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1. Introduction

Let G be a finite group, Π a finite G-poset, and r ≥ 1 a natural number. For any homomor-
phism X : Zr

→ G, write ΠX for the sub-poset consisting of all elements of Π fixed by all elements in
the image of X . The rth equivariant reduced Euler characteristic of the G-posetΠ was defined by Atiyah
and Segal [2] as the normalized sum

χr(Π,G) =
1
|G|


X∈Hom(Zr ,G)

χ(ΠX ) (1.1)

of the reduced Euler characteristicsχ(ΠX ) (Definition 3.1(1)) of the X-fixed sub-poset ΠX as X runs
through the set of all homomorphisms of Zr to G, or, equivalently, the set of r-tuples of commuting
elements of G. Two extreme examples are the following. When the poset Π = ∅ is empty,χr(∅,G) =

−|Hom(Zr ,G)|/|G|, and when Π has a least or greatest element,χr(Π,G) = 0 for all r ≥ 1.
We are here particularly interested in G-posets of partitions of G-sets. For a finite G-set S, let Π(S)

denote the G-lattice of partitions of S and Π∗(S) = Π(S) − {0,1} its proper part, the sub-G-poset of
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non-extreme partitions obtained by removing the discrete partition0 and the indiscrete partition1.
The rth equivariant reduced Euler characteristic of the partition G-posetΠ∗(S) is the normalized sum

χr(Π
∗(S),G) =

1
|G|


X∈Hom(Zr ,G)

χ(Π∗(S)X ) (1.2)

of the reduced Euler characteristics of the sub-posets Π∗(S)X of non-extreme X-partitions of S as X
ranges over the set of commuting r-tuples of elements of G.

Eq. (1.2) above highlights the relevance of Euler characteristics of G-partitions of G-sets. The first
part of this paper, dealing with the combinatorics of posets of G-partitions of G-sets, addresses this
issue. The main result here, Theorem 3.9, identifies the reduced Euler characteristic χ(Π∗(S)G) as a
G-Stirling number of the first kind.

In the second part we compute the equivariant reduced Euler characteristicsχr(Π
∗(S),G) in the

archetypical case where G = Σn is the symmetric group of degree n and S = Σn−1\Σn the standard
n-element right Σn-set. The Σn-poset Π∗(Σn−1\Σn) consists of all non-extreme partitions of the
n-set. The main result, Theorem 1.3 below, describes the equivariant reduced Euler characteristicsχr(Π

∗(Σn−1\Σn), Σn) for all r ≥ 1 and all n ≥ 1. (It is convenient to declareχr(Π
∗(Σn−1\Σn), Σn)

tomean 1 for all r ≥ 1when n = 1 even though the equivariant reduced Euler characteristics actually
equal −1 in these cases.)

Let πk, k ≥ 0, be the multiplicative functions given by πk(n) = nk for all n ≥ 1 and ι2 the
multiplicative function given by ι2(n) = n if n = 1, 2, 4, . . . is a power of 2 and ι2(n) = 0 otherwise.

Theorem 1.3. The rth reduced equivariant Euler characteristic of the Σn-poset Π∗(Σn−1\Σn) isχr(Π
∗(Σn−1\Σn), Σn) = cr(n)/n, n ≥ 1, r ≥ 1

where the multiplicative function cr is the Dirichlet inverse

cr = (ι2 ∗ π1 ∗ · · · ∗ πr−1)
−1

of the iterated Dirichlet convolution of the function ι2 and the r − 1 functions πk for 0 < k < r.

The corollary below presents two alternative and more explicit views on the rth equivariant
reduced Euler characteristics of Theorem 1.3. Let b0 = ε be the multiplicative Dirichlet unit function
ε = 1, 0, 0, . . . and for r ≥ 1, let br(n) and λr(n) be the multiplicative functions whose values on
prime powers n = pe are

br(pe) = (−1)ep(
e
2)

r
e


p
, λr(pe) =


e + r − 1

e


p

where
n
k


p refers to a p-binomial coefficient (Eq. (6.2)). We note in Corollary 6.8 that λr(n) is the

number of subgroups ofZr of index n and that br and thatλr are reciprocal underDirichlet convolution,
br ∗ λr = ε.

Corollary 1.4. Fix r ≥ 1.

(1) (cr ∗ λr)(n) = (−1)n+1 for all n ≥ 1.
(2)


d|n dχr(Π

∗(Σd−1\Σd), Σd)λr(n/d) = (−1)n+1 for all n ≥ 1.
(3) The multiplicative function cr(n)/n = χr(Π

∗(Σn−1\Σn), Σn) takes value br−1(2e) − br−1(2e−1) on
an even prime power n = 2e, e > 0, and value br−1(pe) on an odd prime power n = pe, e ≥ 0.

The equation of Corollary 1.4(2) provides a recurrence relation for the rth equivariant reduced
Euler characteristic function χr(Π

∗(Σn−1\Σn), Σn) when regarding the rth subgroup enumeration
function λr(n) known. Eq. (7.5) makes explicit the fact that the values given in Corollary 1.4(3)
completely determine the equivariant reduced Euler characteristics χr(Π

∗(Σn−1\Σn), Σn) for all r
and n. See Fig. 2 for concrete numerical values of cr(n)/n = χr(Π

∗(Σn−1\Σn), Σn) for small r and n.
The proofs of Theorem 1.3 and Corollary 1.4 are in Sections 5 and 7.
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Fig. 1. Recurrence for G-Stirling numbers of the second kind.

Fig. 2. The equivariant reduced Euler characteristics cr (n)/n = χr (Π
∗(Σn−1\Σn), Σn) for 1 ≤ r ≤ 5 and 1 ≤ n ≤ 15.

This paper contains sixmore sections. Section 2 introduces basic concepts as listed inDefinition 2.1.
We focus on the posetΠ(S)G ofG-partitions of aG-set S as this a premier ingredient in the definition of
equivariant Euler characteristics.We see in Corollary 2.9 thatΠ(1\G)G, the poset ofG-partitions of the
right G-set G, is the poset SG of subgroups of G. Thus subgroup posets are special cases of G-partition
posets.More importantly, Lemma 2.5, a result fromArone [1], states thatΠ∗(S)G is contractible unless
S is an isotypical G-set, a G-set in which all G-orbits are isomorphic. Corollary 3.7 emphasizes the
consequence that the sub-poset Π∗+iso(S)G of non-extreme isotypical G-partitions (Definition 2.1(9))
is homotopy equivalent to the full posetΠ∗(S)G of non-extremeG-partitions. In the followingwe shall
therefore concentrate on posets of isotypical G-partitions of isotypical G-sets. If S is now a G-orbit and
i a natural number, we write iS for the isotypical G-set with iG-orbits all isomorphic to S.

Section 3 discusses the reduced Euler characteristic χ(Π∗(iS)G) = χ(Π∗+iso(iS)G) of the
(isotypical) G-partition poset of an isotypical G-set iS. Definition 3.8 introduces G-Stirling numbers
of the second and first kind. These numbers are equivariant versions of the classical Stirling numbers.
Just as the classical Stirling number of the second kind, S(n, k), counts the number of partitions of
an n-set with k blocks, the G-Stirling number of the second kind, SG(iS, jT ), counts the number of
isotypical G-partitions of the isotypical G-set iS with isotypical block G-set isomorphic to jT . The G-
Stirling numbers of the second kind are determined by the table ofmarks forG and the classical Stirling
numbers (Proposition 3.13). The G-Stirling table of the first kind is the inverse of the G-Stirling table
of the second kind. Example 3.18 contains the concrete numerical values for the Σ3-Stirling numbers.
The main result of Section 3 is Theorem 3.9 asserting that the Euler characteristics χ(Π∗(iS)G) are
(special) G-Stirling numbers of the first kind. Corollary 3.17 specializes to the abelian case as this
suffices when computing equivariant Euler characteristics by means of Eq. (1.2).

Section 4, even though not needed for the proof of Theorem 1.3, contains additional information
about G-Stirling numbers of the first kind. Eq. (4.5) shows that G-Stirling numbers of the first kind are
related to theMöbius function on the poset of G-partitions just as the classical Stirling numbers of the
first kind are related to the Möbius function on the poset of classical partitions [19, Example 3.10.4].

In Section 5 we use the material of the previous sections to prove Theorem 1.3. In the following
Section 6 we identify the multiplicative sequences n → χr(Π

∗(Σn−1\Σn), Σn) of rth equivariant
Euler characteristics as Dirichlet convolutions of simpler multiplicative arithmetic sequences.

For a prime q, the rth q-primary equivariant Euler characteristic of a G-poset Π , while defined in
purely combinatorial terms (Eq. (7.1)), turns out to be the Euler characteristic of the homotopy orbit
space |Π |hG seen through the eyes of the rth Morava K -theory K(r) at q (Remark 7.2). The q-primary
equivariant reduced Euler characteristics of the Σn-poset Π∗(Σn−1\Σn) are determined in the main
result, Theorem 7.4, of the final Section 7. See Figs. 3–4 for concrete numerical values.

We end the introduction with a brief comment on the boolean case to put the results of this paper
into context. (See [5,21] for much more general results.) Let B(Σn−1\Σn) be the Σn-lattice of subsets
of the n-set. The reduced Euler characteristic of the sub-Σn-poset of non-empty and proper subsets,
B∗(Σn−1\Σn), isχ(B∗(Σn−1\Σn)) = (−1)n [19, Example 3.8.3] and the rth equivariant reduced Euler
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Fig. 3. The rth 2-primary equivariant reduced Euler characteristics c2r (n)/n = χ2
r (Π∗(Σn−1\Σn), Σn), 1 ≤ r ≤ 5, for

n = 2d, 0 ≤ d ≤ 5, a power of 2.

