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JESPER M. MØLLER

Abstract. We investigate the class of N -determined p-compact groups and

the class of p-compact groups with N -determined automorphisms. A p-compact

group is said to be N -determined if it is determined up to isomorphism by the
normalizer of a maximal torus. The automorphisms of a p-compact group are

said to be N -determined if they are determined by their restrictions to this

maximal torus normalizer.

1. Introduction

The p-compact groups, introduced by Dwyer and Wilkerson [6] as homotopy
theoretic Lie groups, have indeed turned out to possess an interesting and rich
structure [18, 7, 8, 14]. For instance, any p-compact group is equipped with a
maximal torus supporting a Weyl group action and the Borel construction of this
action provides the normalizer of the maximal torus. The theme of this paper is
the interrelation between this maximal torus normalizer and the p-compact group
itself. Specifically, I’d like to discuss whether

• automorphisms of p-compact groups are determined by their restrictions to
the maximal torus normalizer.
• p-compact groups are determined up to isomorphism by their maximal torus

normalizer.
The first of these two problems will be reduced to a computation of two obstruc-
tion groups. The second problem, cf. [13, 5.2], [20, 5.20], will be related to the
computation of yet another two obstruction groups. The main technical tools are
the induction principle based on the homology decomposition theorem of Dwyer
and Wilkerson [7, 8.1, 9.2] and the preferred lifts of [15] of monomorphisms of
elementary abelian p-groups into p-compact groups.

To be more explicit, let X be a p-compact group (for the sake of this introduction
assumed to be connected) and let N −→ X be the normalizer of a maximal torus.

Consider the groups Out(X) of homotopy classes of self-homotopy equivalences
of BX and Out(N) of homotopy classes of self-homotopy equivalences of BN .
There is a homomorphism

N : Out(X)→ Out(N) (1.1)

defined by restricting automorphisms of X to N . This homomorphism is set up
in Section 3. If (1.1) is injective, we say that X has N -determined automor-
phisms. Section 4 contains information about the class of p-compact groups with
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N -determined automorphisms. It is shown, for instance, that if the adjoint form
X/Z(X) has N -determined automorphisms, so does X itself. The conjecture that
all p-compact groups have N -determined automorphisms is reduced to the compu-
tation of the two Wojtkowiak obstruction groups of (2.1).

Let now X ′ be another connected p-compact group and assume that also X ′

admits a monomorphism N −→ X ′ that is conjugate to the normalizer of a maximal
torus . Does it follow that X and X ′ are isomorphic? If this is so for all choices of
X ′, we say that X is N -determined. I think of this as an alternative and perhaps
more geometric version of uniqueness than the cohomological uniqueness of e.g
[3, 4, 19, 1]. Section 5 contains a discussion of determinism (at primes p > 2). It
is shown, for instance, that if the adjoint form X/Z(X) is N -determined, so is X
itself. The conjecture that in fact all p-compact groups are N -determined is related
to the computation of the two Wojtkowiak obstruction groups from (2.2).

This paper should clarify the very last sentence of my Research Report [14].

2. Obstruction theory

LetX be a p-compact group and A(X) the category whose objects are pairs (V, ν)
where V is a nontrivial elementary abelian p-group and ν : V → X a conjugacy
class of monomorphisms. A morphism g : (V1, ν1)→ (V2, ν2) in this category is an
injection g : V1 → V2 with ν2 ◦ g conjugate to ν1.

Consider the functor BZ from A(X) to topological spaces given by

BZ(V, ν) = map(BCX(ν), BX)Be(ν)

where Be(ν) : BCX(ν) = map(BV,BX)Bν → BX is the evaluation mono-
morphism. By centricity [2], the space BZ(V, ν) is homotopy equivalent [7, 1.3]
to the classifying space map(BCX(ν), BCX(ν))B1 of the center Z(CX(ν)) of the
centralizer CX(ν).

The HFp-equivalence hocolimA(X)BCX(ν) −→ BX of the Homology Decomposi-
tion Theorem [7, 8.1] induces for any p-compact group X ′ a map

[BX,BX ′] −→ lim0
A(X)[BCX(ν), BX ′]

which, however, may be neither injective nor surjective. Nonetheless, Wojtkowiak’s
obstruction theory [22] provides some information.

Lemma 2.1. Let f : X → X be an endomorphism of the p-compact group X such
that f ◦ e(ν) and e(ν) are conjugate homomorphisms CX(ν) −→ X for each object
(V, ν) of A(X). If

lim1
A(X)π1(BZ(V, ν)) = 0 = lim2

A(X)π2(BZ(V, ν))

then f is conjugate to the identity.

Lemma 2.2. Let (Bf(ν))ν∈A(X) ∈ lim0[BCX(ν), BX ′] be a collection of centric
morphisms. If

lim2
A(X)π1(BZ(V, ν)) = 0 = lim3

A(X)π2(BZ(V, ν))

then there exists a morphism f : X → X ′ such that f ◦ e(ν) ' f(ν) for all objects
(V, ν) of A(X).

The morphism f(ν) : CX(ν)→ X ′ is centric if composition with Bf(ν) is a ho-
motopy equivalence map(BCX(ν), BCX(ν))B1 −→ map(BCX(ν), BX ′)Bf(ν).
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3. Normalizer homomorphisms

The aim of this section is to relate the automorphism group of a p-compact group
to that of the normalizer of a maximal torus.

For any loop space BG, let Aut(G) denote the group of invertible elements of the
monoid [BG, ∗;BG] of based homotopy classes of self-maps and let Out(G) denote
the group of invertible elements of the monoid [BG;BG] of free homotopy classes
of self-maps of BG. There is an exact sequence

π0(G) −→ Aut(G) −→ Out(G) −→ 1

reducing to an isomorphism Aut(G) ∼= Out(G) if G is connected.
Define BZ(G) := map(BG,BG)B1, the center of G. Any morphism f : G→ H

of loop spaces induces post- and precompostion maps

BZ(G) = map(BG,BG)B1

Bf
−−→

map(BG,BH)Bf
Bf←−− map(BH,BH)B1 = BZ(H)

between mapping spaces. Provided f is centric, i.e. Bf is a homotopy equivalence,
f determines a homomorphism of centers

Z(f) : Z(H)→ Z(G)

given by Bf ◦BZ(f) ' Bf . If the square of centric maps

G

f

��

g // G

f

��
H

h
// H

commutes up to conjugacy, then the induced square of centers

Z(G) Z(G)
Z(g)oo

Z(H)

Z(f)

OO

Z(H)
Z(h)
oo

Z(f)

OO

also commutes up to conjugacy. In particular, we obtain when H = G an antiho-
momorphism

Z : Out(G)→ Out(Z(G))
between groups of outer automorphisms.

Suppose that X is a connected p-compact group. Let j : N → X be the normal-
izer [7, 9.8] of a maximal torus i : T → X such that Bj : BN → BX is a fibration.
Let f ∈ Out(X) be an outer automorphism and consider the space (X/N)hN of
lifts

BN

Bj

��
BN

55llllllll
Bj
// BX

Bf
// BX

of Bf ◦Bj over Bj.

Lemma 3.1. [17, 5.1] (X/N)hN is contractible.
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According to this lemma, there exists a homomorphism

N : Out(X)→ Out(N) (3.2)

which to any f ∈ Out(X) associates the unique outer automorphism N(f) ∈
Out(N) that makes

N

j

��

N(f) // N

j

��
X

f
// X

(3.3)

commute up to conjugacy. Note also that

Bj : map(BN,BN)BN(f) → map(BN,BX)Bf◦Bj

is a homotopy equivalence and, in particular, that j is centric and induces a homo-
morphism Z(j) between centers.

Lemma 3.4. [7, 7.1] Z(j) : Z(X)→ Z(N) is an isomorphism if p is odd.

