
1 23

Graphs and Combinatorics
 
ISSN 0911-0119
Volume 32
Number 2
 
Graphs and Combinatorics (2016)
32:745-772
DOI 10.1007/s00373-015-1578-6

Chromatic Polynomials of Simplicial
Complexes

Jesper M. Møller & Gesche Nord



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Japan. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Graphs and Combinatorics (2016) 32:745–772
DOI 10.1007/s00373-015-1578-6

ORIGINAL PAPER

Chromatic Polynomials of Simplicial Complexes

Jesper M. Møller1 · Gesche Nord2

Received: 14 December 2014 / Revised: 16 April 2015 / Published online: 1 May 2015
© Springer Japan 2015

Abstract In this note we consider s-chromatic polynomials for finite simplicial com-
plexes. When s = 1, the 1-chromatic polynomial is just the usual graph chromatic
polynomial of the 1-skeleton. In general, the s-chromatic polynomial depends on the
s-skeleton and its value at r is the number of (r, s)-colorings of the simplicial complex.
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s-chromatic lattice · s-Stirling number of second kind · Möbius function

Mathematics Subject Classification 05C15 · 05C31

1 Introduction

Let K be a finite simplicial complex with vertex set V (K ) �= ∅ and let r ≥ 1 and s ≥ 1
be two natural numbers. A map col : V (K ) → {1, 2, . . . , r} is an (r, s)-coloring of K
if there are no monochrome s-simplices in K . We write χ s(K , r) for the number of
(r, s)-colorings of K .
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Definition 1 The s-chromatic polynomial of K is the function χ s(K , r) of r . The
s-chromatic number of K , chrs(K ), is the minimal r ≥ 1 with χ s(K , r) > 0.

This s-chromatic polynomial and the s-chromatic number of a simplicial complex
are of course just special cases of the similar but much more general concepts for
hypergraphs [9]. In the context of hypergraphs, our chromatic number is sometimes
called the weak chromatic number. We restrict attention from hypergraphs to simpli-
cial complexes and combinatorial manifolds in order to add a geometric flavor to a
combinatorial problem and because of the connections to Davis–Januszkiewicz spaces
[7], rational homotopy theory [6], and combinatorial topology [14]. By focusing on
simplicial complex chromatic polynomials and weak colorings we detect phenom-
ena that maybe would go unnoticed in the general context of hypergraph chromatic
polynomials.

For instance, we note that the chromatic numbers of K form a descending sequence

chr1(K ) ≥ chr2(K ) ≥ · · · chrd(K ) ≥ chrd(K ) ≥ chrd+1(K ) = 1

terminating with chrs(K ) = 1 when s is greater than the dimension d = dim K . The
chromatic numbers go down rather steeply because

chrst (K ) ≤
⌈
chrs(K )

t

⌉

as may be seen using rational homotopy [6, Theorem 2] or by noting that we get an
(�r/t�, st)-coloring from any (r, s)-coloring by mixing batches of t colors from the
original palette of r colors to obtain a palette of �r/t� colors.

The theorembelow shows that the the s-chromatic polynomial of K ,χ s(K , r), from
Definition 1 is indeed a polynomial in r for fixed K and s. (The i th falling factorial in
r is the polynomial [r ]i = r(r − 1) . . . (r − i + 1).)

Theorem 1 The s-chromatic polynomial of K is

χ s(K , r) =
|V (K )|∑

i=chrs (K )

S(K , i, s)[r ]i

where S(K , i, s) is the number of partitions of V (K ) into i blocks containing no
s-simplex of K .

We introduce in Definition 6 the s-chromatic lattice Ls(K ) associated to K . The-
orem 4 shows that the integer coefficients S(K , i, s) are connected to the Möbius
function of Ls(K ). There is more information and several examples illustrating fea-
tures of the s-chromatic lattice in §2.3.

This is not the only way to determine the s-chromatic polynomial of a complex.
Theorems 2 and 3 present two alternatives. Whereas Theorem 3 is a more or less
obvious generalization of a known statement for 1-chromatic polynomials, the per-
spective of Theorem 2, expressing the s-chromatic polynomial as a sumof 1-chromatic
polynomials, could be new.
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Fig. 1 A (5, 1)-, a (2, 2)-, and a (1, 3)-coloring of a 5-vertex triangulated Möbius band MB

Here is a simple example. Fig. 1 shows a triangulation MB of the Möbius band. To
the left is a (5, 1)-, in the middle a (2, 2)-, and to the right a (1, 3)-coloring of MB.
The three chromatic polynomials and chromatic numbers1 of MB are

χ s(MB, r) =

⎧⎪⎨
⎪⎩
r5 − 10r4 + 35r3 − 50r2 + 24r s = 1

r5 − 5r3 + 5r2 − r s = 2

r5 s ≥ 3

chrs(MB) =

⎧⎪⎨
⎪⎩
5 s = 1

2 s = 2

1 s ≥ 3

The 1-chromatic polynomial of MB is the falling factorial [r ]5 because the 1-
skeleton is the complete graph on 5 vertices; see Examples 4 and 7 for details on the
2-chromatic polynomial. It is an interesting question what information is contained
in the vector of chromatic polynomials of a simplicial complex. In Proposition 3 we
observe that the chromatic polynomial vector determines the f -vector.

Although the higher s-chromatic polynomials for simplicial complexes are natural
generalizations of 1-chromatic polynomials for graphs, there are in fact some sig-
nificant structural differences between the cases s = 1 (graphs) and s > 1 (higher
dimensional complexes). Just below Example 7 we list four general properties known
to hold for all 1-chromatic polynomials and we observe that there is a single 2-
chromatic polynomial (of Möbius’ minimal triangulation of the torus) violating them
all. For instance, the long conjectured and recently established fact that the absolute
value of the coefficients of 1-chromatic polynomial are log-concave [12] does not hold
for 2-chromatic polynomials.

On the other hand, we would like to draw attention to a property that just might
hold for all s-chromatic polynomials for all s ≥ 1. In all our examples (Examples
9–11, Example 12), the sequences i → S(K , i, s) are log-concave for fixed K and s.
(Fig. 3 shows the graph of i → S(K , i, s) in a particular case where K is a 17-vertex
triangulation of a 3-sphere.) We ask in Question 1 if this is a general phenomenon.
Note that the answer to Question 1 is unknown even for graphs.

We end this note with a short discussion of chromatic uniqueness in §3, and in §4
we establish a kind of deletion-contraction relation for the coefficients S(K , r, s).

1.1 Notation

We shall use the following notation throughout the paper:

K A finite simplicial complex
Ks The s-skeleton of K

1 The computations behind the examples of this note were carried out in the computer algebra system
Magma [3].
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Fs(K ) The set of s-simplices K
|V | The number of elements in the finite set V

V (K ) The vertex set
⋃

K of K
m(K ) The number |V (K )| of vertices in K
D[V ] The complete simplicial complex of all subsets of the finite set V

[m] The finite set {1, . . . ,m} of cardinality m
[r ]i The i th falling factorial polynomial [r ]i = i !(ri) in r

P(a, b) The open interval (a, b) in the poset P

2 Three Ways to the s-Chromatic Polynomial of a Simplicial Complex

In this section we present three different approaches to the s-chromatic polynomial
χ s(K , r):

– Theorem 2 via 1-chromatic polynomials of graphs;
– Theorem 3 via the Möbius function for the s-chromatic lattice;
– Theorem 1 via the simplicial s-Stirling numbers of the second kind.

2.1 Block-Connected s-Independent Vertex Partitions

Let s ≥ 1 be a natural number. We need the following definitions for our first result.

Definition 2 Let B ⊂ V (K ) be a set of vertices of K . Then

– B is s-independent if B contains no s-simplex of K ;
– B is connected if K ∩ D[B] is a connected simplicial complex;
– the connected components of B are the maximal connected subsets of B.