Fig. 4. The rth q-primary equivariant reduced Euler characteristics cqr (n)/n = χ q
r (Π

∗(Σn−1\Σn), Σn), 1 ≤ r ≤ 5, for
n = qd, 0 ≤ d ≤ 4, a power of q = 3, 5.

characteristic is

χr(B∗(Σn−1\Σn), Σn) =
1
n!


X∈Hom(Zr ,Σn)

(−1)|Σn−1\Σn/X |

where Σn−1\Σn/X is the orbit set for the action of X(Zr) on Σn−1\Σn. (When n = 0 we interpret
these equivariant reduced Euler characteristics as 1 for all r ≥ 1.) The result [5, Theorem 2.1]
[20, 5.13.(d) p 113] or the orbit counting formula of [23, Theorem 1] show that the generating function
for fixed r ≥ 1 is

n≥0

χr(B∗(Σn−1\Σn), Σn)un
=


d≥1

(1 − ud)λr−1(d).

This identity paired with [20, Exercise 5.13, pp 76,111–113] reveal that the sequences (χr(B∗

(Σn−1\Σn), Σn))n≥0 of rth equivariant reduced Euler characteristics and (|Hom(Zr , Σn)|/|Σn|)n≥0 =

(|Hom(Zr−1, Σn)/Σn|)n≥0 of conjugacy classes of (r − 1)-tuples of commuting elements in Σn are
reciprocal under convolution. We may view this observation and its reformulation

n
i=0


n
i


|Hom(Zr , Σn−i)|


X∈Hom(Zr ,Σi)

(−1)|Σn−1\Σn/X |
= 0, r > 0, n > 0

as the boolean analogs to Corollary 1.4(1)–(2).

2. Partitions of G-sets

We start by listing for easy reference a collection of basic definitions some ofwhichwill be detailed
below.

Definition 2.1. Let G be a finite group and S a finite right G-set.

(1) A partition π of S is an equivalence relation on S. The blocks of π are the equivalence classes of π
and π\S is the set of blocks. For any x ∈ S, [x]π = {y ∈ S | xπy}, or simply [x], is the π-block of x.

(2) Π(S) is the G-lattice of all partitions of S andΠ∗(S) = Π(S)−{0,1} the G-poset of all partitions
of S but the discrete and the indiscrete partitions,0 = {{x} | x ∈ S} and1 = {S}.

(3) A partition π of S is a G-partition if xπy ⇐⇒ (xg)π(yg) holds for all x, y ∈ S and g ∈ G.
(4) The block set π\S of a G-partition π of S is a G-set and π\S/G is the set of G-orbits of π-blocks.
(5) Π(S)G is the lattice of all G-partitions of S and Π∗(S)G = Π(S)G − {0,1} the poset of all G-

partitions of S but the discrete and indiscrete partitions (which are G-partitions).
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(6) The isotropy subgroup at x ∈ S is the subgroup xG = {g ∈ G | xg = x} of G.
(7) If π is a G-partition and B ∈ π\S a block of π , the block isotropy subgroup at B is the isotropy

subgroup BG at B for the G-action on the set π\S of π-blocks.
(8) The G-set S is isotypical if all isotropy subgroups are conjugate.
(9) The G-partition π ∈ Π(S)G is isotypical if the G-set π\S of π-blocks is isotypical. Π iso(S)G is the

poset of all isotypical G-partitions and Π∗+iso(S)G = Π iso(S)G − {0,1} the poset of all isotypical
G-partitions of S but the discrete partition (which is isotypical precisely when S is isotypical) and
the indiscrete partition (which is isotypical).

(10) SG is the poset of subgroups and [SG] the set of conjugacy classes of subgroups of G. Also, ζG is the
poset incidence function (ζG(H, K) = 1 if H ≤ K and ζG(H, K) = 0 otherwise), and µG = ζ−1

G
the Möbius function of SG [19, Section 3.7].

(11) OG is the (Burnside) category of finite right G-sets with surjective G-maps as morphisms. Oiso
G is

the full subcategory of OG generated by all isotypical finite right G-sets. The orbit category OG is
the full subcategory of OG generated by all G-orbits (transitive right G-sets).

When H and K are subgroups of G and NG(H, K) = {g ∈ G | Hg
≤ K} denotes the transporter set,

the bijection

NG(H, K)/K
∼=
−→ OG(H\G, K\G)

takes the left coset gK ∈ NG(H, K)/K to the right G-map H\G → K\G between G-orbits given by
Hx → Kg−1x. (If g1 ∈ NG(H, K) and g2 ∈ NG(K , L) for some subgroup L ≤ G, then the composition
H → Kg−1

1 → Lg−1
2 g−1

1 = L(g1g2)−1 inOG is themorphism defined by g1g2 ∈ NG(H, L).) The bijection

NG(H, K)/K
∼=
−→ (K\G)H

is induced by the map that takes any g ∈ G with Hg
≤ K to the coset Kg−1. Themark of H on K ,

TOMG(H, K) = |NG(H, K)/K | = |OG(H\G, K\G)| = |(K\G)H | (2.2)

is the number of morphisms in the categoryOG with domainH\G and codomain K\G or, equivalently,
the number of elements of the G-orbit K\G fixed by H . These numbers depend only on the conjugacy
classes of the subgroupsH and K . The table of marks for G is thematrix TOMG = (TOMG(H, K))H,K∈[SG]

of marks. The set [OG] of isomorphism classes of right G-orbits corresponds bijectively to the set [SG]

of conjugacy classes of subgroups of G [6, Theorem 1.3.(b)].
The set Π(S) of partitions of S is partially ordered by refinement [19, Example 3.3.1]:

π1 ≤ π2 ⇐⇒ ∀x ∈ S : [x]π1 ⊆ [x]π2 ⇐⇒ OG(π1\S, π2\S) ≠ ∅.

Themeet of π1 and π2 is the partition π1 ∧π2 with blocks [x]π1∧π2 = [x]π1 ∩[x]π2 , x ∈ S. The discrete
partition is0 with blocks [x]0 = {x}, x ∈ S, block set0\S = S, and the indiscrete partition is1 with
block [x]1 = S, x ∈ S, and block set1\S = {∗} of cardinality 1.

The set Π(S) of partitions of S is a right G-lattice: For any partition π of S and any g ∈ G, πg is the
partition given by x(πg)y ⇐⇒ (xg)π(yg). Then [x]πgg = {yg | x(πg)y} = {yg | (yg)π(xg)} = {y |

yπ(xg)} = [xg]π . Obviously,

π is a G-partition ⇐⇒ ∀g ∈ G : πg = π ⇐⇒ ∀g ∈ G∀x ∈ X : [x]πg = [xg]π
⇐⇒ ∀g ∈ G∀b ∈ π : bg ∈ π.

Thus the fixed lattice, Π(S)G, for this G-action on Π(S) is the lattice of all G-partitions.

Proposition 2.3. Let π be a G-partition of S.

(1) There is a right G-action on the set π\S of π-blocks such that S → π\S is a G-map.
(2) xG ≤ [x]G for any x ∈ S.
(3) xgG = (xG)g and [xg]G = ([x]G)g

(4) xgG ≤ ([x]G)g for any x ∈ S and any g ∈ G.
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Proof. The G-action on π\S is given by [x]g = [xg] for all x ∈ S and g ∈ G. �

Definition 2.4. Let P be a sub-poset of a lattice. An element c of P is a contractor for P if x ∨ c ∈ P or
x ∧ c ∈ P for all x ∈ P .

If c is a contractor for P then x ≤ x ∨ c ≥ c or x ≥ x ∧ c ≤ c are homotopies between the identity
map of P and the constant map c.

Lemma 2.5 ([1, Lemma 7.1]). Π∗(S)G is contractible unless S is an isotypical G-set.

Proof. Let ωG be the G-partition represented by the G-map S → S/G to the G-set of G-orbits and θG
the G-partition represented by the G-map S → S/G →∼= \S/G to the set of isomorphism classes of
G-orbits. Equivalently, xωGy if and only if x and y are in the same G-orbit, and xθGy if and only if x and y
have conjugate isotropy subgroups. We shall prove that θG is a contractor (Definition 2.4) for Π∗(S)G
when S is not isotypical.

We first make some small observations. Obviously, ωG ≤ θG. The G-action is trivial if and only if
ωG =0. The G-action is isotypical if and only if θG =1. If the G-action is trivial, all isotropy subgroups
are equal to G, and therefore θG =1.Wemay summarize these observations in a string of implications

θG =0 =⇒ ωG =0 ⇐⇒ ∀x ∈ S : xG = G =⇒ θG =1 ⇐⇒ S is isotypical.

Let π be any G-partition of S. We claim that

π ∧ θG =0 =⇒ π =0. (2.6)

To see this first note that

∀x, y ∈ S : xπy =⇒ y · xG ⊆ [y]π∧θG .

