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Finite loop spaces

Definition 1 A finite loop space is a space
BX whose loop space ΩBX is homotopy
equivalent to a finite CW-complex.

Terminology: RP∞ is a finite group.

Example 2 BG where G is a (compact)
Lie group.
Zabrodsky mix of rationally identical Lie
groups (Hilton criminal)

2ω ⊂ G(BSU(2))
Ω−→ G(SU(2)) = {SU(2)}

(Rector 1971)

Conjecture 3 1. Any finite loop space with
a maximal torus BT → BX is a com-
pact Lie group
TRUE away from 2

2. Any finite loop space is rationally a
compact Lie group
FALSE (Andersen, Bauer, Grodal, Ped-
ersen 2004)

Application 4 (Yau 2002) There are un-
countably many λ-ring structures on the
power series ring Z[[x1, . . . , xn]].
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p-compact groups

Definition 5 A p-compact group is a p-
complete space BX such that H∗(ΩBX;Fp)
is finite (Dwyer–Wilkerson 1994).

Example 6 • Rector’s uncountable many
examples all complete to the same p-
compact group (BSU(2))p

• (BG)p where G is a Lie group and π0(G)
a finite p-group

• BTr = (BU(1)r)p = K(Zrp,2) – p-compact
torus of rank r.

• BTr = (BŤr)p where Ťr = (Z/p∞)r is
the discrete approximation to Tr.

• BT → BP → Bπ – p-compact toral
group (with discrete approximation P̌ )

• Any connected p-complete space with
f.g. polynomial H∗Fp-cohomology is a
(polynomial, often exotic) p-compact
group
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A short history of polynomial
p-compact groups

Theorem 7 (Sullivan) If n|(p − 1), then
BS2n−1 = B(Z/p∞ o Cn)p is a p-compact
group and

H∗(BS2n−1;Zp) = Zp[u]
Cn = Zp[x2n]

and H∗(ΩBS2n−1;Fp) = E(y2n−1) is an
exterior algebra over Fp.

Theorem 8 (Clark–Ewing 1974) Let W ⊂
GL(r,Zp) = Aut(Ťr), be a p-adic reflection
group of order prime to p. Then BX(W ) =
B(Ť oW )p is a p-compact group and

H∗(BX(W );Fp) = H∗(BŤr;Fp)W

is a polynomial and H∗(ΩBX(W );Fp) an
exterior algebra over Fp.

The next example uses a generalized Clark–
Ewing construction and a spectral sequence

E
pq
2 = Hp(K(I);HqM) =⇒ limp+qM

for the higher limits of the functor M on
the EI-category I.
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Example 9 (Aguadé 1989) The simple re-

flection group no W12 ⊂ GL(2,Z3) maps

isomorphically to GL(2,F3). Define the 3-

compact group BDI(2) as the homotopy

colimit of

BSU(3)

Z/2




BT

W12
��

oo

Then

H∗(BDI(2);F3)
∼= H∗(BV2;F3)

GL(2,F3)

∼= F3[x12, x16], P1x12 = x16

Example 10 (Dwyer–Wilkerson 1993) There

exists a 2-compact group BDI(4) such that

H∗(BDI(4);F2) = H∗(BV4;F2)
GL(4,F2)

= F2[c8, c12, c14, c15], Sq4c8 = c12, Sq
1c14 = c15

BDI(4) is the homotopy colimit of a dia-

gram of the form

Spin(7) ⊃ SU(2)3/ 〈(−E,−E,−E)〉
⊃ T o 〈−E〉 ⊃ V4
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Example 11 (Quillen’s generalized BU(n),

Oliver-Notbohm 1993) Suppose r|m|p− 1.

Let

G(m, r, n) = A(m, r, n) o Σn ⊂ GL(n,Zp)

where Σn is permutations and A(m, r, n)

is diagonal matrices with entries in Cm ⊂
Cp−1 ⊂ Z×p and determinant in Cm/r ⊂ Cm.

Define

BCX : A(G(m, r, n),Fnp) → [pcg]

as the functor that is BCU(n) plus products

of unstable Adams operations ψλ, λ ∈ Cm.

Then BXG(m, r, n) = hocolimBCX is a

polynomial center-free p-compact group with

H∗(BXG(m, r, n);Zp) = Zp[x1, . . . , xn]
G(m,r,n)

= Zp[y1, . . . , yn−1, e]

where yi is the ith symmetric polynomium

in xmi and e = (x1 · · ·xn)m/r.
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The cohomological dimension of BX is

cd(BX) = max{d ≥ 0 | Hd(ΩBX;Qp) 6= 0}

Example 12 cd(BDI(4)) = 45 as

H∗(BDI(4);Q2) = Q2[x8, x12, x28]

cd(BG) is dim(G), G a compact Lie group.

