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0. Introduction

LetG1 andG2 be two connected compact Lie groupswith classifying spaces
BG1 andBG2. Write G1 ≥ G2 if there exists a Lie group epimorphism
G1 → G2 with finite kernel and writeBG1 ≥ BG2 if there exists a rational
equivalence, i.e. a map whose rationalization is a homotopy equivalence,
fromBG1 toBG2. The purpose of this paper is to investigate the transitive
relation≥ on Lie groups as well as on classifying spaces.

Consider, for some fixed connected compact Lie groupG, the finite set of
all isomorphismclassesof connectedcompact Liegroups locally isomorphic
to G. This set, equipped with the covering group relation≥, is called the
local isomorphism system ofG. Its structure was analyzed by Baum [Ba]:
Classical Lie group theory tells us that the local isomorphism system ofG
contains a (uniquely determined)maximal element of the formH×T where
H is the simply connected compact Lie group homotopy equivalent to the
universal covering group ofG andT is a torus of rank≥ 0 (isomorphic
to the connected component of the center ofG.) Any element of the local
isomorphism system ofG is [Ba, Proposition 2] the quotient ofH ×T by a

I thank C.U. Jensen and S.Jøndrup for supplying the proof of Lemma 3.2 and K. Ishiguro
and D. Notbohm for many entertaining discussions
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special subgroup – a special subgroup, denoted(K,ϕ), is [Ba, 1] the graph
of some homomorphismϕ : K → T defined on a central subgroupK of
H. Thus we may write

(∗) G = H × T
/
(K,ϕ)

for some (essentially unique) special subgroup(K,ϕ).
LettingEpi(G1, G2) denote the set of Lie epimorphisms ofG1 ontoG2,

the main technical advantage of Baum’s approach is expressed in

Theorem 0.1.[Ba, Proposition 5, Corollary 6]Assume that

G1 = H × T
/
(K1, ϕ1) andG2 = H × T

/
(K2, ϕ2)

are two connected compact Lie groups, locally isomorphic toG, expressed
as quotients ofH × T .

1. Epi(G1, G2) corresponds bijectively to the set of all pairs

(α, β) ∈ Aut(H)× Epi(T )
for whichα(K1) ⊂ K2 and the diagram

K1

α|K1

��

��

ϕ1 �� T

β
����

K2 ϕ2
�� T

commutes.
2. The pair(α, β), satisfying the conditions in (1), represents a Lie group

isomorphismG1
∼=−→ G2 if and only ifβ ∈ Aut(T ) andα(K1) = K2.

Here,Epi(T ) denotes the monoid of of epimorphisms ofT onto itself
andAut(H) the group of Lie automorphisms ofH.

The bijection in point (1) associates to the pair(α, β) the epimorphism
G1 � G2 covered byα×β : H ×T � H ×T . If G is presented as in(∗),
any other presentation ofG has by point (2) the form

G ∼= H × T
/
(α(K), β ◦ ϕ ◦ (α|K)−1)

for (α, β) ∈ Aut(H)×Aut(T ).
AsK1 is central inH, the restrictionofα toK1 onlydependson the image

ofα in the groupOut(H) of outer automorphisms ofH. And sinceOut(H)
is a finite group, isomorphic to the automorphism group of the Dynkin
diagram ofH, Baum’s method makes it possible to do actual calculations –
a graphic display of the local isomorphism system ofU(30) can be found
in [Ba].
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A surprising result of Baum’s analysis is that two connected compact
Lie groups can cover each other without being isomorphic. (The simplest
example of this occurs in the local isomorphism system ofU(5).) Here is a
systematic way of constructing such examples. Suppose thatG is presented
as in formula(∗) above and let[G,G] denote the set of isomorphism classes
of connected compact Lie groupsLwithG ≥ L ≥ G. For any epimorphism
R : T � T which is injective on the subgroupϕ(K) ⊂ T , define

FRG = H × T/(K,Rϕ)

where (inspired by [N-S]) the ‘F ’ stands for ‘fake’. The commutative dia-
gram

K
ϕ �� T

R
����

K
Rϕ

�� T

shows (Theorem 0.1) thatG ≥ FRG.
The isomorphism type ofFRG depends on the presentation(∗). How-

ever,

FR
(
H × T

/
(K, ϕ)

) ∼= FR◦β−1
(
H × T

/
(α(K), β ◦ ϕ ◦ (α|K)−1)

)
for any choice of(α, β) ∈ Aut(H) × Aut(T ). Hence the set of isomor-
phism types{FRG}, withR running through the allowable epimorphisms,
is presentation independent.

It turns out that alsoFRG ≥ G so that

G ≥ FR(G) ≥ G

or, equivalently,FRG ∈ [G,G], whenever thegroup in themiddle is defined.
Actually, any group in[G,G] has this form.

Proposition 0.2. [Proposition 3.1][G,G] equals the set of isomorphism
classes of Lie groups of the formFRG whereR ∈ Epi(T ) is injective on
ϕ(K) ⊂ T .

A proof of this statement can be found in Section 3. Thematerial of Sec-
tion 3 also shows that[G,G] is parameterized by the quotient ofAut(ϕ(K))
by the subgroup of those group automorphisms ofϕ(K) that extend to au-
tomorphisms ofT . For example,[U(n), U(n)], n > 2 contains1

2ϕ(n) ele-
mentswhereϕ is Euler’sϕ-function. (These Lie groups are denotedFUk(n)
in [N-S].)

If ϕ is trivial, i.e.G = (H/K)× T , or if G is simple,[G,G] = {G}.
Following the pioneers [R–S], we now consider Baum’s method from a

homotopy point of view.
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Recall thatBG1 ≥ BG2 means that there exists a rational equivalence
BG1 → BG2. Of course,G1 ≥ G2 impliesBG1 ≥ BG2 but the converse
implication is not true in general (see below). However,BG1 ≥ BG2 does
imply (Proposition 2.7) thatG1 andG2 are locally isomorphic so we are in
a situation where Baum’s method applies.

In the following homotopy version of Theorem 0.1,εQ(BG1, BG2) ⊂
[BG1, BG2] denotes the set of homotopy classes of rational equivalences of
BG1 toBG2 andεQ(BH) ⊂ [BH,BH] themonoidof homotopyclassesof
rational self-equivalences ofBH. The invertible elements inεQ(BH) form
the groupAut(BH) of homotopy classes of homotopy self-equivalences of
BH.

Theorem 0.3.Assume that

G1 = H × T
/
(K1, ϕ1) andG2 = H × T

/
(K2, ϕ2)

are two connected compact Lie groups, locally isomorphic toG, expressed
as quotients ofH × T .

1. εQ(BG1, BG2) corresponds bijectively to the set of all pairs

(fH , ϕ) ∈ εQ(BH)× Epi(T )
for whichη(fH)(K1) ⊂ K2 and the diagram

K1

η(fH)|K1

��

��

ϕ1 �� T

ϕ
����

K2 ϕ2
�� T

commutes.
2. The pair(fH , ϕ), satisfying the conditions in (1), represents a homo-

topy equivalenceBG1
�−→ BG2 if and only if fH ∈ Aut(BH),

ϕ ∈ Aut(T ), andη(fH)(K1) = K2.

In the above theorem,η : εQ(BH)→ Aut(ZH), whereZH is the center
ofH, is a certain homomorphism defined in Section 2. See Theorem 2.3 for
ap-complete version of Theorem 0.3.

The bijection in point (1) associates to(fH , ϕ) a rational equivalence
BG1 → BG2 covered byfH × ϕ : BH ×BT → BH ×BT .

The monoidεQ(BH) and the functionη are completely known, rather
simple, algebraic structures, see [J-M-O1], ([Mø], Theorem 3.1) and Exam-
ple 2.2, and this theoretically complete determination of all rational equiv-
alences between classifying spaces also appears to be a very user-friendly
algorithm in concrete applications; see Example 2.6 containing e.g.
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εQ (BU(n)) = {ψλ × ψκ | (λ, κ) ∈ Z × Z, (λ, n !) = 1, λ ≡ κ modn},
n > 2,

together with a few other explicit formulas.
Jackowski, McClure &Oliver’s foundational method leads to an alterna-

tive description [J-M-O2] of rational self-equivalences in terms of admissi-
ble homomorphisms and root systems. Notbohm [N1] offers aK-theoretic
classification of rational self-equivalences.

Bearing in mind thatεQ(BH) in general contains more than just in-
duced maps [J-M-O1,Mø], a comparison of Theorem 0.1 and Theorem 0.3
indicates why there exist rational equivalencesBG1 → BG2 that are not
induced by Lie group epimorphismsG1 � G2. In greater detail, suppose
H = H1×· · ·×Ht is the factorization of the simply connected compact Lie
groupH into simple factors. ThenεQ(BH) contains products of unstable
Adams operations of the formf = ψn1 × · · · ×ψnt where the exponentni
is prime to the Weyl group order ofHi. We haveη(f) = ψn1 × · · · × ψnt

whereψni(z) = zni for anyz in the center ofHi. Assuming thatG is given
as in the above formula(∗), define

G[n1, . . . , nt] = H × T

/((∏
ψni

)
(K), ϕ ◦

(∏
ψni |ZH

)−1
)

and note the commutative diagram

K

(
∏

ψni )|K ∼=
��

ϕ �� T

(
∏
ψni) (K)

ϕ◦(
∏

ψni |ZH)−1
�� T

showing (Theorem 0.3) thatBG ≥ BG[n1, . . . , nt]. But, generally speak-
ing, no Lie group epimorphism takesG ontoG[n1, . . . , nt] as (Theorem
0.1) no Lie group automorphism takesK isomorphically onto(

∏
ψni) (K).

(ThusG[n1, . . . , nt] → G is a ‘finite covering map of finite loop spaces’
but not necessarily a finite covering map of compact Lie groups.) The iso-
morphism type ofG[n1, . . . , nt] is independent of the chosen presentation
(∗).

Using this construction to make up for the lack of unstable Adams op-
erations in the Lie category we obtain

Proposition 0.4.LetG1 andG2 be as in Theorem 0.1 and Theorem 0.3.

1. BG1 ≥ BG2 if and only ifG1[n1, . . . , nt] ≥ G2 for some natural
numbersni with ni prime to the Weyl group order of the simple factor
Hi.
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2. BG1 � BG2 if and only ifG1 ∼= G2 as Lie groups.

Point (2) in Proposition 0.4 was proved by H. Scheerer [S] in case of
simply connected compact Lie groups; A. Osse [O] recently published an
independentandquitedifferentproofalso for connectedcompactLiegroups,
and D. Notbohm [N3] obtained the same result for compact Lie groups in
general.

Actually alsoBG[n1, . . . , nt] ≥ BG for BG[n1, . . . , nt][m1, . . . ,mt]
whennimi ≡ 1 modulo the Weyl group order ofHi. Thus

BG ≥ BFRG1[n1, . . . , nt] ≥ BG

whenever the middle classifying space is defined. This observation leads to
a homotopy version of Proposition 0.2.