Definition 3 Let P be a partition of V (K ).

– The graph G0(P) of P is the simple graph whose vertices are the blocks of P and
with two blocks connected by and edge if their union is connected;

– The block-connected refinement P0 of P is the refinement whose blocks are the
connected components of the blocks of P;

– P is block-connected if the blocks of P are connected (ie if P = P0);
– BCPs(K ) is the set of all block-connected s-independent partitions of V (K ).

Lemma 1 Let P be a partition of V (K ). If two different blocks of the block-connected
refinement P0 are connected by an edge in the graph G0(P0) of P then they lie in
different blocks of P.

Proof The connected components of the blocks of P are maximal with respect to
connectedness. ��

Recall that χ1(G0(P), r) is the 1-chromatic polynomial of the simple graphG0(P)

of the partition P .
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Theorem 2 The s-chromatic polynomial for K is the sum

χ s(K , r) =
∑

P∈BCPs (K )

χ1(G0(P), r)

of the 1-chromatic polynomials and the s-chromatic number of K is the minimum

chrs(K ) = min
P∈BCPs (K )

chr1(G0(P))

of the 1-chromatic numbers for the graphs of all the block-connected s-independent
partitions of V (K ).

Proof Let col : V (K ) → [r ] be an (r, s)-coloring of K . The monochrome partition
P(col) of V (K ) is the s-independent partition whose blocks are the nonempty mono-
chrome sets of vertices {col = i} for i ∈ [r ]. The block-connected refinement P(col)0
of the monochrome partition is a block-connected s-independent partition of K . The
original coloring col of K is also a coloring of the graph G0(P(col)0) of P(col)0 for,
by Lemma 1, distinct vertices of 1-simplices of this graph have distinct colors. We
have shown that any (r, s)-coloring col of K induces an (r, 1)-coloring col0 of the
graph G0(P(col)0) of the block-connected refinement of the monochrome partition.

Let P ∈ BCPs(K ) be a block-connected s-independent partition of V (K ) and
col0 : P → {1, . . . , r} an (r, 1)-coloring of its graph G0(P). Then col0 determines a
map col : V (K ) → [r ] that is constant on the blocks of P . An s-simplex of K can not
be monochrome under col as it intersects at least two different blocks of P connected
by an edge of G0(P). Thus col is an (r, s)-coloring of K .

These two constructions are inverses of each other. ��

Remark 1 (The minimal block-connected s-independent partition) Let C0 = {{v} |
v ∈ V (K )} be the block-connected s-independent partition of V (K ) whose blocks
are singletons. The graph G0(C0) = K 1 is the 1-skeleton of K . Thus the 1-chromatic
polynomial of the 1-skeleton of K is always one of the polynomials in the sum of
Theorem 2. If K is 1-dimensional, BCP1(K ) consists only of the partition C0 and
Theorem 2 simply says that the 1-chromatic polynomial of a simplicial complex is the
1-chromatic polynomial of its 1-skeleton.

Example 1 (The block-connected 2-independent partitions for D[3]) The 2-simplex
D[3] has 4 block-connected 2-independent partitions C0, {{1}, {2, 3}}, {{2}, {1, 3}},
and {{3}, {1, 2}}. The graph ofC0 is the complete graph K3, the 1-skeleton of D[3]. The
graphs of the other three partitions are all the complete graph K2. Thus the 2-chromatic
polynomial of D[3] is χ2(D[3], r) = χ1(K3, r) + 3χ1(K2, r) = [r ]3 + 3[r ]2 =
[r ]2(r + 1) = r3 − r and the 2-chromatic number is chr2(D[3]) = 2.

Example 2 (A (2, 2)-coloring and the graph of the block-connected refinement of its
monochrome partition) The picture below illustrates a (2, 2)-coloring of a 9-vertex
triangulation of the torus
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and its corresponding graph. There are 6937 block-connected partitions of the vertex
set, and 3 of them has the graph shown above. The 2-chromatic polynomial is 21[r ]2+
742[r ]3 + 3747[r ]4 + 4908[r ]5 + 2295[r ]6 + 444[r ]7 + 36[r ]8 + [r ]9 = [r ]2(r7 +
r6 − 17r5 + 10r4 + 82r3 − 116r2 − 23r + 67) and the 2-chromatic number is 2.

Example 3 (The (r, 2)-colorings of a simplicial complex K ) Let K be the pure 2-
dimensional complex with facets F2(K ) = {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.

1

2

3

4

5

6

The picture shows a (2, 2)-coloring of K and the corresponding (2, 1)-coloring of the
associated graph,G0(P0), the block connected refinement of themonochromepartition
P = {{1, 2, 5, 6}, {3, 4}}. Table 1 shows the graphs G0(P) for all block connected
partitions P ∈ BCP2(K ). For each graph, the table records its 1-chromatic polynomial
and its 1-chromatic number. The 2-chromatic polynomial of K isχ2(K , 2) = 15[r ]2+
73[r ]3 +62[r ]4 +15[r ]5 +[r ]6 = [r ]2(r −1)(r +1)(r2 + r −1) and the 2-chromatic
number is chr2(K ) = 2.

Example 4 (The (r, 2)-colorings of the Möbius band) The set BCP2(MB) of block-
connected 2-independent partitions of the triangulated Möbius band MB (Fig. 1) has
36 elements. There are 5, 5, 15, 10, 1 partitions in BCP2(MB) realizing the parti-
tions [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] of the integer |V (MB)| = 5.
All associated graphs are complete graphs. This yields the 2-chromatic polyno-
mial χ2(MB, r) = 5[r ]2 + 20[r ]3 + 10[r ]4 + [r ]5 = [r ]2(r3 + r2 − 4r + 1) =
r5 − 5r3 + 5r2 − r and the 2-chromatic number is chr2(MB) = 2.

Remark 2 (The S-chromatic polynomial of K ) Let S be a set of connected subcom-
plexes of K . A set B ⊂ V (K ) of vertices is S-independent if B is not a superset of
any member of S. Let BCPS(K ) be the set of S-independent partitions of V (K ). An
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Table 1 The graphs for the block-connected partitions in BCP2(K )

# in BCP2(K ) G0(P) χ1(G0(P), r) chr1(G0(P))

1 r(r − 1)2(r − 2)3 3

1 r(r − 1)3(r − 2) 3

3 r(r − 1)2(r − 2)2 3

4 r(r − 1)2(r − 2)2 3

16 r(r − 1)2(r − 2) 3

3 r(r − 1)3 2

12 r(r − 1)2 2

(r,S)-coloring is a map V (K ) → {1, . . . , r} such that |col(S)| > 1 for all S ∈ S.
The number of (r,S)-colorings of K is

χS(K , r) =
∑

P∈BCPS (K )

χ1(G0(P), r)

as one sees by an obvious generalization of Theorem 2. An (r, s)-coloring of K is an
(r,S)-coloring of K where S = Fs(K ) is the set of s-simplices.

2.2 The s-Chromatic Linear Program

In the paper [15, §10] Read explains how to construct a linear program with minimal
value equal to the s-chromatic number chrs(K ) of K .

Definition 4 Ms(K ) is the set of all maximal s-independent subsets of V (K ).

Let A be the (m(K ) × |Ms(K )|)-matrix

A(v, M) =
{
1 v ∈ M

0 v /∈ M
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recording which vertices v ∈ V (K ) belong to which maximal s-independent sets
M ∈ Ms(K ). Now the s-chromatic number

chrs(K ) = min

⎧⎨
⎩

∑
M∈Ms (K )

x(M) | x : Ms(K ) → {0, 1},∀v ∈ V (K ) :

∑
M∈Ms (K )

A(v, M)x(M) ≥ 1

⎫⎬
⎭

is the minimal value of the objective function
∑

M∈Ms (K ) x(M) in |Ms(K )|
variables x : Ms(K ) → {0, 1}, taking values 0 or 1, and m(K ) constraints∑

M∈Ms (K ) A(v, M)x(M) ≥ 1, v ∈ V (K ).

