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Chevalley p–local finite groups

CARLES BROTO

JESPER M. MØLLER

We describe the spaces of homotopy fixed points of unstable Adams operations
acting on p–compact groups and also of unstable Adams operations twisted with a
finite order automorphism of the p–compact group. We obtain new exotic p–local
finite groups.

55R35, 55P15, 55P10; 55R40, 20D20

1 Introduction

The main purpose of this paper is the description of the structure of the spaces of
homotopy fixed points of unstable Adams operations ψq acting on p–compact groups
and also of unstable Adams operations twisted by automorphisms of p–compact groups
τψq .

In the classical case, for a prime number p, a prime power q, prime to p, a compact
connected Lie group G, and a finite order automorphism τ of G, Friedlander showed
that there is a homotopy pullback diagram

B τG(q)∧p
f //

f
��

BG∧p

∆
��

BG∧p
(1,τψq) // BG∧p × BG∧p

where τG(q) is the twisted Chevalley group over Fq of type G, ∆ is the diagonal map,
and ψq an unstable Adams operation of exponent q [33, 34]. Here and throughout,
p–completion is understood in the sense of Bousfield–Kan [11].

The concept of a p–compact group was introduced by Dwyer and Wilkerson in [26] as
a p-local homotopy theoretic analogue of a compact Lie group. A p–compact group
is a triple (X,BX, e), where H∗(X;Fp) is finite, BX is a pointed p–complete space,
and e : X → ΩBX is a homotopy equivalence. We will usually refer to a p–compact
group simply as X . BX is then understood as its classifying space, a concrete loop
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space structure imposed in the underlying space X . If G is a compact connected Lie
group, then the p–completion of its classifying space BG∧p is a p–compact group. A
p–compact group that cannot be obtained in this way is called exotic. We postpone till
Section 2 a more detailed description of the theory of p–compact groups.

Unstable Adams operations ψq , for any p–adic unit q, can be defined for any connected
p–compact group X (see Section 2). Following the above pattern, if τψq a twisted
Adams operation, then the space B τX(q) is defined by the homotopy pullback square

B τX(q)
f //

f
��

BX

∆
��

BX
(1,τψq) // BX × BX .

(1)

Thus if X is obtained as the p–completion of a compact Lie group G, and τ is a
finite order automorphism of G, B τX(q) is homotopy equivalent to the p–completed
classifying space of the twisted Chevalley group τG(q).

The concept of p–local finite group has been recently introduced in [14] as algebraic
objects that are modeled on the p–local structure of finite groups and as such they
have classifying spaces which are p–complete spaces. In turn, the classifying space
of a p–local finite group determines its algebraic structure. Every finite group G
determines a p–local finite group at a prime p with classifying space BG∧p . Like in
the case of p–compact groups, p–local finite groups that do not arise in this way for
any finite group G are called exotic. We refer to Section 3 for the precise definition
and main properties of p–local finite groups. Our main result shows that B τX(q) is the
classifying space of a p–local finite group. We will also determine the cases in which
they are exotic p–local finite groups.

Theorem A Let p be an odd prime. If X is a 1–connected p–compact group, q is a
prime power, prime to p, and τ is an automorphism of X of finite order prime to p,
then the space of homotopy fixed points of BX by the action of τψq , denoted B τX(q),
is the classifying space of a p–local finite group.

By analogy with the classical case, we will call the p–local finite group X(q) (τX(q))
with classifying space BX(q) (B τX(q)) obtained in Theorem A a (twisted) Chevalley
p–local finite group of type X .

Our arguments concentrate on the exotic p–compact groups at odd primes, and break
into two separate steps. One deals with actions of finite groups of order not divisible
by p on p–compact groups and the results obtained have an independent interest. The
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other step deals with the action of unstable Adams operations ψq where q ≡ 1 mod p
and it is the one leading to the new exotic examples of p–local finite groups.

Group actions will be understood in the weak sense of proxy actions; that is, we will
say that an action of a group G on a space M is a fibration M i−→ MhG

pr−→ BG [26]. The
total space MhG is referred to as the homotopy quotient space. The space of homotopy
fixed points is the space

MhG = {BG s−→ MhG | pr ◦ s = idBG}

of sections. Two actions will be considered equivalent if they are defined by fibre
homotopy equivalent fibrations. If M is a G–space in the usual sense then MhG

is the Borel construction and MhG is homeomorphic to the space MapG(EG,M) of
equivariant maps where EG is a contractible free G–space. When we specialize to
p–compact groups X , an outer action of G is a homomorphism ρ : G → Out(X),
where Out(X) is the group of outer automorphisms of the p–compact group X , in other
words, unpointed homotopy classes of self-equivalences of BX . By obstruction theory,
it turns out that if G has finite order prime to p, then an outer action on a connected
p–compact group X determines a unique action, up to equivalence, and the space of
homotopy fixed points is again a connected p–compact group.

The space B τX(q) defined by pullback square (1) can also be viewed as a homotopy
fixed point space BXh〈τψq〉 for the action of the infinite cyclic group generated by
τψq ∈ Out(X). More details are given in Section 6.

Theorem B Let X be a connected p–compact group. If G is a finite group of order
prime to p and ρ : G→ Out(X) an outer action, then

(1) ρ lifts to a unique action of G on X , up to equivalence.

(2) XhG is a connected p–compact group with H∗(BXhG;Qp) ∼= S[QH∗(BX;Qp)G],
the symmetric algebra generated on the coinvariants QH∗(BX;Qp)G .

(3) (Harper splitting) XhG → X is a p–compact group monomorphism, there is a
homotopy equivalence

X ' XhG × X/XhG

and X/XhG is an H–space.

(4) Assume that p is odd. If H∗(BX;Fp) is a polynomial ring, then H∗(BXhG;Fp)
is also a polynomial ring.

Here and throughout, H∗(−;Qp) stands for H∗(−;Zp)⊗Q, and QH∗(BX;Qp) denotes
the module of the indecomposables in H∗(BX;Qp).
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Some interesting cases to which Theorem B applies are F4 at the prime 3 and E8 at the
prime 5, where the p–compact groups X12 , respectively, X31 split off (see Section 2
for notation). In the first case, Friedlander’s exceptional isogeny ϕ of F4 at the prime
3 gives rise to an automorphism of order 2 and the homotopy fixed point p-compact
group F4

hC2 is the p–compact group X12 = DI2 whose cohomology realizes the rank
2 Dickson algebra H∗(BX12;F3) ∼= F3[x12, x16] (subscripts of cohomology classes
indicate degrees) over F3 . This case was already considered in our previous work [16].
In the second case, a cyclic group of order 4 generated by the unstable Adams operation
ψi , i =

√
−1, acts on E8 . The homotopy fixed point p–compact group EhC4

8 is the
p–compact group X31 corresponding to the reflection group number 31 on the Clark–
Ewing list, and its mod 5 cohomology ring is H∗(BX31;F5) = F5[x16, x24, x40, x48]
(see A.12).

It turns out that X12 and X31 are the two exotic p–compact groups originally con-
structed by Zabrodsky [71], and later included in the Aguadé family [1]. Zabrodsky
used the actions of these same automorphisms, ϕ and ψi , on the homotopy groups of
BF4 and BE8 , respectively, and realized the invariant subgroups as homotopy groups
of new spaces, BX12 and BX31 .

The corresponding splittings are F4 ' DI2 × F4/DI2 at the prime 3, first discovered
by Harper [37], and E8 ' X31×E8/X31 at the prime 5, that was obtained by Wilkerson
[68]. Other examples appear in 5.4.

Our second step deals with the action of unstable Adams operations ψq of exponent
q ≡ 1 mod p, q 6= 1, on connected p–compact groups X . These automorphism have
infinite order and the effect now is opposite in some sense to the case of finite groups
of order prime to p. The spaces of homotopy fixed points BX(q) have the same p–rank
as the original p–compact groups X , but the maximal tori Tn ' ((S1)n)∧p are cut down
to finite maximal tori Tn

`
∼= (Z/p`)n , ` = νp(1 − q), keeping the same Weyl group

(see 7.5, 7.6).

We restrict our calculations in this part to p–compact groups for which the mod p
cohomology ring H∗(BX;Fp) is a polynomial ring. For simplicity, we will refer to
them as polynomial p–compact groups. At odd primes, these include all irreducible
exotic examples and will therefore suffice to our purposes.

Theorem C Let q be a p–adic unit such that q ≡ 1 mod p, q 6= 1. If X is an
irreducible 1–connected polynomial p–compact group, then BX(q) is the classifying
space of a p–local finite group.

The proof is based on the classification theorem for p–compact groups at odd primes [7],
see Section 2. The irreducible polynomial p–compact groups are

Algebraic & Geometric Topology XX (20XX)



Chevalley p–local finite groups 1005

(1) BSU(n)∧p (family 1 in the Clark–Ewing list),

(2) the generalized Grassmannians (family 2a in the Clark–Ewing list),

(3) the Clark–Ewing p–compact groups (p–compact groups with Weyl group of
order prime to p), and

(4) the Aguadé family X12 , X29 , X31 , X34 at primes p = 3, 5, 5, and 7, respectively,
and of rank p− 1. (The subscripts indicate the number of the Weyl group in the
Clark–Ewing list.)

Theorem C is proved by considering separately these four cases in 11.1, 11.4 , 9.8, and
10.3, respectively.

In cases (1) and (3) we always obtain that BX(q) is the p–completed classifying space
of a finite group. The other two families contain the new exotic examples of p–local
finite groups.

A complete description of the structure of the p–local finite groups Xi(q), i =
12, 29, 31, 34, is obtained in Section 10. Fix q ≡ 1 mod p and let ν3(1 + 22n+1) =
ν3(1 − q). For X12(q), p = 3, we obtain that BX12(q) ' B(2F4(22n+1))∧3 (Exam-
ple 10.7). For X31(q), p = 5, it turns out that if ν5(1 + 24m+2) = ν5(1 − q), then
BX31(q) ' BE8(22m+1)∧5 (Example 10.8). In particular, we can obtain the p–compact
groups X12 and X31 as telescopes of a sequence of p–completed classifying spaces of
finite groups (see 10.9):

BX12 ' hocolim
m

B(2F4(23m
))∧3 ,

BX31 ' hocolim
m

BE8(25m
)∧5 .

The cases BX29(q) and BX34(q) at primes 5 and 7, respectively, are classifying spaces
of exotic p–local finite groups (Example 10.6).

Family 2a in the Clark–Ewing list consists of the reflection groups G(m, r, n) with
r|m|(p − 1) generated in GL(n,Zp) by the permutation matrices together with the
diagonal matrices diag(a1, a2, . . . , an) with ai

m = 1 and (a1a2 . . . an)m/r = 1. We
denote X(m, r, n) the p–compact group of rank n with Weyl group G(m, r, n). We
also prove that BX(m, r, n)(q) is the classifying space of an exotic p–local finite group
provided n ≥ p and r > 2 (Proposition 11.5).

Theorem D For q ≡ 1 mod p, q 6= 1, the following are classifying spaces of exotic
p–local finite groups:

• BX29(q) and BX34(q) at primes p = 5 and p = 7, respectively, and
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• BX(m, r, n)(q) for n ≥ p and r > 2.

Our next theorem provides the necessary arguments in order to deduce the general case
of Theorem A from the two steps.

Theorem E Let p be an odd prime and X a 1–connected p–compact group, τ an
automorphism of X of order prime to p, and ψq an unstable Adams operation of
exponent a p–adic unit.

(1) If q ≡ 1 mod p, q 6= 1, then B τX(q) ' BXh〈τ〉(q).

(2) If q′ is another p–adic unit such that q and q′ have the same multiplicative order
mod p and such that νp(1− qr) = νp(1− q′r), where r is the order of q and q′

mod p, then BX(q) ' BX(q′).

Since we can decompose a p–adic unit q as q = ζq0 where ζ is a (p − 1)st root of
unity and q0 ≡ 1 mod p, part (1) of the above theorem will reduce the question of
computing BX(q) to the case where q ≡ 1 mod p which turns out to be easier to handle
in abstract calculations and concrete examples. The second part of the theorem tells
us that BX(q) does only depend on the order r of q mod p and the p–adic valuation
νp(1− qr), so we can change the exact value of q at our convenience if we keep those
parameters fixed.

Part (2) of Theorem E also explains the often observed fact that finite Chevalley groups
G(q) and G(q′) have same cohomology ring or identical p–local structure when q and
q′ are prime powers, with qr ≡ q′r ≡ 1 mod p and νp(1− qr) = νp(1− q′r), for some
r , 1 ≤ r ≤ p− 1. We plan to investigate this phenomenon closer in a future paper.

Proof of Theorem A Consider B τX(q) as the homotopy fixed point space BXh〈τψq〉

for the action on BX of the group generated by τψq .

If we write q = ζq0 , where ζ is a (p− 1)th root of unity and q0 ≡ 1 mod p, q0 6= 1,
so that τψq = τψζψq0 , then we have

B τX(q) = BXh〈τψq〉 ' BXh〈τψζ〉(q0) ,

according to Theorem E.

Xh〈τψζ〉 is a 1–connected p–compact group by Theorem B, hence it splits as a product
of irreducible 1–connected p–compact groups [27, 57]

BXh〈τψζ〉 ' BX1 × · · · × BXs ,
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and then, also, BXh〈τψζ〉(q0) ' BX1(q0)× · · · × BXs(q0). It remains to show that each
BXi(q0) is the classifying space of a p–local finite group.

If Xi is polynomial, Theorem C applies and BXi(q0) is the classifying space of a p–local
finite group.

If Xi is the p–completion of a compact Lie group G, then we can find a prime number q′0
with q′0 ≡ q0 ≡ 1 mod p and νp(1− q0) = νp(1− q′0), and then BXi(q0) ' BXi(q′0)
by Theorem E (cf. Remark 6.6), and this last is the p–completed classifying space of
a finite Chevalley group of type G, by the classical result of Friedlander [34].

By the classification theorem of p–compact groups at odd primes [7] (see Section 2),
every irreducible, simply-connected p–compact group is either polynomial or the p–
completion of a compact Lie group, hence the proof is complete.

Many authors have been interested in the cohomology rings of finite Chevalley groups
at primes different from the defining characteristic. Quillen [61, Theorem 4], shows
that for an odd prime p and a prime power q prime to p, if m is the order of q mod p
and ` = νp(1− qm), then

H∗(BGL(n, q);Fp) ∼= P[x1, . . . , x[ n
m ]]⊗ E[y1, . . . , y[ n

m ]]

where deg(xi) = 2mi and deg(yi) = 2mi− 1.

Fiedorowicz and Priddy, [30, 31] computed the cohomology rings of Chevalley groups
of classical type. Kleinerman [39] has computed the cohomology of Chevalley groups
of exceptional Lie type at large primes. M. Mimura, M. Tezuka, and S. Tsukuda [44]
have recently approached the cohomology rings of finite Chevalley groups at torsion
primes, by newly constructing a spectral sequence of Eilenberg–Moore type.

The result that we include here is essentially due to L. Smith, at least part (1) already
appears in [64]. We include it here for the convenience of the reader, as it is an
important step in our arguments.

Theorem F Let X be a polynomial p–compact group with

H∗(BX;Fp) ∼= P[x1, . . . , xn]

and q a p–adic unit with q ≡ 1 mod p, q 6= 1. Then:

(1) H∗(BX(q);Fp) ∼= P[x1, . . . , xn]⊗ E[y1, . . . , yn] with higher Bockstein relations
β(`i)(yi) = xi , `i = νp(1− qdi), 2di = deg xi , 2di − 1 = deg yi , and

(2) the inclusion of the maximal finite torus i : BTn
` → BX(q), ` = νp(1 − q),

induces a monomorphism i∗ : H∗(BX(q);Fp)→ H∗(BTn
` ;Fp)WX .
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The inclusion i∗ : H∗(BX(q);Fp)→ H∗(BTn
` ;Fp)WX is an isomorphism in many cases.

This is checked by direct calculation of the relevant invariant rings. In cases in which
X is a Clark–Ewing p–compact group or a generalized Grassmannian, i∗ is an isomor-
phism (see Section 9). It is also an isomorphism in the case of the Aguadé p–compact
groups Xi(q), i = 29, 31, 34, however, i∗ is not an epimorphism in case of X12(q), for
which we obtain H∗(BX12(q);F3) ∼= P[x12, x16]⊗E[y11, y15], while H∗(BT2

` ;F3)WX12 ∼=
P[x12, x16]⊗ E[y10, y11, y15]/(y11y15 − x16y10, y10y11, y10y15) (see Example 9.7).

We have restricted our calculations at odd primes, although some of the results are also
valid at the prime two. The classification of 2–compact groups [54, 8] implies that
the Dwyer–Wilkerson 2–compact group DI4 is the only irreducible exotic 2–compact
group. The Chevalley 2–local finite groups of type DI4 , named BSol(q), for odd prime
powers q, have been first considered by Benson [9] and then by Levi and Oliver [40]
who proved that they are classifying spaces of 2–local finite groups and their 2–local
structure is in fact a system of fusion relations studied by Solomon [65] and defined
over the Sylow 2–subgroup of Spin(7, q).

The paper is organized as follows. In Sections 2 and 3 we review the definitions
and main results from the theory of p–compact groups and p–local finite groups. In
Section 4 we further develop some aspects of the theory of p–local finite groups con-
cerning the homotopy characterization of classifying spaces of p–local finite groups.
The main results in Sections 10 and 11 stating that BX(q) is the classifying space of a
p–local finite group if X is a p–compact group in the Aguadé family or a generalized
Grassmannian are based in this homotopy characterization of classifying spaces.

Section 5 deals with what we have called first step. There is a discussion of different
ways in which we can understand an action of a group on a p–compact group and it
contains the proof of Theorem B. This Theorem states that a homotopy fixed point
space XhG is again a p–compact group if X was a connected p–compact group and G
is a finite group of order prime to p. Identifying XhG with a p–compact group in the
classification list requires a close look to the restriction of the action to the maximal
torus normalizer. This will be considered in Appendix A. In particular, Corollary A.6
contains a criterion for the recognition of the homotopy fixed point p–compact group by
action of unstable Adams operations of finite order. This is applied to many examples
through the Clark–Ewing list at the end of this appendix, A.7 through A.12.

Section 6 is devoted to the proof of Theorem E. It reduces the analysis of the structure
of a general homotopy fixed point space B τX(q) to first analyzing a homotopy fixed
point p–compact group and then a homotopy fixed point space by the action of an
unstable Adams operation ψq′ of exponent q′ ≡ 1 mod p. This allows us to complete
the argument for the proof of Theorem A from steps one and two.
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The second step starts in Sections 7, 8, and 9, where we analyze the general subgroup
structure of spaces BX(q), where q ≡ 1 mod p, q 6= 1, and their cohomological
properties. Theorem F is proved in Section 8. Some technical results concerning
the Bousfield–Kan spectral sequence for the cohomology of a homotopy colimit are
postponed to Appendix B.

Finally, sections 10 and 11, are devoted to the more specific properties of the p–compact
groups in the Aguadé family and the generalized Grassmannians, respectively. With
them, we complete the proof of theorems C and D.
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2 p–compact groups

A p–compact group is a triple (X,BX, e) where X is a space, BX is a p–complete con-
nected pointed space, H∗(X;Fp) is finite, and e : X → ΩBX is a homotopy equivalence
from X to the space ΩBX of based loops in BX .

Throughout the paper, and when no confusion is possible, we will simply denote a
p–compact group (X,BX, e) as X . We shall say that X is connected if π0(X) is a
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point and simply connected if also π1(X) is trivial. These spaces were introduced by
Dwyer and Wilkerson in 1994 as p–local homotopy theoretic versions of compact Lie
groups [26]. We present here a short summary of the theory of p–compact groups and
refer to the surveys [48, 58, 23] for more information. Examples of p–compact groups
include all simply connected p–complete spaces with polynomial Fp –cohomology,
and the p–completed classifying spaces of all compact Lie groups G such that π0(G)
is a finite p–group. The p–compact group obtained in this way from a torus is called
a p–compact torus. Thus a p–compact torus BT of rank n is simply a K(Zp, 2)n and
we have that H2(BT;Zp) = Zn

p is a finitely generated free Zp –module. A maximal
torus of a p–compact group BX is a pointed map BT → BX , satisfying an injectivity
and a maximality condition, of a p–compact torus into BX . The Weyl group W of
the maximal torus BT → BX , which we may assume is a fibration, is the monoid of
fibre homotopy classes BT → BT over BX . It turns out that all elements of W are
invertible so that W is actually a group. Equivalently, the Weyl group is the group of
components of the Weyl space which is the associative topological monoid of self-maps
of BT over BX . The Borel construction, BN , for the action of the Weyl space on BT
is called the normalizer of the maximal torus. The monomorphism BT → BX extends
to a monomorphism BN → BX [26, 9.2,9.8].

Theorem 2.1 (Existence of maximal tori [26, 9.7]) Any p–compact group X admits
a maximal torus BTX → BX and a Weyl group WX . When X is connected, the Weyl
group WX acts faithfully on the finitely generated free Zp –module LX = H2(BTX;Zp),
the pair (WX,LX) is a Zp –reflection group, and

H∗(BX;Zp)⊗Q→
(
H∗(BTX;Zp)⊗Q

)WX

is an isomorphism.

This theorem introduces a relationship between p–compact groups and Zp –reflection
groups as defined below.

An automorphism of a finitely generated free Zp –module is a reflection if it acts as
the identity on a hyperplane. A Zp –reflection group is a pair (W,L) where L is a
finitely generated free Zp –module and W a subgroup of AutZp(L) = GL(L) that is
generated by the reflections that it contains. A morphism between two Zp –reflection
groups, (W1,L1) and (W2,L2), is a pair (α, θ) consisting of a group homomorphism
α : W1 → W2 and an α–linear Zp –module homomorphism θ : L1 → L2 [53, 4.1]. The
Zp –reflection group (W,L) is irreducible if L⊗Zp Qp is an irreducible QpW –module.
Using the Shephard–Todd classification of irreducible complex reflection groups [63],
Clark and Ewing [19] produced the list of all finite irreducible Zp –reflection groups
[53, 11.18]. At odd primes the list is as follows:
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• Family 1. (Σn+1, S(Zn+1
p )) where the symmetric group Σn+1 permutes the n + 1

factors of Zn+1
p and S(Zn+1

p ) = {(x1, . . . , xn+1) ∈ Zn+1
p |

∑
xi = 0}.

• Family 2a. Let r ≥ 1 and m ≥ 2 natural numbers such that r | m | p − 1. The
cyclic group Cm of order m is contained in the group of units Z×p for Zp .
The Zp –reflection group (G(m, r, n),Zn

p), n ≥ 2, is the group generated by the
subgroup Σn of all permutations of the n coordinates and the subgroup

A(m, r, n) = {diag(θ1, . . . , θn) ∈ Cn
m | (θ1 · · · θn)m/r = 1}

consisting of diagonal matrices.

• Family 2b. (D2m,Z2
p), m > 2, when m ≡ ±1 mod p or m = 3, 6 if p = 3 is

the dihedral group of order 2m, generated by matrices
( 0 −1

1 θ+θ−1

)
and

(
0 1
1 0

)
,

where θ is a primitive mth root of unity. It is also usual to call them G(m,m, 2),
following the notation of Shephard–Todd [63].

• Family 3. (Cm,Zp) when m | p− 1 and Cm is the order m cyclic subgroup of Z×p .

• Sporadic groups. 34 sporadic Zp –reflection groups Gi , 4 ≤ i ≤ 37.

See [6] for a more detailed description of this list of all irreducible Zp –reflection
groups.

The automorphism group of the Zp –reflection group (W,L) is isomorphic to NGL(L)(W).
There is an obvious homomorphism from this group to the group of trace preserving
automorphisms of W . The kernel is the group AutZpW(L) of automorphisms of the
ZpW –module L . Using this we get an exact sequence of groups [53, 3.14–16]

1→ AutZpW(L)/Z(W)→ NGL(L)(W)/W → Outtr(W) (2)

where the group to the right is the group

Outtr(W) = {α ∈ Out(W) | ∀w ∈ W : tr(α(w)) = tr(w)}

of trace preserving outer automorphisms of W < GL(L). Observe that there is a group
homomorphism

ψ : Z×p → NGL(L)(W)/W

that takes the p–adic unit u ∈ Z×p to scalar multiplication, ψu : L → L , by u on L .
The kernel of ψ is the finite subgroup Z×p ∩ Z(W) of W < GL(L).

If (W,L) is irreducible, AutZpW(L) = Z×p consists only of the scalar matrices ψu

according to Schur’s lemma so that (2) takes the form

1→ Z×p /Z(W)
ψ−→ NGL(L)(W)/W → Outtr(W) . (3)
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Moreover, an explicit case-by-case computation shows that the group Outtr(W) is
trivial for all irreducible Zp –reflection groups except for a few of the dihedral groups
G(m,m, 2) and for the sporadic Zp –reflection groups G5 , G7 , and G28 = W(F4), and
in these cases it consists of elements that lift to finite order elements τ in NGL(L)(W)/W .
We conclude that if (W,L) is irreducible then NGL(L)(W)/W consists only of elements
of the form τψu where τ has finite order.

Theorem 2.2 (Classification of p–compact groups at odd primes [53, 7]) Let p be an
odd prime. The assignment X  (WX,LX) gives a bijective correspondence between
isomorphism classes of connected p–compact groups X and isomorphism classes of
Zp –reflection groups (W,L). We have

Out(X) ∼= NGL(L)(W)/W

where (W,L) is the Zp –reflection group assigned to the connected p–compact group
X .

The irreducible p–compact groups, which are the p–compact groups corresponding to
the irreducible Zp –reflection groups of the Clark–Ewing classification table [19] (see
also [24, 1.5]) are

• Family 1. BSU(n + 1)∧p (the special unitary groups)

• Family 2a. BX(m, r, n), (m, r, n) 6= (m,m, 2), (the generalized Grassmannians)

• Family 2b. BX(m,m, 2), m ≥ 3

• Family 3. BŜ2m−1
p (the Sullivan spheres)

• Sporadic groups. 34 sporadic p–compact groups BXi , 4 ≤ i ≤ 37.

Among the generalized Grassmannians we find

BX(2, 1, n) = BSO(2n + 1)∧p , BX(2, 2, n) = BSO(2n)∧p ,

in family 2b
BX(3, 3, 2) = BPU(3)∧p , BX(6, 6, 2) = (BG2)∧p ,

and among the sporadic cases we find

BX28 = (BF4)∧p , BX35 = (BE6)∧p , BX36 = (BE7)∧p , BX37 = (BE8)∧p .

Any simply connected p–compact group splits as a product of irreducible p–compact
groups [27, 57], and, in general, any connected p–compact group is locally isomorphic
to the product of finitely many irreducible simply connected p–compact groups and a
p–compact torus [49, 2.8].
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If H∗(BX;Fp) is a polynomial Fp –algebra, we say that BX is a polynomial p–compact
group. Observe that all the irreducible p–compact groups are either polynomial or of
the form BG∧p where G is an irreducible compact connected Lie group [53, 7.4].

The polynomial irreducible p–compact groups, which include all irreducible p–
compact groups that are exotic, can be constructed as homotopy colimits of diagrams
whose nodes are the p–subgroups of the Weyl group [53, 7.8]. We mention these
special cases for later reference:

• Clark–Ewing p–compact groups. The p–compact groups corresponding to the Zp –
reflection groups (W,L) where the order of W is prime to p [19]. They have
the form

BX = (B(Ť oW))∧p

where Ť oW is the semi-direct product for the action of the Weyl group on the
discrete maximal torus Ť = (L⊗Zp Qp)/L ∼= (Z/p∞)r where r is the rank. The
Sullivan spheres (family 3)

BŜ2m−1
p ≡ B(Z/p∞ o Cm)∧p ,

where m|(p−1), are special cases of this construction. Also family 2b for p > 3
is included here.

• Aguadé p–compact groups. The four p–compact groups, X12 at p = 3, X29 at
p = 5, X31 at p = 5, and X34 at p = 7 constructed by Aguadé [1] in a uniform
way as homotopy colimits of diagrams

BSU(r + 1)Z(W)op
:: BT Wop

cc

Σ
op
r+1\W

op

oo

with two nodes where r = 2, 4, 4, 6, respectively, is the rank and Z(W), cyclic
of order 2, 4, 4, 6, respectively, is the center of the Weyl group W . In all four
cases p divides the order of the Weyl group exactly once. The two cases X12 ,
X31 had been constructed by Zabrodsky using different methods [71].

• Generalized Grassmannians. The p–compact groups X(m, r, n) corresponding to
the Zp –reflection groups G(m, r, n) where r|m|(p− 1). The cases r = 1 where
constructed by Quillen as p–completed classifying spaces of general linear
groups over suitable infinite fields for characteristic prime to p. The cases with
r > 1 where later obtained by Oliver, see Notbohm [59]. See also [53, 7.10].

Theorem 2.2 describes Out(X), the group of invertible elements of the monoid [BX,BX]
of unpointed homotopy classes of self-maps of BX , in purely algebraic terms as the
‘Weyl group of the Weyl group’, NGL(L)(W)/W . In particular, we may regard the
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automorphism ψu of (W,L) as the homotopy class of a self-homotopy equivalence
of BX . The map ψu : BX → BX is called an unstable Adams operation of exponent
u ∈ Z×p .

Classically, unstable Adams operations were first defined by Sullivan [67] on BU(n),
for q ∈ Z, (p, q) = 1, q > n, as restrictions of Adams operations defined on BU .
Then extended by Wilkerson to all compact Lie groups [68]. In [38] it is shown that p–
completed classifying spaces of compact connected Lie groups admit unstable Adams
operations ψq of exponent a p–adic unit q ∈ Z∗p . This is extended to p–compact
groups for odd primes p in [53].

3 p–local finite groups

The concept of p–local finite group has been introduced in [14] (see also [15]). A
p–local finite group is a triple (S,F ,L) where S is a finite p–group, F a saturated
fusion system over S , and L a centric linking system associated to F . We will state
here again all necessary definitions for the convenience of the reader.