Let 〈G,G〉 denote the set of isomorphism classes of connected compact
Lie groupsL for whichBG ≥ BL ≥ BG; thusFRG[n1, . . . , nt] ∈ 〈G,G〉.
Proposition 0.5. [Proposition 3.5]〈G,G〉 equals the set of isomorphism
classes of Lie groups of the formFRG[n1, . . . , nt] whereR ∈ Epi(T ) is
injective onϕ(K) ⊂ T andn1, . . . , nt are natural numbers withni prime
to the Weyl group order of the simple factorHi.

Of course,[G,G] ⊂ 〈G,G〉; however, these two sets are not in general
identical (see Example 3.6). IfK is trivial, i.e.G = H × T , orG is simple,
〈G,G〉 = {G}.

Now follows an application of Theorem 0.3 and itsp-complete analog,
Theorem 2.3, to genus sets of Lie group classifying spaces.

Let B be a connected nilpotent space of finite type. Denote byG∧
0 (B)

the genus set consisting of all connected nilpotent homotopy typesX of
finite type with completionX∧ � B∧ and rationalizationX(0) � B(0).

The perhaps most famous example of a genus set isG∧
0 (Sp(2)) =

{Sp(2), E5} whereE5 is called the Hilton–Roitberg criminal [H–R]. An-
other striking result is Zabrodsky’s estimate [Z1, Example 4.6.7]

|G∧
0 (SU(n))| ≥

n∏
m=2

ϕ((m− 1)!)
2

of the size of the genus set ofSU(n). On the other hand compact Lie
groups modulo maximal tori are generically rigid, i.e. their genus sets are
singletons [G–M,P]. The finiteness of these genus sets is not accidental.
Indeed,G∧

0 (B) is finite, by Wilkerson [W, Theorem C], for any simply
connected finite CW-complexB. The situation changes drastically when
turning to infinite complexes. Rector [R], with help fromMcGibbon [McG]
at the primep = 2, found an invariant classifying the elements of the genus
set ofBSU(2) and used it to show thatG∧

0 (BSU(2)) is uncountably large;
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in factG∧
0 (BG) is uncountably large [Mø, Theorem2.3] for any non-abelian

connected compact Lie groupG. Notbohm & Smith investigated the genus
set ofBU(n); their FUN Proposition [N-S, Proposition 2.1] asserts that
B([U(n), U(n)]) ⊂ G∧

0 (BU(n)), i.e. that the classifying space of any Lie
group covering and covered byU(n) is of the same genus asBU(n).

The following construction may be seen as an attempt to extract the
essence of the FUN Proposition. Assume thatG is a connected compact Lie
group presented as in formula(∗) above. For any primep define

G(p) = H × T/(Kp, ϕ|Kp)

whereKp is thep-primarypart of theabeliangroupK ⊂ ZH . (G(p) = H×T
for almost allp.) The isomorphism type ofG(p) is independent of the choice
of special subgroup(K,ϕ).

Proposition 0.6. [Proposition 2.7, Proposition 4.1] LetL be a connected
compact Lie group. ThenBL ∈ G∧

0 (BG) if and only ifL(p) ∈ 〈G(p), G(p)〉
for all primesp.

Corollary 0.7. For any connected compact Lie groupG, B(〈G,G〉) ⊂
G∧

0 (BG).

If G is simple or of the formG = H × T ,G itself is the only connected
compact Lie group whose classifying space is of the same genus asBG. (I
do not know a general expression for the cardinality of the sets〈G,G〉 ⊂
{L | BL ∈ G∧

0 (BG)}.)
Thefinal theoremof this paper, a kindof a converse toCorollary 0.7, grew

out of a suggestion by C.A. McGibbon to consider rational equivalences
between spaces of the same genus asBG.

Theorem 0.8.LetG be a connected compact Lie group andX a space of
the same genus asBG. If there exists a rational equivalence betweenX and
BG, thenX ∈ B(〈G,G〉).

WhenG is simple a much stronger statement holds.

Corollary 0.9. LetG be a simple Lie group andX a space of the same genus
asBG. If there exists an essential map betweenX andBG, thenX � BG.

This implies in particular, as pointed out to me by K.-I. Maruyama and
by the referee, that no nontrivial map connectsBSp(2) andBE5. See also
[I-M-N] for related results.

1. Roots and covering homomorphisms

This section establishes the terminology pertaining to roots and covering
homomorphism of Lie groups to be used in the next section.
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Let G be a compact connected Lie group with maximal torusTG. The
adjoint representation ofTG in the complex vector spaceC⊗R LG is com-
pletely determined by its irreducible charactersTG → S1. A root ofG is a
homomorphismα : LTG → R fitting into a commutative diagram

LTG
α ��

exp
��

R

e(t)=e2πit

��
TG χα

�� S1

for some nontrivial irreducible characterχα contained in the adjoint repre-
sentation. The root system ofG is the setΦG ⊂ Hom(LTG,R) of all roots
of G.

Thekernel of theuniversal coveringspacehomomorphismexp : LTG →
TG is naturally isomorphic to the fundamental groupπ1(TG) so any root
α : LTG → R restricts to a homomorphism ofker exp = π1(TG) into
ker e = Z; i.e.

ΦG ⊂ Hom (π1(TG) , Z) ⊂ Hom (π1(TG)∧p , Z∧
p

)
whereZ∧

p denotes thep-adic integers andπ1(TG)∧p ∼= π1(TG) ⊗ Z∧
p is the

completion at the primep of the fundamental group.
The compact connected Lie groupG is finitely covered by a compact Lie

group of the formH × T whereH is a simply connected compact simple
Lie group andT is a torus. According to Baum [Ba] we may even arrange
thatG as a quotient ofH × T has the special form

G = H × T
/
(K,ϕ)

where(K,ϕ) ⊂ H × T is the graph of a homomorphismZH ⊃ K
ϕ−→ T

defined on a central subgroupK ofH. Thus we have principalK-bundles

K
j→−→ H × T

q→−→ G
‖ ∪ ∪
K

j→−→ TH × T
q→−→ TG

wherej(h) = (h, ϕ(h)), h ∈ K, andq is the projection homomorphism.
Consider the short exact sequence

0 −→ π1(TH)× π1(T )
π1(q)−→ π1(TG) −→ K −→ 1

classifying the principalK-bundleq|TH × T overTG.

Lemma 1.1.LetΦH ⊂ Hom(π1(TH),Z) andΦG ⊂ Hom(π1(TG),Z) be
the root systems ofH andG, respectively. Then
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1. ΦH = ΦG ◦ π1(q)
2.

⋂
α∈ΦG

kerα = π1(q)(π1(T )) .

Proof. (1) The linear isomorphismLq : LH × LT
∼=−→ LG is equivariant

in the sense that

Lq ◦Ad (h) = Ad (q(h)) ◦ Lq
for all h ∈ H ⊂ H × T . Thus composition withq : TH × T −→ TG deter-
minesabijectionbetween the irreducible charactersof theTG-representation
C⊗RLG and those of the(TH ×T )-representationC⊗R (LH×LT ). The
commutative diagram

LTH × LT

exp
��

Lg �� LTG

exp
��

α �� R

e

��
TH × T q

�� TG χα
�� S1

now shows that the roots ofH × T precisely are the homomorphism of the
form α ◦ Lq for α ∈ ΦG.

(2) Letα ∈ ΦG be a root. In the basic situation

LTG
α ��

exp
��

R

e

��
TG χα

�� S1

the kernel,Uα, of the characterχα is a closed codimension1 subgroup
of TG with Lie algebraLUα = kerα. (The hyperplanesLUα, α ∈ ΦG,
form the walls of the Weyl chambers ([B-tD], Definition V.2.11).) As the
intersection

⋂
α
Uα is the centerZG of G ([B-tD], Proposition V.2.3) we see

thatLZG =
⋂
α
kerα ⊂ LTG. Restricting to the integral lattice gives

π1(ZG) =
⋂
α

kerα ⊂ π1(TG) .

Finally, sinceq : H × T −→ G is the quotient map with respect to the
special subgroup(K,ϕ) ⊂ H × T , q mapsT ⊂ H × T isomorphically
onto the identity componentZ0

G of ZG; see the proof of ([Ba], Proposition
5). In particular,π1(q)(π1(T )) = π1(ZG). �
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Theproofof thefirst part of Lemma1.1doesnotuse thatq : H×T −→ G
is of the special form but only thatq is a surjective homomorphism of
compact connected Lie groups of the same dimension.

Thep-completion of the short exact sequence for the principalK-bundle
q|TH × T has the form

0 −→ π1(TH)∧p × π1(T )∧p
π1(q)−→ π1(TG)∧p −→ Kp −→ 1

whereKp is the p-primary subgroup ofK. Becausep-completion is an
exact functor of finitely generated abelian groups, Lemma 1.1 immediately
translates into ap-adic version as well. In particular

π1(q)
(
π1(T )∧p

)
=
⋂
α

kerα ⊂ π1(TG)∧p

where the intersection is taken over allα ∈ ΦG ⊂ Hom(π1(TG)∧p ,Z∧
p ).

2. Rational equivalences

The aim of this section is, for any pair,G1 andG2, of locally isomorphic
compact connected Lie groups, to describe an injection

εQ

(
(BG1)∧p , (BG2)∧p

) ⊂ εQ(BH∧
p )× εQ(BT∧

p )

whereH × T , H simply connected,T a torus, is a compact Lie group
that coversG1 andG2. Here, and in the following,εQ(X,Y ) ⊂ [X,Y ]
denotes the set of homotopy classes of rational equivalencesX −→ Y and
εQ(X) ⊂ [X,X] the monoid of rational self-equivalences ofX.

First, a few remarks about the exponential exact sequence of a torus,T .
The integral exponential exact sequence,

0 −→ π1(T ) −→ LT
exp−→ T −→ 1

relates the torus, its Lie algebra and its integral lattice and it yields an iso-
morphism of abelian groups

η : Hom (π1(T ) , π1(T ))
∼=−→ Hom(T, T )

takingω : π1(T ) → π1(T ) to the homomorphismη(ω) : T → T covered
by ω ⊗ 1R : LT → LT . Thep-adic exponential exact sequence [J-M-O2]

0 −→ π1(T )∧p −→ π1(T )∧p ⊗ Q −→ Tp∞ −→ 1

relates the subgroupTp∞ ⊂ T of elements ofp-power order and thep-adic
latticeπ1(T )∧p : = π1(T )⊗ Z∧

p . It is obtained by tensoring

0 −→ Z∧
p −→ Qp −→ Z/p∞ −→ 0
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with π1(T ) and exploiting the natural isomorphismTor (T,Z/p∞) ∼=
π1(T )⊗Z/p∞ coming from−⊗Z/p∞ applied to the integral exponential
exact sequence. Thep-adic exponential exact sequence yields an isomor-
phism of abelian groups

ηp : Hom
(
π1(T )∧p , π1(T )∧p

) ∼=−→ Hom(Tp∞ , Tp∞)

takingω : π1(T )∧p → π1(T )∧p to the homomorphismη(ω) : Tp∞ → Tp∞

covered byω ⊗ 1Q. (Note ([F], Example 5, p. 181) that any abelian group
homomorphism between free finitely generatedZ∧

p -modules automatically
isZ∧

p -linear.)
Also for any pair,T1 andT2, of tori, we define an isomorphism

ηp : Hom
(
π1(T1)∧p , π1(T2)∧p

) −→ Hom ((T1)p∞ , (T2)p∞)

by associating to any homomorphismω the homomorphismηp(ω) such that

0 �� π1(T1)∧p

ω

��

�� π1(T1)∧p ⊗ Q

ω⊗1Q

��

�� (T1)p∞ ��

ηp(ω)
��

1

0 �� π1(T2)∧p �� π1(T2)∧p ⊗ Q �� (T2)p∞ �� 1

is a homomorphism ofp-adic exponential exact sequences. Standard homo-
logical algebra shows

Lemma 2.1.Letω ∈ Hom (π1(T1)∧p , π1(T2)∧p
)
.