Open Problem 13 • Is it possible to char-
acterize the class of cohomology alge-
bras

H∗(BX;Fp)

for p-compact groups? Can we tell
from H∗(B;Fp) if B is a p-compact
group?

• Do all p-compact groups have discrete
approximations?

• What is the analogue of the Lie al-
gebra? Benson proposes a candidate
(unfortunately not containing the Lie
algebra of Spin(7)!) for the Lie alge-
bra of BDI(4).
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Morphisms and homogeneous spaces

A morphism is a pointed map Bf : BX → BY .
The fibre of Bf is denoted Y/fX or just
Y/X.

Y/X //BX
Bf

//BY

• Bf is a monomorphism if H∗(Y/X;Fp)
is finite iff H∗(BY ;Fp) is a f.g. module
over H∗(BX;Fp).

• Bf is an epimorphism if Y/X is a p-
compact group BK. Then

BK //BX //BY

is a short exact sequence of p-compact
groups.

• Bf is an isomorphism if the fibre is con-
tractible

Example 14 ∃monomorphismBSpin(7) →
BDI(4) and χ(DI(4)/Spin(7)) = 24. If
G→ H is a monomorphism of Lie groups,
then (BG)p → (BH)p is a monomorphism
of p-compact groups and G/H = (G/H)p.
Similarly for epimorphisms.
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Example 15 BX〈1〉 → BX is a p-compact

group monomorphism. There is a finite

covering map

X/X〈1〉 = π0(X) //BX〈1〉 //BX

so BX0 = BX〈1〉 is the identity compo-

nent of BX.

BX〈2〉 → BX is a p-compact group mor-

phism, so BSX = BX〈2〉 is the universal

covering p-compact group.

Theorem 16 Any nontrivial p-compact group

admits a monomorphism BZ/p→ BX. Any

p-compact group with a nontrivial iden-

tity component admits a monomorphism

BU(1) → BX.

Open Problem 17 • Do all p-compact

groups admit faithful complex repre-

sentations?

• Investigate homogeneous spaces Y/X

of p-compact groups.
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Ziemanski constructs a faithful complex

representation of DI(4) (at p = 2) of di-

mension 70368744177664. This faithful

representation of DI(4) is constructed by

finding compatible faithful representations

of the Lie groups in the diagram.

Theorem 18 Let Bf : BX → BY be a p-

compact group homomorphism that van-

ishes on all elements of finite order. Then

Bf is trivial.



Centralizers

The centralizer of the morphism Bf is

BCY (fX) = BCY (X) = map(BX,BY )Bf

and Bf is central if

BCY (X) → BY

is a homotopy equivalence.

The p-compact group BA is abelian if the

identity map is central: map(BA,BA)B1 '
BA.

Proposition 19 If BX → BY is a central

monomorphism then BX is abelian.

Theorem 20 If BP is a p-compact toral

group then BCY (P ) is a p-compact group

and BCY (P ) → BY a monomorphism.

Theorem 21 (Sullivan conjecture) The

trivial morphism of BP → BY from a p-

compact toral group is central.

Proof. ΩBCY (P ) = Ωmap(BP,BY )B0 =

map(BP,ΩBY ) = ΩBY . �
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Example 22 Let G be a Lie group, P be a
p-toral Lie group, f : P → G a Lie monomor-
phism, and CG(P ) the Lie centralizer. Then

CG(P )× P → G BCG(P )×BP → BG

 BCG(P ) → map(BP,BG)Bf

gives an isomorphism of p-compact groups.

Proposition 23 Any morphism BA→ BX

from an abelian p-compact group BA fac-
tors through its centralizer:

BCA(X)

��

BA //

77pppppp

BX

Proof.

map(BA,BA)B1
//

'
��

map(BA,BX)Bf

��

BA //BX

�

This factorization gives the fibration se-
quence

CX(A)/A //BA //BCX(A)
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The maximal torus

A maximal torus is a monomorphism BT →
BX such that CX(T )/T homotopically dis-
crete.