Indeed, let xπy and g ∈ xG. Then yπ(yg) for yπx, x = xg , and (xg)π(yg). Thus y and yg are both in
[y]π and in [y]θG . Now assume that π ∧ θG =0. Then

∀x, y ∈ S : xπy =⇒ xG ≤ yG

for the block [y]π∧θG = [y]0 = {y} consists of y alone which forces yg = y for all g ∈ xG. This can be
sharpened to

∀x, y ∈ S : xπy =⇒ xG = yG

as the equivalence relation π is symmetric, of course. Now, when x and y have the same isotropy
subgroups, x and y belong to the same block under θG. Thus we have shown π ≤ θG. Then π =

π ∧ θG =0. This proves claim (2.6).
Suppose that S is not isotypical. Then θG ≠ 0,1 and θG belongs to the poset Π∗(S)G. From claim

(2.6) we know that π ∧ θG ≠0 for all π ∈ Π∗(S)G. Thus θG is a contractor for Π∗(S)G. �

See Example 2.10 for an isotypical G-set S for which Π∗(S)G is contractible.
In the following, whenπ is an element of the posetΠ wewriteπ/Π for the sub-poset of all λ ∈ Π

with π ≤ λ. (See Definition 3.1(2) for a more detailed presentation of this notation.)
The block functor

Π(S)G → OG (2.7)

takes a G-partition π ∈ Π(S)G to its block G-set π\S. If π1 ≤ π2, there is an induced surjection
π1\S → π2\S of block G-sets as any block of π1 lies in a block of π2. Since0 ≤ π ≤ 1 there are
G-maps S =0\π → π\S →1\S = G\G. Observe that if π1 ≤ π2 and the block sets π1\S and π2\S
are isomorphic then π1 = π2 by the pigeon-hole principle. Thus G-partitions with isomorphic block
G-sets are incomparable.



J.M. Møller / European Journal of Combinatorics 61 (2017) 1–24 7

The block functor is the left adjoint functor in the adjoint equivalence [15, Definitions 2.1.1, 2.2.5,
1.3.5]

Π(S)G S/OG L(π) = (S → π\S) {ϕ−1(t) | t ∈ T } = R(S
ϕ
−→ T )

L

R
between the poset of G-partitions of S and the coslice under S of OG [15, Example 2.3.3]. From this
perspective, G-partitions of S are surjective G-maps with domain S. When S is an isotypical G-set we
get an induced adjoint equivalence

Π iso(S)G S/Oiso
G

L

R
for the isotypical case.

Proposition 2.8. For any G-partition π ∈ Π(S)G there are isomorphisms of posets

π/Π(S)G
∼=
−→ Π(π\S)G, π/Π iso(S)G

∼=
−→ Π iso(π\S)G

where we in the second case assume that π is isotypical.

Proof. This isomorphism takes a G-partition λ ∈ π/Π(S)G to the G-partition π\λ = R(π\S → λ\S)
whose blocks are the fibers of the G-map π\S → λ\S. The converse takes a G-partition λ of π\S to
R(S → πS → λ\(π\S)). The block set of π\λ is the block set of λ, (π\λ)\(π\S) = λ\S. In particular,
λ is an isotypical G-partition of S if and only if π\λ is an isotypical G-partition of π\S. �

Corollary 2.9 ([24, Lemma 3]). Let H be a subgroup of G. There is an isomorphism of posets

H/SG
∼=
−→ Π(H\G)G.

The blocks of the G-partition corresponding to the supergroup K of H are the fibers of the G-map H\G →

K\G taking coset H to coset K .

The G-partition of the G-orbit H\G corresponding to the supergroup K of H has |G : K | blocks
[Hg] = {Hgx | x ∈ K g

}, g ∈ G, of size |K : H|. The special case where H = 1 is the trivial subgroup
shows that the subgroup poset (Definition 2.1(10)) SG

∼= Π(1\G)G = Π iso(1\G)G is a special case of
a partition poset.

Example 2.10 (An Isotypical G-set S Such That Π∗(S)G is Contractible). Suppose that G has a nontrivial
Frattini subgroup Φ(G) [7, Chp 5, Section 1]. The right G-set 1\G is transitive and hence isotypical.
But still the poset Π∗(1\G)G = 1//SG//G of non-identity proper subgroups of G (Corollary 2.9) is
contractible as Φ(G) is a contractor [7, Chp 5, Theorem 1.1]. (This example was pointed out to me by
Matthew Gelvin.)

3. Euler characteristics of posets of G-partitions of isotypical G-sets

We first fix some general notation.

Definition 3.1. Let Π be a finite poset and let a and b be elements of Π .

(1) The Euler characteristic and the reduced Euler characteristic of Π are

χ(Π) =

∞
i=0

(−1)ifi(Π), χ(Π) = χ(Π) − 1

where fi(Π) is the number of length i chains in Π [19, Equation (19) p 120].
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(2) We write

a/Π = {p ∈ Π | a ≤ p} a//Π = {p ∈ Π | a < p} ka(Π) = −χ(a//Π)

Π/b = {p ∈ Π | p ≤ b} Π//b = {p ∈ Π | p < b} kb(Π) = −χ(Π//b)

for the coslice of Π under a (the left ideal generated by a), the proper coslice of Π under a, and
the weighting at a, and, dually, the slice of Π over b (the right ideal generated by b), the proper
slice of Π over b, and the coweighting at b [14, Definition 1.10]. Also,

a/Π/b = {p ∈ Π | a ≤ p ≤ b} = [a, b] a//Π//b = {p ∈ Π | a < p < b} = (a, b)

are the closed or open intervals from a to b.

The Euler characteristic of Π is the sum
a∈Π

ka(Π) = χ(Π) =


b∈Π

kb(Π)

of the values of the weighting or coweighting [14, Definition 2.2].
The zeta function ζΠ : Π × Π → Z of Π is defined by ζΠ (a, b) = 1 if a ≤ b and ζΠ (a, b) = 0

otherwise [19, p 114]. The Möbius function µΠ : Π × Π → Z of Π [19, Section 3.7] is determined by
the relations

∀a, b ∈ Π :


π∈Π

µΠ (a, π)ζΠ (π, b) = δa,b

where, as usual, δa,a = 1 and δa,b = 0 if a ≠ b. TheMöbius function satisfiesµΠ (a, a) = 1, µΠ (a, b) =χ(a//Π//b) for a < b, and µΠ (a, b) = 0 otherwise. In the case where a < b, this is implied by Philip
Hall’s theorem on chains [19, Proposition 3.8.5], for instance as expressed by the identities

1 = χ(a/Π//b) =


a≤x,y<b

µΠ (x, y) =


a≤y<b

µΠ (a, y) +


a<x,y<b

µΠ (x, y)

= −µΠ (a, b) +


a≤y≤b

µΠ (a, y) + χ(a//Π//b) = −µΠ (a, b) + χ(a//Π//b).

In case Π has a least element0 and a greatest element1 ≠0,
1 = χ(Π//1) =


a∈Π//1 k

a(Π//1) =


0≤a<1 −χ(a//Π//1) =


0≤a<1 −µΠ (a,1) (3.2)

1 = χ(0//Π) =


b∈0//Π kb(0//Π) =


0<b≤1 −χ(0//Π//b) =


0<b≤1 −µΠ (0, b) (3.3)

as Π//1 has a 0 and 0//Π a 1. The weighting for Π//1 (coweighting for 0//Π ) restricts to a
weighting (coweighting) for0//Π//1.

We now specialize to partition posets Π(S) of right G-sets S.

Proposition 3.4 (Coslices in Π(S)G and weightings in Π(S)G//1). For any G-partition π of the right
G-set S

π/Π(S)G = Π(π\S)G, π//Π(S)G//1 = Π∗(π\S)G (when π <1).
The weighting for Π(S)G//1 at π <1 is

kπ (Π(S)G//1) = −χ(Π∗(π\S)G).

The open interval π//Π(S)G//1 is contractible and the weighting kπ (Π(S)G//1) is zero unless π is an
isotypical G-partition (Definition 2.1 (9)).

Proof. The first identity comes fromProposition 2.8. Ifπ is a non-isotypicalG-partition thenΠ∗(π\S)
is contractible by Lemma 2.5 and its Euler characteristic kπ (Π(S)G//1) is zero. �
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Recall from Definition 2.1(4) that if π is a G-partition of the right G-set S, then π\S is the G-set of
π-blocks and π\S/G the set of G-orbits of π-blocks. For any π-block B ∈ π\S, BG is the G-isotropy
subgroup at B (Definition 2.1(6)) and BG ∈ π\S/G the G-orbit through B. Thus BG\G and BG are
isomorphic right G-sets. Π(B)BG is the poset of BG-partitions of the right BG-set B. The symbol

BG∈π\S/G

Π(B)BG

denotes the product of all the posets Π(B)BG as the π-blocks B in π\S range over a complete set of
representatives for the set of G-orbits BG in π\S/G. See the proof of Lemma 2.5 for the definition of
the G-partition θG.

Proposition 3.5 (Slices in Π(S)G and coweightings in0//Π(S)G). For any G-partition π of the right
G-set S

Π(S)G/π =


BG∈π\S/G

Π(B)BG, 0//Π(S)G//π =
 
BG∈π\S/G

Π(B)BG
∗

(when0 < π).

The coweighting for0//Π(S)G at0 < π is

kπ (0//Π(S)G) = −


BG∈π\S/G

|B|>1

χ(Π∗(B)BG).

The open interval0//Π(S)G//π is contractible and the coweighting kπ (0//Π(S)G) is zero unlessπ ≤ θG.

Proof. Let π be a G-partition and B one its blocks. Observe first that the blocks contained in B of a
G-partition λ ≤ π determine all blocks of λ contained in any of the blocks of the orbit BG through B
for the G-action on π\S.

Let B be a block, with isotropy subgroup BG, of the G-partitionπ . Let λ be a BG-partition of B. Extend
λ to a G-partition of the orbit BG of B in π by [xg]λ = [x]λg . Wemust argue that this extension is well-
defined. Suppose that x1g1 = x2g2 for some x1, x2 ∈ B and g1, g2 ∈ G. We must show that [x1]λg1 =

[x2]λg2. We have x2 = x2g2g−1
2 = x1g1g−1

2 . From B = [x2]π = [x1g1g−1
2 ]π = [x1]πg1g−1

2 = Bg1g−1
2 we

get that g1g−1
2 stabilizes the block B. As λ is a BG-partition, [x1]λg1 = [x1]λg1g−1

2 g2 = [x1g1g−1
2 ]λg2 =

[x2]λg2 as we wanted.
Conversely, if λ is a G-partition and λ ≤ π then the blocks of λ inside a fixed block B of π form a

BG-partition of B, of course.
According to Quillen the reduced Euler characteristic is multiplicative:χ((


Li)∗) =

χ(L∗

i ) for
lattices Li of more than one element [1, Proposition 2.8].