1. ω is an epimorphism⇒ ηp(ω) is an epimorphism.
2. ηp(ω) is a monomorphism⇒ ω is a monomorphism.
3. If dimT1 = dimT2, then

ω is a monomorphism⇔ ω ⊗ 1Q is an isomorphism
⇔ ηp(ω) is an epimorphism

and
ω is an isomorphism⇔ ηp(ω) is an isomorphism

In particular,ηp restricts to an isomorphism of monoids

ηp : εQ(BT∧
p ) ∼= Mono

(
π1(T )∧p

) ∼=−→ Epi(Tp∞)

whereMono(−)(Epi(−)) denotes the monoid of injective (surjective) en-
domorphisms.

There is a parallel constructionwhenT is replacedbya simply connected
compact Lie groupH. LetZH denote the center ofH and(ZH)p = ZH ∩
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(TH)p∞ the subgroup of elements ofp-power order inZH ; here,TH is the
maximal torus ofH. Define

ηp : εQ(BH∧
p ) −→ Aut ((ZH)p)

by ηp(fH) = ηp(ωH) | (ZH)p where the rational equivalencesfH ∈
εQ(BH∧

p ) andωH ∈ εQ((BTH)∧p ) are related by the homotopy commuta-
tive diagram

(BTH)∧p
ωH ��

��

(BTH)∧p

��
BH∧

p
fH �� BG∧

p

The mapωH exists by [A-W] and is a rational equivalence by ([J-M-O2],
Proposition 1.2). SinceωH is unique up to leftWH -action [A-W], ηp(ωH)
is well-defined on the subgroup(ZH)p of central elements. It remains to be
seen thatηp(ωH) maps(ZH)p isomorphically to itself. The isomorphism
([Mø], Theorem 3.1)

εQ(BH∧
p ) ∼=

s∏
i=1

εQ

(
(BHi)∧p

) �Σni ,

H =
∏s

i=1H
ni
i ,Hi simple andHi �= Hj for i �= j (with the convention that

Sp(n) andSpin (2n+1),n > 2, are considered to be distinct only ifp = 2)
shows thatηp is determinedby its values for simpleLiegroups. IfH is simple
and(ZH)p �= 1, thenp | |WH | and [J-M-O1] εQ(BH∧

p ) = Aut(BH∧
p )

is generated byBα, α ∈ Out(H), and unstable Adams operationsψλ,
λ ∈ (Z∧

p )
∗. Clearly,ηp(Bα) = α|(ZH)p andηp(ψλ)(t) = tλ, t ∈ (TH)p∞ ,

take(ZH)p isomorphically to itself.
Here is an explicit list ofηp for the simply connected compact simple

Lie groups.

Example 2.2.See Bourbaki ([Bo], Chp. VI,§4) for the action ofOut(H) on
ZH .

i) The center ofSU(n) , n = pjm ≥ 2, j ≥ 1, (p,m) = 1, is cyclic of
ordern, ZSU(n) = {ωiE | 0 ≤ i < n}, ω = e2πi/n, and

ηp : εQ

(
BSU(n)∧p

) −→ (ZSU(n))p = {ωmi | 0 ≤ i < pj}

is given byηp(ψλ)(ωm) = ωm·λmodpj
whereλmodpj ∈ (Z/pj)∗ is the

reduction modulopj of λ ∈ (Z∧
p )

∗.
ii) Spin (8)has centerZ ∼= Z/2⊕Z/2andη2mapsOut(Spin (8)) ∼= Σ3

isomorphically toAut(Z) and all unstable Adams operations to the identity.
Spin (2n), n > 4 even, has centerZ ∼= Z/2 × Z/2 andη2(α), 1 �= α ∈
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Out(Spin (2n)) ∼= Σ2, is the nontrivial automorphism ofZ that fixes the
kernel of the double coveringSpin (2n) −→ SO(2n); η2(ψλ)(t) = t for
all λ ∈ (Z∧

2 )
∗ and t ∈ Z2 ⊂ T2∞ . Spin (2n), n ≥ 5 odd, has center

Z ∼= Z/4 andη2 mapsOut(Spin (2n)) ∼= Σ2 isomorphically toAut(Z);
η2(ψλ)(t) = tλmod4 for all λ ∈ (Z∧

2 )
∗ andt ∈ Z.

iii) E6 has centerZ ∼= Z/3 andη3 mapsOut(E6) ∼= Σ2 isomorphically
toAut(Z); η2(ψλ)(t) = tλmod3 for all λ ∈ (Z∧

3 )
∗ andt ∈ Z.

iv) In all other cases,ηp is trivial.

The locally isomorphic compact connected Lie groupsG1 andG2 may
be assumed given on the form

Gi = H × T
/
(Ki, ϕi) , i = 1, 2 ,

whereT is a torus,H is a simply connectedcompact Liegroupandϕi :Ki →
T a homomorphism defined on a subgroupKi ⊂ ZH . The principalKi-
bundles

Ki
ji−→ H × T

qi−→ Gi , i = 1, 2
whereji(k) = (k, ϕi(k)) , k ∈ Ki, induce fibrations

BKi
Bji−→ BH ×BT

Bqi−→ BGi , i = 1, 2 ,

of integral spaces and similar fibrations ofp-completed spaces. The follow-
ing theoremdescribes the setεQ((BG1)∧p , (BG2)∧p )of rational equivalences
(BG1)∧p → (BG2)∧p .

Theorem 2.3.For a given primep, let (Ki)p ⊂ Ki, i = 1, 2, denote the
subgroup ofKi of elements ofp-power order.

(1) The product maps

εQ(BH∧
p )× εQ(BT∧

p ) −→ εQ(BH∧
p ×BT∧

p )
Aut(BH∧

p )×Aut(BT∧
p ) −→ Aut(BH∧

p ×BT∧
p )

are monoid isomorphisms.

(2) Letf : (BG1)∧p −→ (BG2)∧p be a (rational) equivalence. Then there
exist (rational) equivalencesfH : BH∧

p −→ BH∧
p , fT : BT

∧
p −→ BT∧

p

and a monomorphism (an isomorphism)α : (K1)p −→ (K2)p such that the
diagram

B(K1)p
Bα ��

Bj1
��

B(K2)p

Bj2
��

BH∧
p ×BT∧

p

Bq1
��

fH×fT �� BH∧
p ×BT∧

p

Bq2
��

(BG1)∧p
f �� (BG2)∧p
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commutesup tohomotopy.The (rational) equivalencesfH andfT areunique
up to homotopy and the monomorphismα is unique.

(3) Let fH : BH∧
p −→ BH∧

p and fT : BT∧
p −→ BT∧

p be (rational)
equivalences. The equationf ◦ Bq1 � Bq2 ◦ (fH × fT ), has a solution
for some (rational) equivalencef : (BG1)∧p −→ (BG2)∧p if and only if the
commutative diagram

(ZH)p

∼=ηp(fH)
��

(K1)p� ���

α

���
�
�

ϕ1 �� Tp∞

ηp(fT )
��

(ZH)p (K2)p� ��� ϕ2 �� Tp∞

can be completed by some (monomorphism) isomorphismα : (K1)p −→
(K2)p.

Proof. (1) It suffices to prove surjectivity as the two maps in point (1) are
monomorphisms by general principles.

Let g be a rational self-equivalence ofBH∧
p × BT∧

p . Choose [A-W],
[J-M-O2, Proposition 1.2]ϕ ∈ Epi((TH)p∞ ×Tp∞), whereTH is the max-
imal torus ofH, such that

(BTH)∧p ×BT∧
p

��

(Bϕ)∧
p �� (BTH)∧p ×BT∧

p

��
BH∧

p ×BT∧
p g

�� BH∧
p ×BT∧

p

commutes up to homotopy. The induced map

π2((Bϕ)∧p ) ∈ Mono(π1((TH)∧p )× π1(T∧
p ))

⊂ AutQp((π1(TH)× π1(T ))⊗ Qp)

belongs to the normalizerN(WH×T ) of the Weyl group ofH × T in the
general linear group of the vector space(π1(TH) × π1(T )) ⊗ Qp. An ele-
mentary linear algebra calculation, using the fact that the inverse roots ofH
spansπ1(TH)⊗ Qp, shows that

N(WH×T ) = N(WH)×AutQp(π1(T )⊗ Qp)

is the product of the normalizerN(WH) of the Weyl group ofH in the
general linear group ofπ1(TH) ⊗ Qp and the full general linear group of
π1(T )⊗ Qp. Hence

ϕ = ϕH × ϕT

for someϕH ∈ Epi((TH)p∞) and someϕT ∈ Epi(Tp∞).
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Now definefH to be the composition

BH∧
p −→ BH∧

p ×BT∧
p

g−→ BH∧
p ×BT∧

p −→ BH∧
p

of g and the obvious inclusion and projection maps. A look at the homotopy
groupsπ∗(BH∧

p )⊗Q ⊂ π∗(BH∧
p ×BT∧

p )⊗Q reveals thatfH is a rational
equivalence ofBH∧

p . Observe that the above commutative square remains
commutative if thebottommapg is replacedbyfH×(BϕT )∧p . Since rational
self-equivalences are determined by their restrictions to the maximal torus
[J-M-O2, Corollary 1.10], it follows thatg � fH × (BϕT )∧p . This proves
surjectivity.

If g ∈ Aut(BH∧
p ×BT∧

p ) is a homotopy self-equivalence,π2((BϕT )∧p )
= π2(g) is an automorphism ofπ2(BH∧

p ×BT∧
p ) = π2(BT∧

p ) andπ∗(fH)
= π≥4(g) an automorphism ofπ∗(BH∧

p ) = π≥4(BH∧
p × BT∧

p ). Thus
fH ∈ Aut(BH∧

p ) andϕT ∈ Aut(Tp∞) in this case.

