p-compact groups

- 1. Finite loop spaces
- 2. *p*-compact groups
- 3. Morphisms and homogeneous spaces
- 4. Centralizers
- 5. The maximal torus
- 6. Structure of *p*-compact groups
- Classification of *p*-compact groups at odd primes

Notation

p prime number \mathbf{F}_p field with p elements \mathbf{Z}_p ring of p-adic integers \mathbf{Q}_p field of p-adic numbers B_p the $H_*\mathbf{F}_p$ -completion of the space B

Finite loop spaces

Definition 1 A finite loop space is a space BX whose loop space ΩBX is homotopy equivalent to a finite CW-complex.

Terminology: $\mathbf{R}P^{\infty}$ is a finite group.

Example 2 BG where G is a (compact) Lie group. Zabrodsky mix of rationally identical Lie groups (Hilton criminal) $2^{\omega} \subset G(BSU(2)) \xrightarrow{\Omega} G(SU(2)) = \{SU(2)\}$ (Rector 1971)

Conjecture 3 1. Any finite loop space with a maximal torus $BT \rightarrow BX$ is a compact Lie group TRUE away from 2

2. Any finite loop space is rationally a compact Lie group FALSE (Andersen, Bauer, Grodal, Pedersen 2004)

Application 4 (Yau 2002) There are uncountably many λ -ring structures on the power series ring $\mathbb{Z}[[x_1, \ldots, x_n]]$.

p-compact groups

Definition 5 A *p*-compact group is a *p*-complete space BX such that $H^*(\Omega BX; \mathbf{F}_p)$ is finite (Dwyer–Wilkerson 1994).

Example 6 • Rector's uncountable many examples all complete to the same *p*compact group (BSU(2))_p

- $(BG)_p$ where G is a Lie group and $\pi_0(G)$ a finite p-group
- $BT_r = (BU(1)^r)_p = K(\mathbf{Z}_p^r, 2) p$ -compact torus of rank r.
- $BT_r = (B\check{T}_r)_p$ where $\check{T}_r = (\mathbf{Z}/p^{\infty})^r$ is the discrete approximation to T_r .
- $BT \rightarrow BP \rightarrow B\pi p$ -compact toral group (with discrete approximation \check{P})
- Any connected p-complete space with f.g. polynomial $H^*\mathbf{F}_p$ -cohomology is a (polynomial, often exotic) p-compact group

A short history of polynomial p-compact groups

Theorem 7 (Sullivan) If n|(p-1), then $BS^{2n-1} = B(\mathbb{Z}/p^{\infty} \rtimes C_n)_p$ is a *p*-compact group and

 $H^*(BS^{2n-1}; \mathbf{Z}_p) = \mathbf{Z}_p[u]^{C_n} = \mathbf{Z}_p[x_{2n}]$ and $H^*(\Omega BS^{2n-1}; \mathbf{F}_p) = E(y_{2n-1})$ is an exterior algebra over \mathbf{F}_p .

Theorem 8 (Clark–Ewing 1974) Let $W \subset$ GL $(r, \mathbb{Z}_p) = \operatorname{Aut}(\check{T}_r)$, be a *p*-adic reflection group of order prime to *p*. Then BX(W) = $B(\check{T} \rtimes W)_p$ is a *p*-compact group and

 $H^*(BX(W); \mathbf{F}_p) = H^*(B\check{T}_r; \mathbf{F}_p)^W$

is a polynomial and $H^*(\Omega BX(W); \mathbf{F}_p)$ an exterior algebra over \mathbf{F}_p .

The next example uses a generalized Clark– Ewing construction and a spectral sequence

 $E_2^{pq} = H^p(K(\mathbf{I}); H^q M) \Longrightarrow \lim^{p+q} M$ for the higher limits of the functor M on the EI-category I. **Example 9** (Aguadé 1989) The simple reflection group no $W_{12} \subset GL(2, \mathbb{Z}_3)$ maps isomorphically to $GL(2, \mathbb{F}_3)$. Define the 3-compact group BDI(2) as the homotopy colimit of

Then

$$H^*(BDI(2); \mathbf{F}_3) \cong H^*(BV_2; \mathbf{F}_3)^{\mathsf{GL}(2, \mathbf{F}_3)}$$
$$\cong \mathbf{F}_3[x_{12}, x_{16}], \qquad P^1 x_{12} = x_{16}$$

Example 10 (*Dwyer–Wilkerson* 1993) There exists a 2-compact group BDI(4) such that

 $H^*(BDI(4); \mathbf{F}_2) = H^*(BV_4; \mathbf{F}_2)^{\mathsf{GL}(4, \mathbf{F}_2)}$ = $\mathbf{F}_2[c_8, c_{12}, c_{14}, c_{15}], \quad Sq^4c_8 = c_{12}, Sq^1c_{14} = c_{15}$ BDI(4) is the homotopy colimit of a diagram of the form

$$Spin(7) \supset SU(2)^3 / \langle (-E, -E, -E) \rangle$$
$$\supset T \rtimes \langle -E \rangle \supset V_4$$

Example 11 (Quillen's generalized BU(n), Oliver-Notbohm 1993) Suppose r|m|p-1. Let

 $G(m,r,n) = A(m,r,n) \rtimes \Sigma_n \subset GL(n, \mathbb{Z}_p)$

where Σ_n is permutations and A(m, r, n)is diagonal matrices with entries in $C_m \subset C_{p-1} \subset \mathbb{Z}_p^{\times}$ and determinant in $C_{m/r} \subset C_m$.

