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EQUIVALENCES BETWEEN FUSION SYSTEMS

OF FINITE GROUPS OF LIE TYPE

CARLES BROTO, JESPER M. MØLLER, AND BOB OLIVER

When G is a finite group and p is a prime, the fusion system Fp(G) is the
category whose objects are the p-subgroups of G, and whose morphisms are the
homomorphisms between subgroups induced by conjugation in G. If G′ is another
finite group, then Fp(G) and Fp(G

′) are isotypically equivalent if there is an equiv-
alence of categories between them which commutes, up to natural isomorphism of
functors, with the forgetful functors from Fp(−) to the category of groups. Alter-
natively, Fp(G) and Fp(G

′) are isotypically equivalent if there is an isomorphism
between Sylow p-subgroups of G and of G′ which is “fusion preserving” in the sense
of Definition 1.2 below.

The goal of this paper is to use methods from homotopy theory to prove that
certain pairs of fusion systems of finite groups of Lie type are isotypically equivalent.
Our main result is the following theorem.

Theorem A. Fix a prime p, a connected reductive group scheme G over Z, and a
pair of prime powers q and q′ both prime to p. Then the following hold, where “�”
always means isotypically equivalent.

(a) Fp(G(q)) � Fp(G(q′)) if 〈q〉 = 〈q′〉 as subgroups of Z×
p .

(b) If G is of type An, Dn, or E6, and τ is a graph automorphism of G, then

Fp(
τG(q)) � Fp(

τG(q′)) if 〈q〉 = 〈q′〉 as subgroups of Z×
p .

(c) If the Weyl group of G contains an element which acts on the maximal torus by
inverting all elements, then Fp(G(q)) � Fp(G(q′)) (or Fp(

τG(q)) � Fp(
τG(q′))

for τ as in (b)) if 〈 − 1, q〉 = 〈 − 1, q′〉 as subgroups of Z×
p .

(d) If G is of type An, Dn for n odd, or E6, and τ is a graph automorphism of G

of order two, then Fp(
τG(q)) � Fp(G(q′)) if 〈 − q〉 = 〈q′〉 as subgroups of Z×

p .

Here, in all cases, G(q) means the fixed subgroup of the field automorphism ψq

acting on G(Fq), and
τG(q) means the fixed subgroup of τψq acting on G(Fq).
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Note that we are comparing the fusion of groups of Lie type with different defin-
ing characterisitics. Thus Theorem A gives many examples of pairs of groups which
all have the equivalent p-fusion systems, but where these equivalences are not in-
duced by any homomorphisms between the groups. This seems to be one reason
why there is not yet a purely algebraic proof of these results.

We remark here that this theorem does not apply when comparing fusion systems
of SO±

n (q) and SO±
n (q

′) for even n, at least not when q or q′ is a power of 2, since
SOn(K) is not connected when K is algebraically closed of characteristic two.
Instead, one must compare the groups Ω±

n (−). For example, for even n ≥ 4, Ω+
n (4)

and Ω+
n (7) have equivalent 3-fusion systems, while SO+

n (4) and SO+
n (7) do not.

Points (a)–(c) of Theorem A will be proven in Proposition 3.2, where we deal
with the more general situation where G is reductive (thus including cases such
as G = GLn). Point (d) will be proven as Proposition 3.3. In all cases, this will
be done by showing that the p-completed classifying spaces of the two groups are
homotopy equivalent. A theorem of Martino and Priddy (Theorem 1.5 below) then
implies that the fusion systems are isotypically equivalent.

Since p-completion of spaces plays a central role in our proofs, we give a very
brief outline here of what it means and refer to the book of Bousfield and Kan
[BK] for more details. They define p-completion as a functor from spaces to spaces,

which we denote (−)∧p here, and this functor comes with a map X
κp(X)−−−−→ X∧

p ,
which is natural in X. For any map f : X −−−→ Y , f∧

p is a homotopy equivalence
if and only if f is a mod p equivalence; i.e., H∗(f ;Fp) is an isomorphism from
H∗(Y ;Fp) to H∗(X;Fp). A space X is called “p-good” if κp(X

∧
p ) is a homotopy

equivalence (equivalently, κp(X) is a mod p equivalence). In particular, all spaces
with finite fundamental group are p-good. If X is p-good, then κp(X) : X −−−→ X∧

p

is universal among all mod p equivalences X −−−→ Y . If X and Y are both p-good,
then X∧

p � Y ∧
p (the p-completions are homotopy equivalent) if and only if there is

a third space Z, and mod p equivalences X −−−→ Z ←−−− Y .
By a theorem of Friedlander (stated as Theorem 3.1 below), B(τG(q))∧p is the

homotopy fixed space (Definition 2.1) of the action of τψq on BG(C)∧p . By our
Theorem 2.4, if X is a p-complete space which satisfies certain technical conditions,

then for any pair of self-equivalences α and β such that 〈α〉 = 〈β〉 in Out(X),
Xhα � Xhβ. Here, Out(X) is the group of homotopy classes of self-equivalences
of X, equipped with a certain “p-adic” topology. The groups Out(BG(C)∧p ) were
described precisely by Jackowski, McClure, and Oliver in [JMO], and Theorem A
follows upon combining these results.

Corresponding results for the Suzuki and Ree groups can also be shown using
this method of proof. But since there are much more elementary proofs of these
results (all equivalences are induced by inclusions of groups), and since it seemed
difficult to find a nice formulation of the theorem which included everything, we
decided to leave them out of the statement.

As another application of these results, we prove that for any prime p and any
prime power q ≡ 1 (mod p), the fusion systems Fp(G2(q)) and Fp(

3D4(q)) are
isotypically equivalent if p 	= 3, and the fusion systems Fp(F4(q)) and Fp(

2E6(q))
are isotypically equivalent if p 	= 2 (Example 4.4).

It seems likely that Theorem A can also be shown directly using a purely algebraic
proof, but the people we have asked do not know of one, and there does not seem
to be any in the literature. There is a very closely related result by Michael Larsen
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[GR, Theorem A.12], which implies that two Chevalley groups G(K) and G(K ′)
over algebraically closed fields of characteristic prime to p have equivalent p-fusion
systems when defined appropriately for these infinite groups. There are standard

methods for comparing the finite subgroups of G(Fq) (of order prime to q) with
those in its finite Chevalley subgroups, but we have been unable to get enough
control over them to prove Theorem A using Larsen’s theorem.

The paper is organized as follows. In Section 1, we give a general survey of
fusion categories of finite groups and their relationship to p-completed classifying
spaces. Then, in Section 2, we prove a general theorem (Theorem 2.4) comparing
homotopy fixed points of different actions on the same space, and apply it in Section
3 to prove Theorem A. In Section 4, we show a second result about homotopy fixed
points, which is used to prove the result comparing fusion systems of G2(q) and
3D4(q), and F4(q) and 2E6(q). At the end, in Appendix A, we prove a few other
equivalence relations between fusion systems of classical groups (Proposition A.3)
using more elementary methods.

1. Fusion categories

We begin with a quick summary of what is needed here about fusion systems of
finite groups.

Definition 1.1. For any finite group G and any prime p, Fp(G) denotes the cate-
gory whose objects are the p-subgroups of G, and where

MorFp(G)(P,Q) = {ϕ ∈ Hom(P,Q) |ϕ = cx for some x ∈ G} .

Here, cx denotes the conjugation homomorphism: cx(g) = xgx−1. If S ∈ Sylp(G) is
a Sylow p-subgroup, then FS(G) ⊆ Fp(G) denotes the full subcategory with objects
the subgroups of S.

