From singular chains to Alexander Duality

Jesper M. Møller

Matematisk Institut, Universitetsparken 5, DK-2100 København
E-mail address: moller@math.ku.dk
URL: http://www.math.ku.dk/~moller

Contents

Chapter 1. Singular homology 5

1. The standard geometric n-simplex Δ^{n} 5
2. The singular Δ-set, chain complex, and homology groups of a topological space 6
3. The long exact sequence of a pair 8
4. The Eilenberg-Steenrod Axioms 9
5. Homotopy invariance 9
6. Excision 11
7. Easy applications of singular homology 19
8. The degree of a self-map of the sphere 19
9. Cellular homology of CW-complexes 21
10. Homological algebra for beginners 32
Chapter 2. Construction and deconstruction of spaces 35
11. Abstract Simplicial Complexes 35
12. Ordered Simplicial complexes 39
13. Partially ordered sets 41
14. Δ-sets 47
15. Simplicial sets 54
Chapter 3. Applications of singular homology 57
16. Lefschetz fixed point theorem 57
17. Jordan-Brouwer separation theorem and the Alexander horned sphere 58
18. Group homology and Eilenberg -MacLane Complexes $K(G, 1)$ 62
Chapter 4. Singular cohomology 63
19. Cohomology 63
20. Orientation of manifolds 75
21. Poincaré duality for compact manifolds 80
22. Colimits of modules 82
23. Poincaré duality for noncompact oriented manifolds 86
24. Alexander duality 87
Chapter 5. Cohomology operations 91
25. The Bockstein homomorphism 91
26. Steenrod operations 96
Bibliography 99

CHAPTER 1

Singular homology

In this chapter we construct the singular homology functor from the category of topological spaces to the category of abelian groups. ${ }^{1}$

1. The standard geometric n-simplex Δ^{n}

Let VCT be the category of real vector spaces and

$$
\mathbf{R}[\bullet]: \Delta_{<} \rightarrow \mathbf{V C T}
$$

the functor from $\Delta_{<}(2.26)$ that takes n_{+}to the real vector space $\mathbf{R}\left[n_{+}\right]$with basis $e_{i}, i \in n_{+}$. The coface $\operatorname{map} d^{i} \in \Delta_{<}\left((n-1)_{+}, n_{+}\right), i \in n_{+}$, induces the geometric coface map $d^{i}=\mathbf{R}\left[d^{i}\right]: \mathbf{R}\left[(n-1)_{+}\right] \rightarrow \mathbf{R}\left[n_{+}\right]$

$$
d^{i}\left(t_{0}, \ldots, t_{n-1}\right)= \begin{cases}\left(0, t_{0}, \ldots, t_{n-1}\right) & i=0 \tag{1.1}\\ \left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right) & 0<i<n \\ \left(t_{0}, \ldots, t_{n-1}, 0\right) & i=n\end{cases}
$$

The coface map d^{i} takes $\mathbf{R}\left[(n-1)_{+}\right]$into $\mathbf{R}\left[n_{+}\right]$as the hyperplane orthogonal to $e_{i}, d_{i}\left(\mathbf{R}^{n-1}\right)=e_{i}^{\perp}$. The geometric coface maps satisfy the cosimplicial identities (2.18).
1.1. Definition. The standard geometric n-simplex is the convex hull

$$
\Delta^{n}=\operatorname{conv}\left(n_{+}\right)=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbf{R}\left[n_{+}\right] \mid 0 \leq t_{i} \leq 1, \sum_{i=0}^{n+1} t_{i}=1\right\}
$$

of the basis n_{+}of $\mathbf{R}\left[n_{+}\right], n=0,1,2, \ldots$
The geometric coface maps $d^{i}: \mathbf{R}\left[(n-1)_{+}\right] \rightarrow \mathbf{R}\left[n_{+}\right], i \in n_{+}$, of vector spaces restrict to geometric coface maps $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ of standard geometric simplices. The coface map d^{i} takes Δ^{n-1} into Δ^{n} as the facet opposite vertex $e_{i}, d^{i}\left(\Delta^{n-1}\right)=\Delta^{n} \cap e_{i}^{\perp}$. In short, there is a co- Δ-space

$$
\Delta[\bullet]: \Delta_{<} \rightarrow \mathbf{T O P}
$$

taking n_{+}to the geometric n-simplex $\Delta\left[n_{+}\right]=\Delta^{n}$ and the coface map $d^{i}:(n-1)_{+} \rightarrow n_{+}$to the geometric coface map $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$.

[^0]

Figure 1. The singular Δ-set, the singular chain complex, and the singular homology groups of a topological space X

2. The singular Δ-set, chain complex, and homology groups of a topological space

Let X be a topological space. An n-simplex in X is a (continuous) map $\sigma: \Delta^{n} \rightarrow X$ of the geometric n-simplex into X.

- The singular Δ-set of X is the Δ-set $\operatorname{Sing}(X) \bullet$ which in degree n is the set $\operatorname{Sing}(X)_{n}=\operatorname{TOP}\left(\Delta^{n}, X\right)$ of all singular n-simplices $\sigma: \Delta^{n} \rightarrow X$ in X; the face maps $d_{i}: \operatorname{Sing}(X)_{n} \rightarrow \operatorname{Sing}(X)_{n-1}, i \in n_{+}$, are induced by the coface maps $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}: d_{i} \sigma=\sigma d^{i}$.
- The singular chain complex $\left(C_{*}(X), \partial\right)$ of X is the chain complex $(\mathbf{Z}[\operatorname{Sing}(X)], \partial)$ of the singular Δ-set of X.
- The singular homology groups $H_{*}(X)$ of X are the homology groups of the singular Δ-set $\operatorname{Sing}(X)$ of $X: H_{n}(X)=H_{n}^{\Delta}(\operatorname{Sing}(X))$.
The nth chain group of X is the free abelian group $C_{n}(X)$ generated by the set of all n-simplices $\sigma: \Delta^{n} \rightarrow X$ in X. The elements of $C_{n}(X)$ are linear combinations $\sum n_{\sigma} \sigma$, where $n_{\sigma} \in \mathbf{Z}$ and $n_{\sigma}=0$ for all but finitely many σ. (By convention $C_{n}(X)=0$ for $n<0$.) The n-th boundary map $\partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)$ is the linear map with value

$$
\begin{equation*}
\partial_{n}(\sigma)=\sum_{i \in n_{+}}(-1)^{i} d_{i} \sigma=\sum_{i \in n_{+}}(-1)^{i} \sigma d^{i} \tag{1.2}
\end{equation*}
$$

on the n-simplex $\sigma: \Delta^{n} \rightarrow X$.
The nth singular homology group of X is the quotient

$$
H_{n}(X)=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right)
$$

of the n-cycles $Z_{n}(X)=\operatorname{ker}\left(\partial_{n}\right)$ by the n-boundaries $B_{n}(X)=\operatorname{im}\left(\partial_{n+1}\right)$. We let $[z] \in H_{n}(X)$ be the homology class represented by the n-cycle $z \in Z_{n}(X)$.

Any map $f: X \rightarrow Y$ induces a homomorphism $H_{n}(f): H_{n}(X) \rightarrow H_{n}(Y)$ given by $H_{n}(f)[z]=\left[C_{n}(f) z\right]$ for any n-cycle $z \in Z_{n}(X)$. In fact, $H_{n}(\bullet)$ is a (composite) functor from topological spaces to abelian groups.
1.3. Proposition (Additivity Axiom). Let $\left\{X_{\alpha}\right\}$ be the path-components of X. There is an isomorphism

$$
\bigoplus H_{k}\left(X_{\alpha}\right) \cong H_{k}(X)
$$

induced by the inclusion maps.
Proof. Any simplex $\sigma: \Delta^{k} \rightarrow X$ must factor through one of the path-components X_{α} as Δ^{k} is path connected. Therefore $\bigoplus C_{k}\left(X_{\alpha}\right)=C_{k}(X)$ and $\bigoplus H_{k}\left(X_{\alpha}\right) \cong H_{k}(X)$ for all integers k.
1.4. Proposition. The group $H_{0}(X)$ is the free abelian group on the set of path-components of X.

Figure 2. The blue and the red 1-cycles are homologous in $\mathbf{R}^{2}-D^{2}$ by the green 2-chain

Proof. The proposition is true if $X=\emptyset$ is empty. Suppose that X is nonempty. By the Additivity Axiom we can also assume that X is path-connected. Define $\varepsilon: C_{0}(X) \rightarrow \mathbf{Z}$ to be the group homomorphism with value 1 on any point of X. The sequence

$$
C_{1}(X) \xrightarrow{\partial_{1}} C_{0}(X) \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0
$$

is exact: Clearly, $\operatorname{im} \partial_{1} \subset \operatorname{ker} \varepsilon$ for $\varepsilon \partial_{1}=0$. Fix a point, x_{0} in X. Since X is path-connected, for every $x \in X$ there is a 1 -simplex $\sigma_{x}: \Delta^{1} \rightarrow X$ with $\sigma_{x}(0)=x_{0}$ and $\sigma_{x}(1)=x$. Let $\sum_{x \in X} \lambda_{x} x$ be a 0 -chain in X with $\sum_{x \in X} \lambda_{x}=0$. Then

$$
\partial_{1}\left(\sum_{x \in X} \lambda_{x} \sigma_{x}\right)=\sum_{x \in X} \lambda_{x}\left(x-x_{0}\right)=\sum_{x \in X} \lambda_{x} x-\left(\sum_{x \in X} \lambda_{x}\right) x_{0}=\sum_{x \in X} \lambda_{x} x
$$

This shows that $\operatorname{ker} \varepsilon \subset \operatorname{im} \partial_{1}$. Thus $\mathbf{Z}=\operatorname{im} \varepsilon \cong C_{0}(X) / \operatorname{ker} \varepsilon=C_{0}(X) / \operatorname{im} \partial_{1}=H_{0}(X)$ by exactness of the sequence above.
1.5. Proposition (Dimension Axiom). The homology groups of the space $\{*\}$ consisting of one point are $H_{0}(\{*\}) \cong \mathbf{Z}$ and $H_{k}(\{*\})=0$ for $k \neq 0$.
1.6. Homology with coefficients. Let G be any abelian group. The nth chain group of X with coefficients in G is the abelian group $C_{n}(X ; G)$ consisting of all linear combinations $\sum_{\sigma} g_{\sigma} \sigma$, where $g_{\sigma} \in G$ and $g_{\sigma}=0$ for all but finitely many n-simplices $\sigma: \Delta^{n} \rightarrow X$. The boundary map $\partial_{n}: C_{n}(X ; G) \rightarrow C_{n-1}(X ; G)$ is defined as

$$
\partial_{n}\left(\sum_{\sigma} g_{\sigma} \sigma\right)=\sum_{\sigma} \sum_{i=0}^{n}(-1)^{i} g_{\sigma} \sigma d^{i}
$$

where $\pm 1 g_{\sigma}$ means $\pm g_{\sigma}$. Again, the composition of two boundary maps is zero so that $\left(C_{n}(X ; G), \partial_{n}\right)$ is a chain complex. We define the nth homology group of X with coefficients in $G, H_{n}(X ; G)$, to be the nth homology group of this chain complex.

In particular, $H_{n}(X ; \mathbf{Z})=H_{n}(X)$. Most of the following results are true for $H_{n}(X ; G)$ even though they will only be stated for $H_{n}(X)$.
1.7. Reduced homology. The reduced homology groups of X with coefficients in the abelian group G are the homology groups $\widetilde{H}_{n}(X ; G)$ of the augmented chain complex

$$
\cdots \rightarrow C_{1}(X ; G) \xrightarrow{\partial_{1}} C_{0}(X ; G) \xrightarrow{\varepsilon} G \rightarrow 0
$$

where $\varepsilon\left(\sum_{x \in X} g_{x} x\right)=\sum_{x \in X} g_{x}$. This is again a chain complex as $\varepsilon \partial_{1}=0$. There is no difference between reduced and unreduced homology in positive degrees while $\widetilde{H}_{0}(X ; G)=\operatorname{ker} \varepsilon / \operatorname{im} \partial_{1}$.

When $X=\emptyset$ is empty, $H_{0}(X)=0$ and $H_{-1}(X)=\mathbf{Z}$. Suppose now that $X \neq \emptyset$ is nonempty.
$\widetilde{H}_{0}(X)$ and path-connectedness: We noted in the proof of Proposition 1.4 that X is path-connected if and only if im $\partial_{1}=\operatorname{ker} \varepsilon$. This means that

$$
\widetilde{H}_{0}(X ; G)=0 \Longleftrightarrow X \text { is path-connected }
$$

A short split-exact sequence for $\widetilde{H}_{0}(X)$: In degree 0 there are natural short exact sequences

The right vertical map is an isomorphism and the homomorphism $G \ni g \rightarrow g x_{0}$, where x_{0} is some fixed point in X, is a right inverse to $\varepsilon: H_{0}(X) \rightarrow G$. Since the short exact sequence splits there is a non-natural isomorphism

$$
H_{0}(X ; G) \cong \widetilde{H}_{0}(X ; G) \oplus G
$$

Another short split-exact sequence for $\widetilde{H}_{0}(X)$: Since $\widetilde{H}_{*}\left(\left\{x_{0}\right\} ; G\right)=0$ for the space consisting of a single point, the long exact sequence in reduced homology (1.11) for the pair (X, x_{0}) gives that $\widetilde{H}_{n}(X ; G) \cong H_{n}\left(X, x_{0} ; G\right)$. The long exact sequence in (unreduced) homology (1.10) breaks into short split exact sequences because the point is a retract of the space and it ends with

$$
0 \longrightarrow H_{0}\left(x_{0} ; G\right) \longrightarrow H_{0}(X ; G) \longrightarrow H_{0}\left(X, x_{0} ; G\right) \longrightarrow 0
$$

so that $\widetilde{H}_{0}(X ; G) \cong H_{0}\left(X, x_{0} ; G\right) \cong H_{0}(X ; G) / H_{0}\left(x_{0} ; G\right)$.
1.8. Proposition. Let X be any topological space.

$$
\widetilde{H}_{-1}(X ; \mathbf{Z})=0 \Longleftrightarrow X \neq \emptyset
$$

$$
\widetilde{H}_{-1}(X ; \mathbf{Z})=0 \text { and } \widetilde{H}_{0}(X ; \mathbf{Z})=0 \Longleftrightarrow X \text { is nonempty and path-connected }
$$

3. The long exact sequence of a pair

Let (X, A) be a pair of spaces consisting of a topological space X with a subspace $A \subset X$. Define $C_{n}(X, A)$ to be the quotient of $C_{n}(X)$ by its subgroup $C_{n}(A)$. Then we have the situation

where the rows are short exact sequences. Since the morphism $j \circ \partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X, A)$ vanishes on the subgroup $C_{n}(A)$ of $C_{n}(X)$ there is a unique morphism $\bar{\partial}_{n}: C_{n}(X, A) \rightarrow C_{n-1}(X, A)$ such that the diagram commutes (Chapter 1, Section 10.1.1). Then $\left(C_{*}(X, A), \bar{\partial}_{*}\right)$ is a chain complex for $\bar{\partial}_{n-1} \circ \bar{\partial}_{n}=0$ since it is induced from $\partial_{n-1} \circ \partial_{n}=0$. Define the relative homology

$$
\begin{equation*}
H_{n}(X, A)=\frac{Z_{n}(X, A)}{B_{n}(X, A)}=\frac{j^{-1} Z_{n}(X, A)}{j^{-1} B_{n}(X, A)}=\frac{\partial_{n}^{-1} C_{n-1}(A)}{B_{n}(X)+C_{n}(A)} \tag{1.9}
\end{equation*}
$$

to be the degree n homology of this relative chain complex. The above commutative diagram can now be enlarged to a short exact sequence of chain complexes. Lemma 1.100, the Fundamental Lemma of Homological Algebra, tells us that there is an associated long exact sequence ${ }^{2}$

$$
\begin{equation*}
\cdots \longrightarrow H_{n}(A) \xrightarrow{i} H_{n}(X) \xrightarrow{j} H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \cdots \tag{1.10}
\end{equation*}
$$

of homology groups [21, 1.3]. The connecting homomorphism

$$
Z_{n}(X, A) / B_{n}(X, A)=H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A)=Z_{n-1}(A) / B_{n-1}(A)
$$

is induced by the zig-zag $i^{-1} \partial: \partial^{-1} C_{n}(A) \rightarrow Z_{n-1}(A)$.
Two more long exact sequences in homology can be obtained in a similar way:

- The long exact sequence in reduced homology

$$
\begin{equation*}
\cdots \longrightarrow \widetilde{H}_{n}(A) \xrightarrow{i} \widetilde{H}_{n}(X) \xrightarrow{j} H_{n}(X, A) \xrightarrow{\partial} \widetilde{H}_{n-1}(A) \longrightarrow \cdots \tag{1.11}
\end{equation*}
$$

is obtained by using the augmented chain complexes.

- The long exact sequence for a triple (X, A, B)

$$
\begin{equation*}
\cdots \longrightarrow H_{n}(A, B) \longrightarrow H_{n}(X, B) \longrightarrow H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A, B) \longrightarrow \cdots \tag{1.12}
\end{equation*}
$$

comes from the short exact sequence

$$
0 \rightarrow C_{*}(A) / C_{*}(B) \rightarrow C_{*}(X) / C_{*}(B) \rightarrow C_{*}(X) / C_{*}(A) \rightarrow 0
$$

of relative chain complexes.

4. The Eilenberg-Steenrod Axioms

The Eilenberg-Steenrod Axioms are theorems. They say that singular homomology is a functor from the category of pairs (X, A) of topological spaces to the category of abelian groups that satisfies the following list of axioms (theorems):

Exactness Axiom: For any pair (X, A) of topological spaces there is a natural long excact sequence

$$
\cdots \leftarrow H_{n-1}(A) \leftarrow H_{n}(X, A) \leftarrow H_{n}(X) \leftarrow H_{n}(A) \leftarrow \cdots
$$

Homotopy Axiom: $f \simeq g:(X, A) \rightarrow(Y, B) \Longrightarrow f_{*}=g_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$
Excision Axiom: $\operatorname{cl}(U) \subset \operatorname{int}(A) \Longrightarrow H_{n}(X-U, A-U) \cong H_{n}(X, A)$
Dimension Axiom: $H_{0}(\{*\})=\mathbf{Z}$ and $H_{j}((\{*\})=0$ for $i \neq 0$
Additivity Axiom: $\bigoplus_{\alpha \in A} H_{n}\left(X_{\alpha}\right) \stackrel{\cong}{\rightrightarrows} H_{n}\left(\coprod_{\alpha \in A} X_{\alpha}\right)$

5. Homotopy invariance

Homology does not distinguish between homotopic maps.
1.13. Theorem (Homotopy Axiom). Homotopic maps induce identical maps on homology: If $f_{0} \simeq$ $f_{1}: X \rightarrow Y$, then $H_{n}\left(f_{0}\right)=H_{n}\left(f_{1}\right): H_{n}(X) \rightarrow H_{n}(Y)$.

The $(n+1)$-simplex $P^{i} \in \operatorname{POSI}\left((n+1)_{+}, n_{+} \times 1_{+}\right)$from (2.16) induces a linear map between vector spaces $P^{i}: \mathbf{R}\left[(n+1)_{+}\right] \rightarrow \mathbf{R}\left[n_{+}\right] \times \mathbf{R}\left[1_{+}\right]$that restricts to an injective map from $\Delta^{n+1}=\operatorname{conv}\left((n+1)_{+}\right) \subset$ $\mathbf{R}\left[(n+1)_{+}\right]$to $\operatorname{conv}\left(n_{+} \times 1_{+}\right)=\operatorname{conv}\left(n_{+}\right) \times \operatorname{conv}\left(1_{+}\right)=\Delta^{n} \times \Delta^{1} \subset \mathbf{R}\left[n_{+}\right] \times \mathbf{R}\left[1_{+}\right]$(see Lemma 1.14). (Alternatively, the geometric prism map $P^{i}: \Delta^{n+1}=B(n+1)_{+} \rightarrow B\left(n_{+} \times 1_{+}\right)=\Delta^{n} \times \Delta^{1}$ is induced from the prism map $P^{i}:(n+1)_{+} \rightarrow n_{+} \times 1_{+}$of Definition 2.16.)

[^1]1.14. Lemma. The convex hull of $n_{+} \times 1_{+}$in $\mathbf{R}\left[n_{+}\right] \times \mathbf{R}\left[1_{+}\right]$is $\operatorname{conv}\left(n_{+} \times 1_{+}\right)=\operatorname{conv}\left(n_{+}\right) \times \operatorname{conv}\left(1_{+}\right)=$ $\Delta^{n} \times \Delta^{1}$

Proof. The inclusion \subseteq is clear. To prove the opposite inclusion, write the basis vectors of $\mathbf{R}\left[n_{+}\right]$as $n_{+}=\left\{e_{i} \mid i \in n_{+}\right\}$and the basis vectors of $\mathbf{R}\left[1_{+}\right]$as $1_{+}=\left\{f_{0}, f_{1}\right\}$. An arbitrary element of $\operatorname{conv}\left(n_{+}\right) \times$ $\operatorname{conv}\left(1_{+}\right)$has the form $\left(\sum s_{i}\left(e_{i}, 0\right), t_{0}\left(0, f_{0}\right)+t_{1}\left(0, f_{1}\right)\right)=t_{0} \sum s_{i}\left(e_{i}, f_{0}\right)+t_{1} \sum s_{i}\left(e_{i}, f_{1}\right)$ which is a convex combination of vectors from $n_{+} \times 1_{+}=\left\{\left(e_{i}, f_{j}\right) \mid i \in n_{+}, j \in 1_{+}\right\}$.

In coordinates, P_{n}^{i} has the form

$$
P^{i}: \Delta^{n+1} \rightarrow \Delta^{n} \times \Delta^{1}, \quad \sum_{h=0}^{n+1} t_{h} e_{h} \rightarrow\left(\sum_{h \leq i} t_{h} e_{h}+\sum_{h>i} t_{h} e_{h-1}, \sum_{h \leq i} t_{h} e_{0}+\sum_{h>i} t_{h} e_{1}\right)
$$

as a map from $\Delta^{n+1}=\operatorname{conv}\left((n+1)_{+}\right) \subset \mathbf{R}\left[(n+1)_{+}\right]$to $\operatorname{conv}\left(n_{+} \times 1_{+}\right)=\operatorname{conv}\left(n_{+}\right) \times \operatorname{conv}\left(1_{+}\right)=\Delta^{n} \times \Delta^{1} \subset$ $\mathbf{R}\left[n_{+}\right] \times \mathbf{R}\left[1_{+}\right]$.

For any topological space X, let $i_{0}, i_{1}: X \rightarrow X \times \Delta^{1}$ be the inclusions of X as the bottom and top of the cylinder on X.
1.15. Lemma. $\left(i_{0}\right)_{*}=\left(i_{1}\right)_{*}: H_{n}(X) \rightarrow H_{n}\left(X \times \Delta^{1}\right)$

Proof. Let $P: C_{n}(X) \rightarrow C_{n+1}\left(X \times \Delta^{1}\right)$ be the prism operator given by

$$
P\left(\Delta^{n} \xrightarrow{\sigma} X\right)=\sum_{i=0}^{n}(-1)^{i}\left(\Delta^{n+1} \xrightarrow{P^{i}} \Delta^{n} \times \Delta^{1} \xrightarrow{\sigma \times 1} X \times \Delta^{1}\right)
$$

The prism operator is natural and, in particular, $P \sigma=(\sigma \times 1)_{*} P \delta_{n}$ where $P \delta_{n}=\sum_{i \in n_{+}}(-1)^{i} P^{i}$ is the prism on the identity map $\delta_{n} \in C_{n}\left(\Delta^{n}\right)$. Corollary 2.24 shows that P is a chain homotopy (Definition 1.97): The relation $\partial P=i_{1}-P \partial-i_{0}$ holds between the abelian group homomorphisms of the diagram

But then $H_{n}\left(i_{0}\right)=H_{n}\left(i_{1}\right): H_{n}(X) \rightarrow H_{n}\left(X \times \Delta^{1}\right)$ as chain homotopic chain maps are identical in homology (Lemma 1.98).

Proof of Theorem 1.13. Suppose that f_{0} and f_{1} are homotopic maps of X into Y. Let $F: X \times \Delta^{1} \rightarrow Y$ be a homotopy. The diagrams

$$
X \underset{i_{0}}{\stackrel{i_{1}}{\longrightarrow}} X \times \Delta^{1} \xrightarrow{F} Y \quad \stackrel{H_{n}}{>} \quad H_{n}(X) \xrightarrow[\left(i_{0}\right)_{*}]{\stackrel{\left(i_{1}\right)_{*}}{\longrightarrow}} H_{n}\left(X \times \Delta^{1}\right) \xrightarrow{F_{*}} H_{n}(Y)
$$

tell us that $\left(f_{0}\right)_{*}=\left(F i_{0}\right)_{*}=F_{*}\left(i_{0}\right)_{*}=F_{*}\left(i_{1}\right)_{*}=\left(F i_{1}\right)_{*}=\left(f_{1}\right)_{*}$.
1.16. Corollary. If $f \simeq g:(X, A) \rightarrow(Y, B)$ then $f_{*}=g_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$.

Proof. The prism operator on the chain complexes for X and A will induce a prism operator on the quotient chain complex.
1.17. Corollary. Any homotopy equivalence $f: X \rightarrow Y$ induces an isomorphism $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ on homology. Any homotopy equivalence $f:(X, A) \rightarrow(Y, B)$ induces an isomorphism $f_{*}: H_{*}(X, A) \rightarrow H_{*}(Y, B)$ on homology.

6. Excision

Let X be a topological space and $\mathcal{U}=\left\{U_{\alpha}\right\}$ a covering of $X=\bigcup U_{\alpha}$. Define the \mathcal{U}-small n-chains,

$$
C_{n}^{\mathcal{U}}(X)=\sum_{\alpha} C_{n}\left(U_{\alpha}\right)=\operatorname{im}\left(\bigoplus_{\alpha} C_{n}\left(U_{\alpha}\right) \xrightarrow{+} C_{n}(X)\right) \subset C_{n}(X)
$$

to be the image of the addition homomorphism from the direct sum of the chain groups $C_{n}\left(U_{\alpha}\right)$. A singular chain in X is thus \mathcal{U}-small if it is a sum of singular simplices with support in one of the subspaces U_{α}. The boundary map on $C_{n}(X)$ restricts to a boundary map on $C_{n}^{\mathcal{U}}(X)$ since the boundary operator is natural. This means that the $C_{n}^{\mathcal{U}}(X), n \geq 0$, constitute a sub-chain complex of the singular chain complex. Let $H_{n}^{\mathcal{U}}(X)$ be the homology groups of $C_{n}^{\mathcal{U}}(X)$.
1.18. Theorem (Excision 1). Suppose that $X=\bigcup \operatorname{int} U_{\alpha}$. The inclusion chain map $C_{n}^{\mathcal{U}}(X) \rightarrow C_{n}(X)$ induces an isomorphism of homology groups, $H_{n}^{\mathcal{U}}(X) \stackrel{\cong}{\rightrightarrows} H_{n}(X)$.

