}(H)=1$ in both cases.

In in the remaining case, we need to work with two of the 2-local subgroups of G.

Assume $\boldsymbol{G} \cong \boldsymbol{R u}$. We refer to [A1, 12.12] and [AS, Theorem J.1.1] for the following properties. There are two conjugacy classes of involutions in G, of which the $\mathbf{2 A}$-elements are 2-central. There are subgroups $H_{1}, H_{3}<G$ containing S such that

$$
H_{1} \cong 2.2^{4+6} \cdot S_{5} \quad H_{3} \cong 2^{3+8} \cdot L_{3}(2)
$$

Set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right) ; V_{1} \cong C_{2}$ and $V_{3} \cong E_{8}$, and both are 2Apure and normal in S. Also, Q_{1} / V_{1} and Q_{3} are special of types 2^{4+6} and 2^{3+8}, respectively, and $Z\left(Q_{3}\right)$ and $Q_{3} / Z\left(Q_{3}\right)$ are the natural module and the Steinberg module, respectively, for $H_{3} / Q_{3} \cong S L_{3}(2)$.

Let $V_{5}<Q_{1}$ be such that $V_{5} / V_{1}=Z\left(Q_{1} / V_{1}\right)$. Then V_{5} is of type $\mathbf{2 A}^{5}$, and $C_{Q_{1}}\left(V_{5}\right) \cong Q_{8} \times E_{16}$. Also, $H_{1} / Q_{1} \cong S_{5}$, and V_{5} / V_{1} and $Q_{1} / C_{Q_{1}}\left(V_{5}\right)$ are
both natural modules for $O^{2}\left(H_{1} / Q_{1}\right) \cong S L_{2}(4)$. Also, $V_{3} / V_{1}=C_{V_{5} / V_{1}}\left(\left(S / Q_{1}\right) \cap\right.$ $\left.O^{2}\left(H_{1} / Q_{1}\right)\right)$: thus a 1-dimensional subspace of V_{5} / V_{1} as an \mathbb{F}_{4}-vector space.

The homomorphism $Q_{1} / C_{Q_{1}}\left(V_{5}\right) \longrightarrow \operatorname{Hom}\left(V_{5} / V_{1}, V_{1}\right)$ which sends g to $(x \mapsto$ $[g, x])$ is injective and hence an isomorphism. So $Q_{3} \cap Q_{1}=C_{Q_{1}}\left(V_{3}\right)$ has index 4 in Q_{1}, and hence $\left|Q_{3} Q_{1} / Q_{3}\right|=4$.

Fix $\beta \in \operatorname{Aut}(\mathcal{F})$. By Lemma 1.2(a), for $i=1,3, \bar{\kappa}_{H_{i}}$ is an isomorphism, so β extends to an automorphism $\beta_{i} \in \operatorname{Aut}\left(H_{i}\right)$. Since V_{3} is the natural module for $H_{3} / Q_{3} \cong S L_{3}(2),\left.\beta_{3}\right|_{V_{3}}=c_{x}$ for some $x \in H_{3}$, and $x \in N_{H_{3}}(S)$ since $\beta_{3}(S)=S$. Then $x \in S$ since $N_{H_{3} / Q_{3}}\left(S / Q_{3}\right)=S / Q_{3}$, and upon replacing β by $c_{x}^{-1} \circ \beta$ and β_{i} by $c_{x}^{-1} \circ \beta_{i}(i=1,3)$, we can arrange that $\left.\beta\right|_{V_{3}}=\mathrm{Id}$.

Since $\left.\beta\right|_{V_{3}}=\mathrm{Id}, \beta_{3}$ also induces the identity on $H_{3} / Q_{3} \cong L_{3}(2)$ (since this acts faithfully on V_{3}), and on $Q_{3} / V_{3} \cong 2^{8}$ (since this is the Steinberg module and hence absolutely irreducible). Since Q_{3} / V_{3} is H_{3} / Q_{3}-projective (the Steinberg module), $H^{1}\left(H_{3} / Q_{3} ; Q_{3} / V_{3}\right)=0$, so by Lemma 1.3(b) (applied with Q_{3} / V_{3} in the role of $R=Q$), the automorphism of H_{3} / V_{3} induced by β_{3} is conjugation by some $y V_{3} \in Q_{3} / V_{3}$. Upon replacing β by $c_{y}^{-1} \circ \beta$ and similarly for the β_{i}, we can arrange that $\left[\beta_{3}, H_{3}\right] \leq V_{3}$.

Since Q_{3} / V_{3} and V_{3} are irreducible $\mathbb{F}_{2}\left[H_{3} / Q_{3}\right]$-modules and not isomorphic to each other, $\operatorname{Hom}_{H_{3} / Q_{3}}\left(Q_{3} / V_{3}, V_{3}\right)=0$. By Lemma 1.3(b) again, applied this time with $Q_{3} \geq V_{3}$ in the role of $Q \geq R$, we have $\left.\beta\right|_{Q_{3}}=$ Id.

Now consider $\beta_{1} \in \operatorname{Aut}\left(H_{1}\right)$. Since β_{1} is the identity on $Q_{3}=C_{S}\left(V_{3}\right) \geq$ $C_{S}\left(V_{5}\right)=C_{H_{1}}\left(V_{5}\right)$, we have $\beta_{1} \equiv \operatorname{Id}_{H_{1}}$ modulo $Z\left(C_{S}\left(V_{5}\right)\right)=V_{5}$ (since $c_{g}=$ $c_{\beta_{1}(g)} \in \operatorname{Aut}\left(C_{S}\left(V_{5}\right)\right)$ for each $\left.g \in H_{1}\right)$. So by Lemma 1.3(b), there is $\psi \in$ $\operatorname{Hom}_{H_{1} / Q_{1}}\left(Q_{1} / V_{5}, V_{5} / V_{1}\right)$ such that $\beta(g) \in g \psi\left(g V_{5}\right)$ for each $g \in Q_{1}$. Also, $\operatorname{Im}(\psi) \leq$ V_{3} / V_{1} since $[\beta, S] \leq V_{3}$, and hence $\psi=1$ since V_{5} / V_{1} is irreducible. Thus $\left[\beta_{1}, Q_{1}\right] \leq V_{1}$.

We saw that $\left|Q_{1} Q_{3} / Q_{3}\right|=4$, so $\operatorname{Aut}_{Q_{1}}\left(V_{3}\right)$ is the group of all automorphisms which send V_{1} to itself and induce the identity on V_{3} / V_{1}. Fix a pair of generators $u Q_{3}, v Q_{3} \in Q_{1} Q_{3} / Q_{3}$. Then $\beta(u) \in u V_{1}$ and $\beta(v) \in v V_{1}$, and each of the four possible automorphisms of $Q_{3} Q_{1}$ (i.e., those which induce the identity on Q_{3} and on $Q_{1} Q_{3} / V_{1}$) is conjugation by some element of V_{3} (unique modulo V_{1}). So after conjugation by an appropriate element of V_{3}, we can arrange that $\left.\beta\right|_{Q_{1} Q_{3}}=\operatorname{Id}$ (and still $\left.\left[\beta_{3}, H_{3}\right] \leq V_{3}\right)$.

Let $V_{2}<V_{3}$ be the unique subgroup of rank 2 which is normal in S, and set $S_{0}=C_{S}\left(V_{2}\right)$. Thus $\left|S / S_{0}\right|=2$, and $S_{0} / Q_{3} \cong E_{4}$. Fix $w \in\left(S_{0} \cap Q_{1} Q_{3}\right) \backslash Q_{3}$ (thus $w Q_{3}$ generates the center of $S / Q_{3} \cong D_{8}$). Choose $g \in N_{H_{3}}\left(V_{2}\right)$ of order 3; thus g acts on V_{2} with order 3 and acts trivially on V_{3} / V_{2}. So $V_{3}\langle g\rangle \cong A_{4} \times C_{2}$, and since $\left|\beta_{3}(g)\right|=3$, we have $\beta_{3}(g)=r g$ for some $r \in V_{2}$. Set $w^{\prime}={ }^{g} w \in S_{0}$. Then $S_{0}=Q_{3}\left\langle w, w^{\prime}\right\rangle, \beta(w)=w$ since $w \in Q_{1} Q_{3}$, and $\beta\left(w^{\prime}\right)=\beta\left(g w g^{-1}\right)=$ $r g w g^{-1} r^{-1}={ }^{r} w^{\prime}=w^{\prime}$: the last equality since $w^{\prime} \in S_{0}=C_{S}\left(V_{2}\right)$. Since $S=S_{0} Q_{1}$, this proves that $\beta=\operatorname{Id}_{S}$, and hence that $\operatorname{Out}(\mathcal{F})=1$.

This finishes the proof of Proposition 2.2,

CHAPTER 3

Tameness at odd primes

We now turn to fusion systems of sporadic groups at odd primes, and first look at the groups whose p-fusion systems are not simple.

Proposition 3.1. Let p be an odd prime, and let G be a sporadic simple group whose Sylow p-subgroups are nonabelian and whose p-fusion system is not simple. Then $\bar{\kappa}_{G}$ is an isomorphism.

Proof. Fix $S \in \operatorname{Syl}_{p}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$. By [A4, 16.10], if \mathcal{F} is not simple, then either $N_{G}(S)$ controls fusion in G (" G is p-Goldschmidt" in the terminology of (A4), in which case $S \unlhd \mathcal{F}$ and \mathcal{F} is constrained, or \mathcal{F} is almost simple and is realized by an almost simple group L given explicitly in [A4, 16.10] and also in Table 0.3 We handle these two cases separately.
Case 1: Assume first that $S \unlhd \mathcal{F}$ and hence \mathcal{F} is constrained. By [A4, Theorem 15.6], there are seven such cases (G, p), also listed in Table 0.3, By the tables in [GLS, Table 5.3], in each case where $\operatorname{Out}(G) \neq 1$, no involution of $\operatorname{Aut}(G)$ centralizes a Sylow p-subgroup. Thus $\bar{\kappa}_{G}$ is injective in all seven cases by Lemma 1.1(b). Set $H=N_{G}(H) / O_{p^{\prime}}\left(N_{G}(H)\right)$. Since $N_{G}(S)$ controls p-fusion in G,

$$
\begin{equation*}
\operatorname{Out}(\mathcal{F}) \cong \operatorname{Out}(H) \quad \text { injects into } \quad N_{\operatorname{Out}(S)}\left(\operatorname{Out}_{G}(S)\right) / \operatorname{Out}_{G}(S): \tag{1}
\end{equation*}
$$

the isomorphism by Lemma 1.2 (a) and the injection by 1.3 (a).
In the six cases described in Table 3.1, S is extraspecial of order p^{3} and exponent p. Note that $\operatorname{Out}(S) \cong G L_{2}(p)$. Using that $P G L_{2}(3) \cong \Sigma_{4}, P G L_{2}(5) \cong \Sigma_{5}$, and Σ_{4}

(G, p)	$\left(J_{2}, 3\right)$	$\left(C o_{3}, 5\right)$	$\left(C o_{2}, 5\right)$	$(H S, 5)$	$(M c L, 5)$	$\left(J_{4}, 11\right)$
$\|\operatorname{Out}(G)\|$	2	1	1	2	2	1
$\operatorname{Out}_{G}(S)$	C_{8}	$C_{24} \rtimes C_{2}$	$4 \cdot \Sigma_{4}$	$C_{8} \rtimes C_{2}$	$C_{3} \rtimes C_{8}$	$5 \times 2 \cdot \Sigma_{4}$

Table 3.1
is maximal in $P G L_{2}(11)$, we see that in all cases, $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(G)|$ by (1). So $\bar{\kappa}_{G}$ and κ_{G} are isomorphisms since they are injective.

It remains to consider the case $(G, p)=\left(J_{3}, 3\right)$, where $|S|=3^{5}$. Set $T=\Omega_{1}(S)$ and $Z=Z(S)$. By [J Lemma 5.4], $T \cong C_{3}^{3}, T>Z \cong C_{3}^{2}, Z \leq[S, S]$, and there are two classes of elements of order 3: those in Z and those in $T \backslash Z$. Also, S / Z is extraspecial of order 3^{3} with center T / Z, and $N_{G}(S) / S \cong C_{8}$ acts faithfully on S / T and on Z.

Consider the bilinear map

$$
\Phi: S / T \times T / Z \xrightarrow{[-,-]} Z
$$

where $\Phi(g T, h Z)=[g, h]$. This is nontrivial (otherwise we would have $T \leq Z$), and hence is surjective since $N_{G}(S) / S \cong C_{8}$ acts faithfully on Z. Fix $x \in N_{G}(S)$ and $h \in T$ whose cosets generate the quotient groups $N_{G}(S) / S$ and T / Z, respectively. Since x acts on $S / T \cong C_{3}^{2}$ with order 8 , it acts via an element of $G L_{2}(3) \backslash S L_{2}(3)$, and hence acts on T / Z by inverting it (recall that S / Z is extraspecial). So if we let $\Phi_{h}: S / T \longrightarrow Z$ be the isomorphism $\Phi_{h}(g T)=[g, h]$, then $\Phi_{h}\left({ }^{x} g T\right)=\left[{ }^{x} g, h\right]=$ ${ }^{x}\left[g, h^{-1}\right]={ }^{x} \Phi_{h}(g T)^{-1}$. Thus if $\lambda, \lambda^{3} \in \mathbb{F}_{9}$ are the eigenvalues for the action of x on S / T (for some λ of order 8), then $\lambda^{-1}, \lambda^{-3}$ are the eigenvalues for the action of x on Z. So there is no nontrivial homomorphism $S / T \longrightarrow Z$ that commutes with the actions of x.

Let $\alpha \in \operatorname{Aut}(\mathcal{F})$ be such that $\left.\alpha\right|_{Z}=$ Id. Since α commutes with Φ, it must either induce the identity on S / T and on T / Z or invert both quotient groups, and the latter is impossible since S / Z is extraspecial. Since α is the identity on Z and on $T / Z,\left.\alpha\right|_{T}$ is conjugation by some element of S, and we can assume (modulo $\operatorname{Inn}(S))$ that $\left.\alpha\right|_{T}=\mathrm{Id}$. Thus there is $\varphi \in \operatorname{Hom}(S / T, Z)$ such that $\alpha(g)=g \varphi(g T)$ for each $g \in S$, and φ commutes with the action of $x S \in N_{G}(S) / S$. We just showed that this is only possible when $\varphi=1$, and conclude that $\alpha=\operatorname{Id}_{S}$.

This shows that $\operatorname{Aut}(\mathcal{F})$ is isomorphic to a subgroup of $\operatorname{Aut}(Z) \cong G L_{2}(3)$. Since $\operatorname{Aut}_{G}(S) \cong C_{8}$ acts faithfully on Z, and the Sylow 2-subgroups of $G L_{2}(3)$ are semidihedral of order 16 , this shows that $|\operatorname{Aut}(\mathcal{F})| \leq 16$ and $|\operatorname{Out}(\mathcal{F})| \leq 2$. Since $\bar{\kappa}_{G}$ is injective, it is an isomorphism.
Case 2: We now show that κ_{G} is an isomorphism when \mathcal{F} is almost simple. Let L be as in Table 0.3 If $L \cong{ }^{2} F_{4}(2)$ and $p=3$, then $\operatorname{Out}(\mathcal{F}) \cong \operatorname{Out}(L)=1=\operatorname{Out}(G)$ since $\bar{\kappa}_{L}$ is an isomorphism by [BMO, Proposition 6.9].

Otherwise, set $L_{0}=O^{p^{\prime}}(L)$ and $\mathcal{F}_{0}=\mathcal{F}_{S}\left(L_{0}\right)$. By [A4, $\left.16.3 \& 16.10\right], \mathcal{F}_{0}$ is simple, and hence $Z\left(\mathcal{F}_{0}\right)=1$, when $L_{0} \cong M_{12}$ and $p=3$, and when $L_{0} \cong \Omega_{5}(5)$ or $P S L_{3}(5)$ and $p=5$. Also, $\bar{\kappa}_{L_{0}}$ is an isomorphism in these cases by Proposition 3.2 and BMO, Theorem A], respectively, and $L \cong \operatorname{Aut}\left(L_{0}\right)$ and $\left|L / L_{0}\right|=2$ (hence $\operatorname{Out}(L)=1$) by [A4, 16.10]. If $\operatorname{Out}(\mathcal{F}) \neq 1$, then there is $\alpha \in \operatorname{Aut}(\mathcal{F}) \backslash \operatorname{Aut}_{\mathcal{F}}(S)$ such that $\left.\alpha\right|_{S_{0}}=$ Id, and by the pullback square in AOV1 Lemma 2.15], this would lie in the image of a nontrivial element of $\operatorname{Out}(L)=1$. Thus $\operatorname{Out}(\mathcal{F})=1$, $\operatorname{Out}(G)=1$ by Table 0.3, and so $\bar{\kappa}_{G}$ and hence κ_{G} are isomorphisms.

It remains to handle the cases (G, p) where the p-fusion system of G is simple.
Proposition 3.2. Let p be an odd prime, and let G be a sporadic simple group whose p-fusion system is simple. Then $\bar{\kappa}_{G}$ is an isomorphism, except when $p=3$ and $G \cong H e$, in which case $|\operatorname{Out}(G)|=2$ and $\left|\operatorname{Out}\left(\mathcal{F}_{S}(G)\right)\right|=1$ for $S \in \operatorname{Syl}_{3}(G)$.

Proof. Fix G and p, choose $S \in \operatorname{Syl}_{p}(G)$, set $\mathcal{F}=\mathcal{F}_{S}(G)$, and assume \mathcal{F} is simple (see Table 0.3 or [A4, 16.10]). Set $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$.

The centralizers of all involutions in $\operatorname{Aut}(G)$ are listed in, e.g., GLS, Tables $5.3 \mathrm{a}-\mathrm{z}]$. By inspection, for each pair (G, p) in question other than $(H e, 3)$ for which $\operatorname{Out}(G) \neq 1$ (see Tables 3.2 and 3.3), there is no $\alpha \in \operatorname{Aut}(G)$ of order 2 for which $|S|$ divides $\left|C_{G}(\alpha)\right|$. So by Lemma 1.1(b), $\bar{\kappa}_{G}$ is injective in all such cases.

To prove that $\bar{\kappa}_{G}$ is an isomorphism (with the one exception), it remains to show that $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(G)|$.

