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Abstract. The classification of short exact sequences of p-compact groups
and of rational isomorphisms of not necessarily connected p-compact

groups is discussed.

1. Introduction

The concept of a p-compact group was introduced by Dwyer and Wilker-
son [8] as a homotopy theoretic version of a compact Lie group. In a subsequent
paper [7], they showed that the center of any p-compact group agrees with the
centralizer of the identity map. That result is the starting point of this note.

For given p-compact groups, X and Y, let Ext(X,Y ) denote the set of
equivalence classes of short exact sequences

Y −→ G −→ X

of p-compact groups. Two such extensions of X by Y are declared equivalent
if there exists a homomorphism over X and under Y between them.

The discussion of Ext(X,Y ) proceeds along two parallel tracks. One track
is concerned with the case where Y is a (completely reducible [12]) connected
p-compact group while the other track deals with the case where Y = Z is
an abelian p-compact (toral) group. For fixed homotopy actions ρ and ζ of
π0(X) on Y and Z let Extρ(X,Y ) ⊆ Ext(X,Y ) and Extζ(X,Z) ⊆ Ext(X,Z)
denote the subsets of extensions realizing the actions ρ and ζ, respectively. As is
quickly seen, Extζ(X,Z) is an abelian group and it turns out [Theorem 3.4] that
Extρ(X,Y ) is an affine group with ExtZρ(X,Z(Y )) as group of operators. Here
Z denotes the conjugation action of the group of self-homotopy equivalences
of BY on the classifying space BZ(Y ) = map(BY,BY )B1 [7, Theorem 1.3] of
the center Z(Y ) of Y [13, 7].

The abelian group Extζ(X,Z) enjoys nice bifunctorial properties. The
affine group Extρ(X,Y ) is functorial in X by pull back but only restricted
functorial in Y : Any equivariant rational isomorphism g : Y → Y ′, where Y ′ is a
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connected p-compact group locally isomorphic to Y equipped with a homotopy
action ρ′ by π0(X), induces a push forward map

g∗ : Extρ(X,Y )→ Extρ′(X,Y ′)

which is affine [Lemma 3.8]. Given also a homomorphism h : X → X ′, pull back
and push forward of extension classes provide obstructions to the existence of
homomorphisms

Y

��
g

// G

���
�

�
// X

��
h

Y ′ // G′ // X ′

under g and over h. Indeed, such a homomorphism exists [Theorem 3.9] if and
only if g∗(G) = h∗(G′) in Ext(X,Y ′).

Fibrewise discrete approximations to fibered abelian p-compact groups are
briefly discussed in Section 4. Lemma 4.1–4.3 show that provided the identity
component X0 of X is simply connected, there is a group isomorphism

Extζ(X,Z) ∼= H2
ζ (π0(X); Ž)

where Ž is the discrete approximation to Z.
The above concepts are exploited in the final section for the classifica-

tion of rational automorphisms of not necessarily connected p-compact groups.
When combined with [10, Theorem 4.3] [12, Theorem 3.5], the short exact se-
quence of Theorem 5.2 could potentially lead to a fairly explicit classification
of rational automorphisms of any given p-compact group.

2. Universal fibrations

Thanks to the homotopy equivalence [7, Theorem 1.3] between the center
and the centralizer of the identity map of a p-compact group, the classification
of fibrations with p-compact group classifying spaces as fibres is surprisingly
manageable.

Let’s first fix some notation. For any two p-compact groups, X and X ′,
put Hom(X,X ′) = [BX, ∗;BX ′], the set of based homotopy classes of maps,
and Rep(X,X ′) = [BX,BX ′], the set of unbased homotopy classes of maps.
A homomorphism h ∈ Hom(X,X ′) is said to be a rational isomorphism if [10,
Definition 2.1] the map

H∗(Bh0;Zp)⊗Zp
Qp : H

∗(BX ′
0;Zp)⊗Zp

Qp → H∗(BX0;Zp)⊗Zp
Qp,

induced by the restriction Bh0 : BX0 → BX ′
0 of h to the identity components,

is an isomorphism. Let εQ(X,X ′) ⊆ Hom(X,X ′) denote the subset of rational
isomorphisms.

If X = X ′, End(X) = Hom(X,X) is a monoid (under composition)
containing εQ(X) = εQ(X,X) as a submonoid and having Aut(X) as its
group of invertible elements. Out(X) denotes the invertible elements of the
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monoid Rep(X,X). If X is connected or abelian, BX is simple so there is
no difference between the based or unbased case: End(X) = Rep(X,X) and
Aut(X) = Out(X).

Turning to classifying fibrations, let Y be a p-compact group with center
[13, 7] Z(Y ) and adjoint form P (Y ) = Y/Z(Y ). Then Z(Y ) is an abelian
p-compact toral group and there exists a fibration

BZ(Y ) −→ BY −→ BP (Y )

of classifying spaces. Using a Borel construction as in the proof of [8, Proposi-
tion 8.3] this fibration may be extended one step further to the right to give a
fibration

BY −→ BP (Y )
Bk
−−→ B2Z(Y )(1)

which is universal for fibrations with fibre BY over simply connected base
spaces [7, Remark 1.11].

Assume from now on that Y is connected and let g : Y → Y ′ be a rational
isomorphism into another connected p-compact group Y ′ locally isomorphic
[10, Definition 2.7] to Y . Then g induces [10, Corollary 3.2, Theorem 3.3] a
fibre map

BZ(Y )

��
BZ(g)

// BY

��
Bg

// BP (Y )

��
BP (g)

BZ(Y ′) // BY ′ // BP (Y ′)

which also extends one step to the right.

Lemma 2.1. Any rational automorphism g of Y extends to a fibre self map

BY

��
Bg

// BP (Y )

��
BP (g)

//Bk
B2Z(Y )

��
B2Z(g)

BY ′ // BP (Y ′) //
Bk

B2Z(Y ′)

of the universal fibration ( 1).

Proof. The claim is that B2Z(g) ◦ Bk and Bk ◦ BP (g) are homotopic. Since
looping provides a bijection Ω: [BP (Y ), B2Z(Y ′)]→ [P (Y ), BZ(Y ′)], this fol-
lows from the extension one step to the left of the fibre map (BZ(g), Bg,BP (g))
shown above.