Proof. It follows from Shapiro’s lemma,

map(BN,BN) = map(BThWT (X), BN) = map(BT,BN)hWT (X),

and the homotopy equivalence [7, 10.6]

BCT (T )hWT (X) −→ BCN (T )hWT (X) = map(BT,BN)hWT (X)
Bi

induced from the WT (X)-equivariant homotopy equivalence BCT (T ) −→ BCN (T )
[15, 2.6], [6, 9.1] that BZ(N) = map(BN,BN)B1 is homotopy equivalent to the
identity component of BCT (T )hWT (X). Thus (the loop space of) the identity com-
ponent of BCŤ (Ť )hWT (X), where Ť −→ T is a discrete approximation [6, 6.4], is a
discrete approximation to Z(N) and also to Z(X) by [7, §7]. �

We now turn to the case of a possibly nonconnected p-compact group.
Let π be a finite group and assume that G is a π-loop space, i.e. a fibration

BG −→ BGhπ −→ Bπ of based spaces over Bπ with fibre BG. A π-automorphism
of the π-loop space G is a fibre homotopy equivalence of the form

BGhπ

��

Bfhχ // BGhπ

��
Bπ

Bχ
// Bπ

where χ is a group automorphism of π. We say that two such fibre maps, (Bfhχ, Bχ)
and (Bf ′hχ′ , Bχ

′), are homotopic if χ = χ′ and Bfhχ and Bf ′hχ′ are homotopic
over Bχ = Bχ′. Let Authπ(G) denote the group of homotopy classes of π-
automorphisms of the π-loop space G.

This new automorphism group is related to the ones previously introduced.

Remark 3.5. Let G be a π-loop space.
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• BZ(G) := map(BG,BG)B1 is a π-space and there is, cf. [16, 5.1, 5.2], a
short exact sequence of groups

1 −→ π0(BZ(G)hπ) −→ Authπ(G) −→ Aut(π)×Out(G)

where π0(BZ(G))hπ is the group of fibre homotopy classes of self-maps of
BGhπ over Bπ and under self-maps homotopic to the identity of BG. In
case G is a p-compact group or an extended p-compact torus and Ž(G) −→
Z(G) a discrete approximation, this group identifies to the cohomology
group H1(π; Ž(G)).
• There exists a commutative diagram

1 // π0(G) // π0(Ghπ)

��

// π

��

// 1

π0(G) // Aut(Ghπ)

��

// Authπ(G)

��

// 1

Out(Ghπ)

��

Out(Ghπ)

��
1 1

with exact rows and columns. In particular, Aut(Ghπ) ∼= Authπ(G) if G is
connected.

Consider a p-compact group Xhπ with identity component X and component
group π. The normalizer Nhπ of the maximal torus T −→ X −→ Xhπ is related to
the normalizer N of the maximal torus T −→ X by the commmutative diagram

N

j

��

// Nhπ

jhπ

��

// π

X // Xhπ
// π

with exact rows. Thus both N and X are π-loop spaces and j : N → X is a π-loop
space homomorphism.

Let fhχ ∈ Authπ(X) be a π-loop space automorphism and (Xhπ/Nhπ)hNhπ the
space of lifts

BNhπ

Bjhπ

��
BNhπ

44jjjjjjjjj

Bjhπ

// BXhπ
Bfhχ

// BXhπ

of Bfhχ ◦Bjhπ over Bjhπ.

Lemma 3.6. (Xhπ/Nhπ)hNhπ is contractible.

Proof. We have

(Xhπ/Nhπ)hNhπ ' (Xhπ/Nhπ)hN )hπ ' ((X/N)hN )hπ ' ∗

since (X/N)hN is contractible by (3.1). �
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Lemma 3.6 implies that there exists a homomorphism

Nhπ : Authπ(X)→ Authπ(N) (3.7)

that to any fhχ ∈ Authπ(X) associates the unique N(f)hχ ∈ Authπ(N) such that

BNhπ

Bjhπ

��

BN(f)hχ// BNhπ

Bjhπ

��
BXhπ

Bfhχ

// BXhπ

commutes up to vertical homotopy. In (3.7), Authπ(X) ∼= Aut(Xhπ) and
Authπ(N) ∼= WT (X0)\Aut(Nhπ).

Ignoring the π-structure, (3.6) also determines a homomorphism

N : Out(Xhπ)→ Out(Nhπ) (3.8)

such that N(f) for any f ∈ Out(Xhπ) is the unique outer automorphism of Nhπ
that makes

BNhπ

Bjhπ

��

BN(f)// BNhπ

Bjhπ

��
BXhπ

Bf
// BXhπ

commutative up to homotopy. The homomorphisms (3.7) and (3.8) are related by
a commutative diagram

π // Authπ(X)

Nhπ

��

// Out(Xhπ)

N

��

// 1

π // Authπ(N) // Out(Nhπ) // 1

(3.9)

with exact rows. In particular, Nhπ mono⇒ N mono and N epi⇒ Nhπ epi.

Definition 3.10. The p-compact group Xhπ has N -determined automorphisms if
the morphism Nhπ of (3.7) is injective.

If the component group π is trivial, i.e. Xhπ = X is connected, then Nhπ and N
are the same map.

There are p-compact groups with N -determined automorphisms.

Proposition 3.11. If the Weyl group order of X is prime to p, then X has N -
determined automorphisms.

This follows from

Lemma 3.12. H∗(Bj,Fp) : H∗(BX; Fp)→ H∗(BN; Fp) is an isomorphism if p 6 |
|π0(N)|.

Proof. Since BX is p-complete, the map Bj factors through a map (BN)∧p −→
BX. The domain of this map is a connected (Clark-Ewing) p-compact group with
maximal torus normalizer N [15, 1.2] and the map itself is an isomorphism of
p-compact groups since [18, 3.7] it is monomorphism (as the restriction to the p-
normalizer of the maximal torus is) and a rational equivalence [6, 9.7]. �
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4. N-determined automorphisms of p-compact groups

Let firstXhπ be a p-compact group with connected componentX and component
group π. We shall compare the two homomorphisms

Nhπ : Authπ(X)→ Authπ(N)

N : Out(X)→ Out(N)

of automorphism groups. Let ρ : π → Out(X) denote the monodromy action and

H1
Z−1ρ(π; Ž(X)) −→ H1

Z−1Nρ(π;Z(Ň)) (4.1)

the map induced on cohomology by the discrete approximation to Z(N(i)).

Proposition 4.2. Let Xhπ be a p-compact group with identity component X and
component group π. Suppose that X has N -determined automorphisms and that
(4.1) is a monomorphism. Then Xhπ has N -determined automorphisms.

Proof. The homomorphism Nhπ fits into a commutative diagram (3.5) with exact
rows

0 // H1
Z−1ρ(π; Ž(X))

��

// Authπ(X)

Nhπ

��

// Aut(π)×Out(X)

1×N
��

0 // H1
Z−1Nρ(π;Z(Ň)) // Authπ(N) // Aut(π)×Out(N)

where the outer vertical homomorphisms are injective. �

Recall (3.4) that at odd primes, (4.1) automatically is an isomorphism.

Example 4.3. If the order of the Weyl group of the identity component X is
prime to p and (4.1) is an isomorphism (e.g. if p > 2), then Xhπ has N -determined
automorphisms. Obviously, all p-compact toral groups have N -determined auto-
morphisms.

Next, let X be a connected p-compact group with center Z −→ X and adjoint
form X/Z. If i : T → X is a maximal torus for X with normalizer j : N → X,
then i/Z : T/Z → X/Z is a maximal torus for X/Z [18, 4.6] with normalizer
j/Z : N/Z → X/Z [15, 3.8].

We shall, for the benefit of the prime p = 2, need a slight refinement of the
homomorphism (3.2). The homomorphism

Z = Z(X)
Z(j)−−−→ Z(N) −→ N (4.4)

is a central monomorphism of extended p-compact toral groups [7, 7.7] (that equals
the center of N if p is odd (3.4)). Define Out(N,Z) to be the subgroup of Out(N)
consisting of those conjugacy classes of automorphisms f of N that preserve the
central monomorphism (4.4) in the sense that there exists some automorphism of
Z such that

Z //

��

Z

��
N

f
// N
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commutes up to conjugacy. (Out(N,Z) = Out(N) if p is odd.) Note, for instance
by using discrete approximations [7, 3.13], that the automorphism of Z, if it ex-
ists, is uniquely determined by f , so that we have a restriction homomorphism
|Z : Out(N,Z)→ Out(Z). Now note that the homomorphism (3.2) actually takes
values in the subgroup Out(N,Z) of Out(N) and that N(f)|Z = Z(f)−1 for all
f ∈ Out(X).