Assume \boldsymbol{S} is extraspecial of order $\boldsymbol{p}^{\mathbf{3}}$. Set $H=N_{G}(S)$ and $H^{*}=$ $\operatorname{Out}_{G}(S) \cong H / S$. We list in Table 3.2 all pairs (G, p) which occur, together with a description of H^{*} and of $N_{\mathrm{Out}(S)}\left(H^{*}\right)$. To determine $\left|N_{\mathrm{Out}(S)}\left(H^{*}\right) / H^{*}\right|$ in each
case, just recall that $G L_{2}(3) \cong 2 \cdot S_{4} \cong Q_{8}: S_{3}$, that $P G L_{2}(5) \cong S_{5}$, and that when $p=7$ or 13 , each subgroup of order prime to p in $P G L_{2}(p)$ is contained in a subgroup isomorphic to $D_{2(p \pm 1)}$ or S_{4} (cf. [Sz1, Theorem 3.6.25]).

(G, p)	H^{*}	$N_{\text {Out }(S)}\left(H^{*}\right)$	$\|\operatorname{Out}(G)\|$	Reference
$\left(M_{12}, 3\right)$	2^{2}	D_{8}	2	GLS, Table 5.3b]
$(H e, 3)$	D_{8}	$S D_{16}$	2	[He, Lemma 3.9]
$\left(F_{3}, 5\right)$	$4 \cdot S_{4}$	$4 \cdot S_{4}$	1	W11, §3]
$(H e, 7)$	$3 \times S_{3}$	$6 \times S_{3}$	2	[He, Lemma 3.23]
$\left(O^{\prime} N, 7\right)$	$3 \times D_{8}$	$3 \times D_{16}$	2	GLS, Table 5.3s]
$\left(F i_{24}^{\prime}, 7\right)$	$6 \times S_{3}$	$C_{6} \prec C_{2}$	2	GLS, Table 5.3v]
$\left(F_{1}, 13\right)$	$3 \times 4 \cdot S_{4}$	$3 \times 4 \cdot S_{4}$	1	W10, §11]

TABLE 3.2

In all cases, we have

$$
|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}\left(N_{G}(S)\right)\right| \leq\left|N_{\operatorname{Out}(S)}\left(H^{*}\right) / H^{*}\right| .
$$

The first inequality holds by Lemma 1.2(b). The second holds by Lemma 1.3(a), applied with $H=N_{G}(S)$, and since $H^{1}\left(H^{*} ; Z(S)\right)=0$ (Lemma 1.5)(b)). By Table 3.2. $\left|N_{\text {Out }(S)}\left(H^{*}\right) / H^{*}\right|=|\operatorname{Out}(G)|$ in all cases. Hence $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(G)|$, and so $\bar{\kappa}_{G}$ is an isomorphism if it is injective.

If $G \cong H e$ and $p=3$, then $H^{*}=\operatorname{Out}_{G}(S) \cong D_{8}$ permutes the four subgroups of index 3 in $S \cong 3_{+}^{1+2}$ in two orbits of two subgroups each. As described in [Bt, Proposition 10] (see also GLS, Table 5.3p, note 4]), the subgroups in one of the orbits are 3A-pure while those in the other have 3A- and 3B-elements, so no fusion preserving automorphism of S exchanges them. So while $\left|N_{\text {Out }(S)}\left(H^{*}\right) / H^{*}\right|=2$, we have $|\operatorname{Out}(\mathcal{F})| \leq\left|\operatorname{Out}^{0}(H)\right|=1$ by Lemma 1.2(b). Thus $\bar{\kappa}_{G}$ is split surjective (and G tamely realizes $\mathcal{F}_{S}(G)$), but it is not an isomorphism.

Assume $|\boldsymbol{S}| \geq \boldsymbol{p}^{\mathbf{4}}$. Consider the subgroups $H<G$ described in Table 3.3. In all cases, we can assume $H \geq S$.
Case 1: If $G \cong S u z$ or $L y$ and $p=3$, then $H=N_{G}(J(S))$, where $J(S) \cong E_{3^{5}}$ and $H / J(S) \cong M_{11}$ or $M_{11} \times C_{2}$, respectively, and $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(H)|$ by Lemma 1.2(b). Set $V=O_{3}(H)=J(S)$ and $H^{*}=\operatorname{Aut}_{H}(V) \cong H / V$. Then V is the Todd module for $O^{2}\left(H^{*}\right) \cong M_{11}$ (it contains 11 subgroups of type $\mathbf{3 A}$ permuted by $\left.H^{*}\right)$, so $H^{1}\left(H^{*} ; V\right)=0$ by [MSt, Lemma 4.1]. Also, V is absolutely $\mathbb{F}_{3} H^{*}-$ irreducible since $H^{*}>11: 5$. So by Lemma 1.3(c.i) and since $\operatorname{Out}\left(M_{11}\right)=1$, $\left|N_{\operatorname{Aut}(V)}\left(H^{*}\right) / H^{*}\right| \leq 2$ if $G \cong \operatorname{Suz}\left(H^{*} \cong M_{11}\right)$, and is trivial if $G \cong L y$. Lemma 1.3(a) now implies that $|\operatorname{Out}(H)| \leq 2$ or 1 for $G \cong S u z$ or Ly, respectively, and hence that $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(G)|$.

For each of the remaining pairs (G, p) displayed in Table 3.3, except when $G \cong$ F_{3} and $p=3$ (Case 5), we set $Q=O_{p}(H), \bar{Q}=Q / Z(Q), H^{*}=\operatorname{Out}_{H}(Q), H_{0}=$ $O^{p^{\prime}}(H)$, and $H_{0}^{*}=\operatorname{Out}_{H_{0}}(Q)$. Then H is strictly p-constrained and Q is extraspecial, and hence $Z(S)=Z(Q)$ has order p. Also, $H=N_{G}(Z(Q))=N_{G}(Z(S))$ by the

G	p	Oi	H	$$	¢	K	$N(-)$	Reference
Co_{3}	3	4	$3_{+}^{1+4} .4 S_{6}$	1	1		3A	[Fi, 5.12]
Co_{2}	3	$3 b$	$3_{+}^{1+4} \cdot 2_{-}^{1+4} \cdot S_{5}$	1	1	2_{-}^{1+4}	3A	[W1, § 3]
Co_{1}	3	$3 a$	$3_{+}^{1+4} . S p_{4}(3) .2$	1	1	$S p_{4}(3)$	3C	Cu2, p.422]
McL	3	2	$3_{+}^{1+4} .2 S_{5}$	2	2	$2 \cdot(5: 4)$	3A	[Fi, Lm.5.5]
Suz	3	1	$3^{5} . M_{11}$	2	2		$J(S)$	W2, Thm.]
Ly	3	1	$3^{5} .\left(M_{11} \times 2\right)$	1	1		$J(S)$	Ly1, Tbl.I]
$F i_{22}$	3	4	$3_{+}^{1+6} .2^{3+4} .3^{2} .2$	2	2		3B	W5, p.201]
Fi_{23}	3	4	$3_{+}^{1+8} .2{ }_{-}^{1+6} .3_{+}^{1+2} .2 S_{4}$	1	1		3B	W8, § 1.2]
$F i_{24}^{\prime}$	3	2	$3_{+}^{1+10} . U_{5}(2): 2$	2	2	$2 \cdot(11: 10)$	3B	W8, Th.B]
F_{5}	3	4	$3_{+}^{1+4} .4 A_{5}$	2	2		3B	[NW, § 3.2]
F_{3}	3	5	$\begin{gathered} 3^{2} \cdot 3^{3+4} \cdot G L_{2}(3) \\ 3 .\left[3^{8}\right] \cdot G L_{2}(3) \\ \hline \end{gathered}$		1		$\begin{gathered} 3 B^{2} \\ 3 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \mathbf{A 1}, 14.1-3] \\ & \mathbf{P a}, \\ & \S \S \\ & \hline \end{aligned}$
F_{2}	3	$3 b$	$3_{+}^{1+8} \cdot 2_{-}^{1+6} \cdot S_{6}^{-}(2)$	1	1	2_{-}^{1+6}	3B	W9, § 2]
F_{1}	3	$3 a$	$3_{+}^{1+12} .2 S u z .2$	1	1	$2 \cdot(13: 6)$	3B	[W10, §3]
Ly	5	4	$5_{+}^{1+4} .4 S_{6}$	1	1	$2 A_{6}$	5A	Ly1, Tbl.I]
F_{5}	5	$3 b$	$5_{+}^{1+4} \cdot 2_{-}^{1+4}: 5: 4$	2	2	2_{-}^{1+4}	5B	[NW, § 3.3]
F_{2}	5	$3 b$	$5_{+}^{1+4} \cdot 2_{-}^{1+4} \cdot A_{5} \cdot 4$	1	1	2_{-}^{1+4}	5B	[W9, § 6]
F_{1}	5	$3 a$	$5_{+}^{1+6} .4 J_{2} .2$	1	1	$2 \cdot(7: 6)$	5B	W10, § 9]
F_{1}	7	$3 a$	$7_{+}^{1+4} .3 \times 2 S_{7}$	1	1	$2 \cdot(5: 4)$	7B	[W10, § 10]

Table 3.3
above references, so $|\operatorname{Out}(\mathcal{F})| \leq|\operatorname{Out}(H)|$ by Lemma 1.2(b), and it remains to show that $|\operatorname{Out}(H)| \leq|\operatorname{Out}(G)|$. By Lemma 1.5(b), $H^{1}\left(H^{*} ; Z(Q)\right)=0$ in each of these cases, and hence $\operatorname{Out}(H)$ is sent injectively into the quotient group $N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}$ by Lemma 1.3(a). So it remains to show that $\left|N_{\text {Out }(Q)}\left(H^{*}\right) / H^{*}\right| \leq|\operatorname{Out}(G)|$.
Case 2: If $G \cong M c L$ or $F i_{24}^{\prime}$ and $p=3$, then \bar{Q} is an absolutely irreducible $\mathbb{F}_{p} K$-module for $K \leq H^{*}$ as given in Table 3.3 and hence an absolutely irreducible $\mathbb{F}_{p} H^{*}$-module. So $\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}\right| \leq 2$ by Lemma 1.3(c): since $\left|\operatorname{Out}\left(2 S_{5}\right)\right|=2$ in the first case, and since $\operatorname{Out}\left(U_{5}(2) .2\right)=1$ and $Z\left(U_{5}(2) \cdot 2\right)=1$ in the second case.
Case 3: If $G \cong F_{1}$ and $p=3$, then \bar{Q} splits as a sum of two absolutely irreducible 6 -dimensional $\mathbb{F}_{3} K$-modules. Since $5^{2}| | S u z| |\left|H_{0}^{*}\right|$ while $5^{2} \nmid\left|G L_{6}(3)\right|, \bar{Q}$ is $H_{0}^{*}-$ irreducible, hence absolutely H_{0}^{*}-irreducible by Lemma 1.4(c). In all other cases under consideration, \bar{Q} is easily checked to be an absolutely irreducible $\mathbb{F}_{p} K$-module for $K \leq H_{0}^{*}$ as given in Table 3.3 and hence an absolutely irreducible $\mathbb{F}_{p} H_{0}^{*}$-module.

Thus $|\operatorname{Out}(\mathcal{F})| \leq\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}\right| \leq \eta \cdot\left|\operatorname{Out}\left(H_{0}^{*}\right)\right| /\left|\operatorname{Out}_{H^{*}}\left(H_{0}^{*}\right)\right|$ by Lemma 1.3(c.ii), where for Y as in the lemma, $\eta=|Y|=2$ when $(G, p)=\left(F_{5}, 5\right)$ (and $\left.H^{*} \nsupseteq Z(\operatorname{Out}(Q))\right)$, and $\eta=|Y|=1$ otherwise.

In Case 3a, we have $\operatorname{Out}\left(H_{0}^{*}\right)=\operatorname{Out}_{H^{*}}\left(H_{0}^{*}\right)$ in all cases, so $|\operatorname{Out}(\mathcal{F})|=$ $|\operatorname{Out}(H)|=1$.

In Case 3b, we determine $\operatorname{Out}\left(H_{0}^{*}\right)$ by applying Lemma 1.3(a) again, this time with $O_{2}\left(H_{0}^{*}\right)$ in the role of Q. Since $\operatorname{Out}\left(2_{-}^{1+4}\right) \cong S_{5}$ and $\operatorname{Out}\left(2_{-}^{1+6}\right) \cong S O_{6}^{-}(2)$, the lemma implies that $\operatorname{Out}\left(H_{0}^{*}\right)=\operatorname{Out}_{H^{*}}\left(H_{0}^{*}\right)$ in each case, and hence that $|\operatorname{Out}(\mathcal{F})| \leq$ η.
Case 4: We show, one pair (G, p) at a time, that $\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}\right| \leq|\operatorname{Out}(G)|$ in each of these five cases.

If $\boldsymbol{G} \cong \boldsymbol{C o} \boldsymbol{o}_{\mathbf{3}}$ and $\boldsymbol{p}=\mathbf{3}$, then $Q \cong 3_{+}^{1+4}$ and $\operatorname{Out}(Q) \cong S p_{4}(3): 2$. Set $Z=Z(\operatorname{Out}(Q)) \cong C_{2}$. Then $\operatorname{Out}(Q) / Z \cong P S p_{4}(3): 2 \cong S O_{5}(3)$ and $H^{*} / Z \cong$ $C_{2} \times S_{6}$. Under this identification, the central involution $x \in Z\left(H^{*} / Z\right)$ acts as $-\mathrm{Id}_{V} \oplus \mathrm{Id}_{W}$ for some orthogonal decomposition $V \oplus W$ of the natural module \mathbb{F}_{3}^{5}; and since none of the groups $\Omega_{2}^{ \pm}(3), \Omega_{3}(3)$, or $\Omega_{4}^{+}(3)$ has order a multiple of 5 , $\operatorname{dim}(V)=4$ and $C_{S O_{5}(3)}(x) \cong O_{4}^{-}(3)$. Since $\Omega_{4}^{-}(3) \cong P S L_{2}(9) \cong A_{6}$, this shows that $C_{\mathrm{Out}(Q) / Z}(x)=H^{*} / Z \cong C_{2} \times S_{6}$. So $\left|N_{\mathrm{Out}(Q)}\left(H^{*}\right) / H^{*}\right|=1$.

If $\boldsymbol{G} \cong \boldsymbol{F}_{5}$ and $\boldsymbol{p}=\mathbf{3}$, then $Q \cong 3_{+}^{1+4}$ and $H^{*} \cong 4 A_{5}$. By the argument in the last case, $N_{\operatorname{Out}(Q)}\left(Z\left(H^{*}\right)\right) \cong 4 S_{6}$, so $\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}\right|=\left|N_{S_{6}}\left(A_{5}\right) / A_{5}\right|=2$.

When $\boldsymbol{G} \cong \boldsymbol{F i}_{\mathbf{2}}$ and $\boldsymbol{p}=\mathbf{3}$, the subgroup $H \cong 3_{+}^{1+6} .2^{3+4} .3^{2} .2$ is described in [W5, p. 201]: H^{*} can be regarded as a subgroup of $G L_{2}(3)$? $S_{3}<S p_{6}(3) .2$. More precisely, $2^{3+4}<\left(Q_{8}\right)^{3}$ (recall $\left.O_{2}\left(G L_{2}(3)\right) \cong Q_{8}\right)$ is a subgroup of index 4, one of the factors C_{3} normalizes each Q_{8} and the other permutes them cyclically, and the C_{2} acts by inverting both factors C_{3}. Then $N_{\text {Out }(Q)}\left(H^{*}\right) \leq G L_{2}(3)$ 亿 S_{3} since it must permute the three $O_{2}\left(H^{*}\right)$-irreducible subspaces of \bar{Q}, so $N_{\text {Out }(Q)}\left(H^{*}\right) \cong$ $2^{3+4} .\left(S_{3} \times S_{3}\right)$, and $\left|N\left(H^{*}\right) / H^{*}\right|=2$.

When $\boldsymbol{G} \cong \boldsymbol{F i}_{\mathbf{2 3}}$ and $\boldsymbol{p = 3}$, the subgroup H is described in W8, § 1.2]. The subgroup $R^{*}=O_{2}\left(H^{*}\right) \cong 2_{-}^{1+6}$ has a unique faithful irreducible representation over \mathbb{F}_{3}, this is 8-dimensional, and $N_{S L_{8}(3)}\left(R^{*}\right) / R^{*}$ is sent injectively into $\operatorname{Out}\left(R^{*}\right) \cong$ $S O_{6}^{-}(2) \cong S O_{5}(3)$. Since $H^{*} / R^{*} \cong 3_{+}^{1+2}: 2 S_{4}$ is a maximal parabolic subgroup in $S O_{5}(3)$, we get $N_{\mathrm{Out}(Q)}\left(H^{*}\right) / H^{*}=1$.