There is also a relative version of excision. Suppose that A is a subspace of X. Let $\mathcal{U} \cap A$ denote the covering $\left\{U_{\alpha} \cap A\right\}$ of A. Define $C_{n}^{\mathcal{U}}(X, A)$ to be the quotient of $C_{n}^{\mathcal{U}}(X)$ by $C_{n}^{\mathcal{U}} \cap A(A)$. Then there is an induced chain map as in the commutative diagram

with exact rows. Let $H_{n}^{\mathcal{U}}(X, A)$ be the homology groups of the chain complex $C_{n}^{\mathcal{U}}(X, A)$.
1.19. Corollary (Excision 2). Suppose that $X=\bigcup \operatorname{int} U_{\alpha}$. The inclusion chain map $C_{n}^{\mathcal{U}}(X, A) \rightarrow$ $C_{n}(X, A)$ induces an isomorphism of relative homology groups, $H_{n}^{\mathcal{U}}(X, A) \cong H_{n}(X, A)$.

Proof of Corollary 1.19 assuming Theorem 1.18. The above morphism between short exact sequences of chain complexes induces a morphism

between induced long exact sequences in homology. Since two out of three of the vertical homomorphisms, $H_{n}^{\mathcal{U}}(X) \rightarrow H_{n}(X)$ and $H_{n}^{\mathcal{U}}(A) \rightarrow H_{n}(A)$, are isomorphisms by Theorem 1.18 , the 5 -lemma says that also the third vertical maps is an isomorphism. Note here that $A \cap \operatorname{int} U_{\alpha} \subset \operatorname{int}_{A}\left(A \cap U_{\alpha}\right.$ (General topology, below 2.35) so that we have $A=A \cap X=A \cap \bigcup \operatorname{int} U_{\alpha}=\bigcup\left(A \cap \operatorname{int} U_{\alpha}\right) \subset \bigcup \operatorname{int}_{A}\left(A \cap U_{\alpha}\right) \subset A$ so that, in fact, $A=\bigcup \operatorname{int}_{A}\left(A \cap U_{\alpha}\right)$.

We now specialize to the case where the covering $\mathcal{U}=\{A, B\}$ consists of just two subspaces.
1.20. Theorem (Excision 3). Let X be a topological space.
(1) Suppose that $X=A \cup B$ and that $X=\operatorname{int}(A) \cup \operatorname{int}(B)$. The inclusion map $(B, A \cap B) \rightarrow(A \cup B, A)$ induces an isomorphism $H_{n}(B, A \cap B) \xrightarrow{\cong} H_{n}(X, A)$ for all $n \geq 0$.
(2) Suppose that $U \subset A \subset X$ and that $\operatorname{cl}(U) \subset \operatorname{int}(A)$. The inclusion map $(X-U, A-U) \rightarrow(X, A)$ induces an isomorphism $H_{n}(X-U, A-U) \stackrel{\cong}{\leftrightarrows} H_{n}(X, A)$ for all $n \geq 0$.
Proof of Theorem 1.20 assuming Corollary 1.19. (1). Let $\mathcal{U}=\{A, B\}$ be the covering consisting of the two subsets A and B. The \mathcal{U}-small chains are $C_{n}^{\mathcal{U}}(X)=C_{n}(A)+C_{n}(B) \subset C_{n}(X)$ and $C_{n}^{\mathcal{U}} \cap A(A)=C_{n}(A)$ since A itself is a member of the covering $\mathcal{U} \cap A=\{A, A \cap B\}$. Using Noether's isomorphism theorem

$$
C_{n}^{\mathcal{U}}(X, A)=\frac{C_{n}^{\mathcal{U}}(X)}{C_{n}^{U}(A)}=\frac{C_{n}(A)+C_{n}(B)}{C_{n}(A)} \Longleftarrow \frac{C_{n}(B)}{C_{n}(A) \cap C_{n}(B)}=\frac{C_{n}(B)}{C_{n}(A \cap B)}
$$

we can identify the \mathcal{U}-small chain complex with the relative chain complex for the pair $(B, A \cap B)$. Thus $H_{n}(B, A \cap B) \cong H_{n}^{\mathcal{U}}(X, A)$ where $H_{n}^{\mathcal{U}}(X, A) \cong H_{n}(X, A)$ by Corollary 1.19.
(2). Let $B=X-U$ be the complement to U. Then $X=\operatorname{int}(A) \cup(X-\operatorname{int}(A))=\operatorname{int}(A) \cup(X-\operatorname{cl}(U))=$ $\operatorname{int}(A) \cup \operatorname{int}(B)=A \cup B$, and $(B, A \cap B)=(X-U, A-U)$. Thus (1) \Longrightarrow (2).

The proof of Theorem 1.18 uses k-fold iterated subdivision in the form of a natural chain map chain homotopic to the identity

$$
\operatorname{sd}^{k}: C_{*}(X) \rightarrow C_{*}(X)
$$

that decomposes any simplex in X into a chain that is a sum of smaller simplices and such that the subdivision of a cycle is a homologous cycle. We shall first define subdivision in the special case where $X=\Delta^{n}$ is the standard geometric n-simplex and then extend the definition by naturality. The plan of the proof is
(1) Define subdivision of a linear simplex
(2) Show that linear subdivision sd: $L_{*}\left(\Delta^{n}\right) \rightarrow L_{*}\left(\Delta^{n}\right)$ is a chain map chain homotopic to the identity
(3) Deduce that iterated linear subdivision $\mathrm{sd}^{k}: L_{*}\left(\Delta^{n}\right) \rightarrow L_{*}\left(\Delta^{n}\right)$ is a chain map chain homotopic to the identity
(4) Use naturality to define a general itertaed subdivision operator $\mathrm{sd}^{k}: C_{*}(X) \rightarrow C_{*}(X)$ chain homotopic to the identity
(5) Prove that $H_{n}^{\mathcal{U}}(X) \rightarrow H_{n}(X)$ is injective and surjective
1.21. Linear chains. A p-simplex in Δ^{n} is a map $\Delta^{p} \rightarrow \Delta^{n}$. A linear p-simplex in Δ^{n} is a linear map of the form $\left[v_{0} v_{1} \cdots v_{p}\right]: \Delta^{p} \rightarrow \Delta^{n}$ given by

$$
\left[v_{0} v_{1} \cdots v_{p}\right]\left(\sum t_{i} e_{i}\right)=\sum t_{i} v_{i}, \quad t_{i} \geq 0, \sum t_{i}=1
$$

where $v_{0}, v_{1}, \ldots, v_{p}$ are $p+1$ points in Δ^{n}. A linear chain is any finite linear combination with \mathbf{Z}-coefficients of linear simplices. Let $L_{p}\left(\Delta^{n}\right)$ be the abelian group of all linear chains. This is a subgroup of the abelian group $C_{p}\left(\Delta^{n}\right)$ of all singular chains. Since the boundary of a linear p-simplex

$$
\partial\left[v_{0} v_{1} \cdots v_{p}\right]=\sum_{i=0}^{p}(-1)^{i}\left[v_{0} \cdots \widehat{v}_{i} \cdots v_{p}\right]
$$

is a linear $(p-1)$-chain, we have a (sub)chain complex

$$
\cdots \xrightarrow{\partial} L_{p}\left(\Delta^{n}\right) \xrightarrow{\partial} L_{p-1}\left(\Delta^{n}\right) \xrightarrow{\partial} \cdots \xrightarrow{\partial} L_{0}\left(\Delta^{n}\right) \xrightarrow{\partial} 0
$$

of linear chains. As usual the boundary of any 0 -simplex is defined to 0 . It will be more convenient for us to work with the augmented linear chain complex

$$
\begin{equation*}
\cdots \xrightarrow{\partial} L_{p}\left(\Delta^{n}\right) \xrightarrow{\partial} L_{p-1}\left(\Delta^{n}\right) \xrightarrow{\partial} \cdots \xrightarrow{\partial} L_{0}\left(\Delta^{n}\right) \xrightarrow{\partial} L_{-1}\left(\Delta^{n}\right) \tag{1.22}
\end{equation*}
$$

where $L_{-1}\left(\Delta^{n}\right) \cong \mathbf{Z}$ is generated by the (-1)-simplex $[\emptyset]$ with 0 vertices and the boundary of any 0 -simplex $\partial\left[v_{0}\right]=[\emptyset]$.
1.23. Cones on linear chains. Fix a point $b \in \Delta^{n}$. Define the cone on b to be the linear map

$$
\begin{aligned}
b: & L_{p}\left(\Delta^{n}\right) \rightarrow L_{p+1}\left(\Delta^{n}\right), \quad p \geq-1, \\
& b\left[v_{0} v_{1} \cdots v_{p}\right]=\left[b v_{0} v_{1} \cdots v_{p}\right]
\end{aligned}
$$

that adds b as an extra vertex on any linear simplex. The cone operator is a chain homotopy (Definition 1.97) between the identity map and the zero map: We compute the boundary of a cone.
1.24. Lemma. For all $p \geq-1$

$$
\partial b=1-b \partial-0: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p}\left(\Delta^{n}\right)
$$

The boundary of a cone is the base and the cone on the boundary of the base

Figure 3. Barycentric subdivision of a 2 -simplex

Proof. It is enough to compute the boundary on the cone $\partial b\left[v_{0} \cdots v_{p}\right]$ of a linear simplex. For the (-1)-simplex, $\partial b[\emptyset]=\partial[b]=[\emptyset]=(1-b \partial)[\emptyset]$. For a 0 -simplex, $\partial b\left[v_{0}\right]=\partial\left[b v_{0}\right]=\left[v_{0}\right]-[b]=\left[v_{0}\right]-b[\emptyset]=$ $\left[v_{0}\right]-b \partial\left[v_{0}\right]=(\mathrm{id}-b \partial)\left[v_{0}\right]$. For $p>0$ we take any linear p-simplex $\sigma=\left[v_{0} \cdots v_{p}\right] \in L_{p}\left(\Delta^{n}\right)$ and clearly

$$
\partial \partial\left[b v_{0} \cdots v_{p}\right]=\left[v_{0} \cdots v_{p}\right]-b \partial\left[v_{0} \cdots v_{p}\right]=(1-b \partial-0)\left[v_{0} \cdots v_{p}\right]
$$

as asserted.
Thus the augmented linear chain complex of Δ^{n} is exactness (the identity map induces the zero map in homology).
1.25. Subdivision of linear chains. The barycentre of the linear simplex $\sigma=\left[v_{0} \cdots v_{p}\right]$ is the point

$$
b(\sigma)=\frac{1}{p+1}\left(v_{0}+\cdots+v_{p}\right)=v_{01 \cdots p}
$$

the center of gravity.
The subdivision operator is the linear map sd: $L_{p}\left(\Delta^{n}\right) \rightarrow L_{p}\left(\Delta^{n}\right)$ defined recursively by

$$
\operatorname{sd}(\sigma)= \begin{cases}\sigma & p=-1,0 \tag{1.26}\\ b(\sigma) \operatorname{sd}(\partial \sigma) & p>0\end{cases}
$$

This means that the subdivision of a point is a point and the subdivision of a p-simplex for $p>0$ is the cone with vertex in the barycentre on the subdivision of the boundary. For instance

$$
\begin{aligned}
& \operatorname{sd}\left[v_{0}, v_{1}\right]=v_{01}\left(\left[v_{1}\right]-\left[v_{0}\right]\right)=\left[v_{01} v_{1}\right]-\left[v_{01} v_{0}\right] \\
& \begin{aligned}
\operatorname{sd}\left[v_{0}, v_{1}, v_{2}\right] & =v_{012} \operatorname{sd}\left(\left[v_{1} v_{2}\right]-\left[v_{0} v_{2}\right]+\left[v_{0} v_{1}\right]\right) \\
& =\left[v_{012} v_{12} v_{2}\right]-\left[v_{012} v_{12} v_{1}\right]-\left[v_{012} v_{02} v_{2}\right]+\left[v_{012} v_{02} v_{0}\right]+\left[v_{012} v_{01} v_{1}\right]-\left[v_{012} v_{01} v_{0}\right]
\end{aligned}
\end{aligned}
$$

1.27. Lemma. sd is a chain map: $\partial \mathrm{sd}=\operatorname{sd} \partial$.

Proof. The claim is that the boundary of the subdivision is the subdivision of the boundary. In degree -1 and 0 , this is clear as sd is the identity map there. Assume that $\operatorname{sd} \partial=\partial$ sd in all degrees $<p$ and let σ be a linear p-simplex in Δ^{n}. Then

$$
\begin{aligned}
& \partial \operatorname{sd} \sigma \stackrel{\text { def }}{=} \partial(b(\sigma) \operatorname{sd}(\partial \sigma)) \stackrel{1.24}{=}(\mathrm{id}-b(\sigma) \partial) \operatorname{sd}(\partial \sigma)=\operatorname{sd}(\partial \sigma)-b(\sigma) \partial \operatorname{sd}(\partial \sigma) \\
& \quad \stackrel{\text { induction }}{=} \operatorname{sd}(\partial \sigma)-b(\sigma) \operatorname{sd}(\partial \partial \sigma) \stackrel{\partial \partial=0}{=} \operatorname{sd}(\partial \sigma)
\end{aligned}
$$

since the induction hypothesis applies to $\partial \sigma$ which has degree $p-1$.

We now show that subdivision is chain homotopic to the identity map. We need to find morphisms $T: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p+1}\left(\Delta^{n}\right), p \geq 0$, such that $\partial T=1-T \partial-$ sd. We may let $T=0$ in degree $p=-1$ and $T\left(v_{0}\right)=\left(v_{0} v_{0}\right)$ in degree $p=0$. Then the formula holds in degree -1 and 0 .

Define $T: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p+1}\left(\Delta^{n}\right)$ recursively by

$$
T(\sigma)= \begin{cases}0 & p=-1 \tag{1.28}\\ b(\sigma)(\sigma-T \partial \sigma) & p \geq 0\end{cases}
$$

for all $\sigma \in L_{p}\left(\Delta^{n}\right)$
1.29. Lemma. For all $p \geq-1$

$$
\partial T=1-T \partial-\operatorname{sd}: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p}\left(\Delta^{n}\right)
$$

T is a chain homotopy between subdivision and the identity

Proof. The formula holds in degree $p=-1$ where both sides are 0 . The formula also holds in degree $p=0$, since $T\left[v_{0}\right]=v_{0}\left[v_{0}\right]=\left[v_{0} v_{0}\right]$ so that $(T \partial+\partial T)\left[v_{0}\right]=T[\emptyset]+\partial\left[v_{0} v_{0}\right]=0+0=0=(1-\mathrm{sd})\left[v_{0}\right]$. Assume now inductively that the formula holds in degrees $<p$ and let σ be a linear p-simplex in Δ^{n}. Then

$$
\begin{aligned}
& \partial T \sigma=\partial(b(\sigma-T \partial \sigma))=\sigma-T \partial \sigma-b \partial(\sigma-T \partial \sigma)=\sigma-T \partial \sigma-b(\partial \sigma-\partial T \partial \sigma)^{1-\partial T=T \partial+\mathrm{sd}} \stackrel{=}{=} \\
& \sigma-T \partial \sigma-b(T \partial \partial \sigma+\operatorname{sd} \partial \sigma)=\sigma-T \partial \sigma-b \operatorname{sd} \partial \sigma=\sigma-T \partial \sigma-\operatorname{sd} \sigma
\end{aligned}
$$

where we use Lemma 1.24 and the induction hypothesis.
1.30. Iterated subdivision of linear chains. For any $k \geq 0$ let

$$
\mathrm{sd}^{k}=\overbrace{\mathrm{sd} \circ \cdots \circ \mathrm{sd}}^{k}: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p}\left(\Delta^{n}\right)
$$

be the k th fold iterate of the subdivision operator sd. Since sd is a chain map chain homotopic to the identity map, its k-fold iteration, sd^{k}, is also a chain map chain homotopic to the identity (Lemma 1.99). Let T_{k} be a chain homotopy so that

$$
\begin{equation*}
\partial T_{k}=1-T_{k} \partial-\mathrm{sd}^{k}: L_{p}\left(\Delta^{n}\right) \rightarrow L_{p}\left(\Delta^{n}\right) \tag{1.31}
\end{equation*}
$$

for all $p \geq-1$.
The diameter of a compact subspace of a metric space is the maximum distance between any two points of the subspace.
1.32. Lemma. Let $\sigma=\left[v_{0} \cdots v_{p}\right]$ be a linear simplex in Δ^{n}. Any simplex in the chain $\operatorname{sd}^{k}(\sigma)$ has diameter $\leq\left(\frac{n}{n+1}\right)^{k} \operatorname{diam}(\sigma)$.

I omit the proof. The important thing to notice is that iterated subdivision will produce simplices of arbitrarily small diameter because the fraction $n /(n+1)<1$.
1.33. Subdivision for general spaces. Let now X be an arbitrary topological space. For any singular n-simplex $\sigma: \Delta^{n} \rightarrow X$ in X we define

$$
\operatorname{sd}^{k}(\sigma)=\sigma_{*}\left(\operatorname{sd}^{k} \delta_{n}\right) \in C_{n}(X), \quad T_{k}(\sigma)=\sigma_{*}\left(T_{k} \delta_{n}\right) \in C_{n+1}(X)
$$

where, as usual, $\sigma_{*}: L_{p}\left(\Delta^{n}\right) \rightarrow C_{p}(X)$ is the chain map induced by σ and $\delta_{n} \in L_{n}\left(\Delta^{n}\right)$ is the linear n-simplex on the standard n-simplex Δ^{n} that is identity map $\delta_{n}=\left[e_{0} \cdots e_{n}\right]: \Delta^{n} \rightarrow \Delta^{n}$.
1.34. Lemma. $\mathrm{sd}^{k}: C_{n}(X) \rightarrow C_{n}(X)$ is a natural chain map, $\partial \mathrm{sd}^{k}=\mathrm{sd}^{k} \partial$, and $T_{k}: C_{n}(X) \rightarrow C_{n+1}(X)$ is a natural chain homotopy, $\partial T_{k}=1-T_{k} \partial-\mathrm{sd}^{k}$.

Figure 4. Subdivided simplices in $X=\operatorname{int}(A) \cup \operatorname{int}(B)$ are \mathcal{U}-small

Proof. It is a completely formal matter to check this. It is best first to verify that subdivision is natural. Let $\sigma: \Delta^{n} \rightarrow X$ be a singular n-simplex in X and let $f: X \rightarrow Y$ be a map. The computation

$$
f_{*} \operatorname{sd}^{k}(\sigma) \stackrel{\text { def }}{=} f_{*} \sigma_{*} \operatorname{sd}^{k}\left(\delta^{n}\right)=(f \sigma)_{*} \operatorname{sd}^{k}\left(\delta^{n}\right) \stackrel{\text { def }}{=} \operatorname{sd}^{k}(f \sigma)=\operatorname{sd}^{k}\left(f_{*} \sigma\right)
$$

shows that subdivision is natural. Next we show that subdivision is a chain map:

$$
\begin{aligned}
\partial\left(\operatorname{sd}^{k} \sigma\right) & =\partial \sigma_{*} \operatorname{sd}^{k}\left(\delta^{n}\right) & & \text { by definition } \\
& =\sigma_{*} \partial \operatorname{sd}^{k}\left(\delta_{n}\right) & & \sigma_{*} \text { is a chain map } \\
& =\sigma_{*} \operatorname{sd}^{k}\left(\partial \delta_{n}\right) & & \mathrm{sd}^{k} \text { is a chain map on linear chains } \\
& =\operatorname{sd}^{k} \sigma_{*}\left(\partial \delta_{n}\right) & & \mathrm{sd}^{k} \text { is natural } \\
& =\operatorname{sd}^{k} \partial \sigma_{*}\left(\delta_{n}\right) & & \sigma_{*} \text { is a chain map } \\
& =\operatorname{sd}^{k}(\partial \sigma) & &
\end{aligned}
$$

Similarly, we see that T_{k} is natural because

$$
f_{*} T_{k} \sigma \stackrel{\text { def }}{=} f_{*} \sigma_{*} T_{k} \delta_{n}=(f \sigma)_{*} T_{k} \delta_{n} \stackrel{\text { def }}{=} T_{k}(f \sigma)=T_{k}\left(f_{*} \sigma\right)
$$

It then follows that

$$
T_{k} \partial \sigma=T_{k} \partial \sigma_{*} \delta_{n}=T_{k} \sigma_{*} \partial \delta_{n} \stackrel{T_{k}}{\stackrel{\text { natural }}{=} \sigma_{*} T_{k} \partial \delta_{n},{ }^{\prime},}
$$

and

$$
\partial T_{k} \sigma \stackrel{\text { def }}{=} \partial \sigma_{*} T_{k} \delta_{n} \stackrel{\sigma_{*}}{\text { chain map }}=\sigma_{*} \partial T_{k} \delta_{n}
$$

We conclude that

$$
\left(\partial T_{k}+T_{k} \partial\right) \sigma=\sigma_{*}\left(\partial T_{k}+T_{k} \partial\right) \delta_{n} \stackrel{(1.98)}{=} \sigma_{*}\left(\mathrm{id}-\mathrm{sd}^{k}\right) \delta_{n}=\left(\mathrm{id}-\mathrm{sd}^{k}\right) \sigma
$$

and this finishes the proof.
1.35. Corollary. The subdivision of an n-cycle is a homologous n-cycle: If $z \in C_{n}(X)$ is an n-cycle in X, then $\mathrm{sd}^{k} z=z-\partial T_{k} z$.

Proof. Let $z \in C_{n}(X)$ be an n-cycle, $\partial z=0$. Then $z-\mathrm{sd}^{k} z=\left(1-\mathrm{sd}^{k}\right) z=\left(\partial T_{k}+T_{k} \partial\right) z=\partial T_{k} z$.
1.36. Proof of Theorem 1.18. Let X be a topological space and $\mathcal{U}=\left\{U_{\alpha}\right\}$ a covering of X.
1.37. Lemma. Suppose that $X=\bigcup \operatorname{int} U_{\alpha}$. Let $c \in C_{n}(X)$ be any singular chain in X. There exists a $k \gg 0$ (depending on c) such that the k-fold subdivided chain $\operatorname{sd}^{k}(c)$ is \mathcal{U}-small.

Proof. It is enough to show that $\mathrm{sd}^{k}(\sigma)=\sigma_{*}\left(\mathrm{sd}^{k}\left(\delta_{n}\right)\right)$ is \mathcal{U}-small when k is big enough for any singular simplex $\sigma: \Delta^{n} \rightarrow X$. Choose k so big that the diameter of each simplex in the chain $\mathrm{sd}^{k}\left(\delta_{n}\right)$ is smaller than the Lebesgue number (General topology, 2.158) of the open covering $\left\{\sigma^{-1}\left(\operatorname{int} U_{\alpha}\right)\right\}$ of the compact metric space Δ^{n}.

Proof of Theorem 1.18. We show that the induced homomorphism $H_{n}^{\mathcal{U}}(X) \rightarrow H_{n}(X)$ is surjective and injective.
Surjective: Let z be any n-cycle. For $k \gg 0$, the subdivided chain $\operatorname{sd}^{k}(z)$ is a \mathcal{U}-small cycle in the same

 $\overline{c \in C_{n+1}}(X)$. The situation is sketched in the commutative diagram

where the rows are chain complexes and the down arrows are inclusions.
The subdivided chain $\mathrm{sd}^{k} c$ is \mathcal{U}-small for $k \gg 0$ (Lemma 1.37) and its boundary is $\partial \mathrm{sd}^{k} c=\mathrm{sd}^{k} \partial c=$ $\mathrm{sd}^{k} b=b-\partial T_{k} b$ (Corollary 1.35). Thus $b=\partial \mathrm{sd}^{k} c+\partial T_{k} b$ is a boundary in $C_{*}^{\mathcal{U}}(X)$ since $\mathrm{sd}^{k} c$ is \mathcal{U}-small and also $T_{k} b$ is \mathcal{U}-small since b is \mathcal{U}-small and T_{k} natural (Corollary 1.35).
1.38. The Mayer-Vietoris sequence. Our first application of the excision axiom is the MayerVietoris sequence.
1.39. Corollary (The Mayer-Vietoris sequence). Suppose that $X=A \cup B=\operatorname{int} A \cup \operatorname{int} B$. Then there is a long exact sequence

$$
\cdots \rightarrow H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus H_{n}(B) \rightarrow H_{n}(A \cup B) \xrightarrow{\partial} H_{n-1}(A \cap B) \rightarrow \cdots
$$

for the homology of $X=A \cup B$. There is a similar sequence for reduced homology.
Proof. Note that there is short exact sequence of chain complexes

$$
0 \rightarrow C_{n}(A \cap B) \xrightarrow{\sigma \rightarrow(\sigma,-\sigma)} C_{n}(A) \oplus C_{n}(B) \xrightarrow{(\sigma, \tau) \rightarrow \sigma+\tau} C_{n}(A)+C_{n}(B) \rightarrow 0
$$

producing a long exact sequence in homology. The homology of the chain complex to the right is isomorphic to $H_{n}(X)$ by excision (1.18) applied to the covering $\{A, B\}$ where $C_{n}^{\{A, B\}}(X)=C_{n}(A) \oplus C_{n}(B)$. In degree $n=0$ we may use the short exact sequences $0 \rightarrow 0 \oplus 0 \rightarrow 0 \rightarrow 0$ or $0 \rightarrow \mathbf{Z} \xrightarrow{(1,-1)} \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{+} \mathbf{Z} \rightarrow 0$. In the second case, we get the Mayer-Vietoris sequence in reduced homology.
1.40. The long exact sequence for a quotient space. For good pairs the relative homology groups actually are the homology groups of the quotient space.
1.41. Definition. (X, A) is a good pair if the subspace A is closed and is the deformation retract of an open neighborhood $V \supset A$.

Suppose that (X, A) is a good pair and the open subspace V deformation retracts onto the closed subspace A. The quotient map $q: X \rightarrow X / A$ is a map of triples $q:(X, V, A) \rightarrow(X / A, V / A, A / A)$ where

- A / A is a point
- V / A is an open subspace that deformation retracts onto the closed point A / A
- the restriction of q to the complement of A is a homeomorphism between $X-A$ and $X / A-A / A$ and between $V-A$ and $V / A-A / A$
Consult (General topology, 2.84.(4)) to verify these facts.
1.42. Proposition (Relative homology as homology of a quotient space). Let (X, A) be a good pair and $A \neq \emptyset$. Then the quotient map $(X, A) \rightarrow(X / A, A / A)$ induces an isomorphism $H_{n}(X, A) \rightarrow H_{n}(X / A, A / A)=$ $\widetilde{H}_{n}(X / A)$ on homology.