By naturality [6, 8.3] of the short exact sequence of p-compact groups

Z −→ X −→ X/Z

there is a homomorphism

(Z−1, /Z) : Out(X)→ Out(Z)×Out(X/Z) (4.5)

taking f ∈ Out(X) to (Z(f)−1, f/Z) where f/Z is the automorphism of the adjoint
form X/Z induced by Z(f)−1 and f . Observe that [17, 4.3] implies that (4.5) is
injective.

Similarly, naturality of the short exact sequence of extended p-compact toral
groups

Z −→ N −→ N/Z

allows us to define a group homomorphism

(|Z, /Z) : Out(N,Z)→ Out(Z)×Out(N/Z) (4.6)

taking f ∈ Out(N,Z) to the pair consisting of restriction f |Z of f to Z and the
quotient automorphism f/Z as above.

The group homomorphisms (4.5) and (4.6) are related by a commutative diagram

Out(X)

(Z−1,/Z)

��

N // Out(N,Z)

(|Z,/Z)

��
Out(Z)×Out(X/Z)

1×N/Z// Out(Z)×Out(N/Z)

(4.7)

and as left the vertical homomorphism (4.5) is injective, the next proposition is
immediate.

Proposition 4.8. Let X be a connected p-compact group with adjoint form X/Z.
If X/Z has N -determined automorphisms, so does X.

We now invoke the Homology Decomposition Theorem [7].

Theorem 4.9. Let X be a connected p-compact group. Assume that

(1) CX(ν) has N -determined automorphisms for each object (V, ν) of A(X).
(2) lim1

A(X)π1(BZ(V, ν)) = 0 = lim2
A(X)π2(BZ(V, ν)).

Then X has N -determined automorphisms.

Proof. Let f ∈ Out(X) be an outer automorphism with N(f) = 1. Let ν : V → X
be a monomorphism of a nontrivial elementary abelian p-group V to X with [15]
preferred lift µ : V → N to the normalizer of the maximal torus.
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Since f ◦ ν = f ◦ j ◦µ = j ◦N(f) ◦µ = j ◦µ = ν, f restricts to an automorphism
Cf (ν) of CX(ν) such that f ◦ e(ν) = e(ν) ◦ Cf (ν) and such that the diagram

CN (µ)

zzuuuuuuuuu

$$I
IIIIIIII

CX(ν)
Cf (ν) // CX(ν)

commutes up to conjugacy. By assumption (1), Cf (ν) is conjugate to the identity
of CX(ν) and f ◦ e(ν) ' e(ν). By assumption (2) and obstruction theory (2.1), f
is conjugate to the identity of X. �

Remark 4.10. If it can be shown that the obstruction groups of 4.9.(2) vanish
for any connected, centerfree p-compact group X, then (4.2, 4.8, 4.9) will, by the
induction principle of [7, §9], imply that all p-compact groups, p > 2, have N -
determined automorphisms.

Example 4.11. Let X = PU(3) and p = 3. There are, up to isomorphism, two
conjugacy classes, L1 and L2, of monomorphisms Z/3�X, and two conjugacy
classes, V1 and V2, of monomorphisms (Z/3)2�X. Their centralizers are

CX(L1) =
U(2)×U(1)

U(1)
CX(L2) = To〈σ〉

CX(V1) = T CX(V2) = V2

where T is the maximal torus, V1 consists of the elements of order 3 in T , σ is the
permutation matrix of the 3-cycle σ = (123), and V2 = 〈σ,diag(1, ζ, ζ2)〉 where ζ is
a primitive third root of unity. Note that these centralizers all have N -determined
automorphisms (4.3).

Of the rank two elementary abelian p-groups in X, only V2 has a centralizer
with disconnected center and the automorphism group of V2 as an object of the
category A(X) can be shown to be the special linear group SL(2, 3). Oliver’s
cochain complex [21] for the computation of the derived functors of the inverse
limit functor now shows that lim1

A(X)π1(BZ(V, ν)) = 0 since there are no nontriv-
ial SL(2, 3)-homomorphisms from the Steinberg representation St(V2) to V2. Also
lim2

A(X)π2(BZ(V, ν)) = 0 since there are no monomorphisms from a rank three
elementary abelian p-group to X.

Theorem 4.9 now implies that PU(3) (and hence also U(3) and SU(3)) has N -
determined automorphisms at p = 3 (and in fact at all odd primes). (Alternatively,
this follows from [9]; see Section 5)

For later use we note that Lemma 3.4 can be extended to nonconnected p-
compact groups whose identity component has N -determined automorphisms.

Corollary 4.12. Assume that X has N -determined automorphisms and that p is
odd. Then the maps

map(BNhπ, BNhπ)B1 −→ map(BNhπ, BXhπ)Bjhπ
←− map(BXhπ, BXhπ)B1

are homotopy equivalences.

Proof. The left map is a homotopy equivalence by Lemma 3.6. To see that also the
right map is a homotopy equivalence, it suffices by Shapiro’s lemma to see that the
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π-map map(BN,BXhπ)Bj ←− map(BX,BXhπ)Bj , where j denotes an appropriate
inclusion homomorphism, is a homotopy equivalence.

Since X has N -determined automorphisms, the orbit π · B1 ⊂ Out(X) of the
π-action on the identity map of BX is taken bijectively onto the orbit π · Bj ⊂
[BN,BX] of the π-action on Bj. This means that the fibre map

map(BN,BXhπ)Bj

��

map(BX,BXhπ)Bjoo

��
map(BN,Bπ)B0 map(BX,Bπ)B0

'oo

(4.13)

restricts to a bijection on the set of path components of the fibre. Since
also the restriction to a typical component of the fibre, map(BN,BX)Bj ←−
map(BX,BX)B1, is a homotopy equivalence by Lemma 3.4, we may conclude that
(4.13) is a (fibre) homotopy equivalence. �

5. The Lie case

The purpose of this section is to verify that compact Lie groups have N -
determined automorphisms (and that they do not contradict (7.2)).

Let G be any compact connected Lie group and let Ĝ denote G viewed as a
p-compact group, i.e. BĜ = (BG)∧p , where the prime p as in the previous section,
is assumed to be odd . Let N −→ Ĝ be the normalizer of a maximal torus T −→ Ĝ.
(This maximal torus as well as its normalizer can be obtained from Lie group
constructions.)

Proposition 5.1. [11, 3.5] N : Out(Ĝ)→ Out(N) is an isomorphism.

The proof of this proposition amounts to an interpretation of the fundamental
results obtained by Jackowski, McClure, and Oliver.

The Weyl group W = π0(N) of the Lie group G or, what is the same, the
p-compact group Ĝ acts on the short exact sequence

0 −→ π1(T ) −→ π1(T )⊗Q ε−→ Ť −→ 0
where Ť is the discrete approximation to T . We start by computing the first
cohomology group of Ť as a W -module.

Lemma 5.2. H1(W ; Ť ) = 0.

Proof. [9, 3.5] The Weyl group has a presentation

W = 〈R1, . . . , Rn|R2
i = 1, (RiRj)mij = 1, i 6= j〉

as a Coxeter group for certain integers mij . The equations

0 = (1 +Ri)(1−Ri), 1 =
1
2
(1 +Ri) +

1
2
(1−Ri),

which hold in the group ring Qp[W], imply that im(1 − Ri) = ker(1 + Ri) for all i
in any Qp[W]-module (p > 2).