(2) LetTH ⊂ H beamaximal torus inH and letT1 = TH×T/(K1, ϕ1),
T2 = TH × T/(K2, ϕ2) serve as maximal tori forG1, G2. There exists [A-
W] a homotopy commutative diagram

(BT1)∧p

��

�� (BT2)∧p

��
(BG1)∧p

f �� (BG2)∧p

The map between the classifying spaces of the maximal tori is a rational
equivalence sincef is one, see ([J-M-O2], Proposition 1.2), so it induces
on homotopy someω : π1(T1)∧p → π1(T2)∧p such thatω⊗ 1Q is an isomor-
phism. Define the isomorphismω′ by the commutative diagram

π1(T1) ⊗ Qp

ω⊗1Q

∼=
�� π1(T2) ⊗ Qp

π1(T1)∧
p

� � ��

��������������
π1(T2)∧

p

��������������

π1(TH × T )∧
p

(q1)∗

��

��������������
π1(TH × T )∧

p

(q2)∗

��

��������������

π1(TH × T ) ⊗ Qp
ω′ ��������������������

∼=(q1)∗

��

π1(TH × T ) ⊗ Qp

∼= (q2)∗

��

whereqi : (H × T , TH × T ) −→ (Gi , Ti) , i = 1, 2, are the projections.
The isomorphismω ⊗ Q is admissible [A-W] in the sense that for any
w1 ∈ N(TH) ⊂ H ⊂ H × T

(ω ⊗ Q) ◦Ad (q1(w1)) = Ad (q2(w2)) ◦ (ω ⊗ Q)
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for somew2 ∈ N(TH) ⊂ H ⊂ H × T . This implies that

∀w1 ∈ N(TH)∃w2 ∈ N(TH) : ω′ ◦Ad (w1) = Ad (w2) ◦ ω′

i.e. that alsoω′ is an admissible automorphism. Admissibility implies, see
[Mø] or [J-M-O2], that for any rootα′

2 ofH ×T there exist another rootα′
1

ofH × T such that

α′
2 ◦ ω′ = λα′

1

for some nonzero scalarλ ∈ Qp. By Lemma 1.1,α′
1 = α1 ◦ (q1)∗ and

α′
2 = α2 ◦ (q2)∗ for some rootsαi : π1(Ti)∧p −→ Z∧

p ofGi, i = 1, 2. Hence,
for any rootα2 of G2, there exists a rootα1 of G1 such that

α2 ◦ (ω ⊗ Q) ◦ (q1)∗ = α2 ◦ (q2)∗ ◦ ω′ = α′
2 ◦ ω′ = λα′

1 = λα1 ◦ (q1)∗ ,

i.e. such thatα2 ◦ (ω ⊗ Q) = λα1. Thusω(kerα1) ⊂ kerα2. As α2 runs
through the root systemΦ2 of G2, α1 runs through the root systemΦ1 of
G1 and we conclude that

ω

( ⋂
α1∈Φ1

kerα1

)
⊂

⋂
α2∈Φ2

kerα2 ,

or, by Lemma 1.1,ω((q1)∗(π1(T )∧p ) ⊂ (q2)∗(π1(T )∧p ). Since(q1)∗ and
(q2)∗ are monomorphisms,ω restricts to a monomorphismωT : π1(T )∧p →
π1(T )∧p such thatω ◦ (q1)∗ = (q2)∗ ◦ ωT . This monomorphism will make
also the diagram

0 �� π2(BT )∧p

ωT

��

(Bq1)∗ �� π2(BG1)∧p

f∗
��

∂1 �� (K1)p �� 1

0 �� π2(BT )∧p
(Bq2)∗ �� π2(BG2)∧p

∂2 �� (K2)p �� 1

commute; here the exact rows are the short exact sequences for the principal
Ki-bundlesqi : H × T −→ Gi, i = 1, 2. Hence the only obstruction,
∂2 ◦ f∗ ◦ (Bq1)∗, to lifting f ◦ Bq1 vanishes and there existfH × fT ∈
εQ(BH∧

p × BT∧
p ) andα ∈ Hom((K1)p, (K2)p) such thatf ◦ Bq1 �

Bq2 ◦ (fH × fT ) andα ◦ ∂1 = ∂2 ◦ f∗.
We may viewfH as the2-connected coverf〈2〉 of f (which is a self

map of(BGi)∧p 〈2〉 = BH∧
p , i = 1, 2). ThusfH is uniquely determined by

f and is a homotopy equivalence iff is one. AlsofT is uniquely determined
by f asπ2(fT ) = ωT is a restriction ofπ2(f) and, sinceα is injective (see
the proof of (3)),ωT is an isomorphism ifπ2(f) is one.
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(3) Defineil , l = 1, 2, by the commutative diagram

(Kl)p

il
��

�� �� Kl

jl

��
(TH × T )p∞ i�� �� H × T

with horizontal inclusions.
Let, as above,fH ×fT be the lift of the rational equivalencef : (BG1)∧p

−→ (BG2)∧p . Write fT = (BϕT )∧p and let(BϕH)∧p be the restriction of
fH to (BTH)∧p , ϕT ∈ Epi(Tp∞), ϕH ∈ Epi((TH)p∞). Then the outer and
lower square of the diagram

B(K1)p

Bi1
��

Bα �� B(K2)p

Bi2
��

B((TH × T )p∞)∧p

Bi
��

(BϕH)∧
p ×(BϕT )∧

p�� B((TH × T )p∞)∧p

Bi
��

B(H × T )∧p
fH×fT �� B(H × T )∧p

are homotopy commutative meaning thatB(i◦ i2 ◦α) � B(i◦(ϕH×ϕT )◦
i1). By the theorem of Dwyer & Zabrodsky [D-Z], the homomorphisms
i ◦ i2 ◦ α andi ◦ (ϕH × ϕT ) ◦ i1 are conjugate and even identical because
the imagei ◦ i2 ◦ α is central inH × T . This is equivalent to saying thatα
fits into the commutative diagram of (3). Note thatαmust be injective since
ηp(fH) = ϕH |ZH is an isomorphism.

Assume, conversely, that the diagram in (3) can be completed commu-
tatively by someα. The above diagram of classifying spaces will then be
homotopy commutative and so the “ Zabrodsky spaces will then be homo-
topy commutative and so the “ Zabrodsky Lemma” ([Mi], Proposition 9.5;
[Z], Lemma 3.1), or Proposition 1.1 in [N1], assures thatfH × fT covers
somef : (BG1)∧p −→ (BG2)∧p . �

Thus we may say that

εQ

(
(BG1)∧p , (BG2)∧p

) ⊂ εQ(BH∧
p )× Epi(Tp∞)

is the subset consisting of those pairs(fH , ϕ) for whichηp(fH)((K1)p) ⊂
(K2)p and

(K1)p

ηp(fH)|(K1)p

��

��

ϕ1 �� Tp∞

ϕ
����

(K2)p ϕ2
�� Tp∞
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commutes. Moreover, a pair(fH , ϕ), for which this diagram commutes,
represents a homotopy equivalence(BG1)∧p → (BG2)∧p if and only if
fH ∈ Aut(BH∧

p ), ϕ ∈ Aut(Tp∞), andηp(fH)((K1)p) = (K2)p. In case
G1 = G2 =: G, εQ(BG∧

p ) (Aut(BG
∧
p )) is even a submonoid (subgroup)

of εQ(BH∧
p )× εQ(BT∧

p ) (Aut(BH
∧
p )×Aut(BT∧

p )).
We single out the semisimple case

Corollary 2.4. LetH be a simply connected compact Lie group,K1,K2 ⊂
ZH central subgroups, andp any prime.

1. εQ(B(H/K1)∧p , B(H/K2)∧p ) = {f ∈ εQ(BH∧
p ) | ηp(f)(K1)p ⊂

(K2)p} .
2. εQ(B(H/K1)∧p ) , B(H/K2)∧p ) = ∅ if |(K1)p| > |(K2)p| .
3. Let PH = H/ZH . Then εQ(BH∧

p , BPH
∧
p ) = εQ(BH∧

p ) =
εQ(BPH∧

p ) butεQ(BPH∧
p , BH

∧
p ) = ∅ if (ZH)p �= 0.

In the general case we have,

εQ

(
(BG1)∧p , (BG2)∧p

) ⊂ εQ

(
B(H

/
K1)∧p , B(H

/
K2)∧p

)× εQ(BT∧
p )

so againεQ((BG1)∧p , (BG2)∧p ) = ∅ if |(K1)p| > |(K2)p|. If ϕ1 andϕ2 are
trivial, i.e.Gi = (H/Ki) × T , i = 1, 2, the above inclusion is an identity
generalizing (1) in Theorem 2.3.

Example 2.5.i) Let k be a natural number and letΓk ⊂ U(n), n =
pjm, (p,m) = 1, be the subgroup of all diagonal matricesθE where
θk = 1. Then [Ba]

U(n)
/
Γk = SU(n)× S1/(Z,ϕk) , ϕk(ω) = ωk ,

whereω generatesZ = ZSU(n) as in Example 2.2.
Commutativity of

Zp
ϕk ��

ψλ

��

(S1)p∞

ψκ

��
Zp

ϕl �� (S1)p∞

whereλ ∈ (Z∧
p )

∗ and 0 �= κ ∈ Z∧
p is equivalent tolλ ≡ kκmodpj .

Consequently, forn > 2,

εQ

(
B(U(n)

/
Γk)∧p , B(U(n)

/
Γl)∧p

) ∼=
{ (λ, κ) ∈ (Z∧

p )
∗ × Z∧

p | lλ ≡ kκmodpj }
as sets and as monoids ifk = l. In particular,

εQ

(
BU(n)∧p

) ∼= { (λ, κ) ∈ (Z∧
p )

∗ × (Z∧
p )

∗ | λ ≡ κmodpj }, n > 2.
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If (k, n) = 1, U(n)/Γk = FUk(n) is the funny unitary group of [N-S].
ii) Let H = Spin (2n+1)×Sp (n) , n > 2. Example 2.2 shows thatη2

is trivial onεQ(BH∧
2 ) = Aut(BH

∧
2 ) = (Z

∧
2 )

∗ × (Z∧
2 )

∗. Hence

εQ

(
B(H

/
K1)∧p , B(H

/
K2)∧p

)
=

{
ε(BH∧

2 ) if K1 = K2

∅ if K1 �= K2

for any pair of central subgroupsK1,K2 ⊂ ZH = Z/2 × Z/2; cf. ([J-M-
O2], Example 2.1).

We now turn to Theorem 0.3, i.e. the integral version of Theorem 2.3.
Note that, as in thep-complete case, there exists a homomorphism of

monoids
η : εQ(BH) −→ Aut(ZH)

given byη(f) = ϕ|ZH whereϕ ∈ Aut(TH) gives a lift toBTH of f .

Proof of Theorem 0.3.First note that the product maps

εQ(BH)× εQ(BT ) −→ εQ(BH ×BT )
Aut(BH)×Aut(BT ) −→ Aut(BH ×BT )

are monoid isomorphisms: Again, it suffices to prove surjectivity. Forg ∈
εQ(BH × BT ), let fH ∈ εQ(BH) be the map induced byg on the 3-
connected cover(BH × BT )〈3〉 � BH and letϕ ∈ Epi(T ) be the epi-
morphism withπ2(g) = π2(Bϕ) on π2(BH × BT ) = π2(BT ). Then
g∧ � (fH ×Bϕ)∧ by point (1) of Theorem 2.3, so, since completion

[BH ×BT,BH ×BT ] −→ [(BH ×BT )∧, (BH ×BT )∧]

is injective [J-M-O1, Theorem 3.1],g � fH ×Bϕ. If g ∈ Aut(BH ×BT )
then, of course,fH ∈ Aut(BH) andϕ ∈ Aut(T ).