If the block B of partition π consists of a single element of S, then also the partition poset Π(B)
consists of a single element so it can be omitted from the poset product


BG∈π\S/G Π(B)BG.

Note that π ≤ θG means that all isotropy subgroups within all blocks of π are conjugate. If π ≰ θG,
there is a block B ofπ that is a non-isotypical BG-set. Then the product of the contractors for the blocks
of π is a contractor for (


Π(B)BG)∗. �

Example 3.6 (Two Examples of G-partition Posets with weightings and coweightings). The poset Π∗(S)G
of non-extreme G-partitions for S = {1, 2, 3, 4} and G = ⟨(1, 2)(3, 4)⟩ ≤ Σ4 (isotypical):

13 − 24
(k•, k•) = (1, 1)

12 − 34
(k•, k•) = (1, −1)

14 − 23
(k•, k•) = (1, 1)

1 − 2 − 34
(k•, k•) = (0, 1)

12 − 3 − 4
(k•, k•) = (0, 1)


k•

= 3 =


k•

Π∗+iso(S)G
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The poset Π∗(S)G of non-extreme G-partitions for S = {1, . . . , 6} and G = ⟨(1, 2, 3), (4, 5)⟩ ≤ Σ6
(non-isotypical):

1236 − 45
(k•, k•) = (1, 0)

12345 − 6
(k•, k•) = (1, 0)

123 − 456
(k•, k•) = (1, 0)

1236 − 4 − 5
(k•, k•) = (0, 0)

123 − 45 − 6 = θG
(k•, k•) = (−2, −1)

1 − 2 − 3 − 456
(k•, k•) = (0, 0)

123 − 4 − 5 − 6
(k•, k•) = (0, 1)

1 − 2 − 3 − 45 − 6
(k•, k•) = (0, 1)


k•

= 1 =


k•

Π∗+iso(S)G

The sub-posetsΠ∗+iso(S)G of isotypical G-partitions are indicatedwith dotted lines. Theweighting for
Π∗(S)G restricts to a weighting for Π∗+iso(S)G.

Corollary 3.7. The inclusion Π∗+iso(S)G ↩→ Π∗(S)G is a homotopy equivalence.

Proof. Note that if π ∈ Π∗(S)G is not isotypical then the proper coslice π//Π∗(S)G = π//Π(S)G//1
is contractible by Proposition 3.4. The corollary now follows immediately from Bouc’s theorem
[4, Proposition 4]. �

Because of Lemma 2.5 and Corollary 3.7 we now restrict attention to isotypical G-partitions of
isotypical G-sets.

Definition 3.8. Let S and T be G-orbits.

(1) For any natural number i ≥ 1, iS =


i S is the isotypical G-set with i G-orbits isomorphic to S.
(2) The type of an isotypical G-partition π ∈ Π iso(iS)G is the isomorphism class in O

iso
G of its block

G-set π\(iS).
(3) ΣG(iS, jT ) = {π ∈ Π iso(iS)G | π\iS ∼= jT } is the antichain in Π iso(iS)G of isotypical G-partitions

of iS of type jT .
(4) The G-Stirling number of the second kind at (iS, jT ) is the number |ΣG(iS, jT )| of isotypical G-

partitions of iS of type jT .
(5) The G-Stirling table of the second kind in degree n is the square (n|[OG]| × n|[OG]|)-matrix

SG =

(|ΣG(iT1, jT2)|)1≤i,j≤n


T1,T2∈[OG]

of G-Stirling numbers of the second kind. The G-Stirling table of the second kind in degree n of the
G-orbit S is the submatrix

SG(S) =

(|ΣG(iT1, jT2)|)1≤i,j≤n


T1,T2∈[S/OG]

of the G-Stirling table SG.
(6) The G-Stirling table of the first kind in degree n is the inverse sG = S−1

G of the G-Stirling table of
the second kind in degree n. The G-Stirling number of the first kind at (iS, jT ) is the (iS, jT )-entry,
sG(iS, jT ), of sG. The G-Stirling table of the first kind in degree n of the G-orbit S is the inverse
sG(S) = SG(S)−1 of the G-Stirling table SG(S) of the second kind in degree n of the G-orbit S.

(7) The isotypical G-Bell number of the isotypical G-set iS

BG(iS) = |Π iso(iS)G| =


j,T

|ΣG(iS, jT )|

is the total number of isotypical G-partitions of iS.
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The G-Stirling number of the second kind, SG(iS, jT ), is the number of G-surjections of iS onto jS
up to G-automorphisms of jS. The G-Stirling tables are lower triangular with the convention that the
G-orbits are listed with increasing size. We regard the Stirling tables, SG and sG, in degree n as two-
variable functions: SG(iS, jT ) = |ΣG(iS, jT )| and sG(iS, jT ) are the (iS, jT )-entries in the respective
tables SG and sG when 1 ≤ i, j ≤ n and S, T are (conjugacy classes of) G-orbits. See Example 3.12 for
1-Stirling tables and Example 3.18 forΣ3-Stirling tables. The G-Stirling tables are the G-Stirling tables
of the right G-set 1\G: SG = SG(1\G) and sG = sG(1\G).

We now observe that the first column in the G-Stirling table of the first kind computes Euler
characteristics of G-partition posets of isotypical right G-sets.

Theorem 3.9. Let S be a G-orbit and n a natural number such that |nS| > 1. The reduced Euler
characteristic of the poset of non-extreme G-partitions of the isotypical G-set nSχ(Π∗(nS)G) = sG(nS, 1G\G)

is the G-Stirling number of the first kind at (nS, 1G\G).

Proof. The weighting forΠ∗(nS)G restricts to a weighting forΠ∗+iso(nS)G. If we in Eq. (3.2) insert the
values of the weighting from Proposition 3.4 we get

1 =


|kT |>1

−χ(Π∗(kT )G)SG(nS, kT ) (3.10)

with T ranging over the set of isomorphism classes of G-orbits and k ≥ 1 over natural numbers with
|kT | > 1. This may be restated in matrix notation as

SG



0
−χ(Π∗(2G\G)G)

...

−χ(Π∗(sH\G)G)

...

−χ(Π∗(n1\G)G)


H∈[SG]

1≤s≤n

=



0
1
...
1
...
1


, SG =


1 0 · · · 0
1
...
1

 (3.11)

where SG is the G-Stirling table of the second kind in degree n. The reason for the 0 at the top of the
left column vector is that the trivial orbit 1G\G does not figure in Eq. (3.10) but it is recorded as the
first row and column of the Stirling table SG. All entries, SG(sH\G, 1G\G), of the first column of SG on
the left side equal 1. Eq. (3.11) gives

SG



1χ(Π∗(2G\G)G)

...χ(Π∗(sH\G)G)

...χ(Π∗(n1\G)G)


= SG



1
0
...
0
...
0


+ SG



0χ(Π∗(2G\G)G)

...χ(Π∗(sH\G)G)

...χ(Π∗(n1\G)G)


=



1
1
...
1
...
1


−



0
1
...
1
...
1


=



1
0
...
0
...
0


and we just apply the inverse of SG to this equation to finish the proof. �

Eq. (4.5) will later reveal that Theorem 3.9 is but a special case of a more general connection
between G-Stirling numbers of the first kind and values of Möbius functions for posets of isotypical
G-partitions of isotypical G-sets.
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Example 3.12 (Stirling Tables of the Trivial Group 1). The 1-Stirling tables of the second and first kind
in degree 4 are the matrices

S1 =

1
1 1
1 3 1
1 7 6 1

 , s1 =

 1
−1 1
2 −3 1

−6 11 −6 1


of classical Stirling numbers S1(n, k) = S(n, k) = |{π ∈ Π(n1) | |π | = k}| and s1(n, k) = s(n, k) of
the second and first kind [19, pp 33–36]. We recover, as a special instance of Theorem 3.9, the result
of [19, Example 3.10.4] that the reduced Euler characteristicχ(Π∗(n1)) of the non-extreme partitions
of an n-element set is the Stirling number of the first kind s(n, 1) = (−1)n−1(n − 1)! when n ≥ 2.

Proposition 3.13. Let S and T be G-orbits and i, j natural numbers. The G-Stirling number of the second
kind

SG(iS, jT ) =
|OG(S, T )|i

|OG(T , T )|j
S(i, j)

is determined by TOMG (Eq. (2.2)) and the classical Stirling numbers S(i, j) of the second kind
(Example 3.12).

Proof. There is a bijection between OG(S, T )i × {1, . . . , j}i and the set of G-maps iS → jT . This
bijection takes (ϕ, τ ) to the G-map (s, k) → (ϕk(s), τk), s ∈ S, 1 ≤ i ≤ k. The surjective G-maps
correspond to pairs (ϕ, τ ) where τ is surjective. Thus |OG(iS, jT )| = |OG(S, T )|iS(i, j)j!. The G-Stirling
number of the second kind SG(iS, jT ) is the number |OG(iS, jT )|/|OG(jT , jT )| ofG-surjections of iS onto
jT counted up to G-automorphisms of jT . �

Remark 3.14 (Consequences of Proposition 3.13). Suppose that i = 1 = j and that S = H\G, T = K\G
for subgroups H and K of G. Then Π iso(H\G)G = Π(H\G)G = H/SG = [H,G] is the poset
of supergroups of H in G by Corollary 2.9. The antichain ΣG(H\G, K\G) = H/[K ] is the set of
supergroups of H conjugate to K and the G-Stirling number of the second kind SG(H\G, K\G) =

|NG(H, K)/NG(K)| = |H/[K ]| is the number of supergroups of H conjugate to K . For this reason, the
G-Stirling table of the second kind in degree 1 is also called the table of conjugate supergroups. (We
shall discuss the G-Stirling numbers of the first kind sG(H\G, K\G) in Remark 4.6.)