Define

 BC_X : $\mathbf{A}(G(m, r, n), \mathbf{F}_p^n) \to [\mathbf{pcg}]$ as the functor that is $BC_{\bigcup(n)}$ plus products of unstable Adams operations ψ^{λ} , $\lambda \in C_m$.

Then BXG(m, r, n) = hocolim BC_X is a polynomial center-free p-compact group with

$$H^*(BXG(m,r,n); \mathbf{Z}_p) = \mathbf{Z}_p[x_1, \dots, x_n]^{G(m,r,n)}$$
$$= \mathbf{Z}_p[y_1, \dots, y_{n-1}, e]$$

where y_i is the *i*th symmetric polynomium in x_i^m and $e = (x_1 \cdots x_n)^{m/r}$. The cohomological dimension of BX is $cd(BX) = max\{d \ge 0 \mid H^d(\Omega BX; \mathbf{Q}_p) \ne 0\}$

Example 12 cd(BDI(4)) = 45 as

 $H^*(BDI(4); \mathbf{Q}_2) = \mathbf{Q}_2[x_8, x_{12}, x_{28}]$ cd(BG) is dim(G), G a compact Lie group.

Open Problem 13 • Is it possible to characterize the class of cohomology algebras

 $H^*(BX;\mathbf{F}_p)$

for *p*-compact groups? Can we tell from $H^*(B; \mathbf{F}_p)$ if *B* is a *p*-compact group?

- Do all *p*-compact groups have discrete approximations?
- What is the analogue of the Lie algebra? Benson proposes a candidate (unfortunately not containing the Lie algebra of Spin(7)!) for the Lie algebra of BDI(4).

Morphisms and homogeneous spaces

A morphism is a pointed map $Bf: BX \to BY$. The fibre of Bf is denoted Y/fX or just Y/X.

$$Y/X \longrightarrow BX \xrightarrow{Bf} BY$$

- Bf is a monomorphism if $H^*(Y/X; \mathbf{F}_p)$ is finite iff $H^*(BY; \mathbf{F}_p)$ is a f.g. module over $H^*(BX; \mathbf{F}_p)$.
- Bf is an epimorphism if Y/X is a p-compact group BK. Then

 $BK \longrightarrow BX \longrightarrow BY$

is a short exact sequence of p-compact groups.

• Bf is an isomorphism if the fibre is contractible

Example 14 \exists monomorphismBSpin(7) \rightarrow BDI(4) and $\chi(DI(4)/Spin(7)) = 24$. If $G \rightarrow H$ is a monomorphism of Lie groups, then $(BG)_p \rightarrow (BH)_p$ is a monomorphism of p-compact groups and $G/H = (G/H)_p$. Similarly for epimorphisms. **Example 15** $BX\langle 1 \rangle \rightarrow BX$ is a *p*-compact group monomorphism. There is a finite covering map

 $X/X\langle \mathbf{1} \rangle = \pi_0(X) \longrightarrow BX\langle \mathbf{1} \rangle \longrightarrow BX$

so $BX_0 = BX\langle 1 \rangle$ is the identity component of BX.

 $BX\langle 2 \rangle \rightarrow BX$ is a *p*-compact group morphism, so $BSX = BX\langle 2 \rangle$ is the universal covering *p*-compact group.

Theorem 16 Any nontrivial *p*-compact group admits a monomorphism $B\mathbf{Z}/p \rightarrow BX$. Any *p*-compact group with a nontrivial identity component admits a monomorphism $BU(1) \rightarrow BX$.

Open Problem 17 • Do all *p*-compact groups admit faithful complex representations?

• Investigate homogeneous spaces Y/Xof *p*-compact groups. Ziemanski constructs a faithful complex representation of DI(4) (at p = 2) of dimension 70368744177664. This faithful representation of DI(4) is constructed by finding compatible faithful representations of the Lie groups in the diagram.

Theorem 18 Let $Bf: BX \rightarrow BY$ be a *p*-compact group homomorphism that vanishes on all elements of finite order. Then Bf is trivial.

Centralizers

The centralizer of the morphism Bf is

 $BC_Y(fX) = BC_Y(X) = map(BX, BY)_{Bf}$ and Bf is *central* if

 $BC_Y(X) \to BY$

is a homotopy equivalence.

The *p*-compact group BA is abelian if the identity map is central: $map(BA, BA)_{B1} \simeq BA$.

Proposition 19 If $BX \rightarrow BY$ is a central monomorphism then BX is abelian.

Theorem 20 If BP is a *p*-compact toral group then $BC_Y(P)$ is a *p*-compact group and $BC_Y(P) \rightarrow BY$ a monomorphism.

Theorem 21 (Sullivan conjecture) The trivial morphism of $BP \rightarrow BY$ from a *p*-compact toral group is central. Proof. $\Omega BC_Y(P) = \Omega \operatorname{map}(BP, BY)_{B0} = \operatorname{map}(BP, \Omega BY) = \Omega BY$. \Box **Example 22** Let G be a Lie group, P be a p-toral Lie group, $f: P \to G$ a Lie monomorphism, and $C_G(P)$ the Lie centralizer. Then

$$C_G(P) \times P \to G \rightsquigarrow BC_G(P) \times BP \to BG$$
$$\rightsquigarrow BC_G(P) \to \mathsf{map}(BP, BG)_{Bf}$$

gives an isomorphism of p-compact groups.

Proposition 23 Any morphism $BA \rightarrow BX$ from an abelian *p*-compact group BA factors through its centralizer:

Proof.

