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Abstract
We compute the equivariant Euler characteristics of the buildings for the symplectic
groups over finite fields.
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1 Introduction

Let G be a finite group, II a finite G-poset, and » > 1 a natural number. Atiyah and
Segal [2] defined the rth equivariant reduced Euler characteristic of the G-poset I1
as the normalised sum

LLG) == S q(Cnx(@))
| ‘XeHom(Zr,G)

of the reduced Euler characteristics of the X(Z")-fixed IT-subposets, Cr(X(Z")),
with X ranging over all homomorphisms of Z" to G. (See Appendix A for more
information on equivariant Euler characteristics.) Here are two examples of
equivariant Euler characteristics:

1. The general linear group GL, (F,) acts on the poset L} (F,)" of non-extreme
subspaces of the n-dimensional vector space over the field F,; of prime power
order g. The generating function for the (r + 1)th equivariant reduced Euler
characteristics of the GL, (F,)-posets L, (F,)" is
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’
()
L+ T (L (Fy)", GLy (F)" = [T (1—¢h) /
n>0 0<j<r
according to [19, Theorem 1.4].
2. The general unitary group GL, (F,) acts on the poset L, (F,)" of non-extreme
totally isotropic subspaces of the n-dimensional unitary geometry over the field
F, of prime power order ¢°*. The generating function for (minus) the (r + 1)th
equivariant reduced Euler characteristics of the GL, (F,)-posets L (F,)" is

(]
1= % (L, (Fy)", GL, (F )" = [ (1+(=1)7¢x) (J)

n>0 0<j<r

according to [20, Theorem 1.4].

In this paper we consider the symplectic case. For a prime power ¢, Sp,,(F,), the
isometry group of the symplectic 2n-geometry, acts on the poset Lj (F,) =
{0CU §F3”|U C U*} of nonzero totally isotropic subspaces. The general definition

of equivariant Euler characteristics (Definition A.2) takes in this special case the
following form.

Definition 1.1 [2] The rth, r > 1, equivariant reduced Euler characteristic of the
Sp,,(Fy)-poset L3, (F,) is the normalised sum

1 .
% (S (Fy)) = w7 %(Cr; r,)(X(Z)))
e |Sp2n(Fq)|XeHom<zZszn<Fq>> i

of the reduced Euler characteristics of the induced subposets Cy; (r,)(X(Z")) of

X(Z")-invariant subspaces as X ranges over all homomorphisms of the free abelian
group Z on r generators into the symplectic group.

We now state the main results about equivariant Euler characteristics in the
symplectic case.

The generating function for the negative of the rth equivariant reduced Euler
characteristics of the sequence (L}, (F,), Sp,,(F,)),~ is the power series

FSp,(g,x) =1 — Z %r-(Sp2, (Fg))x" (1.2)

n>1

with coefficients in the ring Z[g] of integral polynomials in g.

,
Theorem 1.3 FSp,(¢,x)=1 and FSp,,(g,x)= H (1—¢'x) <J> Sor all r>1.
0<j<r
Jj#rmod2
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The first generating functions FSp, (g, x) for 0 <r <5 are
1 1 1

L (=g’ (=X -
1 1

(1—g*(1 =) (1-x)(1—¢2)'"(1 - ¢*x)°

The generating function can also be expressed in the following alternative way.

1

)

1—x

l r n r
Corollary 1.4 FSp,(g,x) = exp (Zz((q” +1) —(¢"—1)")

n>1

X"
) for all r > 0.
n

We study also the p-primary equivariant reduced Euler characteristics
%P, Spy,(Fy)) of (L3, (Fy),Sp,,(F,)) for a fixed prime p (Definition 5.1). The

rth p-primary generating function, FSp,(p,q,x), is defined as in (1.2) but with
Xr(SPZn(Fq)) replaced by %r(pv SpZn(Fq)) (53)

1 ) n
Theorem 1.5 FSp,.(p,q,x) =exp <Zz ((¢"+ 1), —(¢"— 1);)2) Sfor all
n>1

r>0.

The infinite product expansions of the generating functions

FSPV+1(Q;-X) = H(] _x”)crﬂ(q,n)

n>1

) = 5 S uln/d)(g" = 1) = (¢ +1))
din

FSpI‘Jrl(p’Qa'x) = H(l _xn)cpr](pﬁ,q,n)

n>1

rni(pg.m) = 5 3 w(nfd) (g — 1~ (g + 1))
din

follow immediately from the elementary [19, Lemma 3.7]. Here, p is the number
theoretic Mobius function.

The (p-primary) equivariant reduced Euler characteristics are directly linked to
the structure of the symplectic group Sp,,(F,) as a finite group of Lie type.

Theorem 1.6 For all n>1 and all r >0,

5 _ (7l)n r
— Xr+1 (SPZn(F(/)) - |W(C )‘ E%(:C”) det(w) det(q - W)
(. Sou(F) = s Y detl) dey — )

weW(C,)

where W(C,) is the Weyl group representation for the algebraic group Sp,,(Fy),
s = char(F,).
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The paper is organised as follows. In Sect. 2 we briefly recall the definition of the
symplectic group as the isometry group of an even dimensional alternating bilinear
form over F,. All symplectic automorphisms have self-reciprocal characterisic
polynomials (Proposition 3.2) and Sect. 3 deals with the number SRIM;, (¢) of self-
reciprocal irreducible monic polynomials of even degree n over F, (Definition 3.6).
Section 4 contains the proof of Theorem 1.3 based upon the vanishing result of
Lemma 4.2 and the recursive relation (4.7) which is the specific manifestation of the
general recurrence of Lemma A.3. Theorem 1.3 with r=1 says that
— %2(Spy,(Fy)) =1 for all n>1 and all prime powers g confirming the non-
block-wise form of the Knorr—Robinson conjecture for Sp,,(F,) relative to the
defining characteristic (Remark 4.13). The rth p-primary equivariant Euler charac-
teristic is Euler characteristic computed in Morava K(r)-theory. Section 5 is the p-
primary version of Sect. 4. The proof of Theorem 1.5 consists in solving recurrence
(5.12) which is the p-primary version of (4.7). We observe that the p-primary
equivariant Euler characteristic ¥, (p, Sp,,(F,)) for ptq depends only on the closure

(q) of the subgroup generated by ¢ in the unit group Z; of the p-adic integers. In
Section 6, the equivariant Euler characteristics  y,.,(Sp,,(F;)) and
Xrs1(P, Sp2,(Fy)) are expressed directly in terms of integer partitions (Corol-
lary 6.2) or in terms of determinants of Weyl group elements (Theorem 1.6). We

also consider the reciprocal power series FSp,.(¢,x)”" and FSp, (p,q,x)”"
(Corollary 6.7) and the generating functions >, - o — %1 (Sp2,(Fg))x" with fixed
parameter n (Corollary 6.4). Example 6.8 offers several concrete examples of the
identities established in this section. In the short Section 7, we formulate the
symplectic analogs of Thévenaz’ polynomial identities [27, Theorems A-B]. The
paper closes with two appendices. Appendix A is a review of basic properties of
equivariant Euler characteristics and Appendix B recalls facts, helpful for concrete
calculations of equivariant Euler characteristics, about Hall’s eulerian functions of
groups [9].
The following notation will be used in this paper:

P is a prime number

vp(n) is the p-adic valuation of n

ny is the p-part of the natural number n (n, = pr)
Z, is the ring of p-adic integers
q is a prime power

F, is the finite field with g elements
u(d) s the value of the number theoretic Mobiusfunction at the natural number d [24, Example 3.8.4]
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2 The Symplectic Group Sp,,(Fq)

Let g be a prime power and n > 1 a natural number. The symplectic 2n-geometry is
the vector space V,(F,) = Fé" of dimension 2 over the field F, equipped with the

non-degenerate [1, Definition 3.1] alternating ({u,v) = —(v, u)) bilinear form given
by
(u,v) = uhv' = Z uv_; — Z u_ivi,
0 E (2.1)
J<—E 0>, u,v € Vo,(Fy)
for all u= (ur,...,un,u_1,...;u_p),v=(Vi,...,Vp,V_1,...,V_p) € V2, (F,). The

symplectic 2n-geometry is the orthogonal direct sum, {e1,e_1) L --- L {e,, e_,), of
the n hyperbolic planes (e;,e_;), 1 <i<n [1, Theorem 3.7]. The symplectic group
Sp..(F,) = {g € GL} (F,)|gJg' = J} is the group of all automorphisms of the
symplectic 2n-geometry [8, §2.7]. Its order is |Sp,,(Fy)| = ¢*" 1, <;<,(¢% — 1)
and its center is trivial if g is even and of order 2 if ¢ is odd [1, Theorem 5.2].

A subspace U of the symplectic geometry (V2,(F,), (-, -)) is totally isotropic if
(U,U) = 0. The symplectic group acts on the poset L3, (F,) of all nontrivial totally
isotropic subspaces. Since all vectors are isotropic, (u,u) =0, all 1-dimensional
subspaces are in L}, (F,) (and L3(F,) is simply the set of 1-dimensional subspaces
of V»(F,)).

When the prime power ¢ =2° is even, Sp,,(F,;) = S0, 1(F,) I8,
Theorem 2.2.10].

3 Characteristic Polynomials of Symplectic Automorphisms

Definition 3.1 [14, Definition 3.12] The reciprocal of a degree n polynomial p(x) =
apX + X" '+ -+ a,_1x + a, over F, with nonzero constant term is the degree
n polynomial p*(x) = ag + ajx + - - + a,_1 X' + a,x" = ¥"p(x~'). The polyno-
mial p is self-reciprocal if p* = p.