If $\boldsymbol{G} \cong \boldsymbol{L} \boldsymbol{y}$ and $\boldsymbol{p}=\mathbf{5}$, then \bar{Q} is $\mathbb{F}_{5}\left[2 A_{6}\right]$-irreducible since $3^{2} \nmid\left|G L_{3}(5)\right|$, and is absolutely irreducible since $2 A_{6}$ is not a subgroup of $S L_{2}(25)$ (since $E 9$ is not a subgroup). Thus $\left|N_{\operatorname{Out}(Q)}\left(H^{*}\right) / H^{*}\right| \leq\left|\operatorname{Out}\left(S_{6}\right)\right|=2$, with equality only if the action of $2 A_{6}$ on \bar{Q} extends to $2 A_{6} \cdot 2^{2}$. This is impossible, since the two classes of 3 -elements in $2 A_{6}$ act differently on \bar{Q} (note the action of a Sylow 3 -subgroup on $\bar{Q})$, so $N_{\mathrm{Out}(Q)}\left(H^{*}\right) / H^{*}=1$.
Case 5: When $\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{3}}$ and $\boldsymbol{p}=\mathbf{3}$, we work with two different 3-local subgroups. Set $V_{1}=Z(S)$ and $V_{2}=Z_{2}(S)$, and set $H_{i}=N_{G}\left(V_{i}\right)$ and $Q_{i}=O_{3}\left(H_{i}\right)$ for $i=1,2$. By [A1, 14.1.2 \& 14.1.5] and [Pa, §4], $V_{1} \cong C_{3}, V_{2} \cong E_{9},\left|Q_{1}\right|=$ $\left|Q_{2}\right|=3^{9}$, and $H_{1} / Q_{1} \cong H_{2} / Q_{2} \cong G L_{2}(3)$. Note that $S \leq H_{1} \cap H_{2}$, and $|S|=3^{10}$. Also, the following hold:
(1) Set $V_{5}=Z_{2}\left(Q_{2}\right)$. Then $V_{5}=\left[Q_{2}, Q_{2}\right] \cong E_{3^{5}}, Q_{2} / V_{5} \cong E_{3^{4}}, V_{2}$ is the natural module for $G_{2} / Q_{2} \cong G L_{2}(3)$, and V_{5} / V_{2} is the projective absolutely irreducible $P_{S}(3)$-module of rank 3 . Also, $V_{5} / V_{2}=Z\left(Q_{2} / V_{2}\right)$, and hence Q_{2} / V_{2} is special of type 3^{3+4}. See [A1, 14.2].
(2) By [A1, 14.2.3], the quotient Q_{2} / V_{5} is indecomposable as an $\mathbb{F}_{3}\left[G_{2} / Q_{2}\right]$ module, and is an extension of one copy of the natural $S L_{2}(3)$-module by another. Let $R_{7}<Q_{2}$ be such that $R_{7}>V_{5}$, and $R_{7} / V_{5}<Q_{2} / V_{5}$ is the unique H_{2} / Q_{2}-submodule of rank 2 (thus $\left|R_{7}\right|=3^{7}$).
(3) We claim that $C_{Q_{2}}\left(V_{5}\right)=V_{5}$. Assume otherwise: then $C_{Q_{2}}\left(V_{5}\right) \geq R_{7}$ since it is normal in H_{2}. So $V_{5} \leq Z\left(R_{7}\right)$, and $\left|\left[R_{7}, R_{7}\right]\right| \leq 3$ since $R_{7} / V_{5} \cong E_{9}$. But $\left[R_{7}, R_{7}\right]<V_{5}$ is normal in H_{2}, so it must be trivial, and R_{7} is abelian. This is impossible: V_{5} contains elements of all three classes of elements of order 3 A1, 14.2.2], while the centralizer of a 3A-element is isomorphic to $\left(3 \times G_{2}(3)\right) .2$ whose Sylow 3 -subgroups are nonabelian of order 3^{7}.
(4) Set $V_{3}=Z_{2}\left(Q_{1}\right)$; then $V_{3} \cong E_{27}$, and V_{3} / V_{1} is the natural module for G_{1} / Q_{1} A1, 14.3.1]. Since $V_{3} \unlhd S$ and $V_{2}=Z_{2}(S) \cong E_{9}, V_{3}>V_{2}$. Also, $V_{3} / V_{2} \leq Z\left(Q_{2} / V_{2}\right)=V_{5} / V_{2}$ since $\left|V_{3} / V_{2}\right|=3$. Thus $V_{2}<V_{3}<V_{5}$.

By [A1, 14.3.2], $\left[Q_{1}, Q_{1}\right]>V_{3}$, and $Q_{1} /\left[Q_{1}, Q_{1}\right] \cong E_{3^{4}}$ is indecomposable as an $\mathbb{F}_{3}\left[G_{1} / Q_{1}\right]$-module and an extension of one copy of the natural $S L_{2}(3)$-module by another.
(5) Set $W_{7}=C_{G}\left(V_{3}\right) \geq V_{5}$: a subgroup of S, hence of $Q_{1} \cap Q_{2}$, of order 3^{7} [A1, 14.3.4]. We claim that $W_{7} / V_{5}=Z\left(S / V_{5}\right)=C_{Q_{2} / V_{5}}\left(S / Q_{2}\right)$, where $S / V_{5} \cong C_{3} \times\left(C_{3}\right.$ 乙 $\left.C_{3}\right)$ by [A1 14.2.5]. To see this, note that for each $g \in Q_{2}$ such that $g V_{5} \in C_{Q_{2} / V_{5}}\left(S / Q_{2}\right)$, the map $x \mapsto[x, g]$ is S / Q_{2}-linear from V_{5} / V_{2} to V_{2}, so $V_{3} / V_{2}=\left[S,\left[S, V_{5} / V_{2}\right]\right]$ (see (1)) lies in its kernel. Thus $Z\left(S / V_{5}\right) \leq W_{7} / V_{5}$, and they are equal since they both have order 9 .
(6) To summarize, we have defined two sequences of subgroups

$$
V_{2}<V_{5}<R_{7}<Q_{2}<H_{2} \quad \text { and } \quad V_{1}<V_{3}<W_{7}<Q_{1}<H_{1}
$$

those in the first sequence normal in H_{2} and those in the second normal in H_{1}, where $V_{m} \cong E_{3^{m}}$ and $\left|R_{7}\right|=\left|W_{7}\right|=3^{7}$. In addition, $V_{1}<V_{2}<$ $V_{3}<V_{5}<W_{7}<Q_{2}$.

Fix $\beta \in \operatorname{Aut}(\mathcal{F})$. By Lemma 1.2(a), $\kappa_{H_{2}}$ is an isomorphism, and hence β extends to an automorphism $\beta_{2} \in \operatorname{Aut}\left(H_{2}\right)$. Since V_{2} is the natural module for $H_{2} / Q_{2} \cong G L_{2}(3),\left.\beta_{2}\right|_{V_{2}}=c_{x}$ for some $x \in H_{2}$, and $x \in N_{H_{2}}(S)$ since $\beta_{2}(S)=S$. Upon replacing β by $c_{x}^{-1} \circ \beta$ and β_{2} by $c_{x}^{-1} \circ \beta_{2}$, we can arrange that $\left.\beta\right|_{V_{2}}=$ Id.

Since $\left.\beta\right|_{V_{2}}=\mathrm{Id}, \beta_{2}$ also induces the identity on $H_{2} / Q_{2} \cong G L_{2}(3)$ (since this acts faithfully on V_{2}), and induces $\varepsilon \cdot$ Id on $V_{5} / V_{2} \cong E_{27}$ for $\varepsilon \in\{ \pm 1\}$ since it is absolutely irreducible. By (3), the homomorphism $Q_{2} / V_{5} \longrightarrow \operatorname{Hom}\left(V_{5} / V_{2}, V_{2}\right)$ which sends g to $(x \mapsto[g, x])$ is injective. Since β induces the identity on V_{2} and $\varepsilon \cdot$ Id on V_{5} / V_{2}, it also induces $\varepsilon \cdot$ Id on Q_{2} / V_{5}. By (1), $\left[Q_{2} / V_{2}, Q_{2} / V_{2}\right]=V_{5} / V_{2}$, so β acts via the identity on V_{5} / V_{2}. Thus $\varepsilon=+1$, and β also induces the identity on Q_{2} / V_{5}.

Now, $H^{1}\left(H_{2} / Q_{2} ; Q_{2} / V_{5}\right)=0$ by Lemma 1.5(a) (and since the central involution in $H_{2} / Q_{2} \cong G L_{2}(3)$ inverts $\left.Q_{2} / V_{5}\right)$. So by Lemma 1.3(b), applied with H_{2} / V_{5} and Q_{2} / V_{5} in the role of H and $Q=R, \beta_{2} \equiv c_{y}$ modulo V_{5} for some $y \in Q_{2}$. Upon replacing β_{2} by $c_{y}^{-1} \circ \beta_{2}$, we can arrange that $\left[\beta, H_{2}\right] \leq V_{5}$.

Next, note that $V_{5} / V_{2}=Z\left(Q_{2} / V_{2}\right)$ and $\operatorname{Hom}_{H_{2} / Q_{2}}\left(Q_{2} / V_{5}, V_{5} / V_{2}\right)=1$ by (1) and (2), and $H^{1}\left(H_{2} / Q_{2} ; V_{5} / V_{2}\right)=0$ since V_{5} / V_{2} is H_{2} / Q_{2}-projective. So by Lemma
1.3(b), $\beta \equiv c_{z}\left(\bmod V_{2}\right)$ for some $z \in V_{5}$. Upon replacing β_{2} by $c_{z}^{-1} \circ \beta_{2}$, we can now arrange that $\left[\beta_{2}, H_{2}\right] \leq V_{2}$.

By Lemma 1.3(b), $\left.\beta\right|_{Q_{2}}$ has the form $\beta(u)=u \chi\left(u V_{2}\right)$ for some homomorphism $\chi \in \operatorname{Hom}_{H_{2} / Q_{2}}\left(Q_{2} / V_{2}, V_{2}\right)$. Also, χ factors through Q_{2} / V_{5} since $\left[Q_{2}, Q_{2}\right]=V_{5}$ by (1). By (2), either $\chi=1$, or χ is surjective with kernel R_{7} / V_{2}. In either case, $\left.\beta\right|_{R_{7}}=$ Id. Also, since $W_{7} / V_{5}=C_{Q_{2} / V_{5}}\left(S / Q_{2}\right)$ by (5), $\chi\left(W_{7} / V_{5}\right) \leq C_{V_{2}}\left(S / Q_{2}\right)=$ V_{1}. So $\left[\beta, W_{7}\right] \leq V_{1}$.

By Lemma 1.2(a) again, $\bar{\kappa}_{H_{1}}$ is an isomorphism, and hence β extends to $\beta_{1} \in \operatorname{Aut}\left(H_{1}\right)$. Let $\bar{\beta} \in \operatorname{Aut}\left(S / V_{1}\right)$ and $\bar{\beta}_{1} \in \operatorname{Aut}\left(H_{1} / V_{1}\right)$ be the automorphisms induced by β and β_{1}. We have just shown that $\left.\bar{\beta}\right|_{W_{7}}=\mathrm{Id}$, and that $\left[\bar{\beta}_{1}, S / V_{1}\right] \leq V_{2} / V_{1}$. By Lemma 1.3(b) again, $\left.\bar{\beta}\right|_{Q_{1} / V_{1}}$ has the form $\bar{\beta}(g)=g \psi\left(g W_{7}\right)$ for some $\psi \in \operatorname{Hom}_{H_{1} / Q_{1}}\left(Q_{1} / W_{7}, V_{3} / V_{1}\right)$ with $\operatorname{Im}(\psi) \leq V_{2} / V_{1}$. Since Q_{1} / W_{7} and V_{3} / V_{1} are natural modules for $S L_{2}(3)$ by (5) and (4), ψ must be surjective or trivial. Since ψ is not surjective, $\left.\bar{\beta}\right|_{Q_{1}}=$ Id. Also, $H^{1}\left(H_{1} / Q_{1} ; V_{3} / V_{1}\right)=0$ by Lemma 1.5(a), so $\bar{\beta}_{1} \in \operatorname{Aut}_{V_{3} / V_{1}}\left(H_{1} / V_{1}\right)$ by Lemma 1.3(b).

We can thus arrange, upon replacing β_{1} by $c_{w}^{-1} \circ \beta_{1}$ for some $w \in V_{3}$, that $\bar{\beta}_{1}=$ Id, and hence that $\left[\beta_{1}, H_{1}\right] \leq V_{1}$. (We can no longer claim that $\left[\beta_{2}, H_{2}\right] \leq V_{2}$, but this will not be needed.) Set $H_{1}^{\prime}=\left[H_{1}, H_{1}\right]$. By (4), $H_{1}^{\prime} \geq Q_{1}$ and $H_{1}^{\prime} / Q_{1} \cong S L_{2}(3)$. Also, $V_{1}=Z\left(H_{1}^{\prime}\right)$, so $\left.\beta_{1}\right|_{H_{1}^{\prime}}$ has the form $\beta_{1}(g)=g \phi(g)$ for some $\phi \in \operatorname{Hom}\left(H_{1}^{\prime}, V_{1}\right)$. But H_{1}^{\prime} is perfect by (4) again, so $\phi=1$, and $\beta_{1}=\operatorname{Id}$. Thus $\operatorname{Out}(\mathcal{F})=1$, and $\bar{\kappa}_{G}$ is an isomorphism.

This finishes the proof of Proposition 3.2.

CHAPTER 4

Tools for comparing automorphisms of fusion and linking systems

Throughout this chapter and the next, we assume $p=2$. Many of the definitions and statements given here are well known to hold for arbitrary primes, but we restrict to this case for simplicity. In particular, a strongly embedded subgroup $H<G$ always means a strongly 2 -embedded subgroup; i.e., one such that $2||H|$ while $2 \nmid\left|H \cap{ }^{g} H\right|$ for $g \in G \backslash H$.

Definition 4.1. Fix a finite group G, choose $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$.
(a) A subgroup $P \leq S$ is fully normalized in \mathcal{F} if $N_{S}(P) \in \operatorname{Syl}_{2}\left(N_{G}(P)\right)$.
(b) A 2-subgroup $P \leq G$ is essential if P is 2-centric in G (if $Z(P) \in$ $\operatorname{Syl}_{2}\left(C_{G}(P)\right)$) and $\operatorname{Out}_{G}(P)$ has a strongly embedded subgroup. Let $\mathbf{E}_{2}(G)$ be the set of all essential 2-subgroups of G.
(c) A subgroup $P \leq S$ is \mathcal{F}-essential if P is fully normalized in \mathcal{F} and essential in G. Let $\mathbf{E}_{\mathcal{F}}$ be the set of all \mathcal{F}-essential subgroups of G.
(d) $\widehat{\mathcal{Z}}(\mathcal{F})=\{W \leq S \mid W$ elementary abelian, fully normalized in \mathcal{F},

$$
\left.W=\bar{\Omega}_{1}\left(Z\left(C_{S}(W)\right)\right), \operatorname{Aut}_{\mathcal{F}}(W) \text { has a strongly embedded subgroup }\right\} .
$$

Clearly, in the situation of Definition 4.1, $\mathbf{E}_{\mathcal{F}} \subseteq \mathbf{E}_{2}(G)$, while each member of $\mathbf{E}_{2}(G)$ is G-conjugate to a member of $\mathbf{E}_{\mathcal{F}}$. If $W \in \overline{\widehat{\mathcal{Z}}}(\mathcal{F})$ and $P=C_{S}(W)$, then by the following lemma, restriction defines a surjection from $\operatorname{Out}_{G}(P)$ onto $\operatorname{Aut}_{G}(W)$ with kernel of odd order. Hence $\operatorname{Out}_{G}(P)$ also has a strongly embedded subgroup, and $P \in \mathbf{E}_{\mathcal{F}}$.

Lemma 4.2. Fix a finite group G and $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=\mathcal{F}_{S}(G)$.
(a) Assume $W \leq P \leq G$ are 2-subgroups such that $W=\Omega_{1}(Z(P))$ and $P \in \operatorname{Syl}_{2}\left(C_{G}(W)\right)$. Then restriction induces a surjection $\operatorname{Out}_{G}(P) \longrightarrow$ $\operatorname{Aut}_{G}(W)$ with kernel of odd order.
(b) If $W \in \widehat{\mathcal{Z}}(\mathcal{F})$ and $P=C_{S}(W)$, then $P \in \mathbf{E}_{\mathcal{F}}$.

Proof. (a) By the Frattini argument, $N_{G}(W) \leq N_{G}(P) C_{G}(W)$, with equality since W is characteristic in P. So the natural homomorphism

$$
\operatorname{Out}_{G}(P) \cong N_{G}(P) / C_{G}(P) P \longrightarrow N_{G}(W) / C_{G}(W) \cong \operatorname{Aut}_{G}(W),
$$

induced by restriction of automorphisms or by the inclusion $N_{G}(P) \leq N_{G}(W)$ is surjective with kernel $\left(N_{G}(P) \cap C_{G}(W)\right) / C_{G}(P) P$ of odd order.
(b) If $W \in \widehat{\mathcal{Z}}(\mathcal{F})$ and $P=C_{S}(W)$, then $P \in \operatorname{Syl}_{2}\left(C_{G}(W)\right)$ and $W=\Omega_{1}(Z(P))$ by definition. So we are in the situation of (a), and $\operatorname{Out}_{G}(P)$ has a strongly embedded subgroup since $\operatorname{Aut}_{G}(W)$ does. Also, $N_{G}(P) \leq N_{G}(W)$, while $N_{S}(P)=N_{S}(W) \in$
$\operatorname{Syl}_{2}\left(N_{G}(W)\right)$ since W is fully normalized in \mathcal{F}. Hence $N_{S}(P) \in \operatorname{Syl}_{2}\left(N_{G}(P)\right)$, so P is also fully normalized and $P \in \mathbf{E}_{\mathcal{F}}$.

Our proof that $\operatorname{Ker}\left(\mu_{G}\right)=1$ in all cases is based on the following proposition, which is a modified version of similar results in AOV1 and BMO. In most cases handled in the next chapter, point (e) suffices to prove that $\operatorname{Ker}\left(\mu_{G}\right)=1$.

When $\alpha \in \operatorname{Aut}(\mathcal{L})$ and P is an object in \mathcal{L}, we let $\alpha_{P}: \operatorname{Aut}_{\mathcal{L}}(P) \longrightarrow \operatorname{Aut}_{\mathcal{L}}(\alpha(P))$ denote the restriction of α to $\operatorname{Aut}_{\mathcal{L}}(P)$.

Proposition 4.3. Fix a finite group G, choose $S \in \operatorname{Syl}_{2}(G)$, and set $\mathcal{F}=$ $\mathcal{F}_{S}(G)$ and $\mathcal{L}=\mathcal{L}_{S}^{c}(G)$. Each element in $\operatorname{Ker}\left(\mu_{G}\right)$ is represented by some $\alpha \in$ $\operatorname{Aut}(\mathcal{L})$ such that $\alpha_{S}=\operatorname{Id}_{\operatorname{Aut}_{\mathcal{L}}(S)}$. For each such α, there are elements $g_{P} \in$ $C_{Z(P)}\left(\operatorname{Aut}_{S}(P)\right)=Z\left(N_{S}(P)\right)$, defined for each fully normalized subgroup $P \in$ $\mathrm{Ob}(\mathcal{L})$, for which the following hold:
(a) The automorphism $\alpha_{P} \in \operatorname{Aut}\left(\operatorname{Aut}_{\mathcal{L}}(P)\right)$ is conjugation by $\left[g_{P}\right] \in \operatorname{Aut}_{\mathcal{L}}(P)$, and g_{P} is uniquely determined by α modulo $C_{Z(P)}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)$. In particular, $\alpha_{P}=\operatorname{Id}_{\operatorname{Aut}_{\mathcal{L}}(P)}$ if and only if $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)$.
(b) Assume $P, Q \in \operatorname{Ob}(\mathcal{L})$ are both fully normalized in \mathcal{F}. If $Q={ }^{a} P$ for some $a \in S$, then we can choose $g_{Q}={ }^{a} g_{P}$.
(c) If $Q \leq P$ are both fully normalized and are objects in \mathcal{L}, then $g_{P} \equiv g_{Q}$ modulo $C_{Z(Q)}\left(N_{G}(P) \cap N_{G}(Q)\right)$.
(d) Assume, for each $W \in \widehat{\mathcal{Z}}(\mathcal{F})$ and $P=C_{S}(W)$, that $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)$ (equivalently, that $\alpha_{P}=\operatorname{Id}_{\operatorname{Aut}_{\mathcal{L}}(P)}$). Then $\alpha=\mathrm{Id}$.
(e) If $\widehat{\mathcal{Z}}(\mathcal{F})=\varnothing$, then $\operatorname{Ker}\left(\mu_{G}\right)=1$. If $|\widehat{\mathcal{Z}}(\mathcal{F})|=1$, and $|Z(S)|=2$ or (more generally) $\operatorname{Aut}_{\mathcal{F}}\left(\Omega_{1}(Z(S))\right)=1$, then $\operatorname{Ker}\left(\mu_{G}\right)=1$.
Proof. Points (a)-(c) are part of AOV1, Proposition 4.2], (d) follows from BMO, Proposition A.2(d)], and (e) combines parts (a) and (b) in BMO Proposition A.2].