This factorization gives the fibration sequence

$$C_X(A)/A \rightarrow BA \rightarrow BC_X(A)$$

The maximal torus

A maximal torus is a monomorphism $BT \rightarrow BX$ such that $C_X(T)/T$ homotopically discrete.

The Weyl group $W(X) = \pi_0 \mathcal{W}(X)$ is the component group of Weyl space of self-maps of BT over BX:

Theorem 24 1. Any p-compact group BX has an essentially unique maximal torus

2. If BX is connected then

 $W(X) \hookrightarrow \operatorname{Aut}(\pi_2(BT)) = \operatorname{GL}(\mathbf{Z}_p, r)$

is a *p*-adic reflection group

3. $H^*(BX; \mathbf{Z}_p) \otimes \mathbf{Q} = (H^*(BT; \mathbf{Z}_p) \otimes \mathbf{Q})^W$

4. $\chi(X/T) = |W(X)|$

BX is simple if its Weyl group representation $W(X) \rightarrow GL(\pi_2(BT) \otimes \mathbf{Q})$ is simple. **Example 25** • $W(BS^{2n-1}) = C_n < GL(\mathbf{Z}_p, 1)$ consists of the *n*th roots of unity.

- $W(BX(W)) = W < GL(r, \mathbb{Z}_p)$ (Clark-Ewing)
- $W(BDI(4)) < GL(\mathbf{Z}_2,3)$ is the simple reflection group no 24 of order 336, isomorphic to $\mathbf{Z}/2 \times GL(3, \mathbf{F}_2)$.
- $W(BG) = W(G) \subset GL(r, \mathbb{Z}) \subset GL(r, \mathbb{Z}_p)$, G Lie group.

Weyl groups are *never* abstract groups, they are *always* subgroups of $GL(r, \mathbb{Z}_p)$!

If $H^*(BX; \mathbf{Q}_p) = \mathbf{Q}_p[x_i]$ then W has order $|W| = \prod \frac{1}{2} |x_i|$ and W contains $\sum (\frac{1}{2} |x_i| - 1)$ reflections.

The center of a *p*-compact group

Theorem 26 For any *p*-compact group BXthere exists a central monomorphism $BZ(X) \rightarrow BX$ where

- BZ(X) is abelian, and
- any other central monomorphism to BXfactors uniquely through $BZ(X) \rightarrow BX$.

In fact, $BZ(X) = BC_X(X) = map(BX, BX)_{B1}$.

If $BX = BG_p$, G Lie, then $BZ(X) = BZ(G)_p$.

Theorem 27 For any central monomorphism $BA \rightarrow BX$ there is a short exact sequence

$$BA \longrightarrow BX \longrightarrow B(X/A)$$

of *p*-compact groups.

BPX = B(X/Z(X)), the *adjoint form* of BX, has no center when BX is connected.

14

Structure of *p*-compact groups

Proposition 28 Any abelian *p*-compact group is the product of a finite abelian *p*-group and a *p*-compact torus: $BA = B\pi \times BT$.

Theorem 29 For any connected *p*-compact group BX there is a short exact sequence of *p*-compact groups

 $BK \rightarrow BSX \times BZ(X)_0 \rightarrow BX$

where K is finite abelian p-group and $BK \rightarrow BSX$ is central.

The corresponding theorem for Lie groups:

$$Z/p
ightarrow \mathsf{SU}(p) imes \mathsf{U}(1)
ightarrow \mathsf{U}(p) \ (A,z)
ightarrow A(zE)$$

Theorem 30 (Semi-simplicity) BPX and BSX, for any connected p-compact group, are products of simple p-compact groups.

Any *p*-compact group is the quotient of $\prod BY_i \times BS$, BY_i simple, BS *p*-compact torus, by a central finite abelian group.

Decomposing *BPX*

A(X) is the category with

objects Monomorphism $BV \xrightarrow{B\nu} BX$, Velementary abelian *p*-group

morphisms Monomorphisms $\phi: V_1 \to V_2$ such that

commutes up to homotopy.

The functors

$$BC_X \colon \mathbf{A}(X)^{\mathsf{op}} \to \mathsf{Top}$$

 $\pi_i BZC_X \colon \mathbf{A}(X) \to \mathsf{AbGrp}$

are given by

$$BC_X(B\nu) = \operatorname{map}(BV, BX)_{B\nu}$$

$$\pi_i BZC_X(B\nu) = \pi_i (BZC_X(B\nu))$$

Example 31 $\mathbf{A}_p(B\cup(n)) = \mathbf{A}(\Sigma_n, \mathbf{F}_p^n)$ and $BC_{\cup(n)}(\sum_{\rho \in V^{\vee}} n_{\rho}\rho) = \prod B\cup(n_{\rho}).$

16

Theorem 32 hocolim $BC_X \xrightarrow{H_*\mathbf{F}_p} BX$

Here, $\operatorname{cd}_{\mathbf{F}_p} BC_X(V) < \operatorname{cd}_{\mathbf{F}_p} BX$ when BX has no center.

The toral subcategory

$$\mathbf{A}(X)^{\leq t} = \mathbf{A}(W, t)$$

is generated by all toral objects.

One can often prune the index category. For polynomial *p*-compact groups, it is enough to take t^P for *P* a *p*-subgroup of *W*.

