
HOMOTOPY LIE GROUPS: A SURVEY

JESPER MICHAEL MØLLER

Abstract. With homotopy Lie groups we see the incarnation within homotopy theory of the
same concept that shows up in set theory as finite groups, in algebraic geometry as group schemes,

and in differential geometry as Lie groups.

1. Introduction

The aim of these notes from a minicourse on Homotopy Lie Groups held at the University of
Lille, May 31 – June 02, 2000, is to advertise the discovery by W.G. Dwyer and C.W. Wilkerson of
a remarkable class of spaces called homotopy Lie groups. These purely homotopy theoretic objects
capture the essence of the idea of a Lie group.

I shall here focus on [16] where Dwyer and Wilkerson introduce and prove the first general
structural facts about homotopy Lie groups and in the final sections I discuss general structure
theorems for p-compact groups and the classification theorem.

1.1. Finite loop spaces. Suppose G is a compact Lie group. Take a free, contractible G-space
EG and define BG = EG/G to be the orbit space. Then the associated fibre sequence

ΩEG→ ΩBG→ G→ EG→ BG

contains a homotopy equivalence ΩBG→ G.
This phenomenon is embedded in the general concept of a finite loop space.

Definition 1.2. A finite loop space is a connected, pointed space BX such that X = ΩBX is
homotopy equivalent to a finite CW-complex.

Note that X — by definition — is the loop space of BX. It is customary, though ambiguous,
to refer to the finite loop space BX by its underlying space X and then call BX the classifying
space of X.

We have already seen that compact Lie groups are finite loop spaces. The classifying space of
SU(2), for instance, is the infinite quaternionic projective space B SU(2) = HP∞. However, the
class of finite loop spaces is much larger. A striking example was provided almost 25 years ago by
Rector [45] who found an uncountable family of homotopically distinct finite loop spaces BX with
X homotopy equivalent to SU(2). In other words, the homotopy type SU(2) supports uncountable
many distinct loop space structures.

Rector’s example destroyed all hopes of a classification theorem in the spirit of compact Lie
groups — as long as one sticks to integral spaces, that is. The situation looks brighter in the
category of Fp-local spaces.

1.3. Notation. In the following, p denotes a fixed prime number, Fp the field with p elements, Zp

the ring of p-adic integers, and Qp = Zp ⊗Q the field of p-adic numbers.
H∗(−) denotes singular cohomology with Fp-coefficients, H∗(−; Fp), while H∗(−; Qp) denotes

H∗(−; Zp)⊗Q (and not singular cohomology with Qp-coefficients).
A space U is Fp-finite if H∗(U) is finite dimensional over Fp. A map A→ B is an Fp-equivalence

if it induces an isomorphism H∗(B)→ H∗(A) on H∗(−).
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1.4. Fp-local spaces. A space U is Fp-local if any Fp-equivalence A → B induces a homotopy
equivalence map(B,U)→ map(A,U) of mapping spaces.

Fp-local spaces exist — the classifying space K(Fp, i) for the functor Hi(−) is an obvious
example. In fact, any space can be made Fp-local in a minimal and functorial way.

Theorem 1.5. (Bousfield [7, 3.2]) The exists a functor U ; UFp
, of the (homotopy) category

of CW-complexes into itself, with a natural transformation ηU : U → UFp
such that ηU is an Fp-

equivalence and UFp
is Fp-local.

Note these categorical consequences of the definition and the theorem:
• Any Fp-equivalence between Fp-local spaces is a homotopy equivalence.
• A map is an Fp-equivalence if and only if its Fp-localization is a homotopy equivalence.
• U is Fp-local if and only if ηU : U → UFp

is a homotopy equivalence.
If the pointed space U is nilpotent or is connected and either H1(U ; Fp) = 0 or π1(U) is finite,

then [8, VI.5.3, VII.3.2, VII.5.1] [16, §11] the Bousfield localization, UFp
, coincides with the (perhaps

more familiar) Bousfield–Kan localization, (Fp)∞U . In particular [8, VI.5.2], πi(UFp
) ∼= πi(U)⊗Zp

if U is connected, pointed and nilpotent with finitely generated abelian homotopy groups. (This
is far from true without the nilpotency hypothesis (2.2).)

1.6. Homotopy Lie groups. By design, actually inescapably [23], the uncountably many finite
loop spaces BX of Rector’s example all Fp-localize to the standard (B SU(2))Fp

. This observation
indicates that “Fp-local finite loop spaces” are better behaved than integral loop spaces. The
problem, however, is that this term is meaningless as finite complexes are unlikely to be Fp-
local. The solution proposed in [16] is to replace the topological finiteness criterion in (1.2) by a
cohomological one.

Definition 1.7. [16, 2.2] A p-compact group is an Fp-local space BX such that X = ΩBX is
Fp-finite.

Again, it is customary to use X, by definition the loop space of BX, when referring to the
p-compact group BX, the classifying space of X.

The main purpose of [16] is to associate to any p-compact group X a maximal torus (7.1) with
an action of a Weyl group (7.4). For a connected X, the Weyl group is a p-adic reflection group
whose invariant ring determines the p-adic rational cohomology of BX (7.8). (This justifies the
term “homotopy Lie group” which has been proposed as an alternative to “p-compact group“ as
used in [16].)

To verify the existence of a maximal torus, Dwyer and Wilkerson first show that any nontrivial
p-compact group possesses a nontrivial element (3.8). Next, they use an inductive procedure to
build the maximal torus (§7). A prominent feature of their construction is the systematic use of
algebraic Smith theory (§6) for homotopy fixed point spaces (§4).

2. Examples of p-compact groups

Let G be any compact Lie group G whose component group π0(G) is a p-group. Define BĜ =
(BG)Fp

. Then Ĝ is a p-compact group with H∗(BĜ) = H∗(BG), π0(Ĝ) = π0(G) and πi(Ĝ) =
πi(G)⊗ Zp for all i ≥ 1 [16, §11].

This example includes all finite p-groups such as the trivial group {1} and the cyclic p-groups
Z/pn, n ≥ 0.

2.1. Toral groups. When applied to an r-torus S = SO(2)r, the above construction produces a
p-compact r-torus T = Ŝ. The classifying space BT = K(Zp, 2)r is an Eilenberg-MacLane space
with homotopy in dimension two and H∗(BT ) = Fp[t1, . . . , tr] is polynomial on r generators of
degree two.

Alternatively, BT = (BŤ )Fp , where Ť = (Z/p∞)r is a p-discrete r-torus.
More generally, a p-compact toral group P is a p-compact group with BP = (BP̌ )Fp , where P̌ ,

a p-discrete toral group, is an extension of a p-discrete torus Ť by a finite p-group π. Note that
the Fp-localized sequence BT → BP → Bπ is [8, II.5.1] a fibration sequence as π necessarily acts
nilpotently on Hi(BŤ ; Fp).
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Since map(BP,BX) ' map(BP̌ ,BX) for any p-compact group X and P̌ is the union of an
ascending chain of finite p-groups, results for finite p-groups can often, by discrete approximation
[16, §6], be extended to p-compact toral groups.

2.2. Exotic examples. Call a connected p-compact group exotic if it isn’t of the form Ĝ for
any connected compact Lie group G. Sullivan spheres and, more generally, (many) Clark–Ewing
p-compact groups are exotic. Indeed, any connected Fp-local space with polynomial mod p co-
homology is a p-compact group.

Proposition 2.3. (Sullivan) Assume that n > 2 is an integer dividing p − 1. Then the Fp-local
sphere (S2n−1)Fp

is a p-compact group.