2.3 The s-Chromatic Lattice

Our approach here simply follows Rota’s classical method for computing chromatic
polynomials from Möbius functions of lattices [16, §9]. We need some terminology
in order to characterize the monochrome loci for colorings of K . Recall that Fs(K )

is the set of s-simplices of K .

Definition 5 Let S ⊂ Fs(K ) be a set of s-simplices of K .

– The equivalence relation ∼ is the smallest equivalence relation in S such that
s1 ∩ s2 �= ∅ �⇒ s1 ∼ s2 for all s1, s2 ∈ S;

– The connected components of S are the equivalence classes under ∼;
– π0(S) is the set of connected components of S;
– S is connected if it has at most one component;
– V (S) =⋃ S is the vertex set of S;
– π(S) is the partition of V (K ) whose blocks are the vertex sets of the connected
components of S together with the singleton blocks {v}, v ∈ V (K ) − V (S), of
vertices not in any simplex in S;

– S is closed if S contains any s-simplex in K contained in the vertex set of S, ie if

{
σ ∈ Fs(K ) | σ ⊂ V (S)

} = S

– The closure of S is the smallest closed set of s-simplices containing S.

For instance, the empty set S = ∅ of 0 s-simplices is connected with 0 connected
components. If K = D[4], the set {{1, 2}, {2, 4}} of 1-simplices is connected while
{{1, 2}, {3, 4}} has the two components {{1, 2}} and {{3, 4}}.

A set of s-simplices is closed if and only if it equals its closure. For instance in
F2(D[5]), the set {{1, 2, 3}, {3, 4, 5}} is not closed because its closure is the set of all
2-simplices in D[5]. The empty set of s-simplices, any set of just one s-simplex, and
any set of disjoint s-simplices are closed.
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In this picture the green set of 2-simplices is

connected and not closed, closed and not connected, closed and connected, respec-
tively.

The partition π(S) has |π(S)| = |π0(S)| + m(K ) − |V (S)| blocks.
Lemma 2 Let S be a set of s-simplices in K and S0 a connected component of S.
Then S0 is closed if and only if

{
σ ∈ Fs(K ) | σ ⊂ V (S0)

} ⊂ S

Proof Since the condition is certainly necessarywe only need to see that it is sufficient.
Letσ be an s-simplex in K with all its vertices inV (S0). Thenσ lies in S by assumption.
But σ is equivalent to all elements of the equivalence class S0. Thus σ ∈ S0. ��
Lemma 3 Let S and T be sets of s-simplices in K .

1. If S and T are closed, so is S ∩ T .
2. If S and T have closed connected components, so does S ∩ T .

Proof (1) Let σ be an s-simplex of K and suppose that σ ⊂ V (S∩T ). Then σ ⊂ V (S)

an σ ⊂ V (T ) so that σ ∈ S and σ ∈ T as S and T are closed.
(2) Let R be a connected component of S∩T . Let S0 be the connected component of S
containing R and T0 be the connected component of T containing R. Then R ⊂ S0∩T0.
Suppose that σ ∈ Fs(K ) is an s-simplex with σ ⊂ V (R). Then σ ⊂ V (S0 ∩ T0)
so σ ∈ S0 ∩ T0 by (1) as the connected components S0 and T0 are assumed to be
closed. In particular, σ ∈ S ∩ T . According to Lemma 2, the connected component R
is closed. ��
Definition 6 The s-chromatic lattice of K is the set Ls(K ) of all subsets of Fs(K )

with closed connected components. Ls(K ) is a partially ordered by set inclusion.

The set Ls(K ) contains the empty set ∅ of s-simplices and the set Fs(K ) of all
s-simplices. These two elements of Ls(K ) are distinct when K has dimension at least
s and then S = Fs(K ) is the only subset of Fs(K ) whose associated partition π(S)

of V (K ) has just one block.

Corollary 1 Ls(K ) is a finite lattice with 0̂ = ∅, 1̂ = Fs(K ), andmeet S∧T = S∩T .

Proof If S, T ∈ Ls(K ) then S ∩ T is also in Ls(K ) by Lemma 3 and this is clearly
the greatest lower bound of S and T . It is now a standard result that Ls(K ) is a finite
lattice [19, Proposition 3.3.1]. The join S ∨ T of S, T ∈ Ls(K ) is the intersection of
all supersets U ∈ Ls(K ) of S ∪ T . ��
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Example 5 (The s-chromatic lattice Ls(D[m])) The closed and connected elements
of the s-chromatic lattice Ls(D[m]) of the complete simplex D[m] on m > s vertices
are ∅ and the sets Fs(D[k]) of all s-simplices in the

(m
k

)
subcomplexes isomorphic

to D[k] for s < k ≤ m. The map S → π(S) is an isomorphism between the lattice
Ls(D[m]) and the lattice, ordered by refinement, of all partitions of the set [m] into
blocks of size > s or 1. The least element, 0̂ = (1) . . . (m), is the partition with m
blocks and the greatest element, 1̂ = (1 . . .m), the partition with 1 block. Ls(D[m])
is not a graded lattice [19, p 99] in general when s ≥ 2. To see this, observe that
the 2-chromatic lattices L2(D[3]), L2(D[4]), and L2(D[5]) are graded but the lattice
L2(D[6]) is not graded as it contains two maximal chains

0̂=(1)(2)(3)(4)(5)(6)<(123)(4)(5)(6)<(1234)(5)(6)<(12345)(6)<(123456)= 1̂

0̂ = (1)(2)(3)(4)(5)(6) < (123)(4)(5)(6) < (123)(456) < (123456) = 1̂

of unequal length. In contrast, the 1-chromatic lattice of any finite simplicial complex
is always graded and even geometric [16, §9, Lemma 1].

Remark 3 (The Möbius function for the s-chromatic lattices Ls(D[m])) Our discus-
sion of the Möbius function for the lattice Ls(D[m]) echoes the exposition of the
Möbius function for the geometric lattice L1(D[m]) of all partitions from [19, Exam-
ple 3.10.4].

Let w : [m] → N be a function that to every element of [m] associates a natural
number, thought of as a weight function. We write w = 1i12i2 . . . r ir , or something
similar, for the weight functionw defined on the set [m] of cardinalitym =∑ j i j and
mapping i j elements to j for 1 ≤ j ≤ r . The map w extends to a map, also called w,
defined on the set of all nonempty subsets X of [m] given byw(X) =∑x∈X w(x). Let
Ls
m(w) be the lattice of all partitions of the set [m] into blocks X that are singletons or

have weight w(X) > s. The non-singleton blocks of the meet σ ∧ τ of two partitions
σ, τ ∈ Ls

m(w) are the subsets of weight > s of the form S ∩ T where S is a block in
σ and T a block in τ . Write μs

m(w) for the Möbius function of Ls
m(w).

In particular, Ls
m(1m) is a synonym for Ls(D[m]) and we are primarily interested

in the Möbius function μs
m(1m) of the uniform weight w = 1m . However, the com-

putation of this Möbius function will involve the Möbius functions of other weights
as well. We shall therefore discuss the Möbius functions μs

m(w) for general weight
functions w.