A functor F : C −−−→ C′ is an equivalence of categories if it induces bijections
on isomorphism classes of objects and on all morphism sets. This is equivalent
to the condition that there be a functor from C′ to C such that both composites
are naturally isomorphic to the identity. An inclusion of a full subcategory is an
equivalence if and only if every object in the larger category is isomorphic to some
object in the smaller one. Thus when G is finite and S ∈ Sylp(G), the inclusion
FS(G) ⊆ Fp(G) is an equivalence of categories by the Sylow theorems.

In general, we write Ψ: C1
∼=−−−→ C2 to mean that Ψ is an isomorphism of cate-

gories (bijective on objects and on morphisms) and write Ψ: C1 �−−−→ C2 to mean
that Ψ is an equivalence of categories.

In the following definition, for any finite G, λG denotes the forgetful functor from
Fp(G) to the category of groups.

Definition 1.2. Fix a prime p, a pair of finite groups G and G∗, and Sylow p-
subgroups S ∈ Sylp(G) and S∗ ∈ Sylp(G

∗).

(a) An isomorphism ϕ : S
∼=−−−→ S∗ is fusion-preserving if for all P,Q ≤ S and

α ∈ Hom(P,Q),

α ∈ MorFp(G)(P,Q) ⇐⇒ ϕαϕ−1 ∈ MorFp(G∗)(ϕ(P ), ϕ(Q)).
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(b) An equivalence of categories T : Fp(G) −−−→ Fp(G
∗) is isotypical if there is

a natural isomorphism of functors ω : λG −−−→ λG∗ ◦ T , i.e., if there are iso-

morphisms ωP : P
∼=−−−→ T (P ) such that ωQ ◦ ϕ = T (ϕ) ◦ ωP for each ϕ ∈

HomG(P,Q).

In other words, in the above situation, an isomorphism ϕ : S −−−→ S∗ is fusion-

preserving if and only if it induces an isomorphism from FS(G)
∼=−−−→ FS∗(G∗) by

sending P to ϕ(P ) and α to ϕαϕ−1. Any such isomorphism of categories extends

to an equivalence Fp(G)
�−−−→ Fp(G

∗), which is easily seen to be isotypical. In
fact, two fusion categories Fp(G) and Fp(G

∗) are isotypically equivalent if and only
if there is a fusion-preserving isomorphism between Sylow p-subgroups. This is
shown in the following proposition, where for any pair of groups H and G, we write
Rep(H,G) = Hom(H,G)/ Inn(G) (the set of conjugacy classes of homomorphisms).

Proposition 1.3. Fix a pair of finite groups G and G∗, a prime p and Sylow
p-subgroups S ≤ G and S∗ ≤ G∗. Then the following are equivalent:

(a) There is a fusion-preserving isomorphism ϕ : S
∼=−−−→ S∗.

(b) Fp(G) and Fp(G
∗) are isotypically equivalent.

(c) There are bijections Rep(P,G)
∼=−−−→ Rep(P,G∗), for all finite p-groups P ,

which are natural in P .

Proof. This was essentially shown by Martino and Priddy [MP], but not completely
explicitly. By the above remarks, (a) implies (b).

(b =⇒ c) : Fix an isotypical equivalence T : Fp(G) −−−→ Fp(G
∗), and let ω be

an associated natural isomorphism. Thus ωP ∈ Iso(P, T (P )) for each p-subgroup
P ≤ G, and ωQ ◦ α = T (α) ◦ ωP for all α ∈ HomG(P,Q). For each p-group Q, ω
defines a bijection from Hom(Q,G) to Hom(Q,G∗) by sending ρ to ωρ(Q) ◦ ρ. For
α, β ∈ Hom(Q,G), the diagram

Q
α �� α(Q)

ωα(Q) ��

γ

���
�
�

T (α(Q))

T (γ)

���
�
�

Q
β �� β(Q)

ωβ(Q) �� T (β(Q)) ,

together with the fact that T is an equivalence, proves that α and β are G-conjugate
(there exists γ which makes the left-hand square commute) if and only if ωα(Q) ◦α
and ωβ(Q) ◦ β are G∗-conjugate (there exists T (γ)). Thus T induces bijections

Φ: Rep(Q,G)
∼=−−−→ Rep(Q,G∗), and similar arguments show that Φ is natural in

Q.

(c =⇒ a) : Fix a natural bijection Φ: Rep(−, G)
∼=−→ Rep(−, G∗) of functors on

finite p-groups. By naturality, Φ preserves kernels and hence restricts to a bijection
between classes of injections. In particular, there are injections of S into G∗ and S∗

into G, and thus S ∼= S∗. Since conjugation defines a fusion-preserving isomorphism
between any two Sylow p-subgroups of G∗, we can assume S∗ = Im(ΦS(incl

G
S )).

Using the naturality of Φ, it is straightforward to check that ΦS(incl
G
S ) is fusion-

preserving as an isomorphism from S to S∗. �
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We also note the following, very elementary result about comparing fusion sys-
tems.

Proposition 1.4. Fix a prime p, and a pair of groups G1 and G2 such that Fp(G1)
is isotypically equivalent to Fp(G2). Then the following hold, where “�” always
means isotypically equivalent.

(a) If Zi ≤ Z(Gi) is central of order prime to p, then Fp(Gi/Zi) � Fp(Gi).

(b) If Z1 ≤ Z(G1) is a central p-subgroup, and Z2 ≤ G2 is its image under
some fusion-preserving isomorphism between Sylow p-subgroups of the Gi, then
Fp(G1) � Fp(CG2

(Z2)) and Fp(G1/Z1) � Fp(CG2
(Z2)/Z2).

(c) Fp([G1, G1]) � Fp([G2, G2]).

Proof. Points (a) and (b) are elementary. To prove (c), first fix Sylow subgroups

Si ∈ Sylp(Gi) and a fusion-preserving isomorphism ϕ : S1

∼=−−−→ S2. By the focal
subgroup theorem (cf. [Go, Theorem 7.3.4]), ϕ(S1 ∩ [G1, G1]) = S2 ∩ [G2, G2]. By
[BCGLO2, Theorem 4.4], for each i = 1, 2, there is a unique fusion subsystem
“of p-power index” in FSi

(Gi) over the focal subgroup Si ∩ [Gi, Gi], which must
be the fusion system of [Gi, Gi]. Hence ϕ restricts to an isomorphism which is
fusion-preserving with respect to the commutator subgroups. �

Proposition 1.4 implies, for example, that whenever Fp(GLn(q)) � Fp(GLn(q
′))

for q and q′ prime to p, then there are also equivalences Fp(SLn(q)) � Fp(SLn(q
′)),

Fp(PSLn(q)) � Fp(PSLn(q
′)), etc.

The following theorem of Martino and Priddy shows that the p-fusion in a finite
group is determined by the homotopy type of its p-completed classifying space. The
converse (the Martino-Priddy conjecture) is also true, but the only known proof
uses the classification of finite simple groups [O1, O2].

Theorem 1.5. Assume p is a prime, and G and G′ are finite groups, such that
BG∧

p � BG′∧
p . Then Fp(G) and Fp(G

′) are isotypically equivalent.

Proof. This was shown by Martino and Priddy in [MP]. The key ingredient in the
proof is a theorem of Mislin [Ms, pp.457–458], which says that for any finite p-group
Q and any finite group G, there is a bijection

Rep(Q,G)
B∧

p−−−−−→∼=
[BQ,BG∧

p ] ,

where B∧
p sends the class of a homomorphism ρ : Q −−−→ G to the p-completion

of Bρ : BQ −−−→ BG. Thus any homotopy equivalence BG∧
p

�−−−→ BG′∧
p induces

bijections Rep(Q,G) ∼= Rep(Q,G′), for all p-groups Q, which are natural in Q. The
theorem now follows from Proposition 1.3. �

The following proposition will also be useful. When H ≤ G is a pair of groups,
we regard Fp(H) as a subcategory of Fp(G).