The construction goes as follows: The cyclic group Z/n acts on Ť = Z/p∞ as Z/n < Aut(Ť ) ∼=
Z∗p when n|(p − 1). Define BX = (BŇ)Fp where Ň = ŤoZ/n is the semi-direct product. The
computation

H∗(BX) = H∗(BŇ) = H∗(BŤ )Z/n = Fp[t]Z/n = Fp[tn],
which uses (1.4) and the fact that n is prime to p, shows that the mod p cohomology of BX is
polynomial on one generator of degree 2n. Thus the Fp-local space BX is (2n − 1)-connected [8,
I.6.1], and its loop space X is (2n−2)-connected with H∗(X) abstractly isomorphic to H∗(S2n−1).
Now the Hurewicz theorem tells us that this abstract isomorphism is realizable by an Fp-equivalence
S2n−1 → X, i.e. (1.4) by a homotopy equivalence (S2n−1)Fp

→ XFp
= X.

Clark and Ewing [12] observed that applicability of the Sullivan construction isn’t restricted to
the rank one case. Let Ť be a p-discrete r-torus and W < Aut(Ť ) = GLr(Zp) a finite group of
order prime to p acting on Ť . Define BX = (BŇ)Fp

where Ň = ŤoW . The invariant ring

H∗(BX) = H∗(BŇ) = H∗(BŤ )W = Fp[t1, . . . , tr]W

is, essentially by the Shephard–Todd theorem [4, 7.2.1], a finitely generated polynomial algebra if
and only if W is a reflection group in GLr(Qp). If this is the case, H∗(X) is an exterior algebra
on finitely many odd degree generators. In particular, X is Fp-finite and BX a p-compact group.
These Clark–Ewing p-compact groups are fairly well understood [15].

The Clark–Ewing p-compact group associated to any non-Coxeter group from the list [12] of
irreducible p-adic reflection groups is (7.9) exotic. This scheme produces many exotics if p is odd
but none for p = 2 as the only non-Coxeter 2-adic reflection group, number 24 on the list, has even
order.

To come up with an exotic 2-compact group, a much more sophisticated approach is required. In
their landmark paper [26], Jackowski and McClure showed how to decompose BG, for any compact
Lie group G, as a generalized pushout of classifying spaces of subgroups (proper subgroups if the
center of G is trivial). Dwyer and Wilkerson realized that a similar decomposition applies in the
case of p-compact groups [17, §8] and that this could be used in the construction of an exotic
2-compact group.

Theorem 2.4. [21] There exists a connected 2-compact group DI(4) such that H∗(BDI(4); F2)
is isomorphic (as an algebra over the Steenrod algebra) to the rank 4 mod 2 Dickson algebra
H∗(B(F2)4; F2)GL4(F2) and H∗(BDI(4)); Q2) to the invariant ring of the number 24 reflection
group.

Assuming that such a space exists, it is possible [20] to read off from its cohomology a finite
diagram that looks like the cohomological image of a diagram of spaces. Some effort is required
to verify that the picture seen in cohomology actually is realizable on the level of spaces. The
generalized pushout of this diagram is the exotic 2-compact group.

2.5. Cohomological invariants. If the space U is Fp-finite, also H∗(U ; Qp) is finite dimensional
over Qp, and the Euler characteristic

χ(U) =
∑

(−1)i dimFp H
i(U) =

∑
(−1)i dimQp H

i(U ; Qp)

and the cohomological dimension

cd(U) = max{i | Hi(U) 6= 0}
are defined [16, 4.3, 6.13].



4 J. M. MØLLER

For a connected p-compact group X, in particular, H∗(X; Qp) is a connected finite dimensional
Hopf algebra so, by Milnor–Moore [31], H∗(X; Qp) = E(x1, . . . , xr) is an exterior algebra on
finitely many generators of odd degree |xi| = 2di − 1, 1 ≤ i ≤ r. The number, r = rk(X), of
generators is the rank of X. The cohomological dimension of X is [18, 3.8] given by cd(X) =
max{i | Hi(X; Qp) 6= 0} =

∑r
i=1(2di − 1). For instance, cd(Ĝ) = dimG, rk(Ĝ) is the rank of

G, a p-compact r-torus has rank r, cd(P ) = rk(P ) if (and only if) P is a p-compact toral group,
rk(S2n−1) = 1 and cd(S2n−1) = 2n− 1, while rk(DI(4)) = 3 and cd(DI(4)) = 45.

Exercise 2.6. The trivial p-compact group has Euler characteristic χ({1}) = 1. The empty space
has Euler characteristic χ(∅) = 0. For a connected p-compact group X, X is trivial ⇔ χ(X) 6=
0⇔ rk(X) = 0.

3. Morphisms

A p-compact group morphism f : X → Y is a based map Bf : BX → BY between the classifying
spaces. The trivial morphism 0: X → Y is the constant map B0: BX → BY , and the identity
morphism 1: X → X is the identity map B1: BX → BX.

Note the fibration sequence

(3.1) X
f−→ Y → Y/f → BX

Bf−−→ BY

where Y/f , or Y/X when f is understood, denotes the homotopy fibre of Bf .
Two morphisms f, g : X → Y are conjugate if the maps Bf,Bg : BX → BY are freely homotopic

and Rep(X,Y ) = π0 map(BX,BY ) = [BX,BY ] denotes the set of conjugacy classes of morphisms
of X to Y .

3.2. Monomorphisms, epimorphisms, and isomorphisms. The morphism f : X → Y is a
monomorphism if Y/X is Fp-finite, an epimorphism if Y/X is the classifying space of some p-
compact group, and an isomorphism if Y/X is contractible.

Example 3.3. {1} → X is a monomorphism with X/{1} = X, X → {1} is an epimorphism with
{1}/X = BX, 1 : X → X is an isomorphism with X/X = {1}, and the diagonal ∆: X → Xn is a
monomorphism since Xn/X is homotopy equivalent to Xn−1.

These definitions are motivated by

Example 3.4. Let f : G→ H be a monomorphism (an epimorphism) of compact Lie groups. The
homotopy fibre of the induced map Bf : BG→ BH is H/f(G) (B(ker f)) so the corresponding
p-compact group morphism f̂ : Ĝ→ Ĥ is a monomorphism (an epimorphism). (Not all morphisms
between Ĝ and Ĥ are induced from homomorphisms between G and H.)

A diagram X → Y → Z of p-compact group morphisms is a short exact sequence if BX →
BY → BZ is a fibration sequence. Any p-compact group sits in a short exact sequence of the
form X0 → X → π0(X) where X0 is the identity component of X; the identity component of a
p-compact toral group, for instance, is a p-compact torus (2.1).

Exercise 3.5. Let f : X → Y and g : Y → Z be morphisms.
(1) If f and g are monomorphisms, then g ◦ f is a monomorphism.
(2) If X is a p-compact toral group and g ◦ f a monomorphism, then f is a monomorphism.

(3) Assume that X
f−→ Y

g−→ Z is a short exact sequence. Show that f is a monomorphism and
g an epimorphism. Show also that if X is a p-compact r-torus and Z a p-compact s-torus,
then Y is a p-compact (r + s)-torus.

To be fair, part (2) of this exercise, requiring the theory of kernels [16, 7.1–7.3], is highly
nontrivial. (The condition on X can be removed [16, 9.11].)

An inspection of the Serre spectral sequence for the left segment of (3.1) yields

Proposition 3.6. [16, 6.14] [17, 4.6] If f : X → Y is a monomorphism, then cd(Y ) = cd(X) +
cd(Y/X). In particular, cd(X) = cd(Y ) if and only if f gives an isomorphism between X and
some components of Y .
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3.7. Nontrivial elements. The existence of nontrivial elements in nontrivial p-compact groups
represents the first and decisive step in constructing the maximal torus.