Suppose that σ ∈ Ls
m(w), σ < 1̂, is a partition of [m] into singleton blocks or

blocks of weight > s. Let w(σ) be the restriction of w to the set of blocks of σ . Thus
w(σ)(X) =∑x∈X w(x) for any block X of σ . Then the interval [σ, 1̂] in Ls

m(w) has
the form [

σ, 1̂
] = Ls|σ |(w(σ))

and hence μs
m(w)(σ, 1̂) = μs|σ |(w(σ))(̂0, 1̂). More generally, suppose that σ < τ for

some τ ∈ Ls
m(w). Assume that the partition τ has blocks τ j . Let σ j be the set of those

blocks of σ that intersect the block τ j of τ . Let w(σ j ) be the restriction of w(σ) to
σ j . The interval [σ, τ ] in Ls

m(w) is isomorphic to
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[σ, τ ] ∼=
∏
j

Ls|σ j |(w(σ j ))

and therefore the value of the Möbius function on the pair (σ, τ )

μs
m(w)(σ, τ ) =

∏
j

μs|σ j |(w(σ j ))
(̂
0, 1̂
)

by the product theorem forMöbius functions [19, Proposition 3.8.2].We conclude that
the complete Möbius functions on all the lattices Ls

m(w), are actually determined by
the values μs

m(w)(̂0, 1̂) of these Möbius functions on just (̂0, 1̂). See Equation (2.3)
for more information about these Euler characteristics.

For the following it is convenient to name the elements of the domain [m] of
w in such a way that the element m carries minimal weight. Assume that am =
(1 . . .m−1)(m) is an element of Ls

m(w), ie thatw(1)+· · ·+w(m−1) > s. We shall
determine the set of lattice elements x with x ∧ am = 0̂. There is only one solution to
this equation with x ≤ am and that is x = 0̂. As the other solutions satisfy x � am ,
they must have a block that contains m and at least one other element. It follows that
the solutions x �= 0̂ are all elements of the form

x = (x1 . . . xtm)(·) · · · (·) with
{

w(x1) > s − w(m) t = 1

s ≥ w(x1) + · · · + w(xt ) > s − w(m) t > 1

where all blocks but the unique block containing m are singletons. There are t + 1
elements in the block containing m where t is some number in the range 1 ≤ t ≤ s.
(All the solutions x �= 0̂ are atoms in the lattice Ls

m(w).) Since we are in a lattice, the
Möbius function satisfies the equation [19, Corollary 3.9.3]

μs
m(w)

(̂
0, 1̂
) = −

∑
x∧am=̂0
x �=̂0

μs
m(w)

(
x, 1̂
)

which translates to

μs
m(w)

(̂
0, 1̂
) = −

∑
x∧am=̂0
x �=̂0

μs|x |(w(x))
(̂
0, 1̂
)

= −
∑

1≤x1≤m−1
w(x1)>s−w(m)

μs
m−1(w(x1m)w(·) · · ·w(·)) (̂0, 1̂)

−
∑
1<t≤s

∑
1≤x1,...,xt≤m−1

s≥w(x1)+···+w(xt )>s−w(m)

μs
m−t (w(x1 . . . xtm))w(·) · · ·w(·)) (̂0, 1̂)

(2.1)

This describes a recursive procedure for computing all values of the Möbius function
on the weight lattices Ls

m(w).
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As an illustration we compute μ2
6(1

6)(̂0, 1̂). Using (2.1) twice gives

μ2
6(1

6)
(̂
0, 1̂
) = −10μ2

4(3111)
(̂
0, 1̂
) = 10

(
μ2
3(411)

(̂
0, 1̂
)+ μ2

2(33)
(̂
0, 1̂
))

The lattices L2
4(411) and L2

2(33) have 4 and 2 elements, respectively, and they look
like

L2
3(411) :

μ(̂0, ·) = 1

μ(̂0, ·) = −1

μ(̂0, ·) = 1

μ(̂0, ·) = 1 L2
2(33) :

μ(̂0, ·) = 1

μ(̂0, ·) = −1

so that μ2
3(411)(̂0, 1̂) = 1 and μ2

2(33)(̂0, 1̂) = −1. Therefore μ2
6(1

6)(̂0, 1̂) = 0.

We remind the reader of the well-known fact that μs
m(w)(̂0, 1̂) is the reduced Euler

characteristic of the open interval Ls
m(w)(̂0, 1̂) between 0̂ and 1̂ in the lattice Ls

m(w).

Proposition 1 [16, §6] [19, Proposition 3.8.5] Let x < y be two elements in a finite
poset. The value of the Möbius function on the pair (x, y) is the reduced Euler char-
acteristic of the open interval (x, y).

Proof Write μ be the Möbius function of P and E for Euler characteristic. The closed
interval from x to y has Euler characteristic 1 since it has a smallest element. Thus

1 = E([x, y]) =
∑

a,b∈[x,y]
μ(a, b) =

∑
a,b∈(x,y)

μ(a, b)

+
∑

a∈[x,y]
μ(a, y) +

∑
b∈[x,y]

μ(x, b) − μ(x, y)

= E((x, y)) + 0 + 0 − μ(x, y) = E((x, y)) − μ(x, y)

which means that μ(x, y) = Ẽ((x, y)). ��
Define the s-monochrome set of a map col : V (K ) → [r ] = {1, . . . , r} to be the

set
Ms(col) = {σ ∈ Fs(K ) | |col(σ )| = 1}

of all monochrome s-simplices in K . Note that the map col is not necessarily an
(r, s)-coloring; indeed, col is an (r, s)-coloring of K if and only if Ms(col) = ∅.
Lemma 4 The s-monochrome set Ms(col) of anymap col : V (K ) → [r ] is an element
of the s-chromatic lattice Ls(K ).
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Proof Let S be a connected component of Ms(col). Since S is connected, all vertices
in S have the same color. Let σ ∈ Fs(K ) be an s-simplex of K such that σ ⊂ V (S).
The σ is monochrome: σ ∈ Ms(col). By Lemma 2, S is closed. ��
Theorem 3 The number of (r, s)-colorings of K is

χ s(K , r) =
∑

T∈Ls (K )

μ
(̂
0, T

)
r |π(T )|

where μ the Möbius function for the s-chromatic lattice Ls(K ).

Proof For any B ∈ Ls(K ), let χ(K , B, r, s) be the number of maps col : V (K ) → [r ]
with Ms(col) = B. We want to determine χ(K ,∅, r, s) = χ s(K , r). For any A ∈
Ls(K ),

r |π(A)| =
∑
A≤B

χ(K , B, r, s)

because there are r |π0(A)|rm(K )−|V (A)| = r |π(A)| maps col : V (K ) → [r ] with A ≤
Ms(col). Equivalently,

∑
B≥A

μ(A, B)r |π(B)| = χ(K , A, r, s)

by Möbius inversion [19, Proposition 3.7.1]. The statement of the theorem is the
particular case of this formula where A = 0̂. ��

The defining rules for the Möbius function of the poset Ls(K ) [19, 3.7]

– μ(S, S) = 1 for all S ∈ Ls(K )

–
∑

R≤S≤T μ(R, S) = 0 when R � T
– μ(R, S) = 0 when R � S

imply that μ(̂0, 0̂) = 1 and μ(̂0, {σ }) = −1 for every s-simplex σ ∈ Fs(K ).

Corollary 2 The highest degree terms of the s-chromatic polynomial are

χ s(K , r) = rm(K ) − fs(K )rm(K )−s + · · ·

Thus the s-chromatic polynomial determines f0(K ) and fs(K ).

Proof The s-chromatic polynomial is

χ s(K , r) = μ
(̂
0, 0̂
)
r f0(K ) +

∑
σ∈Fs (K )

μ
(̂
0, {σ }) r f0(K )−s + · · ·

where μ(̂0, 0̂) = 1 and μ(̂0, {σ }) = −1 for all s-simplices σ of K . ��
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Example 6 Consider the 2-dimensional complex K fromExample 3. The 2-chromatic
lattice L2(K ) of K

•
{1, 2, 3}

•
{4, 5, 6}

•
{2, 3, 4}

•

{1, 2, 3}
{4, 5, 6} •

{1, 2, 3}
{2, 3, 4} •

{2, 3, 4}
{4, 5, 6}

•
̂0

•
̂1

μ(S) = +1 |π(S)| = 6

μ(S) = −1 |π(S)| = 4, 4, 4

μ(S) = +1 |π(S)| = 2, 3, 2

μ(S) = −1 |π(S)| = 1

consists of all subsets of F2(K ). The 2-chromatic polynomial is

χ2(K , r) = r6 − r4 − r4 − r4 + r2 + r3 + r2 − r = r6 − 3r4 + r3 + 2r2 − r

K has χ2(K , 2) = 30 (2, 2)-colorings and χ2(K , 3) = 528 (3, 2)-colorings.