Let now f : W → Ť be a 1-cocycle. It suffices to lift f to a 1-cocycle W −→
π1(T )⊗Q, i.e. to find vectors v1, . . . , vn ∈ π1(T )⊗Q such that ε(vi) = f(Ri) and

(1 +Ri)vi = 0 (5.3)

(1 + (RiRj) + · · ·+ (RiRj)mij−1)(vi +Rivj) = 0 (5.4)
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for all i and all i 6= j, respectively.
Since p is odd and the reflection Ri has order two, the cohomology group

H1(〈Ri〉; Ť ) is trivial. This means that f restricts to a 1-coboundary on the sub-
group 〈Ri〉, i.e.

f(Ri) ∈ im(1−Ri) = im(1−Ri)ε = ε(im(1−Ri)) = ε(ker(1 +Ri))

so that ε(vi) = f(Ri) for some vi ∈ ker(1 +Ri). Thus condition (5.3) is satisfied.
For i 6= j, the composition RiRj acts as rotation on the 2-dimensional subspace

ker(1 +Ri) + ker(1 +Rj) of π1(T )⊗Q. Since

vi +Rivj = vi + vj − (1−Ri)vj
belongs to this subspace, also condition (5.4) is satisfied. �

Proof of Proposition 5.1. Let Aut(W, Ť ) denote the subgroup of Aut(W )×Aut(Ť )
consisting of pairs (χ, φ) such that φ is χ-equivariant. The natural map

Aut(N) −→ Aut(W, Ť )

is injective since its kernel H1(W, Ť ) = 0 by (5.2), cf. [16, §5]. Thus also the induced
map of quotient groups

Out(N) =
Aut(N)
W

−→ Aut(W, Ť )
W

is injective.
According to Jackowski, McClure, and Oliver [11, 3.5], the composition

Out(Ĝ)
N // Out(N) // // Aut(W, Ť )

W

is an isomorphism. Hence both maps in the above diagram are isomorphisms. �

6. Centralizers

This section contains preparatory material for the proof of Proposition 7.10 and
Proposition 7.17.

Let X be a p-compact group, N an extended p-compact torus, and j : N → X
a monomorphism conjugate to the normalizer of a maximal torus T −→ X. If V
is a nontrivial elementary abelian p-group and ν : V → X a conjugacy class of a
monomorphisms, then a preferred lift of ν is a conjugacy class of monomorphisms
µ : V → N such that j ◦µ and ν are conjugate and the morphism CN (µ) −→ CX(ν)
induced by j is conjugate to the normalizer of a maximal torus.

For a preferred lift µ : V → N of a monomorphism ν : V → X, let A(µ) denote
the representation

V
π0(µ)−−−→ π0(N) −→ Aut(π1(N))

of V in the free Zp-module π1(N) = π1(T ).

Definition 6.1. The preferred lift µ is a special preferred lift of ν if the represen-
tation A(µ) fails to be faithful.

Note the following properties of special preferred lifts [15]:
• If CX(ν) has maximal rank [7, §4], the unique preferred lift of ν is special

(indeed, A(µ) is the trivial representation) [15, 4.8].
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• If X is connected, the unique preferred lift of any monomorphism
ν : Z/p→ X is special [15, 4.6, 4.9]
• If X is connected, any ν has a special preferred lift [15, Proof of 1.3].
• If X is connected, there exists for any monomorphism f : V1 → V2 between

nontrivial elementary abelian p-groups a special preferred lift µ2 of ν2 such
that µ2f is a special preferred lift of ν2f [15, Proof of 1.3].

It is possible to enumerate the preferred lifts in the rank two case.

Proposition 6.2. Let ν : (Z/p)2 → X be a monomorphism of a rank two elementary
abelian p-group into a connected p-compact group X.

(1) If the centralizer CX(ν) has maximal rank, then ν admits a unique (special)
preferred lift.

(2) If the centralizer CX(ν) is not of maximal rank, then the map µ −→ kerA(µ)
determines a bijection between the set of N -conjugacy classes of special
preferred lifts µ of ν and the set of nontrivial, proper subgroups of V .

Proof. The uniqueness of (special) preferred lifts in the maximal rank case is a
general fact [15, 4.8].

Assume now that the rank of the centralizer CX(ν) is less than the rank of X.
Let µ1 and µ2 be two special preferred lifts of ν. The associated representations
A(µ1) and A(µ2) have kernels of rank one since they are nontrivial and nonfaithful.

Suppose that kerA(µ1) and kerA(µ2) both equal the rank one subgroup L < V .
Then the restrictions µ1|L and µ2|L are conjugate for they are both preferred lifts
of ν|L; put µ|L = µ1|L = µ2|L. Write (Z/p)2 = L ⊕ L⊥ as a direct sum of L
and a complement L⊥ and let ν⊥ : L⊥ → CX(L), µ⊥1 , µ

⊥
2 : L⊥ → CN (µ|L) denote

the monomorphisms adjoint to ν, µ1, µ2, respectively, relative to this splitting of
(Z/p)2. Then CN (µ|L) is the normalizer of a maximal torus of CX(ν|L) and µ⊥1
and µ⊥2 are preferred lifts of ν|L. Since preferred lifts are unique in the rank one
case, µ⊥1 and µ⊥2 are conjugate in CN (µ|L) and, therefore, µ1 and µ2 are conjugate
in N .

Given any nontrivial and proper subgroup L < (Z/p)2 there exists a preferred
lift µ of ν such that µ|L is a preferred lift of ν|L. We then have kerA(µ) = L. �

Proposition 6.2 shows that, unless the centralizer is of maximal rank, any
monomorphism of a rank two elementary abelian p-group into a connected p-
compact group has exactly p+ 1 special preferred lifts.

Now follows a variation on the theme of centricity.
For any elementary abelian p-group V and any loop space Y , the mapping space

map(BV,BY ) as well as any of its components map(BV,BY )Bν = BCY (ν) are
spaces over BY by the evaluation maps. We say that a homotopy class of maps
BCY (ν) −→ map(BV,BY ) is a homotopy class over BY if

BCY (ν)

$$I
IIIIIIII

// map(BV,BY )

xxqqqqqqqqqq

BY

commutes up to homotopy.

Lemma 6.3. Let V be a nontrivial elementary abelian p-group and ν : V → X
a monomorphism with preferred lift µ : V → N . Suppose that p is odd and that
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CX(ν) has N -determined automorphisms. Then there is bijective correspondence
between homotopy classes BCN (µ) −→ map(BV,BN) over BN and homotopy
classes BCX(ν) −→ map(BV,BX) over BX.

The homotopy class BCN (µ) −→ map(BV,BN) over BN and the homotopy
class BCX(ν) −→ map(BV,BX) over BX correspond to each other if and only if
the diagram

BCN (µ)

��

// map(BV,BN)

��
BCX(ν) // map(BV,BX)

commutes up to homotopy.

Proof. The map BCY (λ) −→ map(BV,BY ) is a map over BY up to homo-
topy if and only if its adjoint BV −→ map(BCY (λ), BY )Be maps into the con-
nected component of the evaluation map Be : BCY (λ) = map(BV,BY )Bλ → BY ,
(Y, λ) = (N,µ), (X, ν). Thus we want to compare homotopy classes of maps BV −→
map(BCN (µ), BN)Be to homotopy classes of maps BV −→ map(BCX(ν), BX)Be.

By centricity [2], there are homotopy equivalences

map(BCN (µ), BCN (µ))B1 −→ map(BCN (µ), BN)Be
map(BCX(ν), BCX(ν))B1 −→ map(BCX(ν), BX)Be

and coupled with the general homotopy equivalences of (4.12) we see that
map(BCN (µ), BN)Be and map(BCX(ν), BX)Be are homotopy equivalent in such
a way so as to induce the asserted the correspondence. �

For the following lemma, let V1 and V2 be nontrivial elementary abelian p-groups
and ν1 : V1 → X, ν2 : V2 → X monomorphisms with preferred lifts µ1 : V1 → N ,
µ2 : V2 → N . Suppose that there exists a monomorphism g : V1 → V2 such that
µ2 ◦ g is conjugate to µ1. Then also ν2 ◦ g is conjugate to ν1 and g induces mor-
phisms g∗ : CN (µ2)→ CN (µ1) and g∗ : CX(ν2)→ CX(ν1).