The following notation will be useful in the next lemma, and in the next chapter.
Definition 4.4. For each finite group G and each $k \geq 0$, let $\mathscr{I}_{k}(G)$ be the set of subgroups $H \leq G$ such that $[G: H]=2^{k} \cdot m$ for some odd m. Let $\mathscr{I}_{\leq k}(G)$ be the union of the sets $\mathscr{I}_{\ell}(G)$ for $0 \leq \ell \leq k$.

Lemma 4.5. Let H be a finite group, fix $T \in \operatorname{Syl}_{2}(H)$, and set $\mathcal{F}=\mathcal{F}_{T}(H)$. Set $Q=O_{2}(H)$, and assume $C_{H}(Q) \leq Q$. Assume $W \in \widehat{\mathcal{Z}}(\mathcal{F})$, and set $P=C_{T}(W)$. Set $V=\Omega_{1}(Z(Q))$, and set $H^{*}=\operatorname{Aut}_{H}(V), P^{*}=\operatorname{Aut}_{P}(V), T^{*}=\operatorname{Aut}_{T}(V)$, and $\mathcal{F}^{*}=\mathcal{F}_{T^{*}}\left(H^{*}\right)$.
(a) We have $W \leq V, \operatorname{Aut}_{H}(W)=\operatorname{Aut}_{H^{*}}(W)$ has a strongly embedded subgroup, P^{*} is a radical 2-subgroup of H^{*}, and $N_{H^{*}}\left(P^{*}\right) / P^{*}$ has a strongly embedded subgroup.
(b) If H^{*} is a Chevalley group (i.e., untwisted) over the field \mathbb{F}_{2}, then $P^{*} \in$ $\mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{1}\left(H^{*}\right)$. If $H^{*} \cong S U_{2 n}(2)$ or $\Omega_{2 n}^{-}(2)$ for $n \geq 2$, then $P^{*} \in \mathbf{E}_{\mathcal{F}^{*}} \subseteq$ $\mathscr{I}_{\leq 2}\left(H^{*}\right)$.
(c) If $H^{*} \cong A_{6}, A_{7}$, or M_{24}, then $P^{*} \in \mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{1}\left(H^{*}\right)$. If $H^{*} \cong M_{22}$ or M_{23}, then $P^{*} \in \mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{\leq 2}\left(H^{*}\right)$. If $H^{*} \cong S_{5}$, then $P^{*} \in \mathscr{I}_{\leq 2}\left(H^{*}\right)$.
(d) If $H^{*} \cong \operatorname{Aut}\left(M_{22}\right)$, then

$$
P^{*} \in \mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{\leq 2}\left(H^{*}\right) \quad \text { and } \quad P^{*} \cap O^{2}\left(H^{*}\right) \in \mathbf{E}_{2}\left(O^{2}\left(H^{*}\right)\right)
$$

Proof. Fix $W \in \widehat{\mathcal{Z}}(\mathcal{F})$, and set $P=C_{T}(W)$ as above. Then $P \in \mathbf{E}_{\mathcal{F}}$ by Lemma 4.2(b). Also, $W=\Omega_{1}(Z(P))$ and $P \geq O_{2}\left(C_{H}(V)\right)=Q$, and hence $W \leq$ $\Omega_{1}(Z(Q))=V$.
(a) Since $V \unlhd H$, each $\alpha \in \operatorname{Aut}_{H}(W)$ extends to $\bar{\alpha} \in \operatorname{Aut}_{H}(V)=H^{*}$, and thus $\operatorname{Aut}_{H^{*}}(W)=\operatorname{Aut}_{H}(W)$. Hence

$$
N_{H^{*}}\left(P^{*}\right) / P^{*} \cong N_{H / Q}(P / Q) /(P / Q) \cong N_{H}(P) / P \cong \operatorname{Out}_{H}(P),
$$

so this group has a strongly embedded subgroup. In particular, $P^{*}=O_{2}\left(N_{H^{*}}\left(P^{*}\right)\right)$ (see [AKO, Proposition A.7(c)]), so P^{*} is a radical 2-subgroup of H^{*}.
(b) Since $W \leq V, W=\Omega_{1}(Z(P))=C_{V}\left(P^{*}\right)$. By (a), $N_{H^{*}}\left(P^{*}\right) / P^{*}$ has a strongly embedded subgroup, and $O_{2}\left(N_{H^{*}}\left(P^{*}\right)\right)=P^{*}$.

If H^{*} is a group of Lie type over the field \mathbb{F}_{2}, then by the Borel-Tits theorem (see [GLS, Corollary 3.1.5]), $N_{H^{*}}\left(P^{*}\right)$ is a parabolic subgroup and $P^{*}=O_{2}\left(N_{H^{*}}\left(P^{*}\right)\right)$. Hence $P^{*} \in \mathbf{E}_{\mathcal{F}^{*}}$ in this case. Also, $O^{2^{\prime}}\left(\operatorname{Out}_{H^{*}}(P)\right) \cong O^{2^{\prime}}(H / P)$ is a central product of groups of Lie type in characteristic 2 (cf. [GLS, Proposition 2.6.5(f,g)]). Since it has a strongly embedded subgroup, it must be isomorphic to $S L_{2}(2) \cong S_{3}$ (hence $P \in \mathscr{I}_{1}\left(H^{*}\right)$), or possibly to $A_{5} \cong S L_{2}(4) \cong \Omega_{4}^{-}(2)$ if $H^{*} \cong S U_{2 n}(2)$ or $\Omega_{2 n}^{-}(2)$ for $n \geq 2$ (in which case $P \in \mathscr{I}_{2}\left(H^{*}\right)$). Note that we cannot get $S U_{3}(2)$ since we only consider even dimensional unitary groups.
(c) If $H^{*} \cong M_{n}$ for $n=22,23,24$, then by [GL pp. 42-44], it is of characteristic 2 type, in the sense that all 2-local subgroups are strictly 2-constrained. So $N_{H^{*}}\left(P^{*}\right)$ is strictly 2 -constrained, P^{*} is centric in this group, and hence $P^{*} \in \mathbf{E}_{\mathcal{F}^{*}}$. Also, $\mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{1}\left(H^{*}\right)$ if $H^{*} \cong M_{24}\left[\mathbf{O V}\right.$, Proposition 6.5], while $\mathbf{E}_{\mathcal{F}^{*}} \subseteq \mathscr{I}_{\leq 2}\left(H^{*}\right)$ if $H^{*} \cong M_{22}$ or M_{23} [OV, Table 5.2].

The remaining cases ($H^{*} \cong A_{6}, A_{7}$, or S_{5}) are elementary.
(d) The radical 2-subgroups of $H^{*} \cong \operatorname{Aut}\left(M_{22}\right)$ are listed in [Y] Table VIII]. There are just three classes of such subgroups Q for which $N(Q) / Q$ has a strongly embedded subgroup, of which the members of two have index 2 in a Sylow 2subgroup and those of the third have index 4. Each of them is essential in $\operatorname{Aut}\left(M_{22}\right)$, and contains with index 2 an essential 2-subgroup of M_{22}.

We will need to identify the elements of $\widehat{\mathcal{Z}}(\mathcal{F})$, when $\mathcal{F}=\mathcal{F}_{S}(G)$ for a sporadic group G and $S \in \operatorname{Syl}_{2}(G)$. In most cases, it will turn out that $\widehat{\mathcal{Z}}(\mathcal{F})=\left\{Z_{2}(S)\right\}$, which is why we need some tools for identifying this subgroup.

Lemma 4.6. Let S be a 2-group, and assume $W \leq S$ is elementary abelian. If $\left[S: C_{S}(W)\right]=2$, then $W \leq Z_{2}(S)$ and $\operatorname{rk}(W) \leq 2 \cdot \operatorname{rk}(Z(S))$.

Proof. Set $Q=C_{S}(W)$ for short; $Q \unlhd S$ since it has index 2 . Then $W \leq$ $\Omega_{1}(Z(Q))$, and upon replacing W by $\Omega_{1}(Z(Q))$, we can arrange that $W \unlhd S$.

Fix $x \in S \backslash Q$. Since $x^{2} \in Q=C_{S}(W)$, we have $[W, S]=[W, x] \leq C_{W}(x) \leq$ $Z(S)$. So $W \leq Z_{2}(S)$, and $\operatorname{rk}(W) \leq 2 \cdot \operatorname{rk}(Z(S))$.

Lemma 4.7. Fix a finite group G and a Sylow 2-subgroup $S \in \operatorname{Syl}_{2}(G)$.
(a) If G is one of the sporadic groups $J_{4}, C o_{2}, C o_{1}, S u z, R u, F_{24}^{\prime}, F_{5}, F_{3}$, F_{2}, or F_{1}, then $|Z(S)|=2$ and $Z_{2}(S) \cong E_{4}$. If $G \cong C o_{2}$, then $Z_{2}(S)$ has
type 2ABB, while in all other cases, the three involutions in $Z_{2}(S)$ lie in the same G-conjugacy class.
(b) If $G \cong \mathrm{Fi}_{22}$, then $Z_{2}(S) \cong E_{8}$ is of type $\mathbf{2} \mathbf{A}_{2} \boldsymbol{B}_{3} \boldsymbol{C}_{2}$ and contains a subgroup of type $\mathbf{2 B}^{2}$. If $G \cong F i_{23}$, then $Z_{2}(S) \cong E_{16}$.
(c) If $G \cong H S, O^{\prime} N$, or $C o_{3}$, then $|Z(S)|=2$ and $Z_{2}(S) \cong C_{4} \times C_{2}$.

Proof. (a) In each of these cases, we choose $Q \unlhd S$ and $H=N_{G}(Q)$ as follows, where $H^{*}=H / Q \cong \operatorname{Aut}_{H}(Q)$:

G	$C o_{1}$	$S u z$	$R u$	F_{5}	F_{3}	F_{2}	F_{1}	J_{4}	$C o_{2}$	$F i_{24}^{\prime}$
Q	2_{+}^{1+8}	2_{-}^{1+6}	2.2^{4+6}	2_{+}^{1+8}	2_{+}^{1+8}	2_{+}^{1+22}	2_{+}^{1+24}	$E_{2^{11}}$	$E_{2^{10}}$	$E_{2^{11}}$
H^{*}	$\Omega_{8}^{+}(2)$	$\Omega_{6}^{-}(2)$	S_{5}	$\Omega_{4}^{+}(4): 2$	A_{9}	$C o_{2}$	$C o_{1}$	M_{24}	$M_{22}: 2$	M_{24}

References for all of these subgroups are given in the next chapter.
Assume that $|Z(Q)|=2$; i.e., that we are in one of the first seven cases. Then $|Z(S)|=2$, and $Z_{2}(S) \leq Q$ since H^{*} acts faithfully on $Q / Z(Q)$. Set $\bar{Q}=Q / Z(Q)$, so that $Z_{2}(S) / Z(S)=C_{Z(\bar{Q})}(S / Q)$. If Q is extraspecial, then $\operatorname{rk}\left(Z_{2}(S)\right) \geq 2$: since \bar{Q} has an odd number of isotropic points (cf. [Ta, Theorem 11.5]), at least one is fixed by S.

When $G \cong C o_{1}$ or $S u z, \bar{Q}$ is the natural (orthogonal) module for H^{*}, so $\left|C_{\bar{Q}}(S)\right|=2($ see $\mathbf{C u}$, Theorem 6.15] or GLS Theorem 2.8.9] $)$, and hence $Z_{2}(S) \cong$ E_{4}.

When $G \cong R u, \bar{Q}$ is special of type $2^{4+6}, Z_{2}(Q) \cong E_{32}$, and H / Q acts on $Z_{2}(Q) / Z(Q)$ via the natural action of $\Sigma L_{2}(4)[\mathbf{W 4}, \S 1.4]$. So $\left|C_{Z(\bar{Q})}(S / Q)\right|=2$ in this case, and $Z_{2}(S) \cong E_{4}$.

When $G \cong F_{5}$, a Sylow 2-subgroup of $O^{2}(H / Q) \cong \Omega_{4}^{+}(4)$ acts on $\bar{Q} \cong\left(\mathbb{F}_{4}\right)^{4}$ with 1-dimensional fixed subgroup. This subgroup lifts to $V_{3}<Q$, where $V_{3} \cong E_{8}$ and $\operatorname{Aut}_{G}\left(V_{3}\right) \cong G L_{3}(2)$ (see NW, p. 365]). Thus $\left[V_{3}, S\right]>Z(S)$, so $Z_{2}(S)<V_{3}$, and $Z_{2}(S) \cong E_{4}$.

When $G \cong F_{3}, \bar{Q}$ as an $\mathbb{F}_{2} A_{9}$-module satisfies the hypotheses of Lemma 1.6 by [Pa, 3.7], and hence $\left|C_{\bar{Q}}(S / Q)\right|=2$ by that lemma.

Assume $G \cong F_{1}$ or F_{2}. Thus $H^{*} \cong C o_{1}$ or $C o_{2}$, respectively. Set $T=S / Q \in$ $\operatorname{Syl}_{2}\left(H^{*}\right)$, and let $V \unlhd T$ and $K=N_{H^{*}}(V)$ be such that $K \cong 2^{11} . M_{24}$ or $2^{10} \cdot M_{22}: 2$ and $V=O_{2}(K)$. By MStr Lemmas 3.7.b \& 3.8.b], $\left|C_{\bar{Q}}(V)\right|=2$, and hence $\left|C_{\bar{Q}}(S / Q)\right|=2$. So $Z_{2}(S) \cong E_{4}$ in both cases.

In the remaining three cases, Q is elementary abelian. When $G \cong C o_{2}, Q \cong$ $E_{2^{10}}$ is the Golay module (dual Todd module) for $H^{*} \cong M_{22}: 2$. Let $K<H^{*}$ be the hexad subgroup $K \cong 2^{4}: S_{6}$, chosen so that $K>S^{*}=S / Q$, and set $R=$ $O_{2}(K) \cong E_{16}$. Set $Q_{1}=C_{Q}(R)$ and $Q_{5}=[R, Q]$. By [MStr, Lemma 3.3.b], $\operatorname{rk}\left(Q_{1}\right)=1, \operatorname{rk}\left(Q_{5}\right)=5$, and Q_{5} / Q_{1} is the natural module for $S_{6} \cong S p_{4}(2)$. Hence $Z(S)=C_{Q}\left(S^{*}\right)=Q_{1}$, and $Z_{2}(S) / Z(S)=C_{Q / Q_{1}}\left(S^{*}\right)=C_{Q_{5} / Q_{1}}\left(S^{*}\right)$ also has rank 1. So $Z_{2}(S) \cong E_{4}$. The two elements in $Z_{2}(S) \backslash Z(S)$ are S-conjugate, and do not lie in $\mathbf{2 C}$ since $C_{G}(x) \in \mathscr{I}_{3}(G)$ for $x \in \mathbf{2 C}$ (see [W1, Table II]). By [W1, Table II] again, each $2 \mathbf{A}$-element acts on the Leech lattice with character -8 , so a subgroup of type $\mathbf{2} \mathbf{A}^{2}$ would act fixing only the zero vector, hence cannot be in $C o_{2}$. Thus $Z_{2}(S)$ has type $\mathbf{2 A B B}$.

Assume $G \cong F i_{24}^{\prime}$ or J_{4}. In both cases, $Q \cong E_{2^{11}}$ is the Todd module for $H^{*} \cong M_{24}$ (see [A3, 34.9] and [J. Theorem A.4]). Let $K<H / Q$ be the sextet subgroup $K \cong 2^{6}: 3 S_{6}$, chosen so that $K>S^{*}=S / Q \in \operatorname{Syl}_{2}\left(H^{*}\right)$, and set $R=$ $O_{2}(K) \cong E_{64}$. By [MStr Lemma 3.5.b], there are $\mathbb{F}_{2} K$-submodules $Q_{1}<Q_{7}<Q$ of rank 1 and 7 , respectively, where $Q_{1}=C_{Q}(R)$ and $Q_{2}=[R, Q]$, and where $K / R \cong 3 S_{6}$ acts on Q_{7} / Q_{1} as the dual module to R. Thus $Z(S)=Q_{1}$ and $Z_{2}(S) / Z(S)=C_{Q_{7} / Q_{1}}\left(S^{*}\right) \cong R /\left[S^{*}, R\right]$. Since $S^{*} \cong U T_{5}(2)$ contains only two subgroups of rank 6 , one easily sees that $\left|R /\left[S^{*}, R\right]\right|=2$, and hence $Z_{2}(S) \cong E_{4}$.

In all of the above cases except Co_{2}, S contains a normal elementary abelian subgroup V of rank at least 2 all of whose involutions lie in the same G-conjugacy class. We refer to the lists of maximal 2-local subgroups in the next chapter, where we can take $V=V_{i}=Z\left(O_{2}\left(H_{i}\right)\right)$, for $i=2\left(\right.$ when $G \cong C o_{1}, S u z, F_{2}$, or $\left.F_{1}\right)$, $i=3$ (when $G \cong J_{4}, R u$, or F_{5}), or $i=5$ (for $G \cong F i_{24}^{\prime}$ or F_{3}). Since each normal subgroup of order at least 4 contains $Z_{2}(S)$, the involutions in $Z_{2}(S)$ also lie in the same class.
(b) When $G \cong F i_{22}$ and $S \in \operatorname{Syl}_{2}(G), Z(S)=\langle z\rangle$ has order 2, and $H=C_{G}(z) \cong$ $\left(2 \times 2_{+}^{1+8}\right): U_{4}(2): 2$. Set $Q=O_{2}(H)$. Then $O^{2}(H / Q)$ acts faithfully on $\bar{Q}=Q / Z(Q)$ as a 4 -dimensional unitary space over \mathbb{F}_{4}, so $\operatorname{dim}_{\mathbb{F}_{4}}\left(C_{\bar{Q}}\left(S \cap O^{2}(H)\right)\right)=1 \mathbf{C u}$, Theorem 6.15]. An involution $h Q$ with $h \in H \backslash O^{2}(H)$ acts as a field automorphism on the unitary space \bar{Q}, so $\operatorname{dim}_{\mathbb{F}_{2}}\left(C_{\bar{Q}}(S)\right)=1$. Since $|Z(Q)|=4$, this proves that $\left|Z_{2}(S)\right| \leq 8$.