Example 7 The triangulation MB of the Möbius band with f -vector f (MB) =
(5, 10, 5) shown in Fig. 1 has the following (reduced) 2-chromatic lattice L2(MB) −
{̂0, 1̂}

•
{1, 3, 5}

•
{2, 3, 5}

•
{1, 3, 4}

•
{2, 4, 5}

•
{1, 2, 4}

•

{1, 3, 5}
{2, 3, 5} •

{1, 3, 5}
{1, 3, 4} •

{2, 4, 5}
{2, 3, 5} •

{1, 2, 4}
{1, 3, 4} •

{2, 4, 5}
{1, 2, 4}

μ = −1 |π(S)| = 3, 3, 3, 3, 3

μ = +1 |π(S)| = 2, 2, 2, 2, 2

and 2-chromatic polynomial

χ2(MB, r) = r5 − 5r3 + 5r2 − r

The lattice L2(MB) is graded but it is still not semi-modular [19, Proposition 3.3.2]:
The meet and join of a = {{2, 3, 5}} and b = {{1, 3, 4}} are a ∧ b = 0̂ and a ∨ b = 1̂.
Thus a and b cover a ∧ b but a ∨ b covers neither a nor b.

Example 8 Let MT be Möbius’s minimal triangulation of the torus with f -vector
f (MT) = (7, 21, 14) and P2 the triangulation of the projective plane with f -vector
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1

23

1

2 3

4

6

5

1 4 7 3

3

2

1 4 7 3

2

1
5

6

Fig. 2 (3, 2)-colorings of P2 and MT

f (P2) = (1, 6, 15, 10) shown in Fig. 2 (decorated with (3, 2)-colorings). The chro-
matic polynomials of these two simplicial complexes are

χ1(MT, r) = [r ]7, χ2(MT, r) = r7 − 14r5 + 21r4 + 7r3 − 21r2 + 6r

χ1(P2, r) = [r ]6, χ2(P2, r) = r6 − 10r4 + 15r3 − 6r2

In both cases, the 1-skeleton is the complete graph on the vertex set. The chromatic
numbers are chr1(MT) = 7, chr1(P2) = 6, and chr2(MT) = 3 = chr2(P2).

The chromatic polynomials of simple graphs (the 1-chromatic polynomials of sim-
plicial complexes) are known to have these properties:

– The coefficients are sign-alternating [16, §7, Corollary]
– The coefficients are log-concave (Definition 9) in absolute value [12]
– There are no negative roots and no roots between 0 and 1 [20]
– χ1(K ,m(K )) > eχ1(K ,m(K ) − 1) [8]

In contrast, the 2-chromatic polynomial

χ2(MT, r) = r7−14r5+21r4+7r3−21r2+6r = [r ]3(r+1)
(
r3 + 2r2 − 9r + 3

)

has none of these properties.

2.4 The s-Chromatic Polynomial in Falling Factorial Form

Theorem 1 provides an interpretation of the coefficients of the falling factorial [r ]i in
the s-chromatic polynomial of the simplicial complex K .

Definition 7 S(K , r, s) is the number of partitions of V (K ) into r s-independent
blocks.

We think of S(K , r, s) as an s-Stirling number of the second kind for the simplicial
complex K . If s > dim(K ), then there are no s-simplices in K and all partitions of
V (K ) are s-independent, so that S(K , r, s) is the Stirling number of the second kind
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S(m(K ), r) [19, p 33]. We now explain the general relation between the simplicial
Stirling numbers and the usual Stirling numbers of the second kind.

Define the s-monochrome set of a partition P of V (K ) to be the set

Ms(P) = {σ ∈ Fs(K ) | σ is contained in a block of P}

of all s-simplices entirely contained in one of the blocks of P . The set Ms(P) is an
element of the s-chromatic lattice Ls(K ) by Lemma 4.

Theorem 4 The number of partitions of V (K ) into r s-independent blocks is

S(K , r, s) =
∑

T∈Ls (K )

μ
(̂
0, T

)
S(|π(T )|, r)

where μ is the Möbius function for the s-chromatic lattice Ls(K ).

Proof For any B ∈ Ls(K ), let S(K , B, r, s) be the number of partitions P of V (K )

into r blockswithmonochrome setMs(P) = B.Wewant to determine S(K ,∅, r, s) =
S(K , r, s). For any A ∈ Ls(K ),

S(|π(A)|, r) =
∑
A≤B

S(K , B, r, s)

because there are S(|π(A)|, r) partitions P of V (K ) into r blocks with A ≤ Ms(P).
Equivalently, ∑

A≤B

μ(A, B)S(|π(B)|, r) = S(K , A, r, s)

by Möbius inversion [19, Proposition 3.7.1]. The statement of the theorem is the
particular case of this formula where A = 0̂. ��
Proof (Proof of Theorem 1) We simply follow the proof of the similar statement for
chromatic polynomials for graphs [15, Theorem 15]. When r ≥ i we can get an (r, s)-
coloring out of one of the S(K , i, s) partitions of V (K ) into i s-independent blocks
by choosing i out of the r colors and assigning them to the i blocks. There are

(r
i

)
ways of choosing the i out of r colors and i ! ways of coloring i blocks in i colors. The
number of (r, s)-colorings of K in exactly i colors is thus

S(K , i, s)

(
r

i

)
i ! = S(K , i, s)[r ]i

so that

χ s(K , r) =
m(K )∑
i=1

S(K , i, s)[r ]i

is the total number of (r, s)-colorings of K . ��
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Corollary 3 The reduced Euler characteristic of the open interval (̂0, 1̂) in the s-
chromatic lattice Ls(K ) is

μ(Ls(K ))
(̂
0, 1̂
) =

m(K )∑
i=chrs (K )

(−1)i−1(i − 1)!S(K , i, s)

when dim K ≥ s.

Proof Compare the terms of degree 1 of the two expressions

∑
T∈Ls (K )

μ(Ls(K ))
(̂
0, T

)
r |π(T )| =

m(K )∑
i=chrs (K )

S(K , i, s)[r ]i (2.2)

from Theorems 3 and 1 for the s-chromatic polynomial of K . Since dim K ≥ s ≥ 1
the s-chromatic lattice Ls(K ) has a unique element T with |π(T ))| = 1, namely the
set T = Fs(K ) of all s-simplices of K . ��

We observe that

∑
i

S(K , i, s)[r ]i =
∑
i

∑
T

μ
(̂
0, T

)
S(|π(T )|, i)[r ]i

=
∑
T

μ
(̂
0, T

)∑
i

S(|π(T )|, i)[r ]i =
∑
T

μ
(̂
0, T

)
r |π(T )|

so that Theorem 4 implies Theorem 1.
The s-chromatic number of K is immediately visible with the s-chromatic polyno-

mial in factorial form because

chrs(K ) = min{i | S(K , i, s) �= 0}

is the lowest degree of the nonzero terms. The positive integer sequence

χ s(K , chrs(K )), . . . , χ s(K ,m(K )) = 1

has no internal zeros. (If there is a partition of V (K ) into r blocks not containing
any s-simplex of K and r < m(K ), then split one of the blocks with more than one
vertex into two sub-blocks to get a partition of V (K ) into r + 1 blocks containing no
s-simplices of K .)

Proposition 2 Let K be a subcomplex of L and assume that V (K ) = V (L).