Lemma 6.4. Suppose that p is odd and that CX(ν2) has N -determined automor-
phisms. Let γ : CX(ν2)→ CX(ν1) be any morphism such that the diagram

BCN (µ2)

��

Bg∗ // BCN (µ1)

��
BCX(ν2)

Bγ
// BCX(ν1)

commutes up to homotopy. Then Bγ is homotopic to Bg∗ : BCX(ν2)→ BCX(ν1)
induced by Bg.

Proof. By (6.3) it suffices to show that Bγ is a map over BX.
Let ν2 : V2 → CX(ν2) denote the canonical central factorization of ν2 through its

centralizer [6, 8.2]. Using that Bg∗ : BCN (µ2)→ BCN (µ1) obviously is a map over
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BN it follows that
BV2

Bν2

zzttttttttt
Bν2

""E
EE

EE
EE

EE

BCX(ν2)
Be◦Bγ

// BX

commutes up to homotopy, i.e. that Be◦Bγ is a map under BV2. Viewing BCX(ν2)
as the total space of the fibration

BV2
Bν2−−→ BCX(ν2) −→ B(CX(ν2)/V2),

the Shapiro lemma tells us that

map(BCX(ν2), BY ) = map((BV2)h(CX(V2)/V2), BY ) = map(BV2, BY )h(CX(V2)/V2)

with, for instance, Y = CX(ν2) or Y = X. Noting that the homotopy equivalence
map(BV2, BCX(ν2))Bν2 −→ map(BV2, BX)Bν2 induces a homotopy equivalence

map(BV2, BCX(ν2))
h(CX(ν2)/V2)
Bν2

−→ map(BV2, BX)h(CX(ν2)/V2)
Bν2

.

of homotopy fixed point spaces, we see that there exists a uniquely determined
endomorphism γ of CX(ν2) such that

BCX(ν2)

Bγ

��

Bγ // BCX(ν2)

Be

��
BCX(ν1)

Be
// BX

commutes up to homotopy.
Similarly, there exists a uniquely determined endomorphism of CN (µ2) such that

BCN (µ2)

Bg∗

��

// BCN (µ2)

Be

��
BCN (µ1)

Be
// BN

commutes up to homotopy; in fact, this endomorphism of CN (µ2) can only be the
identity.

By naturality of this construction, it follows that γ is an automorphism of CX(ν2)
that is covered by the identity map of CN (µ2) and, since CX(ν2) is assumed to have
N -determined automorphisms, γ itself must be conjugate to the identity. This
shows that Bγ is a map over BX up to homotopy. �

We now observe that for a connected p-compact group, the nontrivial center of
the p-normalizer of the maximal torus is contained in the maximal torus.

Lemma 6.5. Suppose that X is connected and let Np be the p-normalizer of the
maximal torus T −→ X. Then the center Z(Np) of Np has the form Z(Np) −→ T −→
Np and Z(Np) is a nontrivial abelian p-compact group.

Proof. The center of Np is nontrivial [5, 1.3] and the evaluation map BZ(Np) =
map(BNp, BNp)B1 −→ BNp factors through map(BT,BNp)Bi = BCNp

(T ) = BT
[18, 4.1], [15, 2.2]. �
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Finally a version of what is known as the “Zabrodsky lemma”.

Lemma 6.6. In the commutative diagram

E0

f0   A
AA

AA
AA

A
u // E1

f1~~}}
}}

}}
}

B

suppose that B is connected and that f0 and f1 are fibrations with fibres F0 and F1,
respectively. If u|F0 : F0 → F1 is null homotopic and if constant maps provide a
homotopy equivalence F1 −→ map(F0, F1)0, then there exists a section v of f1 such
that v ◦ f0 and u are vertically homotopic.