Proof. Look at the commutative diagram

where the horizontal maps and the right vertical map are isomorphisms.
The long exact sequence for the quotient space of a nice pair (X, A),

$$
\cdots \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(X) \xrightarrow{q_{*}} \widetilde{H}_{n}(X / A) \rightarrow H_{n-1}(A) \rightarrow \cdots
$$

is obtained from the pair sequence (1.10) by replacing $H_{n}(X, A)$ by $\widetilde{H}_{n}(X / A)$. (There is a similar long exact sequence in reduced homology.) This exact sequence is in fact a special case of the following slightly more general long exact sequence. (See Homotopy theory for beginners for mapping cones).
1.43. Corollary (The long exact sequence of a map). For any map $f: X \rightarrow Y$ there is a long exact sequence

$$
\cdots \rightarrow H_{n}(X) \xrightarrow{f_{*}} H_{n}(Y) \xrightarrow{q_{*}} \widetilde{H}_{n}\left(C_{f}\right) \rightarrow H_{n-1}(X) \rightarrow \cdots
$$

where C_{f} is the mapping cone of f.
1.44. Homology of spheres. The homology groups of the spheres are the most important of all homology groups.
1.45. Corollary (Homology of spheres). The homology groups of the n-sphere $S^{n}, n \geq 0$, are

$$
\widetilde{H}_{i}\left(S^{n}\right)= \begin{cases}\mathbf{Z} & i=n \\ 0 & i \neq n\end{cases}
$$

Proof. The long exact sequence in reduced homology for the good pair (D^{n}, S^{n-1}) gives that $\widetilde{H}_{i}\left(S^{n}\right)=$ $\widetilde{H}_{i}\left(D^{n} / S^{n-1}\right) \cong \widetilde{H}_{i-1}\left(S^{n-1}\right)$ because $\widetilde{H}_{i}\left(D^{n}\right)=0$ for all i. Use this equation n times to get $\widetilde{H}_{i}\left(S^{n}\right) \cong$ $\widetilde{H}_{i-n}\left(S^{0}\right)$. This homology group is nontrivial if and only if $i=n$.
1.46. Corollary (Homology of a wedge). Let $\left(X_{\alpha}, x_{\alpha}\right), \alpha \in A$, be a set of based spaces. For all $n \geq 0$,

$$
\bigoplus \widetilde{H}_{n}\left(X_{\alpha}\right) \cong \widetilde{H}_{n}\left(\bigvee X_{\alpha}\right)
$$

provided that each pair $\left(X_{\alpha},\left\{x_{\alpha}\right\}\right)$ is a good pair.
Proof. $\bigoplus \widetilde{H}_{n}\left(X_{\alpha}\right) \stackrel{1.7}{\cong} \bigoplus H_{n}\left(X_{\alpha}, x_{\alpha}\right) \cong H_{n}\left(\amalg X_{\alpha}, \coprod\left\{x_{\alpha}\right\}\right)=H_{n}\left(\amalg X_{\alpha} / \coprod\left\{x_{\alpha}\right\}\right)=\widetilde{H}_{n}\left(\bigvee X_{\alpha}\right)$.
1.47. Corollary (Homology of a suspension). $\widetilde{H}_{n+1}(S X) \xrightarrow{\supseteq} \widetilde{H}_{n}(X)$ for any space $X \neq \emptyset$.

Proof. The suspension, $S X=(X \times[-1,+1]) /(X \times\{-1\}, X \times\{+1\})=C_{-} X \cup C_{+} X$ is the union of two cones, $C_{-} X=X \times[-1,1 / 2] / X \times\{-1\}$ and $C_{+} X=X \times[-1 / 2,+1] / X \times\{+1\}$, whose intersection $C_{-} X \cap C_{+} X=X \times[-1 / 2,1 / 2]$ deformation retracts onto X. The Mayer-Vietoris sequence (1.39) in reduced homology gives the isomorphism.

We may also use 1.47 to compute the homology groups of spheres as $S S^{n-1}=C_{+} S^{n-1} \cup_{S^{n-1}} C_{+} S^{n-1}=$ $D^{n} \cup_{S^{n-1}} D^{n}=S^{n}$.

The Mayer-Vietoris sequence is natural with respect to maps of triples (X, A, B).
1.48. Lemma. The reflection map $R: S X \rightarrow S X$ given by $R([x, t])=[x,-t]$ induces multiplication by $R_{*}=-1$ on the reduced homology groups of $S X$.

Proof. R is a map of the triple $\left(S X, C_{-} X, C_{+} X\right)$ to the triple $\left(S X, C_{+} X, C_{-} X\right)$ that is the identity on $X \subset C_{-} X \cap C_{+} X$. Let $\partial: \widetilde{H}_{n+1}(S X) \rightarrow \widetilde{H}_{n}(X)$ be the isomorphism associated to the first triple. From the construction of the Mayer-Vietoris sequence we see that the isomorphism associated to the second triple is $-\partial$. (Look at the zig-zag relations defining the connecting homomorphisms.) Thus R induces a commutative diagram

and we conclude that $R_{*}=-1$.
1.49. Corollary. A reflection R : $S^{n} \rightarrow S^{n}$ of an n-sphere, $n \geq 0$, induces multiplication by -1 on the nth reduced homology group $\widetilde{H}_{n}\left(S^{n}\right)$.
1.50. Proposition (Generating homology classes). The connecting isomorphism $\partial: H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right) \rightarrow$ $\widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ is an isomorphism and both homology groups are isomorphic to \mathbf{Z} when $n \geq 1$.
(1) The relative homology group $H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$ is generated by the homology class [δ^{n}]
(2) The reduced homology group $\widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ is generated by the homology class $\left[\sum_{i \in n_{+}}(-1)^{i} d^{i}\right]$

Proof. The identity n-simplex δ^{n} is indeed a relative n-cycle (1.9) because its boundary $\partial \delta^{n}=\sum_{i \in n_{+}}(-1)^{i} d^{i}$ is an $(n-1)$-chain in the boundary $\partial \Delta^{n}$ of Δ^{n}. By definition of the connecting homomorphism we have $\partial\left[\delta^{n}\right]=\left[\sum_{i \in n_{+}}(-1)^{i} d^{i}\right]$ on homology. When $n=1, \partial\left[\delta^{1}\right]=\left[d^{0}-d^{1}\right]$ is manifestly a generator of $\widetilde{H}_{0}\left(S^{0}\right)$. To proceed, for $n \geq 2$, let $\Lambda_{0} \subseteq \partial \Delta^{n}$ be the union of all faces of Δ^{n} but $d^{0} \Delta^{n-1}$. The coface map d^{0} is a map of (good) pairs $d^{0}:\left(\Delta^{n-1}, \partial \Delta^{n-1}\right) \rightarrow\left(\partial \Delta^{n}, \Lambda_{0}\right)$ and the induced map on homology $d_{*}^{0}: H_{n-1}\left(\Delta^{n-1}, \partial \Delta^{n-1}\right) \rightarrow$ $H_{n-1}\left(\partial \Delta^{n}, \Lambda_{0}\right)$ is an isomorphism since the induced map $\Delta^{n-1} / \partial \Delta^{n-1} \rightarrow \partial \Delta^{n} / \Lambda_{0}$ is a homeomorphism. The isomorphisms

exact sequence
show that $\left[\delta^{n-1}\right]$ generates $H_{n-1}\left(\Delta^{n-1}, \partial \Delta^{n-1}\right)$ if and only $\left[\delta^{n}\right]$ generates $H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$. An induction argument now completes the proof.
1.45. Local homology groups. Let X be a topological space where points are closed, for instance a Hausdorff space. Let x be a point of X. The local homology group of X at x is the relative homology group $H_{i}(X, X-x)$.
1.51. Proposition. If U is any open neighborhood of x then $H_{i}(U, U-x) \cong H_{i}(X, X-x)$.

Proof. Excise the closed set $X-U$ from the open set $X-x$.
1.52. Proposition (Local homology groups of manifolds). Let M be an m-manifold and x a point of M. Then

$$
H_{i}(M, M-x)= \begin{cases}\mathbf{Z} & i=m \\ 0 & i \neq m\end{cases}
$$

Proof. $H_{i}(U, U-x) \cong H_{i}\left(\mathbf{R}^{m}, \mathbf{R}^{m}-x\right) \cong \widetilde{H}_{i-1}\left(\mathbf{R}^{m}-x\right) \cong \widetilde{H}_{i-1}\left(S^{m-1}\right)$ when U is an open neighborhood of x homeomorphic to \mathbf{R}^{m}.

7. Easy applications of singular homology

1.53. Proposition. S^{n-1} is not a retract of $D^{n}, n \geq 1$.

Proof. Assume that $r: D^{n} \rightarrow S^{n-1}$ is a retraction.

1.54. Corollary (Brouwer's fixed point theorem). Any self-map of $D^{n}, n \geq 0$, has a fixed point.

Proof. Suppose that f is a self-map of D^{n} with no fixed points. For any $x \in D^{n}$ let $r(x) \in S^{n-1}$ be the point on the boundary on the ray from $f(x)$ to x. Then $r: D^{n} \rightarrow S^{n-1}$ is a retraction of D^{n} onto S^{n-1}.
1.55. Corollary (Homeomorphism type of Euclidean spaces). Let $U \subset \mathbf{R}^{m}$ and $V \subset \mathbf{R}^{n}$ be two nonempty open subsets of \mathbf{R}^{m} and \mathbf{R}^{n}, respectively. Then

$$
U \text { and } V \text { are homeomorphic } \Longrightarrow m=n
$$

In particular: \mathbf{R}^{m} and \mathbf{R}^{n} are homeomorphic $\Longleftrightarrow m=n$.
Proof. If $U \subset R^{m}$ and $V \subset \mathbf{R}^{n}$ are homeomorphic, then their local homology groups are isomorphic so $m=n$ by Proposition 1.52.

8. The degree of a self-map of the sphere

Let $f: S^{n} \rightarrow S^{n}$ be a map of an n-sphere, $n \geq 1$, into itself and let $f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ be the induced map on the nth homology group. Choose a generator $\left[S^{n}\right]$ of $H_{n}\left(S^{n}\right) \cong \mathbf{Z}$. Then

$$
f_{*}\left(\left[S^{n}\right]\right)=(\operatorname{deg} f) \cdot\left[S^{n}\right]
$$

for a unique integer $\operatorname{deg} f \in \mathbf{Z}$ called the degree of f.
1.56. Lemma. We note these properties of the degree:
(1) The degree of a map $f: S^{n} \rightarrow S^{n}$ only depends on the homotopy class of f.
(2) The degree is a map deg: $\left[S^{n}, S^{n}\right] \rightarrow \mathbf{Z}$.
(3) The degree is multiplicative in the sense that $\operatorname{deg}(\mathrm{id})=1$ and $\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)$.
(4) The degree of a reflection is -1 .
(5) The degree of a homotopy equivalence is ± 1.
(6) The degree of the antipodal map -1 is $(-1)^{n+1}$.
(7) Any map $f: S^{n} \rightarrow S^{n}$ without fixed points is homotopic to -1 and has degree $(-1)^{n+1}$.
(8) Any map $f: S^{n} \rightarrow S^{n}$ of degree not equal to $(-1)^{n+1}$ has a fixed point.
(9) Any map $f: S^{n} \rightarrow S^{n}$ of nonzero degree is surjective.
(10) For any integer d there is a self-map of $S^{n}, n>0$, of degree d.

Proof. The degree is obviously multiplicative because $\operatorname{deg}(g \circ f)\left[S^{n}\right]=(g \circ f)_{*}\left(\left[S^{n}\right]\right)=g_{*}\left(f_{*}\left(\left[S^{n}\right]\right)\right)=$ $g_{*}\left(\operatorname{deg}(f)\left[S^{n}\right]\right)=\operatorname{deg}(f) g_{*}\left(\left[S^{n}\right]\right)=\operatorname{deg}(f) \operatorname{deg}(g)\left[S^{n}\right]$. We showed in Corollary 1.49 that reflections have degree -1 . The linear map -id on $S^{n} \subset \mathbf{R}^{n+1}$ has degree $(-1)^{n+1}$ since it is the composition of $n+1$ reflections. If f has no fixed points then the line segment in \mathbf{R}^{n+1} connecting $f(x)$ and $-x$ does not pass
through 0 (for $f(x)$ is not opposite $-x$) so that we may construct a linear homotopy between f and -id considered as maps into $\mathbf{R}^{n+1}-\{0\}$. The normalization

$$
H(x, t)=\frac{(1-t) f(x)-t x}{|(1-t) f(x)-t x|}
$$

of such a homotopy is a homotopy between f and -id (as maps $S^{n} \rightarrow S^{n}$). If a self map f of the sphere S^{n} is not surjective, say x_{0} is not in the image of f, then f factors through the contractible space $S^{n}-\left\{x_{0}\right\}=\mathbf{R}^{n}$, so that f is nullhomotopic. A self-map of positive degree d is

$$
S^{n} \xrightarrow{\nabla} \underbrace{S^{n} \vee \ldots \vee S^{n}}_{d} \stackrel{\nu}{\rightarrow} S^{n}
$$

where ∇ is a pinch and ν a folding map. Compose with a reflection to get maps of negative degrees.
1.57. Local degree. Suppose that the map $f: S^{n} \rightarrow S^{n}$ has the (ubiquitous) property that $f^{-1}(y)$ is finite for some point $y \in S^{n}$, say $f^{-1}(y)=\left\{x_{1}, \ldots, x_{m}\right\}$. Let $V \subset S^{n}$ be an open neighborhood of y (eg $V=S^{n}$) and let $U_{i} \subset S^{n}$ be disjoint open neighborhoods of x_{i} (eg small discs) such that $f\left(U_{i}\right) \subset V$ for all $i=1, \ldots, m$. Then f maps $U_{i}-x_{i}$ into $V-y$ for x_{i} is the only point in U_{i} that hits y. Define $\left[S^{n}\right] \mid x_{i}$ to be the generator of the local homology group $H_{n}\left(U_{i}, U_{i}-x_{i}\right)$ corresponding to $\left[S^{n}\right] \in H_{n}\left(S^{n}\right)$ under the isomorphism of the left column and $\left[S^{n}\right] \mid y$ to be the generator of the local homology group $H_{n}(V, V-y)$ corresponding to $\left[S^{n}\right] \in H_{n}\left(S^{n}\right)$ under the isomorphism of the right column of the diagram

The local degree of f at $x_{i}, \operatorname{deg} f \mid x_{i}$, the integer such that

$$
\left(f \mid U_{i}\right)_{*}\left(\left[S^{n}\right] \mid x_{i}\right)=\left(\operatorname{deg} f \mid x_{i}\right) \cdot\left(\left[S^{n}\right] \mid y\right)
$$

only depends on f near the point x_{i}.
1.58. Theorem (Computation of degree). $\operatorname{deg} f=\sum \operatorname{deg} f \mid x_{i}$

Proof. The commutative diagram of maps between topological spaces

induces a commutative diagram of homology groups

showing that the degree of f is the sum of the local degrees.
1.59. Corollary. The degree of $z \rightarrow z^{d}: S^{1} \rightarrow S^{1}$ is d.

1.58. Vector fields on spheres.

1.60. Theorem (Hairy Ball Theorem). There exists a function $v: S^{n} \rightarrow S^{n}$ such that $v(x) \perp x$ for all $x \in S^{n}$ if and only if n is odd. (Only odd spheres admit nonzero vector fields.)

Proof. If n is odd, let $v\left(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(-x_{1}, x_{0}, \ldots,-x_{n}, x_{n-1}\right)$. Conversely, if v exists, we can rotate x into $-x$ in the plane spanned by x and $v(x)$ and obtain the homotopy $(t, x) \rightarrow \cos (\pi t) x+\sin (\pi t) v(x)$ between id and -id . Then $1=\operatorname{deg}(\mathrm{id})=\operatorname{deg}(-\mathrm{id})=(-1)^{n+1}$ so n is odd.

The Hurwitz-Radon number of $n=(2 a+1) 2^{b}$ is

$$
\rho(n)=2^{c}+8 d
$$

if $b=c+4 d$ with $0 \leq c \leq 3$. It is a classical result that $S^{n-1} \subset \mathbf{R}^{n}$ admits $\rho(n)-1$ linearly independent vector fields.
1.61. Theorem (Adams' Vector Fields on Spheres Theorem). [1] S^{n-1} does not admit $\rho(n)$ linearly independent vector fields.

9. Cellular homology of CW-complexes

It is in principle easy to compute the homology of a Δ-complex from its simplicial chain complex (1.84). In practice, however, one often runs into the problem that Δ-complexes have many simplices. (Consider for instance the compact surfaces of Eamples 2.40-2.42.) CW-complexes are more flexible than Δ-sets, but how can we compute the homology of a CW-complex?
1.62. Homology of an n-cellular extension. Let X be a space and $Y=X \cup_{\phi} \coprod D_{\alpha}^{n}$ an n-cellular extension of X where $n \geq 0$. The characteristic map $\Phi: \coprod D_{\alpha}^{n} \rightarrow Y$ and its restriction, the attaching map,
$\phi=\Phi \mid \amalg S_{\alpha}^{n-1}: \amalg S_{\alpha}^{n-1} \rightarrow X$ are shown in the commutative diagram

where the maps labeled q are quotient maps. The map $\bar{\Phi}$ between the quotients induced by the characteristic map is a homeomorphism which makes it very easy to compute relative homology.

Since ($\left.\coprod D_{\alpha}^{n}, \coprod S_{\alpha}^{n-1}\right)$ and (Y, X) are good pairs with homeomorphic quotient spaces there is an isomorphism

$$
H_{k}(Y, X) \xrightarrow[\cong]{\Phi_{*}} H_{k}\left(\coprod D_{\alpha}^{n}, \coprod S_{\alpha}^{n-1}\right)= \begin{cases}\bigoplus H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right)=\bigoplus \mathbf{Z} & k=n \\ 0 & k \neq n\end{cases}
$$

by 1.42 and 1.46. The unique nontrivial relative homology group of the pair (Y, X) sits in this 5 -term segment

$$
\begin{equation*}
0 \rightarrow H_{n}(X) \rightarrow H_{n}(Y) \rightarrow H_{n}(Y, X) \xrightarrow{\partial_{n}} H_{n-1}(X) \rightarrow H_{n-1}(Y) \rightarrow 0 \tag{1.63}
\end{equation*}
$$

of the long exact sequence. The 0 to the left is $H_{n+1}(Y, X)$ and the 0 to the right is $H_{n-1}(Y, X)$. The group in the middle, $H_{n}(X, Y)$, is free abelian on the cells attached.
1.64. Lemma (The effect on homology of an n-cellular extension). Let $Y=X \cup_{\phi} \coprod D_{\alpha}^{n}$ be an n-cellular extension of X where $n \geq 1$. Then

$$
H_{k}(X, Y) \cong \begin{cases}\bigoplus H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right) \cong \bigoplus \mathbf{Z} & k=n \\ 0 & k \neq n\end{cases}
$$

and there are short exact sequences

$$
0 \longrightarrow \operatorname{im} \partial_{n} \longrightarrow H_{n-1}(X) \longrightarrow H_{n-1}(Y) \longrightarrow 0 \quad 0 \longrightarrow H_{n}(X) \longrightarrow H_{n}(Y) \longrightarrow \operatorname{ker} \partial_{n} \longrightarrow 0
$$

so that

$$
H_{n-1}(Y) \cong H_{n-1}(X) / \operatorname{im} \partial_{n}, \quad H_{n}(Y) \cong H_{n}(X) \oplus \operatorname{ker} \partial_{n}
$$

while $H_{k}(X) \cong H_{k}(X)$ when $k \neq n-1, n$.
Attaching n-cells to a space introduces extra free generators in degree n, relations in degree $n-1$, and has no effect in other degrees. The isomorphisms of the above lemma are not natural.
1.65. The cellular chain complex. Let X be a CW-complex with skeletal filtration $\emptyset=X^{-1} \subset X^{0} \subset$ $\cdots \subset X^{n} \subset X^{n+1} \subset \cdots \subset X$.
1.66. Lemma. Let X be a CW-complex and $X^{n}=X^{n-1} \cup_{\phi} \coprod D_{\alpha}^{n}$ the n-skeleton where $n \geq 0$. Then
(1) $H_{k}\left(X^{n}, X^{n-1}\right)= \begin{cases}\bigoplus H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right) & k=n \\ 0 & k \neq n\end{cases}$
(2) $H_{>n}\left(X^{n}\right)=0$
(3) $H_{<n}\left(X^{n}\right) \cong H_{<n}(X)$

Proof. (1) This is obvious when $n=0$ and is just Lemma 1.64 when $n \geq 1$.
(2) The extensions $X^{0} \subset \cdots \subset X^{n}$ affect homology in degrees $0,1, \ldots, n$ but not in degrees $>n$ and therefore $0=H_{>n}\left(X^{0}\right)=H_{>n}\left(X^{1}\right)=\cdots=H_{>n}\left(X^{n}\right)$.
(3) The extensions $X^{n} \subset \cdots \subset X^{N}$ for $N>n$ affect homology in degrees n, \ldots, N but not in degrees $<n$ and therefore $H_{<n}\left(X^{n}\right)=\cdots=H_{<n}\left(X^{N}\right)$. The support of any singular chain is compact and therefore we know from Homotopy theory for beginners that it is contained in a skeleton. This implies that $H_{<n}\left(X^{n}\right)=$ $H_{<n}(X)$: Assume that $k<n$. Let z be a k-cycle in X, representing a homology class $[z] \in H_{k}(X)$. The support of z lies in a finite skeleton X^{N} for some $N>n$. Thus $[z]$ lies in the image of $H_{k}\left(X^{N}\right) \rightarrow H_{k}(X) \ni[z]$. But $H_{k}\left(X^{n}\right) \rightarrow H_{k}\left(X^{N}\right)$ is an isomorphism, so $[z]$ lies in the image of $H_{k}\left(X^{n}\right) \rightarrow H_{k}(X)$. Thus this map is surjective. Let next z be a k-cycle in X^{n} and suppose that the homology class $[z]$ lies in the kernel of $H_{k}\left(X^{n}\right) \rightarrow H_{k}(X)$. Then $z=\partial u$ is the boundary of some $(k+1)$-chain u in X. The support of u lies in some finite skeleton X^{N} for some $N>n$. Thus [z] lies in the kernel of the map $H_{k}\left(X^{n}\right) \rightarrow H_{k}\left(X^{N}\right)$. But this map is an isomorphism so that $[z]=0$ in $H_{k}\left(X^{n}\right)$.

The long exact sequence for the pair $\left(X^{n}, X^{n-1}\right)$ contains the 4 -term segment (1.63)

$$
\begin{equation*}
0 \longrightarrow H_{n}\left(X^{n}\right) \xrightarrow{j_{n}} H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{\partial_{n}} H_{n-1}\left(X^{n-1}\right) \longrightarrow H_{n-1}(X) \longrightarrow 0 \tag{1.67}
\end{equation*}
$$

with $0=H_{n}\left(X^{n-1}\right)$ to the left and $0=H_{n-1}\left(X^{n}, X^{n-1}\right)$ to the right. We have also used that $H_{n-1}\left(X^{n}\right)=$ $H_{n-1}(X)$. Combine the 4-term exact sequences (1.67) for the three pairs that can be formed from $X^{n+1} \supset$ $X^{n} \supset X^{n-1} \supset X^{n-2}$

$$
\begin{aligned}
& H_{n}^{\mathrm{CW}}(X)=\frac{\operatorname{ker}\left(d_{n}\right)}{\operatorname{im}\left(d_{n+1}\right)} \cong \frac{H_{n}\left(X^{n}\right)}{\operatorname{ker}\left(i_{n+1}\right)} \cong \operatorname{im}\left(i_{n+1}\right)=H_{n}(X) \\
& \begin{aligned}
& H_{n+1}\left(X^{n+1}, X^{n}\right) \xrightarrow{\partial_{n+1}} H_{n}\left(X^{n}\right) \xrightarrow{i_{n+1}} H_{n}(X) \xrightarrow[\partial_{n} j_{n}=0]{ } \\
& \underset{\operatorname{im}\left(d_{n+1}\right) \cong \operatorname{im}\left(\partial_{n+1}\right)=\operatorname{ker}\left(i_{n+1}\right)}{\sim} \sim d_{n+1}=j_{n} \partial_{n+1} \\
& 0 \xrightarrow{\sim} H_{n}\left(X^{n}\right) \xrightarrow{j_{n}} H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{\partial_{n}} H_{n-1}\left(X^{n-1}\right) \\
& \operatorname{ker}\left(d_{n}\right)=\operatorname{ker}\left(\partial_{n}\right)=\operatorname{im}\left(j_{n}\right)=H_{n}\left(X^{n}\right) \sim d_{n}=j_{n-1} \partial_{n}
\end{aligned}
\end{aligned}
$$

and extract the cellular chain complex

$$
\begin{equation*}
\cdots \rightarrow H_{n+1}\left(X^{n+1}, X^{n}\right) \xrightarrow{d_{n+1}} H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{d_{n}} H_{n-1}\left(X^{n-1}, X^{n-2}\right) \rightarrow \cdots \tag{1.68}
\end{equation*}
$$

where $d_{n}=j_{n-1} \circ \partial_{n}$. This is really a chain complex because $d_{n} \circ d_{n+1}=j_{n-1} \circ \partial_{n} \circ j_{n} \circ \partial_{n+1}=0$ since $\partial_{n} \circ j_{n}=0$ by exactness of (1.67). Define cellular homology

$$
H_{n}^{\mathrm{CW}}(X)=\operatorname{ker} d_{n} / \operatorname{im} d_{n+1}
$$

to be the homology of this cellular chain complex.
1.69. Theorem (Cellular and singular homology are isomorphic). $H_{n}^{\mathrm{CW}}(X) \cong H_{n}(X)$.

Choose generators (orientations) $\left[D_{\alpha}^{n}\right] \in H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right)$ for all n-cells for all $n \geq 0$. As generators for $\widetilde{H}_{n-1}\left(S_{\alpha}^{n-1}\right)$ and $H_{n}\left(D_{\alpha}^{n} / S_{\alpha}^{n-1}\right)$, for $n \geq 1$, we use the images of $\left[D_{\alpha}^{n}\right]$ under the isomorphisms

$$
\begin{gather*}
\widetilde{H}_{n-1}\left(S_{\alpha}^{n-1}\right)<\frac{\partial}{\cong} H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right) \stackrel{q_{*}}{\cong} H_{n}\left(D_{\alpha}^{n} / S_{\alpha}^{n-1}\right) \tag{1.70}\\
\partial\left[D_{\alpha}^{n}\right] \longleftrightarrow q_{*}\left[D_{\alpha}^{n}\right]
\end{gather*}
$$

of homology groups.
The elements $e_{\alpha}^{n}=\Phi_{*}\left(\left[D_{\alpha}^{n}\right]\right) \in H_{n}\left(X^{n}, X^{n-1}\right)$ form a basis for the free abelian group $H_{n}\left(X_{n}, X^{n-1}\right)=$ $\mathbf{Z}\left\{e_{\alpha}^{n}\right\}$. We want to compute the matrix, $\left(d_{\alpha \beta}\right)$, for the cellular boundary map

$$
\begin{equation*}
d_{n}: H_{n}\left(X^{n}, X^{n-1}\right)=\mathbf{Z}\left\{e_{\alpha}^{n}\right\} \rightarrow H_{n-1}\left(X^{n-1}, X^{n-2}\right)=\mathbf{Z}\left\{e_{\beta}^{n-1}\right\} \tag{1.71}
\end{equation*}
$$

where $\left\{e_{\alpha}^{n}\right\}=\Phi_{*}^{n}\left[D_{\alpha}^{n}\right]$ are the n-cells and $\left\{e_{\beta}^{n-1}\right\}=\Phi_{*}^{n-1}\left[D_{\beta}^{n-1}\right]$ the $(n-1)$-cells of X.
Consider first the case $n=1$. The 0 -skeleton of X is the set of 0 -cells $X^{0}=\left\{e_{\beta}^{0}\right\}$. The attaching maps for the 1-cells are maps $\varphi_{\alpha}: S_{\alpha}^{0} \rightarrow X^{0}=\left\{e_{\beta}^{0}\right\}$ given by their values $\varphi_{\alpha}(\pm 1)$ on the two points of $S_{\alpha}^{0}=\{ \pm 1\}$. The cellular boundary map fits into the commutative diagram

and it is given by the differences

$$
d_{1} e_{\alpha}^{1}=\phi_{*}\left(\partial\left[D_{\alpha}^{1}\right]\right)=\phi_{*}\left((+1)_{\alpha}-(-1)_{\alpha}\right)=\phi_{\alpha}(+1)-\phi_{\alpha}(-1)
$$

between the terminal and the initial values of the attaching maps for the 1-cells. (In case the 0 -skeleton X^{0} is a single point, the boundary map $d_{1}=0$ is trivial since all attaching maps are constant.)
1.72. Theorem (Cellular boundary formula). When $n \geq 2$, the cellular boundary map (1.71) is given by

$$
d_{n}\left(e_{\alpha}^{n}\right)=\sum d_{\alpha \beta} e_{\beta}^{n-1}
$$

where the integer $d_{\alpha \beta}$ is the degree, relative to the chosen generators $\partial\left[D_{\alpha}^{n}\right] \in H_{n-1}\left(S_{\alpha}^{n-1}\right)$ and $q_{*}\left[D_{\beta}^{n-1}\right] \in$ $H_{n-1}\left(D_{\beta}^{n-1} / S_{\beta}^{n-2}\right)$ (1.70), of the map

where i_{α} is an inclusion map and q_{β} a quotient map.
The cellular boundary formula for $n \geq 2$ follows by inspection of the commutative diagram

of homology groups.
1.73. Definition. A map $f: X \rightarrow Y$ between CW-complexes is cellular if it respects the skeletal filtrations in the sense that $f\left(X^{k}\right) \subset Y^{k}$ for all k.