The operation p(x) — p*(x) is involutory, multiplicative, and divisibility
respecting (p™* (x) = p(x), (p1(x)p2(x))” = pj(x)p5(x), p1lp2=>pi|p3) on the set of
polynomials p(x) € F,[x] with p(0) # 0. The multisets of roots for a polynomial and
its reciprocal correspond under the inversion map F; — F‘; co— o', The
polynomial p(x) = apx" + a;x"~' + - - + a,_1x + a, is self-reciprocal if and only if
it has a palindromic coefficient sequence, a; = a,_;, 0 <i<n.

Proposition 3.2 The characteristic polynomial of any symplectic automorphism
g € Spy,(Fy) is a self-reciprocal monic polynomial.
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Proof Taking for given that det(g) = +1 [5], we get that the characteristic
polynomial, c,, of g satisfies

¢o(A) = o (1) = det(g' — iI)

—det(Jg ' )" der(—Jg 1+ I ()L
ﬁwf”+ﬂ>@ det(7g — 1)
- 22" det(g — )‘,711) = )vzncg(/lfl)
where [ is the identity matrix. O

Conversely, any self-reciprocal polynomial is the characteristic polynomial for a
symplectic automorphism [23, Theorem A.1].

Proposition 3.3 The number of self-reciprocal monic polynomials of even degree
2nis q".

Proof Self-reciprocal monic polynomials of degree 2n have palindromic coefficients. []

Lemma 3.4 The transformation r(x) — r*(x)/r(0) is an involution on the set of
irreducible monic polynomials r(x) € F [ ] with r(0) # 0.

The irreducible monic polynomial r(x) with r(0) #0 is fixed under this
involution, when degr = 1, if and only if r(x) = x £ 1, and when degr > 1, if and
only if r(x) has even degree, r(0) = 1, and r(x) is self-reciprocal.

Proof If r(x) has degree at least 2, the degree of  must be even, since the set of roots in
the algebraic closure is invariant under inversion qu — F; o — o~ and the fixed
points, %1, are not roots of r(x). The relation r(0)r(x) = r*(x) = x%#r(1/x) evaluated
at x = —1 gives r(0) = 1. Thus r(x) = r*(x) and r(x) is self-reciprocal. O

Proposition 3.5 Let p(x) be a self-reciprocal monic polynomial. The canonical
factorisation [14, Theorem 1.59] of p(x) has the form

(x =1 x (e 1) x JTry ()™ x H(SJ( x)s (x)/51(0))" g odd
(e 1) x TTr)™ x TT(si(x)s; (x)/5;(0))"™ q even

plx) =

where

‘ a_+ay + Y ;m;degri +2%,m degs; qodd
egp = :
&P ay + > m; degr; + 237 mj degs; q even

and a_,ay,m; m >0, a_ is even, the r; (x) are self-reciprocal irreducible monic

i
polynomials of even degree at least 2, and the s;(x) are non-self-reciprocal irre-
ducible monic polynomials distinct from x — 1. Conversely, any polynomial with a

canonical factorisation of this form is a self-reciprocal monic polynomial.
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Proof Let p(x) = []ri(x)* be the canonical factorisation. Since p(x) is monic and
self-reciprocal, p(0) = 1, and p(x) = p*(x) = p*(x)/p(0) = [](r (x)/r:(0)) where
ri(x)/r;(0) are irreducible monic polynomials [21, Remark 2.1.49]. Thus the
multiset of the irreducible factors of p(x) is invariant under the involution
r(x)«—r*(x)/r(0). Group the irreducible factors into those fixed by this involution
and pairs interchanged by it. An irreducible factor of degree >?2 is fixed by the
involution if and only if it is self-reciprocal according to Lemma 3.4. Any
irreducible linear factor, which has the form x — o for some o € F; is fixed by the
involution if and only if & = =1 (¢ = 1 when q is even). Thus p(x) has a canonical
factorisation of the form shown in the proposition. When ¢ is odd, the multiplicity,
a_, of the factor x — 1 is even because 1 = p(0) = (—1)*".

Conversely, if p(x) has a factorisation as in the proposition, then (x — 1)~ is self-
reciprocal as a_ is even, and as also the other factors, x + 1, r;” (x), 5;(x)s7 (x)/5;(0),
are self-reciprocal, the polynomial p(x) is self-reciprocal. O

All factors on the right hand side of the formula of Proposition 3.5 are self-
reciprocal. The exponent a_ is even while a, has the same parity as the degree of p.

Definition 3.6 [21, Definition 2.1.23, Remark 3.1.19] For every integer n > 1

e IM,(qg) is the number of Irreducible Monic polynomials p(x) of degree n over F,
with p(0) # 0

e SRIM; (g) is the number of Self-Reciprocal Irreducible Monic polynomials p(x)
of even degree 2n over F,

e SRIM, (g) is the number of unordered pairs {p(x),p*(x)/p(0)} of irreducible
monic polynomials p(x) of degree n over F, with p(0)#0 and

p(x) # p*(x)/p(0)
For any n > 1 [21, Theorem 2.1.24, Theorem 3.1.20] [17, Theorem 3]

IM,(g) = 3~ w(d)(a" - 1)

dln
1
> 2. @ =1) g odd
e (3.7)
SRIM (q) d =1mod?2
q =
n 1
> ; w(d)g" q even
d =1mod?2

and we have
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2SRIM; (q) n>1 odd
IM,.(q) = + _ (3.8)
2SRIM, (¢) + SRIM, ,(¢) n>1 even
In degree n = 1, in particular, IM,(¢) = ¢ — 1 and
1
. 3 (g—3) godd
SRIM] (g) = { -
5 (g—2) gqeven

For odd ¢, the (g —3) unordered pairs are the pairs {x —o,x—o~'} with
o € F, — {—1,+1}. For even ¢, the 1(g —2) unordered pairs are the pairs {x —
o,x — o'} with o € Fy — {1}

Lemma 3.9 Let m>1 be and k>0. Then 2*SRIM, () = SRIM,, (¢*') for all
prime powers q. When m is odd,

M (¢*)+1 qevenandm=1

2*"'SRIMy,,, () =
2n(4) M, (¢%) otherwise

Proof Since the odd divisors of 2¥m or of m are the divisors of my, the odd part of
m, we have

. ﬁ%@”wd 1) = SRIM; (¢*) qodd
2'SRIM, (q) =4 |7 k
— Z ¢* ™4 = SRIM;, (¢*) g even
2md‘m2/
by (3.7).

Assume now that m is odd. If ¢ is odd, 2¥*'SRIMy, (¢) = 2SRIM,, (¢*') =
IM,,,(¢*) since 2SRIM,, (9) = IM,u(q). If g is even and m > 1, 3, u(d) = 0 and
2SRIM, (q) = #Zd‘m gt = %Zdlm(q’"/d — 1) =IM,,(q) again. If ¢ is even and
m =1, 2" 1SRIM5; (q) = ¢* = IM(¢*) + 1. O

Lemma 3.10 Foralln>1,

2SRIM,, (¢) — SRIM,, ,(q) n even
IM,.(q) = { 2SRIM, (q) nodd and n > 1if q even
2SRIM; (¢) — 1 n=1and q even

Proof Assume first that n > 2 is even. Write n = 28m for some k > 1 and odd m > 1.
If m=1 and ¢ is even,
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k ] k k—1
M (g) = M () = 5 > W@~ 1) = (@ = D = (@ = 1)
d|2k
1 -
=5(@ — ") = 2SRIM}; (¢) — SRIM;...(g)

= 2SRIM, (g) — SRIM, ,(q)

as (1) = 1, u(2) = —1, and u(2) = 0 forj > 1. Otherwise, g is odd in case m = 1,
and then

1
M, (g) = Man(q) = 52> ()@ = 1)
d|2km

st | S ) S

dim dlm

1
2k

= 2SRIM, (¢) — SRIM, , (¢)

(IM,(¢%) = IMu(g® )™ *22SRIM3,,, (¢) — SRIMyi1,, ()

Here we used that the divisors of 2%m are 2/d, 0 < Jj <k, where d is a divisor of m,
and that u(2d) = —u(d) and p(2d) =0 for j > 1 as d is odd.
Next, assume that n>1 is odd. If n = 1 then

g—1=1IMi(q) qodd

2SRIM
(4) = {q—IMl( )+1 geven

which proves the lemma in this case. If n > 1, then

Zd|n ( )( n/d — 1) = ”IMn(Q) q odd
S D) =g, () (g — 1) = nIM,(q) g even

because »_;, u(d) = 0. Thus IM,(¢q) = 2SRIM,, (g) for all g when n > 1 is odd
(Fig. 1). 0

2nSRIM; (¢) = {

Lemma 3.11 Foralln>1,

IMi(q) =1 n=1and qodd

SRIM, (g) + SRIM,' (¢) = {IMn(q) otherwise
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‘ n=1 n=2 n=3 n=4 n=>5 n==6 n="7
SRIM,, (¢) [ 3(¢—1) (-1 ¢~ -1 50~
SRIM!(q) | 1a—3) 2@ -20+1) L@-0) Ha'-2°+1) (-

v
Sl
=
5
|
o
<
to
|
2,
o
+
o
[
=
2,
|
Qe

Fig. 1 The polynomials SRIMf (g) for odd ¢

Proof Assume the prime power g is odd. If n=1 then IM;(q)=¢—1,
SRIM; (¢) =%(¢— 1), and SRIM{ (¢) =1(q—3) so that indeed SRIM; (¢)+

SRIM{ () =q—2=1IM(q) — 1. For odd m>1, SRIM(q)=1IM,(¢)Z

SRIM;! (g) so that clearly SRIM,, (¢) + SRIM;! (¢) = IM,,(g). For odd m>1 and
k>1,

_ (338) _ 1 _
SRIMy,,(¢) + SRIM;,, (¢) ="SRIMy;,(q) + 5 (IMat,,(q) — SRIM3:41,,(q))

1 emma >. 1
(2RIMy;,(9) — SRIMyir,,(9)) + 5 Mo, () 21 2 M, (g)

il NN

+ E IMka (q) = IMka (Q)

This finishes the proof for odd g¢.