Proposition 1.6. If H ≤ G is a pair of groups, then Fp(H) is a full subcategory
of Fp(G) if and only if the induced map

Rep(P,H) −−−−−→ Rep(P,G)

is injective for all finite p-groups P .
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Proof. Assume that Rep(P,H) injects into Rep(P,G) for all P . For each pair of p-

subgroups P,Q ≤ H and each ϕ ∈ HomG(P,Q), [inclGP ] = [inclGQ ◦ϕ] in Rep(P,G),

so [inclHP ] = [inclHQ ◦ϕ] in Rep(P,H), and thus ϕ ∈ HomH(P,Q). This proves that
Fp(H) is a full subcategory of Fp(G).

Conversely, assume that Fp(H) is a full subcategory. Fix a finite p-group P , and
α, β ∈ Hom(P,H) such that [α] = [β] in Rep(P,G). Let ϕ ∈ HomG(α(P ), β(P )) be
such that ϕ◦α = β. Then ϕ ∈ HomH(α(P ), β(P )) since Fp(H) is a full subcategory,
and so [α] = [β] in Rep(P,H). This proves injectivity. �

Our goal in the next three sections is to construct isotypical equivalences between
fusion systems of finite groups at a prime p by constructing homotopy equivalences
between their p-completed classifying spaces.

2. Homotopy fixed points of homotopy self-equivalences

We start by defining homotopy orbit spaces and homotopy fixed spaces for a
homotopy self-equivalence of a space, i.e., for a homotopy action of the group Z.
As usual, I denotes the unit interval [0, 1].

Definition 2.1. Fix a space X, and a homotopy equivalence α : X −−−→ X.

(a) The homotopy fixed point set Xhα is the space of all continuous maps
γ : I −−−→ X such that γ(1) = α(γ(0)) (with the compact-open topology).

(b) The homotopy orbit space ormapping torus of α is the spaceXhα = (X×I)/∼,
where (x, 0) ∼ (α(x), 1) for all x ∈ X.

(c) Define pα : Xhα −−−→ S1 via projection to I, where we identify S1 with I/(0 ∼
1).

We can identify the ordinary fixed set of α as the subspace of constant paths
in Xhα. We will show in Lemma B.1 that in contrast to the usual fixed set, Xhα

is homotopy invariant: its homotopy type depends only on X up to homotopy
equivalence and on α up to homotopy.

Remark 2.2. When α is a homeomorphism, then Xhα
pα−−−→ S1 is a locally trivial

fiber bundle, and Xhα is the space of its sections. Conversely, every locally trivial

fiber bundle E
p−−−→ S1 with fiber X is homeomorphic to Xhα

pα−−−→ S1 for some
homeomophism α of X in the homotopy class determined by the action of the
generator of π1(S

1) on X.
When α is a homotopy equivalence but not a homeomorphism, we can arrange to

consider Xhα as a space of sections by replacing X by the double mapping telescope
of α. This is the space

Tel(α) = (X × I × Z)/∼, where (x, 0, n) ∼ (α(x), 1, n− 1) ∀ x ∈ X, n ∈ Z.

There is a natural “inclusion” i of X into Tel(α), defined by setting i(x) = [x, 0, 0].
This inclusion is a homotopy equivalence (see Lemma B.2).

Let α̂ : Tel(α) −−−→ Tel(α) be the homeomorphism α̂([x, t, n]) = [x, t, n + 1].
Then α̂ ◦ i � i ◦ α, so Xhα � Tel(α)hα̂ by Lemma B.1.

Remark 2.3. The homotopy fixed point space Xhα of a homotopy equivalence α
can also be described as the homotopy pullback of the maps

X
Δ−−−−−→ X ×X

(Id,α)←−−−−− X ,
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where Δ is the diagonal map Δ(x) = (x, x). In other words, Xhα is the space of
triples (x1, x2, φ), where x1, x2 ∈ X, and φ is a path in X×X from Δ(x1) = (x1, x1)
to (x2, α(x2)). Thus φ is a pair of paths in X, one from x1 to x2 and the other
from x1 to α(x2), and these two paths can be composed to give a single path from
x2 to α(x2) which passes through the (arbitrary) point x1. Hence this definition is
equivalent to the one given above. We will come back to this construction of Xhα

in Section 3.

For any space X, set Ĥi(X;Zp) = lim←−Hi(X;Z/pk) for each i, and let Ĥ∗(X;Zp)

be the sum of the Ĥi(X;Zp). If H
∗(X;Fp) is finite in each degree, then Ĥ∗(X;Zp)

is isomorphic to the usual cohomology ring H∗(X;Zp) with coefficients in the p-
adics.

Recall that Out(X) denotes the group of homotopy classes of homotopy self-
equivalences of a spaceX. By the p-adic topology on Out(X), we mean the topology
for which {Uk} is a basis of open neighborhoods of the identity, where Uk ≤ Out(X)
is the group of automorphisms which induce the identity on H∗(X;Z/pk). Thus

this topology is Hausdorff if and only if Out(X) is detected on Ĥ∗(X;Zp).

Theorem 2.4. Fix a prime p. Let X be a connected, p-complete space such that

• H∗(X;Fp) is Noetherian, and

• Out(X) is detected on Ĥ∗(X;Zp).

Let α and β be homotopy self-equivalences of X which generate the same closed
subgroup of Out(X) under the p-adic topology. Then Xhα � Xhβ.

Proof. Upon replacing X by the double mapping telescope of α (Remark 2.2), we
can assume that α is a homeomorphism. By Lemma B.1, this does not change the
homotopy type of Xhα or of Xhβ.

Let r ≥ 1 be the smallest integer prime to p such that the action of αr on
H∗(X;Fp) has p-power order. (The action of α on the Noetherian ring H∗(X;Fp)

has finite order.) Since 〈α〉 = 〈β〉, H∗(α;Fp) and H∗(β;Fp) generate the same
subgroup in Aut(H∗(X;Fp)), hence have the same order, and so r is also the
smallest integer prime to p such that the action of βr on H∗(X;Fp) has p-power
order.

Let
pα : Xhα −−−−−→ S1 and pβ : Xhβ −−−−−→ S1

be the canonical projections (Definition 2.1). Let

p̃α : X̃hα −−−−−→ S1 and p̃β : X̃hβ −−−−−→ S1

be their r-fold cyclic covers, where we take the r-fold cover of S1 as well as of
Xhα and Xhβ. We regard p̃α and p̃β as equivariant maps between spaces with
Z/r-action. Then

X̃hα
∼=

(
X × I × (Z/r)

)/
∼ ∼=

(
X × [0, r])/≈,

where (x, 0, i) ∼ (α(x), 1, i−1) and (x, 0) ≈ (αr(x), r). In other words, X̃hα � Xhαr

(and p̃α is its canonical fibration), and X̃hβ
∼= Xhβr . Also, there is a bijection

between sections of the bundle pα and Z/r-equivariant sections of p̃α: each section
of pα is covered by a unique equivariant section of p̃α (by covering space theory),
and each equivariant section induces a section of pα by taking the orbit map. Thus
Xhα is the space of all equivariant sections of p̃α.
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Since αr acts on H∗(X;Fp) with order a power of p, this action is nilpotent,
and by [BK, II.5.1], the homotopy fiber of p̃α

∧
p has the homotopy type of X∧

p � X.
Thus the rows in the following diagram are (homotopy) fibration sequences:

X �� X̃hα

κp

��

p̃α �� S1

κp

��
κp

��
X �� (X̃hα)

∧
p

p̃α
∧
p �� S1∧

p ,

and so the right-hand square is a homotopy pullback. By the definition of p-

completion in [BK], the induced actions of Z/r on S1∧
p and on (X̃hα)

∧
p are free,

since the actions on the uncompleted spaces are free. Hence Xhα can be described
(up to homotopy), not only as the space of Z/r-equivariant sections of p̃α, but also
as the space of Z/r-equivariant liftings of κp(S

1) : S1 −−−→ S1∧
p along p̃α

∧
p . In other

words,

(1) Xhα � fiber
(
map

Z/r(S
1, (X̃hα)

∧
p )

p̃α
∧
p ◦−

−−−−−−→ map
Z/r(S

1, S1∧
p )
)

(the fiber over κp(S1)).
Consider again the p-completed fibration sequence

X −−−−−−→ (X̃hα)
∧
p

p̃α−−−−−−→ BS1∧
p ,

and its orbit fibration

X −−−−−−→ (X̃hα)
∧
p /(Z/r)

p̂α−−−−−−→ BS1∧
p /(Z/r) .