Theorem 3.8. [16, 5.4, 5.5, 7.2, 7.3] Let X be a nontrivial p-compact group.

(1) There exists a monomorphism Z/p→ X.
(2) If X is connected, there exists a monomorphism S → X from a p-compact 1-torus S to X.

Note that (2) implies (1): In case the identity component X0 is nontrivial, use (2) to get (3.5)
a monomorphism Z/p→ S → X0 → X. Otherwise, (1) reduces to obstruction theory.

Analogously, any nontrivial, connected compact Lie group contains a copy of SO(2) (in its
maximal torus).

Exercise 3.9. Use (3.8) and Lannes theory [28] to show that BX is Fp-finite only if X is trivial.
Next show that a p-compact group morphism which is both a monomorphism and an epimorphism,
is an isomorphism.

The following sections contain the background material for the proof of Theorem 3.8 to be
presented in §6.

4. Homotopy Fixed Point Spaces

Let π be a finite p-group and K a space. A π-space with underlying space K is a fibration
Khπ → Bπ over Bπ with fibre K. A π-map is a map uhπ : Khπ → Lhπ over Bπ.

The homotopy fixed orbit space is the total space, Khπ, and the homotopy fixed point space,
Khπ, is the space of sections (which may very well be empty). These spaces are connected by an
evaluation map Bπ ×Khπ → Khπ.

For brevity, a π-space will often be denoted by its underlying space and a π-map by its restriction
to the underlying spaces.

Example 4.1. The trivial π-space with underlying space K is the trivial fibration K×Bπ → Bπ
with homotopy orbit space Khπ = Bπ ×K and homotopy fixed point space Khπ = map(Bπ,K).

The homotopy fixed point construction Khπ is functorial in both variables:

• For any π-map u : K → L, composition with uhπ : Khπ → Lhπ determines a map
uhπ : Khπ → Lhπ.

• For any subgroup κ < π, any π-space, K, is also an κ-space. The inclusion ι : κ→ π induces
a map Khι : Khκ → Khπ over Bι : Bπ → Bκ and a map Khι : Khπ → Khκ of homotopy
fixed point spaces.

The homotopy orbit space and the homotopy fixed point space are homotopy invariant construc-
tions in that any π-map u : K → L which is an ordinary (non-equivariant) homotopy equivalence
induces homotopy equivalences uhπ : Khπ → Lhπ and uhπ : Khπ → Lhπ.

4.2. Exactness. Let U denote the (ordinary, non-equivariant) homotopy fibre of a π-map
u : K → L (where L is assumed to be connected), or, equivalently, the homotopy fibre of
uhπ : Khπ → Lhπ. The pull back diagram

Uhπ

��

// Khπ

uhπ

��
Bπ

l
// Lhπ

shows that any homotopy fixed point l ∈ Lhπ makes U into a π-space such that

Proposition 4.3. [16, 10.6] U → K → L is a fibration sequence of π-maps between π-spaces and
Uhπ → Khπ → Lhπ is a fibration sequence of homotopy fixed point spaces (where l ∈ Lhπ serves
as base point).
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4.4. Exponential Laws. Let κ be a subgroup of π. In the situations

Khκ

��

// Khπ

��

Khπ

��
π/κ // Bκ

Bι // Bπ Bκ
Bι // Bπ // B(π/κ)

where the horizontal sequences are fibrations (and, to the right, κ is normal in π), the fibrewise
exponential law reads

Khκ = (K |π:κ|)hπ Khπ = (Khκ)h(π/κ).

On the left, K |π:κ| = map(π/κ,K) is a π-space in the standard way such that the diagonal
∆: K → K |π:κ| is a π-map.

Proposition 4.5. [16, 10.7] The two maps

∆hπ : Khπ →
(
K |π:κ|)hπ

and Khι : Khπ → Khκ

correspond to each other under the identification Khκ =
(
K |π:κ|)hπ

.

In combination with (4.3) the homotopy fibre of Khι can now be determined as in (4.7) below.

4.6. Applications to classifying spaces. The case where K = BX and L = BY are classifying
spaces of p-compact groups is of special interest to us.

Corollary 4.7. Suppose that BX and BY are π-spaces, that Bf : BX → BY is a π-map, and
ι : κ→ π a subgroup inclusion.

(1) The homotopy fibre over any point of

(Bf)hπ : (BX)hπ → (BY )hπ

is (Y/X)hπ.
(2) The homotopy fibre over any point of the restriction map

(BX)hι : (BX)hπ → (BX)hκ

is (X |π:κ|/X)hπ.
(3) The homotopy fibre of the evaluation map

(BX)hπ → BX

is (X |π|/X)hπ.

Point (3) is just the special case κ = {1} of (2).
Now specialize to the case where BX is a trivial π-space.

Example 4.8. (Extensions of morphisms.) Let h : κ→ X be a morphism defined on the subgroup
κ < π. The space of extensions of Bh,

Bκ
Bh

""EE
EE

EE
EE

Bι

��
Bπ //___ BX

is homotopy equivalent to the homotopy fibre (X |π:κ|/X)hπ over Bh of
map(Bι,BX) : map(Bπ,BX)→ map(Bκ,BX). This homotopy fixed point space is nonempty if
and only if h extends (up to conjugacy) to π.

Assuming additionally that π = Z/pn, n ≥ 0, is cyclic, we consider the π-space X |π:κ|/X of
Example 4.8 more closely: Note that π acts trivially on BX and permutes cyclically the factors of
BX |π:κ| = map(π/κ,BX). This specifies the (monodromy) action of π on the fibration sequence
X |π:κ|/X → BX

∆−→ BX |π:κ| and thus the induced action of π on the p-adic rational cohomology

H∗(X |π:κ|/X; Qp) ∼= Tor
H∗(BX; Qp)

⊗|π:κ|(Qp,H
∗(BX; Qp))

of the fibre.
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Lemma 4.9. [16, 5.11] Suppose that X is connected of rank r. Then the Lefschetz number
Λ(X |π:κ|/X;π) = |π : κ|r.

Recall that the Lefschetz number of an Fp-finite Z/pn-space U is the alternating sum

Λ(U ; Z/pn) =
∞∑

i=0

(−1)i traceHi(ξ; Qp)

where Hi(ξ; Qp) is the automorphism of Hi(U ; Qp) induced by a generator ξ ∈ Z/pn. (This p-
adic number is independent of the choice of ξ.) The Lefschetz number of the trivial π-space U is
Λ(U, {1}) = χ(U).

The standing assumption made here that π be finite isn’t essential. Corollary 4.7, for instance,
holds (suitably modified) in more general settings with π replaced by a p-discrete toral group or
even a p-compact toral group.

5. Centralizers

Let P be a p-compact toral group, Y any p-compact group, and g : P → Y a morphism of P to
Y .

The centralizer of g, CY (g), or CY (P ) when g is understood, is the loop space of BCY (g) =
map(BP,BY )Bg, the mapping space component containing Bg. Note the evaluation map
BCY (g) × BP → BY . Base point evaluation, BCY (g) → BY , in particular, provides the first
nontrivial example of a monomorphism.

Theorem 5.1. [16, 5.1, 5.2, 6.1] CY (g) is a p-compact group and CY (g)→ Y is a monomorphism.

The difficulty here is to show that CY (g) and Y/CY (g) are Fp-finite spaces. (It is unknown if
this remains true with P replaced by a general p-compact group). §7 contains some information
on the proof.

5.2. Central maps. The morphism g : P → Y is said to be central if
(1) CY (g)→ Y is an isomorphism, or,
(2) g extends to a morphism Y × P → Y which is the identity on Y .