Example 33 Lannes theory applied to

$$H^*(BT; \mathbf{F}_p)$$

$$H^*(BV; \mathbf{F}_p) \leftarrow H^*(BX; \mathbf{F}_p)$$

shows that all objects are toral when $H^*(BX)$ embeds in $H^*(BT)$ (eg for polynomial pcompact groups for p odd). **Example 34** If |W| is prime to p, then the polynomial BX(W) is the homotopy colimit of

Example 35 The polynomial 3-compact group BG_2 , with Weyl group $W(G_2) \cong \Sigma_3 \times \mathbb{Z}/2$, is the homotopy colimit of the diagram

where $Z(W(G_2)) \cong \mathbb{Z}/2$ acts on BSU(3)via the unstable Adams operations $\psi^{\pm 1}$

Classification of compact connected Lie groups

Theorem 36 (Curtis–Wiederhold–Williams, Bourbaki) Let G_1 and G_2 be two compact connected Lie groups. Then

 G_1 and G_2 are isomorphic

 $\iff N(G_1) \text{ and } N(G_2) \text{ are isomorphic}$ where $N(G_1) \rightarrow G_1$, $N(G_2) \rightarrow G_2$ are the maximal torus normalizers.

Theorem 37 (Hämmerli) For any compact connected Lie group G

$$\operatorname{Out}(G) \cong \frac{\operatorname{Out}(N(G))}{H^1(W(G); T(G))}$$

The Weyl group itself is *not* enough:

$$U(1) \to N(SU(2)) \stackrel{\checkmark}{\to} C_2 = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
$$SO(2) \to N(SO(3)) \stackrel{\curvearrowleft}{\to} C_2 = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
$$More generally: Sp(n) and SO(2n+1)$$
18

Classification of p-compact groups for p odd

The normalizer of the maximal torus

 $BN(X) \to BX$

is the Borel construction for the action of the Weyl space $\mathcal{W}(X)$ on the maximal torus BT(X).

There is a fibration sequence

 $BT(X) \to BN(X) \to BW(X)$

so that BN(X) is an extended *p*-toral group.

BN is characterized by the data:

1. The Weyl group action $W \rightarrow Aut(BT)$

2. The extension class in $H^3(BW; \pi_2(BT))$

There is a discrete approximation

 $\check{T}(X) \to \check{N}(X) \to W(X)$

If BX = BG, G Lie, the p-compact group and the Lie (discrete) maximal torus normalizer are (essentially) identical. **Theorem 38** If p is odd, $\check{N} = \check{T} \rtimes W$ is a semi-direct product for any connected p-compact group. If p = 2, $H^3(BW; \pi_2(BT))$ is an elementary abelian 2-group and the extension class may be nonzero.

Curtis–Wiederhold–Williams tell us for which simple compact Lie groups N(G) splits.

Theorem 39 The maximal torus and the maximal torus normalizer are characterized by

- 1. $BT \rightarrow BX$ is a monomorphism from a p-compact torus and the Euler characteristic $\chi(X/T) \neq 0$
- 2. $BN \rightarrow BX$ is a monomorphism from an extended *p*-toral group and the Euler characteristic $\chi(X/N) = 1$

Good things about BN

Theorem 40 Let $Bf: BX \to BX$ be an automorphism of BX.

1. There exists a lift

which is unique up to homotopy.

Theorem 41 Let $BV \xrightarrow{B\nu} BX$ be a monomorphism from an elementary abelian *p*-group BV to BX. There exists a preferred lift

$$\begin{array}{c} B\mu & BN \\ BV \xrightarrow{-- B\nu} & BX \end{array}$$

such that $BC_N(\mu) \to BC_X(\nu)$ is a maximal torus normalizer. The preferred lift is unique if $B\nu$ is toral.

The maximal torus normalizer informs about the group of components and the center.

Proposition 42 There is a short exact sequence

$$W(X_0) \to W(X) \to \pi_0(X)$$

When p > 2, $W(X_0)$ is the subgroup generated by

 $\{w \in W(X) \mid \pi_2(w) \otimes \mathbf{Q}$ is a reflection in $\pi_2(BT) \otimes \mathbf{Q}$ of order $|w|\}$

Proposition 43 There is a monomorphism (isomorphism when p > 2) $BZ(X) \rightarrow BZN(X)$ of centers. The center of a connected BX can be computed from BN.

Main theorems

Theorem 44 Let BX_1 and BX_2 be two *p*-compact groups and BN an extended *p*compact torus. Any diagram

where the slanted arrows are maximal torus normalizers, can be completed by an isomorphism $BX_1 \rightarrow BX_2$ under BN.

Theorem 45 There is an isomorphism

 $\operatorname{Out}(BX) \xrightarrow{Bf \to BN(f)} \operatorname{Out}(BN)$

If BX is connected then

 $\operatorname{Out}(BN) \cong N_{\operatorname{GL}(r, \mathbf{Z}_p)}(W)/W$

is the Weyl group of the Weyl group.

For *connected p*-compact groups there are bijections

{ Isomorphism classes of connected p-compact groups}

$$\xrightarrow{(W,\tilde{T})} \begin{cases} \text{Similarity classes of} \\ \mathbf{Z}_p \text{-reflection groups} \end{cases}$$

Steenrod's problem:

 $\begin{cases} \text{Isomorphism classes of} \\ \text{polynomial } p\text{-compact groups} \end{cases} \\ \hline (W,\check{T}) \\ \hline & \begin{cases} \text{Similarity classes of polynomial} \\ \mathbf{Z}_p\text{-reflection groups with } H_1 = 0 \end{cases} \end{cases}$

Many *p*-compact groups are *cohomologi*cally unique.

Theorem 46 Let BX be a connected pcompact group. If the Weyl group $W(X) \subset$ $GL(r, \mathbb{Z}_p)$ is determined by its mod p reduction in $GL(r, F_p)$, then BX is a cohomologically unique *p*-compact group.

