p-compact groups

1. Finite loop spaces
2. p-compact groups
3. Morphisms and homogeneous spaces
4. Centralizers
5. The maximal torus
6. Structure of p-compact groups
7. Classification of p-compact groups at odd primes

Notation

p prime number
\mathbf{F}_{p} field with p elements
\mathbf{Z}_{p} ring of p-adic integers
Q_{p} field of p-adic numbers
B_{p} the $H_{*} \mathbf{F}_{p}$-completion of the space B

Finite loop spaces

Definition 1 A finite loop space is a space $B X$ whose loop space $\Omega B X$ is homotopy equivalent to a finite $C W$-complex.

Terminology: $\mathbf{R} P^{\infty}$ is a finite group.
Example $2 B G$ where G is a (compact) Lie group.
Zabrodsky mix of rationally identical Lie groups (Hilton criminal)
$2^{\omega} \subset G(B S U(2)) \xrightarrow{\Omega} G(\operatorname{SU}(2))=\{\operatorname{SU}(2)\}$
(Rector 1971)
Conjecture 3 1. Any finite loop space with a maximal torus $B T \rightarrow B X$ is a compact Lie group TRUE away from 2
2. Any finite loop space is rationally a compact Lie group
FALSE (Andersen, Bauer, Grodal, Pedersen 2004)

Application 4 (Yau 2002) There are uncountably many λ-ring structures on the power series ring $\mathrm{Z}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.

p-compact groups

Definition 5 A p-compact group is a p complete space $B X$ such that $H^{*}\left(\Omega B X ; \mathbf{F}_{p}\right)$ is finite (Dwyer-Wilkerson 1994).

Example 6 - Rector's uncountable many examples all complete to the same p compact group $(B \mathrm{SU}(2))_{p}$

- $(B G)_{p}$ where G is a Lie group and $\pi_{0}(G)$ a finite p-group
- $B T_{r}=\left(B \cup(1)^{r}\right)_{p}=K\left(\mathbf{Z}_{p}^{r}, 2\right)-p$-compact torus of rank r.
- $B T_{r}=\left(B \breve{T}_{r}\right)_{p}$ where $\breve{T}_{r}=\left(\mathrm{Z} / p^{\infty}\right)^{r}$ is the discrete approximation to T_{r}.
- BT $\rightarrow B P \rightarrow B \pi-p$-compact toral group (with discrete approximation \check{P})
- Any connected p-complete space with f.g. polynomial $H^{*} \mathbf{F}_{p}$-cohomology is a (polynomial, often exotic) p-compact group

A short history of polynomial p-compact groups

Theorem 7 (Sullivan) If $n \mid(p-1)$, then $B S^{2 n-1}=B\left(\mathrm{Z} / p^{\infty} \rtimes C_{n}\right)_{p}$ is a p-compact group and

$$
H^{*}\left(B S^{2 n-1} ; \mathbf{Z}_{p}\right)=\mathbf{Z}_{p}[u]^{C_{n}}=\mathbf{Z}_{p}\left[x_{2 n}\right]
$$

and $H^{*}\left(\Omega B S^{2 n-1} ; \mathbf{F}_{p}\right)=E\left(y_{2 n-1}\right)$ is an exterior algebra over \mathbf{F}_{p}.

Theorem 8 (Clark-Ewing 1974) Let $W \subset$ $\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)=\operatorname{Aut}\left(\breve{T}_{r}\right)$, be a p-adic reflection group of order prime to p. Then $B X(W)=$ $B(\breve{T} \rtimes W)_{p}$ is a p-compact group and

$$
H^{*}\left(B X(W) ; \mathbf{F}_{p}\right)=H^{*}\left(B \breve{T}_{r} ; \mathbf{F}_{p}\right)^{W}
$$

is a polynomial and $H^{*}\left(\Omega B X(W) ; \mathbf{F}_{p}\right)$ an exterior algebra over \mathbf{F}_{p}.

The next example uses a generalized ClarkEwing construction and a spectral sequence

$$
E_{2}^{p q}=H^{p}\left(K(\mathbf{I}) ; H^{q} M\right) \Longrightarrow \lim ^{p+q} M
$$

for the higher limits of the functor M on the EI-category I.

Example 9 (Aguadé 1989) The simple reflection group no $W_{12} \subset \mathrm{GL}\left(2, \mathrm{Z}_{3}\right)$ maps isomorphically to $\mathrm{GL}\left(2, \mathrm{~F}_{3}\right)$. Define the 3compact group $B D I(2)$ as the homotopy colimit of

Then

$$
\begin{gathered}
H^{*}\left(B D I(2) ; \mathbf{F}_{3}\right) \cong H^{*}\left(B V_{2} ; \mathbf{F}_{3}\right)^{\mathrm{GL}\left(2, \mathbf{F}_{3}\right)} \\
\cong \mathbf{F}_{3}\left[x_{12}, x_{16}\right], \quad P^{1} x_{12}=x_{16}
\end{gathered}
$$

Example 10 (Dwyer-Wilkerson 1993) There exists a 2-compact group $B D I(4)$ such that

$$
\begin{aligned}
& H^{*}\left(B D I(4) ; \mathbf{F}_{2}\right)=H^{*}\left(B V_{4} ; \mathbf{F}_{2}\right)^{\mathrm{GL}\left(4, \mathrm{~F}_{2}\right)} \\
& =\mathbf{F}_{2}\left[c_{8}, c_{12}, c_{14}, c_{15}\right], \quad S q^{4} c_{8}=c_{12}, S q^{1} c_{14}=c_{15}
\end{aligned}
$$

$B D I(4)$ is the homotopy colimit of a diagram of the form

$$
\begin{aligned}
\operatorname{Spin}(7) \supset \operatorname{SU}(2)^{3} /\langle(-E & -E E,-E)\rangle \\
& \supset T \rtimes\langle-E\rangle \supset V_{4}
\end{aligned}
$$

Example 11 (Quillen's generalized $B \cup(n)$,

 Oliver-Notbohm 1993) Suppose $r|m| p-1$. Let$$
G(m, r, n)=A(m, r, n) \rtimes \Sigma_{n} \subset \mathrm{GL}\left(n, \mathbf{Z}_{p}\right)
$$

where Σ_{n} is permutations and $A(m, r, n)$ is diagonal matrices with entries in $C_{m} \subset$ $C_{p-1} \subset \mathbf{Z}_{p}^{\times}$and determinant in $C_{m / r} \subset C_{m}$.