Let∆n(S, T ) = diag(|OG(S, T )|, |OG(S, T )|2, . . . , |OG(S, T )|n) be the diagonal (n×n)-matrix given
by the first n powers of the mark |OG(S, T )| (Eq. (2.2)), Sn = (S(i, j))1≤i,j≤n the (n × n)-matrix of the
first Stirling numbers of the second kind, and sn = (s(i, j))1≤i,j≤n its inverse given by the first Stirling
numbers of the first kind (Example 3.12). Proposition 3.13 shows that the G-Stirling tables in degree
n are the block matrices

SG =


∆n(S1, S1) 0 0
∆n(S2, S1) ∆n(S2, S2) 0
∆n(S3, S1) ∆n(S3, S2) ∆n(S3, S3)

Sn 0 0
0 Sn 0
0 0 Sn



×


∆n(S1, S1) 0 0

0 ∆n(S2, S2) 0
0 0 ∆n(S3, S3)

−1

sG =


∆n(S1, S1) 0 0

0 ∆n(S2, S2) 0
0 0 ∆n(S3, S3)

sn 0 0
0 sn 0
0 0 sn



×


∆n(S1, S1) 0 0
∆n(S2, S1) ∆n(S2, S2) 0
∆n(S3, S1) ∆n(S3, S2) ∆n(S3, S3)

−1
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where we for simplicity assume that [OG] = {S1, S2, S3} contains only three isomorphism classes of
G-orbits. The identity for sG translates into the recurrence

(sG(iS, jS))1≤i,j≤n = ∆n(S, S)sn∆n(S, S)−1
T∈[OG]

(sG(iS, jT ))1≤i,j≤n∆
n(T ,U) = 0, S ≠ U ∈ [OG]

for the G-Stirling table of the first kind. The first of these identities states that sG(iS, jS) =

|OG(S, S)|
i−js(i, j).

When G is abelian

SG(nS, kT ) =


|T |

n−kS(n, k) OG(S, T ) ≠ ∅

0 OG(S, T ) = ∅
(3.15)

because |OG(S, T )| equals |T | when nonzero. In general, combining the familiar recurrence relation
S(n+1, k) = kS(n, k)+ S(n, k−1) for the classical Stirling numbers of the second kind [19, Equation
(23)] with Proposition 3.13, establishes the recurrence relation

SG((n + 1)S, kT ) = k|OG(S, T )|SG(nS, kT ) + SG(S, T )SG(nS, (k − 1)T )

for the G-Stirling numbers of the second kind for any finite group G (Fig. 1).

Lemma 3.16. If H E G is normal in G, thenχ(Π∗(nH\G)G) = χ(Π∗(nH\G)H\G) for all n ≥ 1.

Proof. H acts trivially on H\G as Hgh = Hghg−1g = Hg for all h ∈ H , g ∈ G. Thus a partition of nH\G
is a G-partition if and only if it is a H\G-partition andχ(Π∗(nH\G)G) = χ(Π∗(nH\G)H\G). �

Recall from Definition 2.1(10) that µG denotes the Möbius function of the subgroup poset SG.

Corollary 3.17. If G is abelian, χ(Π∗(nH\G)G) = µG(H,G)|H\G|
n−1s(n, 1) for all n ≥ 1 and all

subgroups H ≤ G.

Proof. Since G is abelian, SG(iH\G, jK\G) = |G : K |
i−jS(i, j) by Eq. (3.15), and the G-Stirling table of

the second kind in degree n is the block matrix

SG =

(ζG(H, K)|G : K |

i−jS(i, j))1≤i,j≤n

H,K∈[SG]

.

The vector

(χ(iH\G)G)1≤i≤n


H∈[SG]

is by Theorem 3.9 the first column (K = G) in the G-Stirling table

sG =

(µG(H, K)|G : H|

i−js(i, j))1≤i,j≤n

H,K∈[SG]

of the first kind. �

Example 3.18. The symmetric group Σ3 has |[OΣ3
]| = 4 orbits, S1 = Σ3\Σ3, S2 = A3\Σ3,

S3 = C2\Σ3, and S6 = 1\Σ3, of sizes 1, 2, 3, 6. The table of marks (Eq. (2.2)) TOMΣ3 = (|OΣ3
(S, T )|),

the Stirling table SΣ3 of the second kind in degree 1 (the table of conjugate supergroups), and its
inverse, the Stirling table sΣ3 of the first kind in degree 1, are

(|OΣ3
(S, T )|)S,T =

1 0 0 0
1 2 0 0
1 0 1 0
1 2 3 6

 , SΣ3 =

1 0 0 0
1 1 0 0
1 0 1 0
1 1 3 1

 ,

sΣ3 =

 1 0 0 0
−1 1 0 0
−1 0 1 0
3 −1 −3 1

 .
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The Σ3-Stirling table SΣ3 of the second kind in degree 3 is

SΣ3(S, T ) T = 1S1 2S1 3S1 1S2 2S2 3S2 1S3 2S3 3S3 1S6 2S6 3S6
S = 1S1 1 0 0
2S1 1 1 0
3S1 1 3 1

1S2 1 0 0 1 0 0
2S2 1 1 0 2 1 0
3S2 1 3 1 4 6 1

1S3 1 0 0 1 0 0
2S3 1 1 0 1 1 0
3S3 1 3 1 1 3 1

1S6 1 0 0 1 0 0 3 0 0 1 0 0
2S6 1 1 0 2 1 0 9 9 0 6 1 0
3S6 1 3 1 4 6 1 27 81 27 36 18 1

and the Σ3-Stirling table sΣ3 of the first kind in degree 3 is

sΣ3(S, T ) T = 1S1 2S1 3S1 1S2 2S2 3S2 1S3 2S3 3S3 1S6 2S6 3S6
S = 1S1 1 0 0
2S1 −1 1 0
3S1 2 −3 1

1S2 −1 0 0 1 0 0
2S2 2 −1 0 −2 1 0
3S2 −8 6 −1 8 −6 1

1S3 −1 0 0 1 0 0
2S3 1 −1 0 −1 1 0
3S3 −2 3 −1 2 −3 1

1S6 3 0 0 −1 0 0 −3 0 0 1 0 0
2S6 −18 9 0 6 −1 0 18 −9 0 −6 1 0
3S6 216 −162 27 −72 18 −1 −216 162 −27 72 −18 1

As the row sums of SΣ3 are isotypical Σ3-Bell numbers (Definition 3.8(7)), we see from the three last
rows that the total number of isotypical Σ3-partitions of the free Σ3-sets are BΣ3(nS6) = 6, 30, 206
for n = 1, 2, 3. The row sums for sΣ3 are zero, except for the first row, because the first column of SΣ3
contains only 1s. By Theorem 3.9, the first column of sΣ3 contains the reduced Euler characteristicsχ(Π∗(iS)Σ3) for Σ3-partition posets of the isotypical Σ3-sets S = S1, S2, S3, S6; for instance,χ(Π∗(2S3)Σ3) = 1 (and as this reduced Euler characteristic is not divisible by |S3|s(2, 1) = −3,
Corollary 3.17 cannot be extended to general non-abelian groups). By Remark 4.6, the Σ3-Stirling
numbers sΣ3(S6, Si) of the first kind inform about Möbius numbers of subgroups of Σ3.

The Stirling tables in degree 3 of the Σ3-orbit S2 are the submatrices, SΣ3(S2) and sΣ3(S2), of SΣ3 or
sΣ3 with indices iT for T ∈ [S2/OΣ3

] = {S1, S2} and i = 1, 2, 3.

Remark 3.19. A finite poset is graded if all maximal chains have the same length [19, Section 3.1].
Example 3.6 shows that Π(S)G is not graded in general. Neither the sub-poset Π iso(S)G of isotypical
G-partitions is graded in general as subgroup posets Π iso(1\G)G = SG most often are not graded.

4. More about G-Stirling numbers of the first kind

This section contains additional information, not needed for the proof of Theorem 1.3, about G-
Stirling numbers of the first kind.
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Let Π be a finite poset with0 and1. Suppose that there is a set {Ai} of antichains Ai in Π and
integers Mij ≥ 0 such that

Π =


Ai, ∀π ∈ Ai : |π/Aj| = Mij. (4.1)

This means that Π decomposes as a disjoint union of antichains Ai such that the number of elements
λ ∈ Aj with π ≤ λ is independent of the choice of π ∈ Ai. If0 ∈ Ai then Ai = {0}, and if1 ∈ Aj

then Aj = {1}, as Ai and Aj are antichains. By extending the partial order on the set of antichains
[19, Section 3.1] to a linear order we can assume that the matrix (Mij) is upper triangular (lower
triangular with the opposite order) with 1s in the diagonal.

Example 4.2. Below is the Hasse diagram of a posetΠ =


1≤i≤4 Ai divided into 4 disjoint antichains,
indicated by height above0, satisfying (4.1). We let µ be the Möbius function for Π and at each
element π of Π the value of µ(0, π) is given.

1 = µ(0,0)

−1 −1 = µ(0, π)

0 1 0

0 = µ(0,1)
M =

 1 0 0 0
1 1 0 0
1 2 1 0
1 3 2 1




π∈Ai

µ(0, π)

1≤i≤4 = (0, 1, −2, 1)

M−1
=

 1 0 0 0
−1 1 0 0
1 −2 1 0
0 1 −2 1



Proposition 4.3 explains the identity (0, 1, −2, 1)M = (0, 0, 0, 1).