Here, π1(BS1∧
p )

∼= Zp, and π1(BS1∧
p /(Z/r))

∼= Zp × Z/r (the completion of Z

with respect to the ideals rpiZ). Since αr acts on H∗(X;Z/p) with order a power
of p, it also acts on each H∗(X;Z/pk) with order a power of p, and hence the
homotopy action of π1(BS1∧

p ) on X has as image the p-adic closure of 〈αr〉. Thus
the homotopy action of π1(BS1∧

p /(Z/r)) on X, defined by the fibration p̂α, has as
image the p-adic closure of 〈α〉.

Since β ∈ 〈α〉 by assumption, we can represent it by a map S1 b−−−→ S1∧
p /(Z/r).

Let Y be the homotopy pullback defined by the following diagram:

X �� Y

f
��

p′
�� S1

b

��
X �� (X̃hα)

∧
p /(Z/r)

p̂α �� S1∧
p /(Z/r).

Thus the canonical generator of π1(S
1) induces [β] ∈ Out(X). By Remark 2.2,

p′ : Y −−−→ S1 is homeomorphic to pβ′ : Xhβ′ −−−→ S1 for some homeomorphism
β′ of X which is homotopic to β. Upon taking r-fold covers and then completing
the first row, this induces a map of fibrations

X �� Ỹ ∧
p

f�
��

p′
�� S1∧

p

b̃

��
X �� (X̃hα)

∧
p

p̃α �� S1∧
p /(Z/r),
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which is an equivalence since b̃ is an equivalence (since 〈β〉 is dense in 〈α〉). Also,

(Ỹ ∧
p , p̃

′) ∼= ((X̃hβ′)∧p , p̃β′), and f and b̃ are equivariant with respect to some auto-
morphism of Z/r.

The maps S1 −−→ S1∧
p ←−− (X)hZp

determine a commutative diagram

map
Z/r(S

1∧
p , (X̃hα)

∧
p )

t

��

�� map
Z/r(S

1, (X̃hα)
∧
p )

u

��
map

Z/r(S
1∧
p , S

1∧
p ) �� map

Z/r(S
1, S1∧

p )

(2)

which in turn induces a map between the respective fibers. The horizontal arrows in
(2) are homotopy equivalences because the target spaces in the respective mapping
spaces are p-complete and Z/r acts freely on the source spaces. Hence the fibers
of the vertical maps in (2) are homotopy equivalent. Since u has fiber Xhα by (1),
this proves that Xhα has the homotopy type of the space of equivariant sections

of the bundle (Xhα)
∧
p

p̃α
∧
p−−−→ S1∧

p . Since this bundle is equivariantly equivalent to

the one with total space (X̃hβ′)∧p , the same argument applied to β′ (together with

Lemma B.1) proves that Xhα � Xhβ. �

Our main application of Theorem 2.4 is to the case where X = BG∧
p for a

compact connected Lie group G.

Corollary 2.5. Let G be a compact connected Lie group, and let α, β ∈ Out(BG∧
p )

be two self-equivalences of the p-completed classifying space. If α and β generate
the same closed subgroup of Out(BG∧

p ), then (BG∧
p )

hα � (BG∧
p )

hβ.

Proof. From the spectral sequence for the fibration U(n)/G −−−→ BG −−−→ BU(n)
for any embedding G ≤ U(n), we see that H∗(BG;Fp) is Noetherian. By [JMO,
Theorem 2.5], Out(BG∧

p ) is detected by its restriction to BT∧
p for a maximal torus

T , and hence by invariant theory is detected byQ⊗ZĤ
∗(BG;Zp). So the hypotheses

of Theorem 2.4 hold when X = BG∧
p . �

The hypotheses on X in Theorem 2.4 also apply whenever X is the classifying
space of a connected p-compact group. The condition on cohomology holds by [DW,
Theorem 2.3]. Automorphisms are detected by restriction to the maximal torus by
[AGMV, Theorem 1.1] (when p is odd) and [Ml, Theorem 1.1] (when p = 2).

3. Finite groups of Lie type

We first fix our terminology. Let G be a connected reductive group scheme
over Z. Thus for each algebraically closed field K, G(K) is a complex connected
algebraic group such that for some finite central subgroup Z ≤ Z(G(K)), G(K)/Z
is the product of a K-torus and a semisimple group. For any prime power q, we
let G(q) be the fixed subgroup of the field automorphism ψq. Also, if τ is any
automorphism of G of finite order, then τG(q) will denote the fixed subgroup of the

composite τψq on G(Fq).
Note that with this definition, when G = PSLn, G(q) does not mean PSLn(q) in

the usual sense, but rather its extension by diagonal automorphisms (i.e., PGLn(q)).
By Proposition 1.4, however, any equivalence between fusion systems over groups
SLn(−) will also induce an equivalence between fusion systems over PSLn(−).
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Also, we are not including the case G = SOn for n even, since SOn(F2) is not con-
nected. Instead, when working with orthogonal groups in even dimensions, we take
G = Ωn (and Ωn(K) = SOn(K) when K is algebraically closed of characteristic
different from two).

The results in this section are based on Corollary 2.5, together with the following
theorem of Friedlander. Following the terminology of [GLS3], we define a Steinberg

endomorphism of an algebraic group G over an algebraically closed field to be an

algebraic endomorphism ψ : G −−−→ G which is bijective, and whose fixed subgroup
is finite. For any connected complex Lie group G(C) with maximal torus T(C), any
prime p, and any m ∈ Z prime to p, Ψm : BG(C)∧p −−−→ BG(C)∧p denotes a self-
equivalence whose restriction to BT(C)∧p is induced by (x �→ xm) (an “unstable
Adams operation”). Such a map is unique up to homotopy by [JMO, Theorem 2.5]
(applied to BG � BG(C), where G is a maximal compact subgroup of G(C)).

Theorem 3.1. Fix a connected reductive group scheme G over Z, a prime power
q, and a prime p which does not divide q. Then for any Steinberg endomorphism

ψ of G(Fq) with fixed subgroup H,

BH∧
p � (BG(C)∧p )

hΨ

for some Ψ: BG(C)∧p
�−−−→ BG(C)∧p . If ψ = τ (Fq) ◦G(ψq), where τ ∈ Aut(G) and

ψq ∈ Aut(Fq) is the automorphism (x �→ xq), then Ψ � Bτ (C) ◦ Ψq, where Ψq is
as described above.

Proof. By [Fr, Theorem 12.2], there is a commutative square

BH∧
p

��

D

��

BG(C)∧p

Δ

��
BG(C)∧p

Id,Ψ �� BG(C)∧p ×BG(C)∧p ,

where Δ is the diagonal map, and where the induced map fib(D)
f−−−→ fib(Δ)

between the homotopy fibers induces an isomorphism in mod p cohomology. Since
BG(C) is simply connected, fib(D) and fib(Δ) are both p-complete by the Mod-R
fibre lemma of Bousfield and Kan [BK, II.5.1]. Hence f is a homotopy equivalence
by [BK, I.5.5], and so the above square is a homotopy pullback. Thus BH∧

p �(
BG(C)∧p

)hΨ
by Remark 2.3.