Suppose thatf : BG1 → BG2 is a rational equivalence. There exist by
point (2) of Theorem 2.3 mapsf∧

H : BH
∧ → BH∧ andf∧

T : BT
∧ → BT∧

making the completed diagram

(BH ×BT )∧
f∧

H×f∧
T��

(Bq1)∧
��

(BH ×BT )∧

(Bq2)∧
��

(BG1)∧
f∧

�� (BG2)∧

homotopy commutative. Since the projectionmapsBq1 andBq2 are rational
equivalences, there also exists a homotopy equivalencef(0) making the
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rationalized diagram

(BH ×BT )(0)
f(0) ��

(Bq1)(0) �
��

(BH ×BT )(0)

(Bq2)(0)�
��

(BG1)(0)
f(0)

� �� (BG2)(0)

homotopy commute. Applying the rationalization functor to the first and
the formal completion functor to the second of the above diagrams, and
remembering that((Bq1)∧)(0) and((Bq2)∧)(0) are homotopy equivalences,
we see that the rationalization off∧

H×f∧
T agreeswith the formal completion

of f(0) as self maps of((BH×BT )∧)(0). By Sullivan’s Arithmetic Square
[B-K], f∧

H×f∧
T andf(0) come fromaselfmapofBH×BT . This selfmap is

a rational equivalence (its rationalizationf(0) is a homotopy equivalence)
and therefore of the formfH × Bϕ for somefH ∈ εQ(BH) and some
ϕ ∈ Epi(T ). Since
(Bq2 ◦ (fH ×Bϕ))∧ � (Bq2)∧ ◦ (f∧

H × f∧
T ) � f∧ ◦ (Bq1)∧ � (f ◦Bq1)∧

and completion is injective,Bq2 ◦ (fH × Bϕ) � f ◦ Bq1. By point (3) of
Theorem 2.3,η(fH)(K1) ⊂ K2 andϕ2 ◦ (η(fH)|K1) = ϕ ◦ (ϕ1|K1).

The uniqueness clauses of Theorem 2.3 together with injectivity of com-
pletion show thatfH andϕ are uniquely determined byf .

Conversely, supposefH ∈ εQ(BH) andBϕ ∈ εQ(BT ) are rational
equivalences such thatη(fH)(K1) ⊂ K2 and

K1
ϕ1 ��

η(fH)|K1

��

��

T

ϕ
����

K2 ϕ2
�� T

commutative. Then there exists by point (3) of Theorem 2.3 a mapf∧ such
that

(BH ×BT )∧
(fH)∧×(Bϕ)∧

��

(Bq1)∧
��

(BH ×BT )∧

(Bq2)∧
��

(BG1)∧
f∧

�� (BG2)∧

commutes. SinceBq1 andBq2 are rational equivalences, there also exists
a homotopy equivalencef(0) : (BG1)(0) → (BG2)(0) such that the corre-
sponding diagram in the rational category commutes. Exploiting, as above,
thatBq1 andBq2 are rational equivalences, we see thatf∧ andf(0) come
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from a mapf : BG1 → BG2 which must necessarily be a rational equiva-
lence.

It is easy to see (using Theorem 2.3) that iff ∈ εQ(BG1, BG2), fH ∈
εQ(BH), andϕ ∈ Epi(T ) satisfyBq2 ◦ (fH × Bϕ) � f ◦ Bq1, thenf is
a homotopy equivalence if and only iffH is a homotopy equivalence,ϕ is
an automorphism, andη(fH)(K1) = K2. !"

In particular,α[n1, . . . , nt;R] ∈ εQ(BH)× εQ(BT ) given, with nota-
tion as in Section 0, by

α[n1, . . . , nt;R] =

(
t∏

i=1

ψni , R

)
,

defines a rational equivalenceBG→ BFRG[n1, . . . , nt].

Example 2.6.i) With Γk ⊂ U(n) as in Example 2.5,

εQ (B(U(n)/Γk) , B(U(n)/Γl)) ∼=
{ (λ, κ) ∈ Z × Z | (λ, n !) = 1 , λl ≡ κkmodn }

for n > 2. In particular, when(k, n) = 1,

εQ (BFUk(n)) ∼= εQ (BU(n)) ∼=
{(λ, κ) ∈ Z × Z | (λ, n!) = 1, κ ≡ λmodn}, n > 2,

as monoids.

ii) For H = Spin (2n+ 1)× Sp (n) , n > 2 ,
εQ(BH) = { (λ, µ) ∈ Z × Z | (λ, n !) = 1 = (µ, n !) }

by ([Mø], Theorem 3.1) and [J-M-O1], and

εQ

(
B(H

/
K1) , B(H

/
K2)

)
=

{
εQ(BH) if K1 = K2

∅ if K1 �= K2

for any pair of central subgroupsK1,K2 ⊂ ZH , cfr. ([J-M-O2], Example
2.1).

The next proposition shows that Theorem 2.3 covers all existing rational
equivalences between classifying spaces of compact connected Lie groups.

Proposition 2.7.Two compact connected Lie groups,G1 andG2, are locally
isomorphic if any of the following three conditions holds

1. εQ(BG1 , BG2) �= ∅
2. εQ((BG1)∧2 , (BG2)∧2 ) �= ∅
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3. εQ((BG1)∧p , (BG2)∧p ) �= ∅ wherep is odd andG1 andG2 contain no
simple factors of typeCn, n > 2.

Proof. (1) First note the special case

εQ(BG1 , BG2) �= ∅ ⇒ G1 ∼= G2

whenG1 andG2 are simply connected simple Lie groups. To see this,
choose a homomorphismG1 ⊃ T1

ω−→ T2 ⊂ G2 of maximal tori such that
the diagram

BT1

��

Bω �� BT2

��
BG1 �� BG2

homotopy commutes with some rational equivalence at the bottom. The
inducedmapω∗ : π1(T1)⊗Q −→ π1(T2)⊗Q is anadmissible isomorphism.
Therefore there exist a bijectionϕ : Φ+

1 −→ Φ+
2 of positive roots and a

functionλ : Φ+
1 −→ Q∗ such thatω∗ ◦ σα = σϕ(α) ◦ ω∗ andϕ(α) ◦ ω∗ =

λ(α)α for all positive rootsα ∈ Φ+
1 ; see ([A-M], Theorem 2.12), ([Mø],

Theorem 1.3) or [J-M-O2, Lemma 2.3]. These two identities imply that
ϕ preserves the productnαβnβα of Cartan numbers so sinceϕ, at least
after composition with an automorphism from the Weyl group ofG2, can
be assumed to preserve the simple roots,ϕ determines an isomorphism of
Coxeter graphs. HenceG1 ∼= G2 orG1, G2 ∈ {Spin (2n+ 1), Sp(n)} for
somen > 2. But even in the latter caseG1 ∼= G2 for Ishiguro showed
([I], Theorem 5(a)) that there exist no essential mapsBSpin(2n + 1) ↔
BSp(n), n > 2.

In the general case, viewGi as a finite quotient ofHi × Tni whereHi

is simply connected andTni is anni-dimensional torus. IfBG1 andBG2
are rationally equivalent so are the2-connected coversBH1 � BG1〈2〉 and
BH2 � BG2〈2〉 and

n1 = dimQ (π2(BG1)⊗ Q) = dimQ (π2(BG2)⊗ Q) = n2 .

To showH1 ∼= H2 we again exploit admissibility. Choose a homomorphism
H1 ⊃ T1

ω−→ T2 ⊂ H2 of maximal tori such thatBω : BT1 −→ BT2
covers some rational equivalencef : BG1 −→ BG2. The induced map
ω∗ : π1(T1)⊗ Q −→ π1(T2)⊗ Q is equivariant w.r.t. some automorphism
of the Weyl groups ([A-M], Theorem 2.12) andπ1(Ti) ⊗ Q splits into a
direct sum of distinct irreducible representations of the Weyl group, ([Ba],
Proposition 5, p. 82) or ([J-M-O2], Lemma 2.3), corresponding to the sim-
ple factors ofHi. Thus, by Schur’s lemma, each simple factorS1 : H1
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corresponds to a unique simple factorS2 : H2 such thatω∗ maps the direct
summand ofπ1(T1) ⊗ Q corresponding toS1 isomorphically to the direct
summand ofπ1(T2)⊗ Q corresponding toS2. The composition

BS1 −→ BH1
f−→ BH2 −→ BS2

of the rational equivalencef with the obvious inclusion and projection, is
then again a rational equivalence and soS1 ∼= S2 by the first part of this
proof. This showsH1 ∼= H2.
(2) is proved similarly using ([I], Theorem 5(b)), which says that all maps
BSpin(2n+ 1)∧2 ↔ BSp(n)∧2 are nonessential, to handle the special case
of simply connected simple groups. These kind of difficulties do not occur
in (3) where admissibility suffices. �

When the primep is odd, any simple factor of typeCn, n > 2, can
always be replaced by a simple factor of typeBn without changing the
homotopy type of thep-completed classifying space.

Finally, a simple test for a map to be a rational equivalence.

Proposition 2.8.LetG1 andG2 be two compact connected Lie groups.

1. A mapf : BG1 → BG2 is a rational equivalence if and only if the
induced map

H∗(f ;Q) : H∗(BG1;Q)←− H∗(BG2;Q)

is an isomorphism.
2. A mapf : (BG1)∧p → (BG2)∧p is a rational equivalence if and only if

the induced map

H∗(f ;Z∧
p )⊗ 1Q : H∗((BG1)∧p ;Z

∧
p )⊗ Q ←− H∗((BG2)∧p ;Z

∧
p )⊗ Q

is an isomorphism.

Proof of (2).If H∗(f ;Z∧
p ) ⊗ Q is an isomorphism of graded algebras, the

induced map of indecomposables is an isomorphism of modules overQp

naturally identifiable to the dual of the induced homomorphism

π∗(f)⊗ 1Q : π∗((BG1)∧p )⊗ Q −→ π∗((BG2)∧p )⊗ Q

between homotopy groups. The rationalizationf(0) : ((BG1)∧p )(0) →
((BG2)∧p )(0) is thus a homotopy equivalence.

Conversely, iff is a rational equivalence, its fibre,F , is a connected
torsion space and henceH∗(F ;Z∧

p )⊗Q ∼= Qp. The Serre spectral sequence(
H∗((BG2)∧p ;Z

∧
p )⊗ Q

)⊗Qp

(
H∗(F ;Z∧

p )⊗ Q
)
=⇒H∗((BG1)∧p ;Z

∧
p )⊗Q

now implies thatH∗(f ;Z∧
p )⊗ Q is an isomorphism. !"
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3. Local isomorphism systems

This section contains the proofs of Proposition 0.2, Proposition 0.4 and
Proposition 0.5.