The cellular chain complex (1.68) and the isomorphism between cellular and singular homology (1.69) are natural with respect to cellular maps.
1.74. Compact surfaces. We compute the homology groups of the compact surfaces.
1.75. Definition. The compact orientable surface of genus $g \geq 1$ is the 2 -dimensional CW-complex

$$
M_{g}=\bigvee_{i=1}^{g}\left(S_{a_{i}}^{1} \vee S_{b_{i}}^{1}\right) \cup_{\prod\left[a_{i}, b_{i}\right]} D^{2}
$$

where the attaching map for the 2-cell is $\prod\left[a_{i}, b_{i}\right]=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}$.
In particular, $M_{1}=T$ is a torus. In general $M_{g}=T \# \cdots \# T$ is the connected sum of g copies of a torus [17, Figure 74.8] $\left(M_{2}\right)$ The cellular chain complex (1.68) of M_{g} has the form

$$
0 \longleftarrow \mathbf{Z}\left\{e^{0}\right\} \stackrel{d_{1}}{\longleftarrow} \mathbf{Z}\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\}<{ }^{d_{2}} \mathbf{Z}\left\{e^{2}\right\} \longleftarrow 0
$$

The only problem is d_{2} for the boundary map $d_{1}=0$ as $H_{0}\left(M_{g}\right)=\mathbf{Z}$. The coefficient in $d_{2} e^{2}$ of, for instance, a_{1} is (1.72) the degree of the map

$$
S^{1} \xrightarrow{\varphi=\prod\left[a_{i}, b_{i}\right]} \bigvee_{i=1}^{g} S_{a_{i}}^{1} \vee S_{b_{i}}^{1} \xrightarrow{q_{a_{1}}} S_{a_{1}}^{1}
$$

which is homotopic to the map $a_{1} a_{1}^{-1}: S^{1} \rightarrow S^{1}$ of degree 0 . In this way we see that also $d_{2}=0$. We conclude that

$$
H_{k}\left(M_{g}\right)=H_{k}^{\mathrm{CW}}\left(M_{g}\right)= \begin{cases}\mathbf{Z} & k=0 \\ \mathbf{Z}^{2 g} & k=1 \\ \mathbf{Z} & k=2 \\ 0 & k>2\end{cases}
$$

Note the symmetry in the homology groups.
1.76. Definition. The compact nonorientable surface of genus $g \geq 1$ is the CW-complex

$$
N_{g}=\bigvee_{i=1}^{g} S_{a_{i}}^{1} \cup_{\prod a_{i}^{2}} D^{2}
$$

where the attaching map for the 2-cell is $\prod a_{i}^{2}=a_{1}^{2} \cdots a_{g}^{2}$.
In particular, $N_{1}=S^{1} \cup_{2} D^{2}=\mathbf{R} P^{2}$ is the real projective plane. In general $N_{g}=\mathbf{R} P^{2} \# \cdots \# \mathbf{R} P^{2}$ is the connected sum of g copies of $\mathbf{R} P^{2}$ [17, Figure 74.10]. The cellular chain complex of N_{g} has the form

$$
0 \lessdot \mathbf{Z}\left\{e^{0}\right\} \nleftarrow^{d_{1}} \mathbf{Z}\left\{a_{1}, \ldots, a_{g}\right\} \not{ }^{d_{2}} \mathbf{Z}\left\{e^{2}\right\} \lessdot 0
$$

The only problem is d_{2} for the boundary map $d_{1}=0$ as $H_{0}\left(N_{g}\right)=\mathbf{Z}$. The coefficient of, for instance, a_{1} in $d_{2} e^{2}$ is the degree of the map

$$
S^{1} \xrightarrow{\varphi=\prod a_{i}^{2}} \bigvee_{i=1}^{g} S_{a_{i}}^{1} \xrightarrow{q_{a_{1}}} S_{a_{1}}^{1}
$$

which is homotopic to the map $a_{1} a_{1}: S^{1} \rightarrow S^{1}$ of degree 2 . In this way we see that $d_{2}\left(e^{2}\right)=2\left(a_{1}+\cdots+a_{g}\right)$. We conclude that

$$
H_{k}\left(N_{g}\right)=H_{k}^{\mathrm{CW}}\left(N_{g}\right)= \begin{cases}\mathbf{Z} & k=0 \\ \mathbf{Z}^{g-1} \oplus \mathbf{Z} / 2 & k=1 \\ 0 & k \geq 2\end{cases}
$$

The Classification theorem for compact surfaces [17, Thm 77.5] says that any compact surface is homeomorphic to precisely one of the model surfaces $M_{g}, g \geq 0$, or $N_{g}, g \geq 1$. Thus two compact surfaces are homeomorphic iff they have isomorphic first homology groups.
1.77. Real projective space. [6, V.§6.Exmp 6.13, Ex 4] The 0-sphere $S^{0}=\{-1,+\}$ is the (topological) group of real numbers of unit norm. Let $S^{n}=\left\{\left.\left(x_{0}, \ldots, x_{n}\right) \in \mathbf{R}^{n+1}| | x_{0}\right|^{2}+\cdots+\left|x_{0}\right|^{2}=1\right\}$ be the unit sphere in \mathbf{R}^{n+1} and $D_{ \pm}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n} \mid \pm x_{n} \geq 0\right\}$ its two hemispheres. Real projective n-space is the quotient space and ϕ the quotient map

$$
\mathbf{R} P^{n}=S^{0} \backslash S^{n}, \quad \phi: S^{n} \rightarrow \mathbf{R} P^{n}
$$

obtained by identifying two real $(n+1)$-tuples if they are proportional by a real number (necessarily of absolute value 1). The orbit, $\pm\left(x_{0}, \ldots, x_{n}\right)$, of the point $\left(x_{0}, \ldots, x_{n}\right) \in S^{n}$ is traditionally denoted $\left[x_{0}: \cdots\right.$: $\left.x_{n}\right] \in \mathbf{R} P^{n}$.

We first give S^{n} a CW-structure so that the antipodal map $\tau(x)=-x$ becomes cellular and induces an automorphism of the cellular chain complex. We will next consider the quotient CW-structure on $\mathbf{R} P^{n}$.

Observe that $S^{k}=S^{k-1} \cup_{\text {act }}\left(S^{0} \times D^{k}\right)$ is the pushout

of S^{0}-maps. Thus

$$
S^{n}=\left(S^{0} \times D^{0}\right) \cup\left(S^{0} \times D^{1}\right) \cdots \cup\left(S^{0} \times D^{n}\right)
$$

is a free S^{0}-CW-complex with one free S^{0}-cell in each dimension with characteristic map $\Phi^{k}: S^{0} \times D^{k} \rightarrow S^{k}$ given by $\Phi^{0}(z, u)=z$ and $\Phi^{k}(z, u)=z\left(u, \sqrt{1-|u|^{2}}\right)$ for $k>0$. Write $D_{ \pm}^{k}$ for $\pm 1 \times D^{k}$ and $\Phi_{ \pm}^{k}$ for the restriction of Φ^{k} to $D_{ \pm}^{k}$. Then $S^{0} \times D^{k}=D_{-}^{k} \amalg D_{+}^{k}$ where $D_{+}^{k}=D^{k}=D_{-}^{k}$ and $\Phi_{+}^{k}(u)=\left(u, \sqrt{1-|u|^{2}}\right), \Phi_{-}^{k}=$ $\tau \Phi_{+}^{k}$. The cellular chain complex of this S^{0}-CW-complex is a chain complex of $\mathbf{Z} S^{0}$-modules $H_{k}\left(S^{k}, S^{k-1}\right) \cong$ $H_{k}\left(D^{k}, S^{k-1}\right) \oplus H_{k}\left(D^{k}, S^{k-1}\right)$.
1.78. Lemma. When $n \geq k \geq 0$ there are generators $\left[D_{+}^{k}\right] \in H_{k}\left(D^{k}, S^{k-1}\right), k \geq 0$, so that $H_{k}\left(S^{k}, S^{k-1}\right)=$ $\mathbf{Z}\left\{e^{k}, \tau e^{k}\right\}$ and $d_{k} e^{k}=\left(1+(-1)^{k} \tau\right) e^{k-1}(k \geq 1)$ where $e^{k}=\left(\Phi_{+}^{k}\right)_{*}\left[D_{+}^{k}\right]$.

Proof. To start the induction, consider the 1 -skeleton of S^{n}, S^{1}, with CW-structure

Then $d_{1} e^{1}=e^{0}-\tau e^{0}=(1-\tau) e^{0}$.
Suppose, inductively, that e^{k} has been found for some k where $n>k \geq 1$. Then $d_{k}\left(e^{k}-(-1)^{k} \tau e^{k}\right)=$ $\left(1-(-1)^{k} \tau\right) d_{k} e^{d}=\left(1-(-1)^{k} \tau\right)\left(1+(-1)^{k} \tau\right) e^{k-1}=\left(1-\tau^{2}\right) e^{k-1}=0$. Consider the commutative diagram

As $e^{k}-(-1)^{k} \tau e^{k} \in \operatorname{ker}\left(d_{k}\right)=\operatorname{im}\left(j_{k}\right)=\operatorname{im}\left(j_{k} \circ \partial\right)$ there is a (unique) generator $\left[D_{+}^{k+1}\right] \in H_{k+1}\left(D^{k+1}, S^{k}\right)$ that hits $\left(1-(-1)^{k} \tau\right) e^{k}$ under $j_{k} \circ \partial$. In other words, $d_{k+1} e^{k+1}=\left(1+(-1)^{k+1} \tau\right) e^{k}$, where $e^{k+1}=\left(\Phi_{+}^{k+1}\right)_{*}\left[D_{+}^{k+1}\right]$, since the diagram commutes.

The quotient space $\mathbf{R} P^{n}=S^{0} \backslash S^{n}$ is a CW-complex with one cell in each dimension from 0 through n and the projection map $p: \mathbf{R} P^{n} \rightarrow S^{n}$ is cellular so that there is an induced map

between the cellular chain complexes. We conclude that the cellular boundary map d_{k} for $\mathbf{R} P^{n}, d_{2 k+1}=0$ and $d_{2 k}=\cdot 2$, alternates between the $0-m a p$ and multiplication by 2 . In particular, the top homology groups
are $H_{2 n+1}\left(\mathbf{R} P^{2 n+1}\right)=\mathbf{Z}$ and $H_{2 n}\left(\mathbf{R} P^{2 n}\right)=0$. It follows that for instance

$$
H_{k}\left(\mathbf{R} P^{3}\right)=\left\{\begin{array}{ll}
\mathbf{Z} & k=0 \\
\mathbf{Z} / 2 & k=1 \\
0 & k=2 \\
\mathbf{Z} & k=3 \\
0 & k>3
\end{array} \quad H_{k}\left(\mathbf{R} P^{4}\right)= \begin{cases}\mathbf{Z} & k=0 \\
\mathbf{Z} / 2 & k=1 \\
0 & k=2 \\
\mathbf{Z} / 2 & k=3 \\
0 & k \geq 4\end{cases}\right.
$$

and in general, $H_{k}\left(\mathbf{R} P^{n}\right)$ is either $0, \mathbf{Z}$, or $\mathbf{Z} / 2$.
1.79. Complex and quaternion projective space. Let $S^{2 n+1}=\left\{(u, v) \in \mathbf{C}^{n} \times\left.\mathbf{C}| | u\right|^{2}+|v|^{2}=1\right\}$ be the unit sphere in $\mathbf{C}^{n+1}=\mathbf{R}^{2 n+2}$. Complex projective n-space is the quotient space and ϕ the quotient map

$$
\mathbf{C} P^{n}=S^{1} \backslash S^{2 n+1}, \quad \phi: S^{2 n+1} \rightarrow \mathbf{C} P^{n}
$$

obtained by identifying two points of $S^{2 n+1}$ if they are proportional by a complex number (necessarily of absolute value 1). The quotient map $\phi: S^{2 n+1} \rightarrow \mathbf{C} P^{n}$ is called the Hopf map (in particular for $n=1$ where we have a map $S^{3} \rightarrow S^{2}$ with fibre S^{1}).

Points of $S^{2 k+1} \subset \mathbf{C}^{k} \times \mathbf{C}$ have the form $z\left(u, \sqrt{1-|u|^{2}}\right)$ for some $u \in \mathbf{C}^{k}$ with $|u| \leq 1$ and some $z \in \mathbf{C}$ with $|z|=1$. (If (x, y) lies on $S^{2 k+1}$, then $|y|=\sqrt{1-|x|^{2}}$ so that $y=z \sqrt{1-|x|^{2}}$ for some $z \in S^{1}$. Put $u=z^{-1} x$. Then $|u|=|x|$ and $z\left(u, \sqrt{1-|u|^{2}}\right)=\left(z u, z \sqrt{1-|x|^{2}}\right)=(x, y)$. If $y \neq 0$, ie $(x, y) \in S^{2 k+1}-S^{2 k-1}$ then z and u are uniquely determined.) In fact,

is a pushout diagram meaning that $S^{2 k+1}=S^{2 k-1} \cup_{\text {action }}\left(S^{1} \times D^{2 k}\right)$. Thus $S^{2 n+1}$ is a free S^{1}-CWcomplex with one free S^{1}-cell in each even degree up to $2 n$. The characteristic map for the $2 k$-cell is $\Phi: S^{1} \times D^{2 k} \rightarrow S^{2 k+1} \subset S^{2 n+1}$ given by $\Phi(z, u)=z\left(u, \sqrt{1-|u|^{2}}\right)$.

Consequently, $\mathbf{C} P^{n}$ is a CW-complex with $2 k$-skeleton $\mathbf{C} P^{k}$ and with one cell in each even dimension $\leq 2 n$. The cellular chain complex immediately shows that the homology

$$
H_{k}\left(\mathbf{C} P^{n}\right)= \begin{cases}\mathbf{Z} & k \text { even and } 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

is concentrated in even degrees.
Similarly, the quaternion projective space $\mathbf{H} P^{n}=S^{3} \backslash S^{4 n+3}$ is a CW-complex with one cell in dimensions $4 k, 0 \leq k \leq n$, and with homology concentrated in these dimensions. In particular, $\mathbf{H} P^{1}=S^{4}$ and there is a Hopf map $S^{7} \rightarrow S^{4}$ with fibre S^{3}.
1.81. Lens spaces. [6, V.§3.Ex 3, V.§7.Ex 5] The lens space is the quotient space

$$
L^{2 n+1}(m)=C_{m} \backslash S^{2 n+1}
$$

for the action on $S^{2 n+1}$ of the group $\sqrt[m]{1}=C_{m}=\langle\tau\rangle \subset S^{1}$ generated by the primitive m th root of unity $\tau=e^{2 \pi i / m}$. (If $m=2, L^{2 n+1}(2)=\mathbf{R} P^{2 n+1}$.)

In order to obtain a free C_{m} - CW -structure on $S^{2 n+1}$ from the free S^{1}-CW-structure, first note that $S^{1}=\left(C_{m} \times D^{0}\right) \cup\left(C_{m} \times D^{1}\right)$ is a free C_{m}-CW-complex

with cellular chain complex of the form

$$
0 \longrightarrow \mathbf{Z} C_{m} \xrightarrow{d_{1}=\cdot(1-\tau)} \mathbf{Z} C_{m} \longrightarrow 0
$$

concentrated in degree 1 and 0 . This implies that

$$
S^{1} \times D^{2 k}=\left(\left(C_{m} \times D^{0}\right) \cup\left(C_{m} \times D^{1}\right)\right) \times D^{2 k}=\left(C_{m} \times D^{2 k}\right) \cup\left(C_{m} \times D^{2 k+1}\right)
$$

as in the picture

so that

$$
S^{2 k+1} \stackrel{(1.80)}{=} S^{2 k-1} \cup\left(S^{1} \times D^{2 k}\right)=S^{2 k-1} \cup\left(C_{m} \times D^{2 k}\right) \cup\left(C_{m} \times D^{2 k+1}\right)
$$

where we first attach one C_{m}-cell of dimension $2 k$ by the action map $C_{m} \times S^{2 k-1} \rightarrow S^{2 k-1}$, to obtain the $2 k$-skeleton $S^{2 k-1} \cup\left(C_{m} \times D^{2 k}\right)$, and then a C_{m}-cell of dimension $2 k+1$ by the attaching map $\partial\left(D^{1} \times D^{2 k}\right)=$ $\{0,1\} \times D^{2 k} \cup D^{1} \times S^{2 k-1} \rightarrow S^{2 k-1} \cup\left(C_{m} \times D^{2 k}\right)$ that takes $\{0\} \times D^{2 k}$ to $D^{2 k}$ and $\{1\} \times D^{2 k}$ to $\tau D^{2 k}$. Using this construction recursively, we give $S^{2 n+1}$ a free C_{m}-CW-structure with one free C_{m}-cell in each degree 0 through $2 n+1$.

The cellular chain complex for the free C_{m}-CW-complex $S^{2 k+1} / S^{2 k-1}$ has the form

$$
\begin{equation*}
0 \longrightarrow \mathbf{Z} C_{m} \xrightarrow{d_{2 k+1}=\cdot(1-\tau)} \mathbf{Z} C_{m} \longrightarrow 0 \tag{1.82}
\end{equation*}
$$

because of the way that the $2 k+1$-cell is attached. Observe that the kernel of the boundary map $d_{2 k+1}$ is the free abelian subgroup generated by $\left(1+\tau+\cdots+\tau^{m-1}\right) e_{2 k}$. The cellular chain complex for the C_{m}-CW-complex $S^{2 n+1}$ is

$$
0 \rightarrow \mathbf{Z} C_{m}\left\{e^{2 n+1}\right\} \xrightarrow{d_{n}} \cdots \rightarrow \mathbf{Z} C_{m}\left\{e^{k}\right\} \xrightarrow{d_{k}} \mathbf{Z} C_{m}\left\{e^{k-1}\right\} \rightarrow \cdots \rightarrow \mathbf{Z} C_{m}\left\{e_{1}\right\} \xrightarrow{\cdot(1-\tau)} \mathbf{Z} C_{m}\left\{e_{0}\right\} \rightarrow 0
$$

where $d_{2 k+1}=\cdot(1-\tau)$ and $d_{2 k}=\cdot\left(1+\tau+\cdots+\tau^{m-1}\right)$ because of exactness as $\operatorname{ker}\left(d_{2 k+1}\right)$ is the $\mathbf{Z} C_{m}$-module generated by $\left(1+\tau+\cdots+\tau^{m-1}\right) e_{2 k+1}$. The argument is much the same as for $\mathbf{R} P^{n}$.

This C_{m}-CW-structure on $S^{2 n+1}$ induces a CW-structure on the quotient space $L^{2 n+1}(m)=C_{m} \backslash S^{2 n+1}$ such that quotient map $q: S^{2 n+1} \rightarrow L^{2 n+1}(m)$ is cellular. The lense space has one cell in each dimension k from 0 through $2 n+1$ and the cellular boundary map, $d_{2 k+1}=0, d_{2 k}=\cdot m$, alternates between 0 and multiplication by m. We conclude that the cellular chain complex of the infinite lense space $L^{\infty}(m)$ is

$$
0 \longleftarrow \mathbf{Z} \stackrel{0}{0}_{\longleftarrow}^{Z} \stackrel{m}{m}_{\longleftarrow}^{Z} \stackrel{0}{\longleftarrow} \mathbf{Z} \stackrel{m}{m}_{\longleftarrow}^{\mathbf{Z}} \longleftarrow \cdots
$$

so that the reduced homology groups

$$
\widetilde{H}_{k}\left(L^{\infty}(m)\right)= \begin{cases}\mathbf{Z} / m & k \text { odd } \\ 0 & k \text { even }\end{cases}
$$

alternate between \mathbf{Z} / m and 0 .
A homological algebraist will say that this cellular chain complex $C\left(S^{\infty}\right)$ of S^{∞} is a resolution of the trivial $\mathbf{Z} C_{m}$-module \mathbf{Z} by free $\mathbf{Z} C_{m}$-modules, that $C\left(C_{m} \backslash S^{\infty}\right)=\mathbf{Z} \otimes_{\mathbf{Z} C_{m}} C\left(S^{\infty}\right)$ is the cellular chain complex of $L^{\infty}(m)=C_{m} \backslash S^{\infty}$, and that $H_{k} L^{\infty}(m)=H_{k}\left(C_{m} \backslash S^{\infty}\right)=\operatorname{Tor}_{k}^{\mathbf{Z} C_{m}}(\mathbf{Z}, \mathbf{Z})$.

In conclusion we may say that since

$$
S^{k}=S^{k-1} \cup_{\mathrm{act}}\left(S^{0} \times D^{k}\right), \quad S^{2 k+1}=S^{2 k-1} \cup_{\mathrm{act}}\left(S^{1} \times D^{2 k}\right), \quad S^{4 k+3}=S^{4 k-1} \cup_{\mathrm{act}}\left(S^{3} \times D^{4 k}\right)
$$

for all $k \geq 0$ we have that

$$
\begin{aligned}
S^{n} & =\left(S^{0} \times D^{0}\right) \cup\left(S^{0} \times D^{1}\right) \cup \cdots \cup\left(S^{0} \times D^{n}\right) \\
S^{2 n+1} & =\left(S^{1} \times D^{0}\right) \cup\left(S^{1} \times D^{2}\right) \cup \cdots \cup\left(S^{1} \times D^{2 n}\right) \\
S^{4 n+3} & =\left(S^{3} \times D^{0}\right) \cup\left(S^{3} \times D^{4}\right) \cup \cdots \cup\left(S^{3} \times D^{4 n}\right)
\end{aligned}
$$

is a free $S^{0}-\mathrm{CW}$-complex, free $S^{1}-\mathrm{CW}$-complex, and free $S^{3}-\mathrm{CW}$-complex, respectively. The quotient CWstructures are

$$
\begin{aligned}
& \mathbf{R} P^{n}=S^{0} \backslash S^{n}=D^{0} \cup D^{1} \cup \cdots \cup D^{n} \\
& \mathbf{C} P^{n}=S^{1} \backslash S^{2 n+1}=D^{0} \cup D^{2} \cup \cdots \cup D^{2 n} \\
& \mathbf{H} P^{n}=S^{3} \backslash S^{4 n+3}=D^{0} \cup D^{4} \cup \cdots \cup D^{4 n}
\end{aligned}
$$

Similarly, as $S^{1}=\left(C_{m} \times D^{0}\right) \cup\left(C_{m} \times D^{1}\right)$ is a free C_{m}-CW-complex we get that

$$
S^{2 k+1}=S^{2 k-1} \cup\left(S^{1} \times D^{2 k}\right)=S^{2 n-1} \cup\left(C_{m} \times D^{2 n}\right) \cup\left(C_{m} \times D^{2 n+1}\right)
$$

so that

$$
\begin{aligned}
S^{2 n+1} & =\left(C_{m} \times D^{0}\right) \cup\left(C_{m} \times D^{1}\right) \cup \cdots \cup\left(C_{m} \times D^{2 n}\right) \cup\left(C_{m} \times D^{2 n+1}\right) \\
L^{2 n+1}(m) & =C_{m} \backslash S^{2 n+1}=D^{0} \cup D^{1} \cup \cdots \cup D^{2 n} \cup D^{2 n+1}
\end{aligned}
$$

In case of $\mathbf{C} P^{n}$ and $\mathbf{H} P^{n}$ the cellular boundary maps are trivial for dimensional reasons. For $\mathbf{R} P^{n}$ and $L^{2 n+1}(m)$, look at the chain complex for the spheres and note that it has no homology except at the extreme ends. Since $d_{1} e_{1}=(\tau-1) e_{0}$, exactness implies that $d_{2} e_{2}=\left(1+\tau+\cdots+\tau^{m-1}\right) e_{1}$, that $d_{3} e_{3}=(\tau-1) e_{2}$ etc. So exactness and d_{1} determined the entire C_{m}-cellular chain complex. Now the cellular chain complex for the real projective or lense space is the quotient of the chain complex for the sphere.
1.83. The equivalence of simplicial and singular homology. Let S be a Δ-set (2.27), $|S|$ its realization (2.37), and let X be a topological space, $\operatorname{Sing}(X)$ its Δ-set. Then $H_{*}^{\Delta}\left(\operatorname{Sing}(|S|)=H_{*}(|S|)\right.$ and $H_{*}^{\Delta}(\operatorname{Sing}(X))=H_{*}(X)$.
1.84. Theorem. [10, 2.27] The unit $\eta_{S}: S \rightarrow \operatorname{Sing}(|S|)$ and the counit $X \leftarrow|\operatorname{Sing}(X)|: \varepsilon_{X}$ induce isomorphisms

$$
H_{*}^{\Delta}(S) \xrightarrow[\cong]{\left(\eta_{S}\right)_{*}} H_{*}^{\Delta}\left(\operatorname{Sing}(|S|)=H_{*}(|S|), \quad H_{*}(X) \underset{\cong}{\stackrel{\left(\varepsilon_{X}\right)_{*}}{\cong}} H_{*}(|\operatorname{Sing}(X)|)\right.
$$

on homology. These isomorphisms are natural.
Proof. The topological realization $|S|$ is a CW-complex with skeleta $|S|^{n}=\left|S_{\leq n}\right|$. The set of n-cells is indexed by S_{n}. The characteristic map for the n-cells is $\Phi^{n}(a, x)=(a, x) \in\left|S_{\leq n}\right|$ and the attaching map is $\varphi^{n}\left(a, d^{i} y\right)=\left(d_{i} a, y\right), a \in S_{n}, x \in \Delta^{n}, y \in \Delta^{n-1}, i \in n_{+}$. These maps are shown in the commutative diagram

The cellular chain complex of the CW-complex $|S|$ is a chain complex with the free abelian group $\mathbf{Z}\left[S_{n}\right]$ in degree n. The cellular boundary map $d_{n}: \mathbf{Z}\left[S_{n}\right] \rightarrow \mathbf{Z}\left[S_{n-1}\right]$ of Theorem 1.72 takes $a \in S_{n}$ to $d_{n} a=$ $\sum_{b \in S_{n-1}} d_{a b} b$ where the integer $d_{a b}$ is the degree of the left vertical map of the commutative diagram

This map is given by

$$
d^{i} y \rightarrow \begin{cases}y & d_{i} a=b \\ * & d_{i} a \neq b\end{cases}
$$

where $y \in \Delta^{n-1}$ and $i \in n_{+}$. According to Lemma 1.85 the degree is $d_{a b}=\sum_{\substack{i \in n_{+} \\ d_{i} a=b}}(-1)^{i}$. We conclude that $d_{n} a=\sum_{b \in S_{n-1}} \sum_{\substack{i \in n_{+} \\ d_{i} a=b}}(-1)^{i} b=\sum_{i \in n_{+}}(-1)^{i} d_{i} a$. This is exactly the boundary map in the chain complex $\mathbf{Z}[S]$ of the Δ-set S (2.29). We have now identified the chain complex $\mathbf{Z}[S]$ of the Δ-set S as the cellular chain complex of its realization $|S|$ and so we may use Theorem 1.69 to conclude that $H_{*}^{\Delta}(S)=H_{*}(\mathbf{Z}[S]) \cong$ $H_{*}^{\mathrm{CW}}(|S|) \cong H_{*}(|S|)$.