1. S(K , r, s) ≥ S(L , r, s) for all r .
2. If S(K , r, s) = S(L , r, s) for some r with 1

s (|V |−1) ≤ r ≤ |V |−s, then K s = Ls.
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Proof (1) Let V be the vertex set of K and L . Write S(K , r, s) and S(L , r, s) for the
set of partitions of V into r blocks containing no s-simplex of K or L , respectively.
Then S(L , r, s) ⊆ S(K , r, s) for all r and s. Thus S(L , r, s) ≤ S(K , r, s).
(2) Suppose that σ ∈ Fs(L) − Fs(K ) is an s-simplex of L that is not an s-simplex of
K . Any partition of the form

{σ } ∪ τ, τ ∈ S(D[V − σ ], r − 1, s),

is in S(K , r, s) − S(L , r, s). The set S(D[V − σ ], r − 1, s) is nonempty when

chrs(D[V − σ ]) =
⌈ |V | − s − 1

s

⌉
≤ r − 1 ≤ |V | − s − 1

and thus S(K , r, s) is strictly greater than S(L , r, s) when |V |−1
s ≤ r ≤ |V | − s. ��

Remark 4 (S(K , r, s) for the complete simplex K = D[m]) For any finite set M , let
S(M, r, s) stand for S(D[M], r, s) (Definition 7), the number of partitions of the set
M into r blocks containing at most s elements. Let us even write S(m, r, s) in case
M = [m], m ≥ 1, r, s ≥ 0.

Clearly, S(m, r, s) is nonzero only whenm/s ≤ r ≤ m. Also, S(m, r, s) = S(m, r)
when r is among the s numbers m − s + 1, . . . ,m.

The recurrence relation

S(m, r, s) =
m−1∑
j=m−s

(
m − 1

j

)
S( j, r − 1, s)

can be used to compute these numbers. Alternatively, one may use

S(m + 1, r + 1, s) = S(m, r, s) + (r + 1)S(m, r + 1, s) +
(
m

s

)
S(m − s, r, s)

from [5]. Table 2 shows S(m, r, s) for small m; the number S(m, r, s) is in row s and
column r in the chromatic table (Definition 8) for D[m]. All the red numbers are usual
Stirling numbers of the second kind.

According to Theorem 1, the numbers S(m, r, s) determine the s-chromatic poly-
nomial in falling factorial form of the complete simplex on m vertices

χ s(D[m], r) =
m∑

i=�m/s�
S(m, i, s)[r ]i

and, according to Corollary 3, they also determine the reduced Euler characteristic

Ẽ(Ls(D[m])) = μs
m(1m)

(̂
0, 1̂
) =

m∑
i=�m/s�

(−1)i−1(i − 1)!S(m, i, s)
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Table 2 Chromatic tables for
complete simplices D[m] for
m = 2, . . . , 7

(
0 1
) (

0 0 1
0 3 1

)

⎛
⎝0 0 0 1
0 3 6 1
0 7 6 1

⎞
⎠

⎛
⎜⎜⎝
0 0 0 0 1
0 0 15 10 1
0 10 25 10 1
0 15 25 10 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 0 0 0 1
0 0 15 45 15 1
0 10 75 65 15 1
0 25 90 65 15 1
0 31 90 65 15 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
0 0 0 105 105 21 1
0 0 175 315 140 21 1
0 35 280 350 140 21 1
0 56 301 350 140 21 1
0 63 301 350 140 21 1

⎞
⎟⎟⎟⎟⎟⎠

of the s-chromatic lattice Ls(D[m]) on the full simplex on m vertices.
More generally, if w : M → N is a function on M with natural numbers as values,

let S(M, w, r, s) be the number of partitions of M into admissible blocks, where
we declare a block admissible if it is a singleton or it has weight at most s. (Then
S(m, r, s) = S([m], 1m, r, s) occur when M = [m] and w = 1m places weight 1 on
all elements.) Any such partition is a partition of M into blocks of weight at most
s, and therefore S(M, w, r, s) ≤ S(|M |, r, s). In particular, S(M, w, r, s) is nonzero
only when |M |/s ≤ r ≤ ‖M |. The recurrence relation

S(M, w, r, s) =
∑

∅�=J⊂M−{max(M)}
M − J admissible

S(J, w|J, r − 1, s)

provides a means to compute these numbers.
The weighted version of Eq. (2.2) for K = D[m],

∑
σ∈Ls

m (w)

μs
m(w)

(̂
0, σ

)
r |σ | =

m∑
i=�m/s�

S ([m], w, i, s) [r ]i

implies, by comparing coefficients of first degree terms, the expression

μs
m(w)

(̂
0, 1̂
) =

m∑
i=�m/s�

(−1)i−1(i − 1)!S([m], w, i, s) (2.3)

for the Euler characteristic of the weighted lattice Ls
m(w) from Remark 3.

Remark 5 (Euler characteristics of s-chromatic lattices for full simplices) Fix s ≥ 1.
The reduced Euler characteristics Ẽ(Ls(D[m+1])),m ≥ s, of the s-chromatic lattices
of the full simplices satisfy the relation

(
s∑

k=0

xk

k!

)(
1 +

∞∑
m=s

Ẽ(Ls(D[m + 1])) x
m

m!

)
=

s−1∑
k=0

xk

k!
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due to Martin Wedel Jacobsen. For s = 1, 2, 3, 4, 5 and m ≥ s the reduced Euler
characteristics Ẽ(Ls(D[m + 1])) are

− 1, 2,−6, 24,−120, 720,−5040, 40320,−362880, 3628800,−39916800,

479001600,−6227020800, 87178291200, . . .

− 1, 3,−6, 0, 90,−630, 2520, 0,−113400, 1247400,−7484400, 0, 681080400,

− 10216206000, 81729648000, . . .

−1, 4,−10, 20,−70, 560,−4200, 25200,−138600, 924000,−8408400, 84084000,

− 798798000, 7399392000, . . .

− 1, 5,−15, 35,−70, 0, 2100,−23100, 173250,−1051050, 5255250,−15765750,

− 105105000, 2858856000, . . .

For s = 1 we obtain the sequence (−1)mm!, m ≥ 1, of reduced Euler characteristics
of the lattice of partitions of [m + 1] [19, Example 3.10.4]. For s = 2, we recognize
the sequence A009014 from the On-Line Encyclopedia of Integer Sequences (OES).
The remaining three sequences apparently do not match any sequences of the OES.

Because any simplicial complex K is a subcomplex of the complete simplex
D[m(K )] on its vertex set, we have

S(m(K ), r) ≥ S(K , r, s) ≥ S(m(K ), r, s), 1 ≤ r ≤ m(K ) (2.4)

Moreover, these inequalities are equalities for the s highest values m(K ) − s +
1, . . . ,m(K ) of r . Thus the s terms of highest falling factorial degree in the s-chromatic
polynomial of K

χ s(K , r) =
m(K )−s∑
i=0

S(K , i, s)[r ]i +
m(K )∑

i=m(K )−s+1

S(m(K ), i)[r ]i

are given by the s Stirling numbers S(m(K ),m(K )− s + 1), . . . , S(m(K ),m(K )) of
the second kind. These coefficients depend only on the size of the vertex set of K . We
shall next show that the coefficient number s + 1 counted from above, S(K ,m(K ) −
s, s), informs about the number fs(K ) of s-simplices in K .