The fibration which is universal for fibrations with fibre BY over arbitrary
base spaces has the form

BY −→ BP (Y )hOut(Y )

BkhOut(Y )
−−−−−−→ B2Z(Y )hOut(Y )(2)
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where Out(Y ) = π0 aut(BY, ∗) = π0 aut(BY ) is the group of homotopy
classes of homotopy self-equivalences of BY and the homotopy orbit space
BP (Y )hOut(Y ) (B2Z(Y )hOut(Y )) denotes the classifying space of the group-
like topological monoid aut(BY, ∗) (aut(BY )) of based (free) homotopy self-
equivalences of BY . The monodromy action associated to the homotopy orbit
space B2Z(Y )hOut(Y ) is induced from the conjugation action of Out(Y ) on
BZ(Y ) ≃ map(BY,BY )B1, i.e. from the action Z : Out(Y )→ Out(Z(Y )) of
[10, Corollary 3.2].

Suppose now that the locally isomorphic p-compact groups, Y and Y ′,
are equipped with homotopy actions, ρ : π → Out(Y ) and ρ′ : π′ → Out(Y ′),
by discrete groups, π and π′.

Pulling back the universal fibration (2) along the mapsBρ : Bπ → BOut(Y ),
Bρ′ : Bπ′ → BOut(Y ′) produces fibrations

BY

��
Bg

// BP (Y )hρπ

���
�

�

//Bkhρπ

B2Z(Y )hρπ

���
�

�

BY ′ // BP (Y ′)hρ′π′
//

Bkhρ′π′

B2Z(Y ′)hρ′π′

that are universal for fibrations with fibre BY and with monodromy action
restricting to ρ, ρ′. The projection map Bkhρπ, Bkhρ′π′ is a map over Bπ,
Bπ′ since the universal projection map BkhOut(Y ) is a map over BOut(Y ).
Thus the first obstruction to extending Bg to a fibre map Bkhρπ −→ Bkhρ′π′

is that g be χ-equivariant, i.e. g · ρ(γ) = ρ′(χ(γ)) · g in εQ(Y, Y
′) for all

γ ∈ π, for some group homomorphism χ : π → π′. Provided the mapping space
map(BP (Y ), BP (Y ′))BP (g) is contractible, as is this case if Y and Y ′ are com-
pletely reducible [12, Definition 3.10] p-compact groups, this is in fact the only
obstruction to extending.

Lemma 2.2. Suppose that g ∈ εQ(Y, Y
′) is a χ-equivariant rational isomor-

phism between the locally isomorphic completely reducible p-compact groups Y
and Y ′.

(1) There exists, up to vertical homotopy, exactly one extension

BP (g)hχ : BP (Y )hρπ → BP (Y ′)hρ′π′

of BP (g) : BP (Y )→ BP (Y ′) to a map over Bχ.
(2) There exists, up to vertical homotopy, exactly one extension

B2Z(g)hχ : B
2Z(Y )hρπ → B2Z(Y ′)hρ′π′



EXTENSIONS OF p-COMPACT GROUPS 5

of B2Z(g) : B2Z(Y )→ B2Z(Y ′) to a map over Bχ such that

BP (Y )hρπ //Bkhρπ

��
BP (g)hχ

B2Z(Y )hρπ

��
B2Z(g)hχ

BP (Y ′)hρ′π′
//

Bkhρ′π′

B2Z(Y ′)hρ′π′

commutes up to vertical homotopy.

The proof is based on the fibred mapping space construction occuring e.g.
in [2, 3]:

Let p : U → A and q : V → B be fibrations over connected and pointed
base spaces. Suppose that g : p−1(∗)→ q−1(∗) is a map between the fibres and
h : (A, ∗)→ (B, ∗) a map between the base spaces such that the pair (g, h)
respects the monodromy action in the sense that g · ζ = π1(h)(ζ) · g holds in
[p−1(∗), q−1(∗)] for all ζ ∈ π1(A, ∗). The question of whether (g, h) comes from
a fibre map can be turned into a section problem.

Define the set

fibmap(U, V )gh =
∐

a∈A

map(p−1(a), q−1(h(a)))ga

where ga ∈ [p−1(a), q−1(h(a))] is the homotopy class making

p−1(∗)

��
ζ

//g
q−1(∗)

��
h(ζ)

p−1(a) //
ga

q−1(h(a))

homotopy commutative for any path ζ from the base point ∗ to a ∈ A. Using
the topology of [3], we obtain a fibration

map(p−1(∗), q−1(∗))g −→ fibmap(U, V )gh −→ A

whose based section space, by the fibrewise exponential law [2, Theorem 1], is
homeomorphic to the space of maps of U into V under g and over h. Of course,
fibmap(U, V )gh = fibmap(U, h∗V )g1 where h∗V is the pull back of V along h and
1 denotes the identity map of A.

Proof of Lemma 2.2. Composition with the maps Bkhρπ and Bkhρ′π′ induces,
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since Bk ◦BP (g) ≃ B2Z(g) ◦Bk by Lemma 2.1, fibre maps

map(BP (Y ),BP (Y ′))BP (g)

��
Bk

// fibmap(BP (Y )hρπ,BP (Y ′)hρ′π′ )
BP (g)

Bχ

��

// Bπ

map(BP (Y ),B2Z(Y ′))B(kP (g))
// fibmap(BP (Y )hρπ,B

2Z(Y ′)hρ′π′ )
B(kP (g))

Bχ
// Bπ

map(B2Z(Y ),B2Z(Y ′))B2Z(g)

OO

Bk ≃

// fibmap(B2Z(Y )hρπ,B
2Z(Y ′)hρ′π′ )

B2Z(g)

Bχ
//

OO

Bπ

of fibred mapping spaces. The map Bk is easily seen to be a homotopy equiva-
lence and the fibre map(BP (Y ), BP (Y ′))BP (g) is contractible [7, Theorem 1.3]
[12, Theorem 3.11] since Y and Y ′ and with them their adjoint forms P (Y )
and P (Y ′) are completely reducible. Thus there exists up to vertical homotopy
exactly one section of the upper fibration inducing a corresponding section of
the lower fibration.

Note that the fibre map (BP (g)hπ, B
2Z(g)hπ) of point (ii) of Lemma 2.2 is

an extension of the fibre map (BP (g), B2Z(g)) of Lemma 2.1 and thus restricts
to the map Bg : BY → BY ′ on the fibres.

The above constructions pertaining to the connected p-compact groups
can also be carried out for abelian p-discrete or p-compact toral groups [8,
Definition 6.3, Definition 6.5].