Define

$$
B C_{X}: \mathbf{A}\left(G(m, r, n), \mathbf{F}_{p}^{n}\right) \rightarrow[\mathbf{p c g}]
$$

as the functor that is $B C_{U(n)}$ plus products of unstable Adams operations $\psi^{\lambda}, \lambda \in C_{m}$.

Then $B X G(m, r, n)=$ hocolim $B C_{X}$ is a polynomial center-free p-compact group with

$$
\begin{aligned}
H^{*}\left(B X G(m, r, n) ; \mathbf{Z}_{p}\right) & =\mathbf{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]^{G(m, r, n)} \\
& =\mathbf{Z}_{p}\left[y_{1}, \ldots, y_{n-1}, e\right]
\end{aligned}
$$

where y_{i} is the ith symmetric polynomium in x_{i}^{m} and $e=\left(x_{1} \cdots x_{n}\right)^{m / r}$.

The cohomological dimension of $B X$ is $\operatorname{cd}(B X)=\max \left\{d \geq 0 \mid H^{d}\left(\Omega B X ; \mathbf{Q}_{p}\right) \neq 0\right\}$

Example $12 \operatorname{cd}(B D I(4))=45$ as

$$
H^{*}\left(B D I(4) ; \mathrm{Q}_{2}\right)=\mathrm{Q}_{2}\left[x_{8}, x_{12}, x_{28}\right]
$$

$\operatorname{cd}(B G)$ is $\operatorname{dim}(G), G$ a compact Lie group.

Open Problem 13 - Is it possible to characterize the class of cohomology algebras

$$
H^{*}\left(B X ; \mathbf{F}_{p}\right)
$$

for p-compact groups? Can we tell from $H^{*}\left(B ; \mathbf{F}_{p}\right)$ if B is a p-compact group?

- Do all p-compact groups have discrete approximations?
- What is the analogue of the Lie algebra? Benson proposes a candidate (unfortunately not containing the Lie algebra of Spin(7)!) for the Lie algebra of $B D I(4)$.

Morphisms and homogeneous spaces

A morphism is a pointed map $B f: B X \rightarrow B Y$. The fibre of $B f$ is denoted $Y / f X$ or just Y / X.

$$
Y / X \longrightarrow B X \xrightarrow{B f} B Y
$$

- $B f$ is a monomorphism if $H^{*}\left(Y / X ; \mathbf{F}_{p}\right)$ is finite iff $H^{*}\left(B Y ; \mathbf{F}_{p}\right)$ is a f.g. module over $H^{*}\left(B X ; \mathbf{F}_{p}\right)$.
- $B f$ is an epimorphism if Y / X is a p compact group $B K$. Then

$$
B K \longrightarrow B X \longrightarrow B Y
$$

is a short exact sequence of p-compact groups.

- $B f$ is an isomorphism if the fibre is contractible

Example $14 \exists$ monomorphismBSpin(7) \rightarrow $B D I(4)$ and $\chi(D I(4) / \operatorname{Spin}(7))=24$. If $G \rightarrow H$ is a monomorphism of Lie groups, then $(B G)_{p} \rightarrow(B H)_{p}$ is a monomorphism of p-compact groups and $G / H=(G / H)_{p}$. Similarly for epimorphisms.

Example $15 B X\langle 1\rangle \rightarrow B X$ is a p-compact group monomorphism. There is a finite covering map

$$
X / X\langle 1\rangle=\pi_{0}(X) \rightarrow B X\langle 1\rangle \rightarrow B X
$$

so $B X_{0}=B X\langle 1\rangle$ is the identity component of $B X$.
$B X\langle 2\rangle \rightarrow B X$ is a p-compact group morphism, so $B S X=B X\langle 2\rangle$ is the universal covering p-compact group.

Theorem 16 Any nontrivial p-compact group admits a monomorphism $B \mathbf{Z} / p \rightarrow B X$. Any p-compact group with a nontrivial identity component admits a monomorphism $B \cup(1) \rightarrow B X$.

Open Problem 17 • Do all p-compact groups admit faithful complex representations?

- Investigate homogeneous spaces Y / X of p-compact groups.

Ziemanski constructs a faithful complex representation of $D I(4)$ (at $p=2$) of dimension 70368744177664 . This faithful representation of $D I(4)$ is constructed by finding compatible faithful representations of the Lie groups in the diagram.

Theorem 18 Let $B f: B X \rightarrow B Y$ be a p compact group homomorphism that vanishes on all elements of finite order. Then $B f$ is trivial.

Centralizers

The centralizer of the morphism $B f$ is $B C_{Y}(f X)=B C_{Y}(X)=\operatorname{map}(B X, B Y)_{B f}$ and $B f$ is central if

$$
B C_{Y}(X) \rightarrow B Y
$$

is a homotopy equivalence.
The p-compact group $B A$ is abelian if the identity map is central: $\operatorname{map}(B A, B A)_{B 1} \simeq$ $B A$.

Proposition 19 If $B X \rightarrow B Y$ is a central monomorphism then $B X$ is abelian.

Theorem 20 If $B P$ is a p-compact toral group then $B C_{Y}(P)$ is a p-compact group and $B C_{Y}(P) \rightarrow B Y$ a monomorphism.

Theorem 21 (Sullivan conjecture) The trivial morphism of $B P \rightarrow B Y$ from a p compact toral group is central.
Proof. $\Omega B C_{Y}(P)=\Omega \operatorname{map}(B P, B Y)_{B 0}=$ $\operatorname{map}(B P, \Omega B Y)=\Omega B Y$. \qquad

Example 22 Let G be a Lie group, P be a p-toral Lie group, $f: P \rightarrow G$ a Lie monomorphism, and $C_{G}(P)$ the Lie centralizer. Then

$$
\begin{aligned}
C_{G}(P) \times P & \rightarrow G \rightsquigarrow B C_{G}(P) \times B P \rightarrow B G \\
& \rightsquigarrow B C_{G}(P) \rightarrow \operatorname{map}(B P, B G)_{B f}
\end{aligned}
$$

gives an isomorphism of p-compact groups.
Proposition 23 Any morphism $B A \rightarrow B X$ from an abelian p-compact group $B A$ factors through its centralizer:

Proof.

This factorization gives the fibration sequence

$$
C_{X}(A) / A \rightarrow B A \rightarrow B C_{X}(A)
$$

The maximal torus

A maximal torus is a monomorphism $B T \rightarrow$ $B X$ such that $C_{X}(T) / T$ homotopically discrete.