Proposition 4.3. Assume (4.1) and let µ be the Möbius function for Π [19, Section 3.7]. Then
i


π∈Ai

Mijµ(0, π) =


1 0 ∈ Aj

0 0 ∉ Aj.

Proof. The sum equals


π∈Aj

0≤λ≤π µ(0, λ) which evaluates to 1 if Aj = {0} and to


π∈Aj
0 = 0

otherwise. �

Let now S be a G-orbit and i a natural number. The lattice, Π iso(iS)G, i ≥ 1, of isotypical G-
partitions of the isotypicalG-set iS is generally not gradedbyRemark 3.19 and there is no characteristic
polynomial as there is for the classical poset of partitions of the n-set [19, Example 3.10.4]. Instead,
the set-up of Eq. (4.1) applies to Π iso(iS)G since

Π iso(iS)G =


1≤j≤i
T∈[OG]

ΣG(iS, jT ), ∀π ∈ ΣG(iS, jT ) : |π/ΣG(iS, kU)|
Proposition 2.8

= SG(jT , kU)

and the matrix M = SG(S) is the G-Stirling table of the second kind in degree i of the G-orbit S
(Definition 3.8(5)).

Corollary 4.4. Let µΠ be the Möbius function of Π iso(iS)G. Fix a G-orbit U and a natural number k ≥ 1.
The sum

jT

SG(jT , kU)


π∈ΣG(iS,jT )

µΠ (0, π)

equals 1 if iS and kU are isomorphic and 0 otherwise.
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Corollary 4.4 states that the G-Stirling numbers of the first kind

sG(iS, jT ) =


π∈ΣG(iS,jT )

µΠ (0, π) (4.5)

are given by the values of the Möbius function for Π iso(iS)G on the antichain ΣG(iS, jT ); see
[19, Example 3.10.4] for the case of classical partitions.

Consider the special case of Eq. (4.5) where jT = 1G\G is the trivial G-orbit. Since the set
ΣG(iS, 1G\G) of isotypical G-partitions of type 1G\G contains only the indiscrete partition1 of iS, the
equation states that sG(iS, 1G\G) = µΠ (0,1), where, as noted just below Definition 3.1, µΠ (0,1) =χ(Π∗+iso(iS)G), is the reduced Euler characteristic of0//Π iso(iS)G//1 = Π∗+iso(iS)G. This special case
of Eq. (4.5) thus provides an alternative proof of Theorem 3.9.

Remark 4.6 (G-Stirling Tables in Degree 1). Suppose that i = 1 and that S = H\G for some subgroup
H of G. We noted in Remark 3.14 that Π iso(H\G)G = [H,G] = H/SG is the poset of supergroups of
H in G. Let K be such a supergroup of H . Eq. (4.5) states in this case that the G-Stirling number of the
first kind in degree 1

sG(H\G, K\G) =


L∈H/[K ]

µG(H, L)

is a sum of values for the Möbius function µG of SG. The sum ranges over the set of supergroups of H
conjugate to K . The fact that SGsG and sGSG equal the identity matrix implies the general rule that

K ,V : H≤K≤V∈[U]

µG(K , V ) = 0 =


K ,V : H≤K≤V∈[U]

µG(H, K)

whenever 1 ≤ H � U ≤ G. When H is a normal subgroup of Gwe learn from

sG(H\G, K\G) =


L∈[K ]

µG(H, L) = |[H/[K ]]|µG(H, K) = SG(H\G, K\G)µG(H, K)

that the Möbius numbers µG(H, K) = χ(H//SG//K) = sG(H\G, K\G)/SG(H\G, K\G) for all
supergroups K of H can be recovered from the G-Stirling tables in degree 1. For instance, from the
bottom rows of the Σ3-Stirling tables in degree 1 from Example 3.18 we read off that µΣ3(1, K) =

3, −1, −1, 1 for K = Σ3, A3, C2, 1.

The size of the antichain ΣG(iS, jT )/λ in Π iso(iS)G in general depends on the choice of λ ∈

ΣG(iS, kU). This is the case in the lattice Π({1, 2, 3, 4}) of classical partitions of a 4-set and also,
for most choices of nontrivial H < G, in Π(H\G)G = H/SG. A related fact is that µΠ (0, π) is not
a constant function of π ∈ ΣG(iS, jT ) as, generally, SG(iS, jT ) does not divide sG(iS, jT ).

5. Equivariant Euler characteristics of posets of partitions

For any group A and natural number r ≥ 1, let ϕZr (A) = |Epi(Zr , A)| be the number of epi-
morphisms of Zr onto A. Thus ϕZr (A) is nonzero if and only A is abelian and generated by r of its
elements. Since Aut(A) acts freely on the set Epi(Zr , A) of epimorphisms of Zr onto A, the quotient
dZr (A) = ϕZr (A)/|Aut(A)| is an integer [10, (1.3)]. Using that the set, Hom(Zr ,G), of homomorphisms
from Zr to G is the disjoint union,


A≤G Epi(Zr , A), over all (abelian) subgroups A of G, we see that the

rth reduced equivariant Euler characteristic of the finite G-poset Π (1.1) is the sum

χr(Π,G) =
1
|G|


X∈Hom(Zr ,G)

χ(ΠX ) =
1
|G|


A≤G

χ(ΠA)ϕZr (A) (5.1)

and, by Möbius inversion [19, Proposition 3.7.1], thatχ(ΠH)ϕZr (H) =


A≤G

χr(Π, A)|A|µG(A,H)

for any subgroup H of G.
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Wenow specialize fromgeneral poset to posets of partitions. Let S be a finiteG-set. As always,Π(S)
is the G-poset of partitions of G, and Π∗(S) = Π(S) − {0,1} the G-poset of non-extreme partitions of
S (Definition 2.1(5)).

Lemma 5.2. Suppose that the abelian group A acts on the A-set S such that the action map A → Sym(S)
is injective (the action is effective). The following conditions are equivalent:

(1) A acts isotypically on S.
(2) A acts freely on S.

If A acts isotypically on S then the order of A divides |S|.

Proof. If A acts isotypically and A is abelian, the isotropy subgroup at any point of S is the same
subgroup, B, of A. The group B acts trivially on S, so B is the trivial subgroup since the action is effective.
Thus A acts freely on S. If A acts freely, then S = m1\A as right A-sets and |S| = m|A|. �

Lemma 5.3. Let P be a finite group (not necessarily abelian), m a natural number, and n = m|P|.

(1) P is isomorphic to a subgroup of Σn acting freely on the n-set Σn−1\Σn. The centralizer of this
subgroup is the wreath product P ≀ Σm and the normalizer is an extension of the centralizer by the
automorphism group Aut(P) of P.

(2) Any two subgroups of Σn abstractly isomorphic to P and acting freely on Σn−1\Σn are conjugate
in Σn.

Proof. P acts freely on the free P-set m1\P and the action map P → Sym(m1\P) is injective. The
centralizer of P in Sym(m1\P) is the automorphism group OP(m1\P,m1\P) = OP(1\P, 1\P) ≀ Σm =

P ≀ Σm. The remaining assertions are consequences of the fact that there is, up to isomorphism, just
one free P-set on n elements. �

Lemma 5.4. Let A be any abelian subgroup of Σn acting freely on Σn−1\Σn where n = m|A|.

(1) χ(Π∗(Σn−1\Σn)
A) = (−1)m+1µΣn(1, A)|A|

m−1(m − 1)! when n ≥ 2.
(2) χ(Π∗(Σn−1\Σn)

A)|Σn : NΣn(A)| = (−1)n/|A|+1 µΣn (1,A)

|Aut(A)|
(n − 1)! n ≥ 2.

Proof. (1) As an A-set Σn−1\Σn = m1\A consists of m free A-orbits. According to Corollary 3.17χ(Π∗(Σn−1\Σn)
A) = χ(Π∗(m1\A)A) = µΣn(1, A)|A|

m−1s(m, 1)

= (−1)m−1µΣn(1, A)|A|
m−1(m − 1)!

This formula also holds when A is the trivial group: The left hand side is χ(Π∗(Σn−1\Σn)) =

(−1)n−1(n − 1)! and the right hand side is (−1)n−1(n − 1)! as µΣn(1, 1) = 1.
(2) This is immediate from (1) as the index of the normalizer of A is known from Lemma 5.3(1) and

we remember thatm|A| = n. �

Proof of Theorem 1.3. According to Lemmas 2.5 and 5.2 we have the expression

χr(Π
∗(Σn−1\Σn), Σn) =

1
n!


[A≤Σn]

A free and abelian

χ(Π∗(Σn−1\Σn)
A)ϕZr (A)|Σn : NΣn(A)|

for the rth equivariant Euler characteristic. The sum ranges over the set of conjugacy classes of abelian
subgroups A of Σn acting freely on Σn−1\Σn. By Lemma 5.3 there is a bijective correspondence
between this set and the set of isomorphism classes of abelian groups A of order dividing n. Inserting
the value from Lemma 5.4(2) for the expression under the summation sign gives

χr(Π
∗(Σn−1\Σn), Σn) =

1
n


|A||n

Aabelian

(−1)n/|A|+1µΣn(1, A)
ϕZr (A)

|Aut(A)|

=
1
n


|A||n

A abelian

(−1)n/|A|+1µΣn(1, A)dZr (A)
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where the sum ranges over the set of isomorphism classes of abelian groups A of order dividing n. The
Möbius function µΣn(1, A) = µA(1, A) is completely known [10, 2.8]. Indeed, write A =


Ap as the

product of its Sylow p-subgroups Ap. Then µΣn(1, A) =


µΣn(1, Ap) and µΣn(1, Ap) = 0 unless Ap
is an elementary abelian p-group. For an elementary abelian p-group of rank d,

µΣn(1, C
d
p ) = (−1)dp(

d
2).