Let Ž be an abelian p-discrete toral group and Z its closure [8, Definition
6.6]. The group Aut(Ž) of abelian group automorphisms of Ž acts by based
homeomorphisms on B2Ž so we may apply the Borel construction to the path
fibration PB2Ž −→ B2Ž to obtain the fibration

ΩB2Ž −→ (PB2Ž)hAut(Ž)
σ̌0−→ (B2Ž)hAut(Ž)(3)

which is universal for fibrations with BŽ as fibre. Note that both the total
space and the base space are spaces over and under BAut(Ž) and that the pro-
jection map σ̌0 is a map over and under BAut(Ž). Since p-completion induces
isomorphisms End(Ž) −→ End(Z) and Aut(Ž) −→ Out(Z) [13, Proposition 3.2],
fibrewise completion of (3) results in the fibration

BZ −→ BOut(Z)
σ0−→ (B2Z)hOut(Z)(4)

which is universal for fibrations with BZ as fibre. The projection map σ0 is a
map of spaces over and under BOut(Z).

The abelian group structure on Ž induces on B2Ž the structure of an
abelian topological group. Let ∇̌ : B2Ž ×B2Ž → B2Ž be the addition map
and ν̌ : B2Ž → B2Ž the inversion map such that

∇̌ ◦ τ = ∇̌, ∇̌ ◦ (ν̌ × 1) ◦∆ = 0
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where τ is the switch and ∆ the diagonal map. The p-completions of ∇̌ and
ν̌, ∇ : B2Z ×B2Z → B2Z and ν : B2Z → B2Z, promote B2Z to an abelian
group-like space. Moreover, since Aut(Ž) acts on B2Ž through group isomor-
phisms, ∇̌ and ν̌ extend to maps over and under BAut(Ž)

∇̌ : ∆∗(B2ŽhAut(Ž) ×B2ŽhAut(Ž))→ B2ŽhAut(Ž)(5)

ν̌ : B2ŽhAut(Ž) → B2ŽhAut(Ž)(6)

where ∆ is the diagonal on BAut(Ž). The fibrewise p-completion of these maps
are maps over and under BOut(Z)

∇ : ∆∗(B2ZhOut(Z) ×B2ZhOut(Z))→ B2ZhOut(Z)(7)

ν : B2Z → B2Z(8)

extending the structure maps ∇ and ν on B2Z.
Suppose now that Ž ′ is another p-discrete toral group and that Ž and Ž ′

support group actions ζ : π → Aut(Ž), ζ ′ : π′ → Aut(Ž ′). Any χ-equivariant
abelian group homomorphism ̌ : Ž → Ž ′ extends to a topological group homo-
morphism B2̌ : B2Ž → B2Ž ′ and thus to a map

B2̌hχ : B
2Žhζπ → B2Ž ′

hζ′π′(9)

over and under Bχ such that

∇̌′ ◦∆∗(B2̌hχ ×B2̌hχ) = B2̌hχ ◦ ∇̌, ν̌′ ◦B2̌hχ = B2̌hχ ◦ ν̌

where ∇̌′ and ν̌′ are the structure maps for B2Ž ′.
Let Z ′ denote the ablian p-compact toral group which is the closure of Ž ′.

Fibrewise p-completion of B2̌hχ is a map

B2jhχ : B
2Zhζπ → B2Z ′

hζ′π′(10)

over and under Bχ such that

∇′ ◦∆∗(B2jhχ ×B2jhχ) = B2jhχ ◦ ∇, ν′ ◦B2jhχ = B2jhχ ◦ ν(11)

where ∇′ and ν′ are the structure maps on B2Z ′.

3. Short exact sequences

This section contains information about fibrations of p-compact group
classifying spaces.

Let X and Y be p-compact groups with classifying spaces BY and BX
and let cdFp

(−) denote mod p cohomological dimension [8, Definition 6.13].

Lemma 3.1. Let BY → BG → BX be a fibration sequence. Then G is a
p-compact group and cdFp

(G) = cdFp
(X) + cdFp

(Y ).
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Proof. As the base space as well as the fibre are p-complete spaces, the Fibre
lemma [5, II.5.1–5.2] implies that also the total space BG is p-complete.

Let Y0 denote the identity component of Y . By pulling back the fibration
G → X → BY to the universal covering space BY0 we obtain a fibration
denoted G → X|BY0 → BY0. Extending this fibration one step to the left
gives the fibration Y0 → G → X|BY0 with connected fibre. The action of
the fundamental group of any component of the base on Hi(Y0;Fp), i ≥ 0,
is nilpotent because it factors through the finite p-group π0(Y ) (acting on
Hi(Y ;Fp)). Hence [8, Lemma 6.16] the corresponding Serre spectral sequence
is concentrated in a rectangle of dimensions cdFp

(X) by cdFp
(Y ) and the group

in the upper right corner is nontrivial. The fact that G is Fp-finite and the
formula for its mod p cohomological dimension now follows as in the proof of
[8, Proposition 6.14].

This shows [8, Lemma 2.1, Definition 2.2] that G is a p-compact group.

It is a consequence of Lemma 3.1 that the composition of two epimor-
phisms [8, 3.2] is an epimorphism.

Definition 3.2. An extension of X by Y is a fibration of based maps

BY −→ BG −→ BX

over BX with fibre BY . Two extensions are equivalent if there exists a fibre
map of the form

BY // BG

��

// BX

BY // BH // BX

between them. Ext(X,Y ) denotes the set of all equivalence classes of extensions
of X by Y .

Since the total space BG is the classifying space of a p-compact group
[Lemma 3.1], any extension of X by Y is a short exact sequence of p-compact
groups [8, 3.2]. The extension BY −→ BG −→ BX is often referred to simply as
Y −→ G −→ X. In this notation, two extensions are equivalent if there exists a
homomorphism of the form

Y // G

��

// X

Y // H // X

between them.
Associated to the short exact sequence Y −→ G −→ X is a homotopy action

ρ : π0(X)→ Out(Y ). Observe that this monodromy action is an invariant of the
equivalence class so that it makes sense to let Extρ(X,Y ) denote the subset of
Ext(X,Y ) represented by all short exact sequences realizing the action ρ.
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Assume from now on that Y is a connected p-compact group.