The Weyl group $W(X)=\pi_{0} \mathcal{W}(X)$ is the component group of Weyl space of selfmaps of $B T$ over $B X$:

Theorem 24 1. Any p-compact group $B X$ has an essentially unique maximal torus
2. If $B X$ is connected then

$$
W(X) \hookrightarrow \operatorname{Aut}\left(\pi_{2}(B T)\right)=\mathrm{GL}\left(\mathbf{Z}_{p}, r\right)
$$

is a p-adic reflection group
3. $H^{*}\left(B X ; \mathbf{Z}_{p}\right) \otimes \mathbf{Q}=\left(H^{*}\left(B T ; \mathbf{Z}_{p}\right) \otimes \mathbf{Q}\right)^{W}$
4. $\chi(X / T)=|W(X)|$
$B X$ is simple if its Weyl group representation $W(X) \rightarrow \mathrm{GL}\left(\pi_{2}(B T) \otimes \mathrm{Q}\right)$ is simple.

Example 25 - $W\left(B S^{2 n-1}\right)=C_{n}<\mathrm{GL}\left(\mathbf{Z}_{p}, 1\right)$ consists of the nth roots of unity.

- $W(B X(W))=W<\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)$ (ClarkEwing)
- $W(B D I(4))<\mathrm{GL}\left(\mathrm{Z}_{2}, 3\right)$ is the simple reflection group no 24 of order 336, isomorphic to $\mathrm{Z} / 2 \times \mathrm{GL}\left(3, \mathrm{~F}_{2}\right)$.
- $W(B G)=W(G) \subset G L(r, \mathbf{Z}) \subset G L\left(r, \mathbf{Z}_{p}\right)$, G Lie group.

Weyl groups are never abstract groups, they are always subgroups of $\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)$!

If $H^{*}\left(B X ; \mathbf{Q}_{p}\right)=\mathbf{Q}_{p}\left[x_{i}\right]$ then W has order $|W|=\Pi \frac{1}{2}\left|x_{i}\right|$ and W contains $\sum\left(\frac{1}{2}\left|x_{i}\right|-1\right)$ reflections.

The center of a p-compact group

Theorem 26 For any p-compact group $B X$ there exists a central monomorphism BZ $(X) \rightarrow$ $B X$ where

- $B Z(X)$ is abelian, and
- any other central monomorphism to $B X$ factors uniquely through $B Z(X) \rightarrow B X$.

In fact, $B Z(X)=B C_{X}(X)=\operatorname{map}(B X, B X)_{B 1}$.

$$
\text { If } B X=B G_{p}, G \text { Lie, then } B Z(X)=B Z(G)_{p} .
$$

Theorem 27 For any central monomorphism BA $\rightarrow B X$ there is a short exact sequence

$$
B A \longrightarrow B X \longrightarrow B(X / A)
$$

of p-compact groups.
$B P X=B(X / Z(X))$, the adjoint form of $B X$, has no center when $B X$ is connected.

Structure of p-compact groups

Proposition 28 Any abelian p-compact group is the product of a finite abelian p-group and a p-compact torus: $B A=B \pi \times B T$.

Theorem 29 For any connected p-compact group $B X$ there is a short exact sequence of p-compact groups

$$
B K \rightarrow B S X \times B Z(X)_{0} \rightarrow B X
$$

where K is finite abelian p-group and $B K \rightarrow$ $B S X$ is central.

The corresponding theorem for Lie groups:

$$
\begin{aligned}
Z / p \rightarrow \mathrm{SU}(p) \times \mathrm{U}(1) & \rightarrow \mathrm{U}(p) \\
(A, z) & \rightarrow A(z E)
\end{aligned}
$$

Theorem 30 (Semi-simplicity) BPX and $B S X$, for any connected p-compact group, are products of simple p-compact groups.

Any p-compact group is the quotient of $\Pi B Y_{i} \times B S, B Y_{i}$ simple, $B S$-compact torus, by a central finite abelian group.

Decomposing $B P X$

$\mathbf{A}(X)$ is the category with
objects Monomorphism $B V \xrightarrow{B \nu} B X, V$ elementary abelian p-group
morphisms Monomorphisms $\phi: V_{1} \rightarrow V_{2}$ such that

$$
\underset{{ }_{B \nu_{1}}^{B V_{1} \xrightarrow{B \nu_{2}}} \underset{ }{B \phi} B V_{2}}{\substack{B \nu_{2}}}
$$

commutes up to homotopy.

The functors

$$
\begin{aligned}
B C_{X}: \mathbf{A}(X)^{\mathrm{op}} & \rightarrow \text { Top } \\
\pi_{i} B Z C_{X}: \mathbf{A}(X) & \rightarrow \text { AbGrp }
\end{aligned}
$$

are given by

$$
\begin{aligned}
& B C_{X}(B \nu)=\operatorname{map}(B V, B X)_{B \nu} \\
& \pi_{i} B Z C_{X}(B \nu)=\pi_{i}\left(B Z C_{X}(B \nu)\right)
\end{aligned}
$$

Example $31 \quad \mathbf{A}_{p}(B \cup(n))=\mathbf{A}\left(\Sigma_{n}, \mathbf{F}_{p}^{n}\right)$ and $B C_{\mathrm{U}(n)}\left(\sum_{\rho \in V^{\vee}} n_{\rho} \rho\right)=\Pi B \mathrm{U}\left(n_{\rho}\right)$.

Theorem 32 hocolim $B C_{X} \xrightarrow{H_{*} \mathbf{F}_{p}} B X$

Here, $\operatorname{cd}_{\mathbf{F}_{p}} B C_{X}(V)<\operatorname{cd}_{\mathbf{F}_{p}} B X$ when $B X$ has no center.

The toral subcategory

$$
\mathbf{A}(X)^{\leq t}=\mathbf{A}(W, t)
$$

is generated by all toral objects.

One can often prune the index category. For polynomial p-compact groups, it is enough to take t^{P} for P a p-subgroup of W.

Example 33 Lannes theory applied to

$$
\begin{array}{r}
H^{*}\left(B T ; \mathbf{F}_{p}\right) \\
H^{*}\left(B V ; \mathbf{F}_{p}\right) \longleftarrow H^{*}\left(B X ; \mathbf{F}_{p}\right)
\end{array}
$$

shows that all objects are toral when $H^{*}(B X)$ embeds in $H^{*}(B T)$ (eg for polynomial pcompact groups for p odd).