We will be computing degrees with respect to the generator $\left[\delta^{n}\right] \in H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$ and its image $\left[\sum_{i \in n_{+}}(-1)^{i} d^{i}\right]$ in $H_{n-1}\left(\partial \Delta^{n}\right)$ (Proposition 1.50).
1.85. Lemma. Let $n \geq 2$ and I a subset of the set n_{+}of facets of Δ^{n}. The map $\partial \Delta^{n} \rightarrow \Delta^{n-1} / \partial \Delta^{n-1}$ given by

$$
d^{i} y \rightarrow \begin{cases}y & i \in I \\ * & i \notin I\end{cases}
$$

for $y \in \Delta^{n-1}$ has degree $\sum_{i \in I}(-1)^{i}$.
Proof. We consider first the special case where $I=\{i\}$ consists of just one element. Let $\Lambda_{i}=$ $\bigcup_{j \neq i} d^{j} \Delta^{n-1}$. The i th coface map $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ induces a homeomorphism $d^{i}: \Delta^{n-1} / \partial \Delta^{n-1} \rightarrow \Delta^{n} / \Lambda_{i}$. The map of the lemma, in this special case, is the composition $\partial \Delta^{n} \rightarrow \partial \Delta^{n} / \Lambda_{i} \underset{\simeq}{\stackrel{d^{i}}{\simeq}} \Delta^{n-1} / \partial \Delta^{n-1}$. The effect in homology

$$
\begin{array}{r}
H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right) \xrightarrow{\cong} H_{n-1}\left(\partial \Delta^{n}\right) \xrightarrow{\cong} H_{n-1}\left(\partial \Delta^{n}, \Lambda_{i}\right) \stackrel{d_{i}^{*}}{\longleftrightarrow} H_{n-1}\left(\Delta^{n-1}, \partial \Delta^{n-1}\right) \\
{\left[\delta^{n}\right] \longrightarrow\left[(-1)^{i} d^{i}\right] \longleftrightarrow}
\end{array}
$$

shows that this map has degree $(-1)^{i}$.
Next we consider the other extreme case where $I=n_{+}$. Let Λ be the $(n-2)$-skeleton of the $(n-1)$ dimensional CW-complex $\partial \Delta^{n}$. The quotient space $\partial \Delta^{n} / \Lambda$ is a wedge of $(n-1)$-spheres. The commutative diagram

shows that the homomorphism $H_{n-1}\left(\partial \Delta^{n}\right) \rightarrow H_{n-1}\left(\partial \Delta^{n} / \Lambda\right) \underset{\cong}{\left(V d^{i}\right)_{*}} \bigoplus_{i \in n_{+}} H_{n-1}\left(\Delta^{n-1} / \partial \Delta^{n-1}\right)$ sends the generator [$\left.\sum_{i \in n_{+}}(-1)^{i} d^{i}\right]$ of $H_{n-1}\left(\partial \Delta^{n}\right)$ to $\bigoplus_{i \in n_{+}}\left[(-1)^{i} \delta^{n-1}\right]$.

In the general case the map of the lemma

$$
\partial \Delta^{n} \longrightarrow \partial \Delta^{n} / \Lambda \stackrel{\bigvee_{i \in n_{+}} d^{i}}{\simeq} \bigvee_{i \in n_{+}} \Delta^{n-1} / \partial \Delta^{n-1} \xrightarrow{q_{I}} \bigvee_{i \in I} \Delta^{n-1} / \partial \Delta^{n-1} \xrightarrow{\bigvee_{i \in I} \mathrm{id}} \Delta^{n-1} / \partial \Delta^{n-1}
$$

sends the generator $\left[\sum_{i \in n_{+}}(-1)^{i} d^{i}\right]$ of $H_{n-1}\left(\partial \Delta^{n}\right)$ to $\sum_{i \in I}(-1)^{i} \delta^{n-1}$. This shows that this map has degree $\sum_{i \in I}(-1)^{i}$.
1.86. Euler characteristic. According to the Fundamental Theorem for finitely generated Abelian Groups 1.104, any finitely generated abelian group H is isomorphic to $\mathbf{Z}^{r} \times \mathbf{Z} / q_{1} \times \cdots \times \mathbf{Z} / q_{t}$, where the integer r is an invariant, called the rank of the group, and the numbers q_{1}, \ldots, q_{t} are prime powers. We write $r=\operatorname{rank}(H)=\operatorname{dim}_{\mathbf{Q}}\left(H \otimes_{\mathbf{Z}} \mathbf{Q}\right)$ for the rank of H.

The (integral) Euler characteristic of a space X is

$$
\chi(X)=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{rank} H_{j}(X)
$$

when this sum has a meaning (X has only finitely many nonzero homology groups and they are finitely generated). In particular, any finite CW-complex has an Euler characteristic.
1.87. Theorem. The Euler characteristic of a finite $C W$-complex X is

$$
\chi(X)=\sum_{j=0}^{\operatorname{dim} X}(-1)^{j} n_{j}
$$

where n_{j} is the number of cells in dimension j.
This is an immediate consequence of a purely algebraic result applied to the cellular chain complex of X.
1.88. Theorem. Suppose that $C=\left(0 \leftarrow C_{0} \leftarrow C_{1} \leftarrow \cdots \leftarrow C_{n} \leftarrow 0\right)$ is a finite chain complex of finitely generated abelian groups. Then

$$
\sum_{j=0}^{\infty}(-1)^{j} \operatorname{rank}\left(C_{j}\right)=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{rank}\left(H_{j}(C)\right)
$$

Proof. We assume as known that $\operatorname{rank}(A)-\operatorname{rank}(B)+\operatorname{rank}(C)$ in a short exact sequence $0 \rightarrow A \rightarrow$ $B \rightarrow C \rightarrow 0$ of finitely generated abelian groups. (This is the Dimension Formula of Linear Algebra.)

The short exact sequences

$$
0 \rightarrow Z_{k} \rightarrow C_{k} \xrightarrow{d} B_{k-1} \rightarrow 0, \quad 0 \rightarrow B_{k} \rightarrow Z_{k} \rightarrow H_{k} \rightarrow 0
$$

show that $\operatorname{rank}\left(C_{k}\right)=\operatorname{rank}\left(Z_{k}\right)+\operatorname{rank}\left(B_{k-1}\right)$ and $\operatorname{rank}\left(H_{k}\right)=\operatorname{rank}\left(Z_{k}\right)-\operatorname{rank}\left(B_{k}\right)$. Therefore,

$$
\begin{aligned}
& \operatorname{rank}\left(H_{0}\right)-\operatorname{rank}\left(H_{1}\right)+\operatorname{rank}\left(H_{2}\right)-\cdots= \\
& \left(\operatorname{rank}\left(Z_{0}\right)-\operatorname{rank}\left(B_{0}\right)\right)-\left(\operatorname{rank}\left(Z_{1}\right)-\operatorname{rank}\left(B_{1}\right)\right)+\left(\operatorname{rank}\left(Z_{2}\right)-\operatorname{rank}\left(B_{2}\right)\right)-\cdots= \\
& \left(\operatorname{rank}\left(Z_{0}\right)+\operatorname{rank}\left(B_{-1}\right)-\left(\operatorname{rank}\left(Z_{1}\right)+\operatorname{rank}\left(B_{0}\right)\right)+\left(\operatorname{rank}\left(Z_{2}\right)+\operatorname{rank}\left(B_{1}\right)\right)-\cdots=\right. \\
& \operatorname{rank}\left(C_{0}\right)-\operatorname{rank}\left(C_{1}\right)+\operatorname{rank}\left(C_{2}\right)-\cdots
\end{aligned}
$$

which is what we wanted to prove.
1.89. Corollary (Euler's formula). The alternating sum $\sum_{j=0}^{\operatorname{dim} X}(-1)^{j} n_{j}$ of the number of cells is the same for all finite CW-decompositions of the same space X (indeed, for all spaces in the homotopy type of $X)$.

For instance, $F-E+V=2$ for any finite CW-decomposition of S^{2} with F faces, E edges, and V vertices.
1.90. Proposition. Suppose that $X=A \cup B=\operatorname{int} A \cup \operatorname{int} B$ so that there is a long exact Mayer-Vietoris sequence. If all three spaces, X, A, and B, have Euler characteristics then $\chi(X)=\chi(A)+\chi(B)-\chi(A \cap B)$.
1.91. Example. The Euler characteristic of S^{n} is 0 if n is odd and 2 if n is even.

The Euler characteristic of $\mathbf{R} P^{n}$ is 0 if n is odd and 1 if n is even.
The Euler characteristic of $\mathbf{C} P^{n}$ and $\mathbf{H} P^{n}$ is $n+1$.
The Euler characteristic of the orientable surface M_{g} is $2-2 g$ and the Euler characteristic of the nonorientable surface N_{g} is $2-g$. Two orientable (or nonorientable) compact surfaces are homeomorphic if and only if they have the same Euler characteristic.

Note also that $\chi(X)=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{dim}_{k} H_{j}(X ; k)$ for any field k.
The Euler characteristic can be used to find the genus of a Seifert surface because a closed surface with boundary is determined by orientability, number of boundary components, and Euler characteristic. If M is an orientable closed surface of genus g with k boundary components then $\chi(M)=2-2 g-k$ and if N is a nonorientable closed surface of genus g with k boundary components then $\chi(N)=2-g-k$.
1.92. Moore spaces. Let G be an abelian group and n a natural number. A Moore space of type (G, n) is a space $M(G, n)$, simply connected if $n>1$, with reduced homology groups

$$
\widetilde{H}_{k}(M(G, n))= \begin{cases}G & k=n \\ 0 & k \neq n\end{cases}
$$

We will show that Moore spaces exist. For instance, $M(\mathbf{Z}, n)=S^{n}$ and $M(\mathbf{Z} / m)=S^{n} \cup_{m} D^{n+1}$ is the CW-complex with one $(n+1)$-cell attached to an n-sphere by a map of degree m (the mapping cylinder for a degree m self-map of the n-sphere). If $G=\mathbf{Z} \oplus \cdots \oplus \mathbf{Z} \oplus \mathbf{Z} / m_{1} \oplus \cdots \oplus \mathbf{Z} / m_{t}$ is a finitely generated abelian group, then

$$
M(G, n)=S^{n} \vee \cdots \vee S^{n} \vee M\left(\mathbf{Z} / m_{1}, n\right) \vee \cdots \vee M\left(\mathbf{Z} / m_{t}, n\right)
$$

can be constructed as a wedge of these special Moore spaces. For a general abelian group G, take a short exact sequence $0 \rightarrow K \xrightarrow{d} F \rightarrow G \rightarrow 0$ where F and K are free abelian groups. Suppose that y_{β} is a basis of K, x_{α} a basis of F, and that $d y_{\beta}=\sum d_{\alpha \beta} x_{\alpha}$. Then $M(G, n)=\bigvee S_{\alpha}^{n} \cup \coprod D_{\beta}^{n+1}$ where the attaching map for the $(n+1)$-cell D_{β}^{n+1} is $\partial D_{\beta}^{n+1} \xrightarrow{\Delta} V \partial D_{\beta}^{n+1} \xrightarrow{\vee d_{\alpha \beta}} \bigvee S_{\alpha}^{n}$. According to the cellular boundary formula, the cellular chain complex for this CW-complex is $\cdots \rightarrow 0 \rightarrow K \xrightarrow{d} F \rightarrow 0 \rightarrow \cdots$ so that its only nonzero reduced homology group is G in degree n.
1.93. Corollary. For any given sequence $H_{i}, i>0$, of abelian groups, there exists a space X such that $H_{i}(X)=H_{i}$ for all $i>0$.

Proof. $X=\bigvee M\left(H_{i}, i\right)$.

10. Homological algebra for beginners

Let R be a commutative ring with unit (such as \mathbf{Z}, \mathbf{Q} or \mathbf{F}_{p}).
1.1. Morphisms on quotient modules. Let A be an R-module and $B \subseteq A$ a submodule. A homomorphism $B / A \rightarrow C$ on the quotient module is the same thing as homomorphism $A \rightarrow C$ that vanishes on B :

There exists a morphism \bar{f} making the diagram commute if and only if f vanishes on B.

1.2. Exactness.

1.94. Definition. A pair of R-module homomorphisms

$$
A_{0} \xrightarrow{f_{\text {in }}} A_{1} \xrightarrow{f_{\text {out }}} A_{2}
$$

is exact at A_{1} if the image of $f_{\text {in }}$ equals the kernel of $f_{\text {out }}$.
A short exact sequence is an exact diagram of R-modules of the form

$$
0 \longrightarrow A_{0} \longrightarrow A_{1} \longrightarrow A_{2} \longrightarrow 0
$$

In a short exact sequence, $A_{0} \rightarrow A_{1}$ is injective, $A_{1} \rightarrow A_{2}$ is surjective, and $\operatorname{im}\left(A_{0} \rightarrow A_{1}\right)=\operatorname{ker}\left(A_{1} \rightarrow A_{2}\right)$ in A_{1}.
1.95. Proposition (Split short exact sequence). The following conditions are equivalent
(1) There exists a homomorphism $A_{2} \leftarrow A_{1}$ such that $A_{2} \rightarrow A_{1} \rightarrow A_{2}$ is the identity of A_{2}
(2) There exists a homomorphism $A_{1} \leftarrow A_{0}$ such that $A_{0} \rightarrow A_{1} \rightarrow A_{0}$ is the identity of A_{0}
(3) There exists an isomorphism of short exact sequences

where the morphisms in the lower short exact sequence are the obvious ones.
A long exact sequence is an exact diagram of R-modules of the form

$$
\cdots \longrightarrow A_{i-1} \longrightarrow A_{i} \longrightarrow A_{i+1} \longrightarrow A_{i+2} \longrightarrow \cdots
$$

In a long exact sequence we have

$$
\begin{aligned}
& A_{i} \rightarrow A_{i+1} \text { is surjective } \Longleftrightarrow A_{i+1} \rightarrow A_{i+2} \text { is the 0-homomorphism } \\
& A_{i} \rightarrow A_{i+1} \text { is injective } \Longleftrightarrow A_{i-1} \rightarrow A_{i} \text { is the 0-homomorphism } \\
& A_{i} \rightarrow A_{i+1} \text { is an isomorphism } \Longleftrightarrow A_{i-1} \rightarrow A_{i} \text { and } A_{i+1} \rightarrow A_{i+2} \text { are 0-homomorphisms }
\end{aligned}
$$

1.96. Lemma (The 5 -lemma). If

is a commutative diagram where the two rows are exact and the four outer vertical homomorphisms are isomorphisms, then also the middle vertical homomorphism φ_{3} is an isomorphism.
1.3. The category of chain complexes. Let (A, ∂) and (B, ∂) be chain complexes. Suppose that $f_{0}, f_{1}: A \rightarrow B$ are two chain maps.
1.97. Definition. A chain homotopy from f_{0} to f_{1} is a sequence of homomorphisms $T: A_{n} \rightarrow B_{n+1}$ so that $\partial T+T \partial=f_{1}-f_{0}$.

We say that f_{0} and f_{1} are chain homotopic, and write $f_{0} \simeq f_{1}$, if there exists a chain homotopy from f_{0} to f_{1}.
1.98. Lemma. $f_{0} \simeq f_{1} \Longrightarrow H_{*}\left(f_{0}\right)=H_{*}\left(f_{1}\right): H_{*}(A) \rightarrow H_{*}(B)$

Homology is a functor from the category of R-module chain complexes with chain homotopy classes of chain homomorphisms to the category of R-modules.
1.99. Lemma. If $f_{0} \simeq f_{1}: A \rightarrow B$ and $g_{0} \simeq g_{1}: B \rightarrow C$ then $g_{0} f_{0} \simeq g_{1} f_{1}: A \rightarrow C$.

Proof. Suppose that $\partial S+S \partial=f_{1}-f_{0}$ and $\partial T+T \partial=g_{1}-g_{0}$. Let $U=T f_{1}+g_{0} S: A_{*} \rightarrow C_{*+1}$. Then

$$
\begin{aligned}
\partial U+U \partial & =\partial\left(T f_{1}+g_{0} S\right)+\left(T f_{1}+g_{0} S\right) \partial=(\partial T+T \partial) f_{1}+g_{0}(\partial S+S \partial) \\
& =\left(g_{1}-g_{0}\right) f_{1}+g_{0}\left(f_{1}-f_{0}\right)=g_{1} f_{1}-g_{0} f_{0}
\end{aligned}
$$

so that U is a chain homotopy from $g_{0} f_{0}$ to $g_{1} f_{1}$.
1.100. Lemma (The fundamental lemma of homological algebra). Any short exact sequence

$$
0 \rightarrow\left(A_{*}, \partial_{A}\right) \rightarrow\left(B_{*}, \partial_{B}\right) \rightarrow\left(C_{*}, \partial_{C}\right) \rightarrow 0
$$

of chain complexes induces a long exact sequence

$$
\cdots \rightarrow H_{n+1}(C) \xrightarrow{\partial} H_{n}(A) \rightarrow H_{n}(B) \rightarrow H_{n}(C) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
$$

in homology
Proof. Diagram chase.
1.101. Corollary (The snake lemma). Any morphism

between short exact sequences induces an exact sequence
$0 \longrightarrow \operatorname{ker} \varphi_{1} \longrightarrow \operatorname{ker} \varphi_{2} \longrightarrow \operatorname{ker} \varphi_{2} \longrightarrow \operatorname{coker} \varphi_{1} \longrightarrow \operatorname{coker} \varphi_{2} \longrightarrow \operatorname{coker} \varphi_{3} \longrightarrow 0$
of kernels and cokernels.
Proof. This is a special case of the Fundamental Lemma of Homological Algebra 1.100.
5-lemma and the Snake Lemma.

1.4. Finitely generated abelian groups.

1.102. Definition. [18, 6.51] A basis for an abelian group F is a subset B of F such for any element x of F has a unique presentation as a linear combination $x=\sum_{b \in B} x_{b} b$ of the elements in B. An abelian group is free if it has a basis.

The bases for a free abelian group F all have the same cardinality, the rank of F.
1.103. Proposition. [18, 10.6] Any subgroup H of a free finite rank abelian group F is free finite rank and $\operatorname{rank}(H) \leq \operatorname{rank}(F)$.
1.104. Theorem (Fundamental theorem for finitely generated abelian groups). [18, 10.8, 10.9] Any finitely generated abelian group A is isomorphic to an abelian group of the form

Smith decomposition: $\mathbf{Z} / d_{1} \oplus \cdots \oplus \mathbf{Z} / d_{t}$ where $d_{1}|\cdots| d_{t}$
Primary decomposition: $\mathbf{Z} \oplus \cdots \oplus \mathbf{Z} \oplus \mathbf{Z} / q_{1} \oplus \cdots \oplus \mathbf{Z} / q_{t}$ where q_{1}, \ldots, q_{t} are prime powers
For instance, $\mathbf{Z} / 2 \oplus \mathbf{Z} / 76 \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 38 \cong \mathbf{Z} / 2 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 19$.
The torsion subgroup $T(A)$ of A consists of all finite order elements in A. The rank of A is the rank of the free abelian group $A / T(A)$. The prime powers q_{1}, \ldots, q_{t} are the primary abelian invariants of A. (There are also the Smith normal form abelian invariants of A.)

CHAPTER 2

Construction and deconstruction of spaces

Simplicial complexes are used in geometric and algebraic topology to construct and deconstruct spaces. There are several kinds of simplicial complexes. In order to underline the natural development of ideas we shall here follow the historical genesis from euclidian and abstract simplicial complexes, through ordered simplicial complexes to semi-simplicial sets, aka Δ-sets, and simplicial sets.

1. Abstract Simplicial Complexes

The abstract simplicial complexes are the simplicial complexes closest to geometry. See [19, Chp 3] for more information.
2.1. Definition (ASC). An abstract simplicial complex is a set of finite sets that is closed under passage to nonempty subsets.

Let K be an ASC. The elements of K are called simplices. The elements of a simplex $\sigma \in K$ are called its vertices. The subsets of a simplex $\sigma \in K$ are its faces. The dimension of a simplex is one less than its cardinality. The dimension of K is the maximal dimension of any simplex in K. The vertex set of K is the union $V(K)=\bigcup K$ of all the simplices.

A simplicial map $f: K \rightarrow L$ between two ASCs, K and L, is a map $f: V(K) \rightarrow V(L)$ between the vertex sets that takes simplices to simplices, ie $\forall \sigma \in K: f(\sigma) \in L$ or, simply, $f(K) \subset L$. Abstract simplicial complexes and simplicial maps determine a category. Two abstract simplicial complexes are isomorphic if there exist invertible simplicial maps between them.

An ASC K^{\prime} is a subcomplex of K if $K^{\prime} \subset K$ (meaning that every simplex of K^{\prime} is a simplex of K). The inclusion is then a simplicial map $K^{\prime} \rightarrow K$.
2.2. Example (The ASC generated by a finite set). For any finite nonempty set σ of cardinality $d+1$, for instance $\sigma=d_{+}=\{0,1, \ldots, d\}$, let $D[\sigma]$ be the set of all nonempty subsets of σ. Then $D[\sigma]$ is a d-dimensional finite ASC. The subset $\partial D[\sigma]$ of all proper faces of σ is a $(d-1)$-dimensional subcomplex of $D[\sigma]$ (when $d>0$). Any map $f: \sigma \rightarrow \tau$ between two finite nonempty sets induces a simplicial map $D[f]: D[\sigma] \rightarrow D[\tau]$ between the associated ASCs. Thus $D[-]$ is a functor from finite nonempty sets to abstract simplicial complexes. For any nonempty subset $\sigma^{\prime} \subset \sigma$, there is a subcomplex $D\left[\sigma^{\prime}\right] \subset D[\sigma]$, and $D\left[\sigma^{\prime}\right] \cap D\left[\sigma^{\prime \prime}\right]=D\left[\sigma^{\prime} \cap \sigma^{\prime \prime}\right]$ when $\emptyset \neq \sigma^{\prime}, \sigma^{\prime \prime} \subset \sigma$.

Examples of subcomplexes of the ASC K are

- The k-skeleton of K is the subcomplex $K^{(k)}=\{\sigma \in K \mid \operatorname{dim} \sigma \leq k\}$ of all simplices of dimension $\leq k$. The skeleta form an ascending chain

$$
\{\{v\} \mid v \in V(K)\}=K^{(0)} \subset K^{(1)} \subset \cdots \subset K^{(k)} \subset K^{(k+1)} \subset \cdots \subset K
$$

of subcomplexes of K and $K=\bigcup K^{(k)}$ is the union of its skeleta.

- The star of a simplex $\sigma \in K$ is the subcomplex

$$
\operatorname{star}(\sigma)=\{\tau \in K \mid \sigma \cup \tau \in K\}
$$

- The link of a simplex $\sigma \in K$ is the subcomplex

$$
\operatorname{link}(\sigma)=\{\tau \in K \mid \sigma \cup \tau \in K, \sigma \cap \tau=\emptyset\}
$$

of the simplices that are disjoint from σ but together with σ span a simplex in K.

- The subcomplex generated by a subset L of K is the set

$$
\bigcup_{\sigma \in L}\{\tau \mid \tau \subset \sigma\}=\bigcup_{\sigma \in L} D[\sigma]
$$

of all faces of all simplices in L. The subcomplex generated by the simplex $\sigma \in K$, is the set $D[\sigma] \subset K$, of all faces of σ. The star of σ is the subcomplex generated by all supersimplices of σ. $K=\bigcup_{\sigma \in K} D[\sigma]$ is the union of the subcomplexes generated by its (maximal) simplices.

- The deletion of a a vertex $v \in V(K)$ is the subcomplex

$$
K-v=\operatorname{dl}_{K}(v)=\{\sigma \in K \mid v \notin \sigma\}
$$

of all simplices in K not having v as a vertex and the link of v is the subcomplex

$$
\mathrm{lk}_{K}(v)=\left\{\sigma \in \mathrm{dl}_{K}(v) \mid \sigma \cup\{v\} \in K\right\}
$$

of all simplices that are disjoint from v but together with v span a simplex of K

- The union or intersection of any set of subcomplexes is a subcomplex.
2.1. Realization. We first construct a functor, $\mathbf{R}[-]$, from the category of sets to the category of real vector spaces. For any set V let $\mathbf{R}[V]$ be the real vector space with basis V. Explicitly, we may let

$$
\mathbf{R}[V]=\{t: V \rightarrow \mathbf{R} \mid \operatorname{supp}(t) \text { is finite }\}
$$

be the vector space of all coordinate functions on V. (The support of a function $t: V \rightarrow \mathbf{R}$ is the set $\operatorname{supp}(t)=\{v \in V \mid t(v) \neq 0\}$.) For each $v \in V$, we regard v also as the real function $v: V \rightarrow \mathbf{R}$ given by

$$
v\left(v^{\prime}\right)= \begin{cases}1 & v^{\prime}=v \\ 0 & v^{\prime} \neq v\end{cases}
$$

so that V becomes an (unordered) basis for $\mathbf{R}[V]$. If V^{\prime} is a subset of V, then $\mathbf{R}\left[V^{\prime}\right]$ is a subspace of $\mathbf{R}[V]$.
For any map $f: U \rightarrow V$ between two sets, U and V, let $\mathbf{R}[f]: \mathbf{R}[U] \rightarrow \mathbf{R}[V]$ be the linear map given by

$$
\forall s \in \mathbf{R}[U] \forall v \in V: \mathbf{R}[f](s)(v)=\sum_{f(u)=v} s(u)
$$

where the sum is finite since s has finite support. Alternatively, $\mathbf{R}[f]$ is the linear map given by $\mathbf{R}[f](u)=f(u)$ for any $u \in U$. From this description it is clear that $\mathbf{R}[g \circ f]=\mathbf{R}[g] \circ \mathbf{R}[f]$ for composable maps $U \xrightarrow{f} V \xrightarrow{g} W$. Thus $\mathbf{R}[-]$ is a functor which takes injective maps to injective linear maps and surjective maps to surjective linear maps.