Proof. Let M −→ B be the fibration whose fibre over any point b ∈ B is
map(f−1

0 (b), f−1
1 (b))0. Constant maps provide a fibre homotopy equivalence

E1
' //

f1   A
AA

AA
AA

A M

~~~~
~~

~~
~~

B

so, since the adjoint of the lift u is a section of M −→ B, f1 admits a corresponding
section, v. �

7. N-determined p-compact groups

This section contains an investigation of the class of p-compact groups that are
determined by the normalizer of the maximal torus. It is a standing assumption
throughout the section that the prime p is odd.

Definition 7.1. The p-compact group X is N -determined if for any diagram of
morphisms of the form

X N
joo j′ // X ′

where
• X ′ is a p-compact group and N an extended p-compact torus
• j is conjugate to the normalizer of a maximal torus of X
• j′ is conjugate to the normalizer of a maximal torus of X ′

there exists an isomorphism f : X → X ′ such that fj ' j′.
A p-compact group is totally N -determined if it has N -determined automor-

phisms (3.10) and is N -determined.

Note that if X has N -determined automorphisms, then the isomorphism f , if it
exists, is unique up to conjugacy.

Total N -determinacy has strong consequences for automorphism groups.

Corollary 7.2. If the p-compact group Xhπ with component group π and identity
component is totally N -determined then the maps

Nhπ : Authπ(X)→ Authπ(N)

N : Out(Xhπ)→ Out(Nhπ)

are isomorphisms.
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Proof. It remains (3.9) to show surjectivity of the homomorphism N of (3.8). But
that follows immediately from Definition 7.1 since any square of the form

Nhπ
∼= //

��

Nhπ

��
Xhπ

//___ Xhπ

can be completed by an isomorphism. �

As shown in Section 5, compact connected Lie groups satisfy the conclusion of
Corollary 7.2. Thus Lie groups have N -determined automorphisms and might be
N -determined.

Now a few words about component groups to ensure that the π0-image of the
diagram of Definition 7.1 always can be completed.

Consider the Weyl representation w : π0(N)→ Aut(π1(N)⊗Q) of the compo-
nent group π0(N) = WT (X) in the Qp-vector space π1(N)⊗Q = π1(T)⊗Q. Recall
that an element s ∈ π0(N) is a reflection if w(s) is nontrivial and pointwise fixes a
hyperplane.

We want to characterize the Weyl group kerπ0(j) = WT (X0) of [18, 3.8] the
identity component X0 of X.

Lemma 7.3. Let s ∈ π0(N) be a reflection. Then

s ∈ kerπ0(j)⇔ ord(s) = ord(w(s)).

Proof. One direction follows from the fact [6, 9.7] that the Weyl representation is
faithful on the Weyl group of the identity component.

Suppose, conversely, that ord(s) = ord(w(s)). Since s is a reflection (and p is
odd) the order of w(s) is prime to p. Hence s is mapped to the unit of the finite
p-group π0(X). �

Corollary 7.4. The subgroup kerπ0(j) of π0(N) is generated by the set of reflec-
tions s ∈ π0(N) with ord(s) = ord(w(s)).

Proof. By [6, 9.7], the subgroup kerπ0(j), which is the Weyl group of the identity
component, is generated by the reflections that it contains. �

Remark 7.5. Let ν : V → X be a monomorphism which admits a factorization
µ : V → T through the maximal torus. The component group

π0(CN (µ)) = Wµ

is the isotropy subgroup of Bµ for the W -action on [BV,BT ] = Rep(V, T ), and
by (7.3), the component group π0(CX(ν)) is isomorphic to the quotient of Wµ by
the normal subgroup generated by the set of reflections it contains. In particular,
CX(ν) is connected if and only if Wµ is a reflection group.

It follows from (7.4) that kerπ0(j) = kerπ0(j′) so that in the situation of Defi-
nition 7.1 there exists a unique isomorphism

ϕ : π0(X) = π0(N)/ kerπ0(j)→ π0(X ′) = π0(N)/ kerπ0(j′) (7.6)

such that ϕ ◦ π0(j) = π0(j′).
Note also that the class of N -determined p-compact groups is nonempty.
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Proposition 7.7. If p does not the Weyl group order of X, in particular if X is a
p-compact torus, then X is N -determined.

Proof. If the Weyl group order of X is prime to p, the p-completions of Bj and Bj′

are homotopy equivalences (3.12). �

Proposition 7.8. Suppose that the identity component X0 of the p-compact group
X is totally N -determined. Then X itself is totally N -determined.

Proof. It remains (4.2) to show that X is N -determined.
Let BX0, BN0, BX ′

0 be the fibres of BX −→ Bπ0(X), BN −→ Bπ0(N) −→
Bπ0(X), BX ′ −→ Bπ0(X ′), respectively, and let X0

j0←− N0
j′0−→ X ′

0 be the restric-
tions of j, j′. Since X0 is assumed to be N -determined, there exists an isomorphism
f0 : X0 → X ′

0 with Bf0 ◦Bj0 ' Bj′0.
The map Bf0 is a π0(X)-map in the sense that Bf0 ◦ ξ ' ϕ(ξ) ◦ Bf0 for any

ξ ∈ π0(X) acting by monodromy on BX0. To see this, note that the restriction
map [BX0, BX

′
0] −→ [BN0, BX

′
0] is injective on the subset of isomorphisms since

X0 is assumed to have N -determined automorphisms and that Bf0 ◦ ξ ◦ Bj0 '
Bf0 ◦Bj0 ◦ ξ ' Bj′0 ◦ ξ ' ϕ(ξ) ◦Bf0 ◦Bj0.

Because Bf0 is a π0(X)-map, the mapping space map(BX0, BX
′
0)Bf0 is a π0(X)

space. Composition with Bj induces a homotopy equivalence (3.4)

map(BX0, BX
′
0)
hπ0(X)
Bf0

−→ map(BN0, BX
′
0)
hπ0(X)
Bj′0

and since the homotopy fixed point space to the right is nonempty – it contains Bj′

– the homotopy fixed point space to the left is also nonempty: It contains a fibre
homotopy equivalence Bf : BX → BX ′ over Bπ such that Bf ◦ Bj is vertically
homotopic to Bj′. �

Example 7.9. If the order of the Weyl group of the identity component X of Xhπ

is prime to p > 2, then X is totally N -determined (3.11,7.7), so (7.8) Xhπ is also
totally N -determined and (7.2) Authπ(X) ∼= Authπ(N) and Out(Xhπ) ∼= Out(Nhπ)
All p-compact toral groups, in particular, are totally N -determined.

Proposition 7.10. Let X be a connected p-compact group with center Z(X) −→ X.
If the adjoint form X/Z(X) is N -determined, X itself is N -determined.

Proof. Let N be an extended p-compact torus, X ′ a connected p-compact group
with center Z(X ′) −→ X ′ and suppose that there exist morphisms, j : N → X and
j′ : N → X ′, that are conjugate to normalizers of maximal tori. The induced mor-
phisms of centers, Z(j) : Z(X)→ Z(N) and Z(j′) : Z(X ′)→ Z(N), are isomor-
phisms since p is assumed to be odd. In the induced commutative diagram

Z(X)

��

Z(N)
Z(j)−1

∼=
oo Z(j′)−1

∼=
//

��

Z(X ′)

��
X

��

N
joo j′ //

��

X ′

��
X/Z(X) N/Z(N)

j/Z
oo

j′/Z

// X ′/Z(X ′)

(7.11)
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the morphisms j/Z and j′/Z are conjugate to normalizer of maximal tori so
since X/Z(X) is assumed to be N -determined there exists an isomorphism
f/Z : X/Z(X)→ X ′/Z(X ′) such that B(f/Z) ◦B(j/Z) ' B(j′/Z).

Our aim is to complete the diagram

Z(X)

��

Z(f)−1

∼=
// Z(X ′)

��
X

��

//______ f
X ′

��
X/Z(X)

f/Z

∼= // X ′/Z(X ′)

by an isomorphism f such that Bf ◦Bj ' Bj′; here Z(f)−1 := Z(j′)−1 ◦ Z(j).
We shall consider the following diagram of fibered mapping spaces derived from

diagram (7.11)

map(BZ(X), BZ(X ′))BZ(f)
// BZ(X ′)h(X/Z(X))

// B(X/Z(X))

map(BZ(X), BZ(X ′))BZ(f)

'
��

// BZ(X ′)h(N/Z(N))

OO

��

// B(N/Z(N))

B(j/Z)

OO

map(BZ(N), BZ(X ′))BZ(j′)−1 // BZ(X ′)h(N/Z(N))
// B(N/Z(N))

where
• in the bottom horizontal fibration, the fibre over any point b ∈ B(N/Z(N))

is map(BNb, BX ′
B(j′/Z)(b))BZ(j′)−1

• in the middle horizontal horizontal fibration, the fibre over any point b ∈
B(N/Z(N)) is map(BXB(j/Z)(b), BX

′
B(j′/Z)(b))BZ(f)

• in the top horizontal fibration, the fibre over any point b ∈ B(X/Z(X)) is
map(BXb, BX

′
B(f/Z)(b))BZ(f)