Assume that g is a power of 2. In degree 1, SRIM; (q)+ SRIM; (q)
=1g4+4ig—1=g—1=IM(gq). For odd m>1, SRIM, (q)=3IM,(q) =
SRIM;! (¢) by Lemma 3.9 and (3.8) so SRIM, (¢) + SRIM; (¢) = IM,,(g). For odd
m>1 and any k > 1, we can again use Lemma 3.10 and it follows, as for odd ¢, that

SRIM;,, () + SRIM,;,,(¢) = IMat(q)- O

4 Proofs of Theorem 1.3 and Corollary 1.4

We recursively compute the generating functions FSp, (g, x), r > 1, of Theorem 1.3.

Lemma 4.1 —¥,(Sp,,(F,;)) =0 for all n> 1.

Proof The first equivariant reduced Euler characteristic is the usual reduced Euler
characteristic of the orbit space [L3,(F,)|/Sp,,(F,) for the action of Sp,,(F,) on its
building (Lemma A.4). Webb’s theorem [33, Proposition 8.2.(i)] says that the
reduced Euler characteristic of this orbit space equals O. (I

Lemma 4.2 [22] If A is an abelian subgroup of Sp,,(F,) and gcd(|A|, q) > 1, then
%-(Cv; (v,)(A), Csp, (r,)(A)) = 0 for all r> 1.
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Proof It suffices to show that %(Ci; r,)(A)) =0 for any abelian subgroup A of
Sp,,(Fy) with O5(A) # 1 where s is the characteristic of the field F,. We may
replace the poset L (F,) by the poset SH* ) of non-trivial s-subgroups of
Sp,,(Fy) [22, Theorem 3.1]. The fixed poset CS»H (A) admits the conical

Spay, (Fg)
contraction B < BO;(A) > O,(A) defined for all B € Coye )(A). O
P2n
Lemma 4.3 For n>1 and r > 1, the (r + 1)th equivariant Euler characteristicof
the Sp,,(F,)-poset L3 (F,) is

XrJrl(SpZn(Fq)) = Z X (CL;,( q)(X)7 CSPzn(Fq)(X))
XeHom(Z,Sp,,(Fy))/Sp2.(Fy)

ged(q, [X(Z)]) =1

where the sum ranges over semisimple conjugacy classes in Sp,,(F,).

Proof This is a special case of the general formula from Lemma A.3. By
Lemma 4.2, we need only the conjugacy classes of order prime to g (semisimple
classes). O

The centraliser of the semisimple element g of Sp,,(F,) with characteristic
polynomial as in Proposition 3.5 is [6] [29, (3.3)]

Cspzn(Fq)(g) = Spa,( ) X Spd >< HGL F L >< HGL;; (quj) (4.4)
J

and the contribution, — ¥, (Cy,,r,)* (8); Csp,,¥,)(8)), to the sum — ¥,., ; (Sp,, (F,)) of
Lemma 4.3 from g is

= TSP (Fy)) % = 1, (Sp (Fa)) > ][ = 2y (F g 0) < ] T 2GR (F))

with a sign change similar to that of [20, Lemma 4.3]. The characteristic polynomial
induces a bijection between the set of semisimple classes in Sp,, (F,) and the set of
self-reciprocal polynomials of degree 2n [29, §3.1] [31]. We conclude from these
facts that — ., (Sp,,(F,)) equals
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> (= % (SPau- (Fg))) (= X, (SPag: (Fy)))

(aat, A= ,2%)

SRIM; (g)
o )

ph [E(m~,d™): (m~,d" )" 4 e )]
I (m,d ) e

< I -0, (ry )

(m=d-)E ) g4

) I ( SRIM, (¢) )

s [E(m*,d*) : (m*,d*)E™ 4D e )]
Imt : (m*,d+)E<"r‘d+) et

~ H %r (GL;;Jr (qu+ ))E(l’l’fr 7d+>

(mthr)E(nﬁ.dﬂEF

(4.5)

where the sum runs over all (a~,a",1”,A") where a* are positive integers, E =

{(m#, dli)Ei} are multisets of pairs of positive integers such that a= +a® +
Y m;dE; + ) m{dE/ =n and the d; are even.

We are here using multinomial coefficients as defined below.
Definition 4.6 For a rational polynomial m € Q[g] and ki,...,k;>0 a finite
sequence of nonnegative integers, define the multinomial coefficients to be

m!
ki ks kit kst 0 Ski>m

( m ) _ (_1)k1+~~+k\- ( m >
kyyn —k, ki, ks

—m mm+1)--(m—1+>k) (m—1+>k
_k17 7_k& kl'ks' B k],...,ks

Using the concept of Ts-transforms from [19, §3.2] we may express Lemma 4.3
or (4.5) by the recurrence

FSp, (x)* Tsrim- () (FGL; (X)) Tspim () (FGL, (x)) g odd

i (r=1)
FSp, (x) Tsrim- (g (FGL, (%)) Tsrim+ () (FGL, (x)) g even

FSp,1(x) = {
(4.7

where the generating functions FGLri(x) of [19, (1.3)] and [20, (1.2)] have been
transformed relative to the polynomial sequences (SRIMj (¢)), ;. We now start the
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computation, facilitated by the multiplicative property [19, (3.2)], of the product of
these two transformed generating functions. The first lemma is well-known [32,

p 258].
1 —gx

Lemma 4.8 Ty, (1 —x) = 1 .
— X

Proof The Tpyy(y)-transform of 1 — x is

q)

T (1= x) = [J(1 =)™ = exp (Zu ~ q")x"/n> T

1—x

n>1 n>1

where the second equality is justified by [19, Lemma 3.7] and the identity

q" —1=3%,,dMa(q), the Mdbius inverse of the left equation of (3.7).

1 —

1 . qodd
Lemma 4.9 Tspiv-(g)(1 = X) Tsriv+ () (1 — %) = (1 _ ;))C

1« q even

Tsriv- () (1 + %) Tspim+ () (1 — ) = —x

Proof Thanks to the identity of Lemma 4.8 it is easy to determine

TSRIM’(q)(l - X)TSRIW(q)(l —x) = TSRIM’(q)JrSRIM*(q)(l —X)

_ 1 —gx
Lemma3.11 ( )" Toaia ) (1—x)* 1
1 —gx
Tivg) (1 —x) = 1 g even
—Xx
Observe that
1—x - 2tq
Tsriv-(g) Y l—x
1—gx 2|q
because, as 1 +x = 111’;2,
| — xm)2SRIM, ()
. 1—x _TSRIM*(q)(I*x)z_lr;[( )
SRIM™ (q) 1 Tx - TSR]Mf(q)(l _ x2) - H (1 . xzm)SRIM;(L])

O

and

(4.10)

_ H (1 o xm)ZSRIM,; (q) % H(l o xm)ZSRIM,; (q)stIM;l/z(q)

2tm 2|m

Lemma3.10 TIM(q)(1 _x) = (1 _x)_l(l - qx) g odd
(1 =x)Timg (1 —x) =1 —gx q even

Therefore
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Tsriv-(g) (1 + %) Tspim+ () (1 — )

14+x

1
= Tsrim-(g) (1 — x) Tsriv-(g) (1 — X) Tspim () (1 — %) =

1 —x

for all prime powers g. U

From recurrence (4.7) and Lemma 4.9, we get that the second generating
function is

ESp, (x) = Tsrim-(g) (FGL{ (x)) Tsgim+ () (FGLT (x))

= TSRIM’(q)(l +X)TSRIM+<4)(1 —x) = 1 —x

as the first generating function is FSp,(x) = 1 by Lemma 4.1.