Example $34 I f|W|$ is prime to p, then the polynomial $B X(W)$ is the homotopy colimit of

$\stackrel{W}{B T}$

Example 35 The polynomial 3-compact group $B G_{2}$, with Weyl group $W\left(G_{2}\right) \cong$ $\Sigma_{3} \times \mathrm{Z} / 2$, is the homotopy colimit of the diagram

where $Z\left(W\left(G_{2}\right)\right) \cong \mathrm{Z} / 2$ acts on $B \mathrm{SU}(3)$ via the unstable Adams operations $\psi^{ \pm 1}$

Classification of compact connected Lie groups

Theorem 36 (Curtis-Wiederhold-Williams, Bourbaki) Let G_{1} and G_{2} be two compact connected Lie groups. Then
G_{1} and G_{2} are isomorphic
$\Longleftrightarrow N\left(G_{1}\right)$ and $N\left(G_{2}\right)$ are isomorphic where $N\left(G_{1}\right) \rightarrow G_{1}, N\left(G_{2}\right) \rightarrow G_{2}$ are the maximal torus normalizers.

Theorem 37 (Hämmerli) For any compact connected Lie group G

$$
\operatorname{Out}(G) \cong \frac{\operatorname{Out}(N(G))}{H^{1}(W(G) ; T(G))}
$$

The Weyl group itself is not enough:

$$
\begin{aligned}
& \mathrm{U}(1) \rightarrow N(\mathrm{SU}(2)) \stackrel{\nrightarrow}{\rightarrow} C_{2}=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle \\
& \mathrm{SO}(2) \rightarrow N(\mathrm{SO}(3)) \xrightarrow{\curvearrowleft} C_{2}=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle
\end{aligned}
$$

More generally: $\operatorname{Sp}(n)$ and $\mathrm{SO}(2 n+1)$

Classification of p-compact groups for p odd

The normalizer of the maximal torus

$$
B N(X) \rightarrow B X
$$

is the Borel construction for the action of the Weyl space $\mathcal{W}(X)$ on the maximal torus $B T(X)$.

There is a fibration sequence

$$
B T(X) \rightarrow B N(X) \rightarrow B W(X)
$$

so that $B N(X)$ is an extended p-toral group.
$B N$ is characterized by the data:

1. The Weyl group action $W \rightarrow \operatorname{Aut}(B T)$
2. The extension class in $H^{3}\left(B W ; \pi_{2}(B T)\right)$

There is a discrete approximation

$$
\check{T}(X) \rightarrow \check{N}(X) \rightarrow W(X)
$$

If $B X=B G, G$ Lie, the p-compact group and the Lie (discrete) maximal torus normalizer are (essentially) identical.

Theorem 38 If p is odd, $\bar{N}=\check{T} \rtimes W$ is a semi-direct product for any connected p compact group. If $p=2, H^{3}\left(B W ; \pi_{2}(B T)\right)$ is an elementary abelian 2-group and the extension class may be nonzero.

Curtis-Wiederhold-Williams tell us for which simple compact Lie groups $N(G)$ splits.

Theorem 39 The maximal torus and the maximal torus normalizer are characterized by

1. $B T \rightarrow B X$ is a monomorphism from a p-compact torus and the Euler characteristic $\chi(X / T) \neq 0$
2. $B N \rightarrow B X$ is a monomorphism from an extended p-toral group and the Euler characteristic $\chi(X / N)=1$

Good things about $B N$

Theorem 40 Let $B f: B X \rightarrow B X$ be an automorphism of $B X$.

1. There exists a lift

$$
\begin{aligned}
& B N \xrightarrow{B N(f)} B N \\
& B X \xrightarrow{B f} B X
\end{aligned}
$$

which is unique up to homotopy.
Theorem 41 Let $B V \xrightarrow{B \nu} B X$ be a monomorphism from an elementary abelian p-group $B V$ to $B X$. There exists a preferred lift
such that $B C_{N}(\mu) \rightarrow B C_{X}(\nu)$ is a maximal torus normalizer. The preferred lift is unique if $B \nu$ is toral.

The maximal torus normalizer informs about the group of components and the center.

Proposition 42 There is a short exact sequence

$$
W\left(X_{0}\right) \rightarrow W(X) \rightarrow \pi_{0}(X)
$$

When $p>2, W\left(X_{0}\right)$ is the subgroup generated by

$$
\begin{aligned}
& \left\{w \in W(X) \mid \pi_{2}(w) \otimes \mathbf{Q}\right. \\
& \text { is a reflection in } \left.\pi_{2}(B T) \otimes \mathbf{Q} \text { of order }|w|\right\}
\end{aligned}
$$

Proposition 43 There is a monomorphism (isomorphism when $p>2$) $B Z(X) \rightarrow B Z N(X)$ of centers. The center of a connected $B X$ can be computed from $B N$.

Main theorems

Theorem 44 Let $B X_{1}$ and $B X_{2}$ be two p-compact groups and $B N$ an extended p compact torus. Any diagram

$$
\begin{gathered}
B j_{1} \\
B X_{1}-B j_{2} \\
\simeq B X_{2}
\end{gathered}
$$

where the slanted arrows are maximal torus normalizers, can be completed by an isomorphism $B X_{1} \rightarrow B X_{2}$ under $B N$.

Theorem 45 There is an isomorphism

$$
\operatorname{Out}(B X) \xrightarrow{B f \rightarrow B N(f)} \operatorname{Out}(B N)
$$

If $B X$ is connected then
$\operatorname{Out}(B N) \cong N_{\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)}(W) / W$
is the Weyl group of the Weyl group.

For connected p-compact groups there are bijections
$\left\{\begin{array}{c}\text { Isomorphism classes of } \\ \text { connected } p \text {-compact groups }\end{array}\right\}$

$$
\xrightarrow{(W, \breve{T})}\left\{\begin{array}{l}
\text { Similarity classes of } \\
\mathbf{Z}_{p} \text {-reflection groups }
\end{array}\right\}
$$

Steenrod's problem:
$\left\{\begin{array}{c}\text { Isomorphism classes of } \\ \text { polynomial } p \text {-compact groups }\end{array}\right\}$
$\xrightarrow{(W, \breve{T})}\left\{\begin{array}{c}\text { Similarity classes of polynomial } \\ \mathbf{Z}_{p} \text {-reflection groups with } H_{1}=0\end{array}\right\}$

Many p-compact groups are cohomologically unique.