These two conditions are equivalent as the adjoint of a morphism as in (2) is an inverse to the
evaluation monomorphism in (1).

These definitions are motivated by

Example 5.3. [22] [46, Theorem 9.6] [17, 12.5] Let CG(f) be the centralizer of a homomorphism
f : π → G of a finite p-group π into a connected compact Lie group G. Then π0(CG(f)) is a p-group
and there is an isomorphism

ĈG(f)→ CĜf̂

which is adjoint to the Fp-localization of the map BCG(f) × Bπ → BG induced by the homo-
morphism CG(f)×π → G. Thus f̂ : π → Ĝ is a central morphism of p-compact groups if f : π → G
of is a central homomorphism of Lie groups.

Here are some more examples of central morphisms.

Theorem 5.4. [16, 5.3, 6.1] The constant morphism 0: P → Y is central.

This first example is an immediate consequence of the Sullivan conjecture as proved by H. Miller
[30].

Example 5.5. (Liftings and existence of morphisms.) Writing map(BP,BY ) =∐
g∈Rep(P,Y )BCY (g) leads to alternative expressions for the homotopy fibres of (4.7). Assume

in point (2) that the p-compact toral group P is a finite p-group, π.
(1) Let f : X → Y be a morphism. The space of lifts of Bg,

BX

Bf

��
BP

<<x
x

x
x

Bg
// BY
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is homotopy equivalent to the the homotopy fibre∐
g′

CY (g)/CX(g′) = (Y/X)hP

over Bg of map(BP,Bf) : map(BP,BX)→ map(BP,BY ). (The above disjoint union is
indexed by all conjugacy classes of morphisms g′ : P → X with f ◦g′ conjugate to g.) This
homotopy fixed point space is nonempty if and only if g lifts over f .

(2) The space map∗(Bπ,BY ) of based maps is homotopy equivalent to the homotopy fibre∐
g∈Rep(π,Y )

Y/CY (g) =
(
Y |π|/Y

)hπ

.

of the evaluation map(Bπ,BY )→ BY . This homotopy fixed point space is contractible if
and only if Rep(π, Y ) = {0}.

In contrast to the very deep Theorem 5.4, nothing more than elementary obstruction theory is
needed for the second example of a central morphism.

Lemma 5.6. The identity map 1: S → S of a p-compact torus S is central.

In other words, S is abelian. (Conversely, any connected abelian p-compact group is a p-compact
torus [17, 5.1], [32, 3.1]). Version (2) of the definition of centrality shows that any morphism P → S
is central

5.7. Centralizers of p-compact tori. When P = S is a p-compact torus, composition of maps,

BCY (g)×BS '←− BCY (g)×BCS(1) ◦−→ BCY (g),

is a factorization CY (g) × S → CY (g) of the evaluation morphism through the centralizer. The
restriction to S of this morphism is thus a central factorization g′ : S → CY (g) of g : S → Y through
its centralizer.

Lemma 5.8. [16, 8.2, 8.3] Suppose that g : S → Y is a monomorphism of a p-compact torus S to
Y . Then there exist a short exact sequence

S
g′−→ CY (g)→ CY (g)/g′

of p-compact groups such that S
g′−→ CY (g)→ Y is conjugate to g.

Note that (5.8) asserts the existence of a classifying space B(CX(g)/g′) for the homogeneous
space CX(g)/g′.

Exercise 5.9. Let S be a p-compact torus. Then:
(1) Any monomorphism S → S is an isomorphism.
(2) No monomorphisms S × Z/p→ S exist.
(3) The only central extension S → P → Z/p is the trivial one.

6. Algebraic Smith theory

Suppose that π is a finite p-group and that the p-compact group classifying spaces BX and BY
are π-spaces. Let f : X → Y be a monomorphism such that Bf : BX → BY is a π-map. Choose
a base point y ∈ (BY )hπ and equip Y/X with the corresponding π-space structure such that (4.3)
Y/X → BX → BY is a fibration sequence of π-maps and (Y/X)hπ → (BX)hπ → (BY )hπ a
fibration sequence of homotopy fixed point spaces.

Algebraic Smith theory, based on work by J. Lannes and his collaborators and concerned with
the cohomological properties, in particular the Euler characteristic (2.5), of the fibre (Y/X)hπ, can
be summarized as follows.

Theorem 6.1. [16, 4.5, 4.6, 5.7] [19] Under the above assumptions the following holds:
(1) (Y/X)hπ is Fp-finite.
(2) χ((Y/X)hπ) = χ(Y/X) mod p.
(3) χ((Y/X)hπ) = Λ(Y/X;π) if π is cyclic.
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The analogous Euler characteristic formulas were known to be true in classical Smith theory
dealing with fixed point spaces for (reasonable) group actions on finite complexes [6].

I refrain from commenting on the proof of Theorem 6.1 but refer to [29] for more detailed
information.

A particularly advantageous situation arises when the finite p-group π can be replaced by a
p-discrete torus (2.1) Ť .

Corollary 6.2. [16, 4.7, 5.7] [19] Suppose that Bf : BX → BY is a Ť -map. Then:

(1) χ((Y/X)hA) = χ(Y/X) for any finite subgroup A < Ť .
(2) (Y/X)hŤ 6= ∅ if χ(Y/X) 6= 0.

It is unknown if (1) also holds for infinite subgroups, such as Ť itself.
The proof of the first half of this corollary, obviously true for the trivial group, is by induction

on the order of A: Suppose that B < A < Ť with A/B cyclic. Then (Y/X)hB is an A/B-space as
well as a Ť /B-space and

χ((Y/X)hA) = χ(((Y/X)hB)h(A/B)) = Λ((Y/X)hB ;A/B)

by the exponential law (4.4) and Theorem 6.1.
The action of A/B < Ť/B ∼= Ť on H∗((Y/X)hB ; Qp) is trivial since [16, 4.18] p-discrete tori

admit no nontrivial finite dimensional representations over Qp. Thus

Λ((Y/X)hB ;A/B) = Λ((Y/X)hB ; {1}) = χ((Y/X)hB) = χ(Y/X)

where the last equality is by induction hypothesis.
If χ(Y/X) 6= 0, also χ((Y/X)hA) 6= 0 and hence (2.6) (Y/X)hA 6= ∅, for all finite subgroups

A < Ť . Then also (Y/X)Ť 6= ∅ by a limit argument.

6.3. Applications. It is time to assemble the information presented until now into proofs of the
existence of nontrivial elements (3.8) and of centralizer p-compact groups (5.1).

Proof of Theorem 3.8. Let X be a nontrivial, connected p-compact group. Then (2.6) the rank, r,
of X is positive.

The Euler characteristic of the Fp-finite homotopy fibre, (Xp/X)hZ/pn+1
, of the restriction

map(BZ/pn+1, BX)→ map(BZ/pn, BX), n ≥ 0, is

χ((Xp/X)hZ/pn+1
) = Λ(Xp/X; Z/pn+1) = pr

by (3.3, 6.1, 4.9). This homotopy fixed point space is thus (2.6) nonempty and non-contractible.
Since the homotopy fibre of the evaluation map(BZ/p,BX) → BX is non-contractible, there

exists (5.5.2) a nontrivial morphism Z/p→ X. Any such morphism is a monomorphism [16, §7].
Suppose, inductively, that a monomorphism h : Z/pn → X, n ≥ 1, has been found. Since the

homotopy fibre over Bh of the restriction map(BZ/pn+1, BX)→ map(BZ/pn, BX) is nonempty,
h extends (4.8) to Z/pn+1. Any such extension of a monomorphism is again a monomorphism
[16, §7]. This shows the existence of a map BZ/p∞ → BX that restricts to a monomorphism
Z/pn → X for all n ≥ 0. The Fp-localization of this map is [16, §7] a monomorphism S → X of a
p-compact 1-torus to X. �

Proof of Theorem 5.1 for finite P . Let g : π → Y be a morphism from a finite p-group π to a p-
compact group Y . The claim is (essentially) that CY (g) = Ωmap(Bπ,BY )Bg and Y/CY (g) are
Fp-finite spaces.