A fusion system over a finite group S consists of a set HomF (P,Q) of monomorphisms
for every pair of subgroups P, Q of S , such that it contains at least those monomor-
phisms induced by conjugation by elements of S and all together form a category where
every morphism factors as an isomorphism followed by an inclusion. A fusion system
is saturated if it satisfies certain additional axioms formulated by L. Puig (see [14, §1]
or the original source [60]). Two subgroups P, P′ of S are called F –conjugate if there
is an isomorphism between them in F .

Definition 3.1 Let F be a fusion system over a p–group S .

(1) A subgroup P ≤ S is fully centralized in F if |CS(P)| ≥ |CS(P′)| for all P′ ≤ S
which is F –conjugate to P.

(2) A subgroup P ≤ S is fully normalized in F if |NS(P)| ≥ |NS(P′)| for all P′ ≤ S
which is F –conjugate to P.

(3) F is a saturated fusion system if the following two conditions hold:

(i) For each P ≤ S which is fully normalized in F , P is fully centralized in
F and AutS(P) is a Sylow p–subgroup of AutF (P).

(ii) If P ≤ S and ϕ ∈ HomF (P, S) are such that ϕP is fully centralized, and
if we set

Nϕ = {g ∈ NS(P) |ϕcgϕ
−1 ∈ AutS(ϕP)},
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then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

A subgroup P of S is F –centric if CS(P′) ≤ P′ for every subgroup P′ ≤ S which is
F -conjugate to P. F c denotes the full subcategory whose objects are the F –centric
subgroups of S .

A subgroup P ≤ S is F –radical if OutF (P) = AutF (P)/ Inn(P) is p–reduced, namely,
it does not contain non-trivial normal p–subgroups.

Definition 3.2 Let F be a fusion system over the p–group S . A centric linking
system associated to F is a category L whose objects are the F –centric subgroups of
S , together with a functor

π : L −→ F c,

and distinguished monomorphisms δP : P −→ AutL(P) for each F –centric subgroup
P ≤ S , which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P,Q ∈ L, Z(P) acts freely on MorL(P,Q) by composition
(upon identifying Z(P) with δP(Z(P)) ≤ AutL(P)), and π induces a bijection

MorL(P,Q)/Z(P)
∼=−→ HomF (P,Q).

(B) For each F –centric subgroup P ≤ S and each g ∈ P, π sends δP(g) ∈ AutL(P)
to cg ∈ AutF (P).

(C) For each f ∈ MorL(P,Q) and each g ∈ P, the following square commutes in
L:

P
f //

δP(g)
��

Q

δQ(π(f )(g))
��

P
f // Q .

The classifying space of the p–local finite group (S,F ,L) is defined as the p–
completion |L|∧p of the nerve of the category L. The classifying space determines
the p–local finite group in the sense that two p–local finite groups are isomorphic
if and only if they have homotopy equivalent classifying spaces. Actually, the com-
plete structure of a p–local finite group can be recovered from its classifying space by
homotopy theoretic methods.

Finite groups are the main source of examples and motivation for p–local finite group
theory.
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Example 3.3 (The p–local finite group (S,FS(G),Lc
S(G)) of a finite group G) If

G is a finite group and S a Sylow p–subgroup, the monomorphisms from P ≤ S
to Q ≤ S induced by conjugation in G, HomG(P,Q) ∼= NG(P,Q)/CG(P), where
NG(P,Q) = { x ∈ G | xPx−1 ≤ Q }, form a saturated fusion system over S , FS(G).
The FS(G)–centric subgroups of S are the subgroups P ≤ S which are p–centric in
G. A p–subgroup P ≤ G is p–centric if its center, Z(P), is the Sylow p–subgroup of
CG(P), or, equivalently, if the centralizer splits as the product of the center of P and a
group C′G(P) of order prime to p, CG(P) = Z(P)× C′G(P).

Now, we define Lc
S(G) as the category with objects all subgroups of S which are

p–centric in G, and morphisms MorL(P,Q) ∼= NG(P,Q)/C′G(P), where C′G(P) is the
p′–complement in CG(P) of the center of P, which is well defined because P is p–
centric. Lc

S(G) is a centric linking system associated to FS(G), and (S,FS(G),Lc
S(G))

is a p–local finite group with classifying space |Lc
S(G)|∧p ' BG∧p (see [13, 14]).

A p–subgroup P of G is called p–radical if it is the maximal normal p–subgroup of
NG(P), P = Op(NG(P)), or, equivalently, if NG(P)/P is p–reduced [35], whereas being
FS(G)–radical means that OutFS(G)(P) ∼= NG(P)/PCG(P) = OutG(P) is p–reduced.
However, if P ≤ S is FS(G)–centric and FS(G)–radical, then it is p–centric and p–
radical in G: Assume that P is not p–radical in G, then there is another p–subgroup Q
with P /Q /NG(P) and Q 6= P. Since P is p–centric, CG(P) = Z(P)×C′G(P), where
C′G(P) is a p′–group, hence also C′G(P) ∩ Q = 1, so, therefore P / Q / NG(P)/C′G(P)
and Q/P / NG(P)/PC′G(P) = NG(P)/PCG(P), hence OutG(P) is not p–reduced. The
converse it is not always true.

Alperin’s fusion theorem for saturated fusion systems [14, A.10] establishes that mor-
phisms in a saturated fusion system F are composites of automorphisms of fully
normalized, F –centric, and F –radical subgroups of the system, or restrictions of
those. Hence in order to describe a saturated fusion system F over a finite p–group S
it is enough to describe AutF (Qi) for a set Q1, . . . ,Qr of fully normalized represen-
tatives of F –conjugacy classes of F –centric, F –radical subgroups of S in F . This
motivates the next construction.

If F0 is a fusion system over S , and Q1, . . . ,Qr are subgroups of S , and ∆i a group
of automorphisms such that Inn(Qi) ≤ ∆i ≤ Aut(Qi), for each i, then we denote by
FQi(∆i) the fusion system over Qi whose morphisms are restrictions of elements of
∆i , and define

F = 〈F0;FQ1(∆1), . . . ,FQr (∆r)〉

the fusion system over S whose morphisms are composites of morphisms belonging to
any of the generating fusion systems (cf. [14, §9]).
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Thus, in particular, if F is a saturated fusion system over a finite p–group S and
Q1, . . . ,Qr is a set of fully normalized representatives of F –conjugacy classes of
F –centric, F –radical subgroups of S in F , then

F = 〈FS(AutF (S));FQ1(AutF (Q1)), . . . ,FQr (AutF (Qr))〉 .

We now describe the fusion systems of GLp(q) and SLp(q) over the respective Sylow
p–subgroups, where p is a prime number and q is a prime power q ≡ 1 mod p. This
will be useful in later sections.

Example 3.4 (The fusion system of GLp(q)) We will describe the fusion system
of GLp(q) over a Sylow p–subgroup, for p a prime and q a prime power such that
q ≡ 1 mod p. We can use the Alperin–Fong description of p–radical subgroups of
general linear groups [4]. The elements

B = diag(1, ζ, ζ2, . . . , ζp−1), C =


0 0 . . . 1
1 0 0
0 1 0
...

. . .
...

0 0 . . . 1 0


where ζ be a primitive pth root of unity in F∗q , generate an extraspecial subgroup
Γ1 = 〈B,C〉 ≤ GLp(q) of order p3 and exponent p.

The p–primary part of the multiplicative group of units F∗q is isomorphic to Z/p`

where ` = νp(1 − q). Let Tp
`
∼= (Z/p`)p , the maximal finite torus, be the group of

diagonal matrices of p–power order. Then S̄ = Tp
` o 〈C〉 ∼= Z/p` o Z/p is a Sylow

p–subgroup of GLp(q).

Define the subgroup Γ` = Z` ◦ Γ1 ≤ GLp(q) to be the central product over the center
of Γ1 of the center Z` ∼= Z/p` of GLp(q) and Γ1 .

There is an standard inclusion F∗qp ⊆ GLp(q), obtained by letting F∗qp act on Fqp by
multiplication and considering Fqp as Fq –vector space. We define U`+1 as the image
in GLp(q) of the cyclic group Z/p`+1 ≤ F∗qp of all roots of unity of p–power order in
Fqp .

With this notation and according to [4], if R is a p–radical subgroup of GLp(q) then R
is conjugate to one of the subgroups displayed in Table 1.

It is now easy to extract from Table 1 the F –centric, F –radical subgroups of S̄ in
the fusion system F = FS̄(GLp(q)) of GLp(q) over S̄ . Notice that Z` is clearly not
F –centric and U`+1 clearly not F –radical. This leads to Table 2.
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R NGLp(q)(R) OutGLp(q)(R)
Z` GLp(q) 1
Tp
` (F∗q)p o Σp Σp

S̄ (F∗q)p o (Z/po Z/p− 1) Z/p− 1
Γ` (F∗q) · Γ` · SL2(p) SL2(p)

U`+1 F∗qp o Z/p Z/p

Table 1: p–radical subgroups of GLp(q) for q ≡ 1 mod p

R OutGLp(q)(R)
Tp
` Σp

S̄ Z/p− 1
Γ` SL2(p)

Table 2: F –centric, F –radical subgroups in the fusion system of GLp(q)

Example 3.5 (The fusion system of SLp(q)) We proceed now by describing the
fusion system of SLp(q) over a Sylow p–subgroup, for p a prime and q a prime power
such that q ≡ 1 mod p. Let ` = νp(1− q) as in the previous example.

We first show that every p–radical subgroup of SLp(q) is the intersection Q∩SLp(q) of
a p–radical subgroup Q of GLp(q) with SLp(q). For a given p–radical p–subgroup P
of SLp(q) define Q = Op(NGLp(q)(P)). Q ∩ SLp(q) is a normal subgroup of NSLp(q)(P)
and since P is the maximal normal p–subgroup of NSLp(q)(P), we have Q∩SLp(q) ≤ P.
Same argument with NGLp(q)(P) shows that P ≤ Q and therefore Q ∩ SLp(q) ≤ P.

Every element g ∈ GLp(q) normalizes SLp(q), so if g normalizes Q it also normalizes
Q ∩ SLp(q) ≤ P, so NGLp(q)(Q) ≤ NGLp(q)(P). But, by definition of Q, this is normal
in NGLp(q)(P), hence we actually have NGLp(q)(Q) = NGLp(q)(P). So, therefore, Q =
Op(NGLp(q)(Q)) is p–radical.

Fix the Sylow p–subgroup S = S̄ ∩ SLp(q) of SLp(q), and let F = FS(SLp(q)) be the
fusion system of SLp(q) over S . Assume that P ≤ S is F –centric and F –radical.
Then P is p–centric and p–radical in SLp(q). In particular P = Q ∩ SLp(q) where Q
is p–radical in GLp(q), hence conjugate by an element g ∈ GLp(q) to a p–subgroup
in the Table 1. Among those intersections, only S = S̄ ∩ SLp(q), T (p−1)

` = S ∩ Tp
` ,

and Γ1 = S ∩ Γ` are also p–centric. Hence, the complete list of conjugacy classes
of p–centric and p–radical subgroups of SLp(q), is obtained by conjugating these
three subgroups by elements g ∈ GLp(q): where Γ1(ξr), r = 0, 1, . . . , (p − 1) are
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P OutSLp(q)(P) Conditions
T (p−1)
` Σp p > 3

S Z/p− 1
Γ1(ξr) SL2(p) r = 0 if ` = 1, p = 3;

r = 0, 1, . . . , p−1 if ` > 1 or p > 3,

Table 3: F –centric F –radical subgroups in the fusion system of SLp(q)

subgroups of SLp(q), defined as the conjugates of Γ1 in GLp(q), Γ1(ξr) = xrΓ1x−1
r ,

where xr = diag(ξr, 1, . . . , 1) ∈ GLp(q), ξ a (q − 1)st root of unity. Notice that
for g ∈ GLp(q), gSg−1 lies in S if and only if it is exactly S and the same happens
with T (p−1)

` . In the case of Γ1 we just need to check which of the subgroups Γ1(ξr)
are conjugate in SLp(q). In fact, Alperin’s fusion theorem [14, A.10], together with
the list of p–radical p–centric subgroups that we have obtained so far, tells us that if
two subgroups Γ1(ξr) and Γ1(ξs) are conjugate in SLp(q) they are already conjugate
in NSLp(q)(S), hence we obtain the Table 3 by direct calculation as a list of p–centric
and p–radical subgroups but, by inspection, this coincides with the list of F –centric
F –radical subgroups.

An p–local finite group that is not of the form (S,FS(G),Lc
S(G)) for any finite group

G is called exotic. Examples of exotic p–local finite groups are already shown in
[14]. Recently, Levi and Oliver have obtained a family of exotic 2–local finite groups,
B Sol(q) [40], based on fusion systems originally described by Solomon [65].

Definition 3.6 (a) For any saturated fusion system F over a p–group S , and any
P ≤ S , fully centralized in F , the centralizer fusion system CF (P) over CS(P) is
defined by setting

HomCF (P)(Q,Q′) = {(ϕ|Q) |ϕ ∈ HomF (PQ,PQ′), ϕ(Q) ≤ Q′, ϕ|P = IdP}

for all Q,Q′ ≤ CS(P).

(b) For a p–local finite group (S,F ,L) and P ≤ S fully centralized in F , we define the
category CL(P) whose objects are CF (P)–centric subgroups Q ≤ CS(P) and where

MorCL(P)(Q,Q′) = {ϕ ∈ HomL(PQ,PQ′) | π(ϕ)|P = IdP, π(ϕ)(Q) ≤ Q′ } .

It is proved in [14, §2] that if (S,F ,L) is a p–local finite group and P ≤ S is fully
centralized in F , then (CS(P),CF (P),CL(P)) is a p–local finite group.
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In [40] Levi and Oliver have obtained necessary and sufficient conditions for a fusion
system to be saturated. We reproduce here their result for the convenience of the reader.
We will write CF (x) = CF (〈x〉) for x ∈ S .

Proposition 3.7 [40] Let F be any fusion system over a p–group S . Then F is
saturated if and only if there is a set X of elements of order p in S such that the
following conditions hold:

(a) Each x ∈ S of order p is F –conjugate to some element of X.

(b) If x and y are F –conjugate and y ∈ X, then there is some homomorphism
ψ ∈ HomF (CS(x),CS(y)) such that ψ(x) = y.

(c) For each x ∈ X, CF (x) is a saturated fusion system over CS(x).

4 Recognition of classifying spaces of p–local finite groups

In [14] it is shown that a p–local finite group can be completely recovered from its
classifying space by homotopy theoretic methods. Also, a recognition principle for
classifying spaces of p–local finite groups is provided in [14, Thm. 7.5]. We will
briefly describe these methods and derive an inductive method that will be useful in
our situation.

We will first recall how a fusion system F(S,f )(X) and a linking system L(S,f )(X) are
attached to a space X equipped with a map f : BS→ X , where S is a finite p–group.

If (S, f ) is a p–subgroup of a space X we can define a fusion system over S , F(S,f )(X),
by declaring

HomF(S,f )(X)(P,Q) = {ϕ ∈ Hom(P,Q) | f |BP ' f |BQ ◦ Bϕ }

for all P,Q ≤ S , where f |BP denotes the composition BP BiP−−→ BS
f−→ X . Next, we

define the category L(S,f )(X) that has objects the subgroups of S and

MorL(S,f )(X)(P,Q) = { (ϕ, [H]) | ϕ ∈ Hom(P,Q) and

[H] is the homotopy class of a homotopy from f |BP to f |BQ ◦ Bϕ } ,

and the full subcategory Lc
(S,f )(X) whose objects are F(S,f )(X)–centric subgroups P ≤

S .

The important question and the aim of the rest of this section is to find sufficient
conditions on a space X and a p–subgroup (S, f ) under which

(S,F(S,f )(X),Lc
(S,f )(X))
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is a p–local finite group and X is its classifying space |Lc
(S,f )(X)|∧p ' X .

One first important case is that of X = |L|∧p , the classifying space itself of a given
p–local finite group (S,F ,L). The distinguished homomorphism δS : S → AutL(S)
provides a functor BS → L, where BS denotes the category that has one object and
its group of automorphisms is S . In turn, this functor induces a map between the
respective nerves |BS| → |L|. Finally, composing with the p–completion of |L| we
obtain a canonical map for (S,F ,L):

θS : |BS| → |L|∧p ,

where we can identify |BS| ' BS . It turns out that (S,F(S,θS)(|L|∧p ),Lc
(S,θS)(|L|∧p )) is

isomorphic to the original (S,F ,L) [14, 7.3]. This is how a p–local finite group is
completely recovered from its classifying space.

The basic tool in order to show that these systems define a p–local finite group with
classifying space X is [14, Thm. 7.5]. In order to apply this theorem in our situation
we face two main difficulties, namely, to show that the p–completed nerve of L(S,f )(X)
is homotopy equivalent to X and to show that F(S,f )(X) is a saturated fusion system.
In order to overcome these difficulties, we develop in this section an inductive method
mainly based on the centralizer decomposition of p–local finite groups.

Definition 4.1 Given spaces X and Y , we say that a map α : X → Y is a homotopy
monomorphism at p if the homotopy fibre of α , F , over any connected component of
Y , is p–quasi-finite; that is, the inclusion F → Map(BZ/p,F) as constant maps is a
weak homotopy equivalence.

Given two maps f : X → Y and g : Y → Z , where g is a homotopy monomorphism at
p, it is not hard to prove f is also a homotopy monomorphism at p if and only if the
composition g ◦ f is so.

Definition 4.2 Let X be a space. A finite p–subgroup of X is a pair (P, f ), where P is
a finite p–group and f : BP → X is a homotopy monomorphism at p. A p–subgroup
(S, f ) of X is called a Sylow p–subgroup of X if for any other p–subgroup (Q, g) of
X , g : BQ→ X factors through f : BS→ X , up to homotopy. If (P, f ) is a p–subgroup
of X , then we denote BCX(P, f ) = Map(BP,X)f .

Our basic example comes from p–local finite groups. If (S,F ,L) is a p–local finite
group, then (S, θS) is a Sylow p–subgroup of |L|∧p . The map θS : |BS| → |L|∧p satisfies
the required conditions by [14, Thm. 4.4].

We will need later the next technical lemma.
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Lemma 4.3 Assume that X and Y are spaces for which Map(BZ/p,X)ct ' X and
Map(BZ/p,Y)ct ' Y . Let f : X → Y be a homotopy monomorphism at p and
µ : BP→ X a finite p–subgroup of X , then each map in the diagram

BCX(P, µ) ev //

f]
��

X

f
��

BCY (P, f ◦ µ) ev
// Y

(4)

is a homotopy monomorphism at p.

Proof Let F be the homotopy fibre of the evaluation map

BCX(P, µ) = Map(BP,X)µ
ev−→ X .

There is an induced fibration

Map(BZ/p,F)→ Map(BZ/p,Map(BP,X)µ)c̃t → Map(BZ/p,X)ct

where c̃t stands for all components mapping down to the component of the constant
map in Map(BZ/p,X). Since Map(BZ/p,X)ct ' X , also

Map(BZ/p,Map(BP,X)µ)c̃t ' Map(BP,Map(BZ/p,X)ct)µ̃ ' Map(BP,X)µ ,

and therefore Map(BZ/p,F) ' F ; that is, F is p–quasi-finite and ev : CX(P, µ) → X
is a homotopy monomorphism at p. Similarly, ev : BCY (P, f ◦ µ)→ Y is a homotopy
monomorphism at p. Finally, since all other maps in diagram (4) are homotopy
monomorphisms at p, then, also f] is a homotopy monomorphism at p.

The next is a useful result that provides conditions on the space X and a Sylow p–
subgroup (S, f ) under which the fusion system F(S,f )(X) is saturated. An element x ∈ S
of order p determines a homomorphism ix : Z/p→ S an then a map f ◦Bix : BZ/p→ X .
We write BCX(x) = Map(BZ/p,X)x , the connected component that contains the map
f ◦ Bix , and fx : BCS(x)→ BCX(x) the map induced by f .

Proposition 4.4 Let X be a space, (S, f ) a Sylow p–subgroup of X , and X a set of
elements of order p in S . Assume that:

(1) Map(BZ/p,X)ct ' X .

(2) For all x ∈ X, the natural map fx : BCS(x) → BCX(x) is a Sylow p–subgroup
for BCX(x).

(3) For all x ∈ X, F(CS(x),fx)(BCX(x)) is a saturated fusion system over CS(x).
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(4) For all x ∈ S of order p, there is ϕ ∈ HomF(S,f )(X)(〈x〉, S) such that ϕ(x) ∈ X.

Then F(S,f )(X) is a saturated fusion system over S and CF(S,f )(X)(x) coincides with
F(CS(x),fx)(BCX(x)) as fusion systems over CS(x), for all x ∈ X.

Proof Write F = F(S,f )(X) for short. Clearly, F is a fusion system over S . Condition
(a) of Proposition 3.7 holds by (4); and it remains to show that conditions (b) and (c)
of 3.7 hold.

Condition (b) of 3.7: Fix x, y ∈ S of order p such that y ∈ X, and such that there
is ψ0 ∈ HomF (〈x〉 , 〈y〉) with ψ0(x) = y. We must show that ψ0 extends to some
ψ ∈ HomF (CS(x),CS(y)).

Since x and y are F –conjugate,

[f ◦ Bix] = [f ◦ Biy] ∈ [BZ/p,X],

so Map(BZ/p,X)x = Map(BZ/p,X)y . Since CS(y) is a Sylow p–subgroup of
Map(BZ/p,X)y by (2), the natural map BCS(x) → Map(BZ/p,X)x factors through
BCS(y). In other words, there is some ψ ∈ Hom(CS(x),CS(y)) such that the following
square commutes up to homotopy

BCS(x)× BZ/p
f◦B(incl×ix) //

Bψ×Id
��

X

BCS(y)× BZ/p
f◦B(incl×iy) // X .

(5)

Thus ψ ∈ HomF (CS(x),CS(y)). If ρ, ρ′ ∈ Hom(CS(x)×Z/p, S) denote the homomor-
phisms ρ(g, t) = gxt and ρ′(g, t) = ψ(g)yt , then f ◦ Bρ ' f ◦ Bρ′ by (5), and hence
Ker(ρ) = Ker(ρ′) by [14, Proposition 5.4(d)] (and point (1)). And this implies that
ψ(x) = y.

Condition (c) of 3.7: Fix some x ∈ X; we must show that CF (x) is a saturated fusion
system. By (3), the fusion system F ′ def= F(CS(x),fx)(BCX(x)) is saturated, so it suffices
to show that these two fusion systems over CS(x) are equal.

To see this, fix P,Q ≤ CS(x), and let ϕ ∈ Hom(P,Q) be any monomorphism. Set
P = P· 〈x〉 and Q = Q· 〈x〉. Let ρ ∈ Hom(P×Z/p, S) and ρ′ ∈ Hom(Q×Z/p, S) be
defined by ρ(g, t) = gxt and ρ′(g, t) = gxt . Then ϕ ∈ HomF ′(P,Q) if and only if the
following square commutes up to homotopy

BP× BZ/p
f◦Bρ //

Bϕ×Id
��

X

BQ× BZ/p
f◦Bρ′ // X .

(6)
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By (1) and [14, Proposition 5.4(d)], this holds if and only if K def= Ker(ρ) = Ker(ρ′ ◦
(ϕ× Id)) and the induced maps from B((P×Z/p)/K) to X are homotopic. The kernels
are equal if and only if ϕ extends to a monomorphism ϕ from P to Q which sends x
to itself. And in this case, the induced maps on B((P× Z/p)/K) are homotopic if and
only if f |BP ' f |BQ ◦ Bϕ, if and only if ϕ ∈ HomCF (x)(P,Q).

Now, Proposition 3.7 implies that F(S,f )(X) is a saturated fusion system over S and
the argument for condition (c) already contains the proof that CF (x) coincides with
F ′ = F(CS(x),fx)(BCX(x)) as fusion systems over CS(x).

We derive now another characterization that will be useful in the specific cases in which
we are interested or more generally in cases in which there is a good knowledge of
elementary abelian p–subgroups of X and of their centralizers.

Theorem 4.5 Let X be a p–complete space and (S, f ) a p–subgroup of X . Assume
that

(1) Map(BZ/p,X)ct ' X , and

(2) for each non-trivial element x ∈ S of order p

(a) BCX(x) is the classifying space of a p–local finite group, and

(b) if (H, g) is a Sylow p–subgroup for BCX(x), there is a group homomorphism
ρ : H → S that makes the diagram

BH

g
��

Bρ // BS

f
��

BCX(x) ev // X

commutative up to homotopy,

then, (S, f ) is a Sylow p–subgroup for X and

(S,F(S,f )(X),Lc
(S,f )(X))

is a p–local finite group.

Furthermore, X ' |L(S,f )(X)|∧p if and only if the natural map induced by evaluation

hocolim
F e

(S,f )(X)op
Map(BE,X)f |BE −→ X

is a mod p homology equivalence. Here F e
(S,f )(X) denotes the full subcategory of

F(S,f )(X) consisting of non-trivial fully centralized (Definition 3.1) elementary abelian
p–subgroups of S .
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Proof The proof is divided in five steps. First, we prove that (S, f ) is a Sylow p–
subgroup of X . Next, that the fusion system of X over (S, f ), F(S,f )(X) is saturated. In
the third step we show that for each F(S,f )(X)–centric subgroup P ≤ S the map f |BP is
centric. A map g : BP→ X is called centric if the induced map f] : Map(BP,BP)Id →
Map(BP,X)g is a weak homotopy equivalence.

These two last steps are the hypothesis (a) and (c) of [14, Theorem 7.5]. According to
the remarks after the proof of this theorem in [14], this suffices in order to conclude that
(S,F(S,f )(X),Lc

(S,f )(X)) is a p–local finite group. This is the first part of the theorem.

The second part states that X ' |L(S,f )(X)|∧p if and only if the natural map induced by
evaluation hocolimF e

(S,f )(X)op Map(BE,X)f |BE −→ X is a mod p homology equivalence.
This is proved in steps 4 and 5. Notice that X ' |L(S,f )(X)|∧p is condition (b) in [14,
Theorem 7.5].

Step 1: (S, f ) is a Sylow p–subgroup for X

Let (P, µ) be a finite p–subgroup of X . Choose a central element x of order p in P.
It determines a homomorphism ix : Z/p → P for which CP(Z/p) = P, and a map
µ◦Bix : BZ/p→ X . According to our hypothesis, BCX(x) is the classifying space of a
p–local finite group, and if (H, g) is its Sylow p–subgroup, there are homomorphisms
ρ : H → S and ϕ : CP(Z/p)→ H that make the diagram

BCP(Z/p)

Bϕ

''

' ev
��

µ] // BCX(Z/p, µ ◦ Bix)

ev
��

BH

Bρ
��

goo

BP
µ // X BS

foo

commutative up to homotopy. Hence, ρ ◦ ϕ : P = CP(Z/p) → S provides the factor-
ization of (P, µ) through (S, f ).

Step 2: The fusion system of X over (S, f ), F(S,f )(X) is saturated

This part of the proof will be based on Proposition 4.4. Define

X = { x ∈ S | x of order p and fx : BCS(x)→ BCX(x)

is a Sylow p–subgroup for BCX(x) } .
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Notice now that conditions (1) and (2) of Proposition 4.4 are satisfied by our hypothesis
and by definition of the class X. Condition (3) is easily verified, too. In fact, by
hypothesis, for each x ∈ X, BCX(x) is the classifying space of a p–local finite group
and since fx : BCS(x)→ BCX(x) is a Sylow p–subgroup for BCX(x), the fusion system
F(CS(x),fx)(BCX(x)) is saturated.

It remains to verify condition (4); that is, that every element x ∈ S of order p is
F(S,f )(X)–conjugate to an element of the class X.

Assume that x ∈ S has order p. It gives a homomorphism ix : Z/p → S and a map
f ◦ Bix : BZ/p→ X . There is an evaluation map ev : BZ/p× BCX(x)→ X . Let (H, g)
be a Sylow p–subgroup of BCX(x). Since (S, f ) is a Sylow p–subgroup of X , there is
a homomorphism ρ : Z/p× H → S making the diagram

BZ/p× BH
Bρ //

1×g
��

BS

f

��
BZ/p× BCX(x) ev // X

commutative up to homotopy.

Let ϕ = ρ|Z/p the restriction of ρ to the first component Z/p. From the above diagram
we deduce that ϕ ∈ HomF(S,f )(X)(Z/p, S). Let y = ϕ(x).

Then, ρ induces

BH
Bρ̃−→ BCS(y)

fy−→ BCX(y) ev−→ X

where all maps are homotopy monomorphisms at p. The first one because ρ̃ is a
monomorphism, the others by Lemma 4.3.

Now, ϕ induces a homotopy equivalence BCX(y) ' BCX(x), hence also an isomor-
phism between the respective Sylow p–subgroups. Since (H, g) is a Sylow p–subgroup
for CX(x), it follows from the above sequence of maps that (CS(y), fy) is a Sylow p–
subgroup for CX(y). Hence y = ϕ(x) ∈ X.

Step 3: f |BP is a p–centric map for each F(S,f )(X)–centric subgroup P ≤ S

Suppose that P ≤ S is F(S,f )(X)–centric. Choose a central element x ∈ S or or-
der p. Since P is F(S,f )(X)–centric, x ∈ P and we have a sequence of homotopy
monomorphisms at p

BP Bincl−−−→ BS
fx−→ BCX(x) ev−→ X .
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By hypothesis, BCX(x) is the classifying space of a p–local finite group, and from
the above sequence of maps we easily obtain that (S, fx) is a Sylow p–subgroup for
BCX(x). Furthermore, P is also F(S,fx)(BCX(x))–centric, and then fx|BP is a p–centric
map. There is a sequence of equivalences

Map(BP,BP)Id ' Map(BP,BCX(x))fx|BP

' Map(BP× BZ/p,X)f |BP◦Bm ' Map(BP,X)f |BP (7)

where m : P × Z/p → P denotes multiplication by x , the generator of Z/p = 〈x〉.
The last equivalence is implied by the Zabrodsky’s lemma (cf. [22, Proposition 3.5])
applied to the fibration BZ/p −→ BP× BZ/p Bm−−→ BP. The homotopy equivalence (7)
shows that f |BP is a p–centric map.