Theorem 46 Let $B X$ be a connected pcompact group. If the Weyl group $W(X) \subset$ $\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)$ is determined by its mod p reduction in $\mathrm{GL}\left(r, \mathbf{F}_{p}\right)$, then $B X$ is a cohomologically unique p-compact group.

All simple p-compact groups, except possibly the quotients $B\left(\mathrm{SU}\left(p^{n}\right) / p^{r}\right)$, are cohomologically unique p-compact groups.

Computing automorphism groups

There is an exact sequence

$$
\begin{aligned}
1 \rightarrow C_{\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)}(W) / Z(W) \rightarrow & N_{\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)}(W) / W \\
& \rightarrow \operatorname{Out}_{\mathrm{tr}}(W)
\end{aligned}
$$

where Out ${ }_{t r}(W)$ consists of trace preserving automorphisms of W. The automorphisms

$$
\mathbf{Z}_{p}^{\times} \subset C_{\mathrm{GL}\left(r, \mathbf{Z}_{p}\right)}(W)
$$

are the unstable Adams operations.

Example 47

$$
\operatorname{Out}\left(B S \cup(n)_{p}\right)= \begin{cases}\mathbf{Z}_{p}^{\times} /\{ \pm 1\} & n=2 \\ \mathbf{Z}_{p}^{\times} & n>2\end{cases}
$$

$$
\operatorname{Out}(\underbrace{B \operatorname{SU}(3)_{p} \times \cdots \times B \operatorname{SU}(3)_{p}}_{n})=\mathrm{Z}_{p}^{\times} \imath \Sigma_{n}
$$

In general the automorphism group of a product consists of Adams operations on the factors together with permutations of identical factors.

Example 48 The automorphism group of $B S^{2 n-1}$ is

$$
\begin{aligned}
\operatorname{Out}\left(B S^{2 n-1}\right)=N_{\mathrm{GL}\left(1, \mathrm{Z}_{p}\right)}\left(C_{n}\right) / & C_{n} \\
& =\mathbf{Z}_{p}^{\times} / C_{n}
\end{aligned}
$$

The automorphism group of any Aguadé group is $\mathbf{Z}_{p}^{\times} / Z(W)$.

Example 49 At $p=3$,
$\operatorname{Out}\left(B \mathrm{~F}_{4}\right)=N_{\mathrm{GL}\left(4, \mathrm{Z}_{3}\right)}\left(W\left(\mathrm{~F}_{4}\right)\right)$

$$
=\mathbf{Z}_{3}^{\times} /\{ \pm 1\} \times\{\alpha\}
$$

where the exceptional isogeny α has order 2.

Theorem 50 Let $B X$ be a p-compact group with identity component $B X_{0}$ and component group π. There is an exact sequence $H^{1}\left(\pi ; \check{Z}\left(X_{0}\right)\right) \rightarrow \operatorname{Aut}(B X) \rightarrow \operatorname{Aut}\left(B \pi, B X_{0}\right)_{B X}$ where the group to the right is the stabilizer subgroup for the action of $\operatorname{Aut}(\pi) \times$ Aut $\left(B X_{0}\right)$ on $H^{2}\left(\pi ; \check{Z}\left(X_{0}\right)\right)$.

Sketch of proof

$B X$ is totally N-determined if Theorems 44 and 45 hold for $B X$.

Theorem 51

$B X_{0}$ is totally N-determined
$\Longrightarrow B X$ is totally N-determined
$B P X$ is totally N-determined
$\Longrightarrow B X$ is totally N-determined
$B P_{1}$ and $B P_{2}$ are totally N-determined
$\Longrightarrow B P_{1} \times B P_{2}$ is totally N-determined
Theorem 52 Let $B X$ be a connected p compact group with no center. If

1. All centralizers $B C_{X}(V),|V| \leq p^{2}$, are totally N-determined
2. $\lim ^{1} \pi_{1} B Z C_{X}=0=\lim ^{2} \pi_{2} B Z C_{X}$ and $\lim ^{2} \pi_{1} B Z C_{X}=0=\lim ^{3} \pi_{2} B Z C_{X}$
3. The problems with non-uniqueness of preferred lifts can be solved

Then $B X$ is totally N-determined.

The main problem is the computation of the higher limits.

Fact: Any simple p-compact group is either polynomial or a Lie group.

Proposition 53 The higher limits are 0 on $\mathbf{A}(X) \leq t$.

We only need to compute the higher limits for Lie groups where we may set the functors $=0$ on all toral objects. Find the non-toral elementary abelian p-groups in the simple compact center-free Lie groups $P G$ (not so easy for the E-family!). Use Oliver's cochain complex with
$\prod_{|V|=p^{r+1}} \operatorname{Hom}_{\mathbf{A}(G)(V)}\left(\operatorname{St}(V), \pi_{i}\left(B Z C_{G}(V)\right)\right)$
in degree r. In fact, these Hom-groups are
trivial so there is no need to compute the
differentials.

Conclusion

Let p be an odd prime.

- A connected p-compact group is completely determined by its Weyl group
- All p-compact groups are known, there do not exist fake copies of $B G$
- Automorphism groups of p-compact groups are known
- Morphism sets [$B G, B H$] are not fully understood (admissible homomorphisms may be helpful). Homotopy representation theory is not fully understood.
- The maximal torus conjecture is true at odd primes
- Exactly for which spaces do these methods apply?

Computation of $B X^{h G}$

A G-action on $B X$ is a fibration

$$
B X \longrightarrow B X_{h G} \xrightarrow{B X^{h G}} B G
$$

with fibre $B X$. The homotopy orbit space $B X_{h G}$ is the total space and the homotopy fixed point space $B X^{h G}$ is the space of sections.

Theorem 54 Let $B X$ be a connected p compact group and $G \subset$ Out $(B X)$ a finite group of automorphisms order prime to p.

1. $B X^{h G}$ is a connected p-compact group with

$$
H^{*}\left(B X^{h G} ; \mathbf{Q}_{p}\right)=S\left[Q H^{*}\left(B X ; \mathbf{Q}_{p}\right)_{G}\right]
$$

2. $B X^{h G} \rightarrow B X$ is a monomorphism and

$$
X \simeq X^{h G} \times X / X^{h G}
$$

In particular, $X / X^{h G}$ is an H-space.
3. $B X^{h G}$ is polynomial if $B X$ is.