The Weyl group W (X) = π0W(X) is the
component group of Weyl space of self-
maps of BT over BX:

BT

$$IIIIIIIII

W(X)
//BT

zzuuuuuuuuu

BX

Theorem 24 1. Any p-compact group BX
has an essentially unique maximal torus

2. If BX is connected then

W (X) ↪→ Aut(π2(BT )) = GL(Zp, r)

is a p-adic reflection group

3. H∗(BX;Zp)⊗Q = (H∗(BT ;Zp)⊗Q)W

4. χ(X/T ) = |W (X)|

BX is simple if its Weyl group representa-
tion W (X) → GL(π2(BT )⊗Q) is simple.
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Example 25 • W (BS2n−1) = Cn < GL(Zp,1)

consists of the nth roots of unity.

• W (BX(W )) = W < GL(r,Zp) (Clark–

Ewing)

• W (BDI(4)) < GL(Z2,3) is the simple

reflection group no 24 of order 336,

isomorphic to Z/2×GL(3,F2).

• W (BG) = W (G) ⊂ GL(r,Z) ⊂ GL(r,Zp),

G Lie group.

Weyl groups are never abstract groups,

they are always subgroups of GL(r,Zp)!

If H∗(BX;Qp) = Qp[xi] then W has order

|W | =
∏ 1

2|xi| and W contains
∑

(1
2|xi| − 1)

reflections.
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The center of a p-compact group

Theorem 26 For any p-compact group BX
there exists a central monomorphism BZ(X) →
BX where

• BZ(X) is abelian, and

• any other central monomorphism to BX
factors uniquely through BZ(X) → BX.

In fact, BZ(X) = BCX(X) = map(BX,BX)B1.

If BX = BGp, G Lie, then BZ(X) = BZ(G)p.

Theorem 27 For any central monomor-
phism BA → BX there is a short exact
sequence

BA //BX //B(X/A)

of p-compact groups.

BPX = B(X/Z(X)), the adjoint form of
BX, has no center when BX is connected.
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Structure of p-compact groups

Proposition 28 Any abelian p-compact group
is the product of a finite abelian p-group
and a p-compact torus: BA = Bπ ×BT .

Theorem 29 For any connected p-compact
group BX there is a short exact sequence
of p-compact groups

BK //BSX ×BZ(X)0 //BX

where K is finite abelian p-group and BK →
BSX is central.

The corresponding theorem for Lie groups:

Z/p→ SU(p)×U(1) → U(p)

(A, z) → A(zE)

Theorem 30 (Semi-simplicity) BPX and
BSX, for any connected p-compact group,
are products of simple p-compact groups.

Any p-compact group is the quotient of∏
BYi×BS, BYi simple, BS p-compact torus,

by a central finite abelian group.
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Decomposing BPX

A(X) is the category with

objects Monomorphism BV
Bν−−→ BX, V

elementary abelian p-group

morphisms Monomorphisms φ : V1 → V2 such
that

BV1

Bν1 $$JJJJJJJJJ

Bφ
//BV2

Bν2zzttttttttt

BX

commutes up to homotopy.

The functors

BCX : A(X)op → Top

πiBZCX : A(X) → AbGrp

are given by

BCX(Bν) = map(BV,BX)Bν
πiBZCX(Bν) = πi(BZCX(Bν))

Example 31 Ap(BU(n)) = A(Σn,Fnp) and
BCU(n)(

∑
ρ∈V ∨ nρρ) =

∏
BU(nρ).
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Theorem 32 hocolimBCX
H∗Fp−−−→ BX

Here, cdFpBCX(V ) < cdFpBX when BX

has no center.

The toral subcategory

A(X)≤t = A(W, t)

is generated by all toral objects.

One can often prune the index category.

For polynomial p-compact groups, it is enough

to take tP for P a p-subgroup of W .

Example 33 Lannes theory applied to

H∗(BT ;Fp)

uuj j j j j j j j

H∗(BV ;Fp) H∗(BX;Fp)oo
?�

OO

shows that all objects are toral when H∗(BX)

embeds in H∗(BT ) (eg for polynomial p-

compact groups for p odd).
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Example 34 If |W | is prime to p, then the

polynomial BX(W ) is the homotopy col-

imit of

BT

W




Example 35 The polynomial 3-compact

group BG2, with Weyl group W (G2)
∼=

Σ3 × Z/2, is the homotopy colimit of the

diagram

BSU(3)

Z/2




BT

W (G2)
��

oo

where Z(W (G2))
∼= Z/2 acts on BSU(3)

via the unstable Adams operations ψ±1



Classification of compact connected

Lie groups

Theorem 36 (Curtis–Wiederhold–Williams,

Bourbaki) Let G1 and G2 be two compact

connected Lie groups. Then

G1 and G2 are isomorphic

⇐⇒ N(G1) and N(G2) are isomorphic

where N(G1) → G1, N(G2) → G2 are the

maximal torus normalizers.