To see that $Z_{2}(S)$ does contain a subgroup of rank 3 , consider a hexad group $V \cong E_{32}$ normal in S, generated by six transpositions $\left\{a_{1}, \ldots, a_{6}\right\}$ (where $a_{1} \cdots a_{6}=$ 1), ordered so that $\operatorname{Aut}_{S}(V)=\langle(12)(34),(12)(56),(13)(24)\rangle$. Then
$Z(S)=C_{V}(S)=\left\langle a_{5} a_{6}\right\rangle \quad$ and $\quad Z_{2}(S)=\left\langle a_{1} a_{2}, a_{3} a_{4}, a_{5}, a_{6}\right\rangle$ is of type $\mathbf{2} \mathbf{A}_{2} \mathbf{B}_{3} \mathbf{C}_{2}$, and $\left\langle a_{1} a_{2}, a_{3} a_{4}\right\rangle<Z_{2}(S)$ is of type $\mathbf{2 B}^{2}$.

When $G \cong F i_{23}$ and $S \in \operatorname{Syl}_{2}(G), Z(S) \cong E_{4}$ contains involutions x, y, z in each of the three classes $\mathbf{2 A}, \mathbf{2 B}$, and $\mathbf{2 C}$, respectively. Also, $C_{G}(x) \cong 2 F i_{22}$, so we can identify $S /\langle x\rangle$ as a Sylow 2 -subgroup of $F i_{22}$, whose center lifts to a pair of elements of class 2B and 2C in G. Thus $S / Z(S) \cong T / Z(T)$ when $T \in \operatorname{Syl}_{2}\left(F i_{22}\right)$, we already saw that $|Z(T / Z(T))|=4$, and so $\left|Z_{2}(S)\right|=16$. All involutions in $F i_{22}$ lift to involutions in $2 \cdot F i_{22}<G$, so $Z_{2}(S)$ is elementary abelian.
(c) When $G \cong H S$ or $O^{\prime} N$, this follows from the descriptions by Alperin Alp, Corollary 1] and O'Nan $\left.\mathbf{O}^{\prime} \mathbf{N} \S 1\right]$ of S as being contained in an extension of the form $4^{3} . L_{3}(2)$. (In terms of their presentations, $Z(S)=\left\langle v_{1}^{2} v_{3}^{2}\right\rangle$, while $Z_{2}(S)=$ $\left.\left\langle v_{1} v_{3}, v_{1}^{2} v_{2}^{2}\right\rangle.\right)$ When $G \cong C o_{3}$, it follows from a similar presentation of $S \leq 4^{3}$. $(2 \times$ $L_{3}(2)$) (see, e.g., [OV, § 7]).

CHAPTER 5

Injectivity of μ_{G}

We are now ready to prove, when $p=2$, that $\operatorname{Ker}\left(\mu_{G}\right)=1$ for each of the sporadic groups G not handled in Proposition 2.1. This will be done in each case by determining the set $\widehat{\mathcal{Z}}(\mathcal{F})$ and then applying Proposition4.3. One can determine $\widehat{\mathcal{Z}}(\mathcal{F})$ using the lists of radical 2-subgroups found in $[\mathbf{Y}]$ and other papers. However, we decided to do this instead using lists of maximal 2-local subgroups, to emphasize that the details needed to prove this result are only a small part of what is needed to determine the radical subgroups.

Proposition 5.1. Assume $p=2$, and let G be a sporadic simple group whose Sylow 2-subgroups have order at least 2^{10}. Then $\operatorname{Ker}\left(\mu_{G}\right)=1$.

Proof. There are fifteen groups to consider, and we go through the list one or two at a time. In each case, we fix $S \in \operatorname{Syl}_{2}(G)$ and set $\mathcal{F}=\mathcal{F}_{S}(G), \mathcal{L}=\mathcal{L}_{S}^{c}(G)$, and $\widehat{\mathcal{Z}}=\widehat{\mathcal{Z}}(\mathcal{F})$. When we list representatives for the conjugacy classes of maximal 2-local subgroups of G, we always choose them so that each such H satisfies $S \cap H \in$ $\operatorname{Syl}_{2}(H)$. In particular, if H has odd index in G, then $H \geq S$ and hence $O_{2}(H) \unlhd S$ and $Z\left(O_{2}(H)\right) \unlhd S$ (making the choice of H unique in most cases).

In four of the cases, when $G \cong M_{24}, H e, C o_{2}$, or $F i_{23}, \widehat{\mathcal{Z}}$ has two members, and we use Proposition 4.3(b,c,d) to prove that μ_{G} is injective. In all of the other cases, $|\widehat{\mathcal{Z}}|=1$ and $|Z(S)|=2$, and we can apply Proposition 4.3(e). Recall that by Proposition 4.3, each class in $\operatorname{Ker}\left(\mu_{G}\right)$ contains an element $\alpha \in \operatorname{Aut}(\mathcal{L})$ which acts as the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$.

Note that whenever $|Z(S)|=2$ and $W \cong E_{4}$ is normal in $S,\left[S: C_{S}(W)\right]=2$, and hence $W \leq Z_{2}(S)$ by Lemma 4.6

For convenience, we sometimes write $A \sim_{H} B$ to mean that A is H-conjugate to B, and $A \leq_{H} B$ to mean that A is H-conjugate to a subgroup of B.
$\boldsymbol{G} \cong \boldsymbol{M}_{\mathbf{2 4}}, \boldsymbol{H e}: \quad$ We identify S with $U T_{5}(2)$, the group of (5×5) upper triangular matrices over F_{2}. Let $e_{i j} \in S$ (for $i<j$) be the matrix with 1's on the diagonal, and with unique nonzero off-diagonal entry 1 in position (i, j). Set $W_{1}=\left\langle e_{15}, e_{25}\right\rangle$ and $W_{4}=\left\langle e_{14}, e_{15}\right\rangle, Q_{i}=C_{S}\left(W_{i}\right)$ for $i=1,4$, and $Q_{14}=Q_{1} \cap Q_{4}$. By [OV, Propositions $6.2 \& 6.9], Q_{1}$ and Q_{4} are essential in G, and are the only essential subgroups with noncyclic center. Hence by Lemma 4.2, $\widehat{\mathcal{Z}}=\left\{W_{1}, W_{4}\right\}$. Also, $Q_{14}=A_{1} A_{2}$, where A_{1} and A_{2} are the unique subgroups of S of type E_{64}, and hence $Q_{14}=J(S)$ is characteristic in S, Q_{1}, and Q_{4}.

Fix $\alpha \in \operatorname{Aut}(\mathcal{L})$ which is the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$. By Proposition 4.3(a), there are elements $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{S}(P)\right)$, chosen for each $P \leq S$ which is fully normalized in \mathcal{F} and 2 -centric in G, such that $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}(P)}$ is conjugation by $\left[g_{P}\right]$. Then $g_{Q_{1}}=g_{Q_{14}}=g_{Q_{4}} \in Z(S)$ by point (c) in the proposition, since for $i=1,4$, $C_{Z\left(Q_{14}\right)}\left(N_{G}\left(Q_{i}\right)\right)=1$. Set $g=g_{Q_{1}}$; upon replacing α by $c_{g}^{-1} \circ \alpha$, we can arrange
that $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}\left(Q_{i}\right)}=\operatorname{Id}$ for $i=1,4$ without changing $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}(S)}$. Hence $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(d).
$G \cong J_{4}: \quad$ By $[\mathbf{K W} \S 2]$, there are four conjugacy classes of maximal 2-local subgroups, represented by:

$$
H_{1} \cong 2_{+}^{1+12} .3 M_{22}: 2, H_{3} \cong 2^{3+12} .\left(\Sigma_{5} \times L_{3}(2)\right), H_{10} \cong 2^{10}: L_{5}(2), H_{11} \cong 2^{11}: M_{24}
$$

Set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right) \cong E_{2^{i}}$. Note that $H_{10} \in \mathscr{I}_{1}(G)$, while $H_{i} \geq S$ for $i \neq 10$.

Fix $W \in \widehat{\mathcal{Z}}$ and set $P=C_{S}(W)$. Then $N_{G}(W) \leq_{G} H_{i}$ for some i, in which case $P \geq_{G} Q_{i}$ and $W \leq_{G} V_{i}$ by Lemma4.5(a). Thus $i>1$ since $\operatorname{rk}(W) \geq 2$. By Lemma $4.5(\mathrm{~b}, \mathrm{c}), \operatorname{Aut}_{P}\left(V_{i}\right) \in \mathbf{E}_{2}\left(\operatorname{Aut}_{H_{i}}\left(V_{i}\right)\right) \subseteq \mathscr{I}_{1}\left(\operatorname{Aut}_{H_{i}}\left(V_{i}\right)\right)$, and hence $P \in \mathscr{I}_{1}\left(H_{i}\right)$.

Thus either $[S: P]=2$, in which case $W=Z_{2}(S) \cong E_{4}$ by Lemmas 4.6 and $4.7(\mathrm{a})$; or $i=10$ and $[S: P]=4$. In the latter case, since $H_{10} / V_{10} \cong L_{5}(2)$ acts on V_{10} as $\Lambda^{2}\left(\mathbb{F}_{2}^{5}\right)$, we have $\operatorname{rk}(W)=\operatorname{rk}\left(C_{V_{10}}\left(P / V_{10}\right)\right) \leq \operatorname{rk}\left(C_{V_{10}}\left(\left[S^{*}, S^{*}\right]\right)\right)=2$ for $S^{*} \in \operatorname{Syl}_{2}\left(H_{10} / V_{10}\right)$. So $W \cong E_{4}$ in all cases.

By [KW, Table 1], there are two classes of four-groups in G whose centralizer has order a multiple of 2^{19}, denoted $A A A^{(1)}$ and $A B B^{(1)}$, with centralizers of order $2^{20} \cdot 3 \cdot 5$ and $2^{19} \cdot 3 \cdot 5$, respectively. Thus $A A A^{(1)} \sim_{G} Z_{2}(S)$ (Lemma 4.6), and W lies in one of the two classes. Since $\operatorname{Aut}_{G}\left(A B B^{(1)}\right)$ is a 2-group, $W \not \chi_{G} A B B^{(1)}$. Hence $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and μ_{G} is injective by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{C o}_{\mathbf{3}}$: By [OV, Proposition 7.3], there is at most one essential subgroup with noncyclic center (denoted R_{1}); and $R_{1} \in \mathbf{E}_{\mathcal{F}}$ since otherwise $N_{G}(Z(S))$ would control fusion in G. Also, $\operatorname{Out}_{G}\left(R_{1}\right) \cong S_{3}$ and $Z\left(R_{1}\right) \in \widehat{\mathcal{Z}}$ by [OV, Propsition 7.5]. So $|\widehat{\mathcal{Z}}|=1$, and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition $4.3(\mathrm{e})$. (In fact, it is not hard to see that $\widehat{\mathcal{Z}}=\left\{\Omega_{1}\left(Z_{2}(S)\right)\right\}$.)
$\boldsymbol{G} \cong \boldsymbol{C o}_{\mathbf{2}}$: By [W1 pp. 113-114], each 2-local subgroup of G is contained up to conjugacy in one of the following subgroups:

$$
\begin{aligned}
H_{1} \cong 2_{+}^{1+8} \cdot S p_{6}(2), H_{4} & \cong 2^{4+10} \cdot\left(S_{3} \times S_{5}\right), H_{5} \cong\left(2^{4} \times 2_{+}^{1+6}\right) \cdot A_{8}, H_{10} \cong 2^{10}: M_{22}: 2 \\
K_{1} & \cong U_{6}(2): 2, \quad K_{2} \cong M c L, \quad K_{3} \cong M_{23} .
\end{aligned}
$$

For $i=1,4,5,10$, set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right) \cong E_{2^{i}}$.
Recall (Lemma4.7(a)) that $Z_{2}(S)$ has type 2ABB. Set $Z_{2}(S)=\left\{1, x, y_{1}, y_{2}\right\}$, where $x \in \mathbf{2 A}$ and $y_{1}, y_{2} \in \mathbf{2 B}$. Thus $Z(S)=\langle x\rangle, H_{1}=C_{G}(x)$, and we can assume $H_{5}=C_{G}\left(y_{1}\right)$.

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W)$. Then $W \geq Z(S)$, so $W \cap \mathbf{2 A} \neq \varnothing$. If $\operatorname{rk}(W)=2$, then W must have type $\mathbf{2} \mathbf{A}^{2}$. Since each $\mathbf{2 A}$-element acts on the Leech lattice with character -8 [W1, Table II], W would fix only the zero element, and hence cannot be contained in Co_{2}. Thus $\mathrm{rk}(W) \geq 3$. If $[S: P]=2$, then $W \leq Z_{2}(S)$ by Lemma 4.6, which is impossible since $\operatorname{rk}\left(Z_{2}(S)\right)=2$. So $[S: P] \geq 4$.

If $N_{G}(W) \leq_{G} K_{2} \cong M c L$ or $N_{G}(W) \leq_{G} K_{3} \cong M_{23}$, then by the list of essential subgroups in these groups in [OV, Table 5.2], $\operatorname{rk}(W)=\operatorname{rk}(Z(P)) \leq 2$. So these cases are impossible.

The subgroup $K_{1} \cong U_{6}(2): 2$ in $C o_{2}$ is the stabilizer of a triple of 2-vectors in the Leech lattice Cu1 pp. 561-2], which we can choose to have the form $(4,4,0, \ldots)$, $(0,-4,4, \ldots)$, and $(-4,0,-4, \ldots)$. Using this, we see that the maximal parabolic subgroups $2_{+}^{1+8}: U_{4}(2): 2,2^{9}: L_{3}(4): 2$, and $2^{4+8}:\left(S_{3} \times S_{5}\right)$ in K_{1} can be chosen to be contained in H_{1}, H_{10}, and H_{4}, respectively. If $N_{G}(W) \leq_{G} K_{1}$, then it is contained
in one of the maximal parabolics by the Borel-Tits theorem, and so $N_{G}(W)$ is also conjugate to a subgroup of one of the H_{i}.

Thus in all cases, we can assume that $N_{G}(W) \leq H_{i}$ for some $i=1,4,5,10$. Then $P \geq Q_{i}$ and $W=Z(P) \leq V_{i}$, so $i \neq 1$.

Assume $i=5$, and recall that $\operatorname{Fr}\left(Q_{5}\right)=\left\langle y_{1}\right\rangle$. The image of W in $V_{5} /\left\langle y_{1}\right\rangle \cong E_{16}$ has rank at least 2 since $\operatorname{rk}(W) \geq 3$, so $\operatorname{Aut}_{N_{G}(W)}\left(V_{5} /\left\langle y_{1}\right\rangle\right)$ is the stabilizer subgroup of a projective line and plane in $A_{8} \cong S L_{4}(2)$ (a line and plane determined by S). So there is at most one member of $\widehat{\mathcal{Z}}$ whose normalizer is in $H_{5}=C_{G}\left(y_{1}\right)$, and it has rank 3 if it exists.

Now, $V_{4} \geq Z_{2}(S)$ since it is normal in S. Since $Z_{2}(S)$ has type $\mathbf{2 A B B}, S_{5}$ must act on $V_{4}^{\#}$ with orbits of order 5 and 10 , and has type $\mathbf{2 A}_{5} \mathbf{B}_{10}$. So if $i=4$, then W is a rank 3 subgroup of the form $\mathbf{2 A}_{3} \mathbf{B}_{4}$ (the centralizer of a 2-cycle in S_{5}). There is exactly one 2 B -element in W whose product with each of the other 2B-elements is in class $2 \mathbf{A}$, so $N_{G}(W) \leq_{G} H_{5}=N_{G}(\mathbf{2 B})$: a case which we have already handled.

Assume $i=10$, and set $H^{*}=H_{10} / V_{10} \cong \operatorname{Aut}_{H_{10}}\left(V_{10}\right) \cong \operatorname{Aut}\left(M_{22}\right)$ and $P^{*}=$ P / V_{10}. By Lemma4.5(d), $P^{*} \cap O^{2}\left(H^{*}\right)$ is an essential 2-subgroup of $O^{2}\left(H^{*}\right) \cong M_{22}$. Since $P \notin \mathscr{I}_{1}\left(H_{10}\right), P^{*} \cap O^{2}\left(H^{*}\right)$ has the form $2^{4}: 2<2^{4}: S_{5}$ (the duad subgroup) by [OV, Table 5.2], and this extends to $P^{*} \cong 2^{5}: 2<2^{5}: S_{5}<\operatorname{Aut}\left(M_{22}\right)$. But $V_{10} \cdot 2^{5}$ has center V_{4} (see MStr, Lemma 3.3]), and so we are back in the case $i=4$.

Thus $\widehat{\mathcal{Z}}=\left\{W_{1}, W_{2}\right\}$, where $\operatorname{rk}\left(W_{i}\right)=3$ and $N_{G}\left(W_{i}\right) \leq C_{G}\left(y_{i}\right) \sim_{G} H_{5}$ for $i=1,2$. (These also correspond to the two 2-cycles in $\operatorname{Aut}_{S}\left(V_{4}\right)<S_{5}$.) Set $P_{i}=C_{S}\left(W_{i}\right)$. Fix $\alpha \in \operatorname{Aut}(\mathcal{L})$ which is the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$, and let $g_{i}=g_{P_{i}} \in$ $C_{W_{i}}\left(\operatorname{Aut}_{S}\left(P_{i}\right)\right)=Z_{2}(S)(i=1,2)$ be as in Proposition 4.3. Thus $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}\left(P_{i}\right)}$ is conjugation by g_{i}. Since $y_{i} \in Z\left(N_{G}\left(P_{i}\right)\right)$, we can replace g_{i} by $g_{i} y_{i}$ if necessary and arrange that $g_{i} \in Z(S)$. Then $g_{1}=g_{2}$ by Proposition 4.3(b) and since P_{1} and P_{2} are S-conjugate. Upon replacing α by $c_{g_{1}}^{-1} \circ \alpha$, we can arrange that $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}\left(Q_{i}\right)}=\operatorname{Id}$ for $i=1,4$ without changing $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}(S)}$. Hence $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(d).
$\boldsymbol{G} \cong \boldsymbol{C o}_{\mathbf{1}}$: There are three conjugacy classes of involutions in G, of which those in $\mathbf{2 A}$ are 2-central. By Cu2, Theorem 2.1], each 2-local subgroup of G is contained up to conjugacy in one of the subgroups

$$
\begin{aligned}
H_{1} \cong 2_{+}^{1+8} \cdot \Omega_{8}^{+}(2), H_{2} \cong 2^{2+12} \cdot\left(A_{8} \times S_{3}\right), H_{4} \cong 2^{4+12} \cdot\left(S_{3} \times 3 S_{6}\right), H_{11} \cong 2^{11} M_{24} ; \\
K_{1} \cong\left(A_{4} \times G_{2}(4)\right): 2, \quad K_{2} \cong\left(A_{6} \times U_{3}(3)\right): 2
\end{aligned}
$$

Curtis also included Co_{2} in his list, but it is not needed, as explained in W1, p. 112]. Set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right) \cong E_{2^{i}}$.