Next, we construct the realization functor, $|-|$, from the category of abstract simplicial complexes to the category of topological spaces. To motiviate the definition it perhaps helps to consider the standard geometric simplex in Euclidean space. Let σ be a finite set of $d+1$ elements. Then $\mathbf{R}[\sigma]=\mathbf{R}^{d+1}$ and the standard geometric d-simplex is

$$
\Delta^{d}=|D[\sigma]|=|\sigma|=\left\{\sigma \xrightarrow{t} \mathbf{R} \mid t(\sigma) \subset[0,1], \sum_{v \in \sigma} t(v)=1\right\} \subset \mathbf{R}[\sigma]=\mathbf{R}^{d+1}
$$

More generally, for any ASC K with vertex set $V=V(K)$, the realization of K, is the subset of $\mathbf{R}[V]$ given by

$$
|K|=\left\{V \xrightarrow{t} \mathbf{R} \mid t(V) \subset[0,1], \operatorname{supp}(t) \in K, \sum_{v \in V} t(v)=1\right\} \subset \mathbf{R}[V]
$$

The number $t(v) \in[0,1]$ is called the v th barycentric coordinate of of the point t in $|K|$. If K^{\prime} is a subcomplex of K, then $\left|K^{\prime}\right|$ is a subset of $|K|$. For example, if v is a vertex of K then the realization of the subcomplex K_{v} is the set $\left|K_{v}\right|=\{t \in|K| \mid t(v)=0\}$ of all points with v th barycentric coordinate equal to 0 . In fact, the realization of K is the union

$$
|K|=\bigcup_{\sigma \in K}|\sigma|
$$

of the realizations

$$
|\sigma|=\{t \in|K| \mid \operatorname{supp}(t) \subset \sigma\}=\left\{t \in|K| \mid \sum_{v \in \sigma} t(v)=1\right\}=\left\{\sum_{v \in \sigma} t_{v} v \mid t_{v} \geq 0, \sum_{v \in \sigma} t_{v}=1\right\}
$$

of its subcomplexes $D[\sigma]$. We call $|\sigma|=|D[\sigma]|$ the cell of the simplex $\sigma \in K$. The cell is the set of all convex combinations of vertices of the simplex $\sigma \in K$.

For any simplicial map $f: K \rightarrow L$ between ASCs and simplices $\sigma \in K, \tau \in L$ where $f(\sigma)=\tau$, the linear $\operatorname{map} \mathbf{R}[f]: \mathbf{R}[V(K)] \rightarrow \mathbf{R}[V(L)]$ takes the cell $|\sigma| \subset|K|$ onto the cell $|\tau| \subset|L|$,

$$
|\sigma| \ni \sum_{u \in \sigma} t_{u} u \xrightarrow{\mathbf{R}[f]} \sum_{u \in \sigma} t_{u} f(u) \in|\tau|,
$$

so that the linear map $\mathbf{R}[f]$ restricts to a map $|f|:|K|=\bigcup_{\sigma \in k}|\sigma| \rightarrow|L|=\bigcup_{\tau \in L}|\tau|$.
The next step is to equip $|K|$ with a metric topology. The vector space $\mathbf{R}[V]$ is a metric space with the usual metric

$$
d(s, t)=\left(\sum_{v \in V}|s(v)-t(v)|^{2}\right)^{1 / 2}
$$

and so also the subset $|K| \subset \mathbf{R}[\sigma]$ is a metric space. We let $|K|_{d}$ be the set $|K|$ with the metric topology.
2.3. Lemma. Let $\sigma=\left\{v_{0}, \ldots, v_{k}\right\} \subset V$ be a k-dimensional simplex of K. Then $|\sigma|$ is a compact subset of $\mathbf{R}[V]$ homeomorphic to the standard geometric k-simplex Δ^{k}.

Proof. $\mathbf{R}^{k+1} \supset \Delta^{k} \ni \sum t_{i} e_{i} \rightarrow \sum t_{i} v_{i} \in|\sigma| \subset \mathbf{R}[V]$ is a bijective and continuous map, even an isometry, and the domain is compact, the codomain Hausdorff, so it is a homeomorphism.

However, there is another topology, better suited for our purposes, on the set $|K|=\bigcup_{\sigma \in K}|\sigma|$. For each simplex σ of K, the subset $|\sigma|$ is a compact and therefore closed subset of the Hausdorff space $|K|_{d}$. The topology coherent with the closed covering $\{|\sigma| \mid \sigma \in K\}$ of $|K|$ by its cells is the topology defined by

$$
A \text { is }\left\{\begin{array}{c}
\text { open } \\
\text { closed }
\end{array}\right\} \text { in }|K| \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma \in K: A \cap|\sigma| \text { is }\left\{\begin{array}{c}
\text { open } \\
\text { closed }
\end{array}\right\} \text { in }|\sigma|
$$

for any subset $A \subset|K|$. It is immediate that this does indeed define a topology on $|K|$. In the following, we let $|K|$ stand for the set $|K|$ with the coherent topology. All sets that are open (or closed) in $|K|_{d}$ are also open (or closed) in $|K|$. In particular, $|K|$ is Hausdorff. ($|K|$ is in fact even normal.) Also, it is immediate from the definition that

$$
|K| \rightarrow Y \text { is continuous } \Longleftrightarrow|\sigma| \subset|K| \rightarrow Y \text { is continuous for all simplices } \sigma \in K
$$

for any map $|K| \rightarrow Y$ out of $|K|$ into some topological space Y. In particular, for any simplicial map $f: K \rightarrow L$ the induced map $|f|:|K| \rightarrow|L|$ is continuous in the coherent topologies as it takes simplices linearly to simplices in that $|f|\left(\sum_{u \in \sigma} t_{u} u\right)=\sum t_{u} f(u) \in|\tau| \subset L$ where $f(\sigma)=\tau$.

Obviously,

$$
|\sigma| \cap|\tau|= \begin{cases}|\sigma \cap \tau| & \sigma \cap \tau \neq \emptyset \\ \emptyset & \sigma \cap \tau=\emptyset\end{cases}
$$

for any two simplices of K. If $L \subset K$ is a subcomplex we may consider $|L|=\bigcup_{\tau \in L}|\tau|$ as a subset of $|K|=\bigcup_{\sigma \in K}|\sigma|$. For any simplex $\sigma \in K$,

$$
|L| \cap|\sigma|=\bigcup_{\tau \in L, \tau \subset \sigma}|\tau| \subset|\sigma|
$$

is closed in $|\sigma|$ because it is the finite union (possibly empty) of the realizations of those faces of σ that are in L. This shows that the realization of a subcomplex is a closed subspace of the realization.

The open star of a a vertex v is the complement in $|K|$ to $\left|K_{v}\right|$:

$$
\operatorname{st}(v)=|K|-\left|K_{v}\right|=|K|-\{t \in|K| \mid t(v)=0\}=\{t \in|K| \mid t(v)>0\}
$$

of $|K|$. The open cell of the simplex σ is the subset

$$
\langle\sigma\rangle=\{t \in|K| \mid \forall v \in V(K): v \in \sigma \Longleftrightarrow t(v)>0\}
$$

of the cell $|\sigma|$. The barycenter of the n-simplex σ is the point $\frac{1}{n+1} \sum_{v \in \sigma} v$ of the open cell $\langle\sigma\rangle$.
2.4. Lemma (Open stars and open simplices). Let K be an ASC.
(1) The open star $\operatorname{st}(v)$ is an open star-shaped neighborhood of the vertex $v \in|K|$.
(2) The open stars cover $|K|$.
(3) $\bigcap_{v \in \sigma} \operatorname{st}(v) \neq \emptyset \Longleftrightarrow \sigma \in K$, for any finite nonempty set $\sigma \subset V(K)$ of vertices.
(4) $\langle\sigma\rangle \cap \operatorname{st}(v) \neq \emptyset \Longleftrightarrow v \in \sigma$, for all simplices $\sigma \in K$.
(5) $|K|=\bigcup_{\sigma \in K}\langle\sigma\rangle$ (disjoint union) and $\operatorname{st}(v)=\bigcup_{\sigma \ni v}\langle\sigma\rangle$.

Proof. (1) Because evaluation $t \rightarrow t(v)$ is a continuous map $\mathbf{R}[V(K)] \rightarrow \mathbf{R}$, the open star of v is open in $|K|_{d}$ and thus also in $|K|$. For any $t \in \operatorname{st}(v)$, there is a simplex $\sigma \in K$ such that $|\sigma|$ contains t. Vertex v lies in simplex σ for otherwise $\sigma \in K_{v}$ and $t \in|\sigma| \subset\left|K_{v}\right|$. The continuous path $[0,1] \ni \lambda \rightarrow \lambda v+(1-\lambda) t \in|\sigma|$ connects v and t in $|\sigma|$ and in $\operatorname{st}(v)$ for $\lambda v+(1-\lambda) t(v)=\lambda+(1-\lambda) t(v)>0$.
(2) It is clear from the definition of $\operatorname{st}(v)$ that $|K|=\bigcup_{v \in V(K)} \operatorname{st}(v)$.
(3) $\bigcap_{v \in \sigma} \operatorname{st}(v) \neq \emptyset \Longleftrightarrow \exists t \in|K|: \sigma \subset \operatorname{supp} t \Longleftrightarrow \sigma \in K$.
(4) Clear from the definition of $\operatorname{st}(v)$.

An ASC is locally finite if every vertex belongs to only finitely many simplices.
2.5. Theorem. [19] Fuglede Let K be an $A S C$ and $|K|$ its realization.
(1) $|K|$ is Hausdorff.
(2) $|K|$ is locally path connected.
(3) There is a bijection between the set of path components of $|K|$ and the set of equivalence classes $V(K) / \sim$ where \sim is the equivalence relation on the vertex set generated by the 1 -simplices. In particular, $|K|$ is path connected $\Longleftrightarrow\left|K^{(1)}\right|$ is path connected.
(4) $|K|$ is compact $\Longleftrightarrow K$ is finite
(5) $|K|$ is locally compact $\Longleftrightarrow K$ is locally finite $\Longleftrightarrow|K|$ is first countable $\Longleftrightarrow|K|=|K|_{d}$

Proof. (1) $|K|$ is Hausdorff since it has more open sets than the metric space $|K|_{d}$ which is Hausdorff. (2) See [19, Theorem 2, p 144], or the Solution to Problem 3 of Exam January 2007, or refer ahead to the fact $|K|$ is a CW-complex and that CW-complexes are locally contractible and locally path connected [10, Proposition A.4].
(3) See the Solution to Problem 2 of Exam April 2007. Since $\{\operatorname{st}(v) \mid v \in V(K)\}$ is an open covering of $|K|$ by connected open sets, two points, x and y of $|K|$, are in the same connected component if and only if there exist finitely many $v_{0}, v_{1}, \ldots, v_{k} \in V(K)$ such that $\operatorname{st}\left(v_{i-1}\right) \cap \operatorname{st}\left(v_{i}\right) \neq \emptyset$, or $\left\{v_{i-1}, v_{i}\right\} \in K$, for $1 \leq i \leq k$ and $x \in \operatorname{st}\left(v_{0}\right), y \in \operatorname{st}\left(v_{k}\right)$. These observations imply that the path connected component of $\operatorname{st}\left(v_{0}\right)$ is $C(\operatorname{st}(v 0))=\bigcup_{v_{0} \sim v_{1}} \operatorname{st}\left(v_{1}\right)$ and that the map

$$
V(K) / \sim \rightarrow \pi_{0}(|K|): v \rightarrow C(\operatorname{st}(v))=C(v)
$$

is bijective.
(4) If K is finite, $|K|$ is the quotient space of a compact space and therefore itself compact. If K is infinite, let C be the set consisting of one point from each open cell $\langle\sigma\rangle$ for all $\sigma \in K$. Then C is closed and discrete because $|\sigma| \cap C^{\prime}$ is finite for any $C^{\prime} \subset C$ and for any $\sigma \in K$. Thus $|K|$ is not compact.
(5) If K is locally finite then $\{|\sigma| \mid \sigma \in K\}$ is a locally finite closed covering of $|K|_{d}$ as each open star intersects only finitely many closed simplices. Then $|K|=|K|_{d}$ by the Glueing Lemma (General Topology, 2.53) so $|K|$ is first countable as it is a metric space. $|K|$ is also locally compact for st (v) is an open set contained in the compact set which is the realization of the subcomplex generated by all simplices that contain v. If K is not locally finite, K contains a subcomplex isomorphic to $L=\{0,1,2, \ldots,\{0,1\},\{0,2\}, \ldots\}$, and $|K|$ contains a closed subspace homeomorphic to the countable wedge $|L|=\bigvee \Delta^{1}$ which is not first countable or locally compact at the base point (General Topology, 2.97.(7), 2.171). Then $|K|$ is not first countable, for subspaces of first countable spaces are first countable, nor locally compact, for closed subspaces of locally compact spaces are locally compact.

Figure 1. The open star of vertex v
2.6. Example (ESC). A Euclidean simplicial complex is a union C of a set \mathcal{C} of geometric simplices in some Euclidean space such that
(1) All faces of all simplices in \mathcal{C} are in \mathcal{C}.
(2) The intersection of any two simplices in \mathcal{C} is either empty or a common face.
(3) \mathcal{C} is a locally finite closed covering of C.

Let $K(C)$ be the ASC consisting of the set of vertices for the geometric simplices in C. There is an obvious bijective continuous map $|K(C)| \rightarrow C$, taking vertices to vertices and simplices to simplices, which is in fact a homeomorphism since the topologies on both complexes are coherent with their subspaces of simplices. Namely, observe that third condition above implies that the topology on C is coherent with the closed covering of C by its simplices in the sense that any subspace of C whose intersection with each simplex is open in that simplex is open in C. See the Solution to Problem 2 of the Exam January 2007.
2.7. Example. The real line \mathbf{R} is an ESC because it is the locally finite union of the 1 -simplices $[i, i+1]$ for $i \in \mathbf{Z}$. The associated ASC is is $K=\{\{i\} \mid i \in \mathbf{Z}\} \cup\left\{\{\{i, i+1\} \mid i \in \mathbf{Z}\}\right.$ with realization $|K|=\mathbf{R}^{1}$. If $K=\{\{0,1, \ldots, m\},\{0,1\},\{1,2\}, \ldots\{m-1, m\},\{m, 0\}\}$ then $|K|=S^{1}$. If $\sigma=\{0,1, \ldots, k\}$ then $|\Delta[\sigma]|=\Delta^{k}$ and $|\partial \Delta[k]|=\partial \Delta^{k}=S^{k-1}$. If K the 2-dimensional subcomplex of $D[\{1,2,3,4,5,6\}]$ generated by

$$
\{\{1,4,5\},\{5,2,1\},\{2,5,6\},\{6,3,2\},\{3,6,1\},\{1,4,3\}\}
$$

then $|K|$ embeds in \mathbf{R}^{3} as a triangulated Möbius band.
The comb space $(\{0\} \cup\{1 / n \mid n=1,2, \ldots\}) \times I$ is a subspace of \mathbf{R}^{2} that is not an ESC because it is not locally path connected. Let $0=0 \times 0$ and $1_{n}=1 \times\left(1-\frac{1}{n}\right)$ in the plane and let $K=\bigcup D\left[\left\{0,1_{n}\right\}\right]$. Then $|K|=\bigvee[0,1]$. The bijective continuous map $|K| \rightarrow \bigcup\left[0,1_{n}\right] \subset \mathbf{R}^{2}$ is not a homeomorphism as $|K|$ is not first countable (General Topology, 2.97.(7)) and so does not embed into any Euclidean space.

Unfortunately, products do not commute with the realization functor. The product in the category ASC of abstract simplicial complexes of $K=\left(V_{K}, S_{K}\right)$ and $L=\left(V_{L}, S_{L}\right)$ is the simplicial complex $K \otimes L$ with vertex set $V_{K} \times V_{L}$ and with simplex set

$$
S_{K \otimes L}=\left\{\sigma \subset V_{K} \times V_{L} \mid \operatorname{pr}_{1}(\sigma) \in S_{K}, \operatorname{pr}_{1}(\sigma) \in S_{L}\right\}
$$

Note that $K \otimes L$ is indeed an abstract simplicial complex equipped with simplicial projections $\mathrm{pr}_{1}: K \otimes L \rightarrow K$ and $\mathrm{pr}_{2}: K \otimes L \rightarrow L$ inducing a bijection

$$
\operatorname{Hom}_{\mathbf{A S C}}(M, K \otimes L) \rightarrow \operatorname{Hom}_{\mathbf{A S C}}(M, K) \times \operatorname{Hom}_{\mathbf{A S C}}(M, L)
$$

For instance $D[m] \otimes D[n]=D[m n+m+n]$ so the induced map $\left|\operatorname{pr}_{1}\right| \times\left|\mathrm{pr}_{2}\right|:|K \otimes L| \rightarrow|K| \times|L|$ of realizations is usually not a homeomorphism.

2. Ordered Simplicial complexes

Very often, the vertex set of an ASC is an ordered set (Example 2.7). When we want to remember the ordering of the vertex set we do it formally by speaking about OSCs.
2.9. Definition (OSC). An ordered simplicial complex is an ASC with a partial ordering on its vertex set such that every simplex is totally ordered.

A simplicial map $f: K \rightarrow L$ between two OSCs is a poset map $f: V(K) \rightarrow V(L)$ between the vertex sets that takes simplices of K to simplices of L.
2.10. Example (Order complexes). To every poset P, we can associate an OSC, $\Delta(P)$, the order complex of P, consisting of all nonempty totally ordered finite subsets of $P . \Delta(-)$ is a functor from the category of posets to the category of OSCs. If σ is a finite totally ordered set containing $k+1$ elements, then the ASC $D[\sigma]$ has $(k+1)$! automorphisms but the OSC $\Delta(\sigma)$ has just one automorphism.
2.11. Example (ASC $\xrightarrow{\text { sd }}$ OSC $\rightarrow \Delta$-sets). To every ASC K we can associate a poset, $P(K)$, the face poset of K, which is K ordered by inclusion. $P(-)$ is a functor from the category of ASCs to the category of posets. The composite sd $=\Delta \circ P$, called the barycentric subdivision functor (Figure 3), is a functor from ASCs to OSCs.

To every OSC K we can associate a Δ-set (even a simplicial set [21, 8.1.8]). Namely, let $K_{n} \subset K$ be the subset of simplices of dimension n and let $d_{i}: K_{n} \rightarrow K_{n-1}, 0 \leq i \leq n$, be the map obtained by deleting
vertex number i in each n-simplex $\sigma \in K_{n}$. This construction is a functor from the category of OSCs to the category of Δ-sets.

The vertex set of the OSC sd K is the simplex set of the ASC K and the k-simplices of sd K are length k chains of inclusions $s_{0} \subset \cdots \subset s_{k}$ of simplices in K.

The realization of an OSC is the realization of the underlying ASC. What is the realization of the Δ-set associated to an OSC? What is the realization of the OSC associated to an ASC? The next lemma shows that any space that can be realized by an ASC can also be realized by an OSC.
2.12. Lemma. For any ASC K, barycenters give a homeomorphism $b:|\operatorname{sd} K| \rightarrow|K|$.

Proof. For each simplex s of K, let $b(s) \in\langle s\rangle \subset|K|$ be the barycenter. Then $s \rightarrow b(s)$ is a map from the 0 -skeleton of $|\operatorname{sd} K|$ to $|K|$. Now extend this map linearly by

$$
\left(s_{0} \subset \cdots \subset s_{k}\right) \times \Delta^{k} \rightarrow s_{k} \times \Delta^{k} \rightarrow|K|: \Delta^{k} \ni \sum t_{i} e_{i} \rightarrow \sum t_{i} b\left(s_{i}\right) \in|K|
$$

In other words, this is the map b given by $b \mid\left(s_{0} \subset \cdots \subset s_{k}\right)=\left[b\left(s_{0}\right), \ldots, b\left(s_{k}\right)\right]$. We exploit that it makes sense to take convex combinations of points of $|K|$ if they all belong to a simplex. It can be shown that $b:|\operatorname{sd} K| \rightarrow|L|$ is a homeomorphism [19, Thm 4 p 122$].$

The inverse of the barycentric subdivision map $|K| \xrightarrow{b^{-1}}|\operatorname{sd} K|$ is a cellular map (1.73) (and not a simplicial map) as $|K|^{n} \subset|\operatorname{sd} K|^{n}$ for all n.
2.13. Theorem (Simplicial Approximation). Let K and L be simplicial complexes where K is finite. For any map $f:|K| \rightarrow|L|$ there exist some $r \geq 0$ and a simplicial map $g: \operatorname{sd}^{r} K \rightarrow L$ such that
(1) for every point $x \in\left|\operatorname{sd}^{r} K\right|$, there is a closed simplex of L such that $f(x)$ and $|g|(x)$ lie in that simplex
(2) $\left|\operatorname{sd}^{r} K\right| \xrightarrow[\simeq]{b^{r}}|K| \xrightarrow{f}|L|$ is homotopic to $|g|$.

Proof. The realization $|K|$ is a compact metric space (2.5). One can show that the maximal diameter of any positive dimensional simplex of $|K|$ goes down under barycentric subdivision [19, Lemma 12 p 124].

Let ε be the Lebesgue number (General topology, 2.158) of the open covering of $|K|$ induced from the open covering of $|L|$ by open stars (2.4.2), $|K|=\bigcup_{u \in V(L)} f^{-1} \operatorname{st}(u)$. By replacing K by some iterated subdivision we may assume that all simplices in $|K|$ have diameter $<\varepsilon / 2$. The triangle inequality implies that the open $\operatorname{star} \operatorname{st}(v)$ of any vertex v in K has diameter $<\varepsilon$. Thus $\operatorname{st}(v) \subset f^{-1} \operatorname{st}(g(v))$ or $f(\operatorname{st}(v)) \subset \operatorname{st}(g(v))$ for some function $g: V(K) \rightarrow V(L)$ between the vertex sets.

We now want to prove that
(1) g is a simplicial map
(2) For any point in $x \in|K|, f(x)$ and $|g|(x)$ belong to the same simplex of L

For the first item, let s be a simplex in K. Since

$$
\emptyset \neq f(\langle s\rangle) \subset f\left(\bigcap_{v \in s} \operatorname{st}(v)\right) \subset \bigcap_{v \in s} f(\operatorname{st}(v)) \subset \bigcap_{v \in s} \operatorname{st}(g(v))=\bigcap_{u \in g(s)} \operatorname{st}(u)
$$

the image $g(s)=\{g(v) \mid v \in s\}$ is a simplex of L (2.4.3). The second item will follow if we can show that

$$
\forall x \in|K| \forall s_{2} \in L: f(x) \in\left\langle s_{2}\right\rangle \Longrightarrow|g|(x) \in\left|s_{2}\right|
$$

or, since $|K|=\bigcup_{s \in K}\langle s\rangle$, that

$$
\forall s \in K \forall s_{2} \in L: f\left\langle s_{1}\right\rangle \cap\left\langle s_{2}\right\rangle \neq \emptyset \Longrightarrow g\left(s_{1}\right) \subset s_{2}
$$

But this follows from

$$
f\left\langle s_{1}\right\rangle \cap\left\langle s_{2}\right\rangle \subset f\left(\bigcap_{v \in s_{1}} \operatorname{st}(v)\right) \cap\left\langle s_{2}\right\rangle \subset \bigcap_{v \in s_{1}} f(\operatorname{st}(v)) \cap\left\langle s_{2}\right\rangle \subset \bigcap_{v \in s_{1}} \operatorname{st}(g(v)) \cap\left\langle s_{2}\right\rangle=\bigcap_{u \in g\left(s_{1}\right)} \operatorname{st}(u) \cap\left\langle s_{2}\right\rangle
$$

for, as the latter set is nonempty, $g\left(s_{1}\right) \subset s_{2}$ (2.4.4).
We can now define a homotopy $F: I \times|K| \rightarrow|L|$ by $F(t, x)=t f(x)+(1-t)|g|(x)$. This is well-defined since if $f(x) \in\left\langle s_{2}\right\rangle$, both $f(x)$ and $|g|(x)$ are in $\left|s_{2}\right|$ and so $F(t, x) \in\left|s_{2}\right|$ for all t. The continuity of F follows because the restriction of F to $I \times\left|s_{1}\right|$ is continuous for all simplices s_{1} in K [19, 3.1.21].

A triangulation of a topological space X consists of an OSC K and a homeomorphism $|K| \rightarrow X$. A polyhedron is a space that admits a triangulation. (A fundamental, but rarely proved, theorem says that any compact surface is a polyhedron [7].)

Here (and here) is a triangulation of $\mathbf{R} P^{2}$

The Hauptvermutung says that any two triangulations of a manifold have isomorphic subdivisions. This is true for surfaces and that is why the classification of surfaces is a combinatorial problem. However, the Hauptvermutung is not true in dimensions >2, and therefore the classification of 3 -manifolds can not be reduced to combinatorics. Here is a list of manifold triangulations. See [15, Chp 4] for triangulations of 3-manifolds.

ASCs can be investigated with the help of the program asc.prg

3. Partially ordered sets

We shall need some constructions with partially ordered sets.
2.14. Definition. A partial order (or partially ordered set or poset) is a set X with a binary relation \leq that is
reflexive: $a \leq a$ for all $a \in X$
anti-symmetric: If $a \leq b$ and $b \leq a$ then $a=b$
transitive: If $a \leq b$ and $b \leq c$ then $a \leq c$
A linear order is a partial order where any two elements are comparable: For any $a, b \in X$, either $a \leq b$ or $b \leq a$.

A map $f: X \rightarrow Y$ between partially ordered sets is order preserving if $x_{1} \leq x_{2} \Longrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Let POSET denote the category of posets with order preserving maps, and POSI the category of posets with order preserving injective maps. If $f: X \rightarrow Y$ is an injecttive order preserving map, then f is strictly order preserving in the sense that $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$. (We write $x_{1}<x_{2}$ if $x_{1} \leq x_{2}$ and $x_{1} \neq x_{2}$.)
2.15. Definition. The standard n-simplex, $n=0,1,2, \ldots$, is the linear order

$$
n_{+}=\{0<1<\cdots<n\}
$$

of $n+1$ points from the linear order \mathbf{Z}.
There are $\binom{n+1}{m+1}=\binom{n+1}{n-m}$ injective poset morphisms from m_{+}to n_{+}.
The cylinder $X \times 1_{+}$on the poset X is a poset with the product order

$$
\left(x_{1}, t_{1}\right) \leq\left(x_{2}, t_{2}\right) \Longleftrightarrow x_{1} \leq x_{2} \text { and } t_{1} \leq t_{2}
$$

There are injective poset morphisms $i_{0}, i_{1}: X \rightarrow X \times 1_{+}$given by $i_{0}(x)=(x, 0)$ and $i_{1}(x)=(x, 1)$ embedding X as the bottom and top of the cylinder. As an example, here is the cylinder $5_{+} \times 1_{+}$on the 5 -simplex

2.16. Definition. morphism
(1) The i th coface, $d_{n}^{i} \in \operatorname{POSI}\left((n-1)_{+}, n_{+}\right), i \in n_{+}$, is the injective poset

$$
0<1<\cdots<i-1<i+1<\cdots<n
$$

that avoids i.
(2) The i th prism, $P_{n}^{i} \in \mathbf{P O S I}\left((n+1)_{+}, n_{+} \times 1_{+}\right), i \in n_{+}$, is the maximal $(n+1)$-simplex in $n_{+} \times 1_{+}$

$$
P_{n}^{i}=(0,0)<\cdots<(0, i)<(1, i)<\cdots<(n, i)
$$

with a jump from $(i, 0)$ to $(i, 1)$.