Let [BX,B2Z(Y )hOut(Y )]Bρ denote the set of vertical homotopy classes
of lifts

B2Z(Y )hOut(Y )

��
BX

44iiiiiiiiiii //
Bπ0

Bπ0(X) //
Bρ

BOut(Y )

of the map Bρ ◦Bπ0.

Similarly, if Z is an abelian p-compact group with discrete approximation
Ž −→ Z and ζ : π0(X)→ Aut(Ž) = Out(Z) an action, let [BX,B2ŽhAut(Ž)]Bζ

and [BX,B2ZhOut(Z)]Bζ denote the sets of vertical homotopy classes of lifts of
Bζ ◦Bπ0.

Define Extζ(X, Ž) to be the set of equivalence classes (with respect to fibre
homotopy equivalences under BŽ and over BX) of fibrations BŽ −→ BG −→
BX with monodromy action ζ.

Lemma 3.3. Let Y be a connected and X any p-compact group. Then there
are bijections

[BX,B2Z(Y )hOut(Y )]Bρ −→ Extρ(X,Y )

[BX,B2ŽhAut(Ž)]Bζ −→ Extζ(X, Ž)

[BX,B2ZhOut(Z)]Bζ −→ Extζ(X,Z)

defined by pulling back the universal fibrations ( 2), ( 3), and ( 4), respectively.

Proof. The base space of the fibration of based mapping spaces

map∗(BX,B2Z(Y )hOut(Y )) −→ map∗(BX,BOut(Y ))

is homotopically discrete [11, Lemma 2.2]. Therefore, the total space is
homotopically equivalent to the disjoint union over all homomorphisms
ρ : π0(X)→ Out(Y ) of the spaces of based lifts of Bπ0 ◦Bρ.

By classification theory, pull back of the universal bundle (2) provides a
bijection

π0(map∗(BX,B2Z(Y )hOut(Y )) −→ Ext(X,Y )

which by the above remarks restricts to a bijection between the based and
vertical homotopy classes of lifts of Bπ0 ◦ Bρ and Extρ(X,Y ). However, since
the fibre B2Z(Y ) is simply connected, the clause that the lifts be based is
superfluous.

Similar arguments apply in the remaining two cases.
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The chosen equivalence relation [Definition 3.2] on BY -fibrations over
BX (assumed to have a nondegenerate base point) corresponds by Allaud
[1] to based homotopy classes of maps of BX into the classifying space
B2Z(Y )hOut(Y ). See [2] for an account of the relationship between the free
and the based case.

For the following, assume that Y −→ G −→ X and Y −→ H −→ X are two
short exact sequences realizing the same homotopy action ρ : π0(X)→ Out(Y ).
Choose [Lemma 3.3] based lifts (also denoted) G,H : BX → B2Z(Y )hOut(Y ) of
Bρ ◦Bπ0 classifying the two fibrations. Define

ΩB2Z(Y ) −→ B∆(H,G) −→ BX

to be the fibration whose fibre over any point b ∈ BX is the space of vertical
(i.e. having constant projection in BOut(Y )) paths in B2Z(Y )hOut(Y ) from
G(b) to H(b). This fibration represents an element in ExtZρ(X,Z(Y )).

Theorem 3.4. Let G ∈ Extρ(X,Y ) where Y is a connected and X an arbitrary
p-compact group. Then the map

∆(−, G) : Extρ(X,Y )→ ExtZρ(X,Z(Y ))

is a bijection.

Proof. Pulling back to BX the two fibrations shown as downward pointing
arrows in the diagram

B2Z(Y )hOut(Y )

��

B2Z(Y )hOut(Z(Y ))

��
BX

88
G

qqqqqqqqqqq
//

B(ρπ0)
BOut(Y ) //

BZ
BOut(Z(Y ))

OO
σ0

provides two sectioned fibrations, B2Z(Y )hρπ0X −→ BX and B2Z(Y )hZρπ0X −→
BX, with fibre B2Z(Y ). (See (4) for the section σ0 .) These two spaces over
and under BX are equivalent in the sense that there exists up to homotopy
over and under BX exactly one extension of the identity map of B2Z(Y ) to a
map

uG : B2Z(Y )hρπ0X → B2Z(Y )hZρπ0X

over and under BX. This follows from the fact that the fibre of the based fibred
mapping space

map
∗
(B2Z(Y ),B2Z(Y ))B21

// fibmap
∗
(B2Z(Y )hρπ0X ,B2Z(Y )hZρπ0X)B

21
B1

// BX

is contractible. Composition with uG induces a bijection

(uG)∗ : Extρ(X,Y )
∼=
−→ ExtZρ(X,Z(Y ))

identical to the map ∆(−, G).
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It is a consequence of Theorem 3.4 that Extρ(X,Y ) is an affine group [4,
§9, no 1].

To see this, note that the structure maps (7) and (8) make Extζ(X,Z) into
an abelian group. The neutral element of this group is represented by the short
exact sequence Z −→ Z⋊ζX −→ X classified by the map σ0 ◦Bζ ◦Bπ0. The sum
of two short exact sequences Z −→ A −→ X and Z −→ B −→ X, with classifying
maps A,B : BX → B2ZhOut(Z), is the short exact sequence classified by the
lift ∇ ◦ (A×B) ◦∆ of Bζ ◦Bπ0. The inverse −A is classified by ν ◦A.

Note that the projection B(Z⋊ζX) −→ BX admits a based section, i.e.
that the short exact sequence

Z // Z⋊ζX // X
oo(12)

is a split short exact sequence, and that there exist homomorphisms

Z × Z

��
∇

// ∆∗(A×B)

��

// X

Z // A+B // X

(13)

Z

��
ν

// A

��

// X

Z // −A // X

(14)

of short exact sequences. These properties are characterizing.

Lemma 3.5. Suppose that Z −→ C −→ X is a short exact sequence representing
an element of Extζ(X,Z).

(1) If there exists a splitting

Z // C // X
oo

then C = 0 in Extζ(X,Z).
(2) If there exists a short exact sequence homomorphism

Z × Z

��
∇

// ∆∗(A×B)

��

// X

Z // C // X

then C = A+B in Extζ(X,Z).
(3) If there exists a short exact sequence homomorphism

Z

��
ν

// A

��

// X

Z // C // X
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then C = −A in Extζ(X,Z).