Assume $W \in \widehat{\mathcal{Z}}$. Then $W \geq Z(S)$, so $W \cap \mathbf{2 A} \neq \varnothing$. If $W \cap \mathbf{2 C} \neq \varnothing$, then $N_{G}(W) \leq H_{i}$ for some $i=1,2,4,11$ by [u2, Lemma 2.2] (where the involution centralizer in the statement is for an involution of type $\mathbf{2 A}$ or $\mathbf{2 C}$). If W contains no 2C-elements, then by the argument given in [Cu2, p. 417], based on the action of the elements on the Leech lattice, a product of distinct $\mathbf{2 A}$-elements in W must be of type $\mathbf{2 A}$. So in this case, $\langle W \cap \mathbf{2 A}\rangle$ is $\mathbf{2 A}$-pure, and its normalizer is contained in some H_{i} by Cu2, Lemma 2.5] (together with Wilson's remark [W1, p. 112]).

Set $P=C_{S}(W)$; then $P \geq Q_{i}$ and hence $W \leq V_{i}$. Also, $i \neq 1$ since $\operatorname{rk}(W)>1$. By Lemmas 4.5 (b, c), $\operatorname{Aut}_{P}\left(V_{i}\right) \in \mathbf{E}_{2}\left(\operatorname{Aut}_{H_{i}}\left(V_{i}\right)\right) \subseteq \mathscr{I}_{1}\left(\operatorname{Aut}_{H_{i}}\left(V_{i}\right)\right)$. Since $H_{i} \geq S$, we have $[S: P]=2$, and $W=\Omega_{1}(Z(P)) \leq Z_{2}(S)$ by Lemma4.6, with equality since $\left|Z_{2}(S)\right|=4$ by Lemma 4.7. It follows that $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{S u z}:$ By [W2, § 2.4], there are three classes of maximal 2-local subgroups which are normalizers of $\mathbf{2 A}$-pure subgroups, represented by

$$
H_{1} \cong 2_{-}^{1+6} . \Omega_{6}^{-}(2), \quad H_{2} \cong 2^{2+8} .\left(A_{5} \times S_{3}\right), \quad H_{4} \cong 2^{4+6} \cdot 3 A_{6} .
$$

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W)$. Since $W \geq Z(S)$, it contains 2A-elements, and since $\langle W \cap \mathbf{2 A}\rangle$ is 2A-pure by [W2, p. 165], $N_{G}(W) \leq H_{i}$ for some $i \in$ $\{1,2,4\}$. Then $P \geq O_{2}\left(H_{i}\right)$ and $W \leq V_{i} \stackrel{\text { def }}{=} Z\left(O_{2}\left(H_{i}\right)\right)$ by Lemma4.5(a), so $i \neq 1$ since $\operatorname{rk}(W) \geq 2$. Hence $i=2$ or 4 , so $\operatorname{Aut}_{G}\left(V_{i}\right) \cong S_{3}$ or A_{6}, and $\operatorname{Aut}_{P}\left(V_{i}\right) \in$ $\mathbf{E}_{2}\left(\operatorname{Aut}_{G}\left(V_{i}\right)\right) \subseteq \mathscr{I}_{1}\left(\operatorname{Aut}_{G}\left(V_{i}\right)\right)$ by Lemma 4.5(b,c). So $[S: P]=2$, and $W \leq Z_{2}(S)$ by Lemma 4.6, with equality since $\left|Z_{2}(S)\right|=4$ by Lemma 4.7. Thus $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).
$\boldsymbol{G} \cong R u: \quad$ There are two conjugacy classes of involutions, of which the $\mathbf{2 A}$ elements are 2-central. By [W4, § 2.5], the normalizer of each 2A-pure subgroup is contained up to conjugacy in one of the following subgroups:

$$
H_{1} \cong 2.2^{4+6} \cdot S_{5} \quad H_{3} \cong 2^{3+8} . L_{3}(2) \quad H_{6} \cong 2^{6} . G_{2}(2)
$$

Set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right)$. For each $i=1,3,6, V_{i}$ is elementary abelian of rank i and 2A-pure.

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W) \in \mathbf{E}_{\mathcal{F}}$. Then $W \geq Z(S)$, so W contains $\mathbf{2 A}$ elements. Since the subgroup $W_{0}=\langle W \cap \mathbf{2 A}\rangle$ is $\mathbf{2 A}$-pure [W4, p. 550], $N_{G}(W) \leq$ $N_{G}\left(W_{0}\right) \leq H_{i}$ for $i \in\{1,3,6\}$. Since H_{i} is 2-constrained, $P \geq Q_{i}=O_{2}\left(H_{i}\right)$ and $W \leq V_{i}$ by Lemma 4.5(a). Hence $i \neq 1$, since $\operatorname{rk}(W) \geq 2$.

For $i=3,6, \operatorname{Aut}_{G}\left(V_{i}\right)$ is a Chevalley group over \mathbb{F}_{2}, so by Lemma 4.5(b), $\operatorname{Aut}_{P}\left(V_{i}\right) \in \mathscr{I}_{1}\left(\operatorname{Aut}_{G}\left(V_{i}\right)\right)$, and hence $P \in \mathscr{I}_{1}\left(H_{i}\right)$. So $|P|=2^{13}$ (if $i=3$) or 2^{11} (if $i=6$). Also, W is $\mathbf{2 A}$-pure since V_{i} is. By $[\mathbf{W 4}, \S 2.4]$, there are four classes of subgroups of type $\mathbf{2} \mathbf{A}^{2}$, of which only one has centralizer of order a multiple of 2^{11}, and that one must be the class of $Z_{2}(S)$ (Lemma 4.7). So $W=Z_{2}(S)$ if $i=3$, or if $i=6$ and $\operatorname{rk}(W)=2$.

As explained in [W4, § 2.5], if $W \leq V_{6}$ and $\operatorname{rk}(W) \geq 3$, then either $N_{G}(W) \leq_{G}$ H_{1}, or $N_{G}(W)$ is in the normalizer of a group of the form $\mathbf{2} \mathbf{A}^{2}$ which must be conjugate to $Z_{2}(S)$ by the above remarks, or $C_{G}(W)=V_{6}$. The first case was already handled. If $N_{G}(W) \leq_{G} N_{G}\left(Z_{2}(S)\right)$, then $N_{G}(W) \leq_{G} H_{3}$ by [W4, p. 550], and this case was already handled. If $C_{G}(W)=V_{6}$, then $W=P=V_{6}$, which is impossible since $G_{2}(2)$ does not have a strongly embedded subgroup. Thus $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and μ_{G} is injective by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{F i}_{22}, \boldsymbol{F i}_{\mathbf{2 3}}$, or $\boldsymbol{F i}_{\mathbf{2 4}}^{\boldsymbol{\prime}}$: It will be simplest to handle these three groups together. Their maximal 2-local subgroups were determined in W5 Proposition 4.4], [Fl] and [W8, Theorem D], and are listed in Table [5.1. To make it clearer how 2-local subgroups of one Fischer group lift to larger ones, we include the maximal 2local subgroups in $\mathrm{Fi}_{21} \cong P S U_{6}(2)$ (the maximal parabolic subgroups by the BorelTits theorem), and give the normalizers in Fi_{24} of the maximal 2-local subgroups of $F i_{24}^{\prime}$. Also, we include one subgroup which is not maximal: $H_{4} \leq F i_{23}$ is contained in K_{1}.

As usual, set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right)$. For each of the four groups $F i_{n}$, $H_{i} \geq S$ for $i=1,2,3,5$. We write $K_{i}^{(n)}, H_{i}^{(n)}, Q_{i}^{(n)}$, or $V_{i}^{(n)}$ when we need to distinguish K_{i}, H_{i}, Q_{i}, or V_{i} as a subgroup of $F i_{n}$.

	$P S U_{6}(2)=F i_{21}$	$F i_{22}$	$F i_{23}$	$F i_{24}$
K_{1}			$2 \cdot F i_{22}$	$\left(2 \times 2 \cdot F i_{22}\right) \cdot 2$
K_{2}		$2 \cdot F i_{21}$	$2^{2} \cdot F i_{21} \cdot 2$	$\left(2 \times 2^{2} \cdot F i_{21}\right) \cdot S_{3}$
K_{3}			$S_{4} \times S p_{6}(2)$	$S_{4} \times \Omega_{8}^{+}(2): S_{3}$
H_{1}	$2_{+}^{1+8}: U_{4}(2)$	$\left(2 \times 2_{+}^{1+8}: U_{4}(2)\right) \cdot 2$	$\left(2^{2} \times 2_{+}^{1+8}\right) \cdot\left(3 \times U_{4}(2)\right) \cdot 2$	$\left(2_{+}^{1+12}\right) \cdot 3 U_{4}(3) \cdot 2^{2}$
H_{2}	$2^{4+8}:\left(A_{5} \times S_{3}\right)$	$2^{5+8}:\left(A_{6} \times S_{3}\right)$	$2^{6+8}:\left(A_{7} \times S_{3}\right)$	$2^{7+8}:\left(A_{8} \times S_{3}\right)$
H_{3}	$2^{9}: M_{21}$	$2^{10} \cdot M_{22}$	$2^{11} \cdot M_{23}$	$2^{12} \cdot M_{24}$
H_{4}		$2^{6} \cdot S p_{6}(2)$	$\left[2^{7} \cdot S p_{6}(2)\right]$	$2^{8}: S O_{8}^{-}(2)$
H_{5}				$2^{3+12}\left(S L_{3}(2) \times S_{6}\right)$

Table 5.1

Each of the groups $F i_{n}$ for $21 \leq n \leq 24$ is generated by a conjugacy class of 3 -transpositions. By [A3, 37.4], for $22 \leq n \leq 24, \mathrm{Fi}_{n}$ has classes of involutions \mathcal{J}_{m}, for $m=1,2,3$ when $n=22,23$ and for $1 \leq m \leq 4$ when $n=24$. Each member of \mathcal{J}_{m} is a product of m commuting transpositions (its factors): a unique such product except when $n=22$ and $m=3$ (in which case each $x \in \mathcal{J}_{3}$ has exactly two sets of factors) and when $n=24$ and $m=4$. Note that $\mathcal{J}_{1}=\mathbf{2 A}, \mathcal{J}_{2}=\mathbf{2 B}$, and $\mathcal{J}_{3}=\mathbf{2 C}$ in $F i_{22}$ and $F i_{23}$, while $\mathcal{J}_{2}=\mathbf{2 A}$ and $\mathcal{J}_{4}=\mathbf{2 B}$ in $F i_{24}^{\prime}$ (and the other two classes are outer automorphisms).

In all cases, K_{1}, K_{2}, and H_{1} are normalizers of sets of $(n-22),(n-21)$, and ($n-20$) pairwise commuting transpositions. Also, H_{3} is the normalizer of the set of all n transpositions in S; these generate $Q_{3}=V_{3}$ of rank $n-12$, and form a Steiner system of type $(n-19, n-16, n)$. Then H_{2} is the normalizer of a pentad, hexad, heptad, or octad of transpositions: one of the members in that Steiner system. From these descriptions, one sees, for example, that a subgroup of type $K_{i}(i=1,2)$ or $H_{i}(i=1,2,3)$ in $F i_{22}$ lifts to a subgroup of type K_{i} or H_{i}, respectively, in $2 \cdot F i_{22}<F i_{23}$ and in $2 F i_{22} .2<F i_{24}^{\prime}$.

By W5 Lemma 4.2], each 2B-pure elementary abelian subgroup of $F i_{22}(\mathbf{2 B}=$ \mathcal{J}_{2}) supports a symplectic form for which $(x, y)=1$ exactly when conjugation by y exchanges the two factors of x. Then $V_{4}^{(22)}$ is characterized as a subgroup of type $\mathbf{2} \mathbf{B}^{6}$ with nonsingular symplectic form. Since each $\mathbf{2 B}$-element in $F i_{22}$ lifts to a 2B- and a 2C-element in $2 \cdot F i_{22}<F i_{23}, H_{4}^{(22)}$ lifts to $H_{4}^{(23)}$ of the form $2^{7} \cdot S p_{6}(2)$.

By W8, Corollary 3.2.3], each elementary abelian subgroup of $G \cong F i_{24}^{\prime}$ supports a symplectic form where $(x, y)=1$ if and only if y is in the "outer half" of $C_{G}(x) \cong 2 \cdot F i_{22} .2$ or $2_{+}^{1+12} .3 U_{4}(3): 2$. By W8, Proposition 3.3.3], the form on $V_{4}^{(24)} \cong E_{2^{8}}$ is nonsingular, and $V_{4}^{(24)}$ contains elements in both classes $2 \mathrm{~A}=\mathcal{J}_{2}$ and $\mathbf{2 B}=\mathcal{J}_{4}$. If $x \in V_{4} \cap \mathbf{2 A}$, then $V_{4} \cap O^{2}\left(C_{G}(x)\right) /\langle x\rangle$ has rank 6 with nonsingular symplectic form in $F i_{22}$, and hence $\left(C_{H_{4}}(x) \cap O^{2}\left(C_{G}(x)\right)\right) /\langle x\rangle$ is conjugate to $H_{4}^{(22)}$. Thus $H_{4}^{(24)}$ contains a lifting of $H_{4}^{(22)}$ via the inclusion $2 \cdot F i_{22}<F i_{24}^{\prime}$.

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W)$. If $N_{G}(W) \leq K_{i}$ for $i=1$ or 2 , then since $W \geq Z(S)$, and $O_{2}\left(K_{i}\right)$ does not contain involutions of all classes represented in $Z(S)$ (note that $O_{2}\left(K_{i}^{(24)}\right) \cap F i_{24}^{\prime}$ is 2A-pure for $\left.i=1,2\right)$, we have $\bar{W}=(W \cap$
$\left.F^{*}\left(K_{i}\right)\right) / O_{2}\left(K_{i}\right) \neq 1$. Thus $N_{G}(\bar{W})$ is a 2-local subgroup of $F^{*}\left(K_{i}\right) / O_{2}\left(K_{i}\right) \cong F i_{22}$ or $F i_{21}$, and hence is contained up to conjugacy in one of its maximal 2-local subgroups. So (after applying this reduction twice if $i=1$), $N_{G}(W) \leq H_{i}$ for some $1 \leq i \leq 4$. We will see below that we can also avoid the case $N_{G}(W) \leq K_{3}$ (when $G \cong F i_{23}$ or $\left.F i_{24}^{\prime}\right)$, and hence that in all cases, $N_{G}(W) \leq_{G} H_{i}$ for some $1 \leq i \leq 5$.

When $\boldsymbol{G} \cong \boldsymbol{F} \boldsymbol{i}_{\mathbf{2 2}}$, we just showed that (up to conjugacy) we can assume $N_{G}(W) \leq H_{i}$ for some $i=1,2,3,4$. If $i=4$, then by Lemma 4.5(b), $W=$ $C_{V_{4}}\left(P / V_{4}\right)$ where $P / V_{4} \in \mathbf{E}_{2}\left(H_{4} / V_{4}\right)$ and $H_{4} / V_{4} \cong S p_{6}(2)$, so W must be totally isotropic with respect to the symplectic form on V_{4} described above. But in that case, by W5, Lemma 3.1], the subgroup $W^{*}>W$ generated by all factors of involutions in W is again elementary abelian, and $N_{G}(W) \leq N_{G}\left(W^{*}\right) \leq H_{j}$ for some $j=1,2,3$.

Thus $N_{G}(W) \leq H_{i}$ where $i \in\{1,2,3\}, H_{i}$ is 2-constrained, and so $P=$ $C_{S}(W) \geq O_{2}\left(H_{i}\right)$ and $W=\Omega_{1}(Z(P)) \leq V_{i}$. Also, $i \neq 1$ since V_{1} has type 2AAB (so $\operatorname{Aut}_{G}\left(V_{1}\right)$ is a 2-group). Hence $i=2,3$, and $H_{i} \in \mathscr{I}_{0}(G)$. By Lemma 4.5(c), $\operatorname{Aut}_{P}\left(V_{i}\right) \in \mathbf{E}_{2}\left(\operatorname{Aut}_{H_{i}}\left(V_{i}\right)\right)$, and either $[S: P]=2$, or $i=3$ and $[S: P]=4$. In this last case, $P / V_{3} \cong 2^{4}: 2$ is contained in a duad subgroup $D \cong 2^{4}: S_{5}$ in M_{22}. Also, $O_{2}(D) \cong E_{16}$ permutes $V_{3} \cap \mathbf{2 A}$ in five orbits of length 4, each of which forms a hexad together with the remaining two transpositions. Hence $C_{V_{3}}\left(O_{2}(D)\right)$ has type 2AAB, and cannot contain W.

Thus $[S: P]=2$, and hence $\operatorname{rk}(W)=2$ and $W \leq Z_{2}(S)$ by Lemma 4.6. By Lemma 4.7(b), $Z_{2}(S)$ has rank 3 and type $\mathbf{2 A}_{2} \mathbf{B}_{3} \mathbf{C}_{2}$. Since Aut ${ }_{G}(W)$ is not a 2-group, W must be the $\mathbf{2 B}$-pure subgroup of rank 2 in $Z_{2}(S)$. (Note that the factors of the involutions in W form a hexad.) Thus $|\widehat{\mathcal{Z}}|=1$, and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).