Consider the π-map Bπ = B{1} × Bπ → BY × Bπ that takes any b ∈ Bπ to (Bg(b), b). The
loop space of BCY (g) is the homotopy fibre over Bg of the induced map B{1} = (B{1})hπ →
(BY )hπ = map(Bπ,BY ), taking the point B{1} to Bg. By (4.7) this homotopy fibre can also be
described as the homotopy fixed point space (Y/{1})hπ which is Fp-finite by (3.3, 6.1).

The homogeneous space Y/CY (g) is Fp-finite as a direct summand (5.5.2) of the Fp-finite (6.1)
space (Y |π|/Y )hπ. �

The general case of Theorem 5.1 follows from this special case by discrete approximation (2.1).
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7. Maximal tori and Weyl groups

Let X be any p-compact group. The maximal torus of X is constructed by an inductive pro-
cedure.

If X(= CX({1})/{1}) isn’t homotopically discrete, it is (3.8) the target of a monomorphism
S1 → X defined on a p-compact 1-torus S1. This monomorphism factors through its own centralizer
(5.8) to give a short exact sequence

S1 → CX(S1)→ CX(S1)/S1

of p-compact groups.
If CX(S1)/S1 isn’t homotopically discrete, it is (3.8) the target of a monomorphism S2/S1 →

CX(S1)/S1 defined on a p-compact 1-torus S2/S1. Pull back along this monomorphism induces a
commutative diagram of p-compact group morphisms

S1
// S2

��

// S2/S1

��
S1

// CX(S1) // CX(S1)/S1

where S2 is (3.5) a p-compact 2-torus and the middle arrow a monomorphism (CX(S1)/S2 '
CX(S1)/S1

S2/S1
is Fp-finite). Thus X is the target of a monomorphism (3.5) S2 → CX(S1)→ X defined

on a p-compact 2-torus.
For dimension reasons (3.6), this inductive procedure eventually stops at a maximal torus for

X where

Definition 7.1. [16, 8.8, 8.9] A maximal torus is a monomorphism i : T → X of a p-compact torus
T to X such that CX(T )/T is a homotopically discrete p-compact group.

We have thus established the existence part of

Theorem 7.2. [16, 8.13, 9.4] Any p-compact group admits a maximal torus, unique up to con-
jugacy.

Next, we introduce the Weyl group of a maximal torus.
Let i : T → X be a maximal torus such that Bi : BT → BX is a fibration. The Weyl space

WT (X) is the topological monoid of self-maps of BT over BX. As a space (5.5.1),

(7.3) (X/T )hT =WT (X) =
∐
w

CX(i)/CT (w) =
∐
w

CX(T )/T

with the disjoint union indexed by all w ∈ Rep(T, T ), necessarily (3.5, 5.9) central automorphisms,
with i◦w conjugate to i. The right hand side shows that the Weyl space is homotopically discrete.

Definition 7.4. [16, 9.6] The Weyl group WT (X) is the component group π0WT (X) of the Weyl
space.

The left hand side of (7.3), by discrete approximation (2.1) homotopy equivalent [16, 6.1, 6.7]
to (X/T )hA for some finite subgroup A < Ť , is Fp-finite (6.1) and the computation (6.2)

(7.5) χ(X/T ) = χ((X/T )hA) = χ((X/T )hT ) = |WT (X)|

shows that the Euler characteristic of the homogeneous space X/T equals the order of the Weyl
group; in particular, χ(X/T ) > 0.

Another application of (6.2) now yields the uniqueness part of Theorem 7.2: Suppose that
i1 : T1 → X and i2 : T2 → X are maximal tori. The fact that (X/T2)hŤ1 = (X/T2)hT1 6= ∅ 6=
(X/T1)hŤ2 = (X/T1)hT2 means that there exist morphisms u : T1 → T2 and v : T2 → T1 necessarily
isomorphisms (3.5, 5.9), such that i1 is conjugate to i2 ◦ u and i2 to i1 ◦ v.

We now specialize to connected p-compact groups and head directly for the culmination of [16].

Proposition 7.6. [16, 9.1] Let X be a connected p-compact group and T → X a maximal torus.
Then T → CX(T ) is an isomorphism.
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Proof. Note that, by maximality, CX(T ) has T as its identity component so that T → CX(T ) →
π0(CX(T )) is a central extension. Assume that π0(CX(T )) is nontrivial and produce (5.9.3) a
monomorphism Z/p× T → CX(T ). To obtain a contradiction, it suffices (5.9.2) to show that the
composite monomorphism Z/p× T → X factors through T , i.e. that the space of lifts (5.5.1)

(X/T )h(Z/p×T ) = ((X/T )hZ/p)hT ' ((X/T )hZ/p)hŤ

is nonempty. But that follows from (6.2) since (6.1) the Euler characteristic

χ((X/T )hZ/p) = Λ(X/T ; Z/p) = Λ(X/T ; {1}) = χ(X/T )

is nonzero (7.5). Note that this computation uses triviality of the monodromy action, factoring
through π1(BX) = π0(X) = {1}, of Z/p on H∗(X/T ; Qp). �

With CX(T )/T = {1}, (7.3) shows that the monoid morphism WT (X)→ Rep(T, T ) = [BT,BT ]
is injective, i.e. that the WT (X) is faithfully represented in H2(BT ; Zp)⊗Q. Moreover, the WT (X)-
invariant map Bi : BT → BX induces an algebra map

(7.7) H∗(BX; Qp)→ H∗(BT ; Qp)
WT (X)

into the invariant ring of this faithful representation.

Theorem 7.8. [16, 9.7] Let X be a connected p-compact group with maximal torus T → X. Then:
(1) T and X have the same rank.
(2) The Weyl group WT (X) is faithfully represented as a reflection group in the Qp-vector

space H2(BT ; Zp)⊗Q.
(3) The homomorphism ( 7.7) is an isomorphism.

By the classical Shephard–Todd theorem [4, 7.2.1], the fact (3) that the invariant ring is polyno-
mial (2.5) implies (2) that the Weyl group is represented as a reflection group in the p-adic vector
space H2(BT ; Zp)⊗Q. Thus WT (X) must be isomorphic to a product irreducible p-adic reflection
groups from the Clark–Ewing list [12]. This revives old hopes about a classification theorem.

Example 7.9. Suppose that G is a compact Lie group with π0(G) a p-group. Then any Lie-
theoretic maximal torus T → G induces a maximal torus T̂ → Ĝ of the p-compact group Ĝ. The
associated Weyl groups are isomorphic. The Weyl group of a p-compact toral group P is π0(P ).
The Weyl group of the Sullivan sphere (S2n−1)Fp is Z/n and the Weyl group of the Clark–Ewing
p-compact group B(ŤoW )Fp is W . The Weyl group of DI(4) is group number 24 on the Clark–
Ewing list, abstractly isomorphic to the product of a cyclic group of order two and the simple
group of order 168.

Exercise 7.10. Modify the above construction of the maximal torus for a p-compact group to
obtain an unconventional construction of the maximal torus for a compact Lie group. (See [29]
and [16, 1.2].)