$d^{i}:(n-1)_{+} \rightarrow n_{+}$

$P^{i}:(n+1)_{+} \rightarrow n_{+} \times 1_{+}$

We now investigate the composition map

$$
\operatorname{POSI}\left((n-1)_{+}, n_{+}\right) \times \operatorname{POSI}\left(n_{+},(n+1)_{+}\right) \xrightarrow[\text { composition }]{\left(d^{i}, d^{j}\right) \rightarrow d^{j} d^{i}} \mathbf{P O S I}\left((n-1)_{+},(n+1)_{+}\right)
$$

in the category POSI. The domain of this composition map has double as many elements as the codomain: The domain has $(n+1)(n+2)$ elements and the codomain has $\binom{n+2}{2}$ elements. We divide the domain into two disjoint parts of equal size such that the composition map is a bijection on each part.
2.17. Lemma (Cosimplicial identities). The diagram
is commutative. In other words,

$$
d^{j} d^{i}= \begin{cases}d^{i} d^{j-1} & j>i \tag{2.18}\\ d^{i+1} d^{j} & j \leq i\end{cases}
$$

when $i \in n_{+}$and $j \in(n+1)_{+}$.
Proof. Let us first look at the green triangle, $n+1 \geq j>i \geq 0$, of Figure 2. We observe that $d^{j} d^{i}$ and $d^{i} d^{j-1}$ both equal the injective poset morphism $d^{\{i, j\}}:(n-1)_{+} \rightarrow(n+1)_{+}$that do not take the values i and j. This means that composition is invariant under the bijection $R, R(i, j)=(j-1, i)$, between the green and yellow triangle. In the yellow triangle, $0 \leq j \leq i \leq n, R^{-1}(i, j)=(j, i+1)$, and $d^{j} d^{i}=d^{i+1} d^{j}$.

Next, we investigate compositions of coface and prism maps

Figure 2. Cosimplicial identities

$$
\begin{aligned}
& n_{+} \xrightarrow{d^{j}}(n+1)_{+} \xrightarrow{P_{n}^{i}} n_{+} \times 1_{+} \\
& n_{+} \xrightarrow{P_{n-1}^{i}}(n-1)_{+} \times 1_{+} \xrightarrow{d^{j} \times 1} n_{+} \times 1_{+}
\end{aligned}
$$

2.19. Lemma (Prism identities). $P_{n}^{0} d^{0}=i_{1}, P_{n}^{i} d^{i}=P_{n}^{i-1} d^{i}$ for $1 \leq i \leq n$, and $P_{n}^{n} d^{n+1}=i_{0}$. For $j \notin\{i, i+1\}$

$$
P_{n}^{i} d^{j}= \begin{cases}\left(d^{j-1} \times 1\right) P_{n-1}^{i} & n+1 \geq j>i+1 \geq 1 \\ \left(d^{j} \times 1\right) P_{n-1}^{i-1} & 0 \leq j<i \leq n\end{cases}
$$

Proof. We may illustrate the first identities like this

For instance, take $P^{i}:(n+1)_{+} \rightarrow n_{+} \times 1_{+}$and precompose with $d^{i}: n_{+} \rightarrow(n+1)_{+}$. The result, $P^{i} d^{i}$, is shown above. The remaining identities are indicated in the left part of Figure 3.
 is given by $d_{i}\left(n_{+} \xrightarrow{\sigma} X\right)=(n-1)_{+} \xrightarrow{d^{i}} n_{+} \xrightarrow{\sigma} X=\sigma d^{i}, i \in n_{+}$. The nth chain group of X is the free abelian group $C_{n}(X)=\mathbf{Z} B X_{n}$ with basis $B X_{n}$. The chain complex of X is the chain complex $\left(C_{*}(X), \partial\right)$ with

$$
C_{n}(X)=\mathbf{Z} B X_{n}, \quad \partial=\sum_{i \in n_{+}}(-1)^{i} d_{i}: C_{n}(X) \rightarrow C_{n-1}(X), \quad \partial \sigma=\sum_{i \in n_{+}}(-i)^{i} \sigma d^{i}, \quad \sigma \in B X_{n}
$$

Figure 3. Prism identities
The next corollary shows that this is indeed a chain complex.
2.20. Corollary. The composition of two boundary maps

is trivial so that $\operatorname{im}\left(\partial_{n}\right) \subseteq \operatorname{ker}\left(\partial_{n-1}\right)$.
Proof. Since the boundary is obviously natural, $\partial \partial \sigma=\partial \partial \sigma \delta^{n+1}=\sigma \partial \partial \delta^{n+1}$, and it suffices to prove that $\partial \partial \delta^{n+1}=0$. We find that

$$
\partial \partial \delta^{n+1}=\partial \sum_{j \in(n+1)_{+}}(-1)^{j} d^{j}=\sum_{\substack{i \in n_{+} \\ j \in(n+1)_{+}}}(-1)^{i+j} d^{j} d^{i}=0
$$

as the pairs from the green triangle cancel the pairs from the yellow triangle in Figure 2.
Define the prism operator $P_{n}: C_{n}(X) \rightarrow C_{n+1}\left(X \times 1_{+}\right)$to be the Z-linear homomorphism given by

$$
\begin{equation*}
P_{n}\left(n_{+} \stackrel{\sigma}{\rightarrow} X\right)=\sum_{i \in n_{+}}(-1)^{i}\left((n+1)_{+} \xrightarrow{P^{i}} n_{+} \times 1_{+} \xrightarrow{\sigma \times 1} X \times 1_{+}\right)=\sum_{i \in n_{+}}(-1)^{i}(\sigma \times 1) P_{n}^{i} \tag{2.21}
\end{equation*}
$$

In particular, the prism on the identity n-simplex is

$$
P_{n} \delta^{n}=\sum_{i \in n_{+}}(-1)^{i} P^{i} \in C_{n+1}\left(n_{+} \times 1_{+}\right)
$$

The prism operator is obviously natural in the sense that the diagram

commutes for any injective poset morphism $f: X \rightarrow Y$.
2.22. Example. Here are the values of $P_{n} \delta^{n}$ for $n=0,1,2$,

$$
P_{0} \delta^{0}=\int_{0} \in C_{1}\left(0_{+} \times 1_{+}\right)
$$

2.23. Example. We consider the special case $n=2$ where we have the homomorphisms

The formal proof follows the same the pattern as we see in this special case. Here is $\partial P_{2} \delta^{2}=d_{0} P_{2} \delta^{2}-$ $d_{1} P_{2} \delta^{2}+d_{2} P_{2} \delta^{2}-d_{3} P_{2} \delta^{2} \in C_{2}\left(2_{+} \times 1_{+}\right)$as computed from $P_{2} \delta^{2}=P_{2}^{0}-P_{2}^{1}+P_{2}^{2} \in C_{3}\left(2_{+} \times 1_{+}\right)$,

and here is $P_{1} \partial \delta^{2}=P_{1}\left(d^{0}-d^{1}+d^{2}\right)=\left(d^{0} \times 1\right)\left(P_{1}^{0}-P_{1}^{1}\right)-\left(d^{1} \times 1\right)\left(P_{1}^{0}-P_{1}^{1}\right)+\left(d^{2} \times 1\right)\left(P_{1}^{0}-P_{1}^{1}\right) \in C_{2}\left(2_{+} \times 1_{+}\right)$ as computed from $P_{1} \delta^{1}=P_{1}^{0}-P_{1}^{1} \in C_{2}\left(1_{+} \times 1_{+}\right)$,

We conclude that indeed $\partial P_{2} \delta^{2}=i_{1}-P_{1} \partial \delta^{2}-i_{0}$. This means that the boundary of the prism on a simplex is the top minus the prism on the boundary minus the bottom.
2.24. Corollary (The boundary of a prism). In the diagram

Proof. As the homomorphisms of the diagram are natural and $\sigma=\sigma_{*} \delta^{n}$ for any n-simplex $\sigma \in C_{n}(X)$, it suffices to consider the case where $X=n_{+}$is the standard n-simplex and $\sigma=\delta^{n}$ is the identity simplex. We need to show that $\partial P \delta^{n}=\left(i_{1}-P_{n-1} \partial+i_{0}\right) \delta^{n}$. We observe that

$$
\partial P \delta^{n}=\partial \sum_{i \in n_{+}}(-1)^{i} P^{i}=\sum_{\substack{i \in n_{+} \\ j \in(n+1)_{+}}}(-1)^{i+j} P^{i} d^{j}, \quad P \partial \delta^{n}=P \sum_{j \in n_{+}}(-1)^{j} d^{j} \stackrel{(2.21)}{=} \sum_{\substack{i \in(n-1)_{+} \\ j \in n_{+}}}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i}
$$

The sum that computes $\partial P \delta^{n}$ runs over all the pairs $(i, j) \in n_{+} \times(n+1)_{+}$shown in Figure 3. The contribution to this sum from the two lines $j=i$ and $j=i+1, i \in n_{+}$, is

$$
\sum_{i \in n_{+}}\left(P^{i} d^{i}-P^{i} d^{i+1}\right)=i_{1}-i_{0}
$$

as all the horizontally connected pairs in Figure 3. The contribution to the sum from the green and the yellow triangle is

$$
\begin{align*}
\partial P \delta^{n}-\left(i_{1}-i_{0}\right) & =\sum_{n+1 \geq j>i+1 \geq 1}(-1)^{i+j} P^{i} d^{j}+\sum_{0 \leq j<i \leq n}(-1)^{i+j} P^{i} d^{j} \\
& =\sum_{n+1 \geq j>i+1 \geq 1}(-1)^{i+j}\left(d^{j-1} \times 1\right) P^{i}+\sum_{0 \leq j<i \leq n}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i-1} \quad \text { (Lemma 2.19) } \tag{Lemma2.19}\\
& =-\sum_{n \geq j \geq i+1 \geq 1}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i}-\sum_{0 \leq j \leq i \leq n-1}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i} \quad \quad \text { (re-indexing) } \\
& =-\sum_{n \geq j>i \geq 0}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i}-\sum_{0 \leq j \leq i \leq n-1}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i} \quad \text { (rewriting the first sum) } \\
& =-\sum_{\substack{i \in(n-1)_{+} \\
j \in n_{+}}}(-1)^{i+j}\left(d^{j} \times 1\right) P^{i} \quad(\text { see formula above) } \\
& =-P \partial \delta^{n}
\end{align*}
$$

We conclude that $\partial P \delta^{n}=i_{1}-P \partial \delta^{n}-i_{0}$ and that's what we wanted to show.

The nth homology group of X,

$$
H_{n}(X)=H_{n}\left(C_{n}(X), \partial\right)
$$

is the nth homology group of the chain complex of X. Homology is a functor from the category POSI of posets with injective poset morphisms to the category of abelian groups.
2.25. ThEOREM (Homotopy invariance). $\left(i_{0}\right)_{*}=\left(i_{1}\right)_{*}: H_{*}(X) \rightarrow H_{*}\left(X \times 1_{+}\right)$.

Proof. Let $[z] \in H_{n}(X)$ be a homology class represented by an n-cycle $z \in \mathbf{Z} B_{n}(X)$. The homology classes $\left(i_{0}\right)_{*}[z]=\left[i_{0} z\right]$ and $\left(i_{0}\right)_{*}[z]=\left[i_{0} z\right]$ in $H_{n}\left(X \times 1_{+}\right)$are identical because

$$
\left[i_{1} z\right]-\left[i_{0} z\right]=[\partial P z+P \partial z]=[\partial P z]=0
$$

as $\partial z=0$ and $\partial P z$ is a boundary.

4. Δ-sets

We now focus on a small full subcategory of the category POSI of posets with injective order preserving maps.
2.26. Definition. $\Delta_{<}$is the full subcategory of POSI whose objects are the standard n-simplices n_{+}, $n \geq 0$.
2.27. Definition. A Δ-set ${ }^{1}$ is a functor $S_{\bullet}: \Delta_{<}^{\mathrm{op}} \rightarrow \mathbf{S E T}$, a contravariant functor from the category $\Delta_{<}$of standard simplices to the category of sets. Δ SET is the category of Δ-sets. A co- Δ-set is a functor $S^{\bullet}: \Delta_{<} \rightarrow$ SET .

In other words, a Δ-set is a graded set $S_{\bullet}=\bigcup_{n=0}^{\infty} S_{n}$, where $S_{n}=S\left(n_{+}\right)$, with face maps $d_{i}=$ $S\left(d^{i}\right): S_{n}=S\left(n_{+}\right) \rightarrow S\left((n-1)_{+}\right)=S_{n-1}$, satisfying the simplicial identities

$$
d_{i} d_{j}= \begin{cases}d_{j-1} d_{i} & j>i \tag{2.28}\\ d_{i+1} d_{j} & j \leq i\end{cases}
$$

when $i \in n_{+}$and $j \in(n+1)_{+}$. The simplicial identities, dual to the cosimplicial identities (2.18), can be visualized as a commutative diagram
dual to the commutative diagram of Lemma 2.17.
The Δ-set S is N-dimensional if S_{n} is empty for $n>N$. If S and T are Δ-sets, a morphism $\varphi: S \rightarrow T$ is a sequence of maps $\varphi_{n}: S_{n} \rightarrow T_{n}$ commuting with the face maps. (Similarly, we may speak about Δ-spaces, Δ - G-spaces, Δ-groups, etc.)
2.1. The chain complex and simplicial homology groups of a Δ-set. The chain complex of the Δ-set S is the chain complex $(\mathbf{Z}[S], \partial)$

$$
\begin{equation*}
0 \longleftarrow \mathbf{Z}\left[S_{0}\right] \lessdot^{\partial_{0}} \mathbf{Z}\left[S_{1}\right] \leftarrow^{\partial} \cdots \leftarrow^{\partial} \mathbf{Z}\left[S_{n-1}\right] \stackrel{\partial_{n-1}}{\leftarrow} \mathbf{Z}\left[S_{n}\right] \leftarrow^{\partial_{n}} \mathbf{Z}\left[S_{n+1}\right] \lessdot \ldots \tag{2.29}
\end{equation*}
$$

with boundary operator

$$
\mathbf{Z}\left[S_{n}\right] \leftarrow \mathbf{Z}\left[S_{n+1}\right]: \partial_{n}=\sum_{j \in(n+1)_{+}}(-1)^{j} d_{j}
$$

Here, $\mathbf{Z}\left[S_{n}\right]$ is the free abelian group with basis $S_{n} .(\mathbf{Z}[S]$ is the Δ-abelian group which in degree n is the free abelian group $\mathbf{Z}\left[S_{n}\right]$.) That $\mathbf{Z}[S]$ is indeed a chain complex is a consequence of the simplicial identities (2.28):

[^2]2.30. LEMMA. $\partial_{n-1} \partial_{n}=0$

Proof. The composition of ∂_{n} followed by ∂_{n-1} is

$$
\partial_{n-1} \partial_{n}=\sum_{\substack{j \in(n+1)_{+} \\ i \in n_{+}}}(-1)^{i+j} d_{i} d_{j}
$$

where the summation runs over the green and yellow triangles of Figure 2. The simplicial identities (2.28) show that the contributions from these two triangles will cancel as they occur with opposite signs in the above sum.
2.31. Definition. The simplicial homology groups $H_{n}^{\Delta}(S)$ of the Δ-set S are the homology groups of the chain complex $(\mathbf{Z}[S], \partial)$ of S.
2.32. Example. Let S be the 1-dimensional Δ-set

$$
\{v\} \underset{d_{1}}{\underset{d_{0}}{\sim}}\{a\}
$$

Then $|S|=S^{1}$ and the chain complex $(\mathbf{Z} S, \partial)$ is $0 \stackrel{0}{\leftarrow} \mathbf{Z} \stackrel{0}{\leftarrow} \mathbf{Z} \stackrel{0}{\leftarrow} 0$ with homology groups $H_{0}^{\Delta}(S)=\mathbf{Z}$ and $H_{1}^{\Delta}(S)=\mathbf{Z}$.
2.2. Sub- Δ-sets and quotient Δ-sets. Let S be a Δ-set. We discuss sub- Δ-sets and quotient Δ-sets of S.
2.33. Definition. A sub- Δ-set of S is a sequence of subsets A_{n} of S_{n} stable under the face maps.
2.34. Definition. An equivalence relation \sim on S consists of a sequence of equivalence relations on the sets $S_{n}, n \geq 0$, such that the face maps preserve the equivalence relation:

$$
\forall a, b \in S_{n}: a \sim b \Longrightarrow d_{i} a \sim d_{i} b, \quad 0 \leq i \leq n
$$

The quotient Δ-set is the Δ-set S / \sim whose set of n-simplices is $(S / \sim)_{n}=S_{n} / \sim$ and whose face maps are induced by those of S.

- It is only possible to identify a simplex with another simplex of the same dimension; it is not possible to collapse an n-simplex to a point if $n>0$.
- The Δ-set morphism $S \rightarrow S / \sim$ induces a quotient map $|S| \rightarrow|S / \sim|$ from the realization of S to the realization of its quotient (General topology, 2.79).
- If A is sub- Δ-set of S then there is a quotient Δ-set S / A with $(S / A)_{n}=S_{n} / A_{n}$ obtained by identifying all the n-simplices of A. We write $H_{n}(S, A)$ for the nth homology group of the quotient Δ-set S / A.
2.35. Example (A Δ-complex structure on the torus $M_{1}=S^{1} \times S^{1}$). Let S be the Δ-set $L \amalg R$ where $L=\Delta\left[2_{+}\right]=R$, realizing $\Delta^{2} \amalg \Delta^{2}$. Let \sim be the smallest equivalence relation on S that identifies $d_{1} L=d_{1} R$, $d_{2} L=d_{0} R$, and $d_{0} L=d_{2} R$.

Let $T=S / \sim$ be the quotient Δ-set. The simplices of T are $T_{2}=\{L, R\}, T_{1}=\left\{d_{0} L, d_{1} L, d_{2} L\right\}$, and $T_{0}=\{(0)\}$. The chain complex is

$$
0 \leftarrow \mathbf{Z} \stackrel{\partial_{1}}{\leftarrow} \mathbf{Z}^{3} \stackrel{\partial_{2}}{\longleftarrow} \mathbf{Z}^{2} \leftarrow 0, \quad \partial_{2}=\left(\begin{array}{lll}
1 & -1 & 1 \\
1 & -1 & 1
\end{array}\right), \quad \partial_{1}=0
$$

because $\partial_{2} L=d_{0} L-d_{1} L+d_{2} L$ and $\partial_{2} R=d_{2} R-d_{1} R-d_{2} R=d_{0} L-d_{1} L-d_{2} L=\partial_{2} L$. Thus the simplicial homology groups are $H_{0}(T)=\mathbf{Z}, H_{1}(T)=\mathbf{Z} \oplus \mathbf{Z}$, and $H_{2}(T)=\mathbf{Z}$. The 2nd homology group is generated by the 2 -cycle $L-R$, and the 1 st homology group by the 1 -cycles $d_{0} L$ and $d_{2} L$. The 1 -cycle $d_{2} L$ is homologous to $d_{0} L-d_{1} L$.

Try to identify the 1 -cycles $d_{0} L$ and $d_{1} L$ and the 2 -cycle $L-R$ on the presentation of the torus from Chp 4 of Homotopy theory for beginners.
2.36. Example (A Δ-complex structure on the crosscap $N_{1}=\mathbf{R} P^{2}$). Let S be the Δ-set $U \amalg D$ where $U=\Delta\left[2_{+}\right]=D$, realizing $\Delta^{2} \amalg \Delta^{2}$. Let \sim be the smallest equivalence relation on S that identifies $d_{2} U=d_{1} D$, $d_{1} U=d_{2} D$, and $d_{0} U=d_{0} D$.

Let $P^{2}=S / \sim$ be the quotient Δ-set. The simplices of P^{2} are $P_{2}^{2}=\{U, D\}, P_{1}^{2}=\left\{d_{0} U, d_{1} U, d_{2} U\right\}$, and $P_{0}^{2}=\{(0),(1)\}$. The chain complex is

$$
0 \leftarrow \mathbf{Z}^{2} \stackrel{\partial_{1}}{\leftrightarrows} \mathbf{Z}^{3} \stackrel{\partial_{2}}{\longleftarrow} \mathbf{Z}^{2} \leftarrow 0, \quad \partial_{2}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right), \quad \partial_{1}=\left(\begin{array}{cc}
0 & 0 \\
1 & -1 \\
1 & -1
\end{array}\right)
$$

because $\partial_{2} U=d_{0} U-d_{1} U+d_{2} U=d_{0} U-\left(d_{1} U-d_{2} U\right), \partial_{1} D=d_{0} D-d_{1} D+d_{2} D=d_{0} U+\left(d_{1} U-d_{2} U\right)$ and $\partial_{1} d_{0} U=\partial_{1}(12)=(2)-(1)=0, \partial_{1} d_{1} U=\partial_{1}(02)=(2)-(0), \partial_{1} d_{2} U=\partial_{1}(01)=(1)-(0)$. The 1-cycles are $Z_{1}\left(P^{2}\right)=\mathbf{Z}\left\{d_{0} U, d_{1} U-d_{2} U\right\} \subset \mathbf{Z} P_{1}^{2}$. The matrix for $\partial_{2}: \mathbf{Z} P_{2}^{2} \rightarrow Z_{1}\left(P^{2}\right)$ is

$$
\partial_{2}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \simeq\left(\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right) \simeq\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right)
$$

where \simeq stands for row or column operation and thus $H_{0}^{\Delta}(S)=\mathbf{Z}, H_{1}^{\Delta}(S)=\mathbf{Z} / 2 \mathbf{Z}$, and $H_{2}^{\Delta}(S)=0$. We have shown that

- $d_{0} U$ is a 1-cycle, homologous to $d_{1} U-d_{2} U$ as $\partial U=d_{0} U-\left(d_{1} U-d_{2} U\right)$;
- $d_{0} U$ is not a 1 -boundary but $2 d_{0} U=\partial(U+D)$ is;
- there are no 2 -cycles in the Δ-set P^{2}.

Try to identify the 1 -cycle $d_{0} U$ on the presentations of $\mathbf{R} P^{2}$ from Chp 4 of Homotopy theory for beginners.
2.3. The topological realization of a Δ-set. The topological realization of the Δ-set S is a kind of tensor product of the Δ-set with the co- Δ-space Δ^{\bullet}. More precisely, the realization of S is defined to be the quotient space of a collection of disjoint geometric simplices,

$$
\begin{equation*}
|S|=\coprod_{n \geq 0} S_{n} \times \Delta^{n} / \sim \tag{2.37}
\end{equation*}
$$

where \sim is the equivalence relation generated by $\left(\sigma, d^{i} y\right) \sim\left(d_{i} \sigma, y\right)$ for all $(\sigma, y) \in S_{n} \times \Delta^{n-1}$. This relation identifies the $(n-1)$-simplex $d_{i} \sigma \times \Delta^{n-1}$ with the i th face $\sigma \times d^{i} \Delta^{n-1}$ of the n-simplex $\sigma \times \Delta^{n}$ for all $\sigma \in S_{n}$. In this way a Δ-set is a recipe for building a space out of geometric simplices.
2.38. Definition. A Δ-complex is the topological realization of a Δ-set. A Δ-complex structure on a topological space X consists of a Δ-set S and a homeomorphism between $|S|$ and X.

The data

Figure 4. Δ-complex structures on the torus M_{1} and the Klein bottle N_{2}

means that the realization functor and the singular functor are adjoint functors with $|\cdot|$ the left and Sing the right adjoint functor. The natural transformations, η and ε, the unit and counit of the adjunction, are defined by $\eta(\sigma)(x)=(\sigma, x)$ and $\varepsilon(\sigma, x)=\sigma(x)$ for all n-simplices $\sigma: \Delta^{n} \rightarrow X$ in X and all points $x \in \Delta^{n}$. Observe that

$$
\left(d_{i} \eta_{S}(\sigma)\right)(y)=\left(d_{i} \sigma, y\right)=\left(\sigma, d^{i} y\right)=\eta_{S}(\sigma)\left(d^{i} y\right), \quad \sigma \in S_{n}, y \in \Delta^{n-1}
$$

and that

$$
\varepsilon_{X}\left(\sigma, d^{i} y\right)=\sigma\left(d^{i} y\right)=\left(d_{i} \sigma\right)(y)=\varepsilon_{X}\left(d_{i} \sigma, y\right), \quad \sigma \in \operatorname{Sing}(X)_{n}, y \in \Delta^{n-1}
$$

The first equation shows that the unit is a morphism of Δ-sets and the second one that the counit is a well-defined morphism of topological spaces. As always, an adjunction determines a bijection

$$
\Delta \boldsymbol{\operatorname { S E T }}(S, \operatorname{Sing}(X))=\boldsymbol{\operatorname { T o p }}(|S|, X)
$$

where the continuous map $|S| \xrightarrow{f} X$ and the Δ-set morphism $S \xrightarrow{\varphi} \operatorname{Sing}(X)$ correspond to each other if $f(\sigma, x)=\varphi(\sigma)(x)$ for all $\sigma \in \operatorname{Sing}_{n}(X)$ and $x \in \Delta^{n}$.
2.39. Example (A Δ-complex structure on D^{n} and S^{n-1}). The Δ-set $\Delta[n]=B n_{+}$of the poset n_{+} consists of all nonempty subsets of n_{+}. Define $\partial \Delta[n]$ as the Δ-set of all proper subsets of n_{+}. The topological realizations of these two Δ-sets are $|\Delta[n]|=\Delta^{n}$, the n-simplex, and $|\partial \Delta[n]|=\partial \Delta^{n}$, the ($n-1$)-sphere.
2.40. Example (A Δ-complex structure on M_{1}). Consider the 2-dimensional Δ-set $S=S_{0} \longleftarrow S_{1} \Longleftarrow S_{2}$ with $S_{0}=\{0,1\}, S_{1}=\{1, \ldots, 6\}, S_{2}=\{1, \ldots, 4\}$ and face maps as listed. The realization of S is a torus as shown in Figure 4. The 0 -simplex 0 is the middle vertex and the 0 -simplex 1 is the vertex at the four corners of the square. The 1 -simplices $1, \ldots, 4,5,6$ are $c_{1}, \ldots, c_{4}, a_{1}, b_{1}$. The homology of this Δ-set is $H_{0}^{\Delta}(S)=\mathbf{Z}$, $H_{1}^{\Delta}(S)=\mathbf{Z} \oplus \mathbf{Z}$, and $H_{2}^{\Delta}(S)=\mathbf{Z}$.