• the map of the middle fibration to the bottom fibration is induced by Bj
• the map of the middle fibration to the top fibration is induced by B(j/Z).

Note that the bottom fibration admits a section adjoint to the fibre map Bj′.
Thus also the middle fibration admits a section. By (6.6) this section will be the
pull back of a section of the top fibration provided

(1) X/N −→ map(BZ(X), BZ(X ′))BZ(f) is null homotopic
(2) X/N −→ map(X/N,BZ(X ′))0 is a homotopy equivalence.

The first condition is satisfied because the restriction to the fibre X/N ⊆
B(N/Z(N)) of the middle fibration is trivial and the section corresponds to the
constant map of X/N into map(BZ(X), BZ(X ′))BZ(f). To see that the sec-
ond condition is satisfied, recall that map(BZ(X), BZ(X ′))BZ(f) ' BZ(X ′) '
K(A, 1)×K(Zp,2)r for some finite abelian p-group A and that π1(X/N) ∼= WT (X)
is finite.

This section of the top fibration is adjoint to a map Bf : BX → BX ′ over
B(f/Z) and under BZ(f) such that Bf ◦Bj ' Bj′. �
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From now on, let X and X ′ be two connected, centerfree p-compact groups and
N an extended p-compact torus with monomorphisms

X N
joo j′ // X ′ (7.12)

conjugate to normalizers of maximal tori. Also, make the induction hypothesis that
all centralizers CX(ν), (V, ν) ∈ Ob(A(X)), have N -determined automorphisms and
are N -determined.

We shall first see that the special preferred lifts are the same for X and X ′. (The
proof was communicated to me by Bill Dwyer.)

Lemma 7.13. Let µ : V → N be a monomorphism of a nontrivial elementary
abelian p-group V into N . Then µ is a special preferred lift of jµ if and only
if µ is a special preferred lift of j′µ.

Proof. Put ν = jµ and ν′ = j′µ and assume that µ is a special preferred lift of
ν. Let L < V denote the (nontrivial) kernel of the representation A(µ). Then µ|L
is the unique preferred lift of ν|L and of ν′|L. Let (if L 6= V ) L⊥ be a comple-
ment to L and µ⊥ : L⊥ → CN (µ|L), ν⊥ : L⊥ → CX(ν|L), (ν′)⊥ : L⊥ → CX′(ν′|L)
the monomorphisms that are adjoint to µ, ν, ν′, respectively. By the above induc-
tion hypothesis there exists an isomorphism CX(ν|L) −→ CX′(ν′|L) under CN (µ|L)
inducing an isomorphism

CX(ν) = CCX(ν|L)(ν⊥) −→ CCX′ (ν′|L)((ν′)⊥) = CX′(ν′)

under CCN (µ|L)(µ⊥) = CN (µ). Thus µ is also a preferred lift of ν′. �

For any object (V, ν) of A(X), let SPL(V, ν) ⊂ [BV,BN ] denote the set of conju-
gacy classes of special preferred lifts of (V, ν). Note that the automorphism group
Aut(V, ν) of (V, ν), consisting of those automorphisms α of V for which να and ν
are conjugate, acts on the set SPL(V, ν).

Let A(N) be the category whose objects (V, µ) are conjugacy classes of monomor-
phisms µ : V → N of nontrivial elementary abelian p-groups into N such that µ is
a special preferred lift of jµ and j′µ. A morphism α : (V1, µ1)→ (V2, µ2) in A(N)
is a monomorphism α : V1 → V2 such that µ1 and µ2α are conjugate. The mor-
phisms j and j′ induce full functors A(X) ←− A(N) −→ A(X′) that restrict (see the
remarks immediately after Definition 6.1) to isomorphisms on the full subcategories
A1(X) ∼= A1(N) ∼= A1(X′) of rank one objects.

Lemma 7.14. Let α : (V1, µ1)→ (V2, µ2) be a morphism in A(N). Then the dia-
gram

CX(jµ2)

f(µ2)

��

α∗ // CX(jµ1)

f(µ1)

��
CX′(j′µ2)

α∗
// CX′(j′µ1)

commutes up to conjugacy where f(µ1) : CX(jµ1)→ CX′(j′µ1) is the isomorphism
under CN (µ1) and f(µ2) : CX(jµ2)→ CX′(j′µ2) the isomorphism under CN (µ2).
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Proof. As the diagram

CX(jµ2)
α∗ //

f(µ2) ∼=

��

CX(jµ1)

f(µ1)∼=

��

CN (µ2)

ffLLLLLLLLLL

xxrrrrrrrrrr

α∗ // CN (µ1)

88rrrrrrrrrr

&&LLLLLLLLLL

CX′(j′µ2)
α∗

// CX′(j′µ1)

shows that f(µ1)−1 ◦α∗ ◦ f(µ2) is covered by α∗, we infer (6.4) that α∗ ◦ f(µ2) and
f(µ1) ◦ α∗ are conjugate morphisms. �

We shall now employ the fact that the cohomology of BX is determined by
A≤2(X) to find conditions under which the cohomological image of the diagram of
Definition 7.1 can be completed.

Proposition 7.15. In the situation of (7.12), assume (1) and either (2) or (3)
from the list

(1) Aut(V, ν) acts transitively on SPL(V, ν) for all (V, ν) ∈ Ob(A2(X)).
(2) Aut(V, ν′) acts transitively on SPL(V, ν′) for all (V, ν′) ∈ Ob(A2(X′)).
(3) Any two objects of A2(X) with isomorphic centralizers of less than maximal

rank are isomorphic.
Then H∗(Bj)H∗(BX; Fp) = H∗(Bג′)H∗(BX′; Fp) in H∗(BN ; Fp).

Proof. Assume first that hypotheses (1) and (2) hold. We are going to apply Oliver’s
cochain complex [21] to the covariant functor H(X) from A(X) to the category of
Fp-modules given by H(X)(V, ν) = H∗(BCX(V, ν)).

As noted above, there are bijective correspondences between the sets ε1(X) =
ε1(N) = ε1(X ′) of isomorphism classes of objects of the rank one subcategories.
Choose one representing object (L, µ) in each isomorphism class of A1(N) and let
(L, φ) = (L, jµ) and (L, φ′) = (L, j′µ) be the corresponding objects of A1(X) and
A1(X′). The isomorphisms f(µ) : CX(L, φ)→ CX′(L, φ′) under CN (L, µ) induce
an isomorphism

Φ =
∏

f(µ)∗ :
∏

(L,φ′)∈ε1(X′)

H(X ′)(L, φ′) −→
∏

(L,φ)∈ε1(X)

H(X)(L, φ)

which in turn induces an isomorphism of 0-cochains∏
(L,φ′)∈ε1(X′)

Hom(St(L),H(X ′)(L, φ′)) −→
∏

(L,φ)∈ε1(X)

Hom(St(L),H(X)(L, φ))

where St(L) is the Steinberg representation (in this case the trivial representation)
and Hom is taken in the category of Aut(L, φ) = Aut(L, φ′) representations.

The morphisms j and j′ induce full functors A2(X) ←− A2(N) −→ A2(X′) but
these full subcategories of rank two objects are not necessarily isomorphic since
in the rank two case special preferred lifts are not in general uniqely determined
(6.2). However, by hypotheses (1) and (2), special preferred lifts are unique up
to isomorphism and hence j and j′ induce bijections ε2(X) = ε2(N) = ε2(X ′) of
isomorphism classes of rank two objects in these three Quillen categories.
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Oliver defines in [21, Proposition 5] for each isomorphism class (E,ψ) ∈ ε2(X)
the coboundary map

δ(E,ψ) :
∏

(L,φ)∈ε1(X)

Hom(St(L),H(X)(L, φ)) −→ Hom(St(E),H(X)(E,ψ))

as the homomorphism that to a collection (c(L, φ)), (L, φ) ∈ ε1(X), of Aut(L, φ)-
homomorphisms of the domain associates the homomorphism

St(E) RE−−→ ⊕[E:A]=p St(A)
⊕c(A,ψ|A)−−−−−−−→ ⊕[E:A]=pH(X)(A,ψ|A)

⊕H(X)(iA)−−−−−−−→ H(X)(E,ψ)

where RE is a certain connecting homomorphism (which is surjective in this
case where E has rank two) and iA : A→ E is the inclusion. I claim that
Φ(ker δ(E,ψ′)) = ker δ(E,ψ), where (E,ψ) and (E,ψ′) correspond under the iden-
tification j′j−1 : ε2(X) = ε2(X ′).

Consider first the case where the centralizer CX(E,ψ) has maximal rank. Then
(E,ψ) has a unique preferred lift (E,µ) and for any rank one subgroup A of E,
(A,µ|A) is the preferred lift of (A,ψ|A). According to (7.14), the diagram

⊕H(X)(A,ψ|A)
⊕H(X)(iA) // ⊕H(X)(E,ψ)

⊕H(X ′)(A,ψ′|A)
⊕H(X′)(iA)

//

⊕f(µ|A)∗ ∼=

OO

⊕H(X ′)(E,ψ′)

⊕f(µ)∗∼=

OO

commutes. It follows that ker δ(E,ψ) and ker δ(E,ψ′) correspond under the iso-
morphism Φ in this case.

Next, consider the case where the rank of the centralizer CX(E,ψ) is less than
maximal. The p + 1 special preferred lifts µA of ψ are indexed (6.2) by the rank
one subgroups A < E. By hypothesis (1), µB = µAβ for some automorphism β of
(E,ψ). Then β(B) = A, (B,µB |B) = (B,µAβ|B) is isomorphic to (A,µA|A), and
(B, jµB) = (B,ψ|B) is isomorphic to (A, jµA) = (A,ψ|A). Hence the restrictions
(A,ψ|A) and (B,ψ|B) are isomorphic objects for all rank one subgroups A,B <
E. Let (L, φE) be this common isomorphism class and fA : (L, φE)→ (A,ψ|A) an