The maximal torus normalizer BN is defined [16, 9.8] as the Borel construction for the action
of the topological monoid W on BT . Up to homotopy, BN sits as the total space in a fibration
BT → BN → BW over the classifying space of the Weyl group. BN is in general not a p-compact
group since π1(BN) = W need not be a p-group. Since the map BT → BX is invariant under the
action of the Weyl monoid, it extends to map Bj : BN → BX.

Example 7.11. The semi-direct product Ť o W is a discrete approximation [17, 3.12] to the
maximal torus normalizer for the Clark–Ewing p-compact group B(ŤoW )Fp

.

Theorem 7.12 (Adams-Mahmud [1] for p-compact groups). [34, 5.1] Any automorphism
f : X → X of the p-compact group X restricts to an automorphism AM(f) of BN , unique up
to the action of the Weyl group W (X0) = π1(X/N(X)) of the identity component X0 of X, such
that the diagram

BN

Bj

��

B(AM(f)) // BN

Bj

��
BX

Bf
// BX
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commute up to based homotopy.

The Adams–Mahmud homomorphism is the resulting homomorphism

(7.13) AM: Aut(X)→ Aut(N(X))/W (X0)

of automorphism groups.

8. Structure of p-compact groups

For a p-compact group X, let
• T (X) denote the maximal torus of X [16, 8.9],
• L(X) = π2(BT (X)) the lattice of X,
• Ť (X) = L(X)⊗ Z/p∞ the p-discrete maximal torus of X [16, §6],
• W (X) the Weyl group of X [16, 9.6], r0W (X) the rational and rpW (X) the mod p Weyl

group of X [37, 4.3],
• N(X) the maximal torus normalizer of X [16, 9.8],
• Z(X) the center of X (8.1)[17, 32],
• Out(X) the group of invertible elements in the monoid End(X) = [BX,BX] [35, §3], and,

Structure theorems for p-compact groups exhibit a pronounced analogy to Lie theory.

8.1. Centers. A p-compact group is abelian if its identity map is central, i.e. if the evaluation
map map(BX,BX)B1 → BX is an equivalence or, equivalently, if BX is an H-space. By (5.6),
p-compact tori are abelian.

Theorem 8.2. [17, 1.1] [32, 3.1] A p-compact group is abelian if and only if it is isomorphic to a
product of a finite abelian p-group and a p-compact torus.

If Z → X is a central monomorphism, then [17, 5.1] [32, 3.5] Z is abelian.

Theorem 8.3. [17, 1.2] [32, 4.4] For any p-compact group X there exists a central monomorphism
Z(X)→ X such that any central monomorphism into X factors through Z(X).

The terminal central monomorphism, essentially unique, of (8.3) is the center of X.
The (discrete approximation to) the center can be defined as the group of elements in (the

discrete approximation to) CX(T ) that are central in X. Another candidate to the center title is
the centralizer of the identity morphism. Fortunately, there is no discrepancy.

Theorem 8.4. [17, 1.3] [37, 4.7] The map BZ(X) → map(BX,BX)B1, corresponding to the
isomorphism CX(Z(X))→ X, is a homotopy equivalence.

The highly nontrivial proof of (8.4) involves decomposing BX as a generalized push out — a
technique also applied in the proof of (2.4).

The discrete approximation to the center can for a connected p-compact group be computed
from the action of the Weyl group on the discrete maximal torus.

Theorem 8.5. If X is a connected p-compact group and p is odd, then H0(W (X); Ť (X)) = Ž(X)
[17, §7] and H0(W (X);L(X)) = π1(X) [37, 4.7].

Example 8.6. Let G be a connected compact Lie group with Lie theoretic center Z(G). Then
the maps

BẐ(G)→ map(BĜ,BĜ)B1 ← BZ(Ĝ)

adjoint to the Fp-localization of BZ(G) × BG → BG and BZ(Ĝ) × BĜ → BĜ, respectively, are
homotopy equivalences [17, 1.4] (8.4). They constitute an isomorphism Ẑ(G) ∼= Z(Ĝ) of abelian
p-compact groups.

For a connected p-compact group X, rk(Z(X)) = dimQp
(π1(X) ⊗ Qp) [32, 5.2], so the center

is finite if and only if the fundamental group is. The quotient p-compact group [16, 8.3] PX =
X/Z(X), the adjoint form of X, has trivial center [17, 6.3] [32, 4.6].

Connected p-compact groups can to some extent be recovered from their universal covering
group and their center or from their adjoint form and their fundamental group.
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Theorem 8.7. [32, 5.4] [37, 4.7, 4.12] Let X be a connected p-compact group with adjoint form
PX and with universal covering p-compact group SX. Then SX = SSX = SPX, PX = PPX =
PSX, and there are short exact sequences

π(X)→ SX × Z(X)0 → X, π̌(X)→ X → PX ×K(π1(X)0, 1)

where Z(X)0 is the identity component of the center of X, π1(X)0 is the fundamental group of X
modulo torsion, and π(X) and π̌(X) are some finite abelian groups.

8.8. Semisimplicity. Call a connected p-compact group simple if the faithful representation of
the Weyl group WT (X) in H2(BT ; Qp) is irreducible. Sullivan spheres and Clark–Ewing p-compact
groups (2.2) are simple by design. Ĝ is simple for any connected compact simple Lie group G.

Suppose X is connected with maximal torus T → X. The WT (X)-representation H2(BT ; Qp)
splits as a direct sum

H2(BT ; Qp) = M1 ⊕ · · · ⊕Mn

of irreducible Qp[WT (X)]-modules. Provided the center Z(X) = 0 is trivial, all Mi are nontrivial
and [18, 1.5] this splitting of Qp[WT (X)]-modules descends to a splitting of Zp[WT (X)]-modules,

H2(BT ; Zp) = L1 ⊕ · · · ⊕ Ln

where Li = H2(BT ; Zp) ∩Mi. The splitting criterion [18, 1.4], guaranteeing the realizability as a
splitting of X of any splitting of the Zp[WT (X)]-module H2(BT ; Zp), now leads to the main result
on semisimplicity.

Theorem 8.9. [18, 1.3] [42] Any connected p-compact group with trivial center is isomorphic to a
product of simple p-compact groups.

For any connected p-compact group X we thus have product decompositions

(8.1) PX =
∏

Pi(X), SX =
∏

Si(X)

where the Pi(X)s are simple, center-less p-compact groups, called the simple factors of X, and the
Si(X)s are simple, simply connected p-compact groups (Si = SPi).

The decompositions of (8.7) and (8.9) are natural [34] [33] (with respect to some morphisms).

9. Classification of p-compact groups for odd p

A (maybe not so often seen) form of the classification theorem for compact, connected Lie
groups says that two such Lie groups are isomorphic if and only their maximal torus normalizers
are isomorphic [44] [13]. It has been conjectured [14, 5.3] that this is also true for p-compact
groups. The following definition is intended to give some meaning to this statement.

Definition 9.1. [35, 7.1] Let p be an odd prime. The p-compact group BX is N -determined if
any diagram of the form

(9.2) BN
Bj

||xxxxxxxx
Bj′

##GGGGGGGG

BX // BX ′

where Bj : BN → BX is the maximal torus normalizer for X and Bj′ : BN → BX ′ the maximal
torus normalizer for some other p-compact group X ′, there exists an isomorphism BX → BX ′

making the diagram commutative up to homotopy.

The maximal torus normalizer also carries information about p-compact group automorphisms.

Definition 9.3. The p-compact group BX has N -determined automorphisms if the Adams–
Mahmud homomorphism (7.13) is injective.

We say that the p-compact group X is totally N -determined if it is N -determined (9.1) and has
N -determined automorphisms (9.3).