Suppose now that A =


Ap where each Sylow p-subgroup Ap = Cdp
p is elementary abelian of rank dp.

By [11, Lemma 2.1], Aut(A) =


p Aut(Ap) =


p GLdp(Fp) and clearly ϕZr (


Ap) =


ϕZr (Ap). Since

ϕZr (Cd
p ) =

d−1
j=0

(pr − pj) =


r
d


p
|GLd(Fp)|, dZr (Cd

p ) =
ϕZr (Cd

p )

|Aut(Cd
p )|

=


r
d


p

we have now shown that

χr(Π
∗(Σn−1\Σn), Σn) =

1
n


d|n

(−1)
n
d +1br(d) =

1
n
(a ∗ br)(n)

where br is the multiplicative function of Eq. (6.1) given by br(pd) = µΣn(1, C
d
p )dZr (C

d
p ) and a(n) =

(−1)n+1. In Corollary 6.8 we shall derive an alternative expression for the Dirichlet convolution
a ∗ br . �

The first equivariant Euler characteristic is the usual Euler characteristic of the quotient ∆-set
∆Π∗(Σn−1\Σn)/Σn [16, Proposition 2.13] which is collapsible for n > 2 [13]. This explains whyχ1(Π

∗(Σn−1\Σn), Σn) =
1
n c1(n) = 0 for n > 2. (The situation in the boolean case briefly

mentioned in the Introduction is similar: For n ≥ 2, χ1(B∗(Σn−1\Σn), Σn) = 0 and the quotient
∆-set ∆B∗(Σn−1\Σn)/Σn, which is a simplex, is contractible.)

The equivariant reduced Euler characteristicsχr(Π
∗(Σn−1\Σn), Σn) = cr(n)/n are multiplicative

functions of n for all r ≥ 1 but the ordinary reduced Euler characteristic χ(Π∗(Σn−1\Σn)) =

(−1)n−1(n − 1)! is not. The Liouville function λ(n) = (−1)Ω(n), Ω(n) =


p νp(n), gives the sign
of cr(n).

6. Some multiplicative arithmetic functions

Let cr(n) = (a ∗ br)(n) denote the Dirichlet convolution [8, Section 1] of the multiplicative
[18, VI.3.1, Definition 2] arithmetic functions a(n) = (−1)n+1 and br(n) where

br(pe) = (−1)ep(
e
2)

r
e


p

(6.1)

for any prime power pe. As usual, the p-binomial coefficient and the ordinary binomial coefficient
r
e


p

=
(pr − 1) · · · (pr − pe−1)

(pe − 1) · · · (pe − pe−1)
=

e−1
j=0

pr−j
− 1

pe−j − 1
,


e
2


=

1
2
e(e − 1) (6.2)

count the number of e-dimensional subspaces in an r-dimensional Fp-vector space [19, Proposition
1.3.18] and the number of 2-sets in an e-set, respectively. The sequence b0 = ε = 1, 0, 0, . . . is the
unit sequence and b1 = µΣn is the Möbius function. For any prime p and integers r ≥ 1 and e, s ≥ 0

r
e=0

br(pe)ps(r−e)
=

r−1
e=0

(ps − pe) (6.3)

by the ‘q-binomial theorem’ [19, Equation (62), p 162].
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Proposition 6.4. The multiplicative arithmetic sequences br are given by b1 = µ and the recurrence
relations

br+1(pd) = pdbr(pd) − pd−1br(pd−1)

valid for all r ≥ 1 and all prime powers pd with d ≥ 0.

Proof. Use Pascal’s identities for ordinary and Gaussian binomial coefficients [19, Equation 17b]
d
2


=


d − 1
2


+ (d − 1),


r + 1
d


p

= pd

r
d


p
+


r

d − 1


p

and the definition (Eq. (6.1)) of br . �

In the following, 1 is the constant sequence with value 1(n) = 1 on all n ≥ 1. Its Dirichlet inverse
is the Möbius function 1−1

= µ. Möbius inversion is the assertion that µ ∗ (1 ∗ f ) = f for any
multiplicative sequence f .

Corollary 6.5. (1 ∗ br+1)(n) = nbr(n) for all r, n ≥ 1.

Proof. The telescopic sum

(1 ∗ br+1)(pd) =

d
e=0

br+1(pe) =

d
e=0

(pebr(pe) − pe−1br(pe−1))

evaluates to pdbr(pd) at any prime power pd. �

Proposition 6.6. The multiplicative arithmetic sequences cr are given by c1 = 1, −2, 0, 0, . . . and

cr+1(n) = n(br(n) − br(n/2)) (where br(n/2) = 0 for odd n)

for all r, n ≥ 1.

Proof. The twomultiplicative sequences c1 = a∗µ and 1, −2, 0, 0, . . . are identical since they agree
on all prime powers. For odd n, cr+1(n) = (a∗ br+1)(n) = (1∗ br+1)(n) = nbr(n) by Corollary 6.5. For
powers of 2,

cr+1(2d) = (a ∗ br+1)(2d) = br+1(2d) −

d−1
e=0

br+1(2e)

= 2dbr(2d) − 2d−1br(2d−1) − 2d−1br(2d−1) = 2d(br(2d) − br(2d−1))

by the recurrence relation of Proposition 6.4. Thus cr+1(n) = n(br(n) − br(n/2)) for even n by
multiplicativity. �

If we introduce cr(n) =
1
n cr(n), Proposition 6.6 states that cr+1 = c1 ∗ br for all r ≥ 0.

The multiplicative sequences cr can be defined recursively by c1 = 1, −2, 0, 0, 0, . . . , and, for
r ≥ 1,

cr+1(2d) =


2cr(2) d = 1

2dcr(2d) +

d
j=2

2d+j−2cr(2d−j) d ≥ 2

for powers of 2, while cr+1(pd) = pdcr(pd) − pdcr(pd−1) at powers of an odd prime p. These relations
are consequences of Propositions 6.4 and 6.6. In particular, cr(2d) = 0 for r < d and cr(pd) = 0 for
r ≤ d for an odd prime p.
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Corollary 6.7. The Dirichlet series and their Eulerian expansions of the functions br and cr , r ≥ 1, are

∞
n=1

br(n)
ns

=
1

ζ (s)ζ (s − 1) · · · ζ (s − r + 1)
=


p

p−sr
r−1
e=0

(ps − pe)

∞
n=1

cr(n)
ns

=
1 − 21−s

ζ (s − 1) · · · ζ (s − r + 1)
r>1
= (1 − 21−s)


p

p−s(r−1)
r−1
e=1

(ps − pe)

where ζ (s) is the Riemann ζ -function.

Proof. Write βr(s) for the Dirichlet series of br(n). According to Corollary 6.5,

ζ (s)βr+1(s) = βr(s − 1)

as nbr(n), with series βr(s − 1), is the Dirichlet convolution of 1, with series ζ (s), and br+1(n).
(The Dirichlet series of a Dirichlet convolution is the product of the Dirichlet series of the factors
[8, Section 1].) The expression for the Dirichlet series of br(n) now follows by induction starting with
the series, ζ (s)−1, for b1 = µ. The Dirichlet series of the convolution cr = a ∗ br is the product of this
series and the series, ζ (s)(1 − 21−s), of a = 1 ∗ c1 (Dirichlet η-function). We evaluate the factors of
the Eulerian expansion for the Dirichlet series of br [18, VI, Section 3, Lemma 4],

1 + br(p)p−s
+ · · · + br(pr)p−rs

= p−sr
r

e=0

(−1)e

r
e


p
p(

e
2)ps(r−e)

= p−sr
r−1
e=0

(ps − pe)

with the help of the ‘q-binomial theorem’ [19, Equation (62), p 162]. �

Let λr(n) = |{Zr
≥ H | |Zr

: H| = n}| denote the number of subgroups of Zr of index n. The
function λr is multiplicative and completely determined by its values [9],

λr(pe) =

e−1
j=0

pr+j
− 1

pe−j − 1
=

e−1
j=0

pr+e−1−j
− 1

pe−j − 1
=


e + r − 1

e


p

on prime powers pe. Also, let πk, k ≥ 0, be the kth power function πk(n) = nk for all n ≥ 1 and ι2 the
multiplicative function given by ι2(n) = n if n = 1, 2, 4, . . . is a power of 2 and ι2(n) = 0 otherwise.

Corollary 6.8. The Dirichlet inverses of the functions br and cr are

b−1
r = π0 ∗ π1 ∗ · · · ∗ πr−1 = λr , c−1

r = ι2 ∗ π1 ∗ · · · ∗ πr−1 = a−1
∗ λr .

Thus br ∗ λr = ε and cr ∗ λr = a.

Proof. The Dirichlet series for πk is ζ (s − k) and for ι2 it is (1 − 21−s)−1 reflecting that a ∗ ι2 =

π0. Corollary 6.7 implies that the Dirichlet inverses of the multiplicative sequences br and cr are
π0 ∗ π1 ∗ · · · ∗ πr−1 and ι2 ∗ π1 ∗ · · · ∗ πr−1, respectively. We now recognize b−1

r as λr by [22, p 206]
[20, Note p 113], and then c−1

r = (a ∗ br)−1
= a−1

∗ b−1
r = a−1

∗ λr . �

We finishwith a small observation about the asymptotic behavior of the sequence cr(n) as r varies.

Lemma 6.9. For r ≥ 1 and n ≥ 2, cr(n) = 0 ⇐⇒ r ≤ max{ν2(n) − 1, ν3(n), ν5(n), . . .}.