Theorem 37 (Hämmerli) For any compact

connected Lie group G

Out(G) ∼=
Out(N(G))

H1(W (G);T (G))

The Weyl group itself is not enough:

U(1) → N(SU(2))
6x→ C2 =

〈(
0 −1
1 0

)〉

SO(2) → N(SO(3))
x→ C2 =

〈(
0 1
1 0

)〉
More generally: Sp(n) and SO(2n+ 1)
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Classification of p-compact groups for
p odd

The normalizer of the maximal torus

BN(X) → BX

is the Borel construction for the action
of the Weyl space W(X) on the maximal
torus BT (X).

There is a fibration sequence

BT (X) → BN(X) → BW (X)

so that BN(X) is an extended p-toral group.

BN is characterized by the data:

1. The Weyl group action W → Aut(BT )

2. The extension class in H3(BW ;π2(BT ))

There is a discrete approximation

Ť (X) → Ň(X) →W (X)

If BX = BG, G Lie, the p-compact group
and the Lie (discrete) maximal torus nor-
malizer are (essentially) identical.
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Theorem 38 If p is odd, Ň = Ť oW is a

semi-direct product for any connected p-

compact group. If p = 2, H3(BW ;π2(BT ))

is an elementary abelian 2-group and the

extension class may be nonzero.

Curtis–Wiederhold–Williams tell us for which

simple compact Lie groups N(G) splits.

Theorem 39 The maximal torus and the

maximal torus normalizer are characterized

by

1. BT → BX is a monomorphism from a

p-compact torus and the Euler charac-

teristic χ(X/T ) 6= 0

2. BN → BX is a monomorphism from an

extended p-toral group and the Euler

characteristic χ(X/N) = 1

20



Good things about BN

Theorem 40 Let Bf : BX → BX be an au-

tomorphism of BX.

1. There exists a lift

BN

��

BN(f)
//BN

��

BX
Bf

//BX

which is unique up to homotopy.

Theorem 41 Let BV
Bν−−→ BX be a monomor-

phism from an elementary abelian p-group

BV to BX. There exists a preferred lift

BN

��

BV Bν //

Bµ 55llllllll

BX

such that BCN(µ) → BCX(ν) is a maxi-

mal torus normalizer. The preferred lift is

unique if Bν is toral.
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The maximal torus normalizer informs about

the group of components and the center.

Proposition 42 There is a short exact se-

quence

W (X0) →W (X) → π0(X)

When p > 2, W (X0) is the subgroup gen-

erated by

{w ∈W (X) | π2(w)⊗Q

is a reflection in π2(BT )⊗Q of order |w|}

Proposition 43 There is a monomorphism

(isomorphism when p > 2) BZ(X) → BZN(X)

of centers. The center of a connected BX

can be computed from BN .
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Main theorems

Theorem 44 Let BX1 and BX2 be two

p-compact groups and BN an extended p-

compact torus. Any diagram

BN
Bj1

yyttttttttt Bj2
%%JJJJJJJJJ

BX1
' //_________ BX2

where the slanted arrows are maximal torus

normalizers, can be completed by an iso-

morphism BX1 → BX2 under BN .

Theorem 45 There is an isomorphism

Out(BX)
Bf→BN(f)−−−−−−−−→ Out(BN)

If BX is connected then

Out(BN) ∼= NGL(r,Zp)(W )/W

is the Weyl group of the Weyl group.
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For connected p-compact groups there are
bijections{

Isomorphism classes of
connected p-compact groups

}
(W,Ť )−−−−→

{
Similarity classes of
Zp-reflection groups

}
Steenrod’s problem:{

Isomorphism classes of
polynomial p-compact groups

}
(W,Ť )−−−−→

{
Similarity classes of polynomial

Zp-reflection groups with H1 = 0

}

Many p-compact groups are cohomologi-
cally unique.

Theorem 46 Let BX be a connected p-
compact group. If the Weyl group W (X) ⊂
GL(r,Zp) is determined by its mod p reduc-
tion in GL(r,Fp), then BX is a cohomolog-
ically unique p-compact group.