Theorem 9.4 (Classification of p-compact groups). [37, 2] All p-compact groups (p > 2) are
totally N -determined and the Adams–Mahmud homomorphism (7.13) is an isomorphism for all
p-compact groups.
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For connected p-compact groups we can formulate the classification theorem in terms of Weyl
groups.

An R-reflection group, R = Zp, Fp, Qp, is a pair (W,L) where L is a free R-module of finite
rank and W is a finite group of R-linear automorphisms of L which is generated by the reflections
that it contains. Two R-reflection groups, (W1, L1) and (W2, L2), are similar if θW1θ

−1 = W2 for
some R-linear isomorphism θ : L1 → L2. A Zp-reflection group (W,L) is said to be simple if its
rationalization (r0W,L⊗Zp

Qp) is simple in the sense that L⊗Zp
Qp is a simple Qp[r0W ]-module.

From the Clark–Ewing list [12] of all simple Qp-reflection groups it is easy to derive the list of all
simple Zp-reflection groups [37, 10.18].

The pair (W (X), L(X)) is a Zp-reflection group for any connected p-compact group X. By
rationalization and mod p reduction we obtain the Qp-Weyl group (r0W (X), L(X) ⊗Zp Qp) and
the Fp-Weyl group (rpW (X), L(X)⊗Zp

Fp).
The point is that for a connected p-compact group X the maximal torus normalizer N(X) is

determined by the the Weyl reflection group (W (X), L(X)); the extension class is always zero [3]
at all odd primes.

Corollary 9.5 (Classification of connected p-compact groups). The map{
Isomorphism classes of

connected p-compact groups

}
(W,L)−−−−→

{
Similarity classes of
Zp-reflection groups

}
is a bijection. The Adams–Mahmud homomorphism is an isomorphism

Aut(X) ∼= NAutZp (L(X))(W (X))/W (X)

between the automorphism group of X and the Weyl group of the Weyl group.

For a connected p-compact group the target of the Adams–Mahmud homomorphism is simply
the group Out(N(X)) of outer automorphisms, easily determined in purely algebraic terms using
the results of [3].

For most of the connected simple p-compact groups X, the normalizer of the Weyl group is just
Z×p W (X) so that Aut(X) ∼= Z×p W (X)/W (X) ∼= Z×p /Z(W (X)). However, F4 at the prime p = 3,
for instance, admits an exotic self-homotopy equivalence [9].

A connected p-compact group X is said to be determined by its Fp-Weyl group if any any other
connected p-compact group with the same Fp-Weyl group as X is actually isomorphic to X. Any
such p-compact group will be cohomologically unique among p-compact groups, because, thanks to
Lannes theory [28], the Fp-Weyl group can be read off from the mod p cohomology algebra. All
connected p-compact groups with Weyl group order prime to p (non-modular p-compact groups)
are determined by their Fp-Weyl groups [37, 4.5.2].

Corollary 9.6. All simple p-compact groups, except those of the form SU(n)/Z where Z is non-
trivial and proper subgroup of the center of the p-compact group SU(n), are determined by their
Fp-Weyl group so are cohomologically unique among p-compact groups.

The proof of this is purely algebraic since we know from the classification theorem that con-
nected p-compact groups are determined by their Weyl groups. An inspection of the Clark–
Ewing list shows that all simple Zp-reflection groups, except those associated to SU(n)/Z,
1 � Z � Ž(SU(n)), are determined by their mod p reductions [37, 10.25.3]. The mod p cohomo-
logy algebras H∗(BG; Fp) are not known for all simple Lie groups G.

A finite loop space BX (1.2) is said to admit a maximal torus if there exists a map BT → BX
from the classifying space of a torus to BX whose fibre is homotopy equivalent to a finite complex
with non-zero Euler characteristic. Among the uncountably many finite loop spaces in Rector’s
example only the genuine article BSU(2) admits a maximal torus. It is a conjecture that the only
connected finite loop spaces that admit maximal tori are the ones that we already know, namely
the classifying spaces of connected Lie groups.

Corollary 9.7 (The maximal torus conjecture ). Let BX be a connected finite loop space that
admits a maximal torus. Then the localization away from 2, BX[ 12 ], is homotopy equivalent to
BG[ 12 ] for some connected Lie group G.
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A connected finite loop space with a maximal torus has a Weyl group which, as an integrally
defined reflection group, must be the Weyl group of some compact, connected Lie group G. At
each odd prime p, the p-compact groups (BX)p and (BG)p are therefore homotopy equivalent by
the classification theorem (9.5). Thus Sullivan’s Arithmetic Square shows that BX and BG are
homotopy equivalent away from the prime 2.

9.8. Polynomial p-compact groups. A polynomial p-compact group is a connected Fp-local
space with polynomial mod p cohomology algebra. (Any such space is a p-compact group because
its loop space will have a mod p cohomology algebra which is exterior and in particular finite.)
The polynomial p-compact groups are precisely the connected p-compact groups BX for which the
map

H∗(BX; Fp)→ H∗(BT (X); Fp)W (X) = H∗(Ť (X); Fp)W (X)

induced by the (discrete) maximal torus Ť (X) → X, is an isomorphism [37, 6.1]. Any connected
p-compact group with Weyl group order prime to p is polynomial. Any simple p-compact group is
polynomial but

• SU(r + 1)/Z where Z is a non-trivial central p-subgroup,
• F4, PE6, E6, E7,E8 at p = 3,
• E8 at p = 5.

In particular, any exotic, simple p-compact group is polynomial [37, 6.9].
The Zp-reflection group (W,L) is said to be polynomial if its mod p ring of invariants,

H∗(Ť ; Fp)W , where Ť = L ⊗Zp Z/p∞, is polynomial. Any Zp-reflection group of order prime
to p is polynomial by the Shephard–Todd theorem [4, 7.2.1]. Kemper and Malle [27] and also
Notbohm [40, 39] show that the non-polynomial simple Zp-reflection groups are precisely the Weyl
groups of the p-compact groups on the above list; (W,L)(PSU(3)) at p = 3 is polynomial, though,
since it has rank two [38, 5.1].

The Weyl group of any polynomial p-compact group is a polynomial Zp-reflection group, but
not any polynomial Zp-reflection group is the Weyl group of a polynomial p-compact group as
evidenced by (W,L)(PSU(3)) at p = 3 [37, 6.1, 6.27] [11].

Theorem 9.9 (Steenrod’s problem). [37, 6.26] [41] The map{
Isomorphism classes of

polynomial p-compact groups

}
(W,L)−−−−→

{
Similarity classes of polynomial

Zp-reflection groups with H1(W ; Ť ) = 0

}
is a bijection when p > 2.

The proof of this theorem is partly by inspection of the Clark–Ewing classification table for
Zp-reflection groups [12] [37, 10.17]

Polynomial p-compact groups have several appealing properties. For instance, any center-free
polynomial p-compact group, such as BG2 at p = 3 (9.15), can, as a kind of generalized Clark–
Ewing construction, be built as the homotopy colimit of a diagram of polynomial p-compact groups
of smaller dimension where the set of diagram nodes is in bijection with the set of subgroups of the
Sylow p-subgroup of the Weyl group. Also, polynomial p-compact groups are almost determined
by their mod p cohomology algebras.

Corollary 9.10. [37, 6.23] Any polynomial p-compact group is determined up to local isomorphism
by its mod p cohomology algebra considered as an unstable algebra over the Steenrod algebra.

The next example indicates that polynomial p-compact groups are rare and that we can not
improve the above corollary.