As in Section 0,G1 = H × T
/
(K1, ϕ1) andG2 = H × T

/
(K2, ϕ2)

are two Lie groups locally isomorphic to some fixed connected compact Lie
groupG = H × T

/
(K,ϕ). Here,H is a simply connected compact Lie

group and ifH =
∏t

i=1Hi, whereHi is simple, the derived group

FRG[n1, . . . , nt] =

H × T

/
( t∏

i=1

ψni

)
(K), R ◦ ϕ ◦

(
t∏

i=1

ψni |ZH

)−1



is defined wheneverR ∈ Epi(T ) is injective onϕ(K) ⊂ T andni ∈ N is
prime to the Weyl group order ofHi.

The first proposition is a slight improvement of Proposition 0.2. Let
detR denote the determinant ofη(R) ∈ Mono(π1(T )), i.e. |det(R)| =
|coker(η(R))|.
Proposition 3.1.LetG1 andG2 be two locally isomorphic compact con-
nected Lie groups. ThenG1 ≥ G2 ≥ G1 if and only ifFRG1 ∼= G2 for
someR ∈ Epi(T ) with determinant prime to|K1|.

Proof.Wemust showFRG1 ≥ G1. Note that the mapR| im ϕ1 : im ϕ1 →
im (Rϕ1) is an isomorphism. The extension problem

im (Rϕ1)

��

(R| im ϕ1)−1

∼=
�� im ϕ1

��
T

? �� �� T

is equivalent to the lifting problem

π1(T
/
im (Rϕ1))

∂
��

?�� �� π1(T
/
im ϕ1)

∂

��
im (Rϕ1)

(R| im ϕ1)−1

∼=
�� im ϕ1

whosesolutionLemma3.2assures; here,∂ is thehomomorphismclassifying
the principal bundleT −→ T/ im (Rϕ1) or T −→ T/ im ϕ1. Thus there
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exists an epimorphismS ∈ Epi(T )making the diagram

K1
Rϕ1 �� T

S

��
K1

ϕ1 �� T

commute meaning (Theorem 0.1) thatFRG1 ≥ G1 (and thatFSFRG1 ∼=
G1).

Conversely, assumeG1 ≥ G2 ≥ G1 and letG1 → G2 be an epimor-
phism determined byα1 ∈ Out(H) andβ1 ∈ Epi(T ) such thatα1(K1) ⊂
K2 andβ1ϕ1 = ϕ2α1|K1. Since alsoG2 ≥ G1, |K1| = |K2| andβ1 |
im ϕ1 : im ϕ1 → im ϕ2 is an isomorphism. Choose, using Lemma 3.2,
someR ∈ Epi(T ) such that

K1

α1 ∼=
��

ϕ1 �� im ϕ1

β1 ∼=
��

� � �� T

R

��
K2 ϕ2

�� im ϕ2
� � �� T

commutes and(|K1| , detR) = 1. ThenRϕ1|K1 = ϕ2α1|K1 so, by The-
orem 0.1,(α1, 1) ∈ Aut(H) × Aut(T ) covers a Lie group isomorphism

FRG1
∼=−→ G2. �

Lemma3.2.LetR be a commutative ring,M a finitely generatedR-module,
F a finitely generated freeR-module and∂1 : F � M , ∂2 : F � M
epimorphisms.

i) If R is a local principal ideal domain, then there exists an isomorphism
f : F −→ F such that∂2f = ∂1.

ii) If R = Z,M is a finite abelian group andn is a natural number such
that nM = 0 then there exists a monomorphismf : F −→ F such that
∂2f = ∂1 and(n, detf) = 1.

Proof. i) Let k denote the residue field ofR. Suppose first that∂i ⊗R k :
F ⊗R k −→ M ⊗R k is an isomorphism,i = 1, 2. Let f : F −→ F be
anyR-homomorphism such that∂2f = ∂1. Nakayama’s lemma ([Ma], 1.
M) applied to the kernel and cokernel off shows thatf is an isomorphism.
In the general case, choose a minimal basis ([Ma], 1. N) ofM , i.e. a free
finitely generatedR-moduleF ′

i and an epimorphism∂
′
i : F

′
i � M inducing
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an isomorphism∂′
i ⊗R k of vector spaces. By projectivity, there exists a

homomorphismηi such that the diagram

Fi
ηi

		��
��

��
�

∂i

��
F ′
i ∂′

i

�� M

commutes;ηi is an epimorphismbyNakayama’s lemma. ThusF ∼= F ′
i⊕F ′′

i
is a direct sum of two finitely generated free modules,(∂i|F ′

i ) ⊗R k is
an isomorphism,∂i|F ′′

i = 0, anddimk(F ′′
i ⊗R k) = dimk(F ⊗R k) −

dimR(M ⊗R k), i = 1, 2. Definef := f ′ ⊕ f ′′ wheref ′ : F ′
1 −→ F ′

2

is any homomorphism such that∂′
2f = ∂′

1 andf ′′ : F ′′
1

∼=−→ F ′′
2 is any

isomorphism.

ii) M is a module over the Artinian ringZ/nZ and has as such a projective
coverπ : P (M) � M . For any other epimorphismp : P � M from a
projective moduleP ontoM there exists a moduleK and an isomorphism
P (A)⊕K ∼= P such thatp|P (A) = π andp(K) = 0 ([Bass], Lemma 2.3).
In particular, we have a commutative diagram

P (A)⊕K1

∼=
��

P (A)⊕K2

∼=
��

F
can ��

∂1 

������������ F/nF

∂1
��

f ������� F/nF

∂2
��

F
can��

∂2��������������

A A

where∂1|P (A) = π = ∂2|P (A) and∂1K1 = 0 = ∂2K2. SinceF/nF is a
finite abelian group,K1 ∼= K2; let f ′ : K1 → K2 be any isomorphism. The
mapf := 1P (A) ⊕ f ′ is an isomorphism ofF/nF with ∂1 = ∂2 ◦ f . Take
f : F → F to be any homomorphism coveringf . Sincef ⊗ 1Z/nZ is an
isomorphism ofF/nF , the determinant off is invertible in the ringZ/nZ.

�

Proof of Proposition 0.4.(1) SupposeBG1 ≥ BG2. Then there exists an
f ∈ εQ(BH) and anR ∈ Epi(T )making the diagram

ZH

η(f)
��

K1� ���

��

ϕ1 �� T

R

��
ZH K2� ���

ϕ2
�� T
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commute.The rational equivalencef has, cf. the remarksprecedingExample
2.2, the formf = Bα ◦∏ψni for some (outer) automorphismα ofH and
some natural numbersni prime to theWeyl group order ofHi. Rearranging
the above commutative diagram we obtain another commutative diagram

H

α

��

(
∏
ψni) (K1)

��

� ��� ϕ1◦(
∏

ψni |ZH)−1
�� T

R

��
H K2� ���

ϕ2
�� T

showing thatG1[n1, . . . , nt] ≥ G2.
(2) If BG1 andBG2 are homotopy equivalent, then, becauseAut(BH) =
Out(H) e. g. by ([Mø], Corollary 3.2), the first of the above diagrams
commutes withη(f) = η(Bα) = α for someα ∈ Out(H) and some
R ∈ Aut(T ) and thusG1 andG2 are isomorphic ([Ba], Corollary 6) Lie
groups. �

We shall later need a slightly stronger version of point (1) in Proposition
0.4. LetWH denote the Weyl group ofH.

Proposition 3.3.LetG1 andG2 be two locally isomorphic connected com-
pact Lie groups. ThenBG1 ≥ BG2 if and only ifG1[n1 . . . , nt] ≥ G2 for
some natural numbersni with (

∏
ni, |WH |) = 1.

Since the result of the processG1 → G1[n1, . . . , nt] only depends onni
modulo the Weyl group order ofHi, this follows immediately from Propo-
sition 0.4 and

Lemma 3.4.Let w1, . . . , wt andm1, . . . ,mt be natural numbers with
(mi, wi) = 1 for 1 ≤ i ≤ t. Then there exist natural numbers (primes)ni
such thatni ≡ mimodwi for all 1 ≤ i ≤ t and(

∏
ni,
∏
wi) = 1.

Proof. By Dirichlet’s Theorem there are infinitely many prime numbers
congruent tomi modulowi. Choose one such prime which is larger than∏
wi and call itni. Do this for eachi. The result follows. !"

The proof of Proposition 3.3 shows that any rational equivalencef :
BG1 → BG2 has a factorization of the form

BG1
(
∏

ψmi , 1T ) ��BG1[n1, . . . , nt]
Bγ ��BG2

wheremi ∈ N is prime to, and congruent toni modulo the order of, the
Weyl group ofHi, (

∏
ni, |WH |) = 1, andγ = (α, R) is a Lie group

epimorphism ofG1[n1, . . . , nt] ontoG2.
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Note also, in connection with the proof of point (2) of Proposition 0.4,
that Theorem 2.3 contains as a special case the isomorphism

Aut(BG) ∼= Out(G)
from [J-M-O2, Corollary 3.2].

Combining (the proofs of) Proposition 3.1 and Proposition 3.3 results in

Proposition 3.5.The following three conditions are equivalent:

1. BG1 ≥ BG2 ≥ BG1
2. FRG1[n1, . . . , nt] ∼= G2 for someR ∈ Epi(T ) with (detR, |K1|) = 1

and someni ∈ N with (
∏
ni, |WH |) = 1

3. G1[n1, . . . , nt] ≥ G2 ≥ G1[n1, . . . , nt] for someni ∈ N with (
∏
ni,

|WH |) = 1

Example 3.6.Let Z = {(ω1E, ω2E) | ω5
1 = 1 = ω5

2} denote the center of
H = SU(5)× SU(5).
i) There are no covering homomorphisms between

G1 = H × S1/(Z, ϕ1) and G2 = G1[1, 13] = H × S1/(Z, ϕ2),

whereϕ1(ω1E, ω2E) = ω1ω2 andϕ2(ω1E, ω2E) = ω1ω
2
2, even though

BG1 ≥ BG2 ≥ BG1; in particularFRG1 �= G2 for all R ∈ Epi(T ), 5 �
detR, so condition (2) in Proposition 3.5 can not be sharpened toFRG1 =
G2.

ii) Let

G1 = H × S1 × S1/(Z, ϕ1) andG2 = FRG1 = H × S1 × S1/(Z, ϕ2)

whereϕ1(ω1E,ω2E) = (ω1, ω2),R(t1, t2)=(t1t2, t2) andϕ2(ω1E,ω2E)
= Rϕ1(ω1E,ω2E) = (ω1, ω

2
2). ThenBG1 ≥ BG2 ≥ BG1 because

G1 ≥ G2 ≥ G1 butG1[n1, n2] �= G2 for all choices ofn1, n2 ∈ N with
(n1n2, 5!) = 1, so condition (2) in Proposition 3.5 can not be sharpened to
G1[n1, n2] = G2.

iii) For
G1 = H/∆1 and G2 = G1[1, 7] = H/∆2,

where∆i = {(ωE, ωiE)}, i = 1, 2, the groupsOut(G1) ∼= Aut(BG1) ∼=
Z/2 ⊕ Z/2 andOut(G2) ∼= Aut(BG2) ∼= Z/2 are not isomorphic. No
covering homomorphism exists betweenG1 andG2 as no Lie group auto-
morphism ofH takes∆1 to∆2.