Example 55 The action of $\langle\lambda\rangle=C_{m} \rightarrow$ $\operatorname{Out}\left(B S^{2 n-1}\right)=\mathbf{Z}_{p}^{\times} / C_{n}$ is trivial if $m \mid n$. Otherwise, $H^{2 n}\left(\psi^{\lambda}\right)=\lambda^{n}$ is nontrivial on $Q \bar{H}^{*}\left(B S^{2 n-1} ; \mathbf{Q}_{p}\right)=H^{2 n}\left(B S^{2 n-1} ; \mathbf{Q}_{p}\right)=$ Q_{p}. We conclude that

$$
\left(B S^{2 n-1}\right)^{h C_{m}}= \begin{cases}B S^{2 n-1} & m \mid n \\ * & m \nmid n\end{cases}
$$

Example 56 The Aguadé p-compact group

$$
B D I(2)=B F_{4}{ }^{h\langle\alpha\rangle} \quad(p=3)
$$

is the fixed point 3-compact group for the action of the exceptional isogeny, and

$$
\mathrm{F}_{4} \simeq D I(2) \times \mathrm{F}_{4} / D I(2)
$$

so that $\mathrm{F}_{4} / D I(2)$ is a 3 -complete H-space.
Example 57 The Aguadé p-compact group

$$
B X\left(W_{31}\right)=B E_{8}^{h C_{4}} \quad(p=5)
$$

is the fixed point 5-compact group for the action of $C_{4}=\left\langle\psi^{i}\right\rangle$ on $B E_{8}$, and

$$
E_{8} \simeq X\left(W_{31}\right) \times E_{8} / X\left(W_{31}\right)
$$

where $E_{8} / X\left(W_{31}\right)$ is a 5 -complete H-space.

It is possible to determine the fixed point groups for all simple p-compact groups. Here are the fixed point groups for actions through unstable Adams operations:

$G_{37}=W\left(E_{8}\right), G_{36}=W\left(E_{7}\right), G_{35}=W\left(E_{6}\right)$

The genus set of $B G$

Theorem 58 The genus set $G(B G)$ is uncountably large for any nonabelian compact connected Lie group G.

Theorem 59 The set SNT $(B G)$ is uncountably large for any nonabelian compact connected Lie group G - except for G in
$\{\operatorname{SU}(2), \mathrm{SU}(3), \mathrm{PSU}(2), \mathrm{PSU}(3)\}$
where $\operatorname{SNT}(B G)=\{B G\}$.
Is it possible to classify $G(B G)$ or SNT $(B G)$?
Theorem 60 Two spaces in $G(B G)$ are homotopy equivalent iff they have isomorphic K-theory λ-rings.

Automorphism groups of spaces in the genus of $B G$.

Theorem 61 Let G be a simple Lie group and $B \in G(B G)$ a space of the same genus as $B G$. If there exists an essential map between B and $B G$, then $B=B G$.

Homotopy Chevalley groups

Friedlander's homotopy pull-back square is

where G is compact Lie, τ is an auto of G, and q is a prime power prime to p.

Definition 62 The homotopy Chevalley group is the pull-back

where τ is an auto of $B X$ and $q \in \mathbf{Z}_{p}^{\times}$.
If $q=1$ and $\tau=\mathrm{id}$, the pull-back is $\wedge B X$.
There is an exact sequence

$$
\begin{array}{r}
\cdots \rightarrow \pi_{i} B^{\tau} X(q) \rightarrow \pi_{i} B X \xrightarrow{1-\left(\tau \psi^{q}\right)_{*}} \pi_{i} B X \\
\rightarrow \pi_{i-1} B^{\tau} X(q) \rightarrow \cdots
\end{array}
$$

For a p-compact torus, $B T(q)=B \mathbf{Z} / p^{\nu}$ where $\nu=\nu_{p}(1-q)$.

Proposition 63 Write $\tau \psi^{q}=\left(\tau \psi^{u}\right) \psi^{q_{1}}$ where $q=u q_{1}, u \in C_{p-1}, q_{1} \equiv 1 \bmod p$. Suppose that $G=\left\langle\tau \psi^{u}\right\rangle \subset$ Out ($B X$) has finite order prime to p and that $\left(\psi^{q_{1}}\right)^{*}$ is the identity on $H^{*}\left(X ; \mathbf{F}_{p}\right)$. Then

$$
B^{\tau} X(q)=B X^{h G}\left(q_{1}\right)
$$

where $B X^{h G}$ is the homotopy fixed point p-compact group for the G-action.

The exploration breaks into two steps:

1. What is $B X^{h G}$ when $G \subset \operatorname{Out}(B X)$ has order prime to p ?
2. What is $B X(q)$ for $q \equiv 1 \bmod p$?

Since we already know the answer to the first quetsion, we turn to the second question.

p-local finite groups

Let G be a finite group and $S \leq G$ a Sylow p-subgroup.

The fusion system of G is the category $\mathcal{F}_{p}(G)$ with objects the subgroups of S and morphisms

$$
\mathcal{F}_{p}(G)(P, Q)=N_{G}(P, Q) / C_{G}(P)
$$

where $N_{G}(P, Q)=\left\{g \in G \mid g P g^{-1} \leq Q\right\}$.

The centric linking system $\mathcal{L}_{p}^{c}(G)$ of G is the category with objects the subgroups of S that are p-centric in G and morphisms

$$
\mathcal{L}_{p}^{c}(G)(P, Q)=N_{G}(P, Q) / O^{p}\left(C_{G}(P)\right)
$$

$O^{p}(H)$ is the minimal normal subgroup of H of p-power index.

A p-group $P \leq G$ is p-centric if

$$
C_{G}(P)=Z(P) \times O^{p}\left(C_{G}(P)\right)
$$

and $O^{p}\left(C_{G}(P)\right)$ has order prime to p.

There is a functor $\mathcal{L}_{p}^{c}(G) \rightarrow \mathcal{F}_{p}(G)$.
Theorem $64 B G_{p} \simeq\left|\mathcal{L}_{p}^{c}(G)\right|_{p}$ for any finite group G.

Definition 65 A p-local finite group is a triple $(S, \mathcal{F}, \mathcal{L})$ consisting of a p-group S, an abstract (saturated) fusion system \mathcal{F} over the group S, and an abstract centric linking system \mathcal{L} associated to \mathcal{F} via a functor $\mathcal{L} \rightarrow \mathcal{F}$.

The classifying space is the space $|\mathcal{L}|_{p}$. The whole p-local finite group triple is recoverable from $|\mathcal{L}| p$.