When $\boldsymbol{G} \cong \boldsymbol{F i}_{\mathbf{2 3}}, W=\Omega_{1}(Z(P))$ strictly contains $Z(S)$. Hence $\operatorname{rk}(W) \geq 3$, and W contains involutions of each type $\mathbf{2 A}, \mathbf{2 B}$, and $\mathbf{2 C}$. If $|W \cap \mathbf{2 A}|=12$, or 3, then $N_{G}(W) \leq K_{1}, K_{2}$, or H_{1}, respectively, while if $|W \cap \mathbf{2 A}| \geq 4$, then $N_{G}(W) \leq H_{2}$ or H_{3}, depending on whether or not the transpositions in W are contained in a heptad. So by the above remarks, we can assume in all cases that $N_{G}(W) \leq H_{i}$ for some $i=1,2,3,4$. Since H_{i} is strictly 2-constrained, $P \geq Q_{i}$ and $W \leq V_{i}$. If $i=1$, then $W=V_{1}$ since it has rank at least 3 , and thus W has type $\mathbf{2 A}_{3} \mathbf{B}_{3} \mathbf{C}$. The case $i=4$ can be eliminated in the same way as it was when $G \cong F i_{22}$.

Assume $N_{G}(W) \leq H_{2}$ and $W \leq V_{2}$, where $\operatorname{Aut}_{G}\left(V_{2}\right) \cong A_{7}$. Write $V_{2} \cap$ $\mathbf{2 A}=\left\{a_{1}, \ldots, a_{7}\right\}$, permuted by $\operatorname{Aut}_{G}\left(V_{2}\right) \cong A_{7}$ in the canonical way. Then (up to choice of indexing), $\operatorname{Aut}_{P}\left(V_{2}\right)$ is one of the two essential subgroups $P_{1}^{*}=$ $\langle(12)(34),(12)(56)\rangle$ and $P_{2}^{*}=\langle(12)(34),(13)(24)\rangle$. Set $W_{j}=C_{V_{2}}\left(P_{j}^{*}\right)$ and $P_{j}=$ $C_{S}\left(W_{j}\right)$; thus $P_{j}^{*}=\operatorname{Aut}_{P_{j}}\left(V_{2}\right)$ and hence $\left[S: P_{j}\right]=2$. Also, $W_{1}=\left\langle a_{1} a_{2}, a_{3} a_{4}, a_{5} a_{6}\right\rangle$ has type $\mathbf{2 A B}_{3} \mathbf{C}_{3}$, and $W_{2}=\left\langle a_{5}, a_{6}, a_{7}\right\rangle$ has type $\mathbf{2 A}_{3} \mathbf{B}_{3} \mathbf{C}$ (thus $W_{2} \sim_{G} V_{1}$).

If $N_{G}(W) \leq H_{3}$ and $W \leq V_{3}$, then $\operatorname{Aut}_{G}\left(V_{3}\right) \cong M_{23}$ has three essential subgroups, of which two are contained in the heptad group $2^{4}: A_{7}$ and one in the triad group $2^{4}:\left(3 \times A_{5}\right): 2$. In the first case, the subgroup 2^{4} acts on $V_{3} \cap \mathbf{2 A}$ fixing a heptad, and we are back in the case $N_{G}(W) \leq H_{2}$. In the second case, the subgroup 2^{4} fixes a rank 3 subgroup in V_{3} generated by three tranpositions, and so the essential subgroup $2^{4}: 2$ fixes only $Z(S)$.

Thus $\widehat{\mathcal{Z}}=\left\{W_{1}, W_{2}\right\}$, where $W_{1}, W_{2} \leq Z_{2}(S)$ by Lemma 4.6, and $W_{1}, W_{2}<V_{2}$. Also, $\sigma_{2}=(567)$ normalizes P_{2} and Q_{2} and permutes the three 2B-elements in W_{1}
cyclically, while $\sigma_{1}=(135)(246)$ normalizes P_{1} and Q_{2} and permutes the three 2A-elements in W_{2} cyclically.

Fix $\alpha \in \operatorname{Aut}(\mathcal{L})$ which is the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$. Let $g_{P} \in C_{Z(P)}\left(\operatorname{Aut}_{S}(P)\right)$, for all $P \in \operatorname{Ob}(\mathcal{L})$ fully normalized in \mathcal{F}, be as in Proposition 4.3. Thus $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}(P)}$ is conjugation by g_{P}. Set $g=g_{Q_{2}} \in C_{Z\left(Q_{2}\right)}\left(\operatorname{Aut}_{S}\left(Q_{2}\right)\right)=Z(S)$. Upon replacing α by $c_{g}^{-1} \circ \alpha$, we can arrange that $g_{Q_{2}}=1$, and hence that α is the identity on Aut $_{\mathcal{L}}\left(Q_{2}\right)$. Since $Z(S)=Z\left(N_{G}(S)\right)$ (recall $Z(S)$ has type 2ABC), α is still the identity on $\operatorname{Aut}_{\mathcal{L}}(S)$.

Set $P_{j}=C_{S}\left(W_{j}\right)(j=1,2)$. By Proposition 4.3(c) and since σ_{j} normalizes P_{j} and $Q_{2}, g_{P_{1}} \equiv g_{Q_{2}}=1$ modulo $\left\langle W_{1} \cap \mathbf{2 A}\right\rangle$, and $g_{P_{2}} \equiv g_{Q_{2}}=1$ modulo $\left\langle W_{2} \cap \mathbf{2 C}\right\rangle$. Also, $\left\langle W_{1} \cap \mathbf{2 A}\right\rangle \leq Z\left(N_{G}\left(P_{1}\right)\right)$ and $\left\langle W_{2} \cap \mathbf{2 C}\right\rangle \leq Z\left(N_{G}\left(P_{2}\right)\right)$ (since $\left.N_{G}\left(P_{i}\right) \leq N_{G}\left(W_{i}\right)\right)$. Thus $\left.\alpha\right|_{\operatorname{Aut}_{\mathcal{L}}\left(P_{j}\right)}=$ Id for $j=1,2$, so $\alpha=$ Id by Proposition 4.3 (d). This proves that $\operatorname{Ker}\left(\mu_{G}\right)=1$.

When $\boldsymbol{G} \cong \boldsymbol{F i}_{\mathbf{2 4}}^{\prime}$, since $W \geq Z(S)$, it contains at least one $\mathbf{2 B}$-element (recall $\mathbf{2 A}=\mathcal{J}_{2}$ and $\mathbf{2 B}=\mathcal{J}_{4}$). By Propositions 3.3.1, 3.3.3, 3.4.1, and 3.4.2 in W8 (corrected in [LW, §2]), the normalizer of every elementary abelian 2-subgroup of G is contained up to conjugacy in K_{1}, K_{2}, or one of the H_{i} for $i \leq 5$, except when it is $\mathbf{2 A}$-pure and the symplectic form described above is nonsingular. So we can assume that $N_{G}(W)$ is contained in one of these groups. Together with earlier remarks, this means that we can eliminate all of the K_{i}, and assume that $N_{G}(W) \leq H_{i}$ for some $1 \leq i \leq 5$. So $P \geq Q_{i}$ and $W \leq V_{i}$, and $i \neq 1$ since $\operatorname{rk}\left(V_{1}\right)=1$.

By Lemma 4.5(b,c), $W=C_{V_{i}}\left(P^{*}\right)$, where $P^{*}=\operatorname{Aut}_{P}\left(V_{i}\right)$ is an essential 2subgroup of $H_{i}^{*}=\operatorname{Aut}_{H_{i}}\left(V_{i}\right)$. If $i=2,3,5$, then $P^{*} \in \mathscr{I}_{1}\left(H_{i}^{*}\right)$ by Lemma 4.5(b,c), and hence $[S: P]=2$ since $H_{i} \geq S$. So $W=Z_{2}(S)$ in these cases by Lemmas 4.7(a) and 4.6

If $i=4$, then $H_{i}^{*} \cong \Omega_{8}^{-}(2)$, and the conditions $P^{*} \in \mathbf{E}_{2}\left(H_{4}^{*}\right)$ and $\operatorname{rk}\left(C_{V}\left(P^{*}\right)\right) \geq$ 2 imply that $N_{G}(W) \cong 2^{8} .\left(2^{3+6} .\left(S_{4} \times 3\right)\right)$ (the stabilizer of an isotropic line and plane in the projective space of $\left.V_{4}\right)$. Hence $\operatorname{rk}(W)=2$ and $|P|=2^{19}$. By [W8, Table 15], there are only two classes of four-groups in G with centralizer large enough, one of type $\mathbf{2 A A B}$ (impossible since $\operatorname{Aut}(W)$ is not a 2 -group), and the other $Z_{2}(S)$ of type $\mathbf{2} \mathbf{B}^{2}$. Thus $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{5}}:$ By $\left.\mathbf{N W} \S 3.1\right]$, each 2-local subgroup of G is contained up to conjugacy in one of the subgroups

$$
\begin{gathered}
H_{1} \cong 2_{+}^{1+8} \cdot\left(A_{5} \times A_{5}\right): 2, \quad H_{3} \cong 2^{3} \cdot 2^{2} \cdot 2^{6} \cdot\left(3 \times L_{3}(2)\right), \quad H_{6} \cong 2^{6} \cdot U_{4}(2), \\
K_{1} \cong 2 \cdot H S: 2, \quad K_{2} \cong\left(A_{4} \times A_{8}\right): 2<A_{12}
\end{gathered}
$$

As usual, set $Q_{i}=O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right)$ for $i=1,3,6$. Then V_{1} and V_{3} are 2Bpure, and $O_{2}\left(K_{1}\right)$ and $O_{2}\left(K_{2}\right)$ are 2A-pure. By [NW, § 3.1], for each elementary abelian 2-subgroup $V \leq G$, there is a quadratic form $\mathfrak{q}: V \rightarrow \mathbb{F}_{2}$ defined by sending 2A-elements to 1 and 2B-elements to 0 .

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W)$. Then $W \geq Z(S)$, so $W \cap \mathbf{2 B} \neq \varnothing$. So either the quadratic form \mathfrak{q} on W is nondegenerate and $\operatorname{rk}(W) \geq 3$, or there is a 2B-pure subgroup $W_{0} \leq W$ such that $N_{G}(W) \leq N_{G}\left(W_{0}\right)$. By [NW, § 3.1], in this last case, $N_{G}\left(W_{0}\right) \leq H_{i}$ for $i=1$ or 3 .

If $N_{G}(W) \leq N_{G}\left(W_{0}\right) \leq H_{i}$ for $i=1,3$, then $P \geq O_{2}\left(H_{i}\right)$, so $W \leq V_{i}$. In particular, $i \neq 1$. If $N_{G}(W) \leq H_{3}$, then P has index 2 in S since Aut ${ }_{G}\left(V_{i}\right) \cong L_{3}(2)$, so $W=Z_{2}(S)$ by Lemmas 4.6 and 4.7(a).

Now assume \mathfrak{q} is nondegenerate as a quadratic form (and $\operatorname{rk}(W) \geq 3$). Choose a 2A-pure subgroup $W^{*}<W$ of rank 2 , and identify $C_{G}\left(W^{*}\right)$ with $\left(2^{2} \times A_{8}\right)<A_{12}<$ G. If $\operatorname{rk}(W)=3$, then we can identify W with $\langle(12)(34),(13)(24),(56)(78)\rangle$, so $C_{G}(W) \cong 2^{2} \times\left(2^{2} \times A_{4}\right): 2, P=C_{S}(W) \cong 2^{2} \times\left(2^{4}: 2\right), Z(P) \cong 2^{4}$, which contradicts the assumption that $W=\Omega_{1}(Z(P))$. If $\operatorname{rk}(W) \geq 4$, then it must be conjugate to one of the subgroups (1), (2), or (3) defined in [NW p. 364] (or contains (2) or (3) if $\operatorname{rk}(W)=5)$. Then $C_{G}(W) \cong E_{2^{6}}$ or $E_{16} \times A_{4}$, so $P=W \sim_{G} V_{6}$, which is impossible since $\operatorname{Aut}_{G}\left(V_{6}\right) \cong U_{4}(2)$ does not contain a strongly embedded subgroup.

Thus $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and μ_{G} is injective by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{3}}: \quad$ By $\mathbf{W 1 1}$, Theorem 2.2], there are two classes of maximal 2-local subgroups of G, represented by $H_{1} \cong 2_{+}^{1+8} . A_{9}$ and $H_{5} \cong 2^{5} . S L_{5}(2)$. Set $Q_{i}=$ $O_{2}\left(H_{i}\right)$ and $V_{i}=Z\left(Q_{i}\right) \cong E_{2^{i}}(i=1,5)$.

Fix $W \in \widehat{\mathcal{Z}}$, set $P=C_{S}(W)$, and let $i=1,5$ be such that $N_{G}(W) \leq H_{i}$. Then $P \geq O_{2}\left(H_{i}\right)$ and $W \leq V_{i}$, so $i=5$. By Lemma 4.5(b), $P / V_{5} \in \mathbf{E}_{2}\left(H_{5} / V_{5}\right)$ (where $\left.H_{5} / V_{5} \cong L_{5}(2)\right)$ and $[S: P]=2$. Hence $W \leq Z_{2}(S)$ by Lemma 4.6. Since $\left|Z_{2}(S)\right|=$ 4 by Lemma 4.7, this proves that $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$, and hence that $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).
$\boldsymbol{G} \cong \boldsymbol{F}_{\mathbf{2}}, \boldsymbol{F}_{\mathbf{1}}: \quad$ If $G \cong F_{1}$, then by [MS Theorem 1], there are maximal 2-local subgroups of the form

$$
\begin{aligned}
& H_{1} \cong 2^{1+24} \cdot C o_{1}, H_{2} \cong 2^{2} \cdot\left[2^{33}\right] \cdot\left(M_{24} \times S_{3}\right), \quad H_{3} \cong 2^{3} \cdot\left[2^{36}\right] \cdot\left(L_{3}(2) \times 3 \cdot S_{6}\right), \\
& H_{5} \cong 2^{5} \cdot\left[2^{30}\right] \cdot\left(S_{3} \times L_{5}(2)\right), \quad H_{10} \cong 2^{10+16} \cdot \Omega_{10}^{+}(2),
\end{aligned}
$$

If $G \cong F_{2}$, then by [MS Theorem 2], there are maximal 2-local subgroups of the form

$$
\begin{gathered}
H_{1} \cong 2^{1+22} \cdot C o_{2}, \quad H_{2} \cong 2^{2} \cdot\left[2^{30}\right] \cdot\left(M_{22}: 2 \times S_{3}\right), \quad H_{3} \cong 2^{3} \cdot\left[2^{32}\right] \cdot\left(L_{3}(2) \times S_{5}\right), \\
H_{5} \cong 2^{5} \cdot\left[2^{25}\right] \cdot L_{5}(2), \quad H_{9} \cong 2^{9+16} \cdot S p_{8}(2),
\end{gathered}
$$

As usual, we set $Q_{i}=O_{2}\left(H_{i}\right)$, and $V_{i}=Z\left(Q_{i}\right) \cong E_{2^{i}}$. In both cases ($G \cong F_{1}$ or $\left.F_{2}\right), H_{1}=C_{G}(x) \geq S$ for $x \in \mathbf{2 B}$, and $H_{i}>S\left(V_{i} \unlhd S\right)$ for each i.

Fix $W \in \widehat{\mathcal{Z}}$, and set $P=C_{S}(W)$. Then $W \geq Z(S)$, and hence W contains 2B-elements. By Mei Lemma 2.2], W is "of 2-type", in the sense that $C_{G}\left(O_{2}\left(C_{G}(W)\right)\right)$ is a 2-group, since the subgroup generated by a 2 B -element is of 2-type. In particular, $C_{G}(P)$ is a 2-group and hence $C_{G}(P)=Z(P)$.

A 2B-pure elementary abelian 2-subgroup $V \leq G$ is called singular if $V \leq$ $O_{2}\left(C_{G}(x)\right)$ for each $x \in V^{\#}$. If $G \cong F_{1}$, then by [MS, Proposition 9.1], applied with P in the role of Q and $t=1$, there is a subgroup $W_{0} \leq W$ such that $N_{G}(W) \leq$ $N_{G}\left(W_{0}\right)$, and either W_{0} is 2B-pure and singular or $W=W_{0} \sim_{G} V_{10}$. Since $\operatorname{Aut}_{G}\left(V_{10}\right) \cong \Omega_{10}^{+}(2)$ has no strongly embedded subgroup, W_{0} must be 2B-pure and singular, and hence $N_{G}(W) \leq H_{i}$ for some $i=1,2,3,5$ by [MS, Theorem 1]. Thus $P \geq Q_{i}$ and $W \leq V_{i}$, so W is also $2 \mathbf{B}$-pure and singular.

If $G \cong F_{2}$, identify $G=C_{M}(x) / x$, where $M \cong F_{1}$ and x is a $2 A$-element in M. Let $\widetilde{P} \leq C_{M}(x)$ be such that $x \in \widetilde{P}$ and $\widetilde{P} /\langle x\rangle=P$, and set $\widetilde{W}=\Omega_{1}(Z(\widetilde{P}))$. Then $x \in \widetilde{W}$ and $\widetilde{W} /\langle x\rangle \leq W$, and $(W \cap \mathbf{2 B}) \subseteq \widetilde{W} /\langle x\rangle$ since 2B-elements in G lift to pairs of involutions of classes $\mathbf{2 A}$ and $\mathbf{2 B}$ in M (coming from a subgroup of type

2BAA in $Q_{1}<M$). By [MS, Proposition 9.1] again, applied with \widetilde{P} in the role of Q and $t=x$, there is a subgroup $\widetilde{W}_{0} \leq \widetilde{W}$ such that $N_{M}(\widetilde{W}) \leq N_{M}\left(\widetilde{W}_{0}\right)$, and either \widetilde{W}_{0} is 2B-pure and singular or $\widetilde{W}=\widetilde{W}_{0} \sim_{M} V_{10}^{(M)}$. In the latter case, $W \sim_{G} V_{9}$, which is impossible since $\operatorname{Aut}_{G}\left(V_{9}\right) \cong S p_{8}(2)$ has no strongly embedded subgroup. Again, we conclude that $N_{G}(W) \leq H_{i}$ for some $i=1,2,3,5$ [MS, Theorem 2], and that $W \leq V_{i}$ by Lemma 4.5(a) and hence is 2B-pure and singular.