Proposition 3 S(K ,m(K ) − s, s) = S(m(K ),m(K )− s) − fs(K ). If S(K ,m(K ) −
s, s) = S(m(K ),m(K ) − s, s) then K s = D[m(K )]s .
Proof The only partitions of the S(m,m − s) partitions of V (K ) into m − s blocks
that are not s-independent are those consisting of one s-simplex of K together with
singleton blocks. If S(K ,m(K ) − s, s) = S(D[m(K )],m(K ) − s, s) then fs(K ) =
fs(D[m(K )]) so Ks = D[m(K )]s . [This is a special case of Proposition 2.(2)]. ��
Definition 8 The chromatic table, χ(K ), of K is the (dim(K ) × m(K ))-table with
S(K , r, s) in row s and column r .
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This means that row s in the chromatic table lists the coefficients of the s-
chromatic polynomial. The chromatic table of a 3-dimensional simplicial complex
K , for instance, looks like this

r = 1 r = 2 . . . r = m − 3 r = m − 2 r = m − 1 r = m

S(K , ·, 1) S(K , 1, 1) S(K , 2, 1) . . . S(K ,m − 3, 1) S(K ,m − 2, 1) S(m,m − 1) − f1 S(m,m) = 1
S(K , ·, 2) S(K , 1, 2) S(K , 2, 2) . . . S(K ,m − 3, 2) S(m,m − 2) − f2 S(m,m − 1) S(m,m) = 1
S(K , ·, 3) S(K , 1, 3) S(K , 2, 3) . . . S(m,m − 3) − f3 S(m,m − 2) S(m,m − 1) S(m,m) = 1

where the red entries in row s are Stirling numbers of the second kind S(m, r) for
m − s + 1 ≤ r ≤ m, and the blue entry in row s is S(m(K ),m(K ) − s) − fs(K ).

Example 9 The chromatic tables of the 2-dimensional simplicial complexes from
Examples 3, 7, and 8 are

χ(K ) =
(
0 0 2 10 7 1
0 15 73 62 15 1

)
χ(MB) =

(
0 0 0 0 1
0 5 20 10 1

)

χ(MT) =
(
0 0 0 0 0 0 1
0 0 84 231 126 21 1

)
χ(P2) =

(
0 0 0 0 0 1
0 0 45 55 15 1

)

The red entries in column r are Stirling numbers S(m, r) and they are independent of
the row index. The blue entry in row s and column m − s, which equals S(m − s, s)−
fs(K ), detects if K has maximal s-skeleton by Proposition 3.

Example 10 Let K = AS3 be Altshuler’s peculiar triangulation of the 3-sphere with
f -vector f = (10, 45, 70, 35) [1]. The 1-chromatic polynomial isχ1(AS3, r) = [r ]10
as K 1 is the complete graph on 10 vertices. The chromatic table is

χ(AS3) =
⎛
⎝0 0 0 0 0 0 0 0 0 1
0 0 0 1360 8475 10355 4200 680 45 1
0 26 4320 25915 38550 22152 5845 750 45 1

⎞
⎠

The blue numbers determine the f -vector

f (AS3) = (10, S(10, 9) − χ(AS3)19, S(10, 8) − χ(AS3)28, S(10, 7) − χ(AS3)37)

The column number of the first nonzero term in each row tells us that chr1(AS3) = 10,
chr2(AS3) = 4, and chr3(AS3) = 2.

Example 11 The nonconstructible, nonshellable 3-sphere S317,74, f = (17, 91, 148,
74), found by Lutz [13], has
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r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

s = 1 0 0 0 0 0 0 0 88 3089
s = 2 0 0 36 702475 82949364 1075420155 3827766587 5493687086 3876597169
s = 3 0 422 4319865 338438489 3903094622 14292381565 22946854806 19158310796 9202775199

r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16 r = 17

s = 1 23017 55285 54973 25941 6210 762 45 1
s = 2 1507939074 346346664 48855523 4302470 235026 7672 136 1
s = 3 2708454744 507528561 61784524 4903589 249826 7820 136 1

as its chromatic table. Figure 3 shows a semi-logarithmic plot of the simplicial Stirling
numbers S(S317,74, r, s).

The triangulation�3
16, f = (16, 106, 180, 90), of the Poincaré homology 3-sphere

constructed by Björner and Lutz [2, Theorem 5] has

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

s = 1 0 0 0 0 0 0 0 0
s = 2 0 0 0 4589 2974411 69671411 300475213 442354547
s = 3 0 3 845561 70005500 701299653 2158716508 2888730959 2000811501

r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16

s = 1 0 0 0 0 28 44 14 1
s = 2 292864435 100793551 19546606 2225261 150095 5840 120 1
s = 3 792553648 190527025 28730056 2750278 165530 6020 120 1

as its chromatic table.

Observe that all the above chromatic tables have strictly log-concave rows.

Definition 9 [17] A finite sequence a1, a2, . . . , aN of N ≥ 3 nonnegative integers is
strictly log-concave if ai−1ai+1 < a2i for 1 < i < N (and log-concave if ai−1ai+1 ≤
a2i ).

It has been conjectured that the sequence of coefficients of the 1-chromatic polyno-
mial of a simple graph in falling factorial form, r → S(K , r, 1), chr1(K ) ≤ r ≤ m(K ),
is log-concave [4, Conjecture 3.11]. More generally, one may ask

Question 1 Is the finite sequence of simplicial Stirling numbers

r → S(K , r, s), chrs(K ) ≤ r ≤ m(K ),

log-concave for fixed K and s?
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r

log10 S(S
3
17,74, r, s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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6
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8
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11

s = 1
s = 2

s = 3

Fig. 3 The simplicial Stirling numbers for S317,74

We already noted that none of the general properties of chromatic polynomials of
simple graphs listed just below Example 7 holds for chromatic polynomials of higher
dimensional simplicial complexes. Thus we have the bizarre situation that the only
property that might hold for chromatic polynomials of any dimension, log-concavity
of the simplicial Stirling numbers, is not even known to hold for graphs!

Note that the Stirling numbers of the second kind, which are upper bounds for the
simplicial Stirling numbers S(K , r, s) by the inequalities (2.4), are log-concave in r
[17, Corollary 2].

We already examined Question 1 in Examples 9–11 and in Fig. 3. We shall now
examine Question 1 on spherical boundary complexes of cyclic n-polytopes.

Definition 10 The boundary of them-vertex cyclic n-polytope, ∂CP(m, n),m > n, is
the (n − 1)-dimensional simplicial complex on the ordered set [m] with the following
facets: An n-subset σ of [m] is a facet if and only if between any two elements of
[m] − σ there is an even number of vertices in σ .

By Gale’s Evenness Theorem [11], the simplicial complex ∂CP(m, n) triangulates
the boundary of the cyclic n-polytope on m vertices. Thus ∂CP(m, n) is a simplicial
(n − 1)-sphere on m vertices and it is �n/2�-neighborly in the sense that ∂CP(m, n)

has the same s-skeleton as the full simplex on its vertex set when s < �n/2�.

Example 12 (Cyclic polytopes with log-concave simplicial Stirling numbers of the
second kind) The chromatic tables of the simplicial 3-spheres ∂CP(m, 4) on m =
6, 7, 8, 9, 10 vertices are
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⎛
⎝0 0 0 0 0 1
0 1 21 47 15 1
0 16 81 65 15 1

⎞
⎠
⎛
⎝0 0 0 0 0 0 1
0 0 28 147 112 21 1
0 21 238 336 140 21 1

⎞
⎠

⎛
⎝0 0 0 0 0 0 0 1
0 1 50 393 582 226 28 1
0 29 654 1533 1030 266 28 1

⎞
⎠

⎛
⎝0 0 0 0 0 0 0 0 1
0 0 94 1062 2523 1719 408 36 1
0 36 1729 6471 6591 2619 462 36 1

⎞
⎠

⎛
⎝0 0 0 0 0 0 0 0 0 1
0 1 180 2980 10200 10777 4225 680 45 1
0 46 4445 25960 38550 22152 5845 750 45 1

⎞
⎠

All rows are strictly log-concave. As ∂CP(m, 4)1 = D[m]1, the 1-chromatic number
chr1(∂CP(m, 4)) = m, and it is not difficult to see that the 2-chromatic number
chr2(∂CP(m, 4)) is 2 if m is even and 3 if m is odd [7].