Lemma 4.11 Forall r>1

( r+1 )
Tsrim- (g) (FOL (1) Torm () (FOL, (1) [ (1 =0\
0<j<r+1

j=rmod?2

j # rmod?2

11 (1—qfx)<;) g even

o<j<r

jZ rmod?2

Proof With the formulas for FGL;‘LH(x) from [19, Theorem 1.4] and [20,

Theorem 1.3] as input we compute for odd g that
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Tsriv-(g) (FGL,, | (%)) Tsrim+ () (FGL,, (%))

(7) (7)
H Tsriv-(g) (1 + ¢/'x) \J H Tsrim+ (o) (1 — ¢/x) \J
0<j<r 0<j<r
. j=rmod2 j=rmod?2
_ (7) ;)
H Tsrim-(q) (1 — ¢'x) \ H Tsrim+ (o) (1 — ¢/x) \J
0<j<r 0<j<r
J # rmod 2 j # rmod?2

0<j<r
j # rmod2
: (7) (7)
[T a-g79\/7 J[ a-gn\J
0<j<r c0<j<r
Jj # rmod2 j=rmod2

H (1 _qix)2<Jr'>

Jj # rmod?2

11 (1—61’56)<Njr1>

0<j<r+l

j=rmod2

by using properties of the Tggpy=(,)-transform [19, Chp 3] and Lemma 4.9. When ¢
is even, the computations are essentially identical. O

Proof of Theorem 1.3 The formula of Theorem 1.3 is the solution to the recurrence
(4.7) given the result of Lemma 4.11. ]

Proof of Corollary 1.4 The logarithm of the (r+ 1)th generating function
FSp, (g, x) is
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£ (Jmiie T ()5

<js<r 0<j<r nzl
j=rmod2 j=rmod2
< ) 5
nz1 0<j<r
j=rmod?2

x"
=2 (¢ (¢ 1
)3 )5

O

The binomial formula applied to right hand side of Theorem 1.3 gives the more
direct expression

~ X1 (SP2(Fy)) = > IT v~ _<j> v (r=1)
ng+---+n.=n 0sjsr n;

Jj=rmod2=n; =0
(4.12)

1
where the sum ranges over all the (” + LE (r— 1”) weak compositions ng +
n

-+ +n, of ninto r + 1 parts [24, p 15] with n; = 0 for all j = r mod 2.
Elementary properties of the binomial coefficients imply that the generating
functions satisfy the recurrence FSp,(¢,x) = 1 and

FSp, (¢, gx)
FSp,,1(g,x) = T ix H FSp,_;(¢,¢'x)
q 1<j<r1

for all r> 1.

Remark 4.13 The (non-block-wise form of the) Knorr—Robinson conjecture [13]
[28, §3] for the group Sp,,(F,) relative to the characteristic s of F, states that

— %2(Sp2a(Fy)) = z5(Sp,,(Fy))

where z,(Spy, (Fy)) = {1 € Irre(Sp2, (Fy))[[Sp2a (Fy )l = 2(1),}] is the number of
irreducible complex representations of Sp,,(F,) of s-defect 0. As

FSp,(g,x) = (1 —x) "' =1+ x+x2 + - -, the left side is 1 and so is the right side
[11, Remark p 69]. This confirms the Knorr—Robinson conjecture for Sp,,(F,)
relative to the defining characteristic.
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5 Proof of Theorem 1.5

Let p be a prime and, as in the previous sections, g a prime power. (The prime p may
or may not divide the prime power g although it will soon emerge that ptq is the
most interesting case.) In this section we discuss Tamanoi’s p-primary equivariant
reduced Euler characteristics of the Sp,,(F,)-poset L}, (F,) of nonzero totally
isotropic subspaces.

Z,, denotes the ring of p-adic integers and Z the product Z x ZI’,’1 of one copy of
the integers with r — 1 copies of the p-adic integers.

Definition 5.1 [25, (1-5)] The rth, r>1, p-primary equivariant reduced Euler
characteristic of the Sp,,(F,)-poset L3, (F,) is the normalised sum

o0 SF) = S R (X(Z))

|Sp2n (Fq) ‘ XeHom(Z;,Sp,,(Fy))

of reduced Euler characteristics.

In this definition, the sum ranges over all commuting r-tuples (X, X>, ..., X,) of
elements of Sp,, (F,) such that the elements X», . . ., X, have p-power order. The first
p-primary equivariant reduced Euler characteristic is independent of p and agrees
with the first equivariant reduced Euler characteristic.

The rth p-primary equivariant unreduced Euler characteristic y,.(p, Sp,,(Fy))
agrees with the Euler characteristic of the homotopy orbit space BL;, (F,) 1Py (F,)
computed in Morava K(r)-theory at p [10] [18, Remark 7.2] [25, 2-3, 5-1].

For r =1, the p-primary equivariant reduced Euler characteristic and the
equivariant reduced Euler characteristic agree, %,(p,Sp..(F;)) = %1(Sp2,(Fy)),
and for r>1,

%r+l (P; Sp2n (Fq))
= > % (Ps Cus, k) (X), Csp,, () (X)) (5.2)
XeHom(Z,,Sp,,(Fy))/Spa, (Fy)
(n=1)

where the sum runs over conjugacy classes of p-elements in the symplectic group
(Lemma A.3).
The rth p-primary generating function at ¢ is the integral power series

FSpr(p7q7x) =1- Z %r(vaPZn(Fq))xn € Z[[XH (53)
n>1
associated to the sequence (— ¥, (p, Sp,,(Fy))), > of the negative of the p-primary
equivariant reduced Euler characteristics. We have FSp,(p, ¢,x) = FSp,(g,x) = 1
and, directly from the definition and Lemma 4.2, FSp,(p,q,x) = 1 for all r > 1
when p|g. Thus we now restrict to the case where p does not divide q.

Definition 5.4 [14, Definition 3.2] [12, Definition, Chp 4, §1] Let f € F,[x] be a
polynomial with £(0) # 0. The order of f, ord(f), is the least positive integer e for
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which f(x)|x¢ — 1.
Let a and n be relatively prime integers. The multiplicative order of @ modulo n,

ord,(a), is the order of a in the unit group (Z/nZ)” of the modulo n residue ring
Z/nZ.

Definition 5.5 For every integer n > 1, prime number p, and prime power ¢,

e IM,(p,q) is the number of Irreducible Monic p-power order polynomials p(x) of
degree n over F, with p(0) # 0

e SRIM; (p,q) is the number of Self-Reciprocal Irreducible Monic p-power order
polynomials p(x) of even degree 2n over F,

e SRIM; (p, q) is the number of unordered pairs {p(x), p*(x)/p(0)} of irreducible
monic p-power order polynomials p(x) of degree n over F, with p(0) # 0 and

p(x) # p"(x)/p(0)

In degree n=1, in particular, IM(p,q) = (q—1),, represented by the
polynomials x — o with o in the Sylow p-subgroup of the unit group F, and

(g—1),-2 p=2

(¢—1),-1 p>2 (56)

2SRIM; (p, q) = {

as x — o is fixed if and only if «®> = 1. By the p-version [19, (4,7)] of a classical
identity [14, Theorem 3.25] and by the definition of SRIM:(p, ),

M, (p, q) = Zu (¢"" 1

d\n
2SRIM{ (p, q) + ¢ n=1 (5.7)

2SRIM;,; (p, q) +2SRIM, »(p,q) n > 1 even
where e=2if p=2and e=1if p > 2.

Lemma 5.8 Assume plq. Let D = ord,(q*) and let f € F,[x] be a self-reciprocal
irreducible monic p-power order polynomial of degree 2d for some d > 1. Then

1. ¢?=—1modp for some j> 1

2. D|d

3. f)| (D — 1) and f(x)| (2 — 1)
4. fO0) (0 — 1)

Proof Let f € F,[x] be a self-reciprocal irreducible monic p-power order polyno-
mial of degree 2d, d > 1. Then plord(f)|¢** — 1 by [14, Corollary 3.4]. In other
words, ¢*¢ = 1 mod ord(f), ¢! = 1 mod p, and thus d is a multiple of D. Moreover,
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2d

F)|(xC " — 1) by [14, Lemma 3.6] as ord(f)|(¢* — 1),, and FE)|(x4 = 1)
by [17, Theorem 1.(i)]. But then f(x)|(x(qd“)n — 1) by [14, Corollary 3.7] as f(x) is
irreducible and ged(g* = 1),,¢" + 1= ged(g™ —1),,(¢" +1), =
ged(g! —1),(¢* +1),,(¢* + 1), = (¢ + 1),

The irreducible factors of x(qd*l)f’ — 1 of degree > 2 are the irreducible factors of
the cyclotomic polynomials @, (x) where j > 1 and p/|¢? + 1. Thus ¢ = —1 mod p/
for some j > 1. O

Lemma 5.9 Assume ptq and d>1. Each irreducible monic factor f € F x| of

K@+, 1, n>1, of degree 2d > 2 is self-reciprocal, has p-power order, and d|n

with n/d odd where deg(f) = 2d.

Proof Suppose f(x)|(x/?*Y» —1). Then f(0) # 0 and f(x) has p-power order by
[14, Lemma 3.6]. Since f is irreducible of degree deg(f)>2 and

F)x @+ — 1|x" 1 — 1, f(x) is self-reciprocal and d = 1deg(f) divides n with
odd quotient n/d by [17, Theorem 1.(ii)]. O

Lemma 5.10 Assume plq. For any n> 1,
Sud) (g +1), n#m
2nSRIM,, (p,q) = {
(" +1),—¢ n=ny

where ¢ =2 if p=2 and ¢ =1 if p > 2. For any odd n>1, SRIM5, (p,q) =
27kSRIM; (p, ¢*) for all k> 0.
Proof Recall that the irreducible factors of the polynomial x? *! — 1 are distinct

and that there is one linear factor, x + 1, of order 1, when ¢ is even and two, x + 1,

x — 1, of order 1 and 2, if ¢ is odd. The polynomial x4ty _ 1 thus has ¢ linear
factors of p-power order where ¢ = 2 if g is odd and p = 2 and ¢ = 1 in all other
cases. Lemma 5.9 and Mobius inversion thus imply that

(¢"+1),=e+ > 24SRIM;(p,q),  2nSRIM, (p,q) = Y _ u(d)((¢""+1),—¢)
din dln

n/d odd d odd

The first part of the lemma follows because ;. u(d) is 1 if n = ny is a power of 2
ny

and 0 otherwise. If n=2m, k>0, m>1 odd, then 2nSRIM,, (p, q) =
Y () (@™ + 1), = 2mSRIM,,,(p, ¢*). O