From the proof of Friedlander’s theorem, one sees that Ψ is induced by Bψ,

together with the homotopy equivalence BG(C)∧p � holim
(
(BG(Fq)et)

∧
p

)
of [Fr,

Proposition 8.8]. This equivalence is natural with respect to the inclusion of a

maximal torus T in G. Hence when ψ = τ (Fq) ◦G(ψq), Ψ restricts to the action on
BT(C)∧p induced by τ and (x �→ xq). �

Theorem 3.1 can now be combined with Corollary 2.5 to prove Theorem A, i.e.,
to compare fusion systems over different Chevalley groups associated to the same
connected group scheme G. This will be done in the next two propositions.

Proposition 3.2. Fix a prime p, a connected reductive group scheme G over Z,
and an automorphism τ of G of finite order k. Assume, for each m prime to k,
that τm is conjugate to τ in the group of all automorphisms of G. Let q and q′ be
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prime powers prime to p. Assume either

(a) 〈q〉 = 〈q′〉 as subgroups of Z×
p , or

(b) there is some ψ−1 in the Weyl group of G which inverts all elements of the

maximal torus, and 〈 − 1, q〉 = 〈 − 1, q′〉 as subgroups of Z×
p .

Then there is an isotypical equivalence Fp(
τG(q)) � Fp(

τG(q′)).

Proof. Since H∗(BG(C)∧p ;Fp) is Noetherian and finite in each degree, each of the

rings H∗(BG(C)∧p ;Z/p
k) has a finite automorphism group. So if 〈q〉 = 〈q′〉, then

Ψq and Ψq′ generate the same subgroup in Aut
(
H∗(BG(C)∧p ;Z/p

k)
)
for each k,

and hence the same closed subgroup in Out(BG(C)∧p ).

Since τ is an automorphism of G, its actions on G(Fq) and G(Fq′) commute

with the field automorphisms ψq and ψq′ . Thus (τψq)k = ψqk has a finite fixed

subgroup, so τψq also has a finite fixed subgroup, and similarly for τψq′ . So by
Theorem 3.1,

B(τG(q))∧p � (BG(C)∧p )
h(Bτ◦Ψq) and B(τG(q′))∧p � (BG(C)∧p )

h(Bτ◦Ψq′).

Assume 〈q〉 = 〈q′〉. Then for some m prime to k = |τ |, q ≡ (q′)m modulo

〈qk〉 = 〈q′k〉. Hence Bτm ◦ Ψq and Bτ ◦ Ψq′ generate the same closed subgroup
of Out(G(C)∧p ) under the p-adic topology, since they generate the same subgroup

modulo 〈Ψqk〉. Thus

(BG(C)∧p )
h(Bτ◦Ψq′ ) � (BG(C)∧p )

h(Bτm◦Ψq) � (BG(C)∧p )
h(Bτ◦Ψq) ,

where the first equivalence holds by Corollary 2.5, and the second since τ and τm

are conjugate in the group of all automorphisms of G. So B(τG(q))∧p � B(τG(q′))∧p ,
and there is an isotypical equivalence between the fusion systems of these groups
by Theorem 1.5.

If − Id is in the Weyl group, then by [JMO, Theorem 2.5], there is a homomor-
phism Z×

p /{±1} −−−→ Out(BG(C)∧p ) which sends the class of q to that of Ψq. So if

〈 − 1, q〉 = 〈 − 1, q′〉, then by the same argument as that just given, 〈Ψq〉 = 〈Ψq′〉,
(BG(C)∧p )

h(Bτ◦Ψq) � (BG(C)∧p )
h(Bτ◦Ψq′ ), and hence Fp(

τG(q)) � Fp(
τG(q′)). �

To make the condition 〈q〉 = 〈q′〉 more concrete, note that for any prime p, and
any q, q′ prime to p of order s and s′, respectively, in F×

p ,

〈q〉 = 〈q′〉 ⇐⇒
{
s = s′ and vp(q

s − 1) = vp(q
′s − 1) if p is odd,

q ≡ q′ (mod 8) and vp(q
2 − 1) = vp(q

′2 − 1) if p = 2 .

When p is odd, this follows from the decomposition

Z×
p = F×

p × (1 + pZp) ∼= (Z/(p−1))× Zp .

Each subgroup of (Z/(p−1))× (Z/pn) factors as a product of subgroups of the two
factors, and hence each closed subgroup H ≤ Z×

p factors as a product (Z/s)× (1 +

pkZp) for some s|p−1 and some k ≥ 1. When H = 〈q〉 as above, s is the order of q
in F×

p and k = vp(q
s−1). This proves the above claim when p is odd, and that when

p = 2 follows by a similar argument using the decomposition Z×
2 = {±1}×(1+4Z2).
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Corollary 2.5 can also be applied to compare fusion systems of Steinberg groups
with those of related Chevalley groups.

Proposition 3.3. Fix a prime p, and a pair q, q′ of prime powers prime to p such

that 〈 − q〉 = 〈q′〉 as subgroups of Z×
p . Assume G is of type An, Dn for n odd, or E6,

and τ is a graph automorphism of G of order two. Then Fp(
τG(q)) and Fp(G(q′))

are isotypically equivalent. In other words, there are isotypical equivalences:

(a) Fp(SUn(q)) � Fp(SLn(q
′)) for all n.

(b) Fp(Spin
−
2n(q)) � Fp(Spin

+
2n(q

′)) for all odd n.

(c) Fp(
2E6(q)) � Fp(E6(q

′)).

Proof. Set G = SLn, Spin2n for n odd, or the simply connected E6; and let τ be the
graph automorphism of order two. In all of these cases, τ acts by inverting the ele-

ments of some maximal torus. Hence by Theorem 3.1, B(τG(q))∧p � (BG(C)∧p )
hΨ−q

and BG(q′)∧p � (BG∧
p )

hΨq′
. So BG(q)∧p � BG(q′)∧p by Corollary 2.5, [JMO, The-

orem 2.5], and the assumption 〈 − q〉 = 〈q′〉, and there is an isotypical equivalence
between the fusion systems of these groups by Theorem 1.5. �

Upon combining this with Proposition 1.4, one gets similar results for PSUn(q),
Ω−

2n(q), PΩ−
2n(q), etc.

4. More homotopy fixed points

To get more results of this type, we need to look at homotopy fixed points in a
more general setting. Let G be any discrete group, and let EG be a universal space
for G, i.e., a contractible CW -complex on which G acts by freely permuting the
cells. Thus BG = EG/G is a classifying space for G. If G acts on a space X, then

the homotopy fixed point space for the action is the space XhG def
= mapG(EG,X).

The usual fixed point space XG can be identified as the subspace of all constant
maps in XhG.

Remark 4.1. Unlike the usual fixed point space, (−)hG has the property that if

f : X
�−−−→ Y is G-equivariant and a homotopy equivalence, then it induces a ho-

motopy equivalence fhG : XhG �−−−→ Y hG. Formally, this follows as a special case
of the homotopy invariance of homotopy inverse limits (see [BK, XI.5.6]). But it
is in fact much more elementary: in the following diagram, one can always find a
G-equivariant lifting

X

f

��
map(EG, Y )× EG

����������
eval �� Y

since f is a homotopy equivalence and G acts freely on the source space.

When G = Z, we can take EZ = R, where Z acts by translation. If Z acts
on X, where 1 ∈ Z acts via a homeomorphism α, then XhZ = map

Z
(R, X) is

homeomorphic to the space of maps φ : [0, 1] −−−→ X such that φ(1) = α(φ(0)), i.e.
to Xhα. So the homotopy fixed set of a homeomorphism is just a special case of
the homotopy fixed set of a group action.
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Theorem 4.2. Fix a prime p. Let X be a connected, p-complete space such that

• H∗(X;Fp) is Noetherian, and

• Out(X) is detected on Ĥ∗(X;Zp).