Step 4: There is a map κ : |L(S,f )(X)|∧p → X that induces homotopy equivalences

κP : Map(BP, |L(S,f )(X)|∧p )|δS||BP

'−−→ Map(BP,X)f |BP ,

for each non-trivial subgroup P ≤ S .

The construction of the map κ : |Lc
(S,f )(X)| → X requires some technical constructions

and will be explained in Proposition 4.6. Indeed, it will be shown that there is a
homotopy commutative diagram

BS
θS

zzuuuuuuuuu
f

��?
??

??
??

?

|Lc
(S,f )(X)| κ // X

(8)

where we have identified BS ' |BS|.

We will show that the induced map

κP : Map(BP, |Lc
(S,f )(X)|∧p )θS|BP −→ Map(BP,X)f |BP . (9)

is a homotopy equivalence by induction on the order of the group P.

If P = 〈x〉, for some x ∈ S of order p, then BCX(x) = Map(BP,X)f |BP is the
classifying space of a finite p–local group, by hypothesis. According to Step 2 above,
we can assume without loss of generality that x ∈ X, and so, the induced map
fx : BCS(x) → BCX(x) is the inclusion of a Sylow p–subgroup, and the fusion system
F(CS(x),fx)(BCX(x)) coincides with CF(S,f )(X)(x) by Proposition 4.4.
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Now, diagram (8) induces the new homotopy commutative diagram

BCS(x)
θ]

vvlllllllllllll
fx

$$IIIIIIIIII

Map(BP, |Lc
(S,f )(X)|∧p )θ|BP κP

// BCX(x)

(10)

where, according to [14, 6.3], the map θ] is the inclusion of a Sylow p–subgroup
of the mapping space Map(BP, |Lc

(S,f )(X)|∧p )θ|BP which is the classifying space of a
centralizer p–local finite group with fusion system CF(S,f )(X)(x). Furthermore, κP

induces an equivalence of fusion systems, and therefore a homotopy equivalence.

For an arbitrary non-trivial subgroup P ≤ S , we fix an element x of order p in the
center of P. Again, we can assume that x belongs to X. There is a diagram

Map(BP, |Lc
(S,f )(X)|)θ|BP

κP

��

// Map(BP× B〈x〉 , |Lc
(S,f )(X)|)θ|BP◦Bm

κP×〈x〉

��

//

Map(BP,X)f |BP
// Map(BP× B〈x〉 ,X))f |BP◦Bm //

// Map(BP,Map(B〈x〉 , |Lc
(S,f )(X)|)Bincl)θ|BP

Map(1,κ〈x〉)
��

// Map(BP,Map(B〈x〉 ,X)x)f |BP

where horizontal arrows are homotopy equivalences, by adjunction and by Zabrodsky’s
lemma (cf. [22, Proposition 3.5]) applied to the fibration BZ/p −→ BP × B〈x〉 Bm−−→
BP, where we identify Z/p with the kernel of the multiplication homomorphism
m : P× 〈x〉 m−→ P. Also, Map(1, κ〈x〉) is a homotopy equivalence. That concludes the
proof that κP in equation (9) is a natural mod p homology equivalence for subgroups
P ≤ S .

Step 5: X ' |L(S,f )(X)|∧p if and only if the natural map

hocolim
F e

(S,f )(X)op
Map(BE,X)f |BE −→ X

induced by evaluation is a mod p homology equivalence

Diagram (8) induces an isomorphism of fusion systems over S: F(S,θ)(|Lc
(S,f )(X)|) =

F(S,f )(X). We will consider the full subcategories of non-trivial fully centralized
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elementary abelian p–subgroups E ≤ S . In order to simplify the notation, we will
write F e = F e

(S,θ)(|Lc
(S,f )(X)|) = F e

(S,f )(X).

For every elementary abelian subgroup E ≤ S , the map κE , as defined in step 4, fits in
a commutative diagram

Map(BE, |Lc
(S,f )(X)|)θ|BE

κE //

ev
��

Map(BE,X)f |BE

ev
��

|Lc
(S,f )(X)| κ // X

where vertical maps are induced by evaluation at the base point. As a consequence, we
obtain a map between the corresponding homotopy colimits together with compatible
maps induced by evaluation:

hocolim
(F e)op

Map(BE, |Lc
(S,f )(X)|∧p )θ|BE

ev
��

bκ // hocolim
(F e)op

Map(BE,X)f |BE

ev
��

|Lc
(S,f )(X)|∧p κ // X

(11)

where κ̂ = hocolim(F e)op κE is the induced map between the respective homotopy
colimits. It turns out that κ̂ is a homotopy equivalence because all κE are homo-
topy equivalences according to step 4. Also, the left vertical map of is a homotopy
equivalence by [14, 2.6 and 6.3].

Hence, the right vertical map ev in (11) is a homotopy equivalence if and only if κ is
a homotopy equivalence. This proves step 5.

Notice also, that, reciprocally, if X is the classifying space of a p–local finite group with
Sylow p–subgroup (S, f ), then all conditions of Theorem 4.5 are satisfied according to
[14, §7].

There seems to be no natural way to construct a map between X and |Lc
(S,f )(X)| in either

direction. This problem was solved in [13] by means of some auxiliary constructions.
For the convenience of the reader we shall reproduce the argument here. For this aim
we will introduce a variation of the categories F(S,f )(X) and L(S,f )(X), independent of
the choice of a Sylow p–subgroup.

For a space X , we denote Fp(X) the category in which the objects are finite p–subgroups
(P, f ) of X , and the morphisms are defined

MorFp(X)((P, f ), (Q, g)) = {ϕ ∈ Hom(P,Q) | f ' g ◦ Bϕ } .
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Similarly, Lp(X) is the category in which the objects are the p–subgroups (P, f ) of X
and morphisms are defined as

MorLp(X)((P, f ), (Q, g)) = { (ϕ, [H]) | ϕ ∈ Hom(P,Q) and

[H] is the homotopy class of a homotopy from f to g ◦ Bϕ } .

Notice that if (S, f ) is a p–subgroup of X , then, there are obvious functors
F(S,f )(X) → Fp(X) and L(S,f )(X) → Lp(X), sending and sending an object P of
F(S,f )(X) (resp. L(S,f )(X)) to the map f |BP : BP→ X considered as an object of Fp(X)
(resp. Lp(X)). Furthermore, if (S, f ) is a Sylow p–subgroup, then these are equiva-
lences of categories.

Proposition 4.6 Let X be a space, S a finite p–group, and f : BS→ X a map. Assume
that (S, f ) is a Sylow p–subgroup of X and that for each F(S,f )(X)–centric subgroup
P ≤ S , f |BP is a centric map, then there is a homotopy equivalence κS : |BS| → BS
and a map κX : |Lc

(S,f )(X)| → X such that the diagram

|BS|

θS
��

κS

'
// BS

f

��
|Lc

(S,f )(X)| κX // X .

is homotopy commutative.

Proof We will sketch here the necessary constructions in order to obtain the map
κX : |Lc

(S,f )(X)| → X . We refer to [13, §4] for full details.

We denote Lc
p(X) the full subcategory of Lp(X) whose objects are the p–subgroups

(P, f ) of X where f is a centric map. The hypothesis on (S, f ) and on F(S,f )(X)–centric
subgroups imply that the functor L(S,f )(X) → Lp(X) defined above restricts to an
equivalence of categories

Lc
(S,f )(X)→ Lc

p(X) .

In order to connect the nerve of Lc
p(X) and X , in [13], it is defined the simplicial

space Mc
•
(X) where n–simplices are maps η : ∆(P) → X , where P = (P0

ϕ1→ P1
ϕ2→

· · · ϕn→ Pn) is a sequence of p–subgroups of S and monomorphisms, and ∆(P) can be
regarded as the homotopy colimit of the sequence BP0

Bϕ1−→ BP1
Bϕ2−→ · · · Bϕn−→ BPn ,

with the condition that the restriction of η to any BPi is a centric map.

The inclusion of base points in BPi provides a map ιP : ∆n → ∆(P), and then, an
evaluation map

evX : |Mc
•
(X)| → X ,
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evX(t, η) = η(ιP(t)).

For each i, the mapping cylinder of BPi−1
ϕi−−→ BPi embeds naturally in ∆(P) and

the restriction of η to this mapping cylinder can be interpreted as a homotopy between
η|BPi−1 and η|BPi ◦ Bϕi , thus, a morphism of Lc

p(X) from η|BPi−1 → X to η|BPi → X .
In this way, the n–simplex η : ∆(P)→ X determines an n–simplex in N•(Lc

p(X)) and
gives rise to a simplicial map from Mc

•
(X) to the nerve of Lc

p(X), and therefore a map
between the respective geometric realizations:

τX : |Mc
•
(X)| −→ |Lc

p(X)| .

Each object α : BP → X of Lc
p(X) is a centric map. In particular, Map(BP,X)α '

Map(BP,BP)Id ' BZ(P) is aspherical, and so, according to [13, Lemma 4.2] (see
its proof), τX : |Mc

•
(X)| → |Lc

p(X)| is a homotopy equivalence. Then, choosing a
homotopy inverse of τX we can define κX : |Lc

(S,f )(X)| → X as the composition

|Lc
(S,f )(X)| ' // |Lc

p(X)| |Mc
•
(X)|'

τXoo evX // X . (12)

In case X = BS , Proposition 2.7, Lemma 4.2 and Lemma 4.3 of [13] provide homotopy
equivalences

|Lc
p(S)| ' // |Lc

p(BS)| |Mc
•
(BS)|'oo ' // BS (13)

hence, the key to finish the proof of the Proposition lies in the naturality properties of
this construction with respect to f : BS → X . However, in general, a subgroup P ≤ S
which is centric in S , need not be centric when regarded as a p–subgroup of X by
considering the restriction f |BP : BP −→ X of f to BP. For this reason, we will have
to restrict Mc

•
(BS) to the subspace MS

•
(BS) of simplices η : ∆(P) → BS of Mc

•
(BS)

where every group in the sequence P is S itself. Accordingly, we call LS
p(BS) the full

subcategory of Lc
p(BS) with objects the homotopy equivalences g : BS → BS . With

this notation we have a diagram of homotopy equivalences

|BS| ' //

'
��

|LS
p(BS)|

'
��

|MS
•
(BS)| evBS

'
//

'
��

'oo BS

|Lc
p(S)| ' // |Lc

p(BS)| |Mc
•
(BS)|'oo evBS

'
// BS

(14)

where same arguments as in [13] for the sequence (13) are used.

Now, for every equivalence g : BS → BS , the composition BS
g→ BS

f→ X defines a
centric p–subgroup of X , and then f induces a well defined map of simplicial spaces
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MS
•
(BS)→ Mc

•
(X), that makes commutative the diagram

|BS| ' //

θS
��

|LS
p(BS)|

f]
��

|MS
•
(BS)| evBS

'
//

f]
��

'oo BS

f

��
|Lc

(S,f )(X)| ' // |Lc
p(X)| |Mc

•
(X)|τX

'
oo evX // X .

(15)

Then κS : |BS| '−−→ BS is the composite homotopy equivalence in the top row of the
above diagram, and this finishes proof.

5 Homotopy fixed point p–compact groups

Let M be a space and G a discrete group. An action of the group G on the space M is
group homomorphism

ρ : G→ aut(M)

where aut(M) is the topological monoid of self-homotopy equivalences of M .

Dwyer and Wilkerson introduced [26, §10] the homotopy theoretic notion of proxy
actions. A proxy action of G on M is defined as a fibration

M //MhG
p //BG (16)

Now, this is classified up to fibre homotopy equivalence by a map

BG→ B aut(M) .

Any action ρ : G → aut(M) of G on M determines a proxy action by taking MhG =
M×G EG to be the Borel construction and the classifying map is Bρ : BG→ B aut(M).
Conversely, the proxy action (16) produces a rigid action of G on a space homotopy
equivalent to M by turning M → MhG into a covering space.

We will adopt the more flexible notion of proxy actions throughout this paper and by
abuse of language will call just an action to a proxy action. In this setting, the total
space MhG of (16) is called the homotopy quotient space and the homotopy fixed point
space is defined as the space MhG of sections of fibration (16). In this section we use
obstruction theory to develop some basic structure results for MhG , and we apply them
in the case where M = BX is the classifying space of a p–compact group and to the
proof of Theorem B.

We will show conditions under which MhG is nonempty, and if this is the case, a way to
describe the set of path-components. Fibration (16) induces an action of G on the set
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of path-components of M and π0(M)G denotes the set of path-components of M that
remain fixed under this action. Then, evaluation of a section at the base point b ∈ BG
induces a map

π0(MhG)
π0(ev)−−−→ π0(M)G (17)

thus, a necessary condition for MhG being nonempty is that π0(M)G is nonempty.

Fix now a point m ∈ M which represents a G–invariant path-component of M , then,
there is a short exact sequence

1→ π1(M,m)→ π1(MhG,m)→ π1(BG, b)→ 1 (18)

of fundamental groups, where b = p(m). If m ∈ π0(M)G happens to be in the image
of the evaluation map (17), then s(b) = m for some homotopy fixed point s ∈ MhG

and then the exact sequence (18) does have a section, namely π1(s).

Define H1(G;π1(M,m)) [62] to be the set (possibly empty) of π1(M,m)-conjugacy
classes of sections π1(BG, b) → π1(MhG,m) of the exact sequence (18). Then, the
argument in the previous paragraph produces a well defined map π0(ev)−1([m]) →
H1(G;π1(M,m)). In next Lemma it will be shown that, under certain conditions, this
is a bijection for every [m] ∈ π0(M)G .

Since π1(MhG,m) acts on the homotopy groups πi(M,m) of the fibre, also G =
π1(BG, b) acts on πi(M,m) through π1(s), for a given element s ∈ MhG . We let
πi(M,m)s∗G , i ≥ 1, denote the fixed point group for this action.

Lemma 5.1 Suppose that G is a finite group of order prime to p and that πi(M,m)
is a module over the ring Z(p) of p–local integers for all i ≥ 2 and all base points
m ∈ π0(M)G . Then the following hold:

(1) A class [m] ∈ π0(M)G is in the image of the evaluation map (17) if and only if
the exact sequence (18) splits.

(2) If [m] ∈ π0(M)G is in the image of the evaluation map (17), then there is an
exact sequence of pointed sets

∗ → H1(G;π1(M,m)) −→ π0(MhG)
π0(ev)−−−→ π0(M)G

where [m] is the base point of π0(M)G .

(3) If s ∈ MhG is a homotopy fixed point with s(b) = m then

πi(MhG, s) ∼= πi(M,m)s∗G

for all i ≥ 1.
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Proof The Postnikov functors Pr , defined as nullification with respect to Sr−1 (see
[20]), determine a tower of fibrations

MhG → · · · → PrMhG → Pr−1MhG → · · · → P1MhG → BG

so that MhG is the homotopy inverse limit of a sequence

· · · → (PrM)hG → (Pr−1M)hG → · · · → (P1M)hG

of Postnikov homotopy fixed point spaces.

Note that π0(P1MhG) = π0(MhG) and that each path-component of P1MhG is aspherical
with fundamental group π1(P1MhG,m) = π1(MhG,m) for all m ∈ P1M . It is now easy
to see that H1(G;π1(M,m)) is indeed the fibre over [m] ∈ π0(P1M)G = π0(M)G of
the evaluation map π0(P1MhG)→ π0(M)G and also that π1(P1MhG, s) = π1(M,m)s∗G

for any s ∈ P1MhG with s(b) = m, cf. [47, §6]. Obstruction theory implies that
π0(MhG) = π0(P1MhG). This proves the first two items.

For the third item, suppose that the homotopy fixed point space is nonempty and let
s ∈ MhG be a homotopy fixed point. Then the component

(
MhG, s

)
containing s is the

homotopy inverse limits of the corresponding components

· · · →
(
PrMhG, sr

)
→
(
Pr−1MhG, sr−1

)
→ · · · →

(
P1MhG, s1

)
of the Postnikov homotopy fixed point spaces. To finish the proof, observe [47, 3.1]
that the fibre of

(
PrMhG, sr

)
→
(
Pr−1MhG, sr−1

)
is the Eilenberg–Mac Lane space

K(πr(M,m)s∗G, r).

Theorem 5.2 Let M be any simply connected p-complete space, G a finite group of
order prime to p, and

M → MhG → BG

an action of G on M . Then the homotopy fixed point space MhG is nonempty,
πi(MhG) = πi(M)G for all i ≥ 0, and there is a homotopy equivalence

ΩM '−→ Ω(MhG)× Fib(MhG → M)

In particular, the fibre Fib(MhG → M) of the evaluation map MhG → M is an H–space.

Proof The space of sections MhG is nonempty, connected, and π∗(MhG) = π∗(M)G

according to Lemma 5.1 since M is simply connected and p–complete. We will show
first how to turn this action with a homotopy fixed point into an honest action of G on
a space homotopy equivalent to M and with a fixed point. The pullback diagram

M

��

// EG

��

oo_ _ _

MhG // BGoo_ _ _
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realizes M → MhG as a regular covering space with G acting on M . Liftings of sections
BG → MhG provide G–equivariant maps EG → M . Let M/EG = M ∪ C(EG) be
the homotopy cofibre of any such G–map. Then M → M/EG is a G–equivariant
homotopy equivalence and the G–action on M/EG has a fixed point.

Now, we can assume that there is an honest G–action on M with a fixed point. Let
ΩM denote the loop space based at any G–fixed point. There is a fibration sequence

· · · → ΩMhG → ΩM → Fib(MhG → M)→ MhG → M

and it suffices to construct a homotopy left inverse for ΩMhG → ΩM .

Define tr : ΩM → ΩM to be the map that takes any loop ω to the product
∏

gω
of the loops gω where g runs through the elements of G in some fixed order. The
image of the induced map tr∗ : π∗(ΩM)→ π∗(ΩM), which takes a homotopy class α to∑

g∈G g∗α , is contained in the fixed group π∗(ΩM)G and the composition π∗(ΩM)G →
π∗(ΩM) tr∗−→ π∗(ΩM)G is an isomorphism. This implies that the composition ΩMhG →
ΩM → T , where T is the mapping telescope of ΩM tr−→ ΩM tr−→ · · · , is a (weak)
homotopy equivalence and we have the left inverse we were looking for.

Let (X,BX, e) be a p–compact group or, more generally, a loop space. The above
arguments suggest the following definition of a (proxy) action of a discrete group G
on X .

Definition 5.3 Let (X,BX, e) be a loop space and G a group. A proxy action of G on
(X,BX, e) is a fibration

BX i //BXhG
p //BG .
s
oo (19)

with a section, fixed up to vertical homotopy.

When it is clear from the context that we refer to an action in the sense of this definition,
we will simply say that G acts on the loop space X . The section in (19) guarantees an
induced action of G on the space X , compatible with the loop structure. In fact, the
homotopy quotient for this action on X is defined as the pullback space in the diagram

XhG

p̄
��

p̄ // BG

s
��

BG s
// BXhG .

(20)
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This diagram turns out to be a diagram of spaces over BG. The homotopy fibre of p̄
is X , and it has a canonical section s̄ defined by the pullback diagram (20) that we can
interpret as the homotopy constant loop

X ī //XhG
p̄ //BG .
s̄
oo

The action of G on X depends on the section s : BG → BXhG , and for this action we
obtain that the homotopy fixed point space XhG is a loop space with classifying space
B(XhG) ' (BX)hG

s , the connected component of (BX)hG with base point the section s.
Furthermore, the evaluation map XhG → X is seen to be the loop map of the evaluation
map (BX)hG

s → BX , thus we have a sequence of fibrations

XhG ev //X //X/XhG //(BX)hG
s

ev //BX

where we write X/XhG for the homotopy fibre of the evaluation map (BX)hG
s → BX .

In section 2 we have introduced Out(X) as the group of invertible elements of the
monoid [BX,BX] of unbased homotopy classes of unbased self-maps of BX . By
analogy with discrete group theory, we call outer action of G on X to a homomorphism
of groups ρ : G→ Out(X). Since Out(X) is well understood (see Theorem 2.2), outer
actions will be a source for group actions on p–compact groups provided we can lift
outer actions to actions in the sense of Definition 5.3. Theorem B solves the problem
in case of finite groups of order prime to p.

Proof of Theorem B Fix a finite group G of order prime to p and ρ : G→ Out(X) an
outer action of G on a connected p–compact group X . Recall that we have a fibration
sequence

B2Z(X)→ Baut(BX)→ BOut(X)

and that the center of X , Z(X), is p–local. By obstruction theory we obtain a unique
lifting of ρ to a map ϕ : BG → B aut(BX), that determines an action BX → BXhG →
BG. Furthermore, since π1(BX) = 1, Lemma 5.1.(2) implies that π0(BXhG) = ∗; that
is, there is a unique section

BX //BXhG
//BG .oo (21)

up to fibre homotopy equivalence; in other words, ρ lifts to a unique action of G on X .

This is part (1) of the Theorem. Now, Theorem 5.2 provides the splitting X '
XhG × X/XhG . It follows that X/XhG is an Fp –finite H–space, XhG is a loop space
with classifying space BXhG and it is also Fp –finite. Furthermore, BXhG is p–complete
because BX is p–complete [26, 11.13], hence XhG is a connected p–compact group.
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The rational cohomology algebra H∗(BY;Qp) is polynomial for any connected p–
compact group Y and it follows that the Hurewicz homomorphism induces an isomor-
phism

QH∗(BY;Qp)→ π∗(BY)∨ ⊗Q

between the indecomposables and the rationalized dual (π∨ = HomZp(π,Zp)) of the
homotopy groups of the simply connected space BY [5, Theorem 3.2.3]. For the
connected fixed point p–compact group BXhG , in particular, we have

QH∗(BXhG;Qp) ∼= π∗(BXhG)∨ ⊗Q ∼=
(
π∗(BX)∨ ⊗Q

)
G
∼=
(
QH∗(BX;Qp)

)
G

for π∗(BXhG) = π∗(BX)G as the order of G is prime to p. This proves points (2) and
(3).

We finish by proving point (4). Assume p is odd. If X is a polynomial p–compact
group

H∗(X;Fp) ∼= H∗(XhG;Fp)⊗ H∗(X/XhG;Fp)

is an exterior algebra, hence H∗(XhG;Fp) is an exterior algebra, too. Therefore,
H∗(BXhG;Fp) is a polynomial algebra.

Example 5.4 At any odd prime, let C2 act on E6 through the unstable Adams opera-
tion ψ−1 . Since the fixed point p–compact group BEhC2

6 is the p–compact group BF4

(A.12), there is a splitting
E6 ' F4 × E6/F4

of homogeneous spaces. This splitting is due to Harris [36]. Also, BPEhC2
6 ' BF4 ,

where PE6 is the adjoint form of E6 , (A.12), thus there is also a splitting PE6 '
F4 × PE6/F4 .

Let p be an odd prime and m a divisor of p−1 so that the cyclic group Cm of order m acts
on BSU(mn+s), 0 ≤ s < m, through unstable Adams operations. Since the fixed point
p–compact group BSU(mn + s)hCm is (A.9) the generalized Grassmannian BX(m, 1, n)
with polynomial cohomology H∗(BX(m, 1, n);Fp) = Fp[xm, . . . , xnm], |xim| = 2im,
there is a splitting

SU(mn + s) ' X(m, 1, n)× SU(mn + s)/X(m, 1, n)

of homogeneous spaces. This splitting is originally due to Mimura, Nishida, and
Toda [45]), although the recognition of X(m, 1, n) as a loop space is due to Quillen
[61] (see also [66, 71, 18]). The case m = 2 is the classical splitting SU(2n) '
Sp(n)×SU(2n)/Sp(n). Similar splittings for central quotients of SU(n) can be worked
out.
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Similarly, at p = 5, let C4 act on BE8 through unstable Adams operations. The
fixed point p–compact group BEhC4

8 is the p–compact group BX31 corresponding to
Zp –reflection group number 31 on the Clark–Ewing list (see A.12), H∗(BX31;Fp) =
Fp[x16, x24, x40, x48] where subscripts indicate degrees, there is a splitting

E8 ' X31 × E8/X31

of homogeneous spaces, that was obtained in [68].

At p = 3, BF4 admits an exceptional isogeny of order 2 and the fixed point
group BF4

hC2 is [16] the p–compact group BDI2 whose cohomology realizes the
Dickson algebra F3[x12, x16]. The corresponding splitting

F4 ' DI2 × F4/DI2

was first obtained in [37]. Later proofs of this splitting were obtained independently
by Wilkerson and by Kono, using Friedlander’s exceptional isogeny of F4 localized
away from two.

In these last two cases, it was Zabrodsky [71, 4.3], who first recognized the factors
X12 = DI2 and X31 as loop spaces. Later, Aguadé gave a nice uniform construction
of a family of modular p–compact groups including these cases [1].

6 Homotopy fixed point spaces of twisted unstable Adams
operations

In this section we proof Theorem E. Part (1) of the Theorem follows from Proposi-
tion 6.2 and Remark 6.3, while Part (2) is Proposition 6.5.

Let X be a connected p–compact group and set α : X → X a p–compact group
automorphism. The homotopy pullback diagram

BXhα

ι

��

ι // BX

∆
��

BX
(1,α) // BX × BX

(22)

serves as the definition of the space BXhα . If α is homotopic to α′ , then BXhα ' BXhα′ .

In the special case where α = τψq is a twisted unstable Adams operation with q ∈ Zp ,
q 6= 1, and q 6≡ 0 mod p, we also write BτX(q) = BXh τψq

, or just BX(q), if τ = 1.
For q = 1 we trivially obtain BX(1) ' Λ(BX), the free loop space.
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Assume that α represents an element of finite order r in Out(X), with r prime to
p, and X is a connected p–compact group. According to Theorem B, it defines an
action of the cyclic group Cr on X . The next proposition shows that the natural map
Λ(BXhCr )→ BXhα is a homotopy equivalence.

Proposition 6.1 Assume that X is a connected p–compact group. If β : BX → BX
represents an element of Out(X) of finite order r , prime to p, then BXhβ is homotopy
equivalent to the space of free loops on BXhCr , where the action of the cyclic group Cr

on BX is given by β .

Proof According to Theorem B, β defines an action of Cr on X ,

BX i //BXhCr

p //BCr .s
oo

Evaluation at the base point of BCr induces a map ev: BXhCr → BXhCr that makes the
triangle

BX

β

��

BXhCr

ev
;;wwwwwwww

ev
##G

GGGGGGG

BX

commutative up to homotopy. Therefore, we can form a homotopy commutative
diagram

Λ(BXhCr ) //

��

''OOOOOOOO BXhCr

��

∆

((RRRRRRRRR

BXhCr
∆ //

��

BXhCr × BXhCr

��

BXhβ //

((PPPPPPPPP BX
∆

))SSSSSSSSSSS

BX
(1,β) // BX × BX .

(23)

We will show that Λ(BXhCr ) → BXhβ is a homotopy equivalence. According to
Theorem 5.2, BXhCr is the classifying space of a connected p–compact group and
by Lemma 5.1 the map ev: BXhCr → BX induces an identification of the homotopy
groups of BXhCr with the invariant elements in the homotopy groups of BX by the
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action of Cr : πi(BXhCr ) ∼= πi(BX)Cr ↪→ πi(BX). There is a Mayer–Vietoris long exact
sequence for the homotopy groups of BXhβ ,

. . . −→ πi(BXhβ) −→ πi(BX)
1−β∗−−−→ πi(BX) −→ πi−1(BXhβ) −→ . . .

and for the homotopy groups of the free loop space,

. . . −→ πi(Λ(BXhCr )) −→ πi(BXhCr ) 0−→ πi(BXhCr ) −→ πi−1(Λ(BXhCr )) −→ . . .

Both long exact sequences together give

0 // πi+1(BX)Cr //

��

πi(Λ(BXhCr )) //

��

πi(BX)Cr //

��

0

0 // Coker{1− β∗} // πi(BXhβ) // Ker{1− β∗} // 0 .

Now, Ker(1− β∗) = πi(BX)Cr and Coker(1− β∗) = πi+1(BX)Cr . Since r is prime to
p, and the homotopy groups πi(BX) are Z(p) –modules for every i ≥ 2, the composition
πi+1(BX)Cr → πi+1(BX) → πi+1(BX)Cr is an isomorphism. Hence also the middle
vertical map πi(Λ(BXhCr ))→ πi(BXhβ) is an isomorphism.

Our next result contains Proposition 6.1 as a special case and it will reduce, in many
cases, the question of describing BXhα to two separate steps. The computation of the
homotopy fixed point space BXhCr , for elements α of order r prime to p, and the
case in which α = ψq is an unstable Adams operation of exponent q ≡ 1 mod p (see
Theorem 2.2 and formula (3) in Section 2). It is one of the two claims of Theorem E.

Proposition 6.2 Let X be a connected p–compact group. If α is an automorphism of
X that factors α = ψqβ with

(1) q ≡ 1 mod p, and (ψq)∗ : H∗(X;Fp)→ H∗(X;Fp) is the identity, and

(2) β is an automorphism of X that represents an element of finite order r , prime
to p, in Out(X),

then BXhα ' BXhCr (q) where Cr = 〈β〉 ⊂ Out(X) is the cyclic group of order r
generated by the homotopy class of β .