Proof. The claim is that cr(n) = 0 if and only if n is divisible by 2r+1 or by pr for some odd prime
p. Since this is true for r = 1 we can assume that r > 1. It is enough to let n be a prime power
by multiplicativity. For any prime p, br(pd) = 0 ⇐⇒ d > r . If p is odd, cr(pd) = pdbr−1(pd)
so that cr(pd) = 0 ⇐⇒ d ≥ r . For powers of 2, cr(2d) = 2d(br−1(2d) − br−1(2d−1)) so that
cr(2d) = 0 ⇐⇒ d ≥ r + 1. �

The lemma shows that the zeros in the sequence r → cr(n) for fixed n are concentrated at the
beginning.
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Corollary 6.10. For any n ≥ 1

cr+1(n)
cr(n)

→ n for r → ∞.

Proof. It is enough to verify this when n = pd is a prime power and it then follows from the recursion
formulas. �

7. The q-primary equivariant Euler characteristics

For any prime number q and any natural number r ≥ 1, let Z r
q = (Zq)

r−1
×Zwhere Zq is the abelian

group of q-adic integers. The rth q-primary equivariant reduced Euler characteristic of the G-poset Π ,
as defined by Tamanoi [21, (1–5)], is the integer

χ q
r (Π,G) =

1
|G|


X∈Hom(Zqr ,G)

χ(ΠX ) =
1
|G|


A≤G

χ(ΠA)ϕZ rq (A) (7.1)

where ϕZ rq (A) = | Epi(Z r
q , A)| denotes the number of epimorphisms of Z r

q onto the subgroup A of G.
(Compared to [21, (1–5)] we work here with reduced Euler characteristics and with a degree shift.)
Clearly, ϕZ rq (A) is nonzero if and only if A is generated by r commuting elements of G all of which
but one have q-power order. We also let dZ rq (A) = ϕZ rq (A)/|Aut(A)| [10, (1.3)]. As Z1

q = Z, the first
q-primary equivariant Euler characteristicχ q

1 (Π,G) is independent of q and coincides with the first
equivariant Euler characteristicχ1(Π,G).

Remark 7.2 (Algebraic Topological Interpretation). The paper [12] offers an alternative perspective on
(q-primary) equivariant Euler characteristics. Consider the functionµΠ defined on all subgroups of G
with value 0 on all nonabelian subgroups and satisfying the relations

χ(ΠA) =


B≤G

ζG(A, B)µΠ (B), µΠ (A) =


B≤G

µG(A, B)χ(ΠB)

where the sums are over all subgroups B of G. The first relation is the Möbius inverse [19, Proposition
3.7.2] of the second one which definesµΠ recursively [12, p 556]. Also, recall that

|Hom(Zr , B)| =


A≤G

ϕZr (A)ζG(A, B), ϕZr (B) =


A≤G

|Hom(Zr , A)|µG(A, B)

where the second relation is theMöbius inverse [19, Proposition 3.7.1] of the first one. Combining two
of these equalities we find that

|G|χr(Π,G) =


B≤G

χ(ΠB)ϕZr (B) =


A,B≤G

χ(ΠB)|Hom(Zr , A)|µG(A, B)

=


A≤G

|Hom(Zr , A)|µΠ (A) =


A≤G

|A|
rµΠ (A).

Replacing Zr by Z r
q leads to the corresponding expression

χ q
r (Π,G) =

1
|G|


A≤G

|A||Aq|
r−1µΠ (A) (7.3)

for the rth q-primary equivariant reduced Euler characteristic where Aq is the Sylow q-subgroup of A.
In this paper we prefer to work with equivariant reduced Euler characteristics. However, if we for

a moment consider the equivariant unreduced Euler characteristics,

χr(Π,G) = χr(Π,G) + |Hom(Zr ,G)|/|G|, χ q
r (Π,G) = χ q

r (Π,G) + |Hom(Z r
q ,G)|/|G|
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then Eq. (7.3) in degree r + 1 becomes

χ
q
r+1(Π,G) =

1
|G|


A≤G

|A||Aq|
rµΠ (A), r ≥ 0

where the unreduced function µΠ is defined in the same way asµΠ by using unreduced Euler char-
acteristics [12, p 556]. Let K(r) be the rth Morava K -theory at q [17]. Comparing with [12, Theorem B
(Part 2), Theorem 4.12] we see that the (r + 1)th q-primary equivariant unreduced Euler character-
istic χ

q
r+1(Π,G) is the K(r)-Euler characteristic [12, p 555]

χ q(K(r), Π,G) = dimK(r)∗ K(r)even(|Π |hG) − dimK(r)∗ K(r)odd(|Π |hG)

of the homotopy orbit space |Π |hG = |Π | ×G EG for the G-action on the topological realization |Π | of
Π . (This was first observed in [21, Propositions 2-3,5-1].)

We now specialize from G-posets in general to the Σn-poset Π∗(Σn−1\Σn) of non-extreme
partitions of the n-set. It is convenient to declare χ q

r (Π
∗(Σn−1\Σn), Σn) to mean 1 for all r ≥ 1

when n = 1 even though the q-primary equivariant reduced Euler characteristics actually equal −1
in these case.

Theorem 7.4. Let r ≥ 1 and n ≥ 1. The rth q-primary equivariant reduced Euler characteristic of the
Σn-poset Π∗(Σn−1\Σn) is

χ q
r (Π

∗(Σn−1\Σn), Σn) =


br−1(2d) − br−1(2d−1) q = 2, n = qd, 0 ≤ d ≤ r
br−1(qd) q > 2, n = qd, 0 ≤ d < r
−br−1(qd) q > 2, n = 2qd, 0 ≤ d < r
0 otherwise.

The rth q-primary equivariant reduced Euler characteristic and the rth equivariant reduced Euler
characteristic coincide,χ q

r (Π
∗(Σn−1\Σn), Σn) = χr(Π

∗(Σn−1\Σn), Σn)

when n = qd is a power of q.

Proof. Let cqr = a ∗ bqr where bqr is the multiplicative function with value

bqr (p
d) = µ(1, Cd

p )dZ rq (C
d
p ) =


br(pd) p = q
µ(pd) p ≠ q

on the prime power pd. The proof of Theorem 1.3 shows that

χ q
r (Π

∗(Σn−1\Σn), Σn) =
1
n


|A||n

(−1)n/|A|+1µ(1, A)dZ rq (A) =
1
n
(a ∗ bqr )(n) =

1
n
cqr (n).

Alternatively, bqr (n) = br(nq)µ(n/nq) where nq = qνq(n) is the q-part of n. For any prime p ≠ q and
exponent d ≥ 1,

(1 ∗ bqr )(p
d) =

d
e=0

µ(pe) = µ(1) + µ(p) = 0

so the multiplicative convolution 1 ∗ bqr is nonzero only on powers of q where it agrees with 1 ∗ br .
In fact, 1 ∗ bq1 = 1 ∗ b1 = 1 ∗ µ = ε is nonzero only on 1, and, for r ≥ 2, (1 ∗ bqr )(qd) =

(1 ∗ br)(qd) = qdbr−1(qd) (Corollary 6.5) is nonzero only on the r powers qd for 0 ≤ d < r
(Eq. (6.1)). Thus cqr = a ∗ bqr = c1 ∗ 1 ∗ bqr is nonzero only on natural numbers of the form qd
and 2qd for 0 ≤ d < r . At powers of q, (c1 ∗ 1 ∗ br)(qd) = (c1 ∗ 1 ∗ bqr )(qd) so that the rth q-
primary and the standard equivariant reduced Euler characteristic coincide. In fact, (c1 ∗1∗b2r )(2

d) =

(1∗b2r )(2
d)−2(1∗b2r )(2

d−1)+2d(br−1(2d)−br−1(2d−1)) and (c1∗1∗br)(qd) = (1∗bqr )(qd) = qdbr−1(qd)
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for q > 2. At 2qd, q > 2, (c1 ∗ 1∗ br)(qd) = (1∗ br)(qd) and (c1 ∗ 1∗ br)(2qd) = −2(1∗ br)(qd) which
means that the sequence 1

n c
q
r (n) =

1
n (a ∗ bqr )(n) takes opposite values at n = qd and n = 2qd. �

With fixed r , cqr (n)/n = χ2
r (Π∗(Σn−1\Σn), Σn) is nonzero only at the r + 1 first powers of 2,

n = 2d for 0 ≤ d ≤ r , when q = 2 (Fig. 3), and, for an odd prime q, only at the r first powers of
q, n = qd for 0 ≤ d < r , and at the double of these numbers (Fig. 4). It is the consequence of a general
rule that all row sums of the tables of Figs. 3–4 equal 0:

0≤d≤r
n=2d

χ2
r (Π∗(Σn−1\Σn), Σn) = 0,


0≤d<r
n=qd

χ q
r (Π

∗(Σn−1\Σn), Σn) = 0 (q > 2).

For q = 2, the sum is telescopic, and for q > 2, one uses the q-binomial theorem [19, Equation (62),
p 162].

The q-primary equivariant reduced Euler characteristics happen to determine the equivariant
reduced Euler characteristics in the sense thatχr(Π

∗(Σn−1\Σn), Σn) =


q

χ q
r (Π

∗(Σnq−1\Σnq), Σnq)

= (br−1(n2) − br−1(n2/2))

q>2

br−1(nq) (7.5)

when nhas prime factorization n =


q nq with nq = qνq(n) a power of the prime q. This rth equivariant
Euler characteristicis nonzero if and only if ν2(n) ≤ r and νq(n) < r for all odd primes q (Lemma 6.9).

Proof of Corollary 1.4. Item (1) is the identity cr ∗ λr = a from Corollary 6.8, item (2) is a
reformulation of (1), and (3) is part of Theorem 7.4. �
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