Fix a finite cyclic group K = 〈g〉 of order r prime to p, together with an action
of K on X. Let α : X −−−→ X be a homotopy self-equivalence of X and assume it
extends to a K-equivariant map

β : EK ×X
�−−−−−→ X .

Assume H∗(α;Fp) is an automorphism of H∗(X;Fp) of p-power order (equivalently,
the action is nilpotent). Let κ : X −−−→ X be the action of a generator g ∈ K. Then

Xh(κα) � (XhK)hα.

Proof. Upon replacing X by the double mapping telescope of prEK ×β (Remark
2.2), and using Remark 4.1, we can assume that X has a free action of the group
K × Z, and hence that κ and α are commuting homeomorphisms of X which are
the actions of generators of K and of Z. In particular, (κα)r = αr.

For each k ≥ 1, α acts on H∗(X;Z/pk) as an automorphism of p-power order.
Since r is prime to p, this implies that α and αr generate the same closed subgroup
of Out(X). So by Theorem 2.4, the inclusion of Xhα into Xhαr

is a homotopy
equivalence.

The theorem will follow once we check the following equivalences:

(XhK)hα = mapα(R,mapK(EK,X)) ∼= mapK(EK,mapα(R, X))

� mapακ(EK,mapαr(R, X)) ∼= mapακ(EK × R, X) � Xhακ .

Here, α acts on R by translation (and K acts trivially). The two homeomorphisms
(“∼=”) are obtained by taking adjoint mapping spaces. The first homotopy equiv-
alence holds since the inclusion of mapα(R, X) = Xhα into mapαr(R, X) = Xhαr

is K-equivariant and a homotopy equivalence, where the K-action on the second
space is induced by the actions of ακ on R and on X (note that (ακ)r = αr acts
trivially). The second holds since the inclusion of R into EK × R (induced by the
inclusion of 〈ακ〉 ∼= Z into K × 〈α〉) is an equivariant homotopy equivalence (both
spaces are contractible with free action of 〈ακ〉 ∼= Z). �

The following more technical lemma will be needed when applying Theorem 4.2.

Lemma 4.3. Let G be a compact connected semisimple Lie group, and let K ≤
Aut(G) be a finite group of automorphisms. If p does not divide the order of K,
then for any q ∈ (Zp)

×, and any unstable Adams map Ψq, there is a K-equivariant
map

EK ×BG∧
p

f−−−−−→ BG∧
p

whose restriction to ∗ ×BG∧
p is Ψq.

Proof. The action of K on G induces an action of K on the p-completed classifying
space BG∧

p . We will construct a K-equivariant map

f0 : EK −−−−−−→ map(BG∧
p , BG∧

p )

with image in the connected component of Ψq. By [JMO, Proposition 2.7], this
component has the homotopy type of BZ(G)∧p � BZ(G)(p), where Z(G)(p) de-
notes the p-power torsion in Z(G). By equivariant obstruction theory [Br, Theorem
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II.1.5], the only obstruction to the existence of such a map lies in H2
K(EK;Z(G)(p))

(the obstruction to defining f0 on 2-cells in EK). Also, H2
K(EK;Z(G)(p)) ∼=

H2(K;Z(G)(p)) by [Br, I.9.3], and this group vanishes since |K| is prime to p.
Thus there is a map f0 as above, which is adjoint to the required equivariant

map f : EK ×BG∧
p −−−→ BG∧

p . �
The following result is one example of how Theorem 4.2 can be applied, in order

to compare the fusion systems of G2(q) and
3D4(q), and those of F4(q) and

2E6(q).
The first case was suggested by the lists of maximal subgroups of these groups in
[Kl1] and [Kl2], and also by the cohomology calculations in [FM] and [Mi].

Example 4.4. Fix a prime p, and a prime power q ≡ 1 (mod p). Then the following
hold.

(a) If p 	= 3, the fusion systems Fp(G2(q)) and Fp(
3D4(q)) are isotypically equiv-

alent.

(b) If p 	= 2, the fusion systems Fp(F4(q)) and Fp(
2E6(q)) are isotypically equiv-

alent.

Proof. To prove (a), we apply Theorem 4.2, with X = BSpin8(C)
∧
p � BSpin(8)∧p ,

with K ∼= C3 having the action on X induced by the triality automorphism, with
α = Ψq, and with β : EK×X −−−→ X aK-equivariant extension of α as constructed
in Lemma 4.3.

We first show that the inclusion of G2 into Spin(8) induces a homotopy equiv-
alence (BG2)

∧
p � XhK . Since there is always a map from the fixed point set of

an action to its homotopy fixed point set, the inclusion of G2(C) ∼= Spin8(C)
K (cf.

[GLS3, Theorem 1.15.2]) into Spin8(C) induces maps (BG2)
∧
p −−−→ XhK −−−→ X.

The first map is a monomorphism in the sense of Dwyer and Wilkerson [DW, §3.2],
since the composite is a monomorphism.

By [BM, Theorem B(2)], XhK is the classifying space of a connected p-compact
group in the sense of Dwyer and Wilkerson [DW]. Hence by [BM, Theorem B(2)],
H∗(XhK ;Qp) is the polynomial algebra generated by the coinvariants
QH∗(X;Qp)K , i.e., the coinvariants of theK-action on the polynomial generators of
H∗(Spin8(C);Qp). For any compact connected Lie group G with maximal torus T ,
H∗(BG;Q) is the ring of invariants of the action of the Weyl group on H∗(BT ;Q)
[Bor, Proposition 27.1] and is a polynomial algebra with degrees listed in [ST, Table
VII]. In particular, H∗(X;Qp) has polynomial generators in degrees 4, 8, 12, 8, and
an explicit computation shows that K fixes generators in degrees 4 and 12. Thus
H∗(XhK ;Qp) ∼= H∗(BG2(C);Qp) (as graded Qp-algebras). It follows from [MN,
Proposition 3.7] that (BG2)

∧
p −−−→ XhK is an isomorphism of connected p-compact

groups because it is a monomorphism and a rational isomorphism.
Since H∗(X;Fp) is Noetherian and finite in each degree, its automorphism group

is finite. Hence the group of all r ∈ Z×
p such that Ψr induces the identity on

H∗(X;Fp) has finite index and contains 1+pkZp for some k ≥ 1. Since q ≡ 1 (mod
p), the action of α = Ψq on H∗(X;Fp) has order dividing pk−1.

Now let κ ∈ Aut(X) generate the action of K. By Theorem 3.1,

Xh(κα) � B(3D4(q))
∧
p and (XhK)hα � (BG2

∧
p )

hα � BG2(q)
∧
p .

Hence B(3D4(q))
∧
p � BG2(q)

∧
p by Theorem 4.2, and so these groups have isotypi-

cally equivalent p-fusion systems by Theorem 1.5. This proves (a).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

FUSION SYSTEMS OF FINITE GROUPS OF LIE TYPE 15

Now set X = BE6(C)
∧
p and K = 〈τ 〉, where τ is an outer automorphism of

order two. For each k ≥ 0, τ acts on H2k(X;Qp) via (−1)k: this follows since
H∗(X;Qp) injects into the cohomology of any maximal torus and τ acts on an
appropriate choice of maximal torus via (g �→ g−1). Since H∗(X;Qp) is polynomial
with generators in degrees 4, 10, 12, 16, 18, 24, [BM, Theorem B(2)] implies that
H∗(XhK ;Qp) is polynomial with generators in degrees 4, 12, 16, 24, and hence is
isomorphic to H∗(BF4(C);Qp). The rest of the proof of (b) is identical to that of
(a). �

By applying Theorem 4.2 to the graph automorphisms of classical groups and us-
ing similar arguments, we get additional equivalences Fp(SU2n(q)) � Fp(Sp2n(q)),

Fp(SU2n+1(q)) � Fp(Spin2n+1(q)), and Fp(Spin
−
2n(q)) � Fp(Spin2n−1(q)). In all

cases, this holds for p odd and for q ≡ 1 (mod p). However, more general relations
of these types also follow from Proposition A.3 and Theorem A.