All simple *p*-compact groups, except possibly the quotients $B(SU(p^n)/p^r)$, are cohomologically unique *p*-compact groups.

Computing automorphism groups

There is an exact sequence

$$1 \to C_{\mathsf{GL}(r,\mathbf{Z}_p)}(W)/Z(W) \to N_{\mathsf{GL}(r,\mathbf{Z}_p)}(W)/W$$
$$\to \mathsf{Out}_{\mathsf{tr}}(W)$$

where $Out_{tr}(W)$ consists of trace preserving automorphisms of W. The automorphisms

$$\mathbf{Z}_p^{\times} \subset C_{\mathsf{GL}(r,\mathbf{Z}_p)}(W)$$

are the unstable Adams operations.

Example 47

$$\mathsf{Out}(B\mathsf{SU}(n)_p) = \begin{cases} \mathbf{Z}_p^{\times}/\{\pm 1\} & n = 2\\ \mathbf{Z}_p^{\times} & n > 2 \end{cases}$$

$$\operatorname{Out}(\underbrace{BSU(3)_p \times \cdots \times BSU(3)_p}_n) = \mathbf{Z}_p^{\times} \wr \Sigma_n$$

In general the automorphism group of a product consists of Adams operations on the factors together with permutations of identical factors.

Example 48 The automorphism group of BS^{2n-1} is

$$Out(BS^{2n-1}) = N_{GL(1,\mathbb{Z}_p)}(C_n)/C_n$$
$$= \mathbb{Z}_p^{\times}/C_n$$

The automorphism group of any Aguadé group is $\mathbf{Z}_p^{\times}/Z(W)$.

Example 49 At p = 3,

$$Out(BF_4) = N_{GL(4,Z_3)}(W(F_4))$$
$$= \mathbf{Z}_3^{\times} / \{\pm 1\} \times \{\alpha\}$$

where the exceptional isogeny α has order 2.

Theorem 50 Let BX be a p-compact group with identity component BX_0 and component group π . There is an exact sequence

 $H^1(\pi; \check{Z}(X_0)) \to \operatorname{Aut}(BX) \to \operatorname{Aut}(B\pi, BX_0)_{BX}$

where the group to the right is the stabilizer subgroup for the action of $Aut(\pi) \times Aut(BX_0)$ on $H^2(\pi; \check{Z}(X_0))$.

Sketch of proof

BX is totally *N*-determined if Theorems 44 and 45 hold for BX.

Theorem 51

 BX_0 is totally *N*-determined $\implies BX$ is totally *N*-determined

 BP_1 and BP_2 are totally N-determined $\implies BP_1 \times BP_2$ is totally N-determined

Theorem 52 Let BX be a connected pcompact group with no center. If

- 1. All centralizers $BC_X(V)$, $|V| \le p^2$, are totally N-determined
- 2. $\lim_{x \to 0} \pi_1 BZC_X = 0 = \lim_{x \to 0} \pi_2 BZC_X$ and $\lim_{x \to 0} \pi_1 BZC_X = 0 = \lim_{x \to 0} \pi_2 BZC_X$
- 3. The problems with non-uniqueness of preferred lifts can be solved

Then BX is totally N-determined.

The main problem is the computation of the higher limits.

<u>Fact</u>: Any simple p-compact group is either polynomial or a Lie group.

Proposition 53 The higher limits are 0 on $A(X)^{\leq t}$.

We only need to compute the higher limits for Lie groups where we may set the functors = 0 on all toral objects. Find the *non-toral* elementary abelian *p*-groups in the simple compact center-free Lie groups PG (not so easy for the *E*-family!). Use Oliver's cochain complex with

 $\prod_{|V|=p^{r+1}} \operatorname{Hom}_{\mathbf{A}(G)(V)}(\operatorname{St}(V), \pi_i(BZC_G(V)))$

in degree r. In fact, these Hom-groups are trivial so there is no need to compute the differentials.

Conclusion

Let p be an odd prime.

- A connected *p*-compact group is completely determined by its Weyl group
- All *p*-compact groups are known, there do not exist fake copies of *BG*
- Automorphism groups of *p*-compact groups are known
- Morphism sets [BG, BH] are not fully understood (admissible homomorphisms may be helpful). Homotopy representation theory is not fully understood.
- The maximal torus conjecture is true at odd primes
- Exactly for which spaces do these methods apply?

Computation of BX^{hG}

A G-action on BX is a fibration

$$BX \longrightarrow BX_{hG} \xrightarrow{\underline{B}X^{hG}} BG$$

with fibre BX. The homotopy orbit space BX_{hG} is the total space and the homotopy fixed point space BX^{hG} is the space of sections.

Theorem 54 Let BX be a connected pcompact group and $G \subset Out(BX)$ a finite group of automorphisms order prime to p.

1. BX^{hG} is a connected *p*-compact group with

 $H^*(BX^{hG}; \mathbf{Q}_p) = S[QH^*(BX; \mathbf{Q}_p)_G]$

- 2. $BX^{hG} \rightarrow BX$ is a monomorphism and $X \simeq X^{hG} \times X/X^{hG}$ In particular, X/X^{hG} is an H-space.
- 3. BX^{hG} is polynomial if BX is.