Proof. (i) The based fibred mapping space

map∗(BZ,BZ)B1 −→ fibmap∗(B(Z⋊ζX), BC)B1
B1 −→ BX

admits a section because its fibre is contractible.
(ii) Precomposition with the short exact sequence homomorphism (13) deter-
mines a fibre map

map(BZ,BZ)B1

��
∇ ≃

// fibmap(B(A+B), BC)B1
B1

��

// BX

map(BZ ×BZ,BZ)∇ // fibmap(B∆∗(A×B), BC)∇B1
// BX

which is a fibre homotopy equivalence since, Z being abelian, ∇ is a homotopy
equivalence. As the lower fibration admits a section, so does the upper one.
(iii) Similar to (ii).

In case Z = Z(Y ) is the center of the connected p-compact group
Y , the difference map ∆ from Theorem 3.4 and the additive structure in
ExtZρ(X,Z(Y )) are nicely related.

Lemma 3.6. Let G,H,K ∈ Extρ(X,Y ). Then

∆(K,G) = ∆(K,H) + ∆(H,G)

in ExtZρ(X,Z(Y )).

Proof. Since composition of paths defines a map

∆∗(B∆(H,G)×B∆(K,H)) −→ B∆(K,G)

over BX and under the H-space structure on ΩB2Z, this formula follows from
Lemma 3.5.

The formula of Lemma 3.6 implies that

∆(G,G) = Z(Y )⋊ZρX, −∆(H,G) = ∆(G,H)

for all G,H ∈ Extρ(X,Y ). More formally

Corollary 3.7. Extρ(X,Y ) is an affine group with the abelian group
ExtZρ(X,Z(Y )) as its group of operators.



EXTENSIONS OF p-COMPACT GROUPS 13

Let’s now look at functorial properties of the Ext-affine groups.
Let Y ′ −→ G′ −→ X ′ be another short exact sequence of p-compact groups

with associated homotopy action ρ′ : π0(X
′)→ Out(Y ′). Any p-compact group

homomorphism h : X → X ′ induces a map

h∗ : Extρ′(X ′, Y ′)→ Extρ′π0(h)(X,Y ′)(15)

defined by pull back. Note that h∗(G′) is indeed a p-compact group by
Lemma 3.1 and that h extends to a morphism

Y ′ // h∗(G′)

��

// X

��
h

Y ′ // G′ // X ′

(16)

of short exact sequences.
As to functorial properties in the second variable, assume now that Y ′ is

connected, completely reducible, locally isomorphic to Y , and that g : Y → Y ′

is a rational isomorphism which is χ-equivariant for some group homomorphism
χ : π0(X)→ π0(X

′). Let

g∗ : Extρ(X,Y )→ Extρ′χ(X,Y ′)(17)

be the map induced by composing classifying maps with the essentially
uniquely determined map B2Z(g)hχ : B

2Z(Y )hρπ0(X) → B2Z(Y ′)hρ′χπ0(X)

from Lemma 2.2. Note that the rational isomorphism g extends to a short
exact sequence homomorphism

Y

��
g

// G

��

// X

Y ′ // g∗(G) // X

(18)

where the middle arrow is induced from BP (g)hχ.
There are similar functorial properties in the abelian case. Let Z

and Z ′ be abelian p-compact toral groups equipped with homotopy ac-
tions ζ : π0(X)→ Out(Z), ζ ′ : π0(X

′)→ Out(Z ′). Pull back along the map
Bh : BX → BX ′ induces a map

h∗ : Extζ′(X ′, Z ′)→ Extζ′π0(h)(X,Z ′)

which clearly is a group homomorphism. Also, if j : Z → Z ′ is a χ-equivariant
homomorphism, composition with the mapB2jhχ : B

2Zhζπ0(X) → B2Z ′

hζ′χπ0(X)

over and under Bπ0(X) from (10) induces

j∗ : Extζ(X,Z)→ Extζ′χ(X,Z ′)

which is a group homomorphism by the identities (11).
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The χ-equivariant rational isomorphism g : Y → Y ′ induces [10, Corollary
4.2] a χ-equivariant rational isomorphism Z(g) : Z(Y )→ Z(Y ′).

Lemma 3.8. Let h : X → X ′ be a homomorphism and g : Y → Y ′ a χ-
equivariant rational isomorphism.

(1) The pull back ( 15) along h is an affine map with

h∗ : ExtZρ′(X ′, Z(Y ′))→ ExtZρ′π0(h)(X,Z(Y ′))

as its corresponding operator group homomorphism.
(2) The push forward ( 17) along g is an affine map with

Z(g)∗ : ExtZρ(X,Z(Y ))→ ExtZρ′χ(X,Z(Y ′))

as its corresponding operator group homomorphism.

Proof. (i) It is immediate that ∆(h∗G
′, h∗H ′) = h∗∆(G′, H ′) for all G′, H ′ ∈

Extρ′(X ′, Y ′).
(ii) In the diagram

B2Z(Y )hρπ0X
//uG

��
B2Z(g)hX

B2Z(Y )Zρπ0X

��
B2Z(g)hX

B2(Y ′)hρ′χπ0X
//

ug∗(G)
B2Z(Y ′)hZρ′χπ0X

the left vertical map is the one defined in Lemma 2.2 and the right vertical
map is, despite the notational coincidence, the one defined in formula (10).
However, all maps in this diagram are maps over and under BX and as such
maps are essentially unique, cfr. the proof of Theorem 3.4, B2Z(g)hX ◦uG and
ug∗G ◦ B

2Z(g)hX are homotopic over and under BX. Hence Z(g)∗∆(−, G) =
∆(g∗(−), g∗G).

For the final result of this section, suppose that the rational isomorphism
g : Y → Y ′ is π0(h)-equivariant such that push forward along g and pull back
along h

Extρ(X,Y )
g∗
−→ Extρ′π0(h)(X,Y ′)

h∗

←− Extρ′(X ′, Y ′)

have the same target.

Theorem 3.9. Assume that Y and Y ′ are locally isomorphic connected, com-
pletely reducible p-compact groups. Then there exists an extension homomor-
phism of the form

Y

��
g

// G

��

// X

��
h

Y ′ // G′ // X ′

if and only if g∗(G) = h∗(G′) in Extρ′π0(h)(X,Y ′).
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Proof. Precomposition with the map BG −→ B(g∗G) under Bg and over BX
and postcomposition with the map B(h∗(G′)) −→ BG′ under BY ′ and over Bh
induce a fibre map

map(BY ′, BY ′)B1
//

��
Bg ≃

fibmap(B(g∗G), B(h∗(G′))B1
B1

//

��

BX

map(BY,BY ′)Bg
// fibmap(BG,BG′)Bg

Bh
// BX

of fibred mapping spaces. Since Y and Y ′ are completely reducible, this is a
fibre homotopy equivalence [12, Theorem 3.11]. Hence one of the two fibrations
admits a section if and only if the other one does.