Proof Let BY = BXhCr denote the homotopy fixed point p–compact group for the
action of the cyclic group Cr = 〈β〉 ⊂ Out(X) and i : BY → BX the evaluation map.
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Now, β restricts trivially to BY , an in the proof of Proposition 6.1, and then, since ψq

commutes with β , up to homotopy, we have a homotopy commutative diagram

BY

i
��

ψq
// BY

i
��

BX
α=ψqβ // BX

that extends to
BY(q) //

��

&&LLLLLLL BY

��

∆

''OOOOOOOO

BY
(1,ψq) //

��

BY × BY

��

BXhα //

&&LLLLLLL BX
∆

''OOOOOOOO

BX
(1,α) // BX × BX

where the top and bottom faces are homotopy pullback diagrams, and the front face
commutes up to homotopy. Consequently, the homotopy fibres of the vertical maps
form another homotopy pullback diagram:

(X/Y)hα //

��

X/Y

∆

��
X/Y

(1,α) // X/Y × X/Y

with (X/Y)hα ' hofib(BY(q) → BXhα), and where we still denote by α the self-
equivalence of X/Y induced by α : BX → BX . Theorem B says that X/Y is a
connected H–space and then we can also describe (X/Y)hα as the homotopy fibre of
1−α : X/Y → X/Y . It also implies that the map (ψq)∗ : H∗(X/Y;Fp)→ H∗(X/Y;Fp)
can be read off the map (ψq)∗ defined on H∗(X;Fp), which by hypothesis is the identity.
This fact easily implies that (1− α)∗ = (1− β)∗ on H∗(X/Y;Fp).

According to Proposition 6.1, the homotopy fibre, (X/Y)hβ , of 1 − β is contractible,
hence (1 − β)∗ is an automorphism of H∗(X/Y;Fp). Thus, a spectral sequence
argument shows that (X/Y)hα is mod p acyclic. Finally, it is easy to see that (X/Y)hα

is p–complete, hence contractible, and therefore BY(q) ' BXhα .

Remark 6.3 If X polynomial, the effect of Ωψq , q ≡ 1 mod p, on mod p cohomology
of X is determined by the effect of ψq on H∗(BX,Fp) and this is in turn determined
by the effect of ψq on H∗(BTX;Fp) which is multiplication by q, hence the identity.
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For X = F4 , E6 , E7 , E8 at the prime 3 or X = E8 at the prime 5, we also obtain that
Ωψq , q ≡ 1 mod p, acts trivially on H∗(X;Fp). In order to check this, we can look at
the Serre spectral sequence for the path–loop fibration X → PBX → BX . It turns out
that the generators for H∗(X;Fp) either transgress to elements detected in the maximal
torus of BX , or are linked to such elements by Steenrod operations (cf. [46, Ch7]). In
particular, 6.2 applies to all 1–connected p–compact groups, p odd, according to the
classification theorem [7].

In particular, BX(ζq) = BXh〈ζ〉(q) when ζ is a (p−1)th root of unity and q ≡ 1 mod p
satisfies the conditions of Proposition 6.2. If q = 1 we obtain Proposition 6.1,
BX(ζ) = BXh〈ζ〉(1) = Λ(BXh〈ζ〉), as a special case.

For the next result, we need to interpret BXhα as homotopy fixed point set by the action
of Z generated by α ∈ Out(X). In fact, given α ∈ Out(X), we denote again by α

a representative homotopy equivalence α : BX → BX . The mapping torus is defined
BXhα = BX × I/∼, where I = [0, 1] is the unit interval and (x, 0) ∼ (α(x), 1). There
is a fibration, up to homotopy,

BX → BXhα → S1

given by projection onto the second component. This fibration is classified by a loop
ωα : S1 → B aut(BX) that represents α ∈ π1(B aut(BX)) = Out(X).

The space of sections for this fibration clearly coincides with BXhα as defined in
diagram (22), so we can interpret BXhα and BXhα as the homotopy quotient space
BXhZ and the homotopy fixed point space BXhZ , respectively, for the action of Z on
BX determined by α ∈ Out(X). Notice that since X is connected, so is BXhα ' BXhZ

and therefore, there is a unique lifting, up to equivalence, of the action of Z on BX to
an action of Z on X , in the sense of Definition 5.3.

We will use this point of view in order to proof the second claim of Theorem E. We
will see that an action of Z on BX generated by an unstable Adams operation ψq of
exponent q ≡ 1 mod p, extends to an action of Zp on BX , and that this implies that
the homotopy type of the homotopy fixed point space BX(q) = BXhZ depends only on
the p–adic valuation νp(1− q).

Lemma 6.4 Suppose that BXhZp → BZp is a fibration over BZp with fibre BX . The
p–completion map ` : BZ→ BZp induces a homotopy equivalence BXhZp → BXhZ of
spaces of sections.
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Proof The maps BZ //BZp BXhZp
oo determine a commutative diagram

Map(BZp,BXhZp)

��

// Map(BZ,BXhZp)

��
Map(BZp,BZp) '

// Map(BZ,BZp)

which is a pullback diagram since ` : BZ → BZp is an Fp –equivalence [10, 12.2].
(To see that BXhZp → BZp is an H∗Fp –fibration observe that the action of Zp on
Hi(BX;Fp), i ≥ 0, is nilpotent because it factors through a finite quotient of Zp .)
Thus the fibre of the left fibration over the identity map of BZp , BXhZp , is homotopy
equivalent to the fibre of the right fibration over the p–completion map ` : BZ→ BZp ,
BXhZ .

Using the description of Out(X) in Section 2 we will see that actions of Z on connected
p–compact groups given by Adams operations ψq extend to the p–adics precisely
when q ≡ 1 mod p. The inclusion of Adams operations in Out(X), described as
q ∈ Z×p 7→ ψq ∈ Out(X) induces a diagram of group homomorphisms

Hom(Zp,Z×p )

��

res // Hom(Z,Z×p )

��
Hom(Zp,Out(X)) res // Hom(Z,Out(X))

where the horizontal homomorphisms are given by restriction.

Recall that, for an odd prime p, Z×p ∼= Z/p− 1× Zp , where Z/p− 1 corresponds to
the subgroup of Z×p of roots of unity and Zp is identified with the subgroup of elements
q ∈ Z×p , with q ≡ 1 mod p, via the exponential map:

a ∈ Zp 7→ exp(pa) ∈ Z×p
(exp defined by the usual expansion exp(pa) = 1 + pa + . . .). Since there are no
non-trivial homomorphisms Zp → Z/p − 1, an action of Z on BX determined by an
Adams operation ψq can only be the restriction of an action of Zp if q ≡ 1 mod p.
On the other hand, if q ≡ 1 mod p, then, we can write q = 1 + pmq (mq = 1

p log(q)),
and the homomorphism ωq : Z → Z×p that maps 1 to q is clearly the restriction to Z
of the homomorphism ω̄q : Zp → Z×p defined ωq(x) = exp(xpmq).

Now, we can prove the second claim of Theorem E.

Proposition 6.5 If q, q′ ∈ Z×p , both are of multiplicative order r mod p, and νp(1−
qr) = νp(1− q′r), then BX(q) ' BX(q′), for any 1–connected p–compact group X.
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Proof The proof is divided in two steps. First, we will consider the case q ≡ q′ ≡
1 mod p (r = 1). In these cases, the actions of Z given by ψq and ψq′ , respectively,
extend to actions of the p–adics described by mq = 1

p log(q) and mq′ = 1
p log(q′),

respectively. The homotopy fixed point space BXhZp depends only of the image of the
action Zp → Out(X). The image of the two actions are clearly the same if and only if
mq and mq′ differ by a p–adic unit; that is, if and only if νp(mq) = νp(mq′), if and only
if νp(1− q) = νp(1− q′), in which case, we have

BX(q) ' BXhψq ' BXhZp ' BXhψq′ ' BX(q′) .

In the general case, we can decompose q = ζ · q0 and q′ = ζ ′ · q′0 , where ζ and ζ ′

are primitive r th roots of unity and q0 ≡ q′0 ≡ 1 mod p. Since ζ and ζ ′ generate the
same subgroup of Z×p we have that

BX(q) ' BXh〈ζ〉(q0) ' BXh〈ζ′〉(q0) ' BXh〈ζ′〉(q′0) ' BX(q′) .

Remark 6.6 If q is a p–adic unit, we can find a prime number q0 such that q ≡
q0 mod p and νp(1− qr) = νp(1− qr

0), where r is the order of q mod p, and then,

BX(q) ' BX(q0)

by Proposition 6.5.

In fact, we can assume that q is an integer, otherwise change it by the sum of enough
first terms in its p–adic expansion. Then, by Dirichlet’s theorem there is a prime
number q0 of the form q0 = pNc + q, with N > νp(1 − qr), satisfying the above
conditions.

7 General structure of Chevalley p–local finite groups

In this section we will study some general properties of the spaces BX(q), obtained as
homotopy fixed point spaces for the action of unstable Adams operations on classifying
spaces of connected p–compact groups. The main results being the identification of
the maximal finite torus, the Weyl group, and the fusion category of elementary abelian
p–subgroups of BX(q).

Proposition 7.1 Let X be a connected p–compact group and α a self homotopy
equivalence of X . Then

(1) BXhα is connected and p–complete.
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(2) ι : BXhα → BX is a homotopy monomorphism at p.

(3) For any finite p–group P, Map(BP,BXhα)c ' BXhα .

Proof From the definition we obtain a fibration X −→ BXhα ι−→ BX where X and BX
are p–complete, X is connected and BX is simply-connected. It follows that BXhα is
connected and p–complete.

For any finite p–group P, Map(BP,BX)c ' BX , and Map∗(BP,X) ' X for any choice
of base point. It then follows that ι : BXhα → BX is a homotopy monomorphism at p,
and from the induced fibration

Map(BP,X)→ Map(BP,BXhα)c → Map(BP,BX)c

it follows that Map(BP,BXhα)c ' BXhα .

Lemma 7.2 Let X be a p–compact group, α a self homotopy equivalence of BX ,
and (P, ν) an object of Fp(BX) fixed by α up to homotopy; that is, ν ' α ◦ ν . If
CX(P, ν) is connected, then there is a unique lifting of ν : BP → BX to a homotopy
monomorphism g : BP→ BXhα , and

Map(BP,BXhα)g

��

// Map(BP,BX)ν

∆

��
Map(BP,BX)ν

1×α] // Map(BP,BX)ν ×Map(BP,BX)ν

is a homotopy pullback diagram.

Proof Since (22) is a homotopy pullback diagram, there is at least a lifting of ν ,
g : BP→ BXhα .

The homotopy fibre of Map(BP,BX)ν
∆−→ Map(BP,BX)ν × Map(BP,BX)ν is

CX(P, ν) = Ω Map(BP,BX)ν , hence pulling back along 1 × α] we obtain a fibra-
tion, up to homotopy,

CX(P, ν) −→ Map(BP,BXhα)ν̂
ι]−→ Map(BP,BX)ν

where Map(BP,BXhα)ν̂ consists of all possible liftings of ν up to homotopy. The
base space consists of just one connected component, hence if we assume that the fibre
CX(P, ν) is also connected, then the total space must be connected, and therefore any
other lifting of ν is homotopic to g.

The following lemma will help us determine the restriction of α to the centralizers.
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Lemma 7.3 Let X be a connected p–compact group and α a self-equivalence of BX.
Let T(α) be a given restriction of α to the maximal torus T = TX , and (P, ν) an object
of Fp(BX).

Suppose that ν : BP→ BX admits a factorization µ : BP→ BT through the maximal
torus j : BT → BX . Then, the object (P, ν) is fixed by α if and only if T(α)µ = wµ
for an element w of the Weyl group. If this is the case, the restriction to the maximal
torus of the induced self homotopy equivalence α|CX(P,ν) of the centralizer CX(P, ν) is
T(α|CX(P,ν)) = w−1 ◦ T(α).

Proof (P, ν) is fixed by α means that ν ' α ◦ Bν , and if ν factors as j ◦ µ, that is
to say, j ◦ Bµ ' α ◦ j ◦ µ ' j ◦ T(α) ◦ µ, and according to [55, 4.1], [49, 3.4], this is
equivalent to the existence of w, in the Weyl group of X , such that w ◦µ ' BT(α) ◦µ.

Now assuming the existence of such element w, we read from the commutative diagram

BT
T(α) // BT BT

woo

Map(BP,BT)µ

ev'

OO

j]'
��

T(α)] // Map(BP,BT)wµ

j]'
��

ev'

OO

Map(BP,BT)µ
w]oo

j]

'

uujjjjjjjjjjjjjjj

ev'

OO

Map(BP,BX)ν
α] // Map(BP,BX)ν

that the restriction of α|CX(P,ν) = α] to the maximal torus of CX(V, ν) is w−1◦T(α).

If the centralizer CX(V, ν) is connected, this determines the restriction α|CX(V,ν) (see
Section 2).

Corollary 7.4 Let X be a p–compact group and ν : BV → BX a toral elementary
abelian p–subgroup such that its centralizer CX(V, ν) is connected. If ψq is an unstable
Adams operation of exponent q ≡ 1 mod p, q 6= 1, then

(a) there is a unique lift of ν to g : BV → BX(q),

(b) ψq|CX(V,ν) is an unstable Adams operation of exponent q, and

(c) the centralizer of (V, g) in X(q) is CX(q)(V, g) ∼= CX(V, ν)(q).

Proof In particular, when ν : BV → BX is a toral elementary abelian p–group in X
and α = ψq is an Adams operation of exponent q ≡ 1 mod p, then we can write
T(ψq) = ψq , the qth power map in the maximal torus T = TX and ψq ◦ µ ' µ,
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where µ : BV → BT is a lift to BT of ν : BV → BX , so, by Lemma 7.3, there is a
commutative diagram

BT
T(ψq)=ψq

//

��

BT

��
BCX(V, ν)

ψq|CX (V,ν) //

��

BCX(V, ν)

��
BX

ψq
// BX

this proves (b), namely, ψq|BCX(V,ν) is, as well, an unstable Adams map ψq .

Now, (a) and (c) follow from Lemma 7.2.

We will now restrict our attention to cases with q ≡ 1 mod p, q 6= 1. According to
Proposition 6.2, the general case can be reduced to this one, in the cases that are of
interest to us (see Remark 6.3). Hence, essentially, there will be no loss of generality
in our assumption.

Proposition 7.5 Let X be a connected p–compact group, p an odd prime, and ψq an
unstable Adams operation of exponent q ∈ Z∗p , with q ≡ 1 mod p, q 6= 1. Then the
inclusion ν : BtX → BX of the subgroup of elements of order p in the maximal torus
TX has a unique lift to g : BtX → BX(q) and its centralizer is

CX(q)(tX, g) = TX(q) .

Proof Since CX(tX, ν) = TX [49, 3.2] and ψq|TX = T(ψq) = ψq this follows from 7.3
(see 7.4).

The group TX(q) ∼= Tn
`
∼= (Z/p`)n , where n is the rank of X and ` = νp(q − 1),

established in Proposition 7.5, embeds in BX(q)

i : BTn
` → BX(q)

as a subgroup (Tn
` , i) that will be referred to as the maximal finite torus of X(q). When

no confusion is possible we will simply write Tn
` for the maximal finite torus of BX(q).

Notice that Tn
` is self-centralizing in BX(q). Then, we define the Weyl group of BX(q)

as the automorphism group

WX(q)(Tn
` , i) = AutFp(BX(q))(Tn

` ) = {ϕ ∈ aut(Tn
` ) | i ' i ◦ Bϕ }
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of (Tn
` , i) in the category Fp(BX(q)). Tn

` affords a faithful representation WX(q)(Tn
` , i)→

GLn(Z/p`).

The Weyl group of BX(q) can also be interpreted as the set of connected components of
Map∗(BTn

` ,BTn
` ) that lie over the connected component of i : BTn

` → BX(q) through
the map Map∗(BTn

` ,BTn
` )→ Map(BTn

` ,BX(q)). The normalizer of the maximal finite
torus of BX(q), BNX(q)(Tn

` ), is defined by its classifying space, the Borel construction
for the action of WX(q)(Tn

` ) on Map(BTn
` ,BX(q))i , together with the inclusion

ī : BNX(q)(Tn
` ) =

(
Map(BTn

` ,BX(q))i
)

hWX(q)(Tn
` ) −→ BX(q)

induced by evaluation at the base point of BTn
` .

Proposition 7.6 Let X be a connected p–compact group, p an odd prime, and ψq an
unstable Adams operation of exponent q ∈ Z∗p , with q ≡ 1 mod p, q 6= 1. If (Tn

` , i) is
the maximal finite torus of BX(q), then its Weyl group is

WX(q)(Tn
` ) ∼= WX

the Weyl group of X , with action on Tn
` given by the mod p` reduction of the p–adic

representation of WX . The normalizer of the maximal finite torus is the split extension
NX(q)(Tn

` ) = Tn
` oWX(q)(Tn

` ), and its classifying space fits in a homotopy commutative
diagram

BNX(q)(Tn
` ) ι̃ //

ī
��

BN

j
��

BX(q) ι // BX .

(24)

where j : BN → BX is the inclusion of the maximal torus normalizer of X .

Proof We will first see that the automorphism in Fp(BX) of Tn
` as a subgroup of BX

via the composition ι ◦ i : BTn
` → BX , WX(Tn

` ), coincides with the Weyl group WX .
In fact, an element w ∈ WX is a homotopy equivalence of BT over BX . Its restriction
to BTn

` , factors again to give a homotopy equivalence w̄ of BTn
` and a homotopy

commutative diagram
BTn

`

w̄
��

// BT

w

��

j

  A
AA

AA
AA

AA

BTn
`

// BT
j // BX

(25)

where BT ' K(Zn
p, 2) and the map BTn

` → BT classifies the extension class of the

exact sequence (Zp)n p`−−→ (Zp)n → (Z/p`)n . Hence, if w is represented by a certain
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matrix in GLn(Zp), then w̄ is represented by its mod p` reduction in GLn(Z/p`). We
have produced a homomorphism WX(Tn

` ) → WX which is injective because WX is
finite and mod p` reduction has torsion free kernel in GLn(Zp). Furthermore, since
Map(BTn

` ,BX)ι◦i ∼= BT , it turns out that every homotopy equivalence of BTn
` over BX

can be extended to a diagram like (25) and therefore we actually have an isomorphism
WX(Tn

` ) ∼= WX .

Next, we compare WX(q)(Tn
` ) and WX(Tn

` ). By composition with ι : BX(q) → BX ,
every homotopy equivalence w̄ of BTn

` over BX(q) can also be considered over BX

BTn
`

w̄
��

i

""F
FF

FF
FF

FF

BTn
`

i // BX(q) ι // BX

what gives an inclusion WX(q)(Tn
` ) ↪→ WX(Tn

` ). Now, Lemma 7.2 implies that this is
actually an isomorphism.

Finally, the natural maps

Map(BTn
` ,BX(q))i

ι] // Map(BTn
` ,BX(q))ι◦i Map(BTn

` ,BX(q))j
'oo

induced by composition with ι : BX(q) → BX and with the inclusion BTn
` → BT ,

respectively, are equivariant for the respective actions of WX(q)(Tn
` ), WX(Tn

` ) and WX ,
respectively, induced by the natural actions on the first component. Applying the Borel
construction, we obtain a map

BNX(q)(Tn
` ) ι̃ //

(
Map(BTn

` ,BX(q))ι◦i
)

hWX(Tn
` ) ' BN

and diagram (24) is induced by evaluation at base points. Moreover this maps extends
the map between classifying spaces of tori to give a diagram of fibrations

T

��

' // T

��
BTn

`

��

// BNX(q)(Tn
` ) //

ι̃

��

BWX(q)(Tn
` )

'
��

BT // BN // BWX

where T ' ΩBT ' K((Zp)n, 1). By [6, 1.2] the bottom row fibration has a section and
by [6, 3.3] this section lifts to a section of the fibration in the middle row. It follows
that NX(q)(Tn

` ) is a split extension.
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For X a p–compact group and α a self equivalence, the inclusion ι : BXhα → BX
induces a functor between the respective fusion categories

ι] : Fp(BXhα) −→ Fp(BX)

and Lemma 7.2 above gives some useful information in order to compare the morphism
sets. Thus, for instance,

MorFp(BXhα)((P, g), (Q, h)) −→ MorFp(BX)((P, ι ◦ g), (Q, ι ◦ h)) (26)

is a bijection provided CX(P, ι◦g) is connected. It rarely happens that those centralizers
are connected for a general p–group P, but it is not so unusual if we restrict to some
particular classes of small groups. For a space Y , we denote F e

p (Y) the full subcategory
of Fp(Y) whose objects are the elementary abelian subgroups of Y .

Corollary 7.7 Let p be an odd prime. If X is a connected polynomial p–compact
group and α a self homotopy equivalence, then the functor

ι] : F e
p (BXhα) −→ F e

p (BX)

is both full and faithful.

Proof If X is a connected polynomial p–compact group, then centralizers of elemen-
tary abelian p–subgroups are connected and Lemma 7.2 applies. In fact, if (E, ν) is an
elementary abelian p–subgroup of X , then the centralizer CX(E, ν) is also a polynomial
p–compact group, hence H1(BCX(E, ν);Fp) = 0 and therefore CX(E, ν) is connected
(see [29, 1.3]) and the map (26) is a bijection for every elementary abelian p–subgroups
(P, g) and (Q, h) of BXhα .

Corollary 7.8 Let p be an odd prime. If X is a connected polynomial p–compact
group and ψq an unstable Adams operation of exponent q ∈ Z∗p , with q ≡ 1 mod p,
then

ι] : F e
p (BX(q)) −→ F e

p (BX)

is an equivalence of categories.

Proof By Corollary 7.7 we only have to check that ι] induces in this case a bijection
between isomorphism classes of objects, and this follows from Proposition 7.5, because
in a polynomial p–compact group every elementary abelian subgroup is toral.
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Let X be a polynomial p–compact group with trivial center and q ∈ Z∗p a p–adic unit
with q ≡ 1 mod p, q 6= 1. Putting BCX(q)(V, g) = Map(BV,BX(q))g for any object
(V, g) of F e

p (BX(q)) we get a functor from F e
p (BX(q))op to topological spaces. There

is natural map
hocolim
F e

p (BX(q))op
BCX(q) → BX(q)

from the homotopy colimit of this functor. When CX(V, g) is connected, we have

BCX(q)(V, g) ' BCX(V, ι ◦ g)(q)

according to Lemma 7.3 and Corollary 7.4.

Let TX be the maximal torus and WX the Weyl group of a p–compact group X , p
odd. As usually, we denote by tX the group of all elements of order p in TX , and
g : BtX → X(q) the inclusion. For any nontrivial elementary abelian p–subgroup
E ≤ T , write WX(E) for the point-wise stabilizer subgroup of E .

Proposition 7.9 Let X be a polynomial p–compact group with trivial center, p odd,
and q ∈ Z∗p a p–adic unit with q ≡ 1 mod p, q 6= 1. Assume that

H∗(BX(q);Fp) ∼= H∗(BTX(q);Fp)WX

and that
H∗(BCX(q)(E, g|BE);Fp) ∼= H∗(BTX(q);Fp)WX(E)

for any nontrivial, subgroup E of tX . Then, the natural map

hocolim
F e

p (BX(q))op
BCX(q) → BX(q) (27)

is an Fp –equivalence.

A similar statement holds with F e
p (BX(q)) replaced by the full subcategory generated

by all objects of the form (tX)P where P runs through the subgroups of a Sylow
p–subgroup of WX .

Proof The functor from F e
p (BX(q)) = F e

p (BX) to the category of Fp –vector spaces
that takes an object E to H∗(BCX(q)(E);Fp) = H∗(BTX(q);Fp)WX(E) is acyclic in the
sense that lim0 = H∗(BTX(q);Fp)WX and the higher limits vanish [25, 8.1]. Therefore,
the Bousfield–Kan spectral sequence for the cohomology of the homotopy colimit

hocolim
F e

p (BX(q))op
BCX(q)

(see [11, XII.4.5]) collapses at E2 –term, and then, it shows that (27) is an Fp –
equivalence. The same conclusion holds if we replace the category F e

p (BX(q)) by
its full subcategory generated by all objects of the form (tX)P where P runs through
the subgroups of a Sylow p–subgroup of WX [53, 2.16].
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This result motivates the research on the cohomology rings H∗(BX(q);Fp) and on the
invariant rings H∗(BTX(q);Fp)WX , in the next two sections.

8 Cohomology rings

This section is devoted to the proof of Theorem F. The Eilenberg–Moore spectral
sequence is used in order to get a hold of the cohomology rings of the spaces BX(q)
of fixed points of unstable Adams operations acting on polynomial p–compact groups
BX . We follow the arguments of [64] that already contain the first part of the theorem.

Proof of Theorem F Part (1) is due to L. Smith [64]. We will sketch his arguments
here and then will continue with the proof of the second part of the theorem.

There is an Eilenberg–Moore spectral sequence associated to the pullback diagram

BX(q) ι //

ι

��

BX

∆
��

BX
1×ψq

// BX × BX .

(28)

This is a second quadrant spectral sequence with

Es,t
2
∼= Tors,t

H∗(BX;Fp)⊗2(H∗(BX;Fp),H∗(BX;Fp)) =⇒ Hs+t(BX(q);Fp)

converging to a graded ring associated of H∗(BX(q);Fp).

For simplicity, we will write P[xi] = P[x1, . . . , xn] ∼= H∗(BX;Fp). The Koszul
complex

E(xi) = P[xi]⊗ P[xi]⊗ E[sx1, . . . sxn]

with bideg(sxi) = (−1, 2di) and d(sxi) = xi ⊗ 1− 1⊗ xi , is a free resolution of P[xi]
as (P[xi]⊗P[xi])–module, with module structure given by the multiplication m = ∆∗ .
Then, Tor∗∗P[xi]⊗P[xi](P[xi],P[xi]) is the homology of the complex

P[xi]⊗P[xi]⊗P[xi] E(xi) ∼= P[xi]⊗ E[sx1, . . . sxn]

where now the action of P[xi]⊗ P[xi] on the left hand side term P[xi] in given by the
algebra map (1 × ψq)∗ , hence one obtains the expression d(sxi) = xi − qdixi for the
differential, but since q ≡ 1 mod p, we actually have d(sxi) = 0 for all i = 1, . . . , n.
This yields

E∗∗2 ∼= Tor∗∗P[xi]⊗P[xi](P[xi],P[xi]) ∼= P[x1, . . . , xn]⊗ E[sx1, . . . , sxn]
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and, since the algebra generators appear in filtration degrees 0 and −1, the spectral
sequence collapses at the E2 –page and then we can find elements yi in H∗(BX(q);Fp)
representing sxi in the graded associated ring, with

H∗(BX(q);Fp) ∼= P[x1, . . . , xn]⊗ E[y1, . . . , yn] .

Let TX be the maximal torus of X and WX the Weyl group. Since X is polynomial,
the mod p cohomology ring of BX coincides with the invariants by the action of the
Weyl group on the mod p cohomology of BTX , H∗(BTX;Fp)WX ∼= H∗(BX;Fp) ∼=
P[x1, . . . , xn].

According to 7.4, 7.5, the classifying space of maximal finite torus of X(q) is BT(q) ∼=
BTn

` and it is obtained from a pullback diagram

BTn
`

ι //

ι

��

BT

∆

��
BT

1×ψq
// BT × BT .

(29)

Furthermore, the Weyl group is WX (7.6) hence, the restriction map

i∗ : H∗(BX(q);Fp)→ H∗(BTn
` ;Fp)

has image in the invariant subring by the action of the Weyl group, WX . It remains to
show that this restriction map is injective.

The pullback diagram (29) yields another Eilenberg–Moore spectral sequence:

Es,t
2
∼= Tors,t

H∗(BT;Fp)⊗2(H∗(BT;Fp),H∗(BT;Fp)) =⇒ Hs+t(BTn
` ;Fp) .

We will pay special attention to the map between the two spectral sequences i∗ : E∗∗r →
E∗∗r induced by the natural map from diagram (29) to diagram (28) given by inclusion
of the maximal torus. In order to describe the induced map at the level of E2 –pages,
we need some elementary algebraic considerations.

Again for simplicity, we will write P[ti] = P[t1, . . . , tn] ∼= H∗(BTX;Fp). The kernel
of the multiplication m : P[ti]⊗ P[ti]→ P[ti] is a Borel ideal

Ker m = (t1 ⊗ 1− 1⊗ t1, . . . , tn ⊗ 1− 1⊗ tn)

and then we can define derivations

∂i : P[ti]→ P[ti]

for i = 1, . . . , n, in the following way. For any homogeneous polynomial f ∈ P[ti],
f ⊗1−1⊗ f ∈ Ker m, hence we can find an expression f ⊗1−1⊗ f =

∑
i ci(f )(ti⊗1−

1⊗ ti), with coefficients ci(f ) ∈ P[ti]⊗P[ti], and then define ∂i(f ) = m(ci(f )) ∈ P[ti].
A routine calculation shows:
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(1) ∂i is well defined and does not depend on the choice of coefficients c1(f ), . . . ,
cn(f ),

(2) ∂i is a derivation of P[ti], and

(3) ∂i(ti) = 1 and ∂i(tj) = 0 if j 6= i.

These properties show that these are the partial derivatives:

∂i(f ) =
∂f
∂ti

.

After these considerations we can easily describe the map between the respective E2 –
pages and show that it is injective. In order to compute the E∗∗2 , we define now the
Koszul complex

E(ti) = P[ti]⊗ P[ti]⊗ E[st1, . . . stn]

with bideg(sti) = (−1, 2) and d(sti) = ti ⊗ 1− 1⊗ ti . As before, we obtain that

E∗∗2 ∼= Tor∗∗P[ti]⊗P[ti](P[ti],P[ti]) ∼= P[ti]⊗P[ti]⊗P[ti] E(ti) ∼= P[ti]⊗ E[st1, . . . stn] (30)

since the differential in this complex turns out to be trivial, again, because q ≡ 1 mod p.
Also as before, the algebra generators of E∗∗2 appear in filtration degree 0 and −1 and
therefore the spectral sequence E∗∗r collapses at the E2 –page.