Example 9.11. [37, 6.25] The local isomorphism system of the polynomial p-compact group
U(pν), ν ≥ 1, contains 1

2 (ν + 1)(ν + 2) distinct p-compact groups of which ν + 1 are polynomial,
namely U(pν) and ν other polynomial p-compact groups with Fp-Weyl group similar to that of
SU(pν)×U(1).
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9.12. Proof of the classification theorem. The first step in the proof is a reduction to the
simple and center-less case.

Lemma 9.13. [37, 3.3, 3.7] Let p be an odd prime and X any p-compact group. If the simple factors
(8.1) of the identity component of X are totally N -determined, X itself is totally N -determined.

Thus it suffices to show that all center-less simple p-compact groups are totally N -determined.
The possible maximal torus normalizers are listed in the Clark–Ewing classification table. In each
case we must show that any two center-less simple p-compact groups with this maximal torus
normalizer are isomorphic. For this we use Theorems 9.18 and 9.19 and so we need to verify the
conditions of these theorems. Proceeding by induction over cohomological dimension, we may
assume that all elementary abelian subgroups of X have totally N -determined centralizers. The
remaining conditions are harder to verify but this is done in [37] for the polynomial p-compact
groups and for the simple p-compact groups whose Weyl group belong to Clark–Ewing family 1
(see also [10]), and in [2] for simple p-compact groups with Zp-Weyl group similar to the Weyl
group of PE6, E6, E7,E8 at p = 3, and E8 at p = 5. In these cases we use a detailed description
of the non-toral elementary abelian subgroups. This covers all simple p-compact groups. (A more
ideal proof would be to verify the conditions in a way independent of the classification table.)

Theorems 9.18 and 9.19 providing sufficient criteria for a connected, center-less p-compact group
to be totally N -determined are obtained by combining the Homology Decomposition Theorem [17]
and the preferred lifts of [36]. In outline, we proceed as follows.

Let A(X) denote the Quillen category of X. The objects (E, ν) of A(X) are conjugacy classes
of monomorphism ν : E → X of non-trivial elementary abelian p-groups E into X. The morphisms
(E0, ν0)→ (E1, ν1) of A(X) consists of all group homomorphisms f : E0 → E1 such that (E0, ν0) =
(E0, ν1f). There are functors

BCX : A(X)op → Top, (V, ν)→ map(BV,BX)Bν = BCX(V, ν)

πiBZCX : A(X)→ Ab, (V, ν)→ πi

(
map(BCX(V, ν), BX), ev(ν)

)
from (the opposite of) the Quillen category to the category of topological spaces and to
the category of abelian groups, respectively. Note that the evaluation monomorphisms (5.1)
ev(ν) : CX(V, ν)→ X respect the morphisms in the Quillen category.

Theorem 9.14. [26, 17] The map hocolimA(X)BCX → BX is an Fp-equivalence for any connected
p-compact group X.

This theorem is only helpful when X is center-less because otherwise one of the centralizers will
equal X and we have just described X in terms of itself in a very complicated way. However, when
X has no center, then cdCX(V, ν) < cdX for all objects (V, ν) of the Quillen category making
inductive arguments possible.

Example 9.15. [37, 6.10] The polynomial 3-compact group BG2 is the homotopy colimit of the
diagram

BSU(3)Z(W (G2))
op

99 BT W (G2)
op

bb
W (SU(3))op\W (G2)

op

oo

where Z(W (G2)) ∼= Z/2 acts on BSU(3) via the unstable Adams operations ψ±1

A preferred lift of a monomorphism ν : V → X of an elementary abelian p-group to V to X is
a monomorphism ν : V → N(X) to the maximal torus normalizer j : N(X)→ X such that j ◦µ is
conjugate to ν and the induced morphism CN(X)(V, µ)→ CX(V, ν) is a maximal torus normalizer
for the centralizer. In short, preferred lifts make “maximal torus normalizer“ commute with “cent-
ralizer”. As observed by H. Miller in his review of [36], an elaboration of the Borel–Serre theorem
[5] [47, 5.16] will provide the classical analogue to preferred lifts.

Theorem 9.16. [36] Any monomorphism of an elementary abelian p-group to a p-compact group
admits a preferred lift.

A monomorphism ν : V → X is toral if it admits a factorization µ : V → T (X) through the
maximal torus. Toral objects of the Quillen category have uniquely defined preferred lifts, namely
the factorization through the maximal torus, but non-toral objects of the Quillen category have
several (non-conjugate) preferred lifts.
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Example 9.17. All objects of the Quillen category of a polynomial p-compact group are toral.
The image in PU(pd) of the extra-special subgroup of order p1+2d in U(pd) [25, 7.5, 7.6.b] is a
non-toral elementary abelian subgroup of order p2d.

Combining Theorems 9.14 and 9.16 we can now formulate inductive criteria for N -determinism
of center-less p-compact groups.

Theorem 9.18. [37, 3.4] Let X be connected, center-less p-compact group. Assume that
(1) all objects of A(X) of rank 1 have totally N -determined centralizers, and,
(2) limj(A(X);πjBZCX) = 0 for j = 1, 2.

Then X has N -determined automorphisms.

To see this, let f : X → X be an automorphism under N(X) and let (V, ν) be an object of A(X)
with preferred lift (V, µ). Then f restricts to an isomorphism of CX(V, ν) under CN(X)(V, µ) which
therefore must be conjugate to the identity by the induction hypothesis. The obstructions to a
globally defined homotopy to the identity map lie in the higher limits groups which we have assumed
to vanish.

Theorem 9.19. [37, 3.8] In the situation of (9.2), assume that X is a connected, center-less
p-compact group and that

(1) all objects of A(X) of rank ≤ 2 have totally N -determined centralizers,
(2) for any non-toral rank 2 object (V, ν) of A(X) there is an object (V, ν′) of A(X ′) such

that (V, j′µ) = (V, ν′) for all preferred lifts (V, µ) of (V, ν) and such that the isomorphism
f(V, µ) under CN (V, µ),

CN (V, µ)

xxrrrrrrrrrr

&&MMMMMMMMMM

CX(V, ν)
∼=

f(V,µ)
// CX′(V, ν′)

is independent of the p+ 1 possible choices of preferred lift (V, µ), and
(3) limj+1(A(X);πjBZCX) = 0 for j = 1, 2.

Then X is N -determined.

By the inductive assumption (9.19.1), there is for any preferred lift of any non-toral, rank 2
object (V, ν) of A(X) an isomorphism f(V, µ) : CX(V, ν)→ CX′(V, j′ν) under CN (V, µ). In order
to verify assumption (9.19.2), we need to show that the object (V, j′µ) ∈ Ob(A(X ′)) and the
isomorphism f(V, µ) are in fact independent of the choice of (V, µ). Oliver’s cochain complex [43]
reduces the problem of the higher limits (9.18.2, 9.19.3) to a question about homomorphisms out
of Steinberg modules.

Here is an example of the application of the criteria for total N -determinism.

Theorem 9.20. [37] The following hold for the 3-compact group F4:
(1) F4 is totally N -determined.
(2) F4 is determined by its R-Weyl group for R = Zp, Qp, Fp.
(3) F4 is a cohomologically unique p-compact group.
(4) End(F4)−{0} = Out(F4) = NGL(L(F4))(W (F4))/W (F4) is an abelian group isomorphic to

Z×3 /Z× × C2 where the group C2 of order 2 is generated by an exotic automorphism.

The case of (F4, p = 3) is particularly strightforward as F4 contains just one non-toral element-
ary abelian subgroup which has rank 3 [24, 7.4]. In particular, F4 does not contain any of the
problematic non-toral rank 2 elementary abelian subgroups.

10. 2-compact groups
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