A Lie group version of the material contained in this section can be found
in Notbohm [14].

4. Approximations

In this section obstruction theory is used to equate Ext-affine groups in
certain advantageous situations.

As in the previous sections, X is any p-compact group, Y is a connected
p-compact group, Z is an abelian p-compact (toral) group with discrete ap-
proximation Ž, and ρ : π0(X)→ Out(Y ) and ζ : π0(X)→ Aut(Ž) = Out(Z)
are homotopy actions.

Lemma 4.1. Suppose that the identity component X0 of X is simply con-
nected. Then the component homomorphism π0 : X → π0(X) induces bijections

π∗
0 : Extρ(π0(X), Y )→ Extρ(X,Y )

π∗
0 : Extζ(π0(X), Z)→ Extρ(X,Z)

of equivalence classes of extensions.

Proof. Since the composite map BX0 −→ BX −→ Bπ0(X) is nonessential, the
homotopy orbit space B2Z(Y )hX0

≃ B2Z(Y ) × BX0 and the homotopy fixed
point space B2Z(Y )hX0 ≃ map(BX0, B

2Z(Y )) ≃ B2Z(Y ) because BX0 is 3-
connected by Browder [6] [13, Corollary 5.6]. Hence [8, Lemma 10.5, Remark
10.8]

B2Z(Y )hX ≃ (B2Z(Y )hX0)hρπ0(X) ≃ B2Z(Y )hρπ0(X)

and these homotopy equivalences induce bijections

Extρ(X,Y ) = π0(B
2Z(Y )hρπ0X) = π0(B

2Z(Y )hρπ0(X)) = Extρ(π0(X), Y )

of Ext-sets. This proves the lemma for extensions of X by Y ; extensions of X
by Z are handled similarly.

The referee pointed out the following
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Corollary 4.2. Suppose that X is a connected and simply connected p-compact
group. Then every extension of X by Y is equivalent to the trivial extension
Y −→ Y ×X −→ X.

The structure maps (5) and (6) on B2ŽhAut(Ž) make Extζ(X, Ž) into an
abelian group and the map

e∗ : Extζ(X, Ž)→ Extζ(X,Z),

induced by fibrewise completion e : B2ŽhAut(Ž) → B2ZhOut(Z), into an abelian
group homomorphism.

The next lemma shows that extensions of X by Z have unique fibrewise
discrete approximations if the identity component of X is semisimple.

A connected p-compact group is said to be semisimple if its fundamental
group or, equivalently [13, Theorem 5.3], its center is finite.

Lemma 4.3. The above group homomorphism e∗ is surjective and also injec-
tive provided the identity component X0 of X is semisimple.

Proof. The sets Extζ(X, Ž) and Extζ(X,Z) correspond to vertical homotopy
classes of the lifts indicated by dashed arrows in the diagram

Bπ0(X) B2Zhζπ0(X)
oo B2Žhζπ0(X)

oo e

BX

OO

Bπ0

88p
p

p
p

p
p

33gggggggggggg

where the two spaces to the right are total spaces for the pull backs of the
classifying fibrations (3) and (4) along Bζ : Bπ0(X)→ BAut(Ž) = BOut(Z).

The obstruction to lifting a map BX −→ B2Zhζπ0(X) to B2Ž(Y )hζπ0(X)

lives in H3(BX;V ) as the fibre of ehπ0(X) is B2V for some rational vector
space V [7, Proposition 3.2]. Since π3(BX) = π2(X) = 0 [6], [13, Corol-
lary 5.6], there exists a 4-connected map BX −→ B to a 2-stage Postnikov
tower B with fundamental group π1(B) ∼= π0(X) and π2(B) ∼= π1(X). Hence
H3(BX;V ) ∼= H3(B;V ) and as H∗(π1(X), 2;V ) is a rational vector space,
H3(B;V ) ∼= H0(π0(X);H3(π1(X), 2;V )) by the Serre spectral sequence with
local coefficients. Universal Coefficients and [15, Theorem V.7.8] asserting that
H3(π1(X), 2) = 0 imply that the coefficient group H3(π1(X), 2;V ) = 0. We
conclude that the obstruction group H3(BX;V ) vanishes. This shows that
Extζ(X, Ž) maps onto Extζ(X,Z).

The obstruction to lifting a vertical homotopy to B2Žhζπ0(X) lives in
H2(BX;V ) ∼= H2(B;V ) ∼= H0(π0(X); Hom(π1(X), V )) which vanishes if the
fundamental group π1(X) is finite. This shows that the map in the lemma is
injective provided X0 is semisimple.
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For a p-compact torus T of rank one [8, 6.3], Ext(T, Ť ) ∼= [BT,BŤ ] ∼= Ť
while Ext(T, T ) ∼= [BT,B2T ] = 0 so the map e∗ of Lemma 4.3 is not injective
in case X = T = Z.

There exists a version of Lemma 4.3 allowing the fibres to be arbitrary,
not just abelian, p-compact toral groups.

We now know that in case the identity component X0 is semisimple and
Extρ(X,Y ) 6= ∅, there are bijections

Extρ(X,Y )
∆(−,G)
−−−−−→

∼=
ExtZρ(X,Z(Y ))←−

∼=
ExtZρ(X, Ž(Y ))

where the right hand group is isomorphic to the cohomology group
H2

Zρ(BX; Ž(Y )). If X0 is even simply connected, there are bijections

Extρ(X,Y ) ExtZρ(π0(X), Ž(Y ))

��
∼=

Extρ(π0(X), Y )

OO

π∗

0
∼=

//∆(−,G)

∼=
ExtZρ(π0(X), Z(Y ))

where the upper right corner group is isomorphic to the cohomology group
H2

Zρ(π0(X); Ž(Y )). Note, however, that the bijection ∆(−, G), depending on
the choice of the extension G, is noncanonical.

Now follows an alternative description of the Theorem 3.4 difference
∆(H,G) between two short exact sequences Y −→ G −→ X and Y −→ H −→ X
in Extρ(X,Y ).

Proposition 4.4. There exists a homotopy equivalence

Λ: B∆(H,G)→ fibmap(BG,BH)B1
B1

over BX.