Right multiplication with the upper triangular matrix ([ j]i )1≤i, j≤m(K ) with [ j]i =( j
i

)
i ! = j !

(i− j)! in row i and column j transforms, by the formula χ s(K , j) =∑
chrs (K )≤i≤ j S(K , i, s)[ j]i of Theorem 1, the chromatic table into the (dim(K ) ×

m(K ))-matrix
χ(K )([ j]i )1≤i, j≤m(K ) = (χ s(K , j)

)
1≤s≤dim(K )
1≤ j≤m(K )

with the m(K ) values χ s(K , j), 1 ≤ j ≤ m(K ), of the s-chromatic polynomial in
row s. This matrix of chromatic polynomial values appears also to have log-concave
rows. Note, however, that the chromatic polynomial of a graph is not log-concave for
all integer values of r even though it is log-concave above a certain threshold value
depending on the maximal degree of the graph [10,18].

3 Chromatic Uniqueness

In this section we briefly discuss to what extent simplicial complexes are determined
by their chromatic polynomials. Proposition 3 shows that the chromatic table of a
simplicial complex determines its f -vector.

Definition 11 K is chromatically unique if it is determined up to isomorphism by its
chromatic table.

In Lemma 5 below, K � L is the disjoint union and K ∨ L the one-point union of
K and L . The proof is identical to the one for the similar statements about chromatic
polynomials for simple graphs [15, Theorems 2, 3].

Lemma 5 If K and L are finite simplicial complexes then

χ s(K � L , r) = χ s(K , r)χ s(L , r), χ s(K ∨ L , r) = χ s(K , r)χ s(L , r)

r

for all r and all s ≥ 0.
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The two nonisomorphic simplicial complexes

are not chromatically unique as they have identical chromatic tables

(
0 0 2 10 7 1
0 15 73 62 15 1

)

by Lemma 5. (These two complexes are, however, PL-isomorphic.)
On the other hand, Proposition 2.(2) immediately implies that the s-skeleton of a

full simplex is chromatically unique (in a very strong sense).

Proposition 4 If K has the same s-chromatic polynomial as a full simplex D[N ], then
K and D[N ] have isomorphic s-skeleta.
Proof If K and D[N ] have the same s-chromatic polynomial for some s ≥ 1, then
K has N vertices (Corollary 2), and, since χ s(K , N − s) = χ s(D[N ], N − s), the
s-skeleton of K is isomorphic to the s-skeleton of the full simplex on N vertices
[Proposition 2.(2)]. ��

4 Recurrence Relations for Simplicial Stirling Numbers

This section contains two recurrence relations for simplicial Stirling numbers. We
begin with the most simple version going by 0-simplices. It is clear that

S(K , 1, s) =
{
1 s > dim(K ) ≥ 0

0 otherwise

when r = 1. When r > 1, fix a vertex v0 of K . Then

S(K , r, s) =
∑

U0�V (K ), v0∈U0
U0 is s-independent

S (K ∩ D[V (K ) −U0], r − 1, s)

=
∑

∅�=U�V (K )−{v0}
V (K )−U is s-independent

S (K ∩ D[U ], r − 1, s)

To see the, let P be partition of V (K ) into r s-independent subsets. Let U0 be the
block containing v0. The other blocks in P form a partition P0 of K ∩ D[V (K )−U0]
into r − 1 s-independent subsets. The map P ↔ (P0,U0) is a bijection. This explains
the first equality. The second equality is simply obtained by writingU for V (K )−U0.

We state next a slightly different recurrence relation going by s-simplies rather than
vertices.
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Let σ ∈ Fs(D[V (K )]) − Fs(K ) be an (s + 1)-subset of V (K ) that itself is not in
K but all its proper subsets are in K . Define K + σ to be the s-dimensional simplicial
complex whose set of s-simplices is Fs(K + σ) = Fs(K ) ∪ {σ } and with the same
(s − 1)-skeleton as K .

Proposition 5 (Deletion–contraction relation) The simplicial Stirling numbers of the
second kind for K + σ are

S(K + σ, r, s) = S(K , r, s) −
∑

U⊆V (K )−σ
∀τ∈Fs (K ) : U∩τ �=∅

S(K ∩ D[U ], r − 1, s)

when r > 1.

Proof Using the notation of Theorem 4 we write S(K , B, r, s) for the number of
partitions P of V (K ) into r blocks with monochrome set Ms(P) = B ∈ Ls(K ). The
equation

S(K + σ,∅, r, s) = S(K ,∅, r, s) − S(K + σ, σ, r, s)

expresses the fact that an s-independent partitionof K is also an s-independent partition
of K + σ unless its monochrome set is {σ }. We now focus on the second term on the
right hand side.

For any finite simplicial complex L and any σ ∈ Fs(L) we have

S(L , σ, r, s) =
∑

σ⊆U0⊆V (L)
{τ∈Fs (L)|τ⊆U0}={σ }

S(L ∩ D[V (L) −U0],∅, r − 1, s)

=
∑

U⊆V−σ
{τ∈Fs (L)|U⊆V−τ }={σ }

S(L ∩ D[U ],∅, r − 1, s)

=
∑

U⊆V (L)
{τ∈Fs (L)|U∩τ=∅}={σ }

S(L ∩ D[U ], r − 1, s)

=
∑

U⊆V (L)−σ
∀τ∈Fs (L)−{σ } : U∩τ �=∅

S(L ∩ D[U ], r − 1, s)

To see this, let P be a partition of V (L) into r blocks with Ms(P) = {σ }. Let U0
be the block of P containing σ and let P0 be the partition of V (L) − U0 into r − 1
blocks containing no s-simplex of L . (The partition P0 is not empty as r > 1.) The
first equality comes from the bijection P ↔ (U0, P0). The second equality is obtained
by writing U for V (L) −U0. The third and fourth equality are simple rewritings.

Applying the above equality to K + σ gives

S(K + σ, σ, r, s) =
∑

U⊆V (K )−σ
∀τ∈Fs (K ) : U∩τ �=∅

S(K ∩ D[U ],∅, r − 1, s)
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because (K +σ)∩ D[U ] = K ∩ D[U ] whenU ⊆ V (K )−σ . This finishes the proof
of the proposition. ��

Proposition 5 can be used inductively to compute s-chromatic polynomials.

Example 13 We consider the same 2-dimensional simplicial complexes as in Example
9. Proposition 5 leads to the following integral relations

S(K , r, 2) = S(6, r) − 6S(1, r − 1) − 8S(2, r − 1) − 2S(3, r − 1)

− S(3, r − 1, 2), r ≥ chr2(K ) = 2

S(MB, r, 2) = S(5, r) − 5S(1, r − 1) − 5S(2, r − 1), r ≥ chr2(MB) = 2

S(MT, r, 2) = S(7, r) − 7S(1, r − 1) − 21S(2, r − 1) − 35S(3, r − 1)

− 14S(4, r − 1) + 7S(2, r − 2), r ≥ chr2(MT) = 3

S(P2, r, 2) = S(6, r) − 6S(1, r − 1) − 15S(2, r − 1) − 10S(3, r − 1),

r ≥ chr2(P2) = 3

between Stirling numbers of the second kind.

The familiar recurrence relation S(m, r) = S(m − 1, r − 1)+ r S(m − 1, r) for the
usual Stirling numbers of the second kind does not readily apply to simplicial Stirling
numbers. The closest analogue may be

S(K , r, s) = S(K ∩ D[V (K ) − {v0}], r − 1, s)

+
∑

P∈S(K∩D[V (K )−{v0}],r,s)
|{B ∈ P | B ∪ {v0} is s-independent in K }|

where v0 is a vertex of K and S(K ∩ D[V (K ) − {v0}], r, s) is the set of partitions P
of the vertex set of the simplicial complex K ∩ D[V (K ) − {v0}] into r s-independent
subsets.
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