Example 55 The action of $\langle \lambda \rangle = C_m \rightarrow$ $Out(BS^{2n-1}) = \mathbf{Z}_p^{\times}/C_n$ is trivial if m|n. Otherwise, $H^{2n}(\psi^{\lambda}) = \lambda^n$ is nontrivial on $Q\overline{H}^*(BS^{2n-1}; \mathbf{Q}_p) = H^{2n}(BS^{2n-1}; \mathbf{Q}_p) =$ \mathbf{Q}_p . We conclude that

$$(BS^{2n-1})^{hC_m} = \begin{cases} BS^{2n-1} & m \mid n \\ * & m \nmid n \end{cases}$$

Example 56 The Aguadé *p*-compact group

$$BDI(2) = BF_4^{h\langle \alpha \rangle} \quad (p = 3)$$

is the fixed point 3-compact group for the action of the exceptional isogeny, and

 $F_4 \simeq DI(2) \times F_4/DI(2)$ so that $F_4/DI(2)$ is a 3-complete H-space.

Example 57 The Aguadé *p*-compact group

 $BX(W_{31}) = BE_8^{hC_4} \quad (p=5)$

is the fixed point 5-compact group for the action of $C_4 = \langle \psi^i \rangle$ on BE_8 , and

 $E_8 \simeq X(W_{31}) \times E_8/X(W_{31})$

where $E_8/X(W_{31})$ is a 5-complete *H*-space.

It is possible to determine the fixed point groups for all simple *p*-compact groups. Here are the fixed point groups for actions through unstable Adams operations:

 $G_{37} = W(E_8), G_{36} = W(E_7), G_{35} = W(E_6)$

The genus set of BG

Theorem 58 The genus set G(BG) is uncountably large for any nonabelian compact connected Lie group G.

Theorem 59 The set SNT(BG) is uncountably large for any nonabelian compact connected Lie group G – except for G in

 $\{SU(2), SU(3), PSU(2), PSU(3)\}\$ where $SNT(BG) = \{BG\}.$

Is it possible to classify G(BG) or SNT(BG)?

Theorem 60 Two spaces in G(BG) are homotopy equivalent iff they have isomorphic K-theory λ -rings.

Automorphism groups of spaces in the genus of BG.

Theorem 61 Let G be a simple Lie group and $B \in G(BG)$ a space of the same genus as BG. If there exists an essential map between B and BG, then B = BG.

Homotopy Chevalley groups

Friedlander's homotopy pull-back square is

where G is compact Lie, τ is an auto of G, and q is a prime power prime to p.

Definition 62 The homotopy Chevalley group is the pull-back

where τ is an auto of BX and $q \in \mathbf{Z}_p^{\times}$.

If q = 1 and $\tau = id$, the pull-back is ΛBX .

There is an exact sequence

$$\cdots \to \pi_i B^{\tau} X(q) \to \pi_i B X \xrightarrow{1 - (\tau \psi^q)_*} \pi_i B X$$
$$\to \pi_{i-1} B^{\tau} X(q) \to \cdots$$

For a *p*-compact torus, $BT(q) = B\mathbf{Z}/p^{\nu}$ where $\nu = \nu_p(1-q)$. **Proposition 63** Write $\tau \psi^q = (\tau \psi^u) \psi^{q_1}$ where $q = uq_1, u \in C_{p-1}, q_1 \equiv 1 \mod p$. Suppose that $G = \langle \tau \psi^u \rangle \subset \text{Out}(BX)$ has finite order prime to p and that $(\psi^{q_1})^*$ is the identity on $H^*(X; \mathbf{F}_p)$. Then

$$B^{\tau}X(q) = BX^{hG}(q_1)$$

where BX^{hG} is the homotopy fixed point *p*-compact group for the *G*-action.

The exploration breaks into two steps:

- 1. What is BX^{hG} when $G \subset Out(BX)$ has order prime to p?
- 2. What is BX(q) for $q \equiv 1 \mod p$?

Since we already know the answer to the first quetsion, we turn to the second question.

p-local finite groups

Let G be a finite group and $S \leq G$ a Sylow p-subgroup.

The fusion system of G is the category $\mathcal{F}_p(G)$ with objects the subgroups of S and morphisms

 $\mathcal{F}_p(G)(P,Q) = N_G(P,Q)/C_G(P)$ where $N_G(P,Q) = \{g \in G \mid gPg^{-1} \leq Q\}.$

The centric linking system $\mathcal{L}_p^c(G)$ of G is the category with **objects** the subgroups of S that are p-centric in G and **morphisms**

$$\mathcal{L}_p^c(G)(P,Q) = N_G(P,Q)/O^p(C_G(P))$$

 $O^p(H)$ is the minimal normal subgroup of H of p-power index.

A *p*-group $P \leq G$ is *p*-centric if

$$C_G(P) = Z(P) \times O^p(C_G(P))$$

and $O^p(C_G(P))$ has order prime to p.

There is a functor $\mathcal{L}_p^c(G) \to \mathcal{F}_p(G)$.

Theorem 64 $BG_p \simeq |\mathcal{L}_p^c(G)|_p$ for any finite group G.

Definition 65 A *p*-local finite group is a triple $(S, \mathcal{F}, \mathcal{L})$ consisting of a *p*-group *S*, an abstract (saturated) fusion system \mathcal{F} over the group *S*, and an abstract centric linking system \mathcal{L} associated to \mathcal{F} via a functor $\mathcal{L} \to \mathcal{F}$.

The classifying space is the space $|\mathcal{L}|_p$. The whole *p*-local finite group triple is recoverable from $|\mathcal{L}|_p$.

A *p*-local finite group mimicks the conjugacy relations that hold bewteen the subgroups of the Sylow subgroup of a finite group.