Proof. Let Bk = BkhOut(Y ) : BP (Y )hOut(Y ) → B2Z(Y )hOut(Y ) denote the pro-
jection map of and λ : W → map(I,BP (Y )hOut(Y )) a connection [15, p. 29] for
the universal fibration (2); i.e. λ assigns to any element of

W = {(x, u) ∈ BP (Y )hOut(Y ) ×map(I,B2Z(Y )hOut(Y )) | Bk(x) = u(0)}

a path λ(x, u) in BP (Y )hOut(Y ) starting at λ(x, u)(0) = x and lying over
Bk(λ(x, u)) = u.

The fibres over any b ∈ BX of BG −→ BX, BH −→ BX are the fibres
Bk−1(G(b)), Bk−1(H(b)) and the fibre of B∆(G,H) −→ BX is the space of
vertical paths u in B2Z(Y )hOut(Y ) from G(b) to H(b). Define

Λ: B∆(H,G)→ fibmap(BG,BH)B1
B1

as the map overBX taking u to the map λ(−, u)(1) : Bk−1(G(b))→ Bk−1(H(b)).
The restriction of Λ to the fibre over the basepoint (where the classify-
ing maps G and H have the same value) is the monodromy ΩB2Z(Y ) −→



18 J. M. MØLLER

map(BY,BY )B1 for the universal fibration (1), hence a homotopy equiva-
lence.

Thus also

fibmap(BG,−)B1
B1 : Extρ(X,Y )→ ExtZρ(X,Z(Y ))

is a bijection.

The evaluation map Bµ : BY ×map(BY,BY )B1 → BY is a left action
µ : Y × Z(Y )→ Y of Z(Y ) on Y . Using the alternative description of Proposi-
tion 4.4 of the difference ∆(H,G) it is immediate that µ extends to a morphism

Y × Z(Y )

��
µ

// ∆∗(G×∆(H,G))

��

// X

Y // H // X

of extensions. This property characterizes ∆(H,G) as an operator on
Extρ(X,Y ).

Corollary 4.5. Let Z(Y ) −→ ∆ −→ X be a short exact sequence representing
an element ∆ ∈ ExtZρ(X,Z(Y )). Then G+∆ = H in Extρ(X,Y ) if and only
if the action µ extends

Y × Z(Y )

��
µ

// ∆∗(G×∆)

��

// X

Y // H // X

to a morphism over X.

Proof. The fibrewise adjoint of such a fibre map is an equivalence between ∆
and ∆(H,G) = fibmap(BG,BH)B1

B1.

Corollary 4.5 concludes this section.

5. Rational automorphisms of non-connected p-compact groups

The purpose of this section is to investigate the monoid of rational auto-
morphisms of not necessarily connected p-compact groups.

Let Y −→ G −→ π be a short exact sequence of p-compact groups,
where Y is connected and π is a finite p-group, representing an element
G ∈ Extρ(π, Y ), ρ : π → Out(Y ) being the monodromy. (According to the re-
marks after Lemma 4.3, Extρ(π, Y ) is in bijection with the cohomology group
H2

Zρ(π; Ž(Y )).)
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The pull back diagram

mapEnd(π)(BG,BG)

��

// map(BG,BG)

��
End(π) // map(BG,Bπ)

where the bottom map takes χ : π → π to BG −→ Bπ
Bχ
−−→ Bπ, serves as defi-

nition of the space in the upper left corner. Thus mapEnd(π)(BG,BG) consists
of self-maps of BG over maps Bχ : Bπ → Bπ induced from endomorphisms of
the group π.

Recall that End(G) = [BG, ∗;BG] denotes the monoid of based homotopy
classes of based self-maps of BG.

Lemma 5.1. π0 mapEnd(π)(BG,BG) ∼= End(G).

Proof. The above pull back diagram of free mapping spaces also has a based
version

mapEnd(π)(BG, ∗;BG)

��

// map∗(BG,BG)

��
End(π) //

≃
map∗(BG,Bπ)

defining the space in the upper left corner. Thus mapEnd(π)(BG, ∗;BG) is the
space of based self-maps of BG over maps Bχ : Bπ → Bπ induced from endo-
morphisms of the group π. Note that in this based version, the horizontal maps
are homotopy equivalences [11, Lemma 2.2]. Thus we have monoid homomor-
phisms

π0(mapEnd(π)(BG,BG))←− π0(mapEnd(π)(BG, ∗;BG))
∼=
−→ End(G)

where the right hand arrow actually is an isomorphism. Also the left hand
arrow is an isomorphism for, as the fibre BY is simply connected, two vertically
homotopic fibre maps are also based vertically homotopic.

The submonoid εQ(G) ⊆ End(G) = π0 mapEnd(π)(BG,BG) of rational
automorphisms of G thus consists of all vertical homotopy classes of fibre maps
of the form (f,Bχ) where f : BG→ BG restricts to a rational automorphism
f |BY : BY → BY on the fibre BY . Consider the monoid homomorphism

λ : εQ(G)→ End(π)× εQ(Y )

that to the fibre self-map (f,Bχ) associates the pair consisting of χ ∈ End(π)
and the restriction f |BY ∈ εQ(Y ).

Let EndQ(π, Y ) ⊆ End(π) × εQ(Y ) denote the submonoid consisting
of pairs (χ, g) where g is χ-equivariant. EndQ(π, Y ) contains the submonoid
EndQ(π, Y )G of elements (χ, g) for which χ∗(G) = g∗(G) in Extρχ(π, Y ).
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Theorem 5.2. Suppose that the connected component Y of G is completely
reducible. Then there exists a short exact sequence

0 −→ H1
Zρ(π; Ž(Y )) −→ εQ(G)

λ
−→ EndQ(π, Y )G −→ 1

of monoids. For any pair (χ, g) ∈ EndQ(π, Y )G, there is a bijection between the
inverse image λ−1(χ, g) and the cohomology group H1

Zρχ(π; Ž(Y )).

