Chromatic numbers of simplicial manifolds

Frank Lutz ${ }^{1} \quad$ Jesper M. Møller ${ }^{2}$

${ }^{1}$ Technische Universität Berlin
${ }^{2}$ Københavns Universitet

Sym\&Def, May 12, 2015

Chromatic numbers

The s-chromatic number of a finite ASC K
$\chi_{s}(K)=r$ if K admits a vertex coloring in r colors without monochrome s-simplices and r is minimal.

The s-chromatic number of a compact manifold M

$$
\chi_{s}(M)=\sup \left\{\chi_{s}(K)| | K \mid=M\right\} \leq \infty
$$

$$
\infty \geq \chi_{1}\left(M^{d}\right) \geq \chi_{2}\left(M^{d}\right) \geq \cdots \geq \chi_{d}\left(M^{d}\right) \geq \chi_{d+1}\left(M^{d}\right)=0
$$

The chromatic numbers of S^{1} and S^{2} (The 4-color theorem)
$\chi_{1}\left(S^{1}\right)=3$. $\chi_{1}\left(S^{2}\right)=4$ and $\chi_{2}\left(S^{2}\right)=2$.

- What are the s-chromatic numbers of the d-sphere S^{d} ?
- What are the s-chromatic numbers of the surfaces?

Chromatic numbers of spheres

Determine the s-chromatic numbers S^{d} !

The 3 chromatic numbers of the 3 -sphere
$\chi_{1}\left(S^{3}\right)=\chi_{2}\left(S^{3}\right)=\infty$ and $\chi_{3}\left(S^{3}\right) \geq 3$.
$\chi_{2}\left(S^{3}\right)$: There are 'well-known' triangulations with $\chi_{2}=4$
A triangulated 3 -sphere with $\chi_{2}=5$
There is a triangulated 3 -sphere with 167 vertices and 1412 3 -simplices and $\chi_{2}=5$. No explicit examples with $\chi_{2}=6$ are known.
$\chi_{3}\left(S^{3}\right)$:

- We do not know any triangulated 3 -sphere with $\chi_{3}>3$
- Is $\chi_{3}\left(S^{3}\right)$ finite?

The d-chromatic number of the d-sphere

Chromatic numbers of compact surfaces

Determine the 1- and 2-chromatic numbers of surfaces!

- The 1-chromatic numbers are known
- The 2-chromatic numbers are known only in very few cases

The 1-chromatic number of a surface (Map color theorem)

$$
\chi_{1}\left(M^{2}\right)=\left\lfloor\frac{7+\sqrt{49-24 E(M)}}{2}\right\rfloor \quad\left(M \neq S^{2}, \mathrm{~KB}\right)
$$

The 2-chromatic number

$$
\chi_{2}\left(M^{2}\right) \leq\left\lceil\frac{\chi_{1}\left(M^{2}\right)}{2}\right\rceil
$$

is finite.

2-chromatic numbers of compact surfaces

The known 2-chromatic numbers

$\chi_{2}\left(M^{2}\right) \geq 3$ except for $M=S^{2}$, and $\chi_{2}\left(M^{2}\right)=3$ when M is the torus, the projective plane or the Klein bottle.

Examples of surfaces with $\chi_{2}=4$
$\chi_{2}\left(M^{2}\right) \geq 4$ if M is orientable of genus ≥ 20 or nonorientable of genus ≥ 26.

There are surfaces with large 2-chromatic numbers

$$
\sup \left\{\chi_{2}(M) \mid M \text { compact surface }\right\}=\infty
$$

Find an explicit triangulated surface with $\chi_{2}>4$!

Triangulated surfaces with large 2-chromatic number

We construct

- an orientable surface of genus 620 and a nonorientable surface of genus 1240 with $\chi_{2}=5$ and f-vector (2017, 9765, 6510)
- an orientable surface of genus 9680 and a nonorientable surface of genus 19360 with $\chi_{2}=6$ and f-vector (29647, 147015, 98010)
- a nonorientable surface of genus 2542 with $\chi_{2} \in\{5,6\}$ and f-vector $(127,8001,5334)$