The structure of the local isomorphism system of a connected com-
pact Lie groupG is conveniently represented by an oriented graph: Define
G1 ∼ G2 if G2 ∈ [G1, G1] and represent the partially ordered set of these
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equivalence classes by an oriented graph in the usual fashion. Indicate the
number of elements in each equivalence class.

The oriented graph representing the local isomorphism system ofG =
SU(5)× SU(5) is

1��������

		��
��

��
��

�� ��	
		

	

		
		

1��������

��	
		

	

		
		

1��������

��

1��������

		��
��

��
��

1��������

whereG is at the top and the projective groupG/ZG is at the bottom. In the
middle row are the quotients ofG by the special subgroups∆0,∆1, and∆2
(in the notation of Example 3.6).

Now define the homotopy local isomorphism system ofG to be the set of
isomorphism classes of connected compact Lie groups locally isomorphic
toG equipped with the relationG1 � G2 if BG1 ≥ BG2. Also this ordered
set may be represented by an ordered graph in the same way as was done
for the local isomorphism system. This time we group together all groups
equivalent under the equivalence relationG1 ≈ G2 if G2 ∈ 〈G1, G1〉. For
G = SU(5)× SU(5) the result is

1��������

		��
��

��
��

��	
		

	

		
		

1��������

��	
		

	

		
		

2��������

		��
��

��
��

1��������

because(ψ1 × ψ7)(∆1) = ∆2 and no other relations are introduced.

4. The genus set ofBG

For a compact connected Lie groupG = H × T
/
(K, ϕ), the set〈G,G〉

consists (Proposition 3.5) of the derived groupsFRG[n1, . . . , nt] where
(
∏
ni, |WH |) = 1 = (detR, |K|). If the primep divides |K|, p does

not divide neither
∏
ni nor detR, so

∏
ψni is a homotopy equivalence of

BH∧
p andR|Tp∞ an automorphism ofTp∞ . It follows (Theorem 2.3) that
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β[n1, . . . , nt;R]p ∈ Aut(BH∧
p )×Aut(Tp∞) given by

β[n1, . . . , nt;R]p =

{
(
∏
ψni , R) if p | |K|

(1, 1) if p � |K|

defines a homotopy equivalenceBG∧ β[n1,...,nt;R]−→ BFRG[n1, . . . , nt]∧ such
that the diagram of completed classifying spaces

BH∧ ×BT∧ β[n1,...,nt;R]
∼=

��

Bq

��

BH∧ ×BT∧

Bq
��

BG∧ ∼=
β[n1,...,nt;R]

�� BFRG[n1, . . . , nt]∧

commutes whereq indiscriminately denotes the projection ofH × T onto
G or FRG[n1, . . . , nt]. ThusBG andBFRG[n1, . . . , nt] are spaces of the
same genus. Moreover,BG ≥ BFRG[n1, . . . , nt]. This is the point of de-
parture for the proof of Theorem0.8. But first ap-adic version of Proposition
3.5.

For any primep, the Lie group

G(p) := H × T
/
(Kp, ϕ|Kp)

was defined in Section 0 as the quotient ofH × T by the graph of the
restrictionϕ|Kp of ϕ to thep-primary subgroup ofK. Note the principal
bundle

K
/
Kp −→ G(p) −→ G

implying that(BG(p))∧p � BG∧
p .

Proposition 4.1.LetG1 andG2 be two locally isomorphic compact con-
nected Lie groups andp a prime. Then the following four conditions are
equivalent:

1. (BG1)∧p � (BG2)∧p
2. FRG1[n1, . . . , nt](p) ∼= G

(p)
2 for someR ∈ Epi(T ) and someni ∈ N

such thatp � detR and(
∏
ni, |WH |) = 1

3. BG(p)
1 ≥ BG

(p)
2 ≥ BG

(p)
1

4. G1[n1, . . . , nt](p) ≥ G
(p)
2 ≥ G1[n1, . . . , nt](p) for some natural num-

bersni with (
∏
ni, |WH |) = 1
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Proof. If (BG1)∧p � (BG2)∧p then there existf ∈ εQ(BH∧
p ) andβ ∈

Aut(Tp∞) such that

(ZH)p

ηp(f)
��

(K1)p� ��� ϕ1 ��

∼=
��

T

β∼=
��

(ZH)p (K2)p� ���
ϕ2

�� T

commutes. By the remarks preceding Example 2.2, the homotopy equiva-
lencef has the form

f = g ◦ (ψu1 × · · · × ψut)

whereui ∈ (Z∧
p )

∗ is ap-adic unit andg is a composition of automorphisms
of H and possibly some exceptional isogenies. However,ηp is trivial on
any exceptional isogeny, soηp(f) = α ◦∏ψni |ZH for someα ∈ Out(H)
and some natural numbersni ∈ N with ni ≡ uimod|ZH | and, by Lemma
3.4,(

∏
ni, |WH |) = 1. According to Lemma 3.2, the derived commutative

diagram

H

α

��

(
∏
ψni) (K1)p� ��� ϕ1◦(

∏
ψni |ZH)−1

��

∼=
��

im ϕ1

∼=β| im ϕ1

��

� � �� T

R

���
�
�

H (K2)p� ���
ϕ2

�� im ϕ2
� � �� T

canbecompletedbysomeR ∈ Epi(T )whosedeterminant isnotdivisibleby
p. Hence(α, 1T ) covers a Lie group isomorphismFRG1[n1, . . . , nt](p) ∼=
G

(p)
2 .
The implications(2)⇒ (3)⇒ (4) follow from Proposition 3.5.

Now assume (4). SinceBG1[n1, . . . , nt](p) ≥ BG
(p)
2 and |(K1)p| =

|(K2)p| there existα1 ∈ Out(H) andβ1 ∈ Epi(T ) such that the diagram

H

α1

��

(
∏
ψni) (K1)p

��

ϕ1◦(
∏

ψni |ZH)−1
��� ��� T

β1

��
H (K2)p� ���

ϕ2
�� T

commutes whereα1|(K1)p : (
∏
ψni) (K1)p −→ (K2)p andβ1| im ϕ1 :

im ϕ1 −→ im ϕ2 are isomorphisms. By Lemma 3.2 there existsγ ∈
Aut(Tp∞) such thatγ ◦ ϕ1 = ϕ2 ◦ α1|(K1)p meaning that

(BG(p)
1 )∧p � (BG1[n1, . . . , nt](p))∧p � (BG(p)

2 )∧p
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where(BG(p)
i )

∧
p � (BGi)∧ for i = 1, 2 by the fibration mentioned above.

�

The above proposition implies (Corollary 0.7) that ifG1 ≥ G2 ≥ G1,
thenBG1 andBG2 are of the same genus. The converse is not true as shown
by

Example 4.2.i) Let p and q be distinct primes and letGi = SU(pq) ×
SU(pq)/KiwhereK1 = Z/pq×1andK2 = Z/p×Z/q. ThenG(p)

1
∼= G

(p)
2

andG(q)
1

∼= G
(q)
2 so BG1 andBG2 are of the same genus but neither

G1 ≥ G2 norG2 ≥ G1 and neitherBG1 ≥ BG2 norBG2 ≥ BG1.

ii) Let p be a prime,Z = {ωiE } ∼= Z/p, ω = e2πi/p, the center ofSU(p),
andϕk : Z −→ S1 the homomorphism given byϕk(ωE) = ωk where
k ∈ Z. Then

SU(p)× S1/(Z,ϕk) ≥ SU(p)× S1/(Z,ϕl) ≥ SU(p)× S1/(Z,ϕk)

wheneverp � k andp � l but

SU(p)× S1/(Z,ϕk) ∼= SU(p)× S1/(Z,ϕl)

only if k ≡ ±l modp by Theorem 0.1. Hence condition (2) in Proposition
4.1 can not in general be sharpened toG(p)

1
∼= G

(p)
2 .

More preparation is necessary before the proof of Theorem 0.8. LetB be
a connected nilpotent space of finite type. A homotopy self-equivalenceV of
the formal completion(B∧)(0) is calledπ∗-continuous ifπ∗(V ) isZ∧ ⊗Q-
linear onπ∗((B∧)(0)) ∼= π∗(B) ⊗ Z∧ ⊗ Q. CAut((B∧)(0)) denotes the
subgroup of allπ∗-continuous elements ofAut((B∧)(0)) [W, Definition
3.3]. For anyV ∈ CAut((B∧)(0)) the homotopy inverse limitBV of the
diagram

B∧ −→ (B∧)
V←−∼= (B∧)←− B(0)

is a nilpotent spaceof finite typeof thegenusofB. In fact,Wilkerson showed
[W, Theorem 3.8] that the assignmentV → BV induces a bijection

Aut(B(0))\CAut((B∧)(0))/Aut(B∧)
∼=−→ G∧

0 (B)

of pointed sets.
Consider the subsetsG∧

0 (B)
+ andG∧

0 (B)
− of G∧

0 (B) defined by

G∧
0 (B)

+ = {X ∈ G∧
0 (B) | X ≥ B}, G∧

0 (B)
− = {X ∈ G∧

0 | B ≥ X}
whereX ≥ B (B ≥ X) if there exists a rational equivalenceX → B (B →
X). Furthermore, letAut(B), εQ(B),Aut(B∧), εQ(B∧) denote the images
in CAut((B∧)(0)) of, respectively,Aut(B), εQ(B),Aut(B∧), εQ(B∧).
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Lemma 4.3.(Cf. [Mø, Proposition 3.9])X ∈ G∧
0 (B)

− (X ∈ G∧
0 (B)

+) if
and only ifX � BV −1 (X � BV ) for someV ∈ εQ(B∧).

Proof.SupposeX ∈ G∧
0 (B)

−. Let α : B → X be a rational equivalence
andβ : B∧ → X∧ a homotopy equivalence. The commutative diagram

B(0)

α(0) �
��

�� (B∧)(0)

(α∧)(0) �
��

β−1
(0)◦(α∧)(0)

� �� (B∧)(0)

� β(0)
��

B∧��

β�
��

X(0) �� (X∧)(0) (X∧)(0) X∧��

shows thatX � BV −1 withV = β−1
(0)◦(α∧)(0) = (β−1◦α∧)(0) ∈ εQ(B∧).

Conversely, supposeβ ∈ εQ(B∧) and putV = β(0) ∈ εQ(B∧). Then

B(0) �� (B∧)(0) (B∧)(0)

V�
��

B∧��

β

��
B(0) �� (B∧)(0)

V

� �� (B∧)(0) B∧��

commutes and induces a rational equivalence fromB toBV −1 .
Similar arguments apply toG∧

0 (B)
+. !"

In the case ofB = BG andX = BFRG[n1, . . . , nt], we have (see
Section 2) a rational equivalence

α[n1, . . . , nt;R] ∈ εQ(BG,BFRG[n1, . . . , nt]) ⊂ εQ(BH)× εQ(BT )

as well as a homotopy equivalence

β[n1, . . . , nt;R] ∈ εQ(BG∧, BFRG[n1, . . . , nt]∧)
⊂ εQ(BH∧)× εQ(BT∧).