Lemma 5.11 Assume plq. For every odd n>1 and k >0,
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My, (Pv Q) = 2_kIM,1(p, q2k) - 2_kIMn(p, CIZH)
SRIMS, (p, q) = 27 *SRIM;f (p,¢* ) — 27*SRIM/" (p,¢* ') — 27*SRIM;, (p,¢* )

Proof Since u(2/n) = 0 for j >2,

WM (py) = 3 /) = 1), + Y (/) - ),

din dn
=Y uln/d) (g = 1), = > uCn/d)(g" - 1),
dln dln

= nIMn(p,qzk) — nIM, (p, q2H)

for all k > 0. This proves the first assertion. Now,

(57)_ _ _
SRIMS,, (p, )22 ' My, (p, ) — 27'SRIM;. ., (p. )

= 2752 "M, (p, %) — 27" M, (p, ¥ 1)) — 27 'SRIM. 1, (p, q)

SILMOASRIMY (p, ¢”) — 27*SRIM (p, ¢” )

—27SRIM;, (p, ¢* )
proves the second assertion. U

For all pairs (p, ¢), where p is a prime, g is a prime power, and ptg, and for all
r > 1, the p-primary analogue of (4.7),

ESp,41(p,q)(x)
o { FSp,(p.q) (x)ZTSRIM’(p,q) (FGL, (P, ¢, %)) Tsrim* (p.q) (FGLS (p,q,x)) p=2
FSp, (P, q)(X) Tsriv- (p.q) (FGL, (P, 4, X)) Tspivp.q) (FGL, (P, q,x))  p > 2
(5.12)

is a consequence of recurrence (5.2). Note here that a semisimple g € Sp,,(F,) has
p-power order if and only if all the irreducible factors in its characteristic polyno-
mial, described in Proposition 3.5, have p-power order. This is because multipli-
cation by x in the F,[x]-module F,[x]/(r(x)), where r(x) is irreducible with r(0) # 0,
has p-power order if and only if 7(x) has p-power order by [14, Lemma 3.5]. Also
note that in Proposition 3.5 with odd ¢, the polynomial (x + 1) has even order and is
therefore allowed only when p = 2.

The proof of Theorem 1.5 consists in verifying that the solution to recur-
rence (5.12) satisfies the infinite product expansion
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Fspr(pa q’x) = H (1 - xn)6',-(177¢]yﬂ)

n>1

eip.a.n) =5 nlnfd) (g~ D~ g+

dn

Since the infinite product expansions of FGLfE(p7 q,x) are [19, §1] [20, §1]

FGL, (p,q.x) = [[ (1 — )% "

n>1

@l (.. = > uln/d) (g~ 1),

dln
FGL; (p,q.x) = [ (1 — ") e

n>1
1 _
ar_(pqun) = ;Z(_l)d:u(n/d)(qd - <_1)d)p 1
dln
and [19, (3.2)]

SRIM (p,
TSRIMi(p,q)FGLri (p’ q’x) = dl_[ FGL;t (p’ qd,xd) RIM; (p,q)
>1

H (1 _ xnd)a,i(p,q‘{,n)SRlMdi(p,q)

nd>1

we must show that

Cr+1 (p7 q:N)

2¢(p,q,N) + ‘Z a; (p,q*,N/d)SRIM; (p, q) + Z‘: af(p,q*,N/d)SRIM (p, q)
d|N d|N

p=2

cr(p,q;N) + Y a; (p, ¢, N/d)SRIM (p, q) + > af (p, ¢, N/d)SRIM; (p, q)
dN AN

p>2
(5.13)

for all N>1 and all r>0.
Theorem 1.5 will here be proved only for odd primes p. The below proof can
easily be modified to cover p = 2.

Proof Assume p > 2 and let N> 1 be an odd integer. Induction shows that

af(p,q*,N) —af(p,q,N) k=1

_ 5.14
at(p,¢®,N)—a"(p,¢* ',N) k>1 (5.14)

2*at(p,q,2"N) = {

and
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- N)+a(p,qg,N) k=0
de,(p.g. 2Ny = { P P\ 5.15
(P4, ) {Cr(p,qzk,N) —c(p.g® ' N) k>0 G-13)

Indeed, @ (p, q,2N) = 3a} (p,q*,N) — 1aF(p,q,N) because

2Na; (p,q.2N) = > —u(2N/d)(g" + 1), + > u(N/d)(g* - 1),

diN dIN
==Y —uN/d)(g" + 1), + > uN/d) (g - 1),
dIN d|N

= —Na; (p,q,N) + Na;' (p,q*,N)

2Na (p,q,2N) = > p2N/d)(g' — 1)+ u(N/d)(g* — 1),
d|N d|N

= —Naf(p,q,N) +Naf (p,q*,N)
Since w(Z’N) = 0 for j >2,
e - r—
2Na2 (p.g.2°N) = 3 u(N/d) g~ 1) + 3 ueN /) - 1
dIN dIN
= Na/ (p,q* \N) = Na; (p,¢" ', N)
for all k > 1. Since N is odd, ¢.(p,q,N) =3a, (p,q,N) +%a, (p,q,N), and, as
W(2N) =0 for j>2, 2*Nc.(p,¢*,N) = Nci(p,¢*,N) — Nev(p,¢*',N) when

k> 0.
The first equality of the below display holds (at d = 1) because SRIM; (p, q) +

=g+ 1), by Lemma 5.10. The next to last equality holds because

> wan={,

{diifldild2 }

contributes only when f = d,. Remembering these observations we find that
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1
>4 (p.q",N/d)SRIM, (p,q) + 5, (.4, N)

AN

= >4 (. N ) 5 S )+ ),

diN fld
—Za (p, 4" N/dZdZ/vld/fCI"‘)
d|N fld (5 16)
SIS N g 1) S )+ )
d|N e\N fld
= - Z u(N/do)(g" + 1), (¢ + 1), u(d) /f)
)‘\d1|¢12|N
ZMN/d g'+ 1), %a;+1(177q’N)
d\N

The first equality of the below display holds (at d = 1) because SRIM{ (p,q) +1 =
%(q — l)p = %IMl(p,q) by (5.6) and (5.7). For all odd d > 1, SRIM] (p,q) =
%IMd(p, q) by (5.7). Remembering these observations we find that

Zaf(p,qd’N/d)SRlMﬁ(p,fJH a;(p.q;N)

dIN

=> af(p,q",N/d)> IMd(I’ q)

d|N
_Za+(17 q N/d Zdzﬂ(f d/f )
d|N fld
= "a/ (p.q",N/d) dZM d/f)(d - 1), (5.17)
d|N fld
—Z > u(N/de)(q ;'Zdz (@/f)d =),
d|N e|N/d fld
- — Z u(N/d>)(g" — 1)) (¢ = 1), u(d) /f)
f\dl\dz\N
2N%\;M N/d) (g’ — 1), %aﬁl(p,q,N)

By adding (5.16) and (5.17) we get

@ Springer



91 Page 24 of 41 Graphs and Combinatorics (2022)38:91

> a; (p.q",N/d)SRIM, (p,q) + Y _af (p,q",N/d)SRIM; (p, q)
diN dIN
| 1 _ 1
:Ear+l(P7617N)_§ar(P,q,N)—Fia:r](p,q, )—7ar(17q7 ) (518)

(5.15)

- Cr+](P q, )_Cr(paQaN)

proving (5.13) for all odd N.
Next consider 2N, N odd. The expression >,y a;, (p, q?,2N/d)SRIM;, (p, q) +
> aon @ (P, q*,2N/d)SRIM,} (p, q) is the sum of the four terms

> a;(p.q*,2N/d)SRIM, (p, q)

dIN
(5.14) 1 _ _
= EZ(a:—(pqudaN/d) —da, (pquvN/d))SRIMd (pa CI)
dIN
> a; (p,4**,N/d)SRIMy,(p, q)
dN
1
FENNT A (0,42, N/d)SRIM; (p, ¢°)
dIN
> a(p,q",2N/d)SRIM; (p, q)
dIN
(5.14) 1
=52 @/ (p.g"\N/d) —af (p.q" ,N/d))SRIM (p, )
d|N
> a (p.q*,N/d)SRIM, (p, q)
dIN
1
F212D " al (b, g N/d)(SRIM] (p,¢°) — SRIM;; (p. 4) — SRIM, (p, )
dIN
which is
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27D 4 (0,4 N/d)SRIM (p, %) + > a} (p, 4>, N /d)SRIM] (p, ¢*)
d|N d|N

=27 "a; (p.q",N/d)SRIM, (p,q) + > _a/ (p.q",N/d)SRIM] (p, q)
diN dIN
(5.18) _ _
=" —2"'(c,s1(p, ¢, N) — c:(p, ¢, N)) +2 " (cri1(p,4*,N) — ¢,(p.4*,N))
= 271(Cr+l(p’q27N) - cr-H(paq’N)) - Zil(cr@’qz?N) - Cr(p7CI7 N))

(5.15)
= Cr+1(pa q, 2N) - Cr(paqazN)

This proves (5.13) for 2N, N odd.
Finally, we consider 2kN, N odd, k > 1. We shall evaluate the sum

> a;(p.q", 2N/d)SRIM, (p,q) + > _ a/ (p.q",2"N/d)SRIM, (p, q)
d2'N AN

= > > a;(p.4**,2"IN/d)SRIMy,(p, q)