Proof. The image of λ equals εQ(π, Y )G by Theorem 3.9. The kernel of λ is
the group of vertical homotopy classes of maps over Bπ with restriction to
BY homotopic to the identity. As a set, ker(λ) is in bijection with the vertical
homotopy classes of sections, π0((BZ(Y ))hπ), of the fibration

map(BY,BY )B1 −→ BZ(Y )hπ −→ Bπ(19)

with total space BZ(Y )hπ = fibmap(BG,BG)B1
B1. If f, g : BG→ BG are maps

over Bπ representing elements of ker(λ), let sf , sg denote the corresponding
sections of fibration (19). Note that sfg = f ◦ sg where f denotes the self-map

over Bπ of fibmap(BG,BG)B1
B1 given by composition with f . By Lemma 4.3,

fibration (19) has a fibrewise discrete approximation

BŽ(Y ) −→ BŽ(Y )hπ −→ Bπ.(20)

and the fibre of the fibrewise discrete approximation BŽ(Y )hπ −→ BZ(Y )hπ is
BV for some rational vector space V . The vanishing of the cohomology groups
H2(π;V ) and H1(π;V ) shows that in the situation

BŽ(Y )hπ

��
Bπ

::v
v

v
v

v
// BZ(Y )hπ

there are no obstructions to lifting maps or (vertical) homotopies. Thus fibre-
wise completion induces a bijection π0((BŽ(Y ))hπ) ∼= π0((BZ(Y ))hπ) and we
may view the section sf of (19) as a section of the fibrewise discrete approxima-
tion (20). Furthermore, since BŽ(Y )hπ is the classifying space of a p-discrete
toral group so that H1(BŽ(Y )hπ;V ) = 0 = H2(BŽ(Y )hπ;V ), similar consid-
erations applied to the situation

BŽ(Y )hπ

��

//_______ BŽ(Y )hπ

��
BZ(Y )hπ

$$JJJJJJJJJ

// BZ(Y )hπ

zzttttttttt

Bπ
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show that there is a bijection between vertical homotopy classes of self-maps
over Bπ of BZ(Y )hπ and vertical homotopy classes of self-maps over Bπ of
BŽ(Y )hπ. In particular, we may view the self-map f of BZ(Y )hπ as a self-map

of BŽ(Y )hπ.
Associate to f the primary difference [15, p. 299] δ1(sf , s1) ∈

H1
Zρ(π; Ž(Y )) between the sections (of fibration (20)) corresponding to f and

to the identity map. Then

δ1(sfg, s1) = δ1(sfg, sf ) + δ1(sf , s1)

= δ1(f ◦ sg, f ◦ s1) + δ1(sf , s1)

= (f)∗δ
1(sg, s1) + δ1(sf , s1)

= δ1(sg, s1) + δ1(sf , s1)

because f is homotopic to the identity map on the fibre BŽ(Y ). This compu-

tation shows that the bijection ker(λ) −→ H1
Zρ(π; Ž(Y )) : f −→ δ1(sf , s1) is a

group homomorphism.
For an arbitrary pair (χ, g) ∈ EndQ(π, Y )G, the inverse image λ−1(χ, g)

is in bijection with the vertical homotopy classes of sections of the fi-
bration fibmap(BG,BG)Bg

Bχ −→ Bπ, or, equivalently (see the proof of
Theorem 3.9), the vertical homotopy classes of sections of the fibration
fibmap(B(g∗G), B(χ∗G))B1

B1 −→ Bπ. Taking primary differences, as above, with
respect to some fixed section provides a (noncanonical) bijection λ−1(χ, g) −→
H1

Zρχ(π; Ž(Y )).

More explicitly, the elements of λ−1(χ, g) are represented by maps of the
form

BG −→ B(g∗G) −→ B(χ∗G) −→ BG

where the outer maps are fixed as the canonical ones [(16), (18)] and the mid-
dle arrow varies over all fibre homotopy equivalences over Bπ and under the
homotopy class of the identity map of BY .

The space of self-maps of BG over Bχ and homotopic to Bg
on the fibre BY is homotopy equivalent to the section space of
fibmap(B(g∗G), B(χ∗G))B1

B1 −→ Bπ, i.e. to the homotopy fixed point space

map(BY,BY )hπB1 ≃ BZ(Y )hπ,

which, by obstruction theory, is a disjoint union of classifying spaces of p-
compact toral groups.

Let Aut(π, Y ) and Aut(π, Y )G denote the subgroups of invertible elements
of EndQ(π, Y ) and EndQ(π, Y )G, respectively. The monoid short exact sequence
of Theorem 5.2 restricts to a short exact sequence

0 −→ H1
Zρ(π; Ž(Y )) −→ Aut(G)

λ
−→ Aut(π, Y )G −→ 1
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of groups. The equivalence class of this group extension is unknown but it is
perhaps worth noting that a somewhat similar group extension is determined
by a differential in a Lyndon-Hochschield-Serre spectral sequence [11].

Corollary 5.3. Suppose that Y is connected, completely reducible, and cen-
terfree p-compact group. Then Extρ(π, Y ) = {Y −→ G −→ π}, εQ(G) =
EndQ(π, Y ), and Aut(G) = Aut(π, Y ).

Proof. Apply Lemma 3.3 and Theorem 5.2.

Finally, a couple of examples to illustrate the use of Theorem 5.2.

Example 5.4. (1) The 2-compact group SO(2n + 1)∧2 , n ≥ 2, is centerfree.
Hence Extρ(π, SO(2n + 1)∧2 ) contains [Corollary 5.3] exactly one element G
with εQ(G) = EndQ(π, SO(2n + 1)∧2 ) and Aut(G) = Aut(π, SO(2n + 1)∧2 ) for
any given homotopy action ρ : π → Out(SO(2n+ 1)∧2 ).
(2) The center of the 2-compact group SO(2n)∧2 , n > 4, is cyclic of order 2 so the
affine group Extρ(π, SO(2n)∧2 ) of equivalence classes of short exact sequences
of 2-compact groups

SO(2n)∧2 −→ G −→ π

realizing a fixed homotopy action ρ : π → Out(SO(2n)∧2 ) has H2(π;Z/2) as
group of operators. Assume that the homotopy action ρ is injective. Since
εQ(SO(2n)∧2 ) = Aut(SO(2n)∧2 ) [10, Theorem 5.6] is abelian [9], it follows that
EndQ(π, SO(2n)∧2 ) = Aut(π, SO(2n)∧2 ) = Aut(SO(2n)∧2 ) consists of all auto-
morphisms. For any (equivariant) automorphism g of SO(2n)∧2 , Z(g) is the
identity map, so [Lemma 3.8] g∗ fixes G if and only if it fixes all elements
of Extρ(π, SO(2n)∧2 ). The short exact sequence of Theorem 5.2 implies that
εQ(G) = Aut(G).
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