Appendix A. Examples for classical groups

We prove here a few other cases of isotypical equivalences between fusion systems
of classical groups. All of these are shown by much more elementary methods than
those used in Sections 3 and 4.

Recall that a bilinear form b on a k-vector field V is symplectic if b(v, v) = 0 for
each v ∈ V . When char(k) 	= 2, this is equivalent to b being antisymmetric.

Lemma A.1. Fix a finite field k, and a finite group G of odd order prime to
char(k). Let V be a finite-dimensional kG-module such that V G = 0 (V has trivial
fixed component) and V ∼= V ∗.

(a) There are nondegenerate G-invariant quadratic and symplectic forms on V .

(b) If b, b′ : V × V −−−→ k are two nondegenerate G-invariant symplectic forms,
then there is a β ∈ AutkG(V ) such that b′(v, w) = b(β(v), β(w)) for all v, w ∈
V . If q, q′ : V −−−→ k are two nondegenerate G-invariant quadratic forms,
then there is β ∈ AutkG(V ) such that q′ = q ◦ β.

Proof. Write V = V1 ⊕ V2, where V1 is generated by all nontrivial self-dual irre-
ducible submodules of V , and V2 is generated by all irreducible submodules which
are not self-dual. Since V and V1 are self-dual, so is V2. Any nondegenerate G-
invariant bilinear or quadratic form on V splits as an orthogonal direct sum of
nondegenerate forms on V1 and V2, so it suffices to prove the lemma when V = V1

or V = V2.
For each kG-module W , let Sym+

G(W ) and Sym−
G(W ) be the sets of nondegen-

erate G-invariant symmetric and antisymmetric forms on W . We show in Steps 1
and 2 that Sym±

G(Vi) 	= ∅ for i = 1, 2, and that all forms in each set are isomorphic
to each other. This proves the lemma when char(k) 	= 2.

If char(k) = 2, then the lemma follows from the results on symmetric bilinear
forms, together with the following observations.

• Each b ∈ Sym±
G(V ) is symplectic. To see this, note that since b is symmetric

and V G = 0, the function v �→ b(v, v)1/2 lies in HomkG(V, k) = 0.

• There is a unique G-invariant quadratic form q : V −−−→ k associated to each
b ∈ Sym±

G(V ). To see that there is at least one q, let q0 be any (non-
G-invariant) quadratic form associated to b, and set q(v) =

∑
g∈G q0(gv).
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Then q is G-invariant, and is a quadratic form associated to b since b

is G-invariant, |G| is odd, and char(k) = 2. If q′ is another G-invariant
quadratic form associated to b, then the function v �→ (q′(v)− q(v))1/2 lies
in HomkG(V, k) = 0, so q′ = q.

Step 1: Assume first that V is a nontrivial irreducible kG-module such that
V ∼= V ∗. Any nonzero G-invariant form b : V × V −−−→ k is nondegenerate (since
V is irreducible), and there exist such forms since V ∼= V ∗. If b 	= 0, then either
b ∈ Sym+

G(V ) or b − bt ∈ Sym−
G(V ) (where bt(v, w) = b(w, v)). Thus at least one

of these sets is nonempty.
Let k̄ be the algebraic closure of k. Set K = EndkG(V ): a finite field extension

of k. We can regard V as an (irreducible) KG-module, and then V
def
= k̄ ⊗K V

is irreducible as a k̄G-module (cf. [A, 25.8]). Let χ
V
: G −−−→ C be the character

of V under some identification of k̄× with a group of roots of unity in C. (See

[Se, § 18].) If V ∼= V ∗, then
∑

g∈G χ
V
(g2) 	= 0: this is shown in [BtD, Proposition

II.6.8] for complex representations, and the same proof applies in this situation.
Since |G| is odd, each element of G is the square of a unique element, and hence∑

g∈G χ
V
(g) 	= 0, which is impossible since V is nontrivial and irreducible. Thus

V is not self-dual as a k̄G-module, and so V is not self-dual as a KG-module.
Assume b, b′ are both in Sym+

G(V ) or both in Sym−
G(V ). For each α ∈ K =

AutkG(V ), there is a unique α ∈ K such that b(α(v), w) = b(v, α(w)) for all v, w ∈
V . By elementary considerations, α �→ α is a field automorphism ψ ∈ Aut(K), and
ψ2 = IdK since b is symmetric or symplectic. If ψ = IdK , then b factors through
V ⊗K V , so (V ⊗K V )G 	= 0, which is impossible since we just showed that V 	∼= V ∗

as KG-modules. Thus ψ is the automorphism of order two in K (and ψ|k = Idk).
Let q be such that α = αq for α ∈ K; thus |K| = q2.

Since b and b′ are nondegenerate, there is α ∈ AutkG(V ) = K× such that
b′(v, w) = b(α(v), w) for each v, w. Also, α = α, since b′ and b are both symmetric

or both symplectic, so αq−1 = 1. Hence there is β ∈ K such that α = βq+1 = ββ,
and so b′(v, w) = b(β(v), β(w)) for each v, w. This proves (b) in this case.

If char(k) 	= 2, then choose γ ∈ K× such that γ/γ = γq−1 = −1. Define b′′ by
setting b′′(v, w) = b(γ(v), w). Then b′′ ∈ Sym∓

G(V ) if b ∈ Sym±
G(V ), so both of

these sets are nonempty. This finishes the proof of the lemma when V is irreducible.
Now assume V is a direct sum of nontrivial self-dual irreducible kG-modules. We

claim that each form in Sym±
G(V ) splits as an orthogonal direct sum of forms on

simple summands of V . Assume otherwise, and let (V, b) be a minimal counterex-
ample. Then b|W×W = 0 for each irreducible W ⊆ V . Fix irreducible submodules
W1,W2 ⊆ V such that W2⊕W⊥

1 = V . Choose b′ ∈ Sym±
G(W2) of the same type as

b (symmetric or antisymmetric), and define ϕ : W1

∼=−−−→ W ∗
2 and ψ : W2

∼=−−−→ W ∗
2

by setting ϕ(v)(w) = b(v, w) and ψ(v)(w) = b′(v, w). Set K = EndkG(W2), let
(α �→ α) ∈ Aut(K) be as above, and choose α ∈ K such that α + α = 1. Define
ρ : W2 −−−→ V by setting ρ(v) = α(v) + ϕ−1ψ(v). Then for all v, w ∈ W2,

b(ρ(v), ρ(w)) = b(α(v), ϕ−1ψ(w)) + b(ϕ−1ψ(v), α(w))(b|Wi×Wi
= 0)

= b′(α(v), w) + b′(v, α(w))

= b
′(α(v), w) + b

′(α(v), w) = b
′(v, w).
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Thus b does not vanish on ρ(W2), contradicting the original assumption. We con-
clude that b splits as an orthogonal direct sum of forms on simple summands of V ,
and hence that the lemma holds for V since it holds for its simple summands.

Step 2: Assume that none of the irreducible kG-summands of V is self-dual (but
V is). Fix b ∈ Sym±

G(V ). If W1 ⊆ V is an irreducible summand, then b|W1×W1
= 0

since W1 	∼= W ∗
1 . Choose a kG-summand W2 complementary to W⊥

1 ⊇ W1; thus b
is nondegenerate on W1 ⊕ W2. By continuing this procedure on (W1 ⊕ W2)

⊥, we
get an orthogonal decomposition

(V, b) = (W1 ⊕W2, b1)⊕ · · · ⊕ (W2r−1 ⊕W2r, br),

where each Wi is irreducible and each bi is a (symmetric or symplectic) hyperbolic
form with respect to this decomposition. Since each such form is determined by

isomorphisms W2i−1

∼=−−−→ W ∗
2i, any two such forms are isomorphic.