0<j<k dN

+ > > 4 (p, g, 2N /d)SRIMG, (p, 9)
0<j<k dN

which occurs on the right hand side of (5.13). For j = 0 we get

S (p.g” 2N /d)SRIM (p, q) 2274 [ S (6 (p, 74, N /)
dIN d|N

k—1
~a; (p,g® ", N/d))SRIMZ (p,q) )
For 0 <j<k we get

> a; (p.q?*, 2N /d)SRIM,,(p. q)
dIN

L5105 Z a (p, qud7 2k—jN/d)SRIM; (p, qu)
dN

(5.14) . , . _ j
=27 (@] (p. 7 N Jd) — a7 (p.g* ! N/d))SRIM; (p,¢7)
N
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> af (p.q?" . 2N /d)SRIM;, (p, q)
dN

F2 N 6l (p,¢??, 2N /d) (SRIM] (p,¢” ) — SRIM; (p,¢” )
diN

~ SRIM; (p,¢* )

(5.14), _ - )
=275 () (p.g" 4 N/d) — af (p.q**.N/d))(SRIM (p, ¢*)
N

— SRIM (p,¢* ') — SRIM; (p, ¢* )

For j = k we get

S a; (% N/d)SRIMy,(p, 0) =27 3" a; (p,¢*,N/d)SRIM; (p, ¢*)

diN dIN
S af(p. ¥ NJd)SRIMG, ,(p, q) =275 3" af (p, 4%, N /d) (SRIM (p, ¢*)
d|N d|N

1

~ SRIM{ (p.g" ') — SRIM, (p.¢* )
The sum of these 2(k + 1) terms is

27N ar (p.q* ! N/d)SRIM (p,¢% ) + 275 " af (p. 4% N/d)SRIM (p, ¢*)

d|N dN

> a (p.g " N/A)SRIM, (p,¢* )

dIN

k—1 k—1
+Y a(p.g* ¢ N/)SRIM (p,q* )
N

(5 18) k k _ k-1
="2" (Cr+1(paq2 7N) _Cr(paqz ,N)) -2 k(Cr+1(Pa512 aN)

—c(p,¢ ' \N))

— k k—1 _ k k—1
=2 k(cr+1(Pa6127N)—Cr+1(P7512 7N))_2 k(cr(pquyN)_cr(quz aN))

(5.15)
="cr11(p,q,2'N) = ¢/(p, q,2N)

This proves (5.13) for 2N, N odd , k > 1.
We can now conclude that (5.13) holds for all N when the prime p is odd. [

Two prime powers prime to p are declared to be p-equivalent if the generate the
same closed subgroup of the topological unit group Z; in Z,. More concretely, if
we let
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(gmod8,vy(q> — 1)) p=2

o) = { (Ordp(Q)7 Vp(qord”(q) —-1) p>2

then the prime powers ¢ and g, are p-equivalent, (q;) = (g2) < Z,, if and only if
O0(p,q1) = O(p,q2) [4, §3]. The sequences (SRIM: (p, q)),~, and hence the power
series FSp, (p, ¢, x) depend only on the p-class of ¢ when pj(q.

For example, the 2-classes are represented by the 2-adic units +3%, >0, and the
3-classes by the prime powers 2% and 4%, >0 [4, Lemma 1.11.(a)].

Example 5.19 For all r>1 and ¢e>0

n+ (n+3)(r—1)
IL,>0 00 )?
0> (1 +2)”"
02 (n+2)(r=1)+re
ano o )2
(1 _ x)2:—1
n+1
IL,>_1 0 B!
(1 _ x)zr—l
n+ (n+3)(r—1)+re
[1.-000"")
Q(x)z(r*1)+r€(1+x)2r—1

Fspr+1 (27 3% ) x) =

e>0

2(+3)(r—1)
e=0

FSpr-H (25 _329 ) x) =

e>0

where Q(x) = }f; This follows from Theorem 1.5 after some power series manipu-

. o ny 2(+1)(r=1) 2l
lations as exp(— 3=, (21), %) = [, 50 Q) 2 exp(=23,5 0 577) = Q(%)s

and (in the case of +3%)
4 2n R 2 2
(3 - 1)2 =
2 2ln 4ny 2|n
22+e 2171

22%en,  2ln

(3" + 1),

((320)]1 - 1)2 :{ ((322)n + 1)2 =2

for all e > 0.

6 Proof of Theorem 1.6

As already used several times in this paper, a multiset 4 is a base set B(4) with a
multiplicity function assigning an integer E(4, b) > 0 to every element b of the base
set. The sum [4| =}, cp;) E(4,b) of the multiplicities is the cardinality of the
multiset 4. A partition of n, in symbols A - n, is a multiset Z on the set N of natural
numbers such that >,  PE(A,b) = n. The multiset sum, A, + >, is the multiset
with multiplicity function E(1; + Z2,b) = E(41,b) + E(/2,b). A partition of n into
parts of two kinds is a pair (A_, 4, ) of partitions, 4~ and A", such that the multiset
sum A_ + A, partitions n, in symbols (1_,1.) F n.
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Lemma 6.1 Let A(q) € Q[q] be a rational polynomial in the indeterminate q. The
polynomial sequence (B,(q)), o with Bo(q) = 1 and

satisfies the recurrence Bo(q) =1 and nB,(q) + ZISanA(qi)Bn,j(q) =0 for
n>1.

Proof Writing X,, for the symmetric group of degree m and C,, for the cyclic group
of order m, the claim is that

() d)
\;\ \ul
npy (-1
; del;[ |Cd?2E’Ld 1<]Z<n /;J dE];[u |Cd?2E/Ld
for all n> 1. Since, for all d € B(4),
AlgEU—dh) Alg?)EGA)
A(qd) (qf) _ dE(;L,d) (q )
FeBU-{d)) |Cr U E k(i qay) | 1B () |Ca t ZE )

it suffices to show that

— 1)+ Z WA aE (7, d) = 0
deB(A

But this is obvious since |4 — {d}| =[] — 1 and > _,cp;) dE(4,d) = n as A parti-
tions n. O

Corollary 6.2 For all n>1 and r >0,

_ d r I\E(id)
1 (SPa(F) = (- ”'H (@ =02 + 1)/2)

JFn deB(2 |CatZpa)l
9 ( d + l)r/z)E() d)
- . \,1| ),;/ q p
— Xr+1 (P7 SpZn(FCI)) -
; degn |CatZp(.a)

Proof Let H(r,q) =1(q—1)"—=1(¢+1)" (H(r,q) =%(q— 1); —1(g+ 1); in
the  p-primary case). By  Theorem 1.4, > - ;—%41(Spy,(Fy))x" =
exp(— >, H(r,q")%) (with the convention that —¥, ;(Spy(F,)) =1 for all
r>0), so the sequence — ¥, (Sp,(F;)), n>1, satisfies the recurrence

n(—Xr11(Sp2a(Fg))) + Z H(r, q’)(— %r+l(sp2(n—j) (Fg)) =0, n>1,

1<j<n

according to [19, Lemma 3.7]. We can now apply Lemma 6.1. U
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Let F, denote the standard Frobenius endomorphism of the symplectic algebraic
group Sp,,(F,), s = char(F,), with fixed points Sp,,(F,)"* = Sp,,(F,). The
standard maximal torus T,,(F;) of Sp,,(F;), described for instance in [16, Exercises
10.19, 10.29], is maximally split with respect to F, [16, Definition 21.13,Exam-
ple 21.14] and the Weyl group W(C,) of Sp,,(Fs) acts as the standard
representation of the signed permutation group C,? X, in the n-dimensional real
vector space X(T,(F;)) ® R spanned by the character group X(7,,(F;)). As usual,
T,(F,),, denotes the F,-stable maximal torus of GL,(F) corresponding to the Weyl
group element w € W(C,) [16, Proposition 25.1]. The number of elements in
T,,(F,),, that are fixed by the Frobenius endomorphism F, is |T,(F,)’*| = det(q —
w~!)  where the determinant is computed in X(7,(F,)) ® R [16,
Proposition 25.3.(c)].

Proof of Theorem 1.6 Conjugacy classes in W(C,) = C;1X, are in bijective
correspondence with partitions, (A_, 4. ), of n into parts of two kinds [15, Chapter I,
Appendix B] [26, Theorem 3.5]. If w € W(C,,) is in the conjugacy class of (A7, 4")
then (cf. [16, Example 25.4.(2)])

det(w™") det(g —w™')’
_ (_])nﬂ/f\ H (qd’ . l)rE(f,d’) H (qd* + 1)rE(Z+.d+)

d-€B(17) dteB(i")
The claim of the theorem is thus that

21 (SPo(F)) = > (~)F T (4

(272 )Fn d=€B(i7) |Ca- V2 )

y H (¢" +1

d+€B(),+) |de)r zzE(iA,dJr)'

d- 1)rE(/17,d7)

)rE(/lA,d‘) (63)

as the group W(C,) contains

|C2 i Zn|
[Li-epi) (Ca X Ca- ) Vg ay| [ epiry [ Coar V2t gy

elements in the conjugacy class (17, A").
By Corollary 6.2, it suffices to show
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DRI § G A=t SISy S (A Vo S
|Ca- L ZE( a)] |Cy+ 22E(ﬁ,d+)|

(2,2 Fn d=eB(27) d+eB(i)
I+t =1
((¢* = 1) = (¢* + 1))
_dGI;[ |CdZZE/1d)|

for all partitions A+ n and all integers r > 1. Introducing the the coefficients

[Licy 1Ca 2 Zp(a)
[i-epiry 1Ca- 22k a)| Ta-epiony [Car V20 an

(=, )y = (=D
we need to show

PORECA A I | IR (VA VO | BN (VAR VO

A4at = d-€B(47) d+eB(it)
= [ (@' =1 =@+ )
deB(2)