All simple p-compact groups, except pos-
sibly the quotients B(SU(pn)/pr), are co-
homologically unique p-compact groups.
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Computing automorphism groups

There is an exact sequence

1 → CGL(r,Zp)(W )/Z(W ) → NGL(r,Zp)(W )/W

→ Outtr(W )

where Outtr(W ) consists of trace preserv-

ing automorphisms of W . The automor-

phisms

Z×p ⊂ CGL(r,Zp)(W )

are the unstable Adams operations.

Example 47

Out(BSU(n)p) =

Z×p /{±1} n = 2

Z×p n > 2

Out(BSU(3)p × · · · ×BSU(3)p︸ ︷︷ ︸
n

) = Z×p oΣn

In general the automorphism group of a

product consists of Adams operations on

the factors together with permutations of

identical factors.
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Example 48 The automorphism group of

BS2n−1 is

Out(BS2n−1) = NGL(1,Zp)(Cn)/Cn

= Z×p /Cn

The automorphism group of any Aguadé

group is Z×p /Z(W ).

Example 49 At p = 3,

Out(BF4) = NGL(4,Z3)
(W (F4))

= Z×3 /{±1} × {α}

where the exceptional isogeny α has order

2.

Theorem 50 Let BX be a p-compact group

with identity component BX0 and compo-

nent group π. There is an exact sequence

H1(π; Ž(X0)) → Aut(BX) → Aut(Bπ,BX0)BX

where the group to the right is the stabi-

lizer subgroup for the action of Aut(π) ×
Aut(BX0) on H2(π; Ž(X0)).
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Sketch of proof

BX is totally N-determined if Theorems
44 and 45 hold for BX.

Theorem 51

BX0 is totally N-determined

=⇒ BX is totally N-determined

BPX is totally N-determined

=⇒ BX is totally N-determined

BP1 and BP2 are totally N-determined

=⇒ BP1 ×BP2 is totally N-determined

Theorem 52 Let BX be a connected p-
compact group with no center. If

1. All centralizers BCX(V ), |V | ≤ p2, are
totally N-determined

2. lim1 π1BZCX = 0 = lim2 π2BZCX and
lim2 π1BZCX = 0 = lim3 π2BZCX

3. The problems with non-uniqueness of
preferred lifts can be solved

Then BX is totally N-determined.
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The main problem is the computation of

the higher limits.

Fact: Any simple p-compact group is ei-

ther polynomial or a Lie group.

Proposition 53 The higher limits are 0

on A(X)≤t.

We only need to compute the higher lim-

its for Lie groups where we may set the

functors = 0 on all toral objects. Find the

non-toral elementary abelian p-groups in

the simple compact center-free Lie groups

PG (not so easy for the E-family!). Use

Oliver’s cochain complex with∏
|V |=pr+1

HomA(G)(V )(St(V ), πi(BZCG(V )))

in degree r. In fact, these Hom-groups are

trivial so there is no need to compute the

differentials.
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Conclusion

Let p be an odd prime.

• A connected p-compact group is com-
pletely determined by its Weyl group

• All p-compact groups are known, there
do not exist fake copies of BG

• Automorphism groups of p-compact groups
are known

• Morphism sets [BG,BH] are not fully
understood (admissible homomorphisms
may be helpful). Homotopy represen-
tation theory is not fully understood.

• The maximal torus conjecture is true
at odd primes

• Exactly for which spaces do these meth-
ods apply?
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Computation of BXhG

A G-action on BX is a fibration

BX //BXhG //BG
BXhG
oo

with fibre BX. The homotopy orbit space
BXhG is the total space and the homotopy
fixed point space BXhG is the space of
sections.

Theorem 54 Let BX be a connected p-
compact group and G ⊂ Out(BX) a finite
group of automorphisms order prime to p.

1. BXhG is a connected p-compact group
with

H∗(BXhG;Qp) = S[QH∗(BX;Qp)G]

2. BXhG → BX is a monomorphism and

X ' XhG ×X/XhG

In particular, X/XhG is an H-space.

3. BXhG is polynomial if BX is.
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Example 55 The action of 〈λ〉 = Cm →
Out(BS2n−1) = Z×p /Cn is trivial if m|n.
Otherwise, H2n(ψλ) = λn is nontrivial on
QH

∗(BS2n−1;Qp) = H2n(BS2n−1;Qp) =
Qp. We conclude that

(BS2n−1)hCm =

BS2n−1 m | n
∗ m - n

Example 56 The Aguadé p-compact group

BDI(2) = BF4
h〈α〉 (p = 3)

is the fixed point 3-compact group for the
action of the exceptional isogeny, and

F4 ' DI(2)× F4/DI(2)

so that F4/DI(2) is a 3-complete H-space.