By MS, Lemma 4.2.2], applied with $W=1$ (if $\left.G \cong F_{1}\right)$ or $W=\langle x\rangle\left(G \cong F_{2}\right)$, the automizer of a singular subgroup is its full automorphism group. Since $G L_{n}(2)$ has no strongly embedded subgroup for $n \neq 2$, this implies that $\operatorname{rk}(W)=2$. By [MS, Lemma 4.4], if we identify $Q_{1} / V_{1} \cong E_{2^{24}}$ with the mod 2 Leech lattice, then $\mathbf{2 A}$-elements correspond to the 2 -vectors and $\mathbf{2 B}$-elements to the classes of 4 vectors, and hence $H_{1} / Q_{1} \cong C o_{1}$ acts transitively on each. So F_{1} contains a unique class of singular subgroups of rank 2. A similar argument, using MS, Corollary 4.6], now shows that F_{2} also contains a unique class of singular subgroup of rank 2. Since $H_{2}>S$, each of these classes has a representative normal in S, so $W \unlhd S$, and $W=Z_{2}(S)$ by Lemmas 4.7(a) and 4.6.

To conclude, we have now shown that $\widehat{\mathcal{Z}}=\left\{Z_{2}(S)\right\}$ in both cases. Hence $\operatorname{Ker}\left(\mu_{G}\right)=1$ by Proposition 4.3(e).

This finishes the proof of Proposition 5.1.
By inspection in the above proof, in all cases where $Z_{2}(S) \cong E_{4}$ and its involutions are G-conjugate, we have $\widehat{\mathcal{Z}}(\mathcal{F})=\left\{Z_{2}(S)\right\}$. A general result of this type could greatly shorten the proof of Proposition 5.1] but we have been unable to find one. The following example shows that this is not true without at least some additional conditions.

Set $G=2^{4}: 15: 4 \cong \mathbb{F}_{16} \rtimes \Gamma L_{1}(16)$. Set $E=O_{2}(G) \cong E_{16}$, fix $S \in \operatorname{Syl}_{2}(G)$, and let $P \unlhd S$ be the subgroup of index 2 containing E. Then $Z_{2}(S)=Z(P) \cong E_{4}$ and $\operatorname{Aut}_{G}\left(Z_{2}(S)\right) \cong S_{3}$, while $\widehat{\mathcal{Z}}\left(\mathcal{F}_{S}(G)\right)=\left\{Z_{2}(S), E\right\}$.

Bibliography for Automorphisms of Fusion Systems of Sporadic Simple Groups

[Alp] J. L. Alperin, Sylow 2-subgroups of 2-rank three, Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam, 1973, pp. 3-5. North-Holland Math. Studies, Vol. 7. MR0354854
[AOV1] K. K. S. Andersen, B. Oliver, and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87-152. MR2948790
[AOV3] K. K. S. Andersen, B. Oliver, and J. Ventura, Reduced fusion systems over 2-groups of small order, J. Algebra 489 (2017), 310-372. MR3686981
[A] M. Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR895134
[A1] M. Aschbacher, Overgroups of Sylow subgroups in sporadic groups, Mem. Amer. Math. Soc. 60 (1986), no. 343, iv+235. MR831891
[A2] M. Aschbacher, Sporadic groups, Cambridge Tracts in Mathematics, vol. 104, Cambridge University Press, Cambridge, 1994. MR 1269103
[A3] M. Aschbacher, 3-transposition groups, Cambridge Tracts in Mathematics, vol. 124, Cambridge University Press, Cambridge, 1997. MR 1423599
[A4] M. Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR2752788
[A5] M. Aschbacher, Classifying finite simple groups and 2-fusion systems, ICCM Not. 3 (2015), no. 1, 35-42. MR3385504
[AKO] M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834
[AS] M. Aschbacher and S. D. Smith, The classification of quasithin groups. I, Mathematical Surveys and Monographs, vol. 111, American Mathematical Society, Providence, RI, 2004. Structure of strongly quasithin K-groups. MR2097623
[BLO] C. Broto, R. Levi, and B. Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611-664. MR 1961340
[BMO] C. Broto, J. Møller, \& B. Oliver, Automorphisms of fusion systems of finite simple groups of Lie type, Mem. Am. Math. Soc. 262 (2019), no.1267, part 1, 1-118.
[Bt] G. Butler, The maximal subgroups of the sporadic simple group of Held, J. Algebra 69 (1981), no. 1, 67-81. MR613857
[Atl] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
$[\mathrm{Cu}] \quad$ C. W. Curtis, Modular representations of finite groups with split (B, N)-pairs, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, pp. 57-95. MR0262383
[Cu1] R. T. Curtis, On subgroups of *O. I. Lattice stabilizers, J. Algebra 27 (1973), 549-573. MR0340404
[Cu2] R. T. Curtis, On subgroups of .O. II. Local structure, J. Algebra 63 (1980), no. 2, 413-434. MR 570721
[Fi] L. Finkelstein, The maximal subgroups of Conway's group C_{3} and McLaughlin's group, J. Algebra 25 (1973), 58-89. MR0346046
[Fl] D. G. Flaass, 2-local subgroups of Fischer groups (Russian), Mat. Zametki 35 (1984), no. 3, 333-342. MR 741800
[GIL] G. Glauberman and J. Lynd, Control of fixed points and existence and uniqueness of centric linking systems, Invent. Math. 206 (2016), no. 2, 441-484. MR3570297
[GL] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR690900
[GLS] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR1303592
[Ha] K. Harada, On the simple group F of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), Academic Press, New York, 1976, pp. 119-276. MR0401904
[He] D. Held, The simple groups related to M_{24}, J. Algebra 13 (1969), 253-296. MR0249500
[J] Z. Janko, A new finite simple group of order $86 \cdot 775 \cdot 571 \cdot 046 \cdot 077 \cdot 562 \cdot 880$ which possesses M_{24} and the full covering group of M_{22} as subgroups, J. Algebra 42 (1976), no. 2, 564596. MR0432751
[KW] P. B. Kleidman and R. A. Wilson, The maximal subgroups of J_{4}, Proc. London Math. Soc. (3) 56 (1988), no. 3, 484-510. MR931511
$[\mathrm{LW}] \quad$ S. A. Linton and R. A. Wilson, The maximal subgroups of the Fischer groups Fi_{24} and $\mathrm{Fi}_{24}^{\prime}$, Proc. London Math. Soc. (3) 63 (1991), no. 1, 113-164. MR 1105720
[Ly1] R. Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972), 540-569. MR0299674
[Ly2] R. Lyons, Automorphism groups of sporadic groups, arXiv:1106.3760
[Mei] U. Meierfrankenfeld, The maximal 2-local subgroups of the monster and baby monster, II (preprint)
[MS] U. Meierfrankenfeld \& S. Shpektorov, Maximal 2-local subgroups of the monster and baby monster (preprint)
[MSt] U. Meierfrankenfeld and B. Stellmacher, The general FF-module theorem, J. Algebra 351 (2012), 1-63. MR2862198
[MStr] U. Meierfrankenfeld and G. Stroth, Quadratic GF(2)-modules for sporadic simple groups and alternating groups, Comm. Algebra 18 (1990), no. 7, 2099-2139. MR1063127
[NW] S. P. Norton and R. A. Wilson, Maximal subgroups of the Harada-Norton group, J. Algebra 103 (1986), no. 1, 362-376. MR860712
[O1] B. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 321-347. MR2092063
[O2] B. Oliver, Existence and uniqueness of linking systems: Chermak's proof via obstruction theory, Acta Math. 211 (2013), no. 1, 141-175. MR3118306
[OV] B. Oliver and J. Ventura, Saturated fusion systems over 2-groups, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6661-6728. MR 2538610
[O'N] M. E. O'Nan, Some evidence for the existence of a new simple group, Proc. London Math. Soc. (3) 32 (1976), no. 3, 421-479. MR0401905
[Pa] D. Parrott, On Thompson's simple group, J. Algebra 46 (1977), no. 2, 389-404. MR0447396
[Sm] F. L. Smith, A characterization of the . 2 Conway simple group, J. Algebra 31 (1974), 91-116. MR0349832
[Sz1] M. Suzuki, Group theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin-New York, 1982. Translated from the Japanese by the author. MR 648772
[Ta] D. E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
[W1] R. A. Wilson, The maximal subgroups of Conway's group •2, J. Algebra 84 (1983), no. 1, 107-114. MR 716772
[W2] R. A. Wilson, The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra 84 (1983), no. 1, 151-188. MR 716777
[W4] R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. London Math. Soc. (3) 48 (1984), no. 3, 533-563. MR 735227
[W5] R. A. Wilson, On maximal subgroups of the Fischer group Fi ${ }_{22}$, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 2, 197-222. MR735364
[W7] R. A. Wilson, Maximal subgroups of automorphism groups of simple groups, J. London Math. Soc. (2) 32 (1985), no. 3, 460-466. MR 825921
[W8] R. A. Wilson, The local subgroups of the Fischer groups, J. London Math. Soc. (2) 36 (1987), no. 1, 77-94. MR897676
[W9] R. A. Wilson, Some subgroups of the Baby Monster, Invent. Math. 89 (1987), no. 1, 197-218. MR 892191
[W10] R. A. Wilson, The odd-local subgroups of the Monster, J. Austral. Math. Soc. Ser. A 44 (1988), no. 1, 1-16. MR914399
[W11] R. A. Wilson, Some subgroups of the Thompson group, J. Austral. Math. Soc. Ser. A 44 (1988), no. 1, 17-32. MR914400
$[\mathrm{Y}] \quad$ S. Yoshiara, The radical 2-subgroups of the sporadic simple groups $J_{4}, \mathrm{Co} 2$, and Th, J. Algebra 233 (2000), no. 1, 309-341. MR1793599

Editorial Information

To be published in the Memoirs, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication.

Papers appearing in Memoirs are generally at least 80 and not more than 200 published pages in length. Papers less than 80 or more than 200 published pages require the approval of the Managing Editor of the Transactions/Memoirs Editorial Board. Published pages are the same size as those generated in the style files provided for $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{E}_{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/memo.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to the Memoirs, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Memoirs is an author-prepared publication. Once formatted for print and on-line publication, articles will be published as is with the addition of AMS-prepared frontmatter and backmatter. Articles are not copyedited; however, confirmation copy will be sent to the authors.

Initial submission. The AMS uses Centralized Manuscript Processing for initial submissions. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/memo, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MEMOIRS OF THE AMS, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Memoirs and include the name of the corresponding author, contact information such as email address or mailing address, and the name of an appropriate Editor to review the paper (see the list of Editors below).

The paper must contain a descriptive title and an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www. ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$. To this end, the Society has prepared $\mathcal{A} \mathcal{M} \mathcal{S}$-IATEX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Though $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ is the highly preferred format of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, author packages are also available in $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Authors may retrieve an author package for Memoirs of the AMS from www.ams.org/ journals/memo/memoauthorpac.html. The AMS Author Handbook is available in PDF format from the author package link. The author package can also be obtained free
of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles St., Providence, RI 02904-2294, USA. When requesting an author package, please specify $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{E} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the publication in which your paper will appear. Please be sure to include your complete mailing address.

After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the editor, who will forward a copy to the Providence office.

Accepted electronically prepared files can be submitted via the web at www.ams.org/ submit-book-journal/, sent via FTP, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ source files and graphic files can be transferred over the Internet by FTP to the Internet node ftp.ams.org (130.44.1.100). When sending a manuscript electronically via CD, please be sure to include a message indicating that the paper is for the Memoirs.

Electronic graphics. Comprehensive instructions on preparing graphics are available at www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computergenerated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a "hairline" for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

Inquiries. Any inquiries concerning a paper that has been accepted for publication should be sent to memo-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles St., Providence, RI 02904-2294 USA.

Editors

This journal is designed particularly for long research papers, normally at least 80 pages in length, and groups of cognate papers in pure and applied mathematics. Papers intended for publication in the Memoirs should be addressed to one of the following editors. The AMS uses Centralized Manuscript Processing for initial submissions to AMS journals. Authors should follow instructions listed on the Initial Submission page found at www.ams.org/memo/memosubmit.html.

1. GEOMETRY, TOPOLOGY \& LOGIC

Coordinating Editor: Richard Canary, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043 USA; e-mail: canary@umich.edu
Algebraic topology, Michael Hill, Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 USA; e-mail: mikehill@math.ucla.edu
Differential geometry, Chiu-Chu Melissa Liu, Department of Mathematics, Columbia University, New York, NY 10027 USA; e-mail: ccliu@math.columbia.edu
Logic, Noam Greenberg, School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand; e-mail: greenberg@msor.vuw.ac.nz
Low-dimensional topology and geometric structures, Richard Canary
2. ALGEBRA AND NUMBER THEORY

Coordinating Editor: Henri Darmon, Department of Mathematics, McGill University, Montreal, Quebec H3A 0G4, Canada; e-mail: darmon@math.mcgill.ca
Algebra, Radha Kessar, Department of Mathematics, City, University of London, London EC1V 0HB, United Kingdom; e-mail: radha.kessar.1@city.ac.uk
Algebraic geometry, Lucia Caporaso, Department of Mathematics and Physics, Roma Tre University, Largo San Leonardo Murialdo, I-00146 Rome, Italy; e-mail: LCedit@mat.uniroma3.it
Analytic number theory, Lillian B. Pierce, Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, NC, 27708 USA; e-mail: pierce@math.duke.edu
Arithmetic geometry, Ted C. Chinburg, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395 USA; e-mail: ted@math.upenn.edu
Commutative algebra, Irena Peeva, Department of Mathematics, Cornell University, Ithaca, NY 14853 USA; e-mail: irena@math. cornell.edu
Number theory, Henri Darmon
3. GEOMETRIC ANALYSIS \& PDE

Coordinating Editor: Alexander A. Kiselev, Department of Mathematics, Duke University, 120 Science Drive, Rm 117 Physics Bldg., Durham, NC 27708 USA; e-mail: kiselev@math.duke.edu
Differential geometry and geometric analysis, Ailana M. Fraser, University of British Columbia, 1984 Mathematics Road, Room 121, Vancouver, BC V6T 1Z2, Canada; e-mail: afraser@math.ubc.ca
Harmonic analysis and partial differential equations, Monica Visan, Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095 USA; e-mail: visan@math.ucla.edu
Partial differential equations and functional analysis, Alexander A. Kiselev
Real analysis and partial differential equations, Joachim Krieger, Batiment de Mathematiques Ecole Polytechnique Federale de Lausanne, Station 8, 1015 Lausanne Vaud, Switzerland; e-mail: joachim.krieger@epfl.ch
4. ERGODIC THEORY, DYNAMICAL SYSTEMS \& COMBINATORICS

Coordinating Editor: Vitaly Bergelson, Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210 USA; e-mail: vitaly@math. ohio-state.edu
Algebraic and enumerative combinatorics, Jim Haglund, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104 USA; e-mail: jhaglund@math. upenn.edu
Probability theory, Robin Pemantle, Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 USA; e-mail: pemantle@math.upenn.edu

Dynamical systems and ergodic theory, Ian Melbourne, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom; e-mail: I.Melbourne@warwick.ac.uk
Ergodic theory and combinatorics, Vitaly Bergelson
5. ANALYSIS, LIE THEORY \& PROBABILITY

Coordinating Editor: Stefaan Vaes, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium; e-mail: stefaan.vaes@wis.kuleuven.be
Functional analysis and operator algebras, Stefaan Vaes
Harmonic analysis, PDEs, and geometric measure theory, Svitlana Mayboroda, School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. SE, Minneapolis, MN 55455; e-mail: svitlana@math.umn.edu
Probability and statistics, Patrick J. Fitzsimmons, Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112 USA; e-mail: pfitzsim@ucsd.edu
All other communications to the editors, should be addressed to the Managing Editor, ALEJANDRO ADEM, Department of Mathematics, The University of British Columbia, Room 121, 1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2; e-mail: adem@math.ubc.ca

SELECTED PUBLISHED TITLES IN THIS SERIES

1263 Chen Wan, A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side, 2019
1262 Tvrtko Tadić, Time-Like Graphical Models, 2019
1261 Oskari Ajanki, László Erdős, and Torben Krüger, Quadratic Vector Equations on Complex Upper Half-Plane, 2019
1260 Elizabeth Milićević, Petra Schwer, and Anne Thomas, Dimensions of Affine Deligne-Lusztig Varieties: A New Approach Via Labeled Folded Alcove Walks and Root Operators, 2019
1259 Sergey Bobkov and Michel Ledoux, One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances, 2019
1258 Oliver Lorscheid and Thorsten Weist, Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces, 2019
1257 Paul-Emile Paradan and Michéle Vergne, Witten Non Abelian Localization for Equivariant K-theory, and the $[Q, R]=0$ Theorem, 2019
1256 Dominic Joyce, Algebraic Geometry over C^{∞}-Rings, 2019
1255 Charles Collot, Pierre Raphaël, and Jeremie Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, 2019
1254 Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Spectral Invariants with Bulk, Quasi-Morphisms and Lagrangian Floer Theory, 2019
1253 Raúl E. Curto, In Sung Hwang, and Woo Young Lee, Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory, 2019
1252 J. I. Hall, Moufang Loops and Groups with Triality are Essentially the Same Thing, 2019
1251 Felix Finster and Niky Kamran, Spinors on Singular Spaces and the Topology of Causal Fermion Systems, 2019
1250 Jun Kigami, Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance, 2019
1249 William Goldman, Greg McShane, George Stantchev, and Ser Peow Tan, Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane, 2019
1248 Jeffrey Galkowski, Distribution of Resonances in Scattering by Thin Barriers, 2019
1247 Viktoria Heu and Frank Loray, Flat Rank Two Vector Bundles on Genus Two Curves, 2019
1246 Feliks Przytycki and Juan Rivera-Letelier, Geometric Pressure for Multimodal Maps of the Interval, 2019
1245 Lien Boelaert, Tom De Medts, and Anastasia Stavrova, Moufang Sets and Structurable Division Algebras, 2019
1244 Chuanqiang Chen, Xinan Ma, and Paolo Salani, On Space-Time Quasiconcave Solutions of the Heat Equation, 2019
1243 Yuesheng Xu and Qi Ye, Generalized Mercer Kernels and Reproducing Kernel Banach Spaces, 2019
1242 Jim Agler, Zinaida Lykova, and Nicholas Young, Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc, 2019
1241 Sean N. Curry and A. Rod Gover, CR Embedded Submanifolds of CR Manifolds, 2019
1240 Elias G. Katsoulis and Christopher Ramsey, Crossed Products of Operator Algebras, 2019

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/memoseries/.

[^0]: ${ }^{1}$ Steve Smith recently pointed out to the third author an error in the proof of this proposition. One can get around this problem either via a more direct case-by-case argument (see the remark in the middle of page 345 in (O1), or by applying [O3 Theorem C]. The proof of the latter result uses the classification of finite simple groups, but as described by Glauberman and Lynd GLn §3], the proof in (O3] (for odd p) can be modified to use an earlier result of Glauberman G12 Theorem A1.4], and through that avoiding the classification.