That reason that this is true is that the binomial formula

n n—i |C1 22n| S
ar—b = -1 apri
( 1 1) ISIZ:SH( ) |C12Zi||C12Zn7i| 1%1

generalizes to the identity

I1 (-0 = S ctmity I &4 [T 629

dEB(%) at=2 d-eB(i") d+eB(it)

in the polynomial ring Z[ay, by|d € B(A)] with the 2|B(4)| indeterminates ay, by,

d € B(%). d
The right hand side of the identity from Theorem 1.6 is
(71)7! r
det(w) det(q — w)
WieT, o,
IEV )det(g —w )"

( 1\r
WC WEWZ det(w) det(g —w™")

(

Fo)yl

weW

where we used [16, Proposition 25.3(c)] and det(w) = det(w™!).
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Corollary 6.4 The generating functions for the sequences (— ¥,41(Sp2,(Fy))), >0
and (— ¥%,11(P, SP2,(Fy))), > o (With fixed n> 1) are

(-1)" det(w)

Z - %rJrl (Sp2n (F(I))xr =

= [W(C,)] wiwie, 1 — xdet(qg —w)
. L det(w)
; Xr+1(pa Sp2n(Fll)) |W(C )l e%(: ‘) 1— xdet(q W)

By considering conjugacy classes rather than the individual elements in W(C,),
the formulas of Corollary 6.4 can also be written as

» Y= A !
Z Xr+1(sp2n(Fq)) - Z ( 1) T(/T,/IJF) 1 7xU(/177/1+) (65)

r>0 (= 2 )k

. - N !
Z Xr+1(PvSP2n(Fq)) - Z ( 1) T(l’,ﬁ) 1 —xU(/ﬂui,)ﬁL)p (66)

r>0 (2,2 n

where

77,4 = [ 1€ Zemar| [ 1€ 1Zpao)]

d~eB(27) d-eB(i")
U=, 2" = H (¢* — EF ) H ¢ + 1)E(z+,d+)
d-€eB(17) d+EB(/1+)

for every partition (A, ") of n into parts of two kinds.

Corollary 6.7 Let p: W(C,) = C21 X, — W(A,) = X, denote the projection with
kernel C5. Then

1+Z|W Z det(p(w)) det(w) det(qg — w)" = H (1_qix)(j)

n>1 OS]SV
j=rmod2
1
L) ey 2, detlp(w)) det(w) det(q — w), = FSp, . (p,q.)”
n>l wEW(C)

Proof We find expresssions for the reciprocal power series FSp, H(q,x)*1 and
FSp,,1(p, ¢,x)"". As in Corollary 6.2, we have
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Fspr+1(q? _l = eXp (ZH r q )

n>1

Z H (¢ =1)/2 - (qd‘f'l)r/z)E(M)
|CatZg(a)]

An deB(2

and we can identify the coefficients of this power series as sums indexed by W(C,)
as in the proof of Theorem 1.6. O

Example 6.8 Corollary 6.2 for n = 1,2,3 shows

—H(r,q) n=1
1Hu f—lH@ ?) n=2
_%rJrl (SPZn(Fq)) = 2 4 2 4 a
1 1 1
——H(r,q)3+—H(r,q)H(r,q2)——H(r,q3) n=73

6 2 3

where H(r,q) =%(q—1)" —%(g+1)". Similar formulas hold for the p-primary
equivariant Euler characteristics — ¥, (p, Sp,,(F,)), n=1,2,3, where now
H(r,q) =4(q— 1), —3(q +1),. With fixed n = 1,2, Theorem 1.6 (in the formu-
lation of (6.3)) shows that

- Xr«H (Sp2n (Fq))

1 L1 .
(g+1) —E(q—l) n=1

1 2 r 1 2 r 1 r r
- D —=—(F =1 —=(qg—1 1 =2
4(61 +1) 4(4 ) 4(q ) (@+1)" n

0| = |

r 1 r
(¢= 1" +g(@+ 1"+

and with fixed r = 1,2, 3 it shows that

1 r=1
n—1 =2
w)det(qg —w)" = " 24 "
weW Z()<j<n( 5 )qu r=23

for all n> 1. From Corollary 6.4 (in the formulation of (6.5)) for n = 1,2 we get

D = 1 (SPa(Fy)
r>0

1 1

2 _ 2

I—(g+1)x 1—(q—1)x

1 1 1
" 8 4 4 _ 4 _
1-x(g— 1% 1-x(g+1)* 1-x(+1) 1-x(>—1) 1-x(g—1)(g+1)

oo | —
I
S}

In the p-primary case, when p=2 and g =3* with ¢ >0, (g — 1), =2>",
(q+1),=2,(¢>—1), =2%%, (g —1),(q + 1), = 23", (¢* + 1), = 2, and we get
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[

1
_ 2
2x 1 —2%tex

Z — Xrr1(2,Spy(Fy ) )x" = 1

r>0

1 1 1 1 1
Y Ti1 (2,8 (Fyx ) x" = —F 8 S S
2 Lot SPa(Fae Y = e e T T 1—2v =29

from Corollary 6.4 (in the formulation of (6.6)). Corollary 6.7 with r = 1,2 and
Example 5.19 show that

1—x r=1
1+ det(p(w)) det(w) det(q — w)" = {
r; WE%:C) 1 —2gx+x> r=2
S
HO o)
X n>
1+ det(p(w)) det(w) det(3 — w); = 2,0, 2
2 W, 2 (1-vow’

10 ot

n>0

where Q(x) = {7=. Consequently, 2wew(c,) det(p(w)) det(w) det(q —w)" =0 for
aln>rifr=1,2.

7 Polynomial Identities for Partitions into Parts of Two Kinds

For any polynomial sequence S and any rational number m the T,s-transform of
1 +x is [20, Lemma 7.1]

Tus(1£x) = [J (1 224" Hz< ) -3 oS I (ZSE((d))(z))

d>1 d>1 E n>0 JFn deB(7)

The classical polynomial identity Tin(g)(1 — x) =

SOE I () (=)

n>0  Jrn deB())

for partitions. The cases m = +1 are Thévenaz’ polynomial identities [27, Theo-
rems A-B] [20, Corollary 7.2].

The identities 7_ SRIM ™ (¢ )(1 +X)T SRIM™* (g )(1 — ) =1-—x and TSRIMf( )(1 —
X)T_sriv-(g) (1 +x) = 1 —L (for odd g) of Lemma 4.9 translate into the following
polynomial identities
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%o 2L I Cn)”) 2L () =0
mSRIM - —mSRIM
nzzoxn ().,AZ*))—ndg[(ﬂ.)< E(;“:jd(él))> d+€1;[(,1+)< E(Z" di)(Q)>
_ (ﬂ_?)m 2q

(I—g0)"  2|q

for partitions into parts of two kinds.

Example 7.1 Based on  the  partitions,  {(1',0),(0,1")}  and

{21, 0), (12,0), (11,11),(0,12),(0,2")}, of 1 and 2 into parts of two kinds, we
have the identities, valid for any rational number m,

mSRIM; (q) N mSRIM (q) _(m
mS_RIMzr (q) mSRIM; mSRIM mSRIM| (q)
(o) (o >> o
mSRIM mSRIMY
Lo )
mSRIMY —mSRIM| m 2
i () e
mSRIM; ( mSRIM [ mSRIMy —mSRIM] (¢
<+( mSRIR/[Jrc]()) < mSl?l:[ ())_1 >( 1 )
o (1)
< >42 2lq

by comparing coefficients of x" for n = 1,2.

Appendix A. Equivariant Euler Characteristics of Posets

This appendix contains a few elementary observations about equivariant Euler
characteristics for group actions on posets.

Let S be a finite set and dim : § — Z a function associating an integer > — 1 to
every element of S. The Euler characteristic and the reduced Euler characteristic of
the graded set (S,dim) are the alternating sums
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£(S.dim) = 3" (~1)%| dim " (d)

d>0
7(S,dim) = > (=1)’|dim ™" (d)| = %(S, dim) — | dim ™! (—1)]

d>—1
of the numbers of d-dimensional elements of S for d >0 ord> — 1.

Let IT be a finite poset. A simplex in IT is a totally ordered subset of I1. The set
|TT| of all simplices in IT (including the empty simplex) is graded by the function
dim: [TI| — Z taking a simplex ¢ CII to one less than its cardinality,
dimo = |o| — L.

Definition A.1 The Euler characteristic of the poset IT is y(IT) = y(|I1|,dim) and
the reduced Euler characteristic is ¥(IT) = (|II|,dim) = y(IT) — 1.

Let G be a finite group. Write Hom(Z", G) for the set of homomorphisms of Z" to
G and Hom(Z',G)/G for the set of conjugacy classes of such homomorphisms.
Equivalently, Hom(Z", G) is the set of commuting r-tuples of elements in G and
Hom(Z",G)/G is the set of conjugacy classes of commuting r-tuples.

Suppose now that G acts on the poset I1 through order preserving bijections. For
any subset X of G, let Cri(X) = {u € I|Vg € X : u® = u} denote the full subposet
of elements of Il fixed under the action from X. For any prime number p, let
Z,=1x Z;‘l where Z, is the abelian group of p-adic integers.