Example 57 The Aguadé p-compact group

BX(W31) = BE
hC4
8 (p = 5)

is the fixed point 5-compact group for the
action of C4 =

〈
ψi
〉

on BE8, and

E8 ' X(W31)× E8/X(W31)

where E8/X(W31) is a 5-complete H-space.
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It is possible to determine the fixed point

groups for all simple p-compact groups.

Here are the fixed point groups for actions

through unstable Adams operations:

C30 G32
4

$$HHHHHHHHH

5oo 5 //C30 C18

G16

3
::vvvvvvvvv

4 $$HHHHHHHHH
G37

5oo

3
::vvvvvvvvv

4
$$HHHHHHHHH

G10
8

��

G34
4oo

9
OO

5
��

7 //

5
ddHHHHHHHHH

C42

C20 G315
oo

3
::vvvvvvvvv

8
��

C24 C30

G9
3

::vvvvvvvvv

C18 G36
18oo

6
zzvvvvvvvvv 4

##GGGGGGGG
G35

2
zzvvvvvvvvv 3

$$HHHHHHHHH

5 //C5

G26

18
OO

12 $$HHHHHHHHH
G8

12{{wwwwwwww

8
��

G28
4oo

3 $$HHHHHHHHH
G25

12
��2zzvvvvvvvvv

C12 C8 G5 12
//C12

(1)

G37 = W (E8), G36 = W (E7), G35 = W (E6)
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The genus set of BG

Theorem 58 The genus set G(BG) is un-
countably large for any nonabelian com-
pact connected Lie group G.

Theorem 59 The set SNT(BG) is uncount-
ably large for any nonabelian compact con-
nected Lie group G – except for G in

{SU(2),SU(3),PSU(2),PSU(3)}

where SNT(BG) = {BG}.

Is it possible to classify G(BG) or SNT(BG)?

Theorem 60 Two spaces in G(BG) are
homotopy equivalent iff they have isomor-
phic K-theory λ-rings.

Automorphism groups of spaces in the genus
of BG.

Theorem 61 Let G be a simple Lie group
and B ∈ G(BG) a space of the same genus
as BG. If there exists an essential map
between B and BG, then B = BG.
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Homotopy Chevalley
groups

Friedlander’s homotopy pull-back square is

BτG(q)

��

//BGp
∆

��

BGp
(1,τψq)

//BGp ×BGp

where G is compact Lie, τ is an auto of G,
and q is a prime power prime to p.

Definition 62 The homotopy Chevalley group
is the pull-back

BτX(q)

��

//BX
∆

��

BX
(1,τψq)

//BX ×BX

where τ is an auto of BX and q ∈ Z×p .

If q = 1 and τ = id, the pull-back is ΛBX.

There is an exact sequence

· · · → πiB
τX(q) → πiBX

1−(τψq)∗−−−−−−→ πiBX

→ πi−1B
τX(q) → · · ·

For a p-compact torus, BT (q) = BZ/pν

where ν = νp(1− q).
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Proposition 63 Write τψq = (τψu)ψq1 where

q = uq1, u ∈ Cp−1, q1 ≡ 1 mod p. Suppose

that G = 〈τψu〉 ⊂ Out(BX) has finite order

prime to p and that (ψq1)∗ is the identity

on H∗(X;Fp). Then

BτX(q) = BXhG(q1)

where BXhG is the homotopy fixed point

p-compact group for the G-action.

The exploration breaks into two steps:

1. What is BXhG when G ⊂ Out(BX) has

order prime to p?

2. What is BX(q) for q ≡ 1 mod p?

Since we already know the answer to the

first quetsion, we turn to the second ques-

tion.
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p-local finite groups

Let G be a finite group and S ≤ G a Sylow

p-subgroup.

The fusion system of G is the category

Fp(G) with objects the subgroups of S and

morphisms

Fp(G)(P,Q) = NG(P,Q)/CG(P )

where NG(P,Q) = {g ∈ G | gPg−1 ≤ Q}.

The centric linking system Lcp(G) of G is

the category with objects the subgroups

of S that are p-centric in G and morphisms

Lcp(G)(P,Q) = NG(P,Q)/Op(CG(P ))

Op(H) is the minimal normal subgroup of

H of p-power index.

