Matematik 5GE

Assignment 1

Problem 1

Define $\mathbb{C}P^1$ to the set of complex 1-dimensional complex subspaces of \mathbb{C}^2 . Show that $\mathbb{C}P^1$ is a smoth manifold: Find local charts and show that the transition functions are smooth. Have we seen this particular manifold before?

Problem 2

Show that the map $\pi\colon TM\to M$ is smooth: Find an expression for π in local coordinates.

Problem 3

- Show that there is a global trivialization $T\mathbf{R}^n \xrightarrow{\simeq} \mathbf{R}^n \times \mathbf{R}^n$. (Remember the discussion about geometric tangen vectors in \mathbf{R}^n .)
- Show that there is a global trivialization $TS^1 \xrightarrow{\simeq} S^1 \times \mathbf{R}$. (Think about why we could find a trivialization for \mathbf{R}^n .)
- Do you think that there is a global trivialization $TS^2 \xrightarrow{\simeq} S^2 \times \mathbb{R}^2$? (No proof required.)

Manifolds M with global trivializations $TM \xrightarrow{\simeq} M \times \mathbf{R}^n$ are said to be *parallizable*.

Problem 4

Let $F: M \to N$ be a smooth map.

(1) Define a map $F_*: TM \to TN$ such that the diagram

$$\begin{array}{ccc} TM \xrightarrow{F_*} TN \\ \pi & & & \downarrow \pi \\ M \xrightarrow{F} N \end{array}$$

commutes.

(2) Show that F_* is smooth: Find the expression for F_* in local coordinates.

(Due: Tuesday March 1st)