Are there any *p*-local finite groups that are not finite groups?

What is BX(q)? $q \equiv 1 \mod p$, $q \neq 1$

Proposition 66 Let $B\nu: BV \to BX$ be a toral monomorphism with connected centralizer map $(BV, BX)_{B\nu} = BC_X(\nu)$.

1. There is a unique lift of $B\nu$ to BX(q).

2. map $(BV, BX(q))_{B\nu(q)} = BC_X(V)(q)$.

We obtain a map

hocolim_{$A(X) \leq t$} $BC_X(V)(q) \rightarrow BX(q)$ that for polynomial *p*-compact groups often is an $H_*\mathbf{F}_p$ -equivalence. We are trying to move a homotopy inverse limit around a homotopy direct limit.

Example 67 If W has order prime to p,

 $BX(W)(q) = (B(\mathbf{Z}/p^{\nu(1-q)} \rtimes W))_p$

In particular,

$$BS^{2n-1}(q) = (B(\mathbf{Z}/p^{\nu(1-q)} \rtimes C_n))_p$$

Example 68 BDI(2)(q) is H_*F_3 equivalent to the homotopy colimit of

$$\begin{array}{ccc} \mathbf{Z}/2 & W_{12} & & & \\ BSU(3,q) & & & & & \\ & & & & & B(\mathbf{Z}/p^{\nu(1-q)})^2 \end{array}$$

BDI(2) is the limit of the spaces

$$BDI(2)(2^{2n+1}) = BF_4^{h\langle\alpha\rangle}(2^{2n+1})$$

= $(B^2F_4(2^{2n+1}))_3$

so the inifinte Ree group $\bigcup_n {}^2 F_4(2^{2n+1})$ is a discrete approximation to BDI(2).

Theorem 69 Let BX be a simply connected p-compact group, τ an automorphism of BX of finite order, and q a prime power. Assume that the order of τ and q are prime to p. Then $B^{\tau}X(q)$ is the classifying space of a p-local finite group.

These *p*-local finite groups are exotic when BX is an Aguadé *p*-compact group or one of Quillen's BXG(m,r,n) with r > 2. At p = 2, we have Sol(q) = DI(4)(q).

Open Problem 70 BX(q), $q \equiv 1 \mod p$, only depends on $\nu(1-q)$.

2-compact groups

Problematic things about 2-compact groups

- $H^1(W;\check{T}) \neq 0, \ H^2(W;\check{T}) \neq 0$
- $BZ(X) \rightarrow BZN(X)$ is not surjective
- BN(X) does not even determine $\pi_0(X)$
- $Out(BX) \rightarrow Out(BN(X))$ is not surjective

Good things about 2-compact groups

- The simple Z₂-reflection groups are W(G) and W(DI(4))
- The only extensions $\check{T} \to \check{N} \to W$ that are realizable by connected 2-compact groups come from $BG \times BDI(4)^m$
- $BZ(G) \neq BZN(G)$ only when G contains direct SO(2n + 1)-factors

The maximal torus normalizer pair: $BX \rightsquigarrow (BN, BN_0)$

The maximal torus normalizer pair informs about $\pi_0(X)$.

Two 2-compact groups with the same maximal torus normalizer pair are isomorphic?

Example 71 Out(BPU(4)) = \mathbb{Z}_2^{\times} and $\mathbb{Z}/2$ = $H^1(W; \check{T}) \subset Out(BN)$. The diagram

$$\begin{array}{c} BN \xrightarrow{B\alpha} BN \\ Bj & |Bj \\ BPU(4) \xrightarrow{B\alpha} BPU(4) \end{array}$$

has no solution.

Definition 72 BX is *N*-determined if there exists a solution, $B\alpha \in H^1(W; \check{T})$, to

$$BN \xrightarrow{B\alpha} BN \xrightarrow{B\alpha} BN$$

$$Bj | \qquad |Bj' \\ BX \xrightarrow{Bf} BX'$$

$$BX'$$

$$(2)$$

for any other BX' with the same maximal torus normalizer pair.

Definition 73 *BX* has *N*-determined automorphisms if

 $\operatorname{Out}(BX) \to W_0 \setminus \operatorname{Aut}(BN)$

is injective.

Totally N-determined = N-determined + N-determined automorphisms

Uniquely N-determined = N-determined with unique solution to diagram (2) + Ndetermined automorphisms

Conjecture 74 All (connected) 2-compact groups are (uniquely) totally N-determined.

Lemma 75 If *BX* is connected and uniquely *N*-determined, then

 $\operatorname{Aut}(BX) \cong \frac{\operatorname{Out}(BN)}{H^1(W;\check{T})}$

<u>Already known</u>: If BX = BG, G connected Lie, or BX = BDI(4), then BX has Ndetermined automorphisms and diagram (2) has at most one solution. **Theorem 76** 1. Let BX be a 2-compact group. If BX_0 has N-determined automorphisms and

 $H^{1}(\pi; \check{Z}(X_{0})) \rightarrow H^{1}(\pi; \check{Z}(N_{0}))$ is injective, then BX has N-determined automorphisms

- 2. If BX is connected and BPX has Ndetermined automorphisms, then BX has N-determined automorphisms
- 3. If BX_1 and BX_2 are connected and have N-detetermined automorphisms, then $BX_1 \times BX_2$ has N-determined automorphisms

Theorem 77 Suppose that BX is connected and has no center. If

- 1. the centralizer $BC_X(\nu)$ of any monomorphism $\nu: B\mathbb{Z}/p \to BX$ has N-determined automorphisms, and
- 2. $\lim^{1} \pi_{1}BZC_{X} = 0 = \lim^{2} \pi_{2}BZC_{X}$