A p-group P ≤ G is p-centric if

CG(P ) = Z(P )×Op(CG(P ))

and Op(CG(P )) has order prime to p.
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There is a functor Lcp(G) → Fp(G).

Theorem 64 BGp ' |Lcp(G)|p for any fi-

nite group G.

Definition 65 A p-local finite group is a

triple (S,F ,L) consisting of a p-group S,

an abstract (saturated) fusion system F
over the group S, and an abstract cen-

tric linking system L associated to F via a

functor L → F.

The classifying space is the space |L|p. The

whole p-local finite group triple is recover-

able from |L|p.

A p-local finite group mimicks the conju-

gacy relations that hold bewteen the sub-

groups of the Sylow subgroup of a finite

group.

Are there any p-local finite groups that are

not finite groups?
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What is BX(q)? q ≡ 1 mod p, q 6= 1

Proposition 66 Let Bν : BV → BX be a

toral monomorphism with connected cen-

tralizer map(BV,BX)Bν = BCX(ν).

1. There is a unique lift of Bν to BX(q).

2. map(BV,BX(q))Bν(q) = BCX(V )(q).

We obtain a map

hocolimA(X)≤tBCX(V )(q) → BX(q)

that for polynomial p-compact groups of-

ten is an H∗Fp-equivalence. We are trying

to move a homotopy inverse limit around

a homotopy direct limit.

Example 67 If W has order prime to p,

BX(W )(q) = (B(Z/pν(1−q) oW ))p

In particular,

BS2n−1(q) = (B(Z/pν(1−q) o Cn))p
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Example 68 BDI(2)(q) is H∗F3 equiva-
lent to the homotopy colimit of

BSU(3, q)

Z/2




B(Z/pν(1−q))2
W12

��

oo

BDI(2) is the limit of the spaces

BDI(2)(22n+1) = BF4
h〈α〉(22n+1)

= (B2F4(2
2n+1))3

so the inifinte Ree group
⋃
n

2F4(2
2n+1) is

a discrete approximation to BDI(2).

Theorem 69 Let BX be a simply con-
nected p-compact group, τ an automor-
phism of BX of finite order, and q a prime
power. Assume that the order of τ and q

are prime to p. Then BτX(q) is the classi-
fying space of a p-local finite group.

These p-local finite groups are exotic when
BX is an Aguadé p-compact group or one
of Quillen’s BXG(m, r, n) with r > 2. At
p = 2, we have Sol(q) = DI(4)(q).

Open Problem 70 BX(q), q ≡ 1 mod p,
only depends on ν(1− q).
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2-compact groups

Problematic things about 2-compact groups

• H1(W ; Ť ) 6= 0, H2(W ; Ť ) 6= 0

• BZ(X) → BZN(X) is not surjective

• BN(X) does not even determine π0(X)

• Out(BX) → Out(BN(X)) is not sur-

jective

Good things about 2-compact groups

• The simple Z2-reflection groups are W (G)

and W (DI(4))

• The only extensions Ť → Ň → W that

are realizable by connected 2-compact

groups come from BG×BDI(4)m

• BZ(G) 6= BZN(G) only when G con-

tains direct SO(2n+ 1)-factors
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The maximal torus normalizer pair: BX  
(BN,BN0)

The maximal torus normalizer pair informs

about π0(X).

Two 2-compact groups with the same max-

imal torus normalizer pair are isomorphic?

Example 71 Out(BPU(4)) = Z×2 and Z/2 =

H1(W ; Ť ) ⊂ Out(BN). The diagram

BN
Bj

��

Bα //BN
Bj

��

BPU(4) //___ BPU(4)

has no solution.

Definition 72 BX is N-determined if there

exists a solution, Bα ∈ H1(W ; Ť ), to

BN
Bj

��

Bα //_______ BN
Bj′

��

BX
Bf
∼=

//______ BX ′

(2)

for any other BX ′ with the same maximal

torus normalizer pair.
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Definition 73 BX has N-determined au-
tomorphisms if

Out(BX) →W0\Aut(BN)

is injective.

Totally N-determined = N-determined +
N-determined automorphisms

Uniquely N-determined = N-determined
with unique solution to diagram (2) + N-
determined automorphisms

Conjecture 74 All (connected) 2-compact
groups are (uniquely) totally N-determined.

Lemma 75 If BX is connected and uniquely
N-determined, then

Aut(BX) ∼=
Out(BN)

H1(W ; Ť )

Already known: If BX = BG, G connected
Lie, or BX = BDI(4), then BX has N-
determined automorphisms and diagram (2)
has at most one solution.