A p-local finite group mimicks the conjugacy relations that hold bewteen the subgroups of the Sylow subgroup of a finite group.

Are there any p-local finite groups that are not finite groups?

What is $B X(q) ? q \equiv 1 \bmod p, q \neq 1$

Proposition 66 Let $B \nu: B V \rightarrow B X$ be a toral monomorphism with connected centralizer map $(B V, B X)_{B \nu}=B C_{X}(\nu)$.

1. There is a unique lift of $B \nu$ to $B X(q)$.
2. $\operatorname{map}(B V, B X(q))_{B \nu(q)}=B C_{X}(V)(q)$.

We obtain a map
hocolim $_{\mathbf{A}(X) \leq t} B C_{X}(V)(q) \rightarrow B X(q)$
that for polynomial p-compact groups often is an $H_{*} \mathbf{F}_{p}$-equivalence. We are trying to move a homotopy inverse limit around a homotopy direct limit.

Example 67 If W has order prime to p,

$$
B X(W)(q)=\left(B\left(\mathbf{Z} / p^{\nu(1-q)} \rtimes W\right)\right)_{p}
$$

In particular,

$$
B S^{2 n-1}(q)=\left(B\left(\mathbf{Z} / p^{\nu(1-q)} \rtimes C_{n}\right)\right)_{p}
$$

Example $68 B D I(2)(q)$ is $H_{*} \mathbf{F}_{3}$ equivalent to the homotopy colimit of

$$
\begin{array}{cl}
\mathrm{Z} / 2 & \stackrel{W_{12}}{\curvearrowright} \\
B \mathrm{SU}(3, q) & \stackrel{\sim}{B}\left(\mathbf{Z} / p^{\nu(1-q)}\right)^{2}
\end{array}
$$

$B D I(2)$ is the limit of the spaces

$$
\begin{aligned}
& B D I(2)\left(2^{2 n+1}\right)=B F_{4}{ }^{h\langle\alpha\rangle}\left(2^{2 n+1}\right) \\
&=\left(B^{2} F_{4}\left(2^{2 n+1}\right)\right)_{3}
\end{aligned}
$$

so the inifinte Ree group $\cup_{n}{ }^{2} F_{4}\left(2^{2 n+1}\right)$ is a discrete approximation to $B D I(2)$.

Theorem 69 Let $B X$ be a simply connected p-compact group, τ an automorphism of $B X$ of finite order, and q a prime power. Assume that the order of τ and q are prime to p. Then $B^{\tau} X(q)$ is the classifying space of a p-local finite group.

These p-local finite groups are exotic when $B X$ is an Aguadé p-compact group or one of Quillen's $B X G(m, r, n)$ with $r>2$. At $p=2$, we have $\operatorname{Sol}(q)=D I(4)(q)$.

Open Problem $70 B X(q), q \equiv 1 \bmod p$, only depends on $\nu(1-q)$.

2-compact groups

Problematic things about 2-compact groups

- $H^{1}(W ; \breve{T}) \neq 0, H^{2}(W ; \breve{T}) \neq 0$
- $B Z(X) \rightarrow B Z N(X)$ is not surjective
- $B N(X)$ does not even determine $\pi_{0}(X)$
- Out $(B X) \rightarrow \operatorname{Out}(B N(X))$ is not surjective

Good things about 2-compact groups

- The simple \mathbf{Z}_{2}-reflection groups are $W(G)$ and $W(D I(4))$
- The only extensions $\check{T} \rightarrow \check{N} \rightarrow W$ that are realizable by connected 2-compact groups come from $B G \times B D I(4)^{m}$
- $B Z(G) \neq B Z N(G)$ only when G contains direct $\mathrm{SO}(2 n+1)$-factors

The maximal torus normalizer pair: $B X \rightsquigarrow$ ($B N, B N_{0}$)

The maximal torus normalizer pair informs about $\pi_{0}(X)$.

Two 2-compact groups with the same maximal torus normalizer pair are isomorphic?

Example 71 Out $(B P U(4))=\mathbf{Z}_{2}^{\times}$and $\mathbf{Z} / 2=$ $H^{1}(W ; \breve{T}) \subset \operatorname{Out}(B N)$. The diagram

$$
\begin{gathered}
B N \xrightarrow{B \alpha} B N \\
B j \mid \\
B P U(4) \cdots B P U(4)
\end{gathered}
$$

has no solution.

Definition $72 B X$ is N-determined if there exists a solution, $B \alpha \in H^{1}(W ; \breve{T})$, to

$$
\begin{align*}
& B N \rightarrow B{ }_{-}^{\alpha} \rightarrow B N \tag{2}
\end{align*}
$$

for any other $B X^{\prime}$ with the same maximal torus normalizer pair.

Definition $73 B X$ has N-determined automorphisms if

$$
\operatorname{Out}(B X) \rightarrow W_{0} \backslash \operatorname{Aut}(B N)
$$

is injective.

Totally N-determined $=N$-determined + N-determined automorphisms

Uniquely N-determined $=N$-determined with unique solution to diagram (2) $+N$ determined automorphisms

Conjecture 74 All (connected) 2-compact groups are (uniquely) totally N-determined.

Lemma 75 If $B X$ is connected and uniquely N-determined, then

$$
\operatorname{Aut}(B X) \cong \frac{\operatorname{Out}(B N)}{H^{1}(W ; \widetilde{T})}
$$

Already known: If $B X=B G, G$ connected Lie, or $B X=B D I(4)$, then $B X$ has N determined automorphisms and diagram (2) has at most one solution.

Theorem 76 1. Let $B X$ be a 2-compact group. If $B X_{0}$ has N-determined automorphisms and

$$
H^{1}\left(\pi ; \check{Z}\left(X_{0}\right)\right) \rightarrow H^{1}\left(\pi ; \check{Z}\left(N_{0}\right)\right)
$$

is injective, then $B X$ has N-determined automorphisms
2. If $B X$ is connected and $B P X$ has N determined automorphisms, then $B X$ has N-determined automorphisms
3. If $B X_{1}$ and $B X_{2}$ are connected and have N-detetermined automorphisms, then $B X_{1} \times B X_{2}$ has N-determined automorphisms

Theorem 77 Suppose that $B X$ is connected and has no center. If

1. the centralizer $B C_{X}(\nu)$ of any monomorphism $\nu: B \mathbf{Z} / p \rightarrow B X$ has N-determined automorphisms, and
2. $\lim ^{1} \pi_{1} B Z C_{X}=0=\lim ^{2} \pi_{2} B Z C_{X}$
then $B X$ has N-determined automorphisms.