$S_{1} \rightarrow S_{0}$	1	2	3	4	5	6
d_{0}	1	1	1	1	1	1
d_{1}	0	0	0	0	1	1

$S_{2} \rightarrow S_{1}$	1	2	3	4
d_{0}	5	6	5	6
d_{1}	1	2	2	3
d_{2}	4	1	3	4

Figure 5. A Δ-complex structure on the nonorientable surface N_{3}
2.41. Example (A Δ-complex structure on N_{2}). Consider the 2-dimensional Δ-set $S=\left(S_{0} \longleftarrow S_{1} S_{2}\right)$ with $S_{0}=\{0,1\}, S_{1}=\{1, \ldots, 6\}, S_{2}=\{1, \ldots, 4\}$ and face maps as listed. The realization of S is the nonori-

$$
\begin{array}{c|cccccc}
S_{1} \rightarrow S_{0} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline d_{0} & 1 & 1 & 1 & 1 & 1 & 1 \\
d_{1} & 0 & 0 & 0 & 0 & 1 & 1
\end{array} \quad \begin{array}{c|cccc}
S_{2} \rightarrow S_{1} & 1 & 2 & 3 & 4 \\
\hline d_{0} & 5 & 5 & 6 & 6 \\
d_{1} & 1 & 2 & 3 & 4 \\
d_{2} & 4 & 1 & 2 & 3
\end{array}
$$

entable surface N_{2} of genus 2 as indicated by Figure 4 . The 0 -simplex 0 is the middle vertex and the 0 -simplex 1 is the vertex at the four corners of the square. The 1 -simplices $1, \ldots, 4,5,6$ are $c_{1}, \ldots, c_{4}, a_{1}, a_{2}$. The homology of this Δ-set is $H_{0}^{\Delta}(S)=\mathbf{Z}, H_{1}^{\Delta}(S)=\mathbf{Z} / 2 \oplus \mathbf{Z}$, and $H_{2}^{\Delta}(S)=0$.
2.42. Example (A Δ-complex structure on N_{3}). Consider the 2-dimensional Δ-set $S=\left(S_{0} \leftleftarrows S_{1} S_{2}\right)$ with $S_{0}=\{0,1\}, S_{1}=\{1, \ldots, 9\}, S_{2}=\{1, \ldots, 6\}$ and face maps as listed. The realization of S is the nonori-

$S_{1} \rightarrow S_{0}$	1	2	3	4	5	6	7	8	9
d_{0}	1	1	1	1	1	1	1	1	1
d_{1}	0	0	0	0	0	0	1	1	1

$S_{2} \rightarrow S_{1}$	1	2	3	4	5	6
d_{0}	7	7	8	8	9	9
d_{1}	1	2	3	4	5	6
d_{2}	6	1	2	3	4	5

entable surface N_{3} of genus 3 . The 0 -simplex 0 is the middle vertex and the 0 -simplex 1 is the vertex at the four corners of the square. The 1 -simplices $1, \ldots, 4,5,9$ are $c_{1}, \ldots, c_{6}, a_{1}, a_{2}, a_{3}$. The homology of this Δ-set is $H_{0}^{\Delta}(S)=\mathbf{Z}, H_{1}^{\Delta}(S)=\mathbf{Z} / 2 \oplus \mathbf{Z} \oplus \mathbf{Z}$, and $H_{2}^{\Delta}(S)=0$.

Try to find similar Δ-sets realizing M_{2} and $N_{1}=\mathbf{R} P^{2}$ (Example 4.41). The magma program deltaset.prg computes homology groups of Δ-sets. The Smith Normal Form of an integer matrix is often useful when computing homology.
2.4. Δ-sets are ubiquitous. We observe that sets, posets, categories, and topological spaces have associated Δ-sets.
2.43. Example (The Δ-set of a set). The Δ-set $B X$ of a set X is

$$
B_{n} X=\mathbf{S E T}\left(n_{+}, X\right)=X^{n+1}, \quad d_{i}\left(n_{+} \xrightarrow{\sigma} X\right)=(n-1)_{+} \xrightarrow{d^{i}} n_{+} \xrightarrow{\sigma} X
$$

The set $B_{n} X$ in degree n is the product X^{n+1} of $n+1$ copies of X and the i th face map

$$
d_{i}\left(x_{0}, \ldots, x_{i}, \ldots, x_{n}\right)=\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)
$$

deletes the i th coordinate for $0 \leq i \leq n$
2.44. Example (The Δ-set of a poset). The Δ-set $B X$ of a poset X is

$$
B X_{n}=\operatorname{POSI}\left(n_{+}, X\right)=\left\{x_{0}<\cdots<x_{n} \mid x_{i} \in X\right\}, \quad d_{i}\left(n_{+} \xrightarrow{\sigma} X\right)=(n-1)_{+} \xrightarrow{d^{i}} n_{+} \xrightarrow{\sigma} X
$$

In other words, an n-simplex in X is a totally ordered subset

$$
\sigma=\left\{x_{0}<x_{1}<\cdots<x_{n}\right\}
$$

of $n+1$ points in X.
2.45. Example (The Δ-set of a small category). The Δ-set $B X$ of the small category X has

$$
B X_{n}=\mathbf{C A T}\left(n_{+}, X\right)=\left\{n_{+} \xrightarrow{\sigma} X\right\}, \quad d_{i}\left(n_{+} \xrightarrow{\sigma} X\right)=(n-1)_{+} \xrightarrow{d^{i}} n_{+} \xrightarrow{\sigma} X
$$

The set in degree n is

$$
B X_{n}=\left\{c_{0} \xrightarrow{f_{0}} c_{1} \xrightarrow{f_{1}} c_{2} \rightarrow \cdots \rightarrow c_{n-1} \xrightarrow{f_{n-1}} c_{n}\right\}
$$

and the face maps $d_{0}, \ldots, d_{n}: B X_{n} \rightarrow B X_{n-1}$ are

$$
d_{i}\left(c_{0} \xrightarrow{f_{0}} c_{1} \xrightarrow{f_{1}} c_{2} \rightarrow \cdots \rightarrow c_{n-1} \xrightarrow{f_{n-1}} c_{n}\right)= \begin{cases}c_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{n-1}} c_{n} & i=0 \\ c_{1} \xrightarrow{f_{1}} \cdots \rightarrow c_{i-1} \xrightarrow{f_{i} f_{i-1}} c_{i+1} \cdots \xrightarrow{f_{n-1}} c_{n} & 0<i<n \\ c_{0} \xrightarrow{f_{0}} \cdots \xrightarrow{f_{n-2}} c_{n-1} & i=n\end{cases}
$$

In the realization $|B X|$ of $B X$ there is

- one vertex for each object c_{0} of the category
- one 1-simplex connecting the vertices c_{0} and c_{1} for each morphism $c_{0} \xrightarrow{f_{1}} c_{1}$ in the category
- one 2 -simplex, glued onto the edges f_{1}, f_{2}, and $f_{1} f_{2}$

for every pair of composable morphisms in the category X.
2.46. Example (The Δ-set of a topological space). The Δ-set of the topological space X is

$$
\operatorname{Sing}(X)_{n}=\mathbf{T O P}\left(\Delta^{n}, X\right)=\left\{\Delta^{n} \xrightarrow{\sigma} X\right\}, \quad d_{i}\left(\Delta^{n} \xrightarrow{\sigma} X\right)=\Delta^{n-1} \xrightarrow{d^{i}} \Delta^{n} \xrightarrow{\sigma} X
$$

The set $\operatorname{Sing}(X)_{n}$ in degree n consists of all continuous maps $\Delta \xrightarrow{\sigma} X$ of the standard geometric n-simplex into X and the face maps $d_{0}, \ldots, d_{n}: \operatorname{Sing}(X)_{n} \rightarrow \operatorname{Sing}(X)_{n-1}$ are induced by the coface maps $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$. More explicitly,

$$
\left(d_{i} \sigma\right)\left(t_{0}, \ldots, t_{n-1}\right)= \begin{cases}\sigma\left(0, t_{0}, \ldots, t_{n-1}\right) & i=0 \\ \sigma\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right) & 0<i<n \\ \sigma\left(t_{0}, \ldots, t_{n-1}, 0\right) & i=n\end{cases}
$$

for any n-simplex $\Delta^{n} \xrightarrow{\sigma} X$ in X. In short form, $d_{i} \sigma=\sigma d^{i}$ where $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ is the geometric coface map (1.1).
2.47. Example (The Δ-set of a discrete group). [3, §I.5, Exercise 3 p 19] [10, Example 1B.7] [21, Example 8.1.7]. We are going to define a functor

$$
B: \mathbf{G R P} \rightarrow \Delta \mathbf{S E T}
$$

from the category GRP of groups to the category of Δ-sets.

Let G be a group. Define $E G$ to be the Δ-set $B G$ of G viewed as a set (2.43): $E G_{n}=G^{n+1}$ and with face maps $d_{i}\left[g_{0}, \ldots, g_{n}\right]=\left[g_{0}, \ldots, \widehat{g}_{i}, \ldots, g_{n}\right]$ that simply forgets one of the coordinates. The realization (2.37) $|E G|$ is contractible by the homotopy $h_{t}:|E G| \rightarrow|E G|$ which on $G^{n+1} \times \Delta^{n}$ is given by

$$
\left(\left[g_{0}, \ldots, g_{n}\right], x\right) \rightarrow\left(\left[e, g_{0}, \ldots, g_{n}\right],(1-t) d^{0} x+t e_{0}\right)
$$

This homotopy is well-defined because

$$
\begin{aligned}
& h_{t}\left(d_{j}\left[g_{0}, \ldots, g_{n}\right], x\right)=\left(\left[e, g_{0}, \ldots, \widehat{g}_{j}, \ldots, g_{n}\right],(1-t) d^{0} x+t e_{0}\right)=\left(d_{j+1}\left[e, g_{0}, \ldots, g_{n}\right],(1-t) d^{0} x+t e_{0}\right) \\
& \quad \sim\left(\left[e, g_{0}, \ldots, g_{n}\right],(1-t) d^{j+1} d^{0} x+t d^{j+1} e_{0}\right)=\left(\left[e, g_{0}, \ldots, g_{n}\right],(1-t) d^{0} d^{j} x+t e_{0}\right)=h_{t}\left(\left[g_{0}, \ldots, g_{n}\right], d^{j} x\right)
\end{aligned}
$$

for any $x \in \Delta^{n-1}$ and all $j \geq 0$. The start value of the homotopy is the identity map and the end value is

$$
\left(\left[e, g_{0}, \ldots, g_{n}\right], e_{0}\right)=\left(\left[e, g_{0}, \ldots, g_{n}\right], d^{n} e_{0}\right) \simeq\left(\left[e, g_{0}, \ldots, g_{n-1}\right], e_{0}\right) \simeq \cdots \simeq\left([e], e_{0}\right)
$$

which is a single point. But $E G$ is not just a Δ-set; it is a Δ - G-set. This means that the sets $E G_{n}$ are (left) G-sets with G-action defined coordinate-wise and the face maps are G-maps. Therefore the associated Δ-abelian group is in fact a Δ-Z G-module and the simplicial chain complex $\mathbf{Z} E G_{*}$

$$
0 \longleftarrow \mathbf{Z} E G_{0} \stackrel{\partial}{\longleftarrow} \mathbf{Z} E G_{1} \stackrel{\partial}{\longleftarrow} \cdots \stackrel{\partial}{\longleftarrow} \mathbf{Z} E G_{n-1} \stackrel{\partial}{\longleftarrow} \mathbf{Z} E G_{n} \stackrel{\partial}{\longleftarrow} \cdots
$$

is a chain complex of $\mathbf{Z} G$-modules. Since it computes the homology of the contractible space $E G$ it has the homology of a point and so it is a free resolution over $\mathbf{Z} G$ of the trivial $\mathbf{Z} G$-module \mathbf{Z}, called the standard resolution.

Define $B G=G \backslash E G$ to be the quotient Δ-set (§2.2), the projective version of $E G$. The n-simplices of $B G$ are $B G_{n}=G \backslash E G_{n}=G \backslash G^{n+1}$. The simplicial n-chains of $B G$ are

$$
\mathbf{Z} B G_{n}=\mathbf{Z}\left[G \backslash G^{n+1}\right]=\mathbf{Z} \otimes_{\mathbf{z} G} \mathbf{Z} G^{n+1}=\mathbf{Z} \otimes_{\mathbf{z} G} \mathbf{Z} E G_{n}
$$

Here we use the general formula $\mathbf{Z} \otimes_{\mathbf{Z} G} \mathbf{Z}[S]=\mathbf{Z}[G \backslash S]$ where $\mathbf{Z}[S]$ stands for the free \mathbf{Z}-module on the set G-set S. (Use the universal property of the tensor product to prove this identity.) Thus the simplicial chain complex $\mathbf{Z} B G_{*}=\mathbf{Z} \otimes_{\mathbf{Z} G} E G_{*}$ has homology $H_{*}(B G)=\operatorname{Tor}_{*}^{\mathbf{Z} G}(\mathbf{Z}, \mathbf{Z})$. This group homology is a new invariant of the group G.

We can enumerate the n-simplices of $B G$ by G^{n} using the bijection

$$
G^{n} \rightarrow G \backslash G^{n+1}:\left[g_{1}|\cdots| g_{n}\right] \rightarrow G\left(e, g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{n}\right)
$$

In this context, the elements of G^{n} are traditionally written in bar notation $\left(g_{1}, \ldots, g_{n}\right)=\left[g_{1}|\cdots| g_{n}\right]$. Using that $B G$ is the quotient Δ-set of $E G$, we see that the face maps $d_{i}: B G_{n} \rightarrow B G_{n-1}, 0 \leq i \leq n$, are

$$
d_{i}\left[g_{1}|\cdots| g_{n}\right]= \begin{cases}{\left[g_{2}|\cdots| g_{n}\right]} & i=0 \\ {\left[g_{1}|\cdots| g_{i} g_{i+1}|\cdots| g_{n}\right]} & 0<i<n \\ {\left[g_{1}|\cdots| g_{n-1}\right]} & i=n\end{cases}
$$

using bar notation. For instance,

$$
\begin{aligned}
& d_{0}\left[g_{1}|\cdots| g_{n}\right]=G d_{0}\left(e, g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{n}\right)=G\left(g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{n}\right) \\
& \quad=G\left(e, g_{2}, \ldots, g_{2} \cdots g_{n}\right)=\left[g_{2}|\cdots| g_{n}\right]
\end{aligned}
$$

and the other cases are proved similarly. This means that $B G$ is the Δ-set of G viewed as a one-object category (2.45).

The Kan-Thurston theorem [12] says that any connected space has the homology of $B G$ for some group G.
2.48. Example (The Δ-space of a functor). Slightly more generally, we now define the classifying space $B F$ of a functor $F: \mathcal{C} \rightarrow$ Sets or $F: \mathcal{C} \rightarrow$ Top with values in the category of sets or even in the category of topological spaces (in such a way that the classifying space of the category will be the classifying space of the constant functor with value a point). Let $B F$ be the Δ-set or Δ-space with 0 -simplices $B F_{0}=\coprod_{c \in \mathrm{Ob}(C)} F(c)$ equal to the set of $[c, x]$ where c is an object of \mathcal{C} and x is an element of $F(c)$. For $n>0$, let

$$
B F_{n}=\coprod_{c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{n}} F\left(c_{0}\right)
$$

be the set or space of all strings $\left[x, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \xrightarrow{g_{n}} c_{n}\right]$ where $x \in F\left(c_{0}\right)$ and the morphisms are composable in \mathcal{C}. The face maps $d_{i}: B F_{n} \rightarrow B F_{n-1}$ are

$$
d_{i}\left[x, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \xrightarrow{g_{n}} c_{n}\right]= \begin{cases}{\left[F\left(g_{1}\right) x, c_{1} \xrightarrow{g_{2}} c_{2} \rightarrow \cdots \xrightarrow{g_{n}} c_{n}\right]} & i=0 \\ {\left[x, c_{0} \rightarrow \cdots c_{i-1} \xrightarrow{g_{i+1} g_{i}} c_{i+1} \rightarrow \cdots \rightarrow c_{n}\right]} & 0<i<n \\ {\left[x, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \xrightarrow{g_{n-1}} c_{n-1}\right]} & i=n\end{cases}
$$

It is clear that formula (2.37) for the realization of a Δ-set works equally well for a Δ-space. In this particular case the realization of the Δ-space $B F$ is the space

$$
|B F|=\coprod_{n \geq 0} B F_{n} \times \Delta^{n} / \sim
$$

where $B F_{n-1} \times \Delta^{n-1} \ni\left(d_{i}\left[x, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \xrightarrow{g_{n}} c_{n}\right], y\right) \sim\left(\left[x, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \xrightarrow{g_{n}} c_{n}\right], d^{i} y\right) \in B F_{n} \times \Delta_{n}$. $B F$ is more commonly known as the homotopy colimit, $\operatorname{hocolim} F$, of the functor $F[\mathbf{9}, 5.12]$. What is the classifying space $B S$ of a Δ-set $S: \Delta_{<} \rightarrow$ Sets?

Note that there is a map $B F \rightarrow B \mathcal{C}$ of Δ-spaces, taking the subspace $\left[F\left(c_{0}\right), c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{n}\right]$ to $\left[c_{0} \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{n}\right]$, where the fibre over each simplex is of the form $F\left(c_{0}\right)$ for some object c_{0} of \mathcal{C}. This map can be used to express the homology of $B F$ in terms of the homology of $B \mathcal{C}$ and the homology functor $H_{j} F: \mathcal{C} \rightarrow \mathbf{A b}$ given by $H_{j} F(c)=H_{j}(F(c))$ for any object c of \mathcal{C}. In the special case where the index category is a group G, the functor is a G-space X and we get a map $B X \rightarrow B G$ where the fibre over any point is X. The space $B X$, usually denoted $X_{h G}$, is the homotopy orbit space of the G-space.
2.49. Example (Homology of a category with coefficients in a functor). Let \mathcal{C} be a small category and $A: \mathcal{C} \rightarrow \mathbf{A b}$ a functor from \mathcal{C} to abelian groups (a \mathcal{C}-module). The associated classifying Δ-abelian group $B A$ has $B A_{0}=\bigoplus_{c \in \mathrm{Ob}(\mathcal{C})} A(c)$ and

$$
B A_{n}=\bigoplus_{c_{0} \rightarrow \cdots \rightarrow c_{n}} A\left(c_{0}\right), \quad n>0
$$

and with face maps $d_{i}: B A_{n} \rightarrow B A_{n-1}$ given by

$$
d_{0}\left[a, c_{0} \xrightarrow{g_{1}} c_{1} \rightarrow \cdots \rightarrow c_{n}\right]= \begin{cases}{\left[g_{1} a, c_{1} \rightarrow \cdots \rightarrow c_{n}\right]} & i=0 \\ {\left[a, c_{0} \rightarrow \cdots \rightarrow c_{i-1} \rightarrow c_{i+1} \rightarrow \cdots \rightarrow c_{n}\right]} & 0<i<n \\ {\left[a, c_{0} \rightarrow \cdots \rightarrow c_{n-1}\right]} & i=n\end{cases}
$$

We define $H_{*}(\mathcal{C} ; A)$, the homology of the category \mathcal{C} with coefficients in the functor A, to be the homology of the Δ-abelian group $B A$ with differential $\partial=\sum(-1)^{i} d_{i}$. Note that $H_{0}(\mathcal{C} ; A)$, the cokernel of the homomorphism

$$
B A_{0}=\bigoplus_{c \in \operatorname{Ob}(\mathcal{C})} A(c) \stackrel{\partial}{\leftarrow} \bigoplus_{c_{0} \xrightarrow{g} c_{1}} A\left(c_{0}\right)=B A_{1}, \quad \partial[a, g]=\left[g a, c_{1}\right]-\left[a, c_{0}\right]
$$

is the colimit colim $A[\mathbf{2 1}, \mathrm{p} 54]$ of the functor A. Because of this, the homology group $H_{i}(\mathcal{C} ; A)$ is often denoted $\operatorname{colim}_{i} A$.

The homology groups $H_{i}\left(\mathcal{C} ; H_{j} F\right), i+j=n$, of the \mathcal{C}-modules $H_{j} F$ from Example 2.48 are a first approximation to the nth homology group of the classifying space $B F$ of the space valued functor $F: \mathcal{C} \rightarrow$ Top.

5. Simplicial sets

Let Δ_{*} be the category whose objects are the finite ordered sets $n_{+}, n \geq 0$ (Definition 2.15), and whose morphisms are all order preserving maps. (A map φ is order preserving if $i \leq j \Longrightarrow \varphi(i) \leq \varphi(j)$.) In particular, Δ_{*} contains the order preserving maps

$$
(n-1)_{+} \xrightarrow{d^{0}, \ldots, d^{n}} n_{+} \stackrel{s^{0}, \ldots, s^{n}}{\longleftrightarrow}(n+1)_{+}
$$

where d^{i} is the order preserving map that does not hit i (as before) and $s^{j}(0<1<\cdots<n+1)=(0<1<$ $\cdots j \leq j<\cdots<n)$ is the nondecreasing map that hits j twice. Any morphism in Δ_{*} is a composition of these maps [14, VIII.5.1].

These order preserving maps correspond to unique linear maps

$$
\Delta^{n-1} \xrightarrow{d^{0}, \ldots, d^{n}} \Delta^{n} \stackrel{s^{0}, \ldots, s^{n}}{\stackrel{ }{4}} \Delta^{n+1}
$$

of the standard simplices (1.1) where for instance s^{j} is the linear map that sends vertex $e_{k} \in \Delta^{n+1}$ to vertex $e_{s^{j} k} \in \Delta^{n}$.
2.50. Definition. A simplicial set is a functor $S: \Delta_{*}^{\mathrm{op}} \rightarrow \mathbf{S E T}$, a contravariant functor from the category Δ_{*} to the category SET of sets. A simplicial morphism between two simplicial sets is a natural transformation of functors.

In other words, a simplicial set is a graded set $S=\bigcup_{n \geq 0} S_{n}$ where the set S_{n} in level n is equipped with $n+1$ face and $n+1$ degeneracy maps

$$
S_{n-1} \stackrel{d_{0}, \ldots, d_{n}}{\longleftrightarrow} S_{n} \xrightarrow{s_{0}, \ldots, s_{n}} S_{n+1}
$$

satisfying the simplicial identities

$$
\begin{cases}d_{i} d_{j}=d_{j-1} d_{i} & \\ d_{i} s_{j}=s_{j-1} d_{i} & \\ d_{j} s_{j}=1=j=d_{j+1} s_{j} & \\ d_{i} s_{j}=s_{j} d_{i-1} & \\ s_{i} s_{j}=s_{j+1} s_{i} & \\ i \leq j+1\end{cases}
$$

We can present the simplicial set S as

$$
S_{0} \Longleftarrow S_{1} \Longleftarrow S_{2} \quad \ldots
$$

The topological realization of a simplicial set (or space) S is a quotient space of a set of disjoint simplices,

$$
\begin{equation*}
|S|=\coprod_{n \geq 0} S_{n} \times \Delta^{n} / \sim \tag{2.51}
\end{equation*}
$$

where \sim is the equivalence relation generated by the relation $\left(d_{i} x, y\right) \sim\left(x, d^{i} y\right)$ for $x \in S_{n}, y \in \Delta^{n-1}$ and $\left(x, s^{j} y\right) \sim\left(s_{j} x, y\right)$ for each $x \in S_{n}, y \in \Delta^{n+1}$. This relation identifies the $(n-1)$-simplex $d_{i} \sigma \times \Delta^{n-1} \subset$ $S_{n-1} \times \Delta^{n-1}$ and the i th face of the n-simplex $\sigma \times \Delta^{n} \subset S_{n} \times \Delta^{n}$ for all points $\sigma \in S_{n}$ and it collapses the $(n+1)$-simplex $s_{j} \sigma \times \Delta^{n+1}$ onto the n-simplex $\sigma \times \Delta_{n}$.

A simplicial morphism is a map $S \rightarrow T$ of graded sets commuting with the face and degeneracy maps. Simplicial sets with simplicial morphisms form the category sSET of simplicial sets. A simplicial map $S \rightarrow T$ induces a (continuous) map $|S| \rightarrow|T|$ between the topological realizations.
2.52. Example. The Δ-sets Δ_{n}, $\operatorname{Sing}(X), E G, B G$, and $B \mathcal{C}(2.46,2.47,2.45)$ are in fact simplicial sets and the Δ-space $B F$ (2.48) is a simplicial space. (Supply the definition of a simplicial space!) The simplicial set of a category \mathcal{C} is the simplicial set $B \mathcal{C}$ and the classifying space of a category is the realization $|B \mathcal{C}|$ of this simplicial set. Thus there are functors

$$
\mathbf{G R P} \subset \mathbf{C A T} \xrightarrow{B} \mathbf{s S E T} \xrightarrow{|\cdot|} \mathbf{T O P}
$$

Degeneracy maps for $E G_{n}$ are defined by repeating one of the entries,

$$
s^{i}\left(g_{0}, \ldots, g_{n}\right)=\left(g_{0}, \ldots, g_{i}, g_{i}, g_{i+1}, \ldots, g_{n}\right)
$$

and the degeneracy maps for $B G_{n}$ are defined by inserting the neutral element e at the different places in the bar notation, $s^{i}\left[g_{1}|\cdots| g_{n}\right]=\left[g_{1}|\cdots| g_{i}|e| g_{i+1}|\cdots| g_{n}\right]$. Degeneracy maps for $B F$ are defined by inserting identity morphisms.
2.53. ExERCISE. Let C_{2} be the group of order two. The simplicial set $E C_{2}$ has two nondegenerate simplices in each dimension and $B C_{2}$ has one nondegenerate simplex in each dimension. Can you identify these spaces and the map $\left|E C_{2}\right| \rightarrow\left|B C_{2}\right|$?

Suppose that $\mathcal{C}=0 \rightarrow 1$ is the category with two objects and one nonidentity morphism. What is $B F$ for a functor $F: \mathcal{C} \rightarrow$ Top? Such a functor is a map $A \xrightarrow{f} B$ between topological spaces. Remember that $B F$ is a quotient of $(A \coprod B) \times \Delta^{0} \coprod A \times \Delta^{1}$ and that there are identifications $\left[a, 0 \rightarrow 1, d^{0} y\right] \sim[f(a), y]$ and $\left[a, 0 \rightarrow 1, d^{1} y\right] \sim[a, y]$ for all $y \in \Delta^{0}$. Consider also space valued functors with index categories $\mathcal{C}=\bullet \longrightarrow \bullet$, $\mathcal{C}=\bullet \longleftarrow \bullet \longrightarrow \bullet$, and $\mathcal{C}=\bullet \longrightarrow \bullet \longrightarrow \cdots$.
2.54. Exercise. Can you make the Δ-sets from [10, p 102] into simplicial sets (without changing their realizations)?

An elementary illustrated inroduction to simplicial sets

CHAPTER 3

Applications of singular homology

We consider a few classical application of singular homology.

1. Lefschetz fixed point theorem

Let X be a finite CW-complex and $f: X \rightarrow X$ a self-map of X. The Lefschetz number of f with coefficients in the