Since V ∼= V ∗, we can write V =
⊕2r

i=1 Wi where W2i−1
∼= W ∗

2i, and hence

Sym±
G(V ) are both nonempty. �

Lemma A.1 now allows us, for certain pairs of classical groups H < G, to show
that Fp(H) is a full subcategory of Fp(G). In what follows, GO±

n (q) denotes the
full orthogonal group on Fn

q .

Lemma A.2. Fix an odd prime p, and a prime power q which is prime to p. Each
of the following inclusions H < G of finite groups induces an inclusion of Fp(H)
as a full subcategory in Fp(G).

(a) GLn(q) < GLn+1(q) for all n ≥ 2.

(b) GLn(q) < GLn(q
k) for all n ≥ 2 and all k > 1.

(c) Sp2n(q) < GL2n(q) for all n.

(d) GO±
n (q) < GLn(q) for all n ≥ 2.

Proof. In each case H < G, we claim, for each p-group P , that Rep(P,H) injects
into Rep(P,G). This follows from Lemma A.1 in cases (c) and (d) (applied to
representations of P ), and from semisimplicity and the unique decomposition of
Fq[P ]-modules in cases (a) and (b). (Note that for any Fq[P ]-module V , Fqk⊗Fq

V ∼=
V k as Fq[P ]-modules.) The lemma now follows from Proposition 1.6. �

Whenever H1, H2 < G are inclusions of finite groups which make Fp(H1) and
Fp(H2) into full subcategories of Fp(G), and the Sylow p-subgroups of H1 and
H2 are G-conjugate, then Fp(H1) � Fp(H2). Using this, Lemma A.2 leads to the
following examples of isotypically equivalent fusion systems.

Proposition A.3. For any odd prime p, and any prime power q prime to p, the
following pairs of fusion systems are isotypically equivalent.

(a) Fp(SO2n+1(q)) � Fp(Sp2n(q)) for all n ≥ 1.

(b) Fp(GO±
2n(q)) � Fp(SO2n+1(q)) if q

n 	≡ ∓1 (mod p).

(c) Fp(SO2n−1(q)) � Fp(SO
±
2n(q)) if q

n 	≡ ±1 (mod p).

(d) Fp(Sp2n(q)) � Fp(SL2n(q)) for each n ≥ 1 if ordp(q) is even.

(e) Fp(SO2n+1(q)) � Fp(SL2n+1(q)) for each n ≥ 1 if ordp(q) is even.
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(f) Fp(Sp2n(q)) � Fp(Sp2n(q
2)) for each n ≥ 1 if ordp(q) ≡ 2 (mod 4).

(g) Fp(GLsm(q)) � Fp(GLsm+i(q)) if s = ordp(q) > 1, m ≥ 1, and 0 < i < s.

Proof. By Lemma A.1, each p-subgroup of Sp2n(q) is GL2n+1(q)-conjugate to a
subgroup of SO2n+1(q) and vice versa. Hence the Sylow p-subgroups of Sp2n(q)
and GL2n+1(q) are conjugate in GL2n+1(q), which by Lemma A.2 implies that their
p-fusion systems are isotypically equivalent. This proves (a).

The other cases follow by comparing the orders of the groups in question and
applying Lemma A.2. For example, (b) and (c) follow from the standard order
formulas

[SO2n+1(q) : SO
±
2n(q)] = qn(qn ± 1),

[SO±
2n(q) : SO2n−1(q)] = qn−1(qn ∓ 1).

Note that if H < K < G induces an isotypical equivalence Fp(H) � Fp(G), then
Fp(H) is a full subcategory of Fp(K), and hence Fp(H) � Fp(K). Also, SO2n+1(q)
and GO2n+1(q) ∼= SO2n+1(q)× {± Id} always have the same fusion system at odd
primes. �

Appendix B. Homotopy fixed points and double mapping telescopes

We give here short proofs of two elementary results needed in Section 2.

Lemma B.1. Assume X,Y are spaces, α : X
�−−−→ X and β : Y

�−−−→ Y are ho-

motopy equivalences, and f : X
�−−−→ Y is a homotopy equivalence such that f ◦α �

β ◦ f . Then Xhα � Y hβ.

Proof. For any map f : X −−−→ Y and any homotopy F : X × I −−−→ Y from fα
to βf (i.e., F (−, 0) = fα and F (−, 1) = βf), define

Φf,F : Xhα −−−−−→ Y hβ

by setting, for each φ ∈ Xhα,

Φf,F (φ)(t) =

{
f(φ(2t)) if t ≤ 1

2 ,

F (φ(0), 2t− 1) if t ≥ 1
2 .

These maps have the following properties:

(a) Assume Z is a third space, with homotopy equivalence γ : Z
�−−−→ Z. For any

pair of maps X
f−−−→ Y

g−−−→ Z, and any pair of homotopies F from fα to
βf and G from gβ to γg, there is a homotopy H from gfα to γgf such that
Φg,G ◦ Φf,F � Φgf,H . For example, we can set

H(x, t) =

{
g(F (x, 2t)) if t ≤ 1

2 ,

G(f(x), 2t− 1) if t ≥ 1
2 .

(b) For any f and F as above, and any f ′ � f , there is a homotopy F ′ from
fα to βf such that Φf ′,F ′ � Φf,F . For example, if R : X × I −−−→ Y is the
homotopy, where R(−, 0) = f and R(−, 1) = f ′, we can define F ′ by setting

F ′(x, t) =

⎧⎪⎨⎪⎩
R(α(x), 1− 3t) if t ≤ 1

3 ,

F (x, 3t− 1) if 1
3 ≤ t ≤ 2

3 ,

β(R(x, 3t− 2)) if 2
3 ≤ t.
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We leave it to the reader to draw the picture and construct the homotopy
from Φf,F to Φf ′,F ′ .

(c) Let F be any homotopy from α to itself, and let F be the homotopy F (x, t) =
(x, 1−t). Then ΦIdX ,F is a homotopy equivalence with homotopy inverse
Φ

IdX ,F
.

Now assume f : X −−−→ Y is a homotopy equivalence with homotopy inverse g.
Then gβ � αg. Choose homotopies F from fα to βf and G from gβ to αg. By
(a) and (b), there are homotopies H1 and H2 such that Φg,G ◦Φf,F � ΦIdX ,H1

and
Φf,F ◦ Φg,G � ΦIdY ,H2

. These composites are homotopy equivalences by (c), and
so Φf,F is a homotopy equivalence. �

Recall that we define the mapping telescope of α : X −−−→ X to be the space

Tel(α) = (X × I × Z)/∼, where (x, 0, n) ∼ (α(x), 1, n− 1) ∀ x ∈ X, n ∈ Z.

Lemma B.2. For any space X and any homotopy equivalence α : X −−−→ X, the
inclusion of X in Tel(α) which sends x ∈ X to [x, 0, 0] is a homotopy equivalence.

Proof. For each n ≥ 0, let Teln(α) ⊆ Tel(α) be the image of
(
X × I ×{−n, . . . , n}

)
in Tel(α). The inclusion of Teln(α) into Teln+1(α) is a homotopy equivalence since
α is, and it has the homotopy extension property since it has a “mapping cylinder
neighborhood” in the sense of [Ha, Example 0.15]. Hence Teln(α) is a strong
deformation retract of Teln+1(α) by [Ha, Corollary 0.20]. One can now take the
“composite” of these strong deformation retractions, to prove that Tel0(α) (and
hence X) is a strong deformation retract of Tel(α). �
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