Now, the inclusion i∗ : P[xi]→ P[ti] extends to a map of Koszul complexes

i∗ : E(xi)→ E(ti)

which is a P[xi]⊗ P[xi]–module map defined by

i∗(sxi) =
∑

j

ci(xi)⊗ stj

on generators. Then the induced map

i∗ : Tor∗∗P[xi]⊗P[xi](P[xi],P[xi]) ∼= P[xi]⊗ E[sx1, . . . sxn]

−→ Tor∗∗P[ti]⊗P[ti](P[ti],P[ti]) ∼= P[ti]⊗ E[st1, . . . stn]

is determined by

i∗(sxi) =
∑

j

∂j(xi)⊗ stj =
∑

j

∂xi

∂tj
⊗ stj .

Now, i∗ is injective because the Jacobian determinant is non-trivial,

J = det
(
∂xi

∂tj

)
6= 0,

by [69]. Since both spectral sequences collapse at the E2 –page, it follows that the
induced homomorphism i∗ : H∗(BX(q);Fp)→ H∗(BTn

` ;Fp) is also injective.
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Remark 8.1 The argument with the Eilenberg–Moore spectral sequence used in the
proof of part (1) of the above Theorem applies more generally to the case of any
unstable Adams operation ψq of arbitrary exponent q ∈ Z∗p acting on a polynomial
p–compact group (see [64]). Under these more general hypothesis we obtain that if
H∗(BX) ∼= P[x1, . . . , xn] then the cohomology of BX(q) is

H∗(BX(q);Fp) ∼= P[xi1 , . . . , xik ]⊗ E[yi1 , . . . , yik ]

where the polynomial generators xij correspond to those xi with degree 2di = deg xi

where m|di , if m is the order of q mod p, and 2di − 1 = deg yi .

Notice that we can write q = ζq′ where ζ is an mth root of one in Zp and q′ ≡ 1 mod p.
Hence ψq = ψq′ ◦ ψζ , and ψζ has finite order m as automorphism of the p–compact
group X . It follows from 6.2, 6.3, that BY(q′) ' BX(q) if BY = BXhψζ . Moreover,
by Theorem B, Y = Xhψζ is again a polynomial p–compact group. According to
Theorem F the cohomology of BY must be

H∗(BY;Fp) ∼= P[xi1 , . . . , xik ] .

9 Invariant theory

Let X be a polynomial p–compact group of rank n and let q be a p–adic unit,
q ≡ 1 mod p, q 6= 1, and ` = νp(1− q). In the second part of Theorem F we obtained
a monomorphism i∗ : H∗(BX(q);Fp) ↪→ H∗(BTn

` ;Fp)WX , where Tn
` is the maximal

finite torus of BX(q) and WX the Weyl group (see 7.5, 7.6). Whether or not i∗ is an
isomorphism, H∗(BX(q);Fp) ∼= H∗(BTn

` ;Fp)WX , is now a question of invariant theory
and this is the subject of this section.

We recollect the necessary results from invariant theory and apply that in a case by
case discussion, based on the Clark–Ewing list, and restricted to our cases of interest,
namely:

(1) Non-modular groups. This consists of groups represented in a characteristic p
that does not divide the order of the group. (Example 9.2.)

(2) Family 1 in the Clark–Ewing list. These are the symmetric groups Σn+1 repre-
sented as Weyl groups of SU(n + 1). (Examples 9.3 and 9.4.)

(3) Family 2a en the Clark–Ewing list. The groups G(m, r, n), r|m|(p− 1), m > 1,
(m, r, n) 6= (m,m, 2). (Example 9.5.)

(4) Family 2b en the Clark–Ewing list. Dihedral groups D2m = G(m,m, 2), m ≥ 3.
(Example 9.6.)
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(5) The Aguadé family. These are the groups G12 , G29 , G31 , and G34 in the
Clark–Ewing list (see [1]). (Example 9.7.)

We obtain that i∗ : H∗(BX(q);Fp) ↪→ H∗(BTn
` ;Fp)WX is an isomorphism in all cases

except for Σ3 at the prime 3 (included in class (2) above) and WG2 , the Weyl group of
G2 and G12 , at the prime 3. It is also excluded the case 2b with m = 3 and p = 3,
that corresponds to PU(3) at prime 3.

From here one easily derives the structure of BX(q) for Clark–Ewing p–compact groups
and this is done in Theorem 9.8. The Aguadé family and 2a family are our cases of
main interest and the discussion is postponed to sections 10 and 11, respectively. All
of the other cases correspond to compact Lie groups.

At the end of the section we illustrate this methods with some examples going from
9.9 to 9.13.

Continuing with the notation of the preceding section we write V = tX for the
elements of order p in the maximal finite torus and identify the dual vector space with the
two dimensional primitive elements in the cohomology of BTn

` , V∗ ∼= PH2(BTn
` ;Fp).

The Bockstein operations provide a vector space isomorphism PH2(BTn
` ;Fp) ∼=

H1(BTn
` ;Fp), that we will denote as d : V∗ → dV∗ , of degree (−1). If P(V∗) is

the symmetric algebra on V∗ and E(dV∗) the exterior algebra on dV∗ , we can describe
the algebra structure of H∗(BTn

` ;Fp) as

K(V∗) = P(V∗)⊗ E(dV∗) = P[x1, . . . , xn]⊗ E[dx1, . . . , dxn] ,

and d extends to an algebra derivation on K(V∗). Moreover, any subgroup G ≤ GL(V)
of linear substitutions acts on K(V∗) in a natural way that commutes with the derivation
d , hence K(V∗)G is still a differential algebra.

Assume that the ring of invariants, P(V∗)G = P[ρ1, . . . , ρn] is a polynomial algebra;
in particular, G is a reflection group. Then dρ1, . . . , dρn are also invariant under
the action of G. The purpose of the next theorem is to establish the cases in which
{ρ1, . . . , ρn, dρ1, . . . , dρn} is a free system of generators for K(V∗)G .

An element f of P(V∗) is invariant relative to det−1 if g · f = det−1(g)f for all
g ∈ G ≤ GL(V). The subspace of relative invariant elements, P(V∗)G

det−1 , is a module
over the invariant ring P(V∗)G . In fact, P(V∗)G

det−1 = fdet−1 · P(V∗)G is a free module
on one generator fdet−1 ∈ P(V∗), unique up to an invertible of Fp [17]. For instance,
if we write dρi =

∑n
j=1 aijdxj , then the Jacobian J = det(aij) ∈ P(V∗), of degree

deg J =
∑n

i=1(deg ρi − 2), is invariant relative to det−1 . In particular, fdet−1 divides J
in P(V∗) and deg fdet−1 ≤

∑n
i=1(deg ρi − 2)
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Theorem 9.1 ([12]) Let V be a vector space of dimension n over a field of charac-
teristic p 6= 2. Assume that G ≤ GL(V) is a group of linear substitutions such that
P(V∗)G = P[ρ1, . . . , ρn] is a polynomial algebra, then

K(V∗)G = P[ρ1, . . . , ρn]⊗ E[dρ1, . . . , dρn]

if and only if fdet−1 has degree deg fdet−1 =
∑n

i=1(deg ρi − 2).

Proof Since P(V∗)G = P[ρ1, . . . , ρn] is a polynomial ring of invariants, the Ja-
cobian is non-zero, J 6= 0 (see [69]), and this implies that the homomorphism
P[ρ1, . . . ,ρn]⊗ E[dρ1, . . . ,dρn]→K(V∗) defined from the free anti-commutative alge-
bra to the subalgebra of K(V∗)G by mapping the variable ρi to the polynomial ρi of
P(V∗)G and dρi to the differential of ρi in K(V∗) is injective.

If I = (i1, . . . , ik) is an ordered sequence of integers 1 ≤ i1 < · · · < ik ≤ n, we write
dρI = dρi1dρi2 . . . dρik and also dxI = dxi1dxi2 . . . dxik . Let FP(V∗) be the graded field
of fractions of P(V∗). Then, FK(V∗) = FP(V∗) ⊗P(V∗) K(V∗) is a vector space over
FP(V∗) spanned by {dxI}I . And then, {dρI}I is also a base of FK(V∗).

Assume that deg fdet−1 =
∑n

i=1(deg ρi−2). This is the degree of the Jacobian J , hence
J = fdet−1 , up to an invertible of Fp . Let w ∈ K(V∗)G be an arbitrary element. We can
write w =

∑
I wIdρI , with wI ∈ FP(V∗) and then we will show that actually, for each

index I , wI ∈ P(V∗). We choose I0 of minimal length such that wI0 6= 0. Let I′0 be
the complementary sequence, then

w dρI′0
= wI0dρI0dρI′0

= ±wI0dρ1 . . . dρn = ±wI0Jdx1 . . . dxn

is an element of K(V∗)G , and, since dx1 . . . dxn is invariant relative to det, wI0J ∈
P(V∗)G

det−1 = fdet−1P(V∗)G . So, our assumption implies that wI0 ∈ P(V∗)G . Now we
can repeat the argument with w− wI0dρI0 ∈ K(V∗)G . It follows that each wI belongs
to P(V∗)G and then w ∈ P[ρ1, . . . , ρn]⊗ E[dρ1, . . . , dρn].

Assume otherwise that deg fdet−1 6=
∑n

i=1(deg ρi − 2); that is, J = ιfdet−1 for some
element ι ∈ P(V∗)G of positive degree, then

w =
dρ1 . . . dρn

ι
= fdet−1dx1 . . . dxn

is an element of K(V∗)G which does not belong to P[ρ1, . . . , ρn]⊗E[dρ1, . . . , dρn].

In the examples below, we explore the invariants K(V∗)G for all groups G in the
Clark–Ewing list that have polynomial invariants. We proceed by looking at the
different families, as they are listed at the beginning of this section, and we isolate
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the cases G where K(V∗)G is not a free graded anti-commutative algebra; namely, Σ3

(from Family 1 in the Clark–Ewing list), D12 (from Family 2b in the Clark–Ewing
list), and G12 , all of them at p = 3.

Example 9.2 (G a non-modular group [3]) If G ≤ GL(V) is a reflection group of
order not divisible by p, then it is known that P(V∗)G = P[ρ1, . . . , ρn] is a polynomial
algebra and also that the degree of fdet−1 is twice the number of reflections in G. On
the other hand, the number of reflections in G is

∑n
i=1( deg ρi

2 − 1). Hence deg fdet−1 =∑n
i=1(deg ρi − 2) and then Theorem 9.1 implies

K(V∗)G = P[ρ1, . . . , ρn]⊗ E[dρ1, . . . , dρn] .

For a group G ≤ GL(V) we denote [x] = {gx | g ∈ G} the orbit of an element x ∈ V∗ .
The coefficients ci of the polynomial

∏
y∈[x](X−y) = Xm +c1Xm−1 +· · ·+cm−1X+cm

are the Chern classes of the orbit [x] and belong to P(V∗)G . The element cm =
∏

y∈[x] y
is also called the Euler element of [x]. If we choose just one element zL ∈ L ∩ [x] for
each 1–dimensional vector subspace L of V∗ that intersects the orbit [x] non trivially,
E[x] =

∏
zL is the pre-Euler element of the orbit [x], defined up to a non-zero scalar.

This is a relative invariant respect a linear character χ of G that we can associate to
the orbit [x] by the equation g(E[x]) = χ(g) · E[x], for all g ∈ G. (See [12, 17].)

Example 9.3 (Family 1 in the Clark–Ewing list: Σn+1 , except Σ3 at p = 3) The
symmetric group Σn+1 acts on the integral lattice of SU(n + 1) that we can describe
as V = Z{(t̂1 − t̂n+1), (t̂2 − t̂n+1), . . . , (t̂n − t̂n+1)} where Σn+1 permutes the letters
t̂1, . . . t̂n+1 . Dually, V∗ is generated by classes t1, t2, . . . , tn , and Σn+1 permutes
t1, t2, . . . , tn, tn+1 with the relation t1 + t2 + · · ·+ tn + tn+1 = 0.

The orbit of t1 is [t1] = {t1, t2, . . . , tn, tn+1}, and the Chern classes of this orbit,
obtained as the coefficients of the polynomial

∏n+1
i=1 (X − ti), are, up to a sign, the

generators ci of the invariant ring P(V∗)Σn+1 = P[c2, . . . , cn+1].

The orbit of t1 − t2 is

[t1 − t2] = {(ti − tj) | 1 ≤ i, j ≤ n + 1, i 6= j}
= {±(ti − tj) | 1 ≤ i � j ≤ n + 1}
= {±(ti − tj) | 1 ≤ i � j ≤ n} ∪ {±(t1 + · · ·+ 2ti + · · ·+ tn) | 1 ≤ i ≤ n} ,

thus the pre-Euler element associated to this orbit is

E = E[t1 − t2] =
∏

1≤i�j≤n

(ti − tj)
∏

1≤i≤n

(t1 + · · ·+ 2ti + · · ·+ tn) .
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Notice here the exception n = 2 at p = 3, in which case E[t1 − t2] = (t1 − t2).
With this exception, we can check that the linear character associated to the pre-Euler
element is precisely the determinant (det = det−1 in this case) and also that the degree
of E , n2 + n, coincides with the degree of the Jacobian J . Thus for (n, p) 6= (2, 3), we
have

K(V∗)Σn+1 = P[c2, . . . , cn+1]⊗ E[dc2, . . . , dcn+1] .

Example 9.4 (Σ3 at the prime 3) The integral lattice of SU(3) is π2(TSU(3)) =
Z{(t̂1 − t̂3), (t̂2 − t̂3)} with the action of Σ3 that permutes t̂1 , t̂2 , and t̂3 . If Σ3 is
generated by the 3–cycle σ and the transposition τ , the representation afforded by
π2(BTSU(3)) is determined by

σ 7→
(
−1 −1
1 0

)
, τ 7→

(
0 1
1 0

)
.

The dual action in mod 3 cohomology V∗ = H2(BTSU(3);F3) = F3{t1, t2} gives
P(V∗)Σ3 ∼= P[x4, x6], where x4 = t12 + t1t2 + t22 and x6 = t1t2(t1 + t2). This is the
particular case of Example 9.3 with n = 2 at the prime 3.

The action extends to K(V∗) = P[t1, t2]⊗E[dt1, dt2] where we obtain invariant elements

y3 = dx4 = (t2 − t1)dt1 + (t1 − t2)dt2
y5 = dx6 = (t22 − t1t2)dt1 + (t12 − t1t2)dt2

and

y4 = (t2 − t1)dt1dt2

so that
y3y5 = (t12 + t1t2 + t22)(t2 − t1)dt1dt2 = x4y4 .

These elements together with the polynomial invariants generate the invariant ring
K(V∗)Σ3 :

K(V∗)Σ3 ∼=
P[x4, x6]⊗ E[y3, y4, y5]

(y3y5 − x4y4, y3y4, y4y5)
. (31)

The proof follows the method of Theorem 9.1. In this particular case 1, dt1, dt2, dt1dt2
is a basis of K(V∗) as a free P(V∗)–module, while 1, y3, y5, y3y5 or 1, y3, y4, y5 are
basis of FK(V∗) as graded FP(V∗) vector spaces.

Assume that w is an element of K(V∗)Σ3 of even degree. We can write w = w0 +w1y4 ,
with w0,w1 ∈ FP(V∗). First, multiply the equality by y4 : wy4 ∈ K(V∗)Σ3 and
wy4 = w0y4 = w0(t2 − t1)dt1dt2 . Then, w0(t2 − t1) ∈ P(V∗)Σ3

det−1 = (t2 − t1)P(V∗)Σ3 ,
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hence w0 ∈ P(V∗)Σ3 . Now, we also have w1y4 ∈ K(V∗)Σ3 , hence the same argument
implies that w1 ∈ P(V∗)Σ3 .

Next, assume that w is an element of K(V∗)Σ3 of odd degree. In this case, w =
w2y3 + w3y5 with w2,w3 ∈ FP(V∗). If we multiply this equality by y5 ∈ K(V∗)Σ3 we
get wy5 ∈ K(V∗)Σ3 and wy5 = w2y3y5 = w2x4y4 , and then again the equality w2x4y4 =
w2x4(t2 − t1)dt1dt2 ∈ K(V∗)Σ3 implies that w2x4 ∈ P(V∗)Σ3 . Since P(V∗)Σ3 =
P[x4, x6], we can write w2 = q2 + λ

xr
6

x4
, q2 ∈ P(V∗)Σ3 and λ ∈ F3 , r ≥ 0. A similar

argument, in which we multiply w by y3 , implies that w3 = q3 + µ
xs

6
x4

, q3 ∈ P(V∗)Σ3

and µ ∈ F3 , s ≥ 0. If we substitute these expressions in w = w2y3 + w3y5 we can
easily check that this element can only belong to K(V∗) provided λ = µ = 0. It follows
that w2 = q2 ∈ P(V∗)Σ3 and w3 = q3 ∈ P(V∗)Σ3 . This proves the isomorphism (31).

Example 9.5 (Family 2a in the Clark–Ewing list: G = G(m, r, n), r|m|p − 1, [12])
G(m, r, n) is the subgroup of GLn(Zp) generated by the permutation matrices and the
diagonal matrices diag(θ1, . . . , θn), where θm

i = 1 and (θ1 . . . θn)
m
r = 1. In particular,

G(m, 1, n) is isomorphic to the semi-direct product (Z/m)n o Σn . In this case we
clearly have P(V∗)G(m,1,n) = P[ρ1, . . . , ρn], where 1 + ρ1 + · · ·+ ρn =

∏n
i=1(1 + xm

i ),
if we write P(V∗) = P[x1, . . . , xn]. Now, ρn = (x1 . . . xn)m is the Euler element
associated to the orbit of x1 , [x1]. The pre-Euler element is E1 = E[x1] = x1 . . . xn . It
carries an associated linear character χ1 , defined by χ1(diag(θ1, . . . , θn)) = θ1 . . . θn

and χ1(σ) = 1 if σ ∈ Σn is a permutation matrix. Notice that G(m, r, n) = Kerχ
m
r

1
and

P(V∗)G(m,r,n) = P[ρ1, . . . , ρn−1,E
m
r

1 ] .

The orbit of (x1 − x2) is [x1 − x2] = { θ1xi − θ2xj | θm
1 = θm

2 = 1 , i < j } and
its pre-Euler element is E2 =

∏
i<j(x

m
i − xm

j ). In this case the associated character
is χ2 defined by χ2(diag(θ1, . . . , θn)) = 1 and χ2(σ) = sg(σ) is the sign of the
permutation. We clearly have det = χ1χ2 and then det−1 = χ

m
r −1

1 χ2 . It follows that

fdet−1 = E
m
r −1

1 E2 . Counting degrees, we obtain
∑n−1

i=1 (deg ρi − 2) + deg(E
m
r

1 ) − 2 =∑n−1
i=1 (2im−2)+2n m

r −2 = n(n−1)m+2n( m
r −1) = deg fdet−1 . Hence, Theorem 9.1

implies

K(V∗)G(m,r,n) = P[ρ1, . . . , ρn−1,E
m
r

1 ]⊗ E[dρ1, . . . , dρn−1, d(E
m
r

1 )] .

Example 9.6 (D12 at the prime 3) In family 2b there are two modular cases at odd
primes, namely, D6 and D12 at p = 3. The first one is the Weyl group of PU(3)
which is not polynomial at p = 3, the second case corresponds to the Weyl group of
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the exceptional Lie group G2 . The action of D12 on π2(BTG2) gives a representation

ω 7→
(

0 −1
1 1

)
, τ 7→

(
0 1
1 0

)
.

The dual action in mod 3 cohomology V∗ = H2(BTG2 ;F3) = F3{t1, t2} gives
P(V∗)D12 ∼= P[x4, x12], where x4 = t12 + t1t2 + t22 and x12 = (t1t2(t1 + t2))2 .

The extension of this action to K(V∗) gives now

K(V∗)D12 ∼=
P[x4, x12]⊗ E[y3, y10, y11]

(y3y11 − x4y10, y3y10, y10y11)
. (32)

with elements y3 = dx4 and y11 = dx12 , so that y3y11 = (t12 + t1t2 + t22)t1t2(t12 −
t22)dt1dt2 = x4y10 , which serves as definition for y10 . The isomorphism (32) is proved
with same arguments of Example 9.4.

Actually, the inclusion of SU(3) as maximal subgroup of G2 , induces an inclusion
Σ3 ↪→ D12 , identifying the generator τ and σ with ω2 . The induced inclusion
K(V∗)D12 ↪→ K(V∗)Σ3 identifies the generators x4 and y3 and maps x12 to x6

2 , y10 to
−x6y4 and y11 to −x6y5 .

Example 9.7 (G12 , G29 , G31 , and G34 in the Clark–Ewing list at modular primes)
The groups G12 (rank 2, p=3), G29 (rank 4, p=5), G31 (rank 4, p=5), and G34 (rank
6, p=7), of the Clark–Ewing list have polynomial invariants [1, 2, 70].

We obtain by direct calculation that the generator of the det−1 –relative invariants fdet−1

has the same degree as the corresponding Jacobian in cases G29 , G31 , and G34 , and
then Theorem 9.1 applies.

The case G12 = GL(2, 3) is special. Notice that all those groups contain a copy of
the symmetric group of the same rank affording the representation of Example 9.3.
G12 contains Σ3 as described in Example 9.4. The invariant ring K(V∗)GL(2,3) was
computed by Mui [56] (alternatively, use the arguments in Example 9.4):

K(V∗)GL(2,3) ∼=
P[x12, x16]⊗ E[y10, y11, y15]

(y11y15 − x16y10, y10y11, y10y15)

where

x12 =
(t1t29 − t2t19)
(t1t23 − t2t13)

, x16 = P1(x12) =
(t13t29 − t23t19))

(t1t23 − t2t13)
,

y11 = dx12 , y15 = dx16 , and y10 is defined by the relation y11y15 = x16y10 .

We can easily obtain the description of the inclusion

K(V∗)GL(2,3) ↪→ K(V∗)Σ3
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as
R :

P[x12, x16]⊗ E[y10, y11, y15]
(y11y15 − x16y10, y10y11, y10y15)

−→ P[x4, x6]⊗ E[y3, y4, y5]
(y3y5 − x4y4, y3y4, y4y5)

mapping

x12 7→ x4
3 + x6

2 ,

x16 7→ x6
2x4 ,

y15 7→ x6
2y3 − x4x6y5 ,

y11 7→ −x6y5 , and

y10 7→ x6y4 .

Let X be a Clark–Ewing p–compact group; that is, a connected p–compact group for
which p does not divide the order of the Weyl group. Models for these p–compact
groups were constructed by Clark–Ewing [19]. If WX is the Weyl group of X , the
action of WX on the maximal torus TX is determined by the induced representation
ρ : WX → GLn(Zp), where n is the rank of X . This representation gives WX the
structure of a Zp –reflection group, thus product of irreducibles listed in [19]. It turns
out that BX ' (BThWX )∧p , where the action of WX on BT is given by ρ [24]. Our next
result is a similar description of X(q), for q ≡ 1 mod p.

Theorem 9.8 Let X be a Clark–Ewing p–compact group and q ≡ 1 mod p, q 6= 1,
then

BX(q) '
(
(BTX(q))hWX

)∧
p ' B(Tn

` oWX)∧p

with Tn
`
∼= (Z/p`)n , where n is the rank of X and ` = νp(q− 1).

Proof In Proposition 7.5 we have obtained a map BTn
`
'−→ Map(BV,BX(q))Bi →

BX(q) and according to Proposition 7.6 we have a factorization

BTn
` ' Map(BV,BX(q))Bi //

(
Map(BV,BX(q))Bi

)
hWX

// BX(q) .

The induced maps in cohomology are

H∗(BX(q);Fp) // H∗((BTn
` )hWX )

∼= // H∗(BTn
` )WX

where the second arrow is an isomorphism because the order of WX is prime to p and
the composition is a monomorphism by Theorem F.

According to theorems F and 9.1, H∗(BX(q);Fp) and H∗(BTn
` )WX has the same Poincaré

series, hence H∗(BX(q);Fp) ∼= H∗((BTn
` )hWX ) and the result follows.
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Example 9.9 (SU(2) at odd primes) The Weyl group of SU(2) is Z/2 acting on the
maximal torus S1 ⊂ C by sign change, that is, as ψ−1 . Then, Theorem 9.8 applies.
All spaces will be considered completed at p > 2.

Let ψq be an Adams map of exponent q ∈ Z∗p , q 6= 1. We have that BSU(2)(q) =
BSU(2)(−q) as ψ−q = ψ−1 ◦ψq = ψq because ψ−1 is the identity. For q ≡ 1 mod p,
define ` = νp(1 − q), and then BSU(2)(q) has maximal finite torus Z/p` and Weyl
group Z/2, acting by sign change, so

BSU(2)(q) ' (BZ/p`)hZ/2

is an equivalence at the prime p.

Notice that if q 6≡ ±1 mod p, then we can write ψq = ψζ ◦ ψq′ , where ζ is a
(p − 1)th root of 1, different than ±1, and q′ ≡ 1 mod p. Then, by Proposition 6.2,
BSU(2)(q) ' BSU(2)hψζ (q′), and according to Proposition A.5 (see A.8), BSU(2)hψζ

is trivial, hence BSU(2)(q)∧p is also trivial.

For q a prime power, prime to p, SU(2)(q) is equivalent at p to the finite Chevalley
group SL2(q) and SU(2)(−q) to SU2(q). This agrees with the above calculations, for
in any case ` = νp(1− q2).

Example 9.10 (Sullivan spheres S2m−1 , m | p − 1) This generalizes the previous
example. When m ≥ 2 divides p− 1, the cyclic group Cm of order m acts on Z/p∞ .
The Sullivan sphere BS2m−1 is the p–completion of the classifying space of the semi-
direct product Z/p∞ o Cm for this action and H∗(BS2m−1;Fp) = P[x2m]. If u is any
p–adic unit then

BS2m−1(u) =


Λ(BS2m−1) um = 1

B(Z/p` o Cm) um 6= 1, um ≡ 1 mod p, ` = νp(um − 1)

∗ um 6≡ 1 mod p

All spaces are understood to be completed at p. To see this, note that BS2m−1(u)
is contractible if um 6≡ 1 mod p by Theorem B. Otherwise, if um ≡ 1 mod p, then
u = ζq with ζ ∈ Cm ⊂ Cp−1 , q ≡ 1 mod p and BS2m−1(u) = (BS2m−1)h〈ζ〉(q) =
BS2m−1(q) = B(Z/p` o Cm) by Proposition 6.2, A.8, and Theorem 9.8, because
νp(q− 1) = νp(qm − 1) = νp(um − 1).

Example 9.11 (SU(3)(q) at the prime 3) Fix q a 3–adic integer with 0 < ` =
ν3(1− q) <∞. According to Theorem F

H∗(SU(3)(q);F3) ∼= P[x4, x6]⊗ E[y3, y5] ,
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with β(`)(y3) = x4 and β(`)(y5) = x6 .

According to propositions 7.5 and 7.6, T2
`
∼= (Z/3`)2 is the maximal finite torus of

SU(3)(q) with Weyl group Σ3 . Now, the invariant ring

H∗(T2
` ;F3)Σ3 ∼=

P[x4, x6]⊗ E[y3, y4, y5]
(y3y5 − x4y4, y3y4, y4y5)

computed in Example 9.4, turns out to differ from H∗(SU(3)(q);F3). The natural
map H∗(SU(3)(q);F3) ↪→ H∗(T2

` ;F3)Σ3 (see Theorem F) has cokernel isomorphic to
P[x6]y4 .

Example 9.12 (G2 at the prime 3) The exceptional Lie group G2 has rank two and the
Weyl group is dihedral D12 ∼= Σ3×C2 , listed in family 2b for m = 6 in the Clark–Ewing
list. The category F e

3 (G2) of non-trivial elementary abelian 3–subgroups of G2 has an
isomorphism class of rank two elementary abelian 3–subgroups with automorphism
group D12 , the Weyl group of G2 , and two classes of elementary abelian 3–subgroups
of rank one, with automorphism group of order two. It is equivalent to the category
I(2) of Appendix B, with G = D12 , H1 = Σ3 , and H2 = Σ2 . The centralizer diagram
for elementary abelian 3–subgroups is

BSU(3)C2 :: BT2

(D12)op

GG

(Σ3)op\(D12)op
oo

(Σ2)op\(D12)op
// BU(2) C2dd .

By Corollary 7.8 the categories of non-trivial elementary abelian 3–subgroups of G2

and G2(q) coincide: F e
3 (G2(q)) ∼= F e

3 (G2), and furthermore, for every object (E, ν)
of F e

p (G2), BCG2(q)(E, ν) ' BCG2(E, ν)(q), thus the centralizer diagram of elementary
abelian subgroups of G2(q) is

BSU(3)(q)C2 99 BT2
`

(D12)op

II

(Σ3)op\(D12)op
oo

(Σ2)op\(D12)op
//BU(2)(q) C2ee

(33)
and there is a natural map hocolimF e

p (G2(q))op BCG2(q) → BG2(q) which is a a sharp
homology decomposition [21]; that is, the Bousfield–Kan spectral sequence for the
homotopy colimit collapses at the E2 –term and gives

H∗(G2(q);F3) ∼= lim←−
0

F e
p (G2(q))

H∗(BCG2(q);F3) ∼= P[x4, x12]⊗ E[y3, y11] .

This result can also be obtained by direct calculation from Proposition B.1 using the
invariant theory calculations in Examples 9.4 and 9.6. Notice that Proposition 7.9 does
not apply to BG2(q) at the prime 3 (see Example 9.11).