The commutative diagram

(BH×BT )(0) �� (BH∧×BT ∧)(0) (BH∧×BT ∧)(0)
β(0)

�
��

β(0)�
��

Bq

�
�� (BG∧)(0)

β(0)�
��

BG∧

β�
��

��

(BH×BT )(0) �� (BH∧×BT ∧)(0) (BH∧×BT ∧)(0)
Bq

� �� (BFRG[ni]
∧)(0) BFRG[ni]

∧��

shows thatBFRG[n1, . . . , nt] as an element of

Aut((BH×BT )(0))\CAut((BH∧×BT∧)(0))/Aut(BG∧) ∼= G∧
0 (BG)



794 J. M. Møller

corresponds to the equivalence class containingβ := β[n1, . . . , nt;R]. An-
other representative for the same equivalence class isV [n1, . . . , nt;R]−1

where

V [n1, . . . , nt;R] := β[n1, . . . , nt;R]−1 ◦ α[n1, . . . , nt;R]

given, as an element ofεQ(BH∧)× εQ(BT∧), by

V [n1, . . . , nt;R]p =

{
(1, 1) if p | |K|
(
∏
ψni , R) if p � |K|

is (Theorem 2.3) a rational self-equivalence ofBG∧.

Lemma 4.4.G∧
0 (B)

− = {B} if and only ifεQ(B∧) = Aut(B∧) · εQ(B)
andG∧

0 (B)
+ = {B} if and only ifεQ(B∧) = εQ(B) ·Aut(B∧).

Proof.SupposeG∧
0 (B)

− = {B} and letV ∈ εQ(B∧). SinceV −1 classifies
(Lemma 4.3)B, V −1 = RU in CAut((B∧)(0)) for someR ∈ Aut(B(0))
and someU ∈ Aut(B∧). Note thatR−1 = UV ∈ Aut(B(0))∩ εQ(B∧) =
εQ(B) soV = U−1R−1 ∈ Aut(B∧) · εQ(B).

The converse is clear by Wilkerson’s double coset formula for the genus
set. !"

In the special case whereB = BT is the classifying space of a torus,
G∧

0 (BT ) = {BT}, and it follows from Lemma 4.4 that inεQ(BT∧)

Aut(BT∧) · εQ(BT ) = εQ(BT∧) = εQ(BT ) ·Aut(BT∧)

as the homomorphisms

εQ(BT )
completion−→ εQ(BT∧) rationalization−→ CAut((BT∧)(0))

are injective.
The condition in Lemma 4.4 is easily checked for simple or simply

connected compact Lie groups.

Lemma 4.5.LetG be a simple Lie group with Weyl groupWG. Then any
rational self-equivalenceg ∈ εQ(BG∧) has the formg = f ◦ ψn for some
homotopy self-equivalencef ∈ Aut(BG∧) and some natural numbern
prime to|WG|.

Proof.AsBG∧ =
∏

pBG
∧
p ,g =

∏
p gp is aproduct of rational equivalences

gp ∈ εQ(BG∧
p ). According to [J-M-O1,J-M-O2], gp = fp ◦ ψnp where

fp ∈ Aut(BG∧
p ) andnp is a power ofp such thatnp = 1 if p divides|WG|.
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Also
(∏

p f
−1
p

)
◦ g = ∏

p ψ
np is a rational equivalence ofBG∧, so the

induced map

π4


(∏

p

ψnp

)
(0)


 : π4((BG∧)(0)) −→ π4((BG∧)(0))

is an isomorphism. This isomorphism can be identified to multiplication in
the moduleπ4((BG∧)(0)) ∼= Z∧ ⊗Q by the adic integer(n2

p). In particular,
the equation(n2

p)x = 1 has a solution. Recall that the elements of the ring
Z∧⊗Q are sequencesx = (xp)wherexp is ap-adic number which actually
is ap-adic integer for almost allp. Hencenp = 1 for p ≥ P for some prime
P . Let n =

∏
p<P np. Thenn is prime to|WG| and(np) = (up)n where

(up) is a unit inZ∧. Now

g =
∏
p

fp ◦
∏
p

ψnp =

(∏
p

f ◦ ψup

)
◦ ψn

wheref :=
∏

p(fp ◦ ψup) ∈ Aut(BG∧). !"

Lemma 4.6.LetH =
∏t

i=1Hi be a simply connected compact Lie group
written as the product of its simple factorsHi. Then any rational self-
equivalenceg ∈ εQ(BH∧) has the formg = f ◦ ∏t

i=1 ψ
ni for some

homotopy self-equivalencef ∈ Aut(BH∧) and some natural numbersni
prime to the Weyl group order ofHi.

Proof. We may assume thatg has the formg = g1 × · · · × gt where
gi ∈ εQ(BH∧

i ): The remarks precedingExample 2.2 imply thatg after com-
positionwith a homotopy equivalence of the form

∏
p σp ∈

∏
pAut(BH

∧
p ),

whereσp permutes identical factors in the productBH∧
p =

∏t
i=1(BHi)∧p ,

becomes such a product map. By Lemma 4.5,gi = fi ◦ ψni with fi ∈
Aut(BH∧

i ) andni a natural number prime to the Weyl group order ofHi.
Now

g =
t∏

i=1

fi ◦
t∏

i=1

ψni

wheref :=
∏t

i=1 fi ∈ Aut(BH∧). !"

Alternatively, any rational equivalenceg ∈ εQ(BH∧) has the formg =
(
∏
ψni) ◦ f ′ with f ′ ∈ Aut(BH∧).
An obvious consequence of Lemma 4.3–4.6 is
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Proposition 4.7.G∧
0 (BG)

+ = {BG} = G∧
0 (BG)

− wheneverG is simple
or a simply connected compact Lie group.

We may now consider the special case, Corollary 0.9, of Theorem 0.8
whereG is simple, cf. [Mø, Example 3.11].

Proof of Corollary 0.9.Assume thatf : BG −→ X is essential. As
completion induces, cf. [J-M-O1, Theorem 3.1], an injection[BG,X] �
[BG∧, X∧], there exists a primep such thatf∧

p is essential and hence
[J-M-O1] a rational equivalence. Then also the original mapf is a ratio-
nal equivalence (Proposition 2.8) and the result follows from Proposition
4.7. !"

Finally we deal with Theorem 0.8. Using the notation introduced in this
section,

G∧
0 (BG)

−=
{
BFRG[n1, . . . , nt] | (detR, |K|) = 1 =

(∏
ni, |WH |

)}
= G∧

0 (BG)
+

is an alternative formulation of that theorem.

ProofofTheorem0.8.LetX ∈ G∧
0 (BG)

−. ByLemma4.3,X is classifiedby
V −1 ∈ CAut((BH∧ × BT∧)(0)) for someV ∈ εQ(BG∧) ⊂ ε(BH∧) ×
εQ(BT∧). Any rational equivalence ofBH∧ has (Lemma 4.6) the form
f ◦∏ψni for somef ∈ Aut(BH∧) and some natural numbersni prime to
the order of theWeyl group of theith simple factorHi ofH and any rational
equivalence ofBT∧ has the formβ ◦S for someβ ∈ Aut(BT∧) and some
S ∈ εQ(BT ). Thus

V =
(
f ◦
∏

ψni , β ◦ S
)

where the diagrams

(ZH)p

ηp(fp)◦∏
ψni

��

Kp� ���

∼=
��

ϕ �� ϕ(Kp)

∼=
��

� � �� Tp∞

βp◦S
��

(ZH)p Kp� ��� ϕ �� ϕ(Kp) �
� �� Tp∞

commute and have isomorphisms as indicated. These diagrams remain com-
mutative ifni is replaced by any natural number with the same residuemod-
ulo the order of theWeyl group ofHi. Note that such a replacement does not
change the equivalence class ofV −1, which is also the equivalence class of
(f−1, β−1), in the double coset formula forG∧

0 (BG). According to Lemma
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3.4, we may therefore assume that the product
∏
ni is prime to the order of

the Weyl groupWH ofH. The rearranged commutative diagrams

(
∏
ψni)Kp

ηp(fp) ∼=
��

ϕ◦(ψni |ZH)−1
�� ϕ(Kp)

∼=
��

� � �� Tp∞

S

��
(Kp)

β−1
p ◦ϕ

�� (β−1
p ◦ ϕ)(Kp) �

� �� Tp∞

can be pieced together ny taking the direct sum over all primesp for which
Kp �= 1 to

(
∏
ψni)K

ϕ◦(ψni |ZH)−1
��

η(f) ∼=
��

ϕ(K)

∼= S|ϕ(K)
��

� � �� T

R

���
�
�

K
β−1◦ϕ

�� (β−1 ◦ ϕ)(K) � � �� T

whereη(f) =
⊕
ηp(fp), β−1 ◦ ϕ =

⊕
β−1
p ◦ ϕ|Kp and S|ϕ(K) =⊕

S|ϕ(Kp). Lemma 3.2 shows that this diagram can be completed by some
R ∈ Epi(T ) with (detR, |WH |) = 1. Then

βpRϕ = ϕ ◦
(
ηp(fp) ◦

∏
ψni

)
|Kp

so(fp ◦
∏
ψni , βpR) ∈ εQ(BG∧

p ). Define

Up =

{
(fp ◦

∏
ψni , βpR) if p | |K|

(fp, βp) if p � |K|

and note thatU :=
∏
Up is a homotopy equivalence ofBG∧. The space

X ∈ G∧
0 (BG)

− is therefore also represented by

(∏
ψni , S

)
V −1U =

{
(
∏
ψni , R) if p | |K|

(1, 1) if p � |K|

showing thatX = BFRG[n1, . . . , nt].
If X ∈ G∧

0 (BG)
+ thenX is classified by someV ∈ εQ(BG∧) ⊂

εQ(BH∧)× εQ(BT∧). WriteV on the form

V =
(∏

ψni ◦ f, S ◦ β
)

with f ∈ Aut(BH∧), β ∈ Aut(BT∧), S ∈ εQ(BT ), and proceed as
above. �
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In other words,G∧
0 (BG)

− = B(〈G,G〉) = G∧
0 (BG)

+ is a finite set
consisting of those Lie group classifying spacesBL for whichBG ≥ BL ≥
BG. For example,

G∧
0 (BSO(n))

+ = {BSO(n)}
G∧

0 (BSU(n)×BSU(n))+ = {BSU(n)×BSU(n)}
G∧

0 (B(SU(5)× SU(5)/∆1))+ = {B(SU(5)× SU(5)/∆1),
B(SU(5)× SU(5)/∆2)}

G∧
0 (BU(n))

+ = {B(U(n)/Γk) | (k, n) = 1 }
in the notation of Example 2.5 and Example 3.6. (The two spaces in the
third of the above examples have non-isomorphic groups of homotopy self-
equivalences, see also [Mø, Example 3.7].)

The full genus setG∧
0 (BG) contains in general (Example 4.2) other

Lie group classifying spaces than those inG∧
0 (BG)

±; namely (Proposition
0.6) all homotopy typesBL for whichL(p) ∈ 〈G(p), G(p)〉 for all primesp.
Alternatively,X ∈ G∧

0 (BG) is [N-S,N2] the classifying space of a compact
connected Lie group ifX has a maximal torus.
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