42



Theorem 76 1. Let BX be a 2-compact
group. If BX0 has N-determined au-
tomorphisms and

H1(π; Ž(X0)) → H1(π; Ž(N0))

is injective, then BX has N-determined
automorphisms

2. If BX is connected and BPX has N-
determined automorphisms, then BX

has N-determined automorphisms

3. If BX1 and BX2 are connected and
have N-detetermined automorphisms,
then BX1×BX2 has N-determined au-
tomorphisms

Theorem 77 Suppose that BX is connected
and has no center. If

1. the centralizer BCX(ν) of any monomor-
phism ν : BZ/p→ BX has N-determined
automorphisms, and

2. lim1 π1BZCX = 0 = lim2 π2BZCX

then BX has N-determined automorphisms.
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Theorem 78 1. Let BX be a LHS 2-compact
group. If BX0 is uniquely N-determined
and

H2(π; Ž(X0)) → H2(π; Ž(N0))

is injective, then BX is N-determined

2. If BX is connected and BPX is N-
determined, then BX is N-determined

3. If BX1 and BX2 are N-determined, then
BX1 ×BX2 is N-determined

Conjecture 79 All 2-compact groups are
LHS

Theorem 80 Suppose that BX is connected
and has no center. If

1. All centralizers BCX(V ),|V | ≤ p2, are
totally N-determined

2. The problems with non-uniqueness of
preferred lifts and non-uniqueness of
Bα in Diagram 2 can be solved

3. lim2 π1BZCX = 0 = lim3 π2BZCX

then BX is N-determined.
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The plan is to verify that the simple 2-
compact groups are uniquely N-determined
in the cases

• Classical matrix groups: PGL(n+1,C),
PSL(2n,R), SL(2n+1,R), PGL(n,H)

• G2, F4, DI(4)

• E6, E7, E8

Theorem 81 The above simple 2-compact
groups outside the E-family are uniquely
N-determined with automorphism groups

Aut(PGL(n+ 1,C)) =

Z×\Z×2 n = 1

Z×2 n > 1

Aut(PSL(2n,R)) =


Z×\Z×2 ×Σ3 n = 4

Z×\Z×2 × 〈c1〉 n > 4 even

Z×2 n > 4 odd

Aut(SL(2n+ 1,R)) = Z×\Z×2 , n ≥ 2

Aut(PGL(n,H)) = Z×\Z×2 , n ≥ 3

Aut(G2) = Z×\Z×2 × C2, Aut(F4) = Z×\Z×2
Aut(DI(4)) = Z×\Z×2
where 〈c1〉 is a group of order two.
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PGL(n+ 1,C): Computation of higher limits

Proposition 82 The higher limits vanish
over the toral subcategory A(PGL(n+1,C))≤t.

For V ⊂ PGL(n+1,C) let [ , ] : V × V → F2

be the symplectic form [uC×, vC×] = [u, v] =
±E.

Lemma 83 V ⊂ PGL(n+ 1,C) is toral iff
[V, V ] = 0.

Lemma 84 If n+1 is odd, PGL(n+1,C)
contains no nontoral objects. For each
d ≥ 1 there is a unique elementary abelian
Hd ⊂ PGL(2dm,C) with non-degenerate
symplectic form, and

CPGL(2dm,C)(H
d) = Hd × PGL(m,C)

A(PGL(2dm,C))(Hd) = Sp(2d)

Any other nontoral has the form Hd × E

where E ⊂ PGL(m,C) is toral, and

A(PGL(2dm,C))(Hd×E) =

(
Sp(2d) ∗

0 A(E)

)
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If we let

[E] = HomA(E)(St(E), π1(BZCPGL(n+1,C)(E)))

then Oliver’s cochain complex has the form

0 → [H]
d1−→

∏
1≤i≤[m/2]

[H#L[m− i, i]]
d2−→

[H#P [1,1,m−2]×
∏

2<i<[m/2]

[H#P [1, i−1,m−i]]

where we only list some of the nontoral

rank four objects. We need to show that

d1 is injective and that ker d2 = im d1. The

computer program magma says that

[H] = HomSp(2)(St(H), H) ∼= F2

[H#L[m− i, i]] = HomSp(3,1)(St(V ), V ) ∼= F2,

[H#P [1,1,m− 2]] ∼= F2

[H#P [1, i− 1,m− i]] ∼= F2 × F2

and further computations show exactness.
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