Algebraic & Geometric Topology XX (20XX)



Chevalley p–local finite groups 1065

Example 9.13 (G2 at primes p > 3) Let p be a prime > 3. The compact Lie group
G2 , at the prime p, is a Clark–Ewing p–compact group and H∗(BG2;Fp) = P[x4, x12].
The Weyl group has order |W(G2)| = 12 and the center is cyclic of order two. Let
u 6= ±1 be a p–adic unit, and let r denote the order of u mod p. Then

BG2(u) =


BG2(u2) = B(T2

` oW(G2)) r ∈ {1, 2}, ` = νp(u2 − 1)

BS11(u6) = B(Z/p` o C6) r ∈ {3, 6}, ` = νp(u6 − 1)

∗ otherwise,

where it is understood that all spaces are completed at p. To see this, write u = ζq where
ζ is a (p − 1)th root of unity and q ≡ 1 mod p. Note first that BG2(u) = BG2(±u)
as the Weyl group of G2 contains −1. In case u2 ≡ 1 mod p (u2 6= 1), we have
that u = ±q so that BG2(u) = BG2(±u) = BG2(u2) = B(T2

` o W(G2)) by 9.8
and 6.5. If u2 6≡ 1 mod p, u6 ≡ 1 mod p, then u = ± σq where σ3 = 1 and
BG2(u) = BG2(±σq) = BG2(σq) = BGh〈σ〉

2 (q) = BS11(q) = BS11(u6) by 6.2, A.10;
the last equality follows from 6.5 since νp(u6 − 1) = νp(q6 − 1) = νp(q − 1). If
u6 6≡ 1 mod p then BG2(u) is contractible by Theorem B. It follows that

H∗(BG2(u);Fp) =


P[x4, x12]⊗ E(y3, y11) r ∈ {1, 2}
P[x12]⊗ E(y11) r ∈ {3, 6}
Fp otherwise

with higher order Bocksteins as explained in Theorem F. This provides the geometric
explanation of Kleinerman’s computation [39, Thm 1-1] of cohomology rings of finite
Chevalley groups of type G2 .

10 Chevalley p–local finite groups from Aguadé p–compact
groups

In [1], Aguadé constructed the exotic p–compact groups Xi , i = 12, 29, 31, 34, with
Weyl groups the groups G12 (rank 2, p = 3), G29 (rank 4, p = 5), G31 (rank 4, p = 5),
and G34 (rank 6, p = 7), on the Sheppard–Todd and Clark–Ewing lists, respectively.
All four of them are obtained as the homotopy colimit of a diagram that we proceed by
describing.

Write Gi to denote one of the groups G12 , G29 , G31 , or G34 , and Z its center, namely,
Z ∼= Z/2 for G12 , Z ∼= Z/4 for G29 , Z ∼= Z/4 for G31 , Z ∼= Z/6 for G34 , in all cases
represented by diagonal matrices with entries p − 1 roots of unity. In all four cases
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we also fix a subgroup isomorphic to Σp . Then, the index category is the opposite
category of I(1), with two objects 0 and 1 and

AutI(1)(0) = Gi ,

AutI(1)(1) = NGi(Σp)/Σp ∼= Z ,

MorI(1)(1, 0) = Σp\Gi , and

MorI(1)(0, 1) = ∅ .
The functor assigns BTp−1 to 0 and BSU(p) to 1, up to homotopy, where the center
of Gi , Z , acts on BSU(p) via unstable Adams operations. The diagram is described in
the following picture

BSU(p)Z :: BTp−1 (Gi)op
dd

(Σp)op\(Gi)op
oo .

Each Xi is a p–compact group with maximal torus TXi = Tp−1 and Weyl group WXi =
Gi . The respective cohomology rings coincide with the invariant rings H∗(BXi;Fp) ∼=
H∗(BTXi ;Fp)Gi , and these are the polynomial rings ([1, 2, 70]):

H∗(BX12;F3) ∼= P[x12, x16] ,

H∗(BX29;F5) ∼= P[x8, x16, x24, x40] ,

H∗(BX31;F5) ∼= P[x16, x24, x40, x48] ,

H∗(BX34;F7) ∼= P[x12, x24, x36, x48, x60, x84] .

Throughout this section we fix an unstable Adams operation ψq of exponent q ∈ Z∗p
with q ≡ 1 mod p, q 6= 1. We will describe the p–local structure of the spaces BXi(q)
and will show that they are classifying spaces of p–local finite groups. In particular,
cases i = 29, 34 provide new exotic examples of p–local finite groups.

The first results on the p–local structure of BXi(q) are given by Propositions 7.5
and 7.6. Set ` = νp(1 − q). The maximal elementary abelian p–subgroup of Xi ,
(tXi , ν), factors as a p–subgroup (tXi , g) of Xi(q), and the centralizer of this group

CXi(q)(tXi , g) ' Tp−1
`
∼= (Z/p`)p−1

is the maximal finite torus of Xi(q). All elementary abelian p–subgroups of Xi(q)
factor through this one. Moreover, the Weyl group is WXi(q)(T

p−1
` ) = Gi , and the

normalizer NXi(q)(T
p−1
` ) = Tp−1

` o Gi sits in the maximal torus normalizer of Xi(q),
making homotopy commutative the diagram

BNXi(q)(T
p−1
` ) //

��

BNXi(T
p−1)

��
BXi(q) // BXi .
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Now, we fix the Sylow p–subgroup S = (Z/p`)(p−1)oZ/p of NXi(q)(T
p−1
` ), generated

by Tp−1
` and a p–cycle of Σp ≤ Gi . We will denote by f : BS→ BXi(q) the homotopy

monomorphism obtained as the composition BS → BNXi(q)(T
p−1
` ) → BXi(q). Then

(S, f ) is a p–subgroup of BXi(q), and it will play the role of a Sylow p–subgroup.

Since Xi , i = 12, 29, 31, 34, are polynomial p–compact groups, according to Corol-
lary 7.8, ι : BXi(q)→ BXi induces an equivalence of categories

ι] : F e
p (BXi(q)) −→ F e

p (BXi) .

Thus, we obtain that every elementary abelian p–subgroup (E, µ) of BXi(q) factors
as a subgroup of tXi : E ≤ tXi and µ ' ν|BE . There is a distinguished subgroup
Z/p ∼= Z ≤ tXi such that, Z ≤ tXi ≤ TXi ≤ SU(p) ∼= CXi(Z, ν|BZ). If E ≤ tXi is not
conjugate to Z in Xi , then the centralizer CXi(E, ν|BE) is a p–compact group whose
Weyl group, the point-wise stabilizer of E ≤ TXi , WXi(E), has order not divisible by
p. In Xi(q), we obtain:

Proposition 10.1 There is one conjugacy class of elements of order p in Xi(q),
(Z, g|BZ), such that the centralizer is

CXi(q)(Z, g|BZ) ' SU(p)(q)

and contains (S, f ):
BS

Bincl
��

f

&&MMMMMMMMMMM

BSU(p)(q) // BXi(q)

as Sylow p–subgroup of SU(p)(q).

If E ≤ tXi represents another conjugacy class of elementary abelian p–subgroups, then

CXi(q)(E, g|BE) ' Tp−1
` oWXi(E)

where the order of WXi(E) is not divisible by p. Furthermore, the diagram

BT (p−1)
`

Bincl //

Bincl
��

BS

f
��

BCXi(q)(E, g|BE)
j // BXi(q)

is commutative up to homotopy, where j : BCXi(q)(E, g|BE) → BXi(q) is the natural
map induced by evaluation.
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Proof For Z ≤ tXi , we have CXi(q)(Z, g|BZ) ∼= SU(p)(q) by Corollary 7.4.

If E ≤ tXi be another subgroup, not conjugate to Z , then the centralizer in Xi is
the Clark–Ewing p–compact group BCXi(E, ν|BE) ' B(TXi o WXi(E))∧p , and then,
first, Corollary 7.4 implies that BCXi(q)(E, g|BE) ' BCXi(E, ν|BE)(q), and secondly,
Theorem 9.8 gives BCXi(E, ν|BE)(q) ' B(Tp−1

` oWXi(E))∧p .

Finally, we use the inclusions BE → BtXi → BS
f−→ BXi(q) in order to compare the

centralizers of E and tXi in S and Xi(q):

BTp−1
` ' BCS(tXi)

' f]
��

' // BCS(E)

f]
��

// BS

f
��

BCXi(q)(tXi , g) // BCXi(q)(E, g|BE) // BXi(q)

and the proof follows.

Proposition 10.2 For i = 12, 29, 31, 34, the natural map

hocolim
F e

p (BXi(q))op
BCXi(q) → BXi(q) (34)

is a mod p homology equivalence.

Proof According to Theorem F the cohomology rings of BXi(q) are:

H∗(BX12(q);F3) ∼= P[x12, x16]⊗ E[y11, y15] ,

H∗(BX29(q);F5) ∼= P[x8, x16, x24, x40]⊗ E[y7, y15, y23, y39] ,

H∗(BX31(q);F5) ∼= P[x16, x24, x40, x48]⊗ E[y15, y23, y39, y47] ,

H∗(BX34(q);F7) ∼= P[x12, x24, x36, x48, x60, x84]⊗ E[y11, y23, y35, y47, y59, y83] ,

and they embed in the invariant rings H∗(BXi(q);Fp) ⊆ H∗(BTp−1
` ;Fp)Gi . These

invariant rings are described in the Example 9.7. It turns out that the above inclusion
is an isomorphism if i = 29, 31, 34, but it is not surjective when i = 12.

The centralizers of elementary abelian p–subgroups of BXi(q) are described in Propo-
sition 10.1. The centralizer, CXi(q)(E, g|BE), of an elementary abelian p–subgroup
E ≤ tXi in Xi(q) is either SU(p)(q) or C(q) where C is a Clark–Ewing p–compact
group.

In cases i = 29, 31, 34, H∗(CXi(q)(E, g|BE);Fp) ∼= H∗(BTXi ;Fp)W(E) is satisfied by
Theorem F and examples 9.2 and 9.3, hence we meet the conditions of Proposition 7.9
and the map (34) is a mod p homology equivalence.
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In the case i = 12, Proposition 7.9 does not apply, so we will need a separate analysis.
The p–compact group X12 , p = 3, is also denoted DI2 , because G12 ∼= GL(2, 3) and
H∗(BDI2;F3) ∼= H∗(BT2;F3)GL(2,3) ∼= F3[x12, x16] is the rank two Dickson algebra at
p = 3. It admits two conjugacy classes of elementary abelian p–subgroups, one of rank
one and another of rank two, hence so does BDI2(q), as well. We have equivalences
of categories

F e
p (BDI2) ∼= F e

p (BDI2(q)) ∼= I(1)

with AutI(1)(0) = GL(2, 3), AutI(1)(1) = NGL(2,3)(Σ3)/Σ3 ∼= Z/2, where
NGL(2,3)(Σ3) = Σ3 × Z/2, and MorI(1)(1, 0) = Σ3\GL(2, 3), MorI(1)(0, 1) = ∅. The
centralizers diagram BCDI2(q) is described in the picture

BSU(3)(q)Z/2 99 BT2
`

GL(2,3)op
hh

Σop
3 \GL(2,3)op

oo . (35)

The Bousfield–Kan spectral sequence

Ei,j
2
∼= lim←−

i

I(1)
Hj(BCDI2(q);F3) =⇒ Hi+j(hocolim

I(1)op
BCDI2(q);F3)

computes the cohomology of the homotopy colimit hocolimI(1)op BCDI2(q) .

The computation of the E2 –term follows from Proposition B.1. Since NGL(2,3)(Σ3) ∼=
Σ3×Z/2 and H∗(GL(2, 3); A) ∼= H∗(NGL(2,3)(Σ3); A) ∼= H∗(Σ3; A), for any GL(2, 3)–
module A, there is an exact sequence

0→ lim←−
0

I(1)
H∗(BCDI2(q);F3)→ H∗(BSU(3)(q);F3)Z/2 ⊕ H∗(BT2

` ;F3)
GL(2,3)

→ H∗(BT2
` ;F3)

Σ3×Z/2 → lim←−
1

I(1)
H∗(BCDI2(q);F3)→ 0 , (36)

and lim←−
i
I(1)

BCDI2(q) = 0 if i ≥ 2.

The invariant rings H∗(BT2
` ;F3)GL(2,3) and H∗(BT2

` ;F3)Σ3 as well as the restriction
R : H∗(BT2

` ;F3)GL(2,3)
↪→ H∗(BT2

` ;F3)Σ3 have been described in examples 9.4 and 9.7.
The cohomology of BSU(3)(q) is identified with the subalgebra P[x4, x6] ⊗ E[y3, y5]
of H∗(BT2

` ;F3)Σ3 . The cokernel of the inclusion is isomorphic to P[x6]y4 , and then
the exact sequence (36) is simplified to

0→ lim←−
0

I(1)
H∗(BCDI2(q);F3)→ P[x12, x16]⊗ E[y10, y11, y15]

(y11y15 − x16y10, y10y11, y10y15)

R̄−→
(
P[x6]y4

)Z/2 → lim←−
1

I(1)
H∗(BCDI2(q);F3)→ 0 ,
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and
(
P[x6]y4

)Z/2 = P[x6
2](x6y4) which is in the image of R̄. It follows that

lim←−
0

I(1)
H∗(BCDI2(q);F3) ∼= P[x12, x16]⊗ E[y11, y15]

and lim←−
i
I(1)

BCDI2(q) = 0 if i ≥ 1, so, therefore the Bousfield–Kan spectral sequence
collapses to an isomorphism

H∗(hocolim
I(1)op

BCDI2(q);F3) ∼= lim←−
0

I(1)
H∗(BCDI2(q);F3) ∼= P[x12, x16]⊗ E[y11, y15] ;

that is, hocolimI(1)op BCDI2(q) → BG2(q) is a sharp homology decomposition at the
prime 3 and

H∗(DI2(q);F3) ∼= lim←−
0

I(1)
H∗(BCDI2(q);F3) ∼= P[x12, x16]⊗ E[y11, y15] .

Theorem 10.3 Fix q ∈ Zp , 1 6= q ≡ 1 mod p. Then, (S, f ) is a Sylow p–subgroup
for BXi(q), the fusion system F(S,f )(BXi(q)) of the space BXi(q) over the p–subgroup
(S, f ) is saturated, and

(S,F(S,f )(BXi(q)),L(S,f )(BXi(q)))

is a p–local finite group with classifying space

|L(S,f )(BXi(q))|∧p ' BXi(q) .

Proof It is a consequence of Theorem 4.5, using the above propositions 10.1 and 10.2.

Now, we will go deeper into the structure of the fusion system F = F(S,f )(BXi(q)).
According to Remark 6.6 we may assume that q is an integer and a prime power. We
have seen that the fusion category of elementary abelian p–subgroups is equivalent to
that of the p–compact group Xi ; in particular, every elementary abelian p–subgroup is
toral; that is, F –conjugate to a subgroup of T (p−1)

` . If we denote Z = Z(S) the center of
S , then (10.1) BCXi(q)(Z) = BSU(p)(q)∧p ' BSLp(q)∧p , so, the centralizer fusion system
CF (Z) over CS(Z) = S coincides with the fusion system of SLp(q) over S . Hence,
we can identify S with the Sylow p–subgroup of SLp(q) and then use the notation
of Example 3.5. Recall from 3.5 that any centric radical subgroup of S in CF (Z) is
conjugate to either S , T (p−1)

` , or an extraspecial group Γ1(ξr), r = 0, . . . , p− 1.
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Proposition 10.4 Any centric radical subgroup of S in F = F(S,f )(BXi(q)) is conju-
gate to one of the groups in the table:

Q OutF (Q) Conditions
T (p−1)
` Gi

S Z/(p− 1)× Z/(p− 1)
Γ1 GL2(p)

Γ1(ξ) SL2(p) if ` > 1 or p > 3.

(37)

Proof The proof is divided in four steps, where we first determine a set of represen-
tatives for centric radical subgroups of S in F , and then refine it to a minimal set of
representatives and compute their automorphisms groups in F .

Step 1: Toral and non toral centric radical subgroups

Tp−1
` is centric in F and OutF (Tp−1

` ) ∼= Gi is p–reduced, hence Tp−1
` is also radical in

F . No other subgroup of Tp−1
` is centric, so for any other centric and radical subgroup

Q ≤ S in F , there is a morphism of extensions

Q0 //

��

Q //

��

Z/p

Tp−1
`

// S // Z/p

(38)

where Q0 = Tp−1
` ∩ Q.

We are assuming that Q is centric, hence the center Z ∼= Z/p of S should be contained
in Q0 . But if Q0 = Z , then Q ∼= Z/p×Z/p is elementary abelian and then toral in F ,
hence it would not be centric. Thus Z 6= Q0 and the center of Q is Z(Q) = QZ/p

0 = Z .
In particular, every automorphism of Q restricts to an automorphism of Z , so we obtain
a homomorphism AutF (Q) → AutF (Z). The kernel is composed of automorphisms
of Q that restrict to the identity in Z ; that is, automorphisms of Q in the centralizer
fusion system CF (Z), hence we have an exact sequence

1→ AutCF (Z)(Q)→ AutF (Q)→ AutF (Z) (39)

where AutF (Z) ≤ Z/p − 1 lifts to AutF (T (p−1)
` ) and AutF (S) as unstable Adams

operations (the center of Gi ). Thus, if Q is radical in CF (Z), then it is radical in F .
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Step 2: Non-abelian centric radical subgroups, all of which abelian characteristic
subgroups are cyclic

Assume that all abelian characteristic subgroups of Q are cyclic, then a theorem of
Hall implies that Q is the central product of an extraspecial group Γ of exponent p and
a cyclic group C , where the elements or order p in C , Ω1(C), coincide with the center
Z(Γ) of Γ (cf. [35, Chap. 5, 4.9, 5.3]).

The faithful irreducible representations of the central product of an extraspecial group
Γ of order p1+2r and a cyclic group of order p` over the algebraic closure of a field of
q elements, (q, p) = 1, have degree pr , and there are exactly p`−1(p− 1) inequivalent
representations in this degree.

Hence, only the case r = 1 can appear in GLp(q). We denote Γ1 the extraspecial
group of order p3 and exponent p, and Γk the central product Z/pk ◦Γ1 . The different
irreducible faithful representations of Γk in GLp(q) are obtained by composing with
the extension to Γk of the automorphisms of Z/pk , (Z/pk)∗ . Thus, there is at most
one subgroup isomorphic to Γk in GLp(q), up to conjugation. A subgroup of GLp(q)
isomorphic to Γ1 is described in Example 3.4. Since CGLp(q)(Γ1) = Z(GLp(q)) ∼=
GL1(q), Γk is a subgroup of GLp(q) if and only if Z/pk < GL1(q). Hence Γ` ,
` = νp(1− q), is the biggest one that can occur in GLp(q) (see Example 3.4).

Finally, the intersection of Γ` with SLp(q), and hence, of any conjugate of Γ` , is
isomorphic to Γ1 , and there are exactly p conjugacy classes of such subgroups Γ1(ξr)
(see Example 3.5). These are radical in CF (Z), and so, therefore, they are also radical
in F .

Step 3: Non-abelian centric radical subgroups having non-cyclic abelian charac-
teristic subgroups

Assume now that Q contains a non-cyclic abelian characteristic group. If Q is radical
in CF (Z), then it is radical in F . Now, we assume also that Q is not radical in CF (Z).

We can view Q ≤ S as subgroups of SLp(q) and GLp(q), for an appropriate prime
power q such that S is the Sylow p–subgroup of SLp(q): ` = νp(1 − q). Write
N = NGLp(q)(Q). The arguments of [4, (4A)] show that (up to conjugacy in GLp(q))

Q ≤ N ∩ (Z/pk o Z/p) C N

for some k ≤ `, or, taking the intersection with SLp(q)

Q ≤ N̄ ∩ Sk C N̄
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where Sk = (Z/pk o Z/p) ∩ SLp(q) ≤ S and N̄ = N ∩ SLp(q) = NSLp(q)(Q), an then

Inn Q ≤ (N̄ ∩ Sk)/Z(Q) C AutCF (Z)(Q)

where N̄/CSLp(q)(Q) = AutCF (Z)(Q). We will see that (N̄ ∩ Sk)/Z(Q) is still normal in
AutF (Q).

Assume that ϕ ∈ AutF (Q) restricts to Z as the unstable Adams operation ψζ , ζ a
(p− 1)st root of unity. If ψ1/ζ(Q) = Q′ ≤ S , then ψ1/ζ ◦ ϕ : Q → Q′ is a morphism
of F , that restricted to Z is trivial, hence a morphism of CF (Z). Since, we have
assumed that Q is not radical in CF (Z), ψ1/ζ ◦ϕ should be obtained as composition of
restrictions of automorphisms of centric radical subgroups of CF (Z), by Alperin fusion
theorem [14, A.10]. This is the fusion system of SLp(q), and the Sylow p–subgroup S
itself is the only centric radical that contains Q, hence, there is χ ∈ AutCF (Z)(S) with
χ|Q = ψ1/ζ ◦ϕ, hence ϕ = ψζ ◦ χ|Q extends to an automorphism ψζ ◦χ of AutF (S).
Notice that ψζ(Sk) = Sk and also χ(Sk) = Sk , hence, if g ∈ Sk normalizes Q, we have
ϕ ◦ cg ◦ ϕ−1 = cϕ(g) , with ϕ(g) ∈ N̄ ∩ Sk . This proves that we have

Inn Q ≤ (N̄ ∩ Sk)/Z(Q) C AutF (Q)

and since Q is radical in F , Q = Sk .

We claim that only the case Sk = S is radical. First we compute the normalizer
of Z/pk o Z/p in GLp(q). The subgroup (Z/pk)p is a characteristic subgroup of
Z/pk oZ/p, for it is the only abelian subgroup of index p, hence, NGLp(q)(Z/pk oZ/p) ≤
NGLp(q)((Z/pk)p). It is not difficult to compute NGLp(q)((Z/pk)p) = GL1(q) o Σp , the
group of invertible matrices with only one non-trivial entry in each line and column. By
direct computation one can obtain that NGLp(q)(Z/pkoZ/p) = GL1(q)·(Z/pkoNΣp(Z/p)),
where GL1(q) is identified with the subgroup of all diagonal matrices of GLp(q); that
is, the center of GLp(q).

Call Nk = NGLp(q)(Z/pk o Z/p) ∩ SLp(q). We have Nk ∼= Bk o NΣp(Z/p), with

Bk = { (z · x1, . . . , z · xp) ∈ GL1(q)p | xi ∈ Z/pk, zpx1 . . . xp = 1 }

and NSLp(q)(Sk) = Nk . Notice that, when k < `, Sk has index p in the Sylow p–
subgroup Bk o Z/p, and this is normal in Nk , hence only S = S` is radical in SLp(q).

The centralizer of Sk in SLp(q) is CSLp(q)(Sk) = Z ∼= Z/p and then AutCF (Z)(Sk) ∼=
AutSLp(q)(Sk) ∼= Nk/Z . (Bk/Z) o Z/p is normal in Nk/Z , and, since the Adams
operations ψζ , ζ a (p− 1)st root of unity, act internally in Bk , (Bk/Z)oZ/p is also a
normal of AutF (Sk):

Inn Sk = Sk/Z/p C (Bk/Z/p)o Z/p C AutF (Sk)
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thus, Sk is radical in the fusion system F if and only if k = `; that is, only the case
Sk = S is radical. In this case we have obtained AutF (S) ∼= N`/Z oZ/(p− 1), where
Z/(p − 1) on the right is generated by the Adams operations of exponent a primitive
(p − 1)st root of unity, and OutF (S) ∼= Z/(p − 1) × Z/(p − 1), given by the Adams
operations and NΣp(Z/p)/Z/p.

Step 4: Minimal set of representatives and automorphism groups

It remains to check which of those are F –conjugate to one of the others in the list and
also to compute their F –automorphisms.

For Q = S the restriction AutF (Q) → AutF (Z) is split because unstable Adams
operations extend to S . Moreover, since they are realized by the center of Gi , the
F –automorphisms of S are given by conjugation in the normalizer N`,i of the maximal
finite torus T (p−1)

` . We have seen already that the same is true for Q = T (p−1)
` .

Finally, we analyze the case Q = Γ1(ξr), r = 0, . . . , p−1. Assume that ϕ ∈ AutF (Q)
and that the restriction to the center Z is the unstable Adams operation ψz . This extends
to an F –automorphism of S . Write Q′ = ψz(Q). Then χ = ψz ◦ ϕ(−1) : Q → Q′

is a homomorphism of F that restricts to the identity in Z , hence it belongs to the
centralizer fusion system CF (Z). In other words, every automorphism ϕ ∈ AutF (Q)
is the composite of an isomorphism χ : Q → Q′ of CF (Z) and a unstable Adams
operation ψz .

It is then enough to compute the effect of unstable Adams operations on the family of
subgroups Γ1(ξr). It turns out that unstable Adams operations restrict to automorphisms
of Γ1 = Γ1(ξ0) so that OutF (Γ1) = GLp(q), while, for p > 3 or ` > 1, they conjugate
Γ1(ξr) for r = 1, . . . , p− 1 to each other and OutF (Γ1(ξ) = SLp(q).

Corollary 10.5 The fusion system of BXi(q) is

F(S,f )(BXi(q)) = 〈 FN`,i(S) ; FΓ1(GL2(p)) ,FΓ1(ξ)(SL2(p)) 〉 ,

for p > 3 or ` > 1, and F(S,f )(BX12(q)) = 〈 FN1,i(S) ; FΓ1(GL2(p)) 〉, for p = 3 and
` = 1, where N`,i = NXi(q)(T

(p−1)
` ) ∼= T (p−1)

` o Gi .

Proof It is a consequence of Proposition 10.4 and Alperin’s fusion theorem for satu-
rated fusion systems (see section 3).
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We end this section with a case by case study in order to determine which spaces BXi(q)
are p–completed classifying spaces of finite groups and which cases correspond to
exotic examples of p–local finite groups.

As we shall see, S contains no proper strongly closed subgroups in F = F(S,f )(BXi(q))
and so, according to [14, 9.2], if F is the p–completed classifying space of a finite
group, this group is almost simple.

In fact, a strongly closed subgroup of S in F is a normal subgroup P of S such that
no element of P is F –conjugate to any element in S \ P. Now, if P is non trivial it
contains at least an element of order p, and this is F –conjugate to an element of order
p in T (p−1)

` . Now, the maximal elementary abelian p–subgroup t of T (p−1)
` turns out

to be an irreducible Gi –module, hence t ⊂ P and since the cycle of order p generating
S/T (p−1)

` is conjugate to an element of t , the extension of t by this cycle is in P. Thus
we have a diagram of extensions

PT

��

// P

��

// Z/p

T (p−1)
`

// S // Z/p

where t ≤ PT = P ∩ T . Now S/P ∼= T (p−1)
` /PT is abelian. The abelianization of S is

seen to be Z/p× Z/p, and then we obtain that T (p−1)
` /PT is either trivial or has order

p. It follows that all elements of order up to p`−1 of T (p−1)
` belong to PT . Taking

the quotient by this subgroup we obtain an inclusion of Gi –modules PT ≤ T (p−1)
` , but

again, this last is an irreducible Gi –module, hence PT = T (p−1)
` , and then P = S .

Example 10.6 BX29(q) at p = 5 and BX34(q) at p = 7 are classifying spaces
of exotic p–local finite groups. We have seen that the Sylow subgroup does not
contain any proper strongly closed subgroup in F(S,f )(BXi(q)), hence if this is the p–
completed classifying space of a finite group G, then G is almost simple [14, Lemma
9.2]. A complete list of almost simple groups with a Sylow subgroup isomorphic to
S is provided by [14, Proposition 9.5]. No group in the list contains G29 or G34 as
automorphisms of T (p−1)

` induced by conjugation in the group. Hence X29(q) at p = 5
and X34(q) at p = 7 are exotic.

Example 10.7 BX12(q) at p = 3 is the 3–completed classifying space of a twisted
Chevalley group of type F4 . More precisely, BX12(q) = B(2F4(23`−1

))∧3 where ` =
ν3(q2 − 1).
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The 3–completed classifying space of the twisted Chevalley group 2F4(22n+1) can
be described at p = 3 as B(2F4(22n+1)) ' BFα4 , for α = ϕ ◦ ψ2n

, where ϕ is the
Friedlander’s exceptional isogeny of F4 [32]. ϕ has the effect of reflecting the Dynkin
diagram of F4 by sending the short roots to the long roots and the long roots to 2
times short roots. Furthermore, ϕ2 ' ψ2 , and then we can choose ζ a square root
of −2 in Z3 such that β = ϕ ◦ ψ1/ζ is a self equivalence of BF4 at p = 3 of order
two and 2nζ ≡ 1 mod 3. We can write α = β ◦ ψ2nζ , and then, by Proposition 6.2,
BFα4 ' (BF4)hβ(2nζ). In [16] it is shown that (BF4)hβ ' BX12 , hence BX12(2nζ) '
B(2F4(22n+1))∧3 . Since ψ−1 belongs to the Weyl group of X12 , BX12(q) ' BX12(−q),
and then, according to Theorem E, the homotopy type of BX12(±q) does only depend on
` = ν3(q2−1), thus, if we choose n with ` = ν3(q2−1) = ν3(1−2nζ) = ν3(1+22n+1),
then we have

BX12(q) ' BX12(2nζ) ' B(2F4(22n+1))∧3 .

In particular, BX12(q) ' B(2F4(23`−1
))∧3 . The local structure of 2F4(22n+1), also called

Ree groups of characteristic two, was studied by Malle [43].

Example 10.8 For any 5–adic unit, q ∈ Z∗5 , BX31(q) at p = 5 is the 5–completed
classifying space of a Chevalley group of type E8 , namely, BX31(q) ' BE8(22m+1)∧5 if
ν5(q4 − 1) = ν5(1 + 24m+2).

Let i =
√
−1 be a primitive 4th root of unity. Since ψi belongs to the Weyl group

of X31 , we can assume that q ≡ 1 mod 5 for otherwise we can multiply q by an
appropriate power of i and still have BX31(q) ' BX31(irq). Moreover, according to
Theorem E, the homotopy type of BX31(q) will only depend on ` = ν5(q4 − 1).

We fix a prime power q0 with q0 ≡ ±2 mod 5 and ` = ν5(±iq0− 1) = ν5(q0
4− 1) =

ν5(q0
2 + 1), where we choose +i or −i in order that the equality makes sense.

We can write q0 = i · (−i · q0), where now −i · q0 ≡ ±1 mod p. Since ψ−1 belongs to
the Weyl group of E8 , we can apply Proposition 6.2 and get BE8(q0) ' (BE8)hψi

(−iq0).
Now we have seen in Example A.12(2), that (BE8)hψi ' BX31 , so, therefore

BE8(q0) ' BX31(−iq0) ' BX31(q0) ,

and this last is homotopy equivalent to BX31(q) by our choice of q0 with ν5(q0
4−1) =

ν5(q4 − 1).