isomorphism. The commutative diagram

⊕St(A)
⊕c(A,ψ|A) // ⊕H(X)(A,ψ|A)

⊕H(X)(iA) // ⊕H(X)(E,ψ)

⊕St(L)
⊕c(L,φE)

//

⊕ St(fA)∼=

OO

⊕H(X)(L, φE)

∼= ⊕H(X)(fA)

OO

H(X)(fAiA)
// ⊕H(X)(E,ψ)

shows that ker δ(E,ψ) consists of those

(c(L, φ)) ∈
∏

(L,φ)∈ε1(X)

Hom(StL,H(X)(L, φ))

for which the coordinate c(L, φE) = 0. Similarly, ker δ(E,ψ′) is described by the
condition that c(L, φ′E) = 0 where (L, φE) corresponds to (L, φ′E) under the iden-
tification j′j−1 : ε1(X) = ε1(X ′). Therefore, Φ(ker δ(E,ψ′)) = ker δ(E,ψ) also in
this case of centralizers of less than maximal rank.
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From Oliver [21] and Dwyer and Wilkerson [5, 1.2] we know that the intersection
of the kernels ker δ(E,ψ) as (E,ψ) ranges over ε2(X) equals

lim0
A(X)H(X) = H∗(BX),

and similarly for X ′, and hence we obtain a commutative diagram of monomor-
phisms

H∗(BX)
��

��

// H∗(Bj) // H∗(BN)
��

��

H∗(BX ′)ooH∗(Bj′)oo
��

��∏
(L,φ)∈ε1(X)

H(X)(L, φ) // //
∏

(L,µ)∈ε1(N)

H(N)(L, µ)
∏

(L,φ′)∈ε1(X′)

H(X ′)(L, φ′)oooo

Φ

∼=
kk

where the isomorphism Φ restricts to an isomorphism between H∗(BX ′) and
H∗(BX). (Use (6.5) to get injectivity of the middle vertical arrow.)

Assume next that hypotheses (1) and (3) hold. As above, hypothesis (1) shows
that the full functor j : A2(N)→ A2(X) induces a bijection j : ε2(N)→ ε2(X) of
objects and we obtain a surjection

j′j−1 : ε2(X)�ε2(X ′) (7.16)

by composing j−1 with the surjection j′ : ε2(N)→ ε2(X ′). Since CX(V, ν) is as-
sumed to be N -determined, CX(V, ν) is isomorphic to CX′(j′j−1(V, ν)) for all
(V, ν) ∈ Ob(A2(X)). In particular, the surjection (7.16) takes objects with cen-
tralizers of less than full rank to objects of the same kind. By hypothesis (3),
(7.16) is injective on this subset of ε2(X). But (7.16) is also injective on the set
of isomorphism classes of objects with full rank centralizers since special preferred
lifts are unique in this case. Hence, (7.16) is in fact a bijection.

Let (E,ψ) be an object of A2(X) and (E,ψ′) an object of A(X′) representing
isomorphism classes that correspond under the bijection (7.16). Suppose that the
common rank of the centralizers CX(E,ψ) and CX′(E,ψ′) is less then maximal. Let
A < E be any rank one subgroup of E. As before, the isomorphism class of (A,ψ|A)
is independent of the choice of A and since (A,ψ′|A) corresponds to (A,ψ|A) under
the bijection ε1(X) = ε1(X ′), also the restriction (A,ψ′|A) is independent, up to
isomorphism, of A < E.

Taking these observations into account, the above argument under the assump-
tion of (1) and (2) also applies under the assumption of (1) and (3). �

It can be shown that the p-compact group BX = B PU(n)∧p , n ≥ 2, p > 2,
satisfies 7.15.(1) and 7.15.(3). In fact, there does not exist any monomorphism
(Z/p)2�X with centralizer of rank < n − 1 unless p divides n in which case there
exists an essentially unique such monomorphism and its automorphism group in
A(X) is SL(2, p) which acts transitively on the set (6.2) of special preferred lifts.
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When H∗(BX) and H∗(BX ′) have the same image in H∗(BN) there exists an
isomorphism Φ of algebras over the Steenrod algebra that makes the diagram

H∗(BN)

H∗(BX)
88

H∗(Bj)
88rrrrrrrrrr

H∗(BX ′)
Φ

∼=oo
ff

H∗(Bj′)
ffMMMMMMMMMM

commute. Since Quillen categories, by Lannes theory [12], only depend on cohomo-
logical information, this isomorphism induces an isomorphism Φ: A(X)→ A(X′) of
categories. On objects, Φ(V, jµ) = (V, j′µ) for all (V, µ) ∈ Ob(A(N)), and Φ(α) = α
for any morphism.

Proposition 7.17. In the situation of (7.12), assume that H∗(Bj)H∗(BX) =
H∗(Bj′)H∗(BX ′) in H∗(BN) and that

(1) Aut(V, ν) acts transitively on SPL(V, ν) for all objects (V, ν) of A(X).
(2) The isomorphism f(µ) : CX(jµ)→ CX′(j′µ) under CN (µ) is Aut(jµ)-

equivariant for any object (V, µ) of A(N) with centralizer of less than max-
imal rank.

(3) lim2
A(X)π1(BZ(V, ν)) = 0 = lim3

A(X)π2(BZ(V, ν)).

Then there exists an isomorphism f : X → X ′ such that f ◦ j is conjugate to j′.

Proof. Hypotheses (1) and (2) imply that all choices of special preferred lift
(V, µ) of (V, ν) lead to the same isomorphism f(µ) : CX(V, ν)→ CX′(Φ(V, ν)):
By hypothesis (1), all special preferred lifts of (V, ν) have the form (V, µα)
for some α ∈ Aut(V, ν) = Aut(Φ(V, ν)) and (7.14) f(µα) = α∗ ◦ f(µ) ◦
(α∗)−1 = f(µ) if we assume, as in hypothesis (2), that f(µ) is equivariant. Let
f(V, ν) : CX(V, ν)→ CX′(Φ(V, ν)) denote f(µ) for any special preferred lift µ.

Then (7.14) the centric morphisms

CX(V, ν)
f(V,ν)−−−−→ CX′(Φ(V, ν))

e(Φ(V,ν))−−−−−−→ X ′

define an element of lim0
A(X)[BCX(V, ν), BX ′]. By hypothesis (3), see also (2.2),

there exists an isomorphism f : X → X ′ such that f ◦ e(V, ν) = e(Φ(V, ν)) ◦ f(V, ν)
for all objects (V, ν) of A(X).

It remains to show that f ◦ j ' j′. By construction, f ◦ j|CN (µ) ' j′|CN (µ)
for any special preferred lift µ : V → N . Take V = Z/p and take µ : V → T to be
central in the Sylow p-subgroup Np (6.5). It then follows that f ◦ j|Np ' j′|Np
and, in particular, that f ◦ j|T : T → X ′ is the maximal torus of X ′.

The set of homotopy classes of maps BN −→ BX ′ under BT ,

π0(map(BT,BX ′)hWT (X′)
Bi′ ) = H2(WT (X ′);π2(BT )),

injects into the set of homotopy classes of maps BNp −→ BX ′ under BT ,

π0(map(BT,BX ′)hWT (X′)p

Bi′ ) = H2(WT (X ′)p;π2(BT )).

In particular, f ◦ j and j′ must be conjugate since their restrictons to Np are. �

It is clear that more work has to be done here before we can claim that the van-
ishing of the obstruction groups in condition 7.17.(3) for any centerfree, connected
p-compact group will imply that all p-compact groups are N -determined.
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Remark 7.18. By the Splitting Theorem of [8], it represents no loss of generality
to assume that X and X ′ are simple p-compact groups in Proposition 7.17. (This
is also necessary for hypothesis (1).) Note also that all assumptions (1), (2), and
(3) of (7.15) as well as (1) and (2) of (7.17) are satisfied in case H∗(BX) injects
into H∗(BT ) for then all centralizers of elementary abelian p-groups have maximal
rank and preferred lifts are unique.

Example 7.19. Let X = PU(3) and p = 3. All objects of A(X) have centralizers
that have N -determined automorphisms and are N -determined since they are p-
compact toral groups or (4.3,7.9) their Weyl groups have order prime to p. The
automorphism group, SL(2, 3), of V2 ∈ Ob(A2(X)), the only isomorphism class
with a centralizer of less then maximal rank, acts transitively on the set SPL(V2)
of (6.2) rank one subgroups of V2. Therefore (7.15), H∗(BX) and H∗(BX ′) have
the same image in H∗(BN) in the situation of (7.12). Any special preferred lift
µ : V2 → N of the centric morphism V2 −→ X must also be centric. Using this,
the diagram CX(V2) ←− CN (µ) −→ CX′(V2) identifies to a diagram V2 ←− V2 −→
V2 of SL(2, 3)-equivariant isomorphisms. Thus also f(µ) : CX(V2)→ CX′(V2) is
SL(2, 3)-equivariant up to homotopy. Finally, the limits lim2

A(X)π1(BZ(V, ν)) =
0 = lim3

A(X)π2(BZ(V, ν)) for general reasons [21]. Hence PU(3) is N -determined at
p = 3. (See [1] for a related result.)

When combined with (4.8, 4.11, 7.10) this example shows, independently of
[9, 10], that U(3), SU(3), and PU(3) are totally N -determined at the prime p = 3;
it follows (7.2) for instance that the automorphism group of PU(3) is Out(PU(3)) =
Z∗3.
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