Theorem 78 1. Let $B X$ be a LHS 2-compact group. If $B X_{0}$ is uniquely N-determined and

$$
H^{2}\left(\pi ; \check{Z}\left(X_{0}\right)\right) \rightarrow H^{2}\left(\pi ; \check{Z}\left(N_{0}\right)\right)
$$

is injective, then $B X$ is N-determined
2. If $B X$ is connected and $B P X$ is N determined, then $B X$ is N-determined
3. If $B X_{1}$ and $B X_{2}$ are N-determined, then $B X_{1} \times B X_{2}$ is N-determined

Conjecture 79 All 2-compact groups are LHS

Theorem 80 Suppose that $B X$ is connected and has no center. If

1. All centralizers $B C_{X}(V),|V| \leq p^{2}$, are totally N-determined
2. The problems with non-uniqueness of preferred lifts and non-uniqueness of $B \alpha$ in Diagram 2 can be solved
3. $\lim ^{2} \pi_{1} B Z C_{X}=0=\lim ^{3} \pi_{2} B Z C_{X}$
then $B X$ is N-determined.

The plan is to verify that the simple 2compact groups are uniquely N-determined in the cases

- Classical matrix groups: PGL($n+1, \mathbf{C})$, $\operatorname{PSL}(2 n, \mathbf{R}), \mathrm{SL}(2 n+1, \mathbf{R}), \operatorname{PGL}(n, \mathbf{H})$
- $\mathrm{G}_{2}, \mathrm{~F}_{4}, D I(4)$
- E_{6}, E_{7}, E_{8}

Theorem 81 The above simple 2-compact groups outside the E-family are uniquely N-determined with automorphism groups
$\operatorname{Aut}(\operatorname{PGL}(n+1, \mathbf{C}))= \begin{cases}\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times} & n=1 \\ \mathbf{Z}_{2}^{\times} & n>1\end{cases}$
$\operatorname{Aut}(\operatorname{PSL}(2 n, \mathbf{R}))= \begin{cases}\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times} \times \Sigma_{3} & n=4 \\ \mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times} \times\left\langle c_{1}\right\rangle & n>4 \text { even } \\ \mathbf{Z}_{2}^{\times} & n>4 \text { odd }\end{cases}$
$\operatorname{Aut}(\mathrm{SL}(2 n+1, \mathbf{R}))=\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times}, \quad n \geq 2$
$\operatorname{Aut}(\operatorname{PGL}(n, \mathbf{H}))=\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times}, \quad n \geq 3$
$\operatorname{Aut}\left(\mathrm{G}_{2}\right)=\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times} \times C_{2}, \quad \operatorname{Aut}\left(\mathrm{~F}_{4}\right)=\mathbf{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times}$
$\operatorname{Aut}(\mathrm{DI}(4))=\mathrm{Z}^{\times} \backslash \mathbf{Z}_{2}^{\times}$
where $\left\langle c_{1}\right\rangle$ is a group of order two.

PGL($n+1, C$): Computation of higher limits
Proposition 82 The higher limits vanish over the toral subcategory $\mathbf{A}(\mathrm{PGL}(n+1, \mathrm{C})) \leq t$.

For $V \subset \operatorname{PGL}(n+1, \mathbf{C})$ let $[]:, V \times V \rightarrow \mathbf{F}_{2}$ be the symplectic form $\left[u \mathbf{C}^{\times}, v \mathbf{C}^{\times}\right]=[u, v]=$ $\pm E$.

Lemma $83 V \subset \mathrm{PGL}(n+1, \mathrm{C})$ is toral iff $[V, V]=0$.

Lemma 84 If $n+1$ is odd, $\operatorname{PGL}(n+1, \mathrm{C})$ contains no nontoral objects. For each $d \geq 1$ there is a unique elementary abelian $H^{d} \subset \mathrm{PGL}\left(2^{d} m, \mathrm{C}\right)$ with non-degenerate symplectic form, and

$$
\begin{aligned}
& C_{\mathrm{PGL}\left(2^{d} m, \mathbf{C}\right)}\left(H^{d}\right)=H^{d} \times \mathrm{PGL}(m, \mathbf{C}) \\
& \quad \mathbf{A}\left(\mathrm{PGL}\left(2^{d} m, \mathbf{C}\right)\right)\left(H^{d}\right)=\operatorname{Sp}(2 d)
\end{aligned}
$$

Any other nontoral has the form $H^{d} \times E$ where $E \subset \mathrm{PGL}(m, \mathrm{C})$ is toral, and
$\mathbf{A}\left(\mathrm{PGL}\left(2^{d} m, \mathbf{C}\right)\right)\left(H^{d} \times E\right)=\left(\begin{array}{cc}\operatorname{Sp}(2 d) & * \\ 0 & \mathbf{A}(E)\end{array}\right)$

If we let
$[E]=\operatorname{Hom}_{\mathrm{A}(E)}\left(\operatorname{St}(E), \pi_{1}\left(B Z C_{\mathrm{PGL}(n+1, \mathrm{C})}(E)\right)\right)$ then Oliver's cochain complex has the form

$$
0 \rightarrow[H] \xrightarrow{d^{1}} \prod_{1 \leq i \leq[m / 2]}[H \# L[m-i, i]] \xrightarrow{d^{2}}
$$

$$
\left[H \# P[1,1, m-2] \times \quad \prod \quad[H \# P[1, i-1, m-i]]\right.
$$

$$
2<i<[m / 2]
$$

where we only list some of the nontoral rank four objects. We need to show that d^{1} is injective and that ker $d^{2}=\operatorname{im} d^{1}$. The computer program magma says that

$$
\begin{aligned}
& {[H]=\operatorname{Hom}_{\mathrm{Sp}(2)}(\operatorname{St}(H), H) \cong \mathbf{F}_{2}} \\
& {[H \# L[m-i, i]]=\operatorname{Hom}_{\operatorname{Sp}(3,1)}(\operatorname{St}(V), V) \cong \mathbf{F}_{2},}
\end{aligned}
$$

$$
[H \# P[1,1, m-2]] \cong \mathbf{F}_{2}
$$

$$
[H \# P[1, i-1, m-i]] \cong \mathbf{F}_{2} \times \mathbf{F}_{2}
$$

and further computations show exactness.