Similar considerations can be made, more generally, at any prime p such that p ≡
1 mod 4; that is, any prime at which X31 can be defined, and then obtain that BE8(q0) '
BX31(q0) for a prime power q0 with q0

2 + 1 ≡ 0 mod p.

The local structure of E8(q) was described in [41].
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Remark 10.9 One can easily obtain natural maps BXi(qpn
)→ BXi(qpn+1

), that at the
level of maximal finite tori induce inclusions T (p−1)

`+n ≤ T (p−1)
`+n+1 , and then obtain that

the p–compact group Xi can be reconstructed by means of a telescope construction

BXi ' hocolim
n

BXi(qpn
) .

In particular, we may obtain the p–compact groups BX12 (at p = 3) and BX31 (at
p = 5) as telescopes

BX12 = hocolim BX12(43n
) = hocolim B(2F4(23n

))

BX31 = hocolim BX31(165n
) = hocolim BE8(25n

)

of p–completed classifying spaces of finite Chevalley groups.

11 Chevalley p–local finite groups from generalized Grass-
mannians

We discuss here the Chevalley p–local finite groups of type X(m, r, n). Let p be an odd
prime, m ≥ 1, r ≥ 1, and n ≥ 1 with r|m|(p− 1). The simply connected polynomial
irreducible p–compact group X(m, r, n) has Weyl group G(m, r, n) (see Section 2) and
its cohomology is the invariant ring

H∗(BX(m, r, n);Fp) = H∗(BT(X(m, r, n));Fp)G(m,r,n) ∼= P[x1, . . . , xn−1, e]

with deg(xi) = 2mi and deg(e) = 2mn
r . See [61, 59, 53] for the construction of these

spaces. We are here interested in the associated spaces BX(m, r, n)(q) defined by the
pull-back diagram (22) with α = ψq where q is a p–adic unit.

Remark 11.1 Many cases already appear in the literature ([30, 34, 61]). We can
extract the following equivalences, up to p–completion, for a prime power q, prime to
p:

(1) BSU(n + 1)(q) ' BSLn+1(q).

(2) BU(n)(q) ' BX(1, 1, n)(q) ' BGLn(q).

(3) BX(m, 1, n)(q) ' BGLmn(q).

(4) BX(2, 2, n)(q) ' BSO(2n)(q) ' BSO+
2n(q).

By Remark 6.6, we have that, also for any p–adic unit q, BSU(n+1)(q), BX(m, 1, n)(q)
and BX(2, 2, n)(q) are homotopy equivalent to classifying spaces of finite groups, up
to p–completion.
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These also include the cases BX(m, 2, n)(q), that can be reduced to BX(2, 2, n)(q′)
using propositions A.10 and 6.2, so they are also equivalent, up to p–completion, to
classifying spaces of orthogonal groups over finite fields.

The above observations will be used as the starting point of the induction arguments
that we will develop in the rest of this section in order to study the structure of
BX(m, r, n)(q), for q ≡ 1 mod p, q 6= 1, and general values of m, r , and n.

Fix q ≡ 1 mod p, q 6= 1. The p–compact groups X(m, r, n) are polynomial, hence
propositions 7.5 and 7.6 apply. The maximal elementary abelian p–subgroup of
X(m, r, n), (tX, ν), factors as a p–subgroup, (tX, g), of X(m, r, n)(q), and the maximal
finite torus of X(m, r, n)(q) is

BTn
` ' BCX(m,r,n)(q)(tX, g)

where ` = νp(q − 1). The Weyl group is WX(m,r,n)(q)(Tn
` ) ∼= G(m, r, n), and the

extension NX(m,r,n)(q)(Tn
` ) ∼= Tn

` o G(m, r, n) sits in the maximal torus normalizer of
X(m, r, n), making the following diagram homotopy commutative:

BNX(m,r,n)(q)(Tn
` ) //

��

BNX(m,r,n)(Tn)

��
BX(m, r, n)(q) ι // BX(m, r, n) .

Corollary 7.7 implies that the functor

ι] : F e
p (X(m, r, n)(q))→ F e

p (X(m, r, n)) (40)

is an equivalence of categories. The next result is a description of the centralizers of
elementary abelian p–subgroups.

Proposition 11.2 [53, 7.11] Let p be an odd prime, m ≥ 1, r ≥ 1, n ≥ 1 with
r|m|(p− 1), and q ≡ 1 mod p, q 6= 1. Then,

(1) any elementary abelian p–subgroup h : BE → BX(m, r, n)(q), factors through
the maximal finite torus, and

(2) for any subgroup E ≤ tx ≤ Tn
` , the centralizer of (E, g|BE) in X(m, r, n)(q),

BCX(m,r,n)(q)(E, g|BE) ' BX(m, r, n0)(q)× BU(n1)(q)× · · · × BU(ns)(q) ,

n = n0 + n1 + · · ·+ ns , is determined by the point-wise stabilizer of E ≤ Tn
` in

the Weyl group G(m, r, n), G(m, r, n)(E) ∼= G(m, r, n0)× Σn1 × · · · × Σns .
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Proof All elementary abelian p–subgroups of X(m, r, n) are toral, hence the same
is true for X(m, r, n)(q) by the equivalence (40). If E ≤ tX , by Corollary 7.4, the
restriction of ψq to the centralizer of (E, g|BE), is ψq again, ψq|CX(m,r,n)(q)(E,g|BE) = ψq ,
and

BCX(m,r,n)(q)(E, g|BE) ' BCX(m,r,n)(E, ν|BE)(q) .

The centralizers CX(m,r,n)(E, ν|BE) are known to be connected p–compact groups of
maximal rank, with Weyl group G(m, r, n0)×Σn1×· · ·×Σns , the point-wise stabilizer
of E in Tn by the action of the Weyl group G(m, r, n):

BCX(m,r,n)(E, ν|BE) ' BX(m, r, n0)× BU(n1)× · · · × BU(ns) ,

thus,

BCX(m,r,n)(E, ν|BE)(q) ' BX(m, r, n0)(q)× BU(n1)(q)× · · · × BU(ns)(q)

contains the same maximal finite torus Tn
` as X(m, r, n)(q), ` = νp(q − 1), n =

n0+n1+· · ·+ns and the Weyl group is G(m, r, n0)×Σn1×· · ·×Σns (see Propositions 7.5
and 7.6).

Proposition 11.3 Let p be an odd prime, m ≥ 1, r ≥ 1, n ≥ 1 with r|m|(p− 1), and
q ≡ 1 mod p, q 6= 1. The natural map

hocolim
F e

p (X(m,r,n)(q))op
BCX(m,r,n)(q) −→ BX(m, r, n)(q)

is a mod p homology equivalence.

Proof According to Theorem F and Example 9.5

H∗(BX(m, r, n)(q);Fp) ∼= H∗(BTn
` ;Fp)G(m,r,n)

∼= P[x1, . . . , xn−1, e]⊗ E[y1, . . . , yn−1, u]

with deg(xi) = 2mi, deg(e) = 2mn
r , deg(yi) = 2mi− 1, and deg(u) = 2mn

r − 1.

Since this is true for all values of m, r , n, we obtain from Proposition 11.2 that also,
for every elementary abelian p–subgroup E ≤ tX ,

H∗(BCX(m,r,n)(q)(E, g|BE);Fp) ∼= H∗(BTn
` ;Fp)G(m,r,n)(E)

where G(m, r, n)(E) is the point-wise stabilizer of E in Tn
` , by the action of the Weyl

group G(m, r, n). So, then, the result follows from Proposition 7.9.

Algebraic & Geometric Topology XX (20XX)



1080 Carles Broto and Jesper M. Møller

Fix a Sylow p–subgroup of NX(m,r,n)(q)(Tn
` ), Sn,`

∼= Z/p` o Sn , where Sn is the Sy-
low p–subgroup of the symmetric group Σn . Call f the composition BSn,` →
BNX(m,r,n)(q)(Tn

` )→ BX(m, r, n)(q), Thus (Sn,`, f ) is a p–subgroup of BX(m, r, n)(q).

We will denote by
F(m, r, n, q) = F(Sn,`,f )(BX(m, r, n)(q))

the fusion system of BX(m, r, n)(q) over (Sn,`, f ) and by

L(m, r, n, q) = L(Sn,`,f )(BX(m, r, n)(q)) ,

the associated centric linking system. Recall that the underlying category of the system
F(m, r, n, q) is equivalent to Fp(BX(m, n, r)(q)).

Theorem 11.4 If q is a p–adic unit such that q ≡ 1 mod p, q 6= 1, and ` = νp(1−q),
then, (Sn,`, f ) is a Sylow p–subgroup for BX(m, r, n)(q) and

(Sn,`,F(m, r, n, q),L(m, r, n, q))

is a p–local finite group with classifying space

|L(m, r, n, q)|∧p ' BX(m, r, n)(q) .

Proof We proceed by induction on n, the p–rank of X(m, r, n)(q). For n < p,
X(m, r, n) is a Clark–Ewing p–compact group, and then, X(m, r, n)(q) is the p–
completed classifying space of a finite group (see 9.8). Also, for BX(1, 1, n) ' BU(n)∧p ,
Remark 11.1 characterizes BX(1, 1, n)(q) as p–completed classifying spaces of finite
groups. In all that cases, the conclusion of the theorem is clearly satisfied (see Sec-
tion 3).

Assume that n is large and that the theorem holds for every n0 < n. That is, for
every n0 < n, the space BX(m, r, n0)(q) is the classifying space of the p–local finite
group
(Sn0,`,F(m, r, n0, q),L(m, r, n0, q)). The result about BX(m, r, n)(q) will follow from
Theorem 4.5. We will show that the space BX(m, r, n)(q) and its p–subgroup (Sn,`, f )
meet the conditions of 4.5. Condition (1) of 4.5 is satisfied by Proposition 7.1.

Condition (2a) of Theorem 4.5 amounts to show that if E ≤ tX , then the central-
izer BCX(m,r,n)(q)(E, g|BE) is the classifying space of a p–local finite group. This
follows by the induction hypothesis. In fact, by 11.2, there is a homotopy equiv-
alence BCX(m,r,n)(q)(E, g|BE) ' BX(m, r, n0)(q) × BU(n1)(q) × · · · × BU(ns)(q), for
n = n0 + n1 + . . . ns , a non-trivial decomposition of n into positive summands, and by
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the induction hypothesis and [14, 1.4] this is the classifying space of the p–local finite
group defined as the product

(Sn0,`,F(m, r, n0, q),L(m, r, n0, q))

× (Sn1,`,F(1, 1, n1, q),L(1, 1, n1, q))× · · · × (Sns,`,F(1, 1, ns, q),L(1, 1, ns, q)) .

Condition (2b) of 4.5 establishes that Sylow p–subgroups of centralizers of elementary
abelian subgroups of BX(m, r, n)(q) factor through (Sn,`, f ). This is proved by reducing
the question to unitary groups, obtained as centralizers of the center of Sn,` .

Let Z ∼= Z/p denote the diagonal elements of order p in Tn
`
∼= (Z/p`)n ≤ Sn,` . Then,

the point-wise stabilizer of Z in Tn
` by the action of G(m, r, n) is Σn and therefore,

according to Proposition 11.2, BCBX(m,r,n)(q)(Z, g|BZ) ' BU(n)(q).

By naturality of the construction of the normalizer of the maximal finite torus, we
obtain a diagram

BNU(n)(q)(Tn
` ) //

��

BNX(m,r,n)(q)(Tn
` )

��
BU(n)(q)

Bjn // BX(m, r, n)(q)

hence a factorization of (Sn,`, f ):

BSn,`
f ′

yyttttttttt f

&&MMMMMMMMMMM

BU(n)(q)
Bjn // BX(m, r, n)(q) .

(41)

Choose any other subgroup E ≤ tX ≤ Sn,` . Assume that the point-wise stabilizer of
E in Tn

` by the action of G(m, r, n) is G(m, r, n)(E) ∼= G(m, r, n0)× Σn1 × · · · × Σns .
Define E′ = Z · E ≤ tX , then, the point-wise stabilizer of E′ will be G(m, r, n)(E′) ∼=
Σn0 ×Σn1 × · · · ×Σns . The inclusions E ≤ E′ ≥ Z induce a commutative diagram of
centralizers

BCX(m,r,n)(q)(E′, g|BE′)
Bj]n //

��

BCX(m,r,n)(q)(E, g|BE)

��
BCX(m,r,n)(q)(Z, g|BZ)

Bjn // BX(m, r, n)(q) .

(42)

Now,

BCX(m,r,n)(q)(E, g|BE) ' BX(m, r, n0)(q)× BU(n1)(q)× · · · × BU(ns)(q)
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with Sylow p–subgroup Sn0,` × · · · × Sns,` while

BCX(m,r,n)(q)(E′, g|BE′) ' BU(n0)(q)× BU(n1)(q)× · · · × BU(ns)(q)

and from the above discussion we have a factorization

B(Sn0,` × · · · × Sns,`) //

++XXXXXXXXXXXXXXXXXXXXXX
BU(n0)(q)× BU(n1)(q)× · · · × BU(ns)(q)

Bj]n'Bjn0×1×···×1
��

BX(m, r, n0)(q)× BU(n1)(q)× · · · × BU(ns)(q) .

(43)

Diagrams (41), (42), and (43) provide a homotopy commutative diagram

B(Sn0,` × · · · × Sns,`)
**

//

Bρ
��

BCX(m,r,n)(q)(E′, g|BE′)
Bj]n //

��

BCX(m,r,n)(q)(E, g|BE)

��
BSn,` 33

// BCX(m,r,n)(q)(Z, g|BZ)
Bjn // BX(m, r, n)(q)

where the existence of the homomorphism ρ : Sn0,` × · · · × Sns,` → Sn,` making
homotopy commutative the left square is obtained because Sn,` is a Sylow p–subgroup
of U(n)(q).

We have proved that BX(m, r, n)(q) and (Sn,`, f ) satisfy the conditions (1) and (2) of
Theorem 4.5, and therefore, that (Sn,`, f ) is a Sylow p–subgroup of BX(m, r, n)(q) and
(Sn,`,F(m, r, n, q),L(m, r, n, q)) is a p–local finite group.

Finally, BX(m, r, n)(q) is the classifying space |L(m, r, n, q)|∧p according to Proposi-
tion 11.3 and Theorem 4.5.

Proposition 11.5 For q ≡ 1 mod p, q 6= 1, X(m, r, n)(q) is a exotic p–local finite
group if r > 2, n ≥ p.

Notice that in the above hypothesis r|(p− 1), thus r > 2 can only occur with p ≥ 5,
so that we are implicitly assuming also that p ≥ 5.

Proof We will first reduce the question to the rank p–case. Then we classify the
centric radical subgroups in the fusion system of BX(m, r, p)(q) and show that they
coincide with the p–local finite groups of [14, Example 9.4].

There is an elementary abelian p–subgroup E ≤ tX , in X(m, r, n)(q), of rank n − p
such that

CX(m,r,n)(q)(E, g|BE) ∼= X(m, r, p)(q)× U(1)∧p (q)n−p
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(see Proposition 11.2). If we assume that there is a finite group G such that BG∧p '
BX(m, r, n)(q), then the map Bg|BE : BE → BX(m, r, n)(q) ' BG∧p is induced by a
homomorphism ϕ : E → G, and

BCG(ϕ(E))∧p ' BX(m, r, p)(q)× BU(1)∧p (q)n−p .

Since BU(1)∧p (q) ' BZ/p` , the projection BCG(ϕ(E))∧p → BU(1)∧p (q)n−p is the p–
completion of the map induced by a homomorphism ρ : CG(ϕ(E)) → (Z/p`)n−p . It
has a section, also induced by a homomorphisms σ : (Z/p`)n−p → CG(ϕ(E)), hence ρ
is an epimorphism. Therefore, we have a short exact sequence Ker ρ→ CG(ϕ(E))→
(Z/p`)n−p and an induced fibration B(Ker ρ)∧p → BCG(ϕ(E))∧p → B(Z/p`)n−p , from
which we obtain an equivalence B(Ker ρ)∧p ' BX(m, r, p)(q). This reduces the question
to showing that X(m, r, p)(q) is an exotic p–local finite group.

We will show now that X(m, r, p)(q) coincide with the p–local finite groups constructed
in [14, Example 9.4] in purely algebraic terms. For this aim we will need to describe
the centric and radical p–subgroups of X(m, r, p)(q).

Recall that Tp
`
∼= (Z/p`)p is the maximal finite torus of X(m, r, p)(q) with Weyl group

G(m, r, p) and they form a split extension

Tp
` → NX(m,r,p)(q)(T

p
` )→ G(m, r, p)

that contains Sp,` = Tp
` oZ/p ≤ NX(m,r,p)(q)(T

p
` ), a Sylow p–subgroup of X(m, r, p)(q).

For simplicity we will denote F = F(m, r, p, q), the fusion system of BX(m, r, p)(q)
over (Sp,`, f ).

The center of the Sylow p–subgroup is Z(Sp,`) ∼= Z/p` embedded diagonally in
Tp
` , and, if we write Z(tX) for the elements of order p in Z(Sp,`), then we obtain

BCX(m,r,p)(q)(Z(Sp,`) ' BCX(m,r,p)(q)(Z(tX)) ' BU(p)∧p (q) (see Proposition 11.2). We
also know (see Remark 11.1) that BU(p)∧p (q) ' BGLp(q0)∧p for a prime power q0 with
` = νp(1 − q) = νp(1 − q0), hence we conclude that the centralizer fusion system
CF (Z(Sp,`)) coincides with the fusion system of GLp(q0), that has been described in
Example 3.4.

The Sylow p–subgroup Sp,` is clearly centric and radical. Tp
` is centric and OutF (Tp

` ) =
G(m, r, p) hence it is also radical (p ≥ 5). Proper subgroups of Tp

` are not centric, so
we will look at subgroups Q ≤ Sp,` not contained in Tp

` . such a subgroup fits in an
extension

Q0 //

��

Q //

��

Z/p

Tp
`

// Sp,` // Z/p
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where Q0 = Q ∩ Tn
` , and since Q is centric, Z(Sp,`) ≤ Q0 . It turns out that this is

actually a characteristic subgroup of Q, Hence there is an exact sequence of groups:

1→ AutCF (Z(Sp,`))(Q)→ AutF (Q)→ AutF (Z(Sp,`))

where AutF (Z(Sp,`)) ∼= Z/(m/r) is given by the action of the Adams operations of
exponents a (m/r)th root of unity.

Assume that Q is abelian. Then Q0 = Z(Sp,`) and Q is either Z/p × Z(Sp,`) or
cyclic Z/p`+1 . In the first case, Q is F –conjugate to a subgroup of Tn

` , hence it is
not centric while in the second case, it is conjugate to the group U`+1 described in
Example 3.4. Adams operations do not act internally in U`+1 , hence OutF (U`+1) ∼=
OutCF (Z(Sp,`))(U`+1) ∼= Z/p and then U`+1 is not radical in F .

Assume that Q is non-abelian. The same arguments as in 10.5 show that Q is either
Sp,` or Γ` , and both are radical in CF (Z(Sp,`)). Thus we obtain that they complete the
list of conjugacy classes of centric radical subgroups of Sp,` in F .

In order to complete the picture it remains to compute the F –automorphisms of Γ` .
We have OutCF (Z(Sp,`))(Γ`) ∼= SL2(p). Now, the Adams operations act internally in Γ`
and we get OutF (Γ`) ∼= SL2(p).(m/r).

By Alperin’s fusion theorem, a fusion system over S is generated by the automorphisms
of its fully normalized centric radical subgroups in S . Since in our case all the
automorphisms of Tp

` are induced by conjugation in NX(m,r,p)(q)(T
p
` ), we can write

F(m, r, p, q) = 〈FNX(m,r,p))(q)(T
p
` )(Sp,`);FΓ`(SL2(p).(m/r))〉

(see Section 3) but this is precisely the definition of the fusion systems in [14, Exam-
ple 9.4].

The cases BX(m, r, n)(q) with r = 1, 2 or n < p, are homotopy equivalent to
p–completed classifying spaces of finite groups according to Theorem 9.8 and Re-
mark 11.1.

A Recognition of homotopy fixed point p–compact groups

The objective of this appendix is to obtain a recognition principle for the homotopy
fixed point p–compact group BXhG where p is an odd prime, X a connected p–compact
group, G a finite group of order prime to p, and ρ : G→ Out(X) and outer action.
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Let N → X be the maximal torus normalizer for the p–compact group X . The short
exact sequence of topological monoids

BZ(N) = aut(BN)1 → aut(BN)→ Out(N)

induces a fibration sequence

B2Z(N)→ Baut(BN)→ BOut(N)

which shows that equivalence classes of fibrations over BG with fibre BN is in one-to-
one correspondence with

[BG,BOut(N)] = Hom(G,Out(N)) .

Also, we know from Theorem B that equivalence classes of fibrations over BG with
fibre BX is in one-to-one correspondence with

[BG,BOut(X)] = Hom(G,Out(X)) .

However, Out(X) ∼= Out(N) [53, 7] and therefore there is a bijective correspondence
between fibrations with fibre BX over BG and fibrations with fibre BN over BG. We
shall now make this correspondence more explicit.

Define the group-like topological monoid aut(Bj) to be the submonoid of aut(BN) ×
aut(BX) consisting of all pairs (a, b) ∈ aut(BN)× aut(BX) such that the diagram

BN

Bj
��

a // BN

Bj
��

BX
b
// BX

commutes.

Lemma A.1 Assume that p is odd. The forgetful homomorphisms

aut(BN) aut(Bj)oo //aut(BX)

are homotopy equivalences.

Proof The group homomorphisms π0 aut(BN)← π0 aut(Bj)→ π0 aut(BX) are injec-
tive because X has N –determined automorphisms [53, 7]. The group homomorphism
to the left is surjective because X is N –determined and the one to the right is surjective
because any self-homotopy equivalence of BX lifts to a self-homotopy equivalence of
BN [51, §3]. The identity components fit into a map of fibrations [28, 11.10]

autBX(Bj)1 // aut(Bj)1

��

// aut(BX)1

'
��

autBX(Bj)1 // aut(BN)1 // Map(BN,BX)Bj
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where the right vertical map, defined by composition with Bj, is a homotopy equiv-
alence [28, 7.5, 1.3] [26, 9.1] [51, 3.4]. The fibre, consisting of the space of maps
BN → BN over BX and vertically homotopic to the identity map of BN , is (one
component) of the space (X/N)hN which is contractible [49, 5.1].

Thus we have bijections

[B,Baut(BN)] = [B,Baut(Bj)] = [B,Baut(BX)]

for any space B and this means BN –fibrations and BX–fibrations over B are in bijective
correspondence.

Proposition A.2 Let X be a connected p–compact group with maximal torus nor-
malizer N → X . If G is a finite group of order prime to p, then any outer action
ρ : G → Out(X), lifts to a unique G–action on BX and unique G–action on BN .
Moreover, these actions make the map BN → BX G–equivariant; that is, the diagram

BN //

��

BNhG

��

// BG

BX // BXhG // BG

is homotopy commutative.

Proof Let us say that our input is an outer action

ρ : G→ Out(X) = W\NGL(L)(W) = Out(N) (44)

of the finite group G on X and N . By Theorem B, ρ lifts to a unique action of G on
BX , and by Lemma A.1 the same is true for BN . In particular, ρ determines a unique
map, up to homotopy,

B̃ρ : BG −→ Baut(Bj)

inducing ρ on fundamental groups.

Over Baut(Bj) there are two related fibrations

BNh aut(Bj) //

&&MMMMMMMMMM
BXh aut(Bj)

xxqqqqqqqqqq

Baut(Bj)

with fibre BN and BX , respectively. Pull back these two related fibrations along the
map B̃ρ to obtain the commutative diagram of the Proposition.
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Next, we need to lift the action of G on BN and BX to an action on the loop spaces N
and X (see Definition 5.3), such that the inclusion N → X is still equivariant.

Lemma 5.1 applies to show that the fibration BX → BXhG → BG admits a section,
unique up to vertical homotopy, when X is connected; that is, there is a unique lifting
of the action on BX to an action on X . However, BN is not simply connected as
π1(BN) ∼= W and then Lemma 5.1 ensures neither the existence nor the uniqueness of
a lifting of the action of G on BN to an action of G on N . Instead, it leads to the next
description of the possible actions.

Proposition A.3 If a finite group G of order prime to p acts on BN with outer action
ρ : G → W\NGL(L)(W) ∼= Out(N), then there are natural one-to-one correspondences
between the sets:

(1) π0(BNhG),

(2) W –conjugacy classes of lifts in the diagram

NGL(L)(W)

��
G ρ

//

99

W\NGL(L)(W) .

If these sets are non-empty, then they are also in one-to-one correspondence with
H1(G; W).

Proof An action of G on BN is by definition a fibration

BN → BNhG → BG , (45)

and according to A.2 this action of G on BN is uniquely determined by ρ.

Next, we map π0(BNhG) directly to the set (2). Let ϕ : BG → B aut(BN) be a
classifying map for the fibration (45). Thus, ϕ extends to a map of fibrations

BN // BNhG

��

// BG

Bρ
��

BN // Baut∗(BN) // Baut(BN)

into the universal BN –fibration. Here, aut∗(BN) is the topological monoid of based
self-homotopy equivalences of BN . On the level of fundamental groups we get an
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induced morphism

W // π0(NhG)

��

// G

ρ

��
W // NGL(L)(W) // W\NGL(L)(W)

(46)

of group extensions. Here we use the short exact sequence from [50, 5.2] in combination
with the vanishing results from [6, 3.3].

We have seen (Lemma 5.1) that the existence of an action of G on N lifting the action
on BN is equivalent to the existence of a section of the exact sequence on the top row
of (46), and the diagram shows that this is equivalent to the existence of a lifting of ρ
to a homomorphism σ : G → NGL(L)(W). This gives the bijection between π0(BNhG)
and the set (2).

Finally, if these sets are nonempty, then obstruction theory as in Lemma 5.1 shows that
they are in one-to-one correspondence with the set H1(G; W) = H1(G;π1(BN)).

Proposition A.4 Let X be a connected p–compact group with Weyl group W and
maximal torus normalizer N → X . If G is a finite group of order prime to p and

ρ : G→ Out(X) ∼= W\NGL(L)(W)

is an outer action, then ρ lifts to a unique action of G on X , and each lift

σ : G→ NGL(L)(W)

determines a unique action of G on N such that the inclusion N → X is G–equivariant.

Proof The first part was proved in Proposition A.2. According to Proposition A.3,
the actions of G on N that lift the given outer action are in one-to-one correspondence
with lifts of ρ to NGL(L)(W). If we view one of these actions as a sectioned fibration

BN // BNhG
// BGoo

it clearly induces an action on X that makes N → X equivariant:

BNhG

##F
FFFFFFF

// BXhG

{{xxxxxxxx

BG .

cc ;;

The proposition follows because there is only one action of G on X inducing ρ.
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Proposition A.5 Let p be an odd prime and G a finite group of order prime to p.
Assume that G acts on the connected p–compact group X and that

ρ : G→ NGL(L)(W)

is a lift of the given outer action. If Y is a connected p–compact group that satisfies

(1) WρG contains a subgroup W , complementary to the kernel of WρG → GL(LρG),
such that (W,L(X)ρG) is a Zp –reflection group isomorphic to (W(Y),L(Y)), and

(2) QH∗(BY;Qp) ∼= QH∗(BX;Qp)G ,

then BY = BXhG .

Proof By the classification theorem for p–compact groups at odd primes [53, 7],
it suffices [52, 1.2] to find an map BN(Y) → BXhG that induces an isomorphism
on H∗(−;Qp) and restricts to monomorphism on the p–normalizer Np(Y), is a p–
monomorphism. The homomorphism ρ corresponds (A.4) to compatible G–actions
BG→ BN(X)hG → BXhG on N(X) and X . Taking homotopy fixed points we obtain a
commutative diagram of loop space morphisms

N(X)hG

��

// XhG

��
N(X) // X

which shows that N(X)hG → XhG is a p–monomorphism. Since the discrete ap-
proximation to N(X), N(X)hG , and N(Y) are semi-direct products [6], there is a
p–monomorphism N(Y) → N(X)hG for W(Y) is a subgroup WρG = π0N(X)hG by
the first condition. By the second condition, H∗(BY;Qp) = H∗(BN(Y);Qp) and
H∗(BXhG;Qp) are abstractly isomorphic graded vector spaces. Therefore, Y and XhG

have the same rank [26, 5.9] so that T(Y) → N(X)hG → XhG is a maximal torus and
H∗(BXhG;Qp)→ H∗(BN(Y);Qp) is injective [26, 9.7], hence bijective.

A special case arises when G acts through unstable Adams operations so that the
action π0ρ : G → Out(N) → Out(W) is trivial. Then the image of G in Out(N) =
W\NGL(L)(W) is contained in the subgroup Z(W)\CGL(L)(W) [53, 3.16] and we have a
morphism

W // π0(NhG)

��

// G

Bρ
��

W // W.CGL(L)(W) // Z(W)\CGL(L)(W)
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of group extensions. The possible extensions occurring in the upper line, realizing the
trivial action G→ Out(W), are classified by H2(G; Z(W)); they are all isomorphic to

W → Z(W)\(D×W)→ G

for some central extension Z(W)→ D→ G [42, IV.§8]. If Z(W) is trivial, π0(NhG) =
G×W and H1(G; W) = Rep(G,W).

Assume that G = Cr is a cyclic group of order r , and the outer action of G on X ,
ρ : Cr → Out(X), is given by an Adams operation ρ(λ) = ψλ , where λ ∈ Z×p is
a p–adic unit of order r|(p − 1). We can lift ψλ ∈ Z(W)\CGL(L)(W) to an element
ζ ∈ CGL(L)(W), such that ζr ∈ Z(W). If there is a choice of ζ with ζr = 1, then
ρ̄λ = ζ provides a lifting of ρ.