Theorem 78 1. Let BX be a LHS 2-compact group. If BX_0 is uniquely N-determined and

 $H^2(\pi; \check{Z}(X_0)) \to H^2(\pi; \check{Z}(N_0))$ is injective, then BX is N-determined

- 2. If BX is connected and BPX is Ndetermined, then BX is N-determined
- 3. If BX_1 and BX_2 are *N*-determined, then $BX_1 \times BX_2$ is *N*-determined

Conjecture 79 All 2-compact groups are LHS

Theorem 80 Suppose that BX is connected and has no center. If

- 1. All centralizers $BC_X(V), |V| \leq p^2$, are totally N-determined
- 2. The problems with non-uniqueness of preferred lifts and non-uniqueness of $B\alpha$ in Diagram 2 can be solved

3. $\lim^2 \pi_1 BZC_X = 0 = \lim^3 \pi_2 BZC_X$

then BX is N-determined.

The plan is to verify that the simple 2compact groups are uniquely N-determined in the cases

- Classical matrix groups: PGL(n+1, C), PSL(2n, R), SL(2n + 1, R), PGL(n, H)
- G₂, F₄, *DI*(4)
- E₆, E₇, E₈

Theorem 81 The above simple 2-compact groups outside the *E*-family are uniquely *N*-determined with automorphism groups

$$\begin{aligned} \operatorname{Aut}(\operatorname{PGL}(n+1,\operatorname{C})) &= \begin{cases} \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} & n = 1 \\ \operatorname{Z}_{2}^{\times} & n > 1 \end{cases} \\ \operatorname{Aut}(\operatorname{PSL}(2n,\operatorname{R})) &= \begin{cases} \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} \times \Sigma_{3} & n = 4 \\ \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} \times \langle c_{1} \rangle & n > 4 \text{ even} \\ \operatorname{Z}_{2}^{\times} & n > 4 \text{ odd} \end{cases} \\ \operatorname{Aut}(\operatorname{SL}(2n+1,\operatorname{R})) &= \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times}, \quad n \ge 2 \\ \operatorname{Aut}(\operatorname{PGL}(n,\operatorname{H})) &= \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times}, \quad n \ge 3 \\ \operatorname{Aut}(\operatorname{G}_{2}) &= \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} \times C_{2}, \quad \operatorname{Aut}(\operatorname{F}_{4}) &= \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} \\ \operatorname{Aut}(\operatorname{DI}(4)) &= \operatorname{Z}^{\times} \backslash \operatorname{Z}_{2}^{\times} \end{aligned}$$
where $\langle c_{1} \rangle$ is a group of order two.

PGL(n + 1, C): Computation of higher limits

Proposition 82 The higher limits vanish over the toral subcategory $A(PGL(n+1, C))^{\leq t}$.

For $V \subset \mathsf{PGL}(n+1, \mathbb{C})$ let $[,]: V \times V \to \mathbb{F}_2$ be the symplectic form $[u\mathbb{C}^{\times}, v\mathbb{C}^{\times}] = [u, v] = \pm E$.

Lemma 83 $V \subset PGL(n + 1, C)$ is toral iff [V, V] = 0.

Lemma 84 If n + 1 is odd, PGL(n + 1, C)contains no nontoral objects. For each $d \ge 1$ there is a unique elementary abelian $H^d \subset PGL(2^dm, C)$ with non-degenerate symplectic form, and

$$C_{\mathsf{PGL}(2^d m, \mathbf{C})}(H^d) = H^d \times \mathsf{PGL}(m, \mathbf{C})$$
$$\mathbf{A}(\mathsf{PGL}(2^d m, \mathbf{C}))(H^d) = \mathsf{Sp}(2d)$$

Any other nontoral has the form $H^d \times E$ where $E \subset \mathsf{PGL}(m, \mathbb{C})$ is toral, and

$$\mathbf{A}(\mathsf{PGL}(2^d m, \mathbf{C}))(H^d \times E) = \begin{pmatrix} \mathsf{Sp}(2d) & * \\ 0 & \mathbf{A}(E) \end{pmatrix}$$

If we let

 $[E] = \operatorname{Hom}_{A(E)}(\operatorname{St}(E), \pi_1(BZC_{\operatorname{PGL}(n+1,C)}(E)))$ then Oliver's cochain complex has the form

$$\begin{split} \mathbf{0} &\to [H] \xrightarrow{d^1} \prod_{1 \leq i \leq [m/2]} [H \# L[m-i,i]] \xrightarrow{d^2} \\ [H \# P[\mathbf{1},\mathbf{1},m-2] \times \prod_{2 < i < [m/2]} [H \# P[\mathbf{1},i-1,m-i]] \end{split}$$

where we only list some of the nontoral rank four objects. We need to show that d^1 is injective and that ker $d^2 = \operatorname{im} d^1$. The computer program *magma* says that

 $[H] = \operatorname{Hom}_{\operatorname{Sp}(2)}(\operatorname{St}(H), H) \cong \mathbf{F}_{2}$ $[H \# L[m - i, i]] = \operatorname{Hom}_{\operatorname{Sp}(3,1)}(\operatorname{St}(V), V) \cong \mathbf{F}_{2},$ $[H \# P[1, 1, m - 2]] \cong \mathbf{F}_{2}$ $[H \# P[1, i - 1, m - i]] \cong \mathbf{F}_{2} \times \mathbf{F}_{2}$

and further computations show exactness.