Definition A.2 [2, 25] The rth, r > 1, (p-primary) equivariant Euler characteristic
and (p-primary) reduced equivariant Euler characteristic of the G-poset 11 are

LG = 3 yCn(x(z))

6] xeHom(z',G)

1 ,
xeHom(z;,G)

LG =~ 3 qCaX(@))

6] xeHom (z7,6)

LG == Y UCn(x(Z)

6] xeHom(z;,6)

We note that y,(p,II,G) = ¥,(I1,G) for all primes p since Z; =7Z. Also,
Xr(na G) = Xr(rL G) + |H0m(Zr7 G)|/|G‘ and Xr(pa I1, G) = Xr(p7 I, G)+
|[Hom(Z}, G)|/|G|. The numbers of conjugacy classes of r-tuples of commuting
elements of G and commuting p-power order elements are
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[Hom (2™, G)/G| =[Hom(Z", G)|/|G],
[Hom(Z,™', G)/G| =Hom(Z,,G)|/|G]  (r=1)

as |Hom(K, G)/G| = [Hom(Z x K, G)|/|G| for any group K [10, Lemma 4.13].
The equivariant Euler characteristics satisfy a recurrence relation.

Lemma A.3 Forall r>1,

%r+l(H’G) = Z %r(CH(X)aCG(X))
XeHom(Z,G)/G

= Y t(CuX),CelX))
XeHom(Z',G)/G

XH-I(PerG) = Z %r(p7 CH(X)7CG(X))

XeHom(Z,,G)/G

= Y w(Cn®),Co(x))
XeHom(Z,,G)/G

and similar formulas are true for y,.,(Il,G) and y,.,(p, 11, G).

Proof A little more generally, we consider ¥, ,,,(p,I1,G) for r; > 1 and r, > 2. The
p-primary equivariant Euler characteristic is

GG ==Y (Cn(x)

G
Gl XeHom(ZxZ) 7' G)

= ﬁ 3 >, 1(Cenixn (X2)

Xi€eHom(Z,!,G) X,cHom(zx 72" cs(X,))

:é S G| T (s CrilX1), Co(X1))

X,€Hom(Z,' ,G)

= ) i CuX), Co(X1))
X,€Hom(Z,! ,G)/G

where we use that the conjugacy class of X (Z;') contains |G : C(X)| elements. [J

The set |Cr1(X)]/Cs(X) of Cs(X)-orbits of Cry(X)-simplices, for any X C G, has
Euler characteristic relative to the dimension function induced by
dim : |IT] — {-1,0,1,...}, dimg = |o| — 1.

Lemma A.4 For all r >0,

La(MLG) = > a(lcnX)]/Cs(X)),

XeHom(Z',G)/G

L LG = > q(Cn(X)|/Ca(X))

XeHom(Z,,G)/G
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Proof We first consider the case r = 0. The orbit counting formula shows that

1(|M]/G) = Z (=1)|dim~'(d) /G|

d>—1
c Z DY l[Cn(g)l N dim™(d)]
| |d> 1 geG
)Y||Cri(g)| N dim™" (d)|
|G|g§d>zl
CH X(I_LG)
|G|g§ :

Consequently, for all r > 1,

(LG = Y #(Cn(X),Co(X))
XeHom(Z',G)/G

= 3 Uel/Co)

XeHom(Z",G)/G

Xr+1(P7HaG) = Z %1 (C]‘[(X),CG(X))
XeHom(Z,,,G)/G

= > Alen)l/Cox)

XeHom(Z,,G)/G
by Lemma A.3. U

It is clear from Lemma A.4, but maybe not from Definition A.2, that all (p-
primary) equivariant Euler characteristics are integers.

Appendix B. Eulerian Functions of Groups

Let G be a finite group acting on a finite poset Il. For any natural number r > 1, the
rth reduced equivariant Euler characteristic (Defintion A.1) and the p-primary rth
equivariant reduced Euler characteristic are

N : ,
Xr(HﬂG) - |G|X6H(§Z,-‘G) X( |G|B<ZG(pZ B)) (B])
- 1 -

XeHom(Z;,G)

where ¢z (B) ((Pz,;(B)) is the number of epimorphisms of the abelian group Z"

(Z, =171 x Z;’l) onto the subgroup B of G. In this appendix, we recall some of the

properties, helpful for concrete computer assisted calculations of equivariant Euler
characteristics, of the eulerian function ¢, (B) [9].
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For any finite group B, let Hom(Z",B) and Epi(Z’,B) be the set of
homomorphisms or epimorphisms of Z" to B. Then Hom(Z" B)=
114 <z Epi(Z",A) and ¢4 (B) = |Epi(Z",B)|. (When r =1 and C, is cyclic of
order n, @z (Cy) is Euler’s totient function ¢(n).) We observe that @z is
multiplicative.

Lemma B.3 Let By and B, be two finite groups of coprime order.

(1) For any subgroup A of B; X By, A =A| X Ay where A; is the image of A
under the projection By X B, — By, i = 1,2.
(2) @z (B1 X By) = @z:(B1) X @9z (By) for any r > 1

Proof Let g; be the order of B;, i = 1,2. The order of A, which divides g;g», is of the
form k;k, where k; divides g; and k, divides g;. The order of A; divides k;k; and g;.
Thus |A;| divides k;. It follows that the order of A; x A, divides the order of A. But A
is a subgroup of A; x A; so |A| = |A| X Az and A = A x Aj. O

Next, we compute (er(Cg) where Cl‘f is elementary abelian of order p?. First,
Epi(Z’, C}) = Epi(C}, C4), the set of epimorphisms of C; onto CJ. Next, note that
there is a bijection between the orbit set Epi(Cy, C4)/Aut(C?) and the set of
(r — d)-dimensional subspaces of F; (kernels of epimorphisms). The number of

such subspaces is the Gaussian binomial coefficient (ri d) = (2) [24,
p p

Proposition 1.3.18]. Thus
r a1 .
ou(c) = lEpicz 6l = () oL@ =TI ) (83
P Jj=0

In the general case, the number of homomorphism of Z" to B is

[Hom(Z',B)| = Y _ [Epi(Z’,A)| = ) _ [Epi(Z",A)|{(A, B)

A<B AL<G

where {(A,B) = 1 if A<B and {(A, B) = 0 otherwise. The number of epimorphism
of Z" onto B is

¢z (B) = [Epi(Z', B)| = ) [Hom(Z',A)|u(A, B)
ALG

by Mobius inversion. Of course, ¢z (B) > 0 if and only if B is abelian and gen-
erated by r of its elements. Assuming B is abelian, [Hom(Z",A)| = |A|" for any
A <B so that [7, 9, 30]

¢z (B) = [Epi(Z',B)| = Y |A"u(A, B)
A<B

The Mobius function p(A,B) =0 unless ®(B) <A<B and then pugz(A,B)=
tgjo(p) (A/P(B), B/®(B)) where ®(B) is the Frattini subgroup [7]. Therefore
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A ‘ Ci Cs Cs Cs C3 x C3
|G CoA] | 1 20 20 36 10
X(CL(A)) | —16 2 2 -1 -1
\,JZrJrl( ) 1 3r+1 —1 3r+1 -1 5r+1 —1 (37‘+1 _ 1)(37\+1 _ 3)
Ppa(A) | 1 31 gt 4 (371 —1)(371 — 3)
QOZ +1(A) 1 2 2 5r+1 -1 0

Fig. 2 Abelian 2'-subgroups of Sp,(F»)

0z(B) =Y |Al'up(A,B) = [®B)" > |A| 1pjom (A, B/O(B))

A<B A<B/®(B)
= |®(B)| ¢z (B/D(B))

The abelian group B is the product, B =[] B,, of its Sylow p-subgroups, B,. By
multiplicativity (Lemma B.3.(2)),

9z (B) =[] 0z (8,)

The Frattini quotient B,/®(B,) is an elementary abelian p-group of order, say, p?
We conclude that

02 (B,) = [0(B,)|'[Epi(2", ¢)| = |0(B, IH(p ~7)
d-1 A
= B[ T[(1 =P
=0

For the final equality, use that if B, has order p™, then the order of the Frattini
subgroup is p”~? so that |®(B,)|" = p'"~9.

For a prime p, recall that Z) = Z x Z;’l. In particular, Z; = Z is independent of
p- The number of epimorphisms of Z] onto B is

¢97(B) = oz (H Bs> =L ezB) = 02 B,) [] 02(B

s#p
where By is the Sylow s-subgroup of B. Here, ¢ (B;) = |B|(1 — p~!) if By is cyclic
and ¢ (B;) = 0 otherwise. Thus 9025( ) > 0if and only if B, can be generated by r
of its elements and By is cyclic for all primes s # q.
Example B.5 The symplectic group G = Sp,(F>), of order 720, acts on the discrete
poset L = L;(F,) of 30 totally isotropic subspaces. Equation (B.1) with the data of

Figure 2, found with the help of the computer algebra system Magma [3],
shows that
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1
~Xrs1(L,G) = =255 (=16 + 80(3""! — 1) =36(5""! — 1) — 103" —1)(3"*! - 3))
1 , 1 .
_ —(3r _ 1 _Z(rr _ &1
S -1 -5)
1 -
— %13, L,G) = fm(fm +80(3 = 1) —=36-4— 103" — )3 —3))
1 , 1
=—(3 1P -—=(3 -1
JCERVEET TCE)
1 1
—7 L,G)=——(—164 160 — o)) ==(5"-1
in accordance with Example 6.8. By Lemma 4.2, in (B.1) we only need abelian

subgroups of G of order prime to 2.
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