Assume, otherwise, that ζr has order s in Z(W). Since p is odd, Z(W) has order prime
to p, hence s is prime to p. Now, even if there is no lift of the action of Cr on X to an
action on N , we can reduce the problem by extending the action of Cr to an action of
Csr on X determined by ρ′(λ) = ψλ ∈ Z(W)\CGL(L)(W) ⊂ Out(X), that now admits
the lift ρ̄′(λ) = ζ . Notice that Cs = 〈λr〉 acts trivially on X , so that BXhCs ' BX , and
then BXhCsr ∼= BXhCr , so we can still determine BXhCr by analyzing the equivariant
action of Csr on N and X .

Notice also, that if W is irreducible, then CGL(L)(W) consists of diagonal matrices and
therefore ζ is an Adams operation.

Corollary A.6 Let λ ∈ Z×p be a p–adic unit of order r|(p − 1). Consider the
outer action ρ : Cr = 〈λ〉 → W\NGL(L)(W) through unstable Adams operations given
by ρ(λ) = ψλ . Then, if ρ admits a lift ρ̄ : Cr → NGL(L)(W), then all possible lifts are
parameterized by H1(Cr; W) = Rep(Cr,W), the set of conjugacy classes of order r
elements w of W , and

(WρCr ,LρCr ) = (CW(w),L〈λw〉)

for the lift ρ(λ) = λw corresponding to w.

Proof The lifts
W.CGL(L)(W)

��
Cr = 〈λ〉 ρ

//

ρ
66

Z(W)\CGL(L)(W)

are given by ρ(λ) = wψλ where w ∈ W is any element of order r .

We next apply the recognition principle (A.6) in some concrete cases.
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A.7 The three infinite families

We identify the fixed point p–compact groups for the actions of finite cyclic groups
of order prime to p through unstable Adams operations on the p–compact groups of
the three infinite families of irreducible p–compact groups, namely the projective or
special unitary groups, the generalized Grassmannians, and the Sullivan spheres (as
defined in Section 2).

Proposition A.8 (Sullivan spheres) Let p be an odd prime. Suppose that m and
r > 1 divide p − 1. Consider the outer action through unstable Adams operations
ψ : Cr → Out(S2m−1) ∼= Z×p /Cm of the cyclic group Cr ≤ Z×p on the Sullivan sphere
S2m−1 . Then the homotopy fixed point group is

(S2m−1)hCr =

{
S2m−1 r |m
∗ otherwise,

Proof Let λ be a primitive r th root of unity, so that Cr = 〈λ〉 ≤ Z∗p . According
to Theorem B, (S2m−1)h〈λ〉 is a connected polynomial p–compact group. If r does
not divide m, H2m(ψλ) = λm is nontrivial, so that the vector space of covariants
QH∗(BS2m−1;Qp)〈λ〉 vanishes in positive degrees, and the fixed point p–compact
group is trivial. If r does divide m, ψλ acts trivially on S2m−1 , because the kernel of
ψ is Cm which contains Cr , and the fixed point p–compact group is again S2m−1 .

Proposition A.9 (Special unitary groups) Let p be an odd prime. Suppose that
m > 1 divides p − 1, and let Cm = 〈λ〉 ⊂ Z×p be the cyclic group generated by a
primitive mth root of unity acting through unstable Adams operations. Then

X(mn + s)hCm = U(mn + s)hCm =

{
X(m, 1, n) n > 0

∗ n = 0

for any p–compact group X(mn + s) locally isomorphic to SU(mn + s), 0 ≤ s < m.

Proof In the rational cohomology algebras H∗(BU(mn + s);Qp)=Qp[c1, . . . , cmn+s]
and
H∗(BX(mn + s);Qp)=Qp[c2, . . . , cmn+s] we have

ci is preserved by H2i(ψλ) ⇐⇒ m|i

and therefore

QH∗(BU(mn + s);Qp)Cm = Qp{cm, . . . , cmn} = QH∗(BX(m, 1, n);Qp)

= QH∗(BX(mn + s);Qp)Cm .
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The Weyl group W = Σmn+s is the symmetric group in its natural representation on
L = Zmn+s

p . Let e1, . . . , emn+s be the canonical basis vectors of L . The permutation

w = (1 · · ·m)(m + 1 · · · 2m) · · · (m(n− 1) + 1 · · ·mn) ∈ Σmn+s

has order m and

(CΣmn+s(w),L〈λw〉)

= (Cm o Σn × Σs,Zp{λe1 + λ2e2 + · · ·+ λmem, . . . , λem(n−1)+1 + · · ·+ λmemn})

contains the Zp –reflection group G(m, 1, n) = Cm oΣn as a a subgroup complementary
to the kernel, Σs , of the action of (CΣmn+s(w) on L〈λw〉 . This means (A.6) that the fixed
point p–compact group U(mn + s)hCm = X(m, 1, n).

From the two short exact sequences of ZpΣmn+s –modules [53, §10]

0→ Zp
∆−→ L→ LPU(mn + s)→ 0, 0→ LX(mn + s)→ LPU(mn + s)→ π̌ → 0

where ∆ is the diagonal and π̌ a subgroup of π1(PU(mn + s)) = Zp/Zp(mn + s) (with
trivial Σmn+s –action), we get that

L〈λw〉 = LPU(mn + s)〈λw〉 = LX(mn + s)〈λw〉

as ZpCΣmn+s(w)–modules.

The proof of (A.10) will make use of the following elementary facts:

• For arbitrary natural numbers m and n we write mn for m/ gcd(m, n). Then
mnn = lcm(m, n) and mnnm = lcm(m, n)/ gcd(m, n).

• Clcm(q,m) = 〈λ, µ|λq = 1, µm = 1, λµ = µλ, λqm = µmq〉.

• Let A(a, t) ∈ GL(Zp, t) denote the linear automorphism

A(a, t)(x1, . . . , xt) = (axt, x1, . . . , xt−1)

where a ∈ Z×p is a unit. The ith power A(a, t)i has characteristic polynomial
(xti − ait )t/ti and A(a, t)t = aE .

• If λ ∈ Z×p has order q, then A(λ−qm , qm) also has order q for A(λ−qm , qm)qm =
λ−qmE has order gcd(q,m). The λ−1 eigenspace of A(λ−qm , qm) has rank one
and A(λ−qm , qm)−1 acts on it as multiplication by λ.

• In the exact sequence 1 → A〈g〉 → CAoG(a, g) → CG(g) the image in CG(g)
consists of those h ∈ CG(g) that fix a ∈ A/(1− g)A.
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Proposition A.10 (Generalized Grassmannians) Let X(m, r, n), m ≥ 2, r ≥ 1,
n ≥ 2, r |m | p − 1, be the irreducible polynomial p–compact group corresponding
to the imprimitive Zp –reflection group G(m, r, n). Suppose that the natural number `
divides p− 1 and let the cyclic group C` ⊂ Clcm(`,m) ⊂ Z×p act on X(m, r, n) through
unstable Adams operations. The homotopy fixed point group for this action is

X(m, r, n)hC` =


X(lcm(`,m), r, n/`m) r` |mn

X(lcm(`,m), 1, n/`m − 1) r` - mn , ` |mn,

X(lcm(`,m), 1,
[
n/`m

]
) ` - mn

where `m = `/ gcd(`,m) and [n/`m] is the biggest integer ≤ n/`m . (By convention,
G(m, r, 1) is cyclic of order m/r and G(m, r, 0) is the trivial group.)

Proof Let λ ∈ Z×p be a primitive `th root of unity. In the rational cohomology algebra
H∗(BX(m, r, n);Qp) ∼= Qp[x1, . . . , xn−1, e] the degrees |xi| = 2im and |e| = 2 m

r n so
that

xi is preserved by H2im(ψλ) = λim ⇔ ` | im⇔ `m | i

e is preserved by H2 m
r n(ψλ) = λ

m
r n ⇔ ` | nm/r ⇔ `m/r | n

and thus QH∗(BX(m, r, n);Qp)C` is isomorphic to the indecomposables of the rational
cohomology algebra of the p–compact group on the right hand side of the equation.

We have r` | mn⇔ `m/r | n, ` | mn⇔ `m | n, and `m | `m/r | `|p− 1.
`m/r | n: The element

w = diag
(

A(λ−`m , `m), . . . ,A(λ−`m , `m)︸ ︷︷ ︸
n/`m

)
∈ G(m, r, n)

has order `. Since ((λ−`m)n/`m)m/r = λ−mn/r = 1 because `|(mn/r) by assumption,
w does indeed belong to the index r subgroup G(m, r, n) of G(m, 1, n) = Cm o Σn .
Let {e1, . . . , en} be the canonical basis for the free Zp –module L = Zn

p on which
G(m, r, n) acts. The free Zp –module

L〈λw〉 =
〈

e1 + λe2 + · · ·+ λ`m−1e`m , . . . , e(n−`m)+1 + λe(n−`m)+2 + · · ·+ λ`m−1en

〉
,

has rank n/`m . We shall now compute the centralizer of w. Let ζ be a generator
of the cyclic group Clcm(`,m) ⊂ Z×p so that Cm = 〈µ〉 and C` = 〈λ〉 with µ = ζ`m

and λ = ζm` . The homomorphisms A(`, 1, n/`m) //CG(m,1,n)(w) A(m, 1, n/`m)oo
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defined by

λi −→ diag
(

E, . . . ,E︸ ︷︷ ︸
i−1

,A(λ−`m , `m)−1,E, . . . ,E
)
,

diag
(

E, . . . ,E︸ ︷︷ ︸
i−1

, µE,E, . . . ,E)←− µi

combine to a homomorphism defined on A(lcm(`,m), 1, n/`m) since they agree on
their common domain A(gcd(`,m), 1, n/`m) = 〈µm`〉n/`m =

〈
λ`m
〉n/`m , Observe that

(λa1 , . . . , λan/`m ) ∈ A(`, 1, n/`m) lies in the subgroup A(lcm(`,m), r, n/`m) if and only
if its image lies in G(m, r, n) and that (µa1 , . . . , µan/`m ) ∈ A(m, 1, n/`m) lies in the
subgroup A(m, r, n/`m) if and only if its image lies in G(m, r, n). Together with the
diagonal ∆ : Σn/`m → Σn given by ∆(σ)((i− 1)`m + j) = (σ(i)− 1)`m + j, 1 ≤ `i ≤
n/`m , 1 ≤ j ≤ `m , we obtain a group isomorphism

G(lcm(`,m), 1, n/`m)
∼=−→ CG(m,1,n)(w)

that restricts to a group isomorphism G(lcm(`,m), r, n/`m) ∼= CG(m,r,n)(w) between
index r subgroups. This isomorphism identifies the pair (CG(m,r,n)(w),L〈λw〉) and the
imprimitive Zp –reflection group (G(lcm(`,m), r, n/`m),Zn/`m

p ).
`m/r - n, `m | n: It will suffice to consider the case of G(m,m, n) where ` - n and
`m | n. The element

w = diag
(

A(λ−`m , `m), . . . ,A(λ−`m , `m)︸ ︷︷ ︸
n/`m−1

,A(λ−`m , `m)1−n/`m
)
∈ G(m,m, n)

has order `. Note that λ−1 is not an eigenvalue for A(λ−`m , `m)1−n/`m because

A(λ−`m , `m)1−n/`m has eigenvalue λ−1 ⇔ A(λ−`m , `m)n/`m−1 has eigenvalue λ

⇔ λ(`m)n/`m−1 = λ−`m(n/`m−1)`m ⇔ ` | (`m)n/`m−1 + `m(n/`m − 1)`m

⇔ ` | n/gcd(`m, n/`m − 1)⇒ ` | n⇒ `m | n

which is not the case. Therefore the λ−1 –eigenspace

L〈λw〉 =〈
e1 + λe2 + · · ·+ λ`m−1e`m , . . . , e(n−2`m)+1 + λe(n−2`m)+2 + · · ·+ λ`m−1en−`m

〉
has rank n/`m − 1. The two monomorphisms A(`, 1, n/`m − 1) → CG(m,m,n)(w) and
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CG(m,m,n)(w)← A(m, 1, n/`m − 1) given by

λi → diag
(

E, . . . ,E︸ ︷︷ ︸
i−1

,A(λ−`m , `m)−1,E, . . . ,E,A(λ−`m , `m)
)

diag
(

E, . . . ,E︸ ︷︷ ︸
i−1

, µE,E, . . . ,E, µ−1E
)
← µi

agree on their common domain A(gcd(`,m), 1, n/`m− 1) and together with the mono-

morphism Σn/`m−1
� � ∆ //Σn−`m

� � //Σm they define a homomorphism on the group
A(lcm(`,m), 1, n/`m − 1)o Σn/`m−1 such that the composition

A(lcm(`,m), 1, n/`m − 1)o Σn/`m−1 ↪→ CG(m,m,n)(w)

� Im
(
CG(m,m,n)(w)→ GL(L〈λw〉)

)
is an isomorphism with image isomorphic to G(lcm(`,m), 1, n/`m−1) as Zp -reflection
group.
`m - n: It will suffice to consider the case of G(m,m, n). The element

w = diag
(

A(λ−`m , `m), . . . ,A(λ−`m , `m)︸ ︷︷ ︸
[n/`m]

, λ`m[n/`m], 1, . . . , 1︸ ︷︷ ︸
n−`m[n/`m]

)
∈ G(m,m, n)

has order `. Note that λ−1 is not an eigenvalue for λ`m[n/`m] because

λ`m[n/`m] = λ−1 ⇔ ` | `m[n/`m] + 1⇔ `m gcd(`,m) | `m[n/`m] + 1⇒ `m | 1

which is not the case as `m > 1. Therefore the λ−1 eigenspace L〈λw〉 has rank [n/`m].
The two monomorphisms A(`, 1, [n/`m]) //CG(m,m,n)(w) A(m, 1, [n/`m])oo given by

λi → diag
(

E, . . . ,E︸ ︷︷ ︸
(i−1)`m

,A(λ−`m , `m)−1,E, . . . ,E, λ−`m , 1, . . . , 1︸ ︷︷ ︸
n−`m[n/`m]

)
diag

(
E, . . . ,E︸ ︷︷ ︸

(i−1)`m

, µE,E, . . . ,E, µ−`m , 1, . . . , 1︸ ︷︷ ︸
n−`m[n/`m]

)
← µi

agree on their common domain A(gcd(`,m), 1, [n/`m]) and together with the inclusion

of permutation groups Σ[n/`m]
� � ∆ //Σ`m[n/`m]

� � //Σm , they define a homomorphism on
the group A(lcm(`,m), 1, [n/`m])o Σ[n/`m] such that the composition

A(lcm(`,m), 1, [n/`m])o Σ[n/`m] ↪→ CG(m,m,n)(w)� Im
(
CG(m,m,n)(w)→ GL(L〈λw〉)

)
is an isomorphism with image isomorphic to G(lcm(`,m), 1, [n/`m]) as Zp –reflection
group.
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The outer automorphism group of X(m, r, n) is isomorphic to A(m, r, n)\Z×p A(m, 1, n)
except in the cases (m, r, n) ∈ {(2, 1, 2), (4, 2, 2), (3, 3, 3), (2, 2, 4)} [59, §6] [53, 7.14].
The (exotic) homotopy action

ρ : Cm = 〈µ〉 → Out(X(m, r, n)) ∼= A(m, r, n)\Z×p A(m, 1, n)

that takes the generator µ of Cm to A(m, r, n)(µ, 1, . . . , 1) is distinct from the actions
through unstable Adams operations of (A.10) when gcd(r, n) > 1 [53, 7.14].

Proposition A.11 (Exotic actions on generalized Grassmannians) Assume that m≥
2, r ≥ 1, n ≥ 2, and (m, r, n) 6∈ {(2, 1, 2), (4, 2, 2), (3, 3, 3), (2, 2, 4)}. Then the
homotopy fixed point p–compact group

X(m, r, n)hCm = X(m, 1, n− 1)

for the above exotic homotopy action on X(m, r, n).

Proof The second assumption of (A.5) is clearly satisfied as the action preserves
the generators x1, . . . , xn−1 but does not preserve the generator e. To verify the
first assumption, take ρ : Cm → NGL(L)(G(m, r, n)) = Z×p G(m, 1, n) to be the obvious
choice ρ(µ) = (µ, 1, . . . , 1). Then

G(m, r, n)ρCm = A(m, r, n)o Σn−1, LρCm = Zn−1
p

and the composition

A(m, 1, n− 1)o Σn−1
� � //G(m, r, n)ρCm // //Im

(
G(m, r, n)ρCm → GL(LρCm)

)
where the first morphism is (µ2, . . . , µm)→ ((µ2 · · ·µn)−1, µ2, . . . , µn), Σn−1 ↪→ Σn ,
identifies the group to the right as the Zp –reflection group G(m, 1, n− 1).

The results of A.9 and A.11 were obtained by Castellana [18] using different methods.

A.12 The sporadic p–compact groups

As in Section 2 we write Gi , 4 ≤ i ≤ 37, for the sporadic irreducible and simply
connected Zp –reflection group with number i in the Clark–Ewing classification table,
and Xi for the corresponding simply connected p–compact group. When Xi is defined
at the odd prime p and r divides p − 1, XhCr

i denotes the fixed point p–compact
group for the homotopy action ψ : Cr → Out(Xi) through unstable Adams operations
on the p–compact group Xi . We identify the fixed point p–compact groups for actions
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through unstable Adams operations on the 34 sporadic irreducible p–compact groups.
We may summarize our results in the following diagrams

S59 X32

4

!!D
DD

DD
DD

D
5oo 5 // S59 S35

X16

3
==zzzzzzzz

4 !!D
DD

DD
DD

D X37
5oo

3
==zzzzzzzz

4

!!D
DD

DD
DD

D X10

8
��

X34
4oo

9

OO

5
��

7 //

5
aaDDDDDDDD

S83

S39 X315
oo

3
==zzzzzzzz

8
��

S47 S59

X9

3

==zzzzzzzz

S35 X36
18oo

6

}}zz
zz

zz
zz 4

!!D
DD

DD
DD

D
14 //

10
��

S27 S9 X35

2

}}zz
zz

zz
zz 3

!!D
DD

DD
DD

D
5oo 9 // S17

X26

18

OO

12 !!D
DD

DD
DD

D S19 X8

12}}zz
zz

zz
zz

8
��

X28
4oo

3 !!D
DD

DD
DD

D X25

12
��2}}zz

zz
zz

zz

S23 S15 X5 12
// S23

where, for instance, X32
4−→ X10 means that XhC4

32 = X10 (when p ≡ 1 mod 12) and

X32
5−→ S59 means that XhC5

32 = S59 (when p ≡ 1 mod 30). The relevant primes are
mentioned in the more detailed explanations below but not displayed in the above
diagrams. We use (A.6) to identify the homotopy fixed point groups. With a computer
algebra program it is quite easy to find eigenspaces for the elements of these Zp –
reflection groups. We used the program MAGMA.

(1) (G37 = W(E8),C3,G32, p ≡ 1 mod 3) There is an element w ∈ G37 of order 3
and a primitive 3rd root of unity λ ∈ Z×p such that

(CG37(w),L〈λw〉
37 ) = (G32,L32)

meaning that that EhC3
8 = XhC3

37 = X32 .

(2) (G37 = W(E8),C4,G31, p ≡ 1 mod 4) There is an element w ∈ G37 of order 4
such that

(CG37(w),L〈iw〉37 ) = (G31,L31)

meaning that EhC4
8 = XhC4

37 = X31 .
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(3) (G37 = W(E8),C5,G16, p ≡ 1 mod 15) There is an element w ∈ G37 of order
5 and a primitive 5th root of unity λ ∈ Z×p such that

(CG37(w),L〈λw〉
37 ) = (G16,L16)

meaning that EhC5
8 = XhC5

37 = X16 .

(4) (G34,C4,G10, p ≡ 1 mod 12). There exists an element w ∈ G34 of order 4, a
(index 4) subgroup G of CG34(w), and a primitive 4th root of unity λ ∈ Z×p
such that

(G,L〈λw〉
34 ) = (G10,L10)

meaning that XhC4
34 = X10 .

(5) (G32,C4,G10, p ≡ 1 mod 12) There is an element w ∈ G32 of order 4 and a
primitive 4th root of unity i ∈ Z×p such that

(CG32(w),L〈iw〉32 ) = (G10,L10)

which means that XhC4
32 = X10 .

(6) (G32,C30,C5, p ≡ 1 mod 30) There is an element w ∈ G32 of order 5 and a
primitive 5th root of unity λ ∈ Z×p such that

(CG32(w),L〈λw〉
32 ) = (C30,Zp)

which means that XhC5
32 = S59 .

(7) (G31,C3,G10, p ≡ 1 mod 12). There exists an element w ∈ G31 of order 3 and
a primitive 3rd root of unity λ ∈ Z×p such that

(CG31(w),L〈λw〉
31 ) = (G10,L10) .

This means that XhC3
31 = X10 . (The group that the computer finds is G10 and

not G15 (of the same rank and the same degrees) because the elements of order
8 square to central elements [63, p. 281].)

(8) (G31,C8,G9, p ≡ 1 mod 24). There exists an element w ∈ G31 of order 8 and
a primitive 8th root of unity λ ∈ Z×p such that the Zp –reflection group

(CG31(w),L〈λw〉
31 ) = (G9,L9)

which means that XhC8
31 = X9 .

(9) (G10,C8,C24, p ≡ 1 mod 24) There is an element w ∈ G10 of order 8 and a
primitive 8th root of unity λ ∈ Z×p such that

(CG10(w),L〈λw〉
10 ) = (C24,Zp)

which means that XhC8
10 = S47 .
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(10) (G9,C3,C24, p ≡ 1 mod 24) There is an element w ∈ G9 of order 3 and a
primitive 3rd root of unity λ ∈ Z×p such that

(CG9(w),L〈λw〉
9 ) = (C24,Zp)

which means that XhC3
9 = S47 .

(11) (G34,C9,C18, p ≡ 1 mod 18) There is an element w ∈ G34 of order 9 and a
primitive 9th root of unity λ ∈ Z×p such that

(CG34(w),L〈λw〉
34 ) = (C18,Zp)

which means that XhC9
34 = S37 .

(12) (G36 = W(E7),C6,G26, p ≡ 1 mod 6) There is an element w ∈ G36 of order 6
and a primitive 6th root of unity λ ∈ Z×p such that

(CG36(w),L〈λw〉
36 ) = (G26,L26)

which means that EhC6
7 = XhC6

36 = X26 .

(13) (G36 = W(E7),C4,G8, p ≡ 1 mod 8). There is an element w ∈ G36 of order
4, a subgroup W < CG36(w) of index 8, faithfully represented in L〈iw〉36 , and a
primitive 4th root of unity i ∈ Z×p such that

(W,L〈iw〉36 ) = (G8,L8)

which means that EhC4
7 = XhC4

36 = G8 . (The Zp –reflection group W contains
elements of order 8 with central square so it is not isomorphic to G13 [63, p.
281].)

(14) (G36 = W(E7),C14,C14, p ≡ 1 mod 14) There is an element w ∈ G36 of order
14 and a primitive 14th root of unity λ ∈ Z×p such that

(CG36(w),L〈λw〉
36 ) = (C14,Zp)

which means that EhC14
7 = XhC14

36 = S27 .

(15) (G36 = W(E7),C18,C18, p ≡ 1 mod 18) There is an element w ∈ G36 of order
18 and a primitive 18th root of unity λ ∈ Z×p such that

(CG36(w),L〈λw〉
36 ) = (C18,Zp)

which means that EhC18
7 = XhC18

36 = S35 .

(16) (G26,C18,C18, p ≡ 1 mod 18) There is an element w ∈ G26 of order 18 and a
primitive 18th root of unity λ ∈ Z×p such that

(CG26(w),L〈λw〉
26 ) = (C18,Zp)

which means that XhC18
26 = S35 .
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(17) (G8,C12,C12, p ≡ 1 mod 12) There is an element w ∈ G8 of order 12 and a
primitive 12th root of unity λ ∈ Z×p such that

(CG8(w),L〈λw〉
8 ) = (C12,Zp)

which means that XhC12
8 = S23 .

(18) (G8,C8,C8, p ≡ 1 mod 8) There is an element w ∈ G8 of order 8 and a primitive
8th root of unity λ ∈ Z×p such that

(CG8(w),L〈λw〉
8 ) = (C8,Zp)

which means that XhC8
8 = S15 .

(19) (G35 = W(E6),C2,G28 = W(F4), p ≡ 1 mod 2) There is an element w ∈ G35

of order 2 such that
(CG35(w),L〈−w〉

35 ) = (G28,L28)

which means that EhC2
6 = XhC2

35 = F4 .

(20) (G35 = W(E6),C3,G25, p ≡ 1 mod 3) There is an element w ∈ G35 of order 3
and a primitive 3rd root of unity λ ∈ Z×p such that

(CG35(w),L〈λw〉
35 ) = (G25,L25)

which means that EhC3
6 = XhC3

35 = G25 .

(21) (G35 = W(E6),C5,G25, p ≡ 1 mod 5) There is an element w ∈ G35 of order 5
and a primitive 5th root of unity λ ∈ Z×p such that

(CG35(w),L〈λw〉
35 ) = (C5,Zp)

which means that EhC5
6 = XhC5

35 = S9

(22) (G35 = W(E6),C4,G8, p ≡ 1 mod 4) There is an element w ∈ G35 of order 4
and a primitive 4th root of unity i ∈ Z×p such that

(CG35(w),L〈iw〉35 ) = (G8,L8)

which means that EhC4
6 = XhC4

35 = G8 .

(23) (G25,C2,G5, p ≡ 1 mod 6) There is an element w ∈ G25 of order 2 such that

(CG25(w),L〈−w〉
25 ) = (G5,L5)

which means that XhC2
25 = X5 .
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(24) (G28 = W(F4),C3,G5, p ≡ 1 mod 6) There is an element w ∈ G28 of order 3
and a primitive 3rd root of unity λ ∈ Z×p such that

(CG28(w),L〈λw〉
28 ) = (G5,L5)

which means that F4
hC3 = XhC3

28 = X5 .

(25) (G28 = W(F4),C4,G4, p ≡ 1 mod 4) There is an element w ∈ G28 of order 4
and a primitive 4th root of unity i ∈ Z×p such that

(CG28(w),L〈iw〉28 ) = (G8,L8)

which means that F4
hC4 = XhC4

28 = X8 .

(26) (G25,C12,C12, p ≡ 1 mod 12) There is an element w ∈ G25 of order 12 and a
primitive 12th root of unity λ ∈ Z×p such that

(CG25(w),L〈λw〉
25 ) = (C12,Zp)

which means that XhC12
25 = S23 .

(27) (G25,C12,C12, p ≡ 1 mod 12) There is an element w ∈ G25 of order 12 and a
primitive 12th root of unity λ ∈ Z×p such that

(CG5(w),L〈λw〉
5 ) = (C12,Zp)

which means that XhC12
25 = S23 .

B Derived functors of inverse limit functor

In this appendix we discuss higher limits over some finite categories of a special type.

Given a finite group G and subgroups H1,H2, . . . ,Hk ≤ G, we define a finite cate-
gory I(k) with objects {0, 1, 2, . . . , k}, where G is the group of automorphisms of 0
and for each i > 0, Hi\G = HomI(k)(i, 0) as G–sets and AutI(k)(i) = NG(Hi)/Hi , and
other morphism sets are empty. Those categories appear in the context of the Aguadé
p–compact groups and other compact Lie groups, as categories of elementary abelian
subgroups. The next result is essentially contained in [1, 53].

Proposition B.1 Let M be a given diagram of Zp –modules index by the category
I(k). Assume that

(a) Restriction gives an isomorphism Hj(G; A) ∼= Hj(H1; A), for any Z(p)G–module
A and j ≥ 1.
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(b) p - |NG(Hi)| and Mi = MHi
0 , for every i ≥ 2.

Then there is an exact sequence

0→ lim←−
0

I(k)
M→ MNG(H1)/H1

1 ⊕MG
0 → MNG(H1)

0 → lim←−
1

I(k)
M→ 0 ,

and lim←−
j
I(k)

M = 0 if j ≥ 2.

Proof We consider a star-shaped category I(k) with k + 1 objects {0, 1, 2, . . . , k}.
There is an exact sequence of the form [53]

0→lim0 M→ MG
0 ×

∏
i>0

MNG(Hi)/Hi
i →

∏
i>0

MNG(Hi)
0

→lim1 M→ H1(G; M0)×
∏
i>0

H1(NG(Hi)/Hi; Mi)→
∏
i>0

H1(NG(Hi); M0)

→lim2 M→ H2(G; M0)×
∏
i>0

H2(NG(Hi)/Hi; Mi)→
∏
i>0

H2(NG(Hi); M0)

→lim3 M→ · · ·

Under condition (b) this exact sequence reduces to the exact sequence

0→lim0 M→ MG
0 ×MNG(H1)/H1

1 → MNG(H1)
0

→lim1 M→ H1(G; M0)× H1(NG(H1)/H1; M1)→ H1(NG(H1); M0)

→lim2 M→ H2(G; M0)× H2(NG(H1)/H1; M1)→ H2(NG(H1); M0)

→lim3 M→ · · ·

Condition (a) implies that H1 and G have the same Sylow p–subgroup. Hence p does
not divide |NG(H1)/H1| and so therefore H∗(NG(H1); A) ∼= H∗(H1; A)NG(H1)/H1 . Now,
in the diagram given by restrictions Hj(G; A) → Hj(NG(H1); A) → Hj(H1; A), j ≥ 1,
the composition is an isomorphism and the second arrow is a monomorphism, hence
both arrows are isomorphisms:

Hj(G; A) ∼= Hj(NG(H1); A) ∼= Hj(H1; A) , j ≥ 1 ,

and the Proposition follows.

References

[1] J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), 23–40

Algebraic & Geometric Topology XX (20XX)



Chevalley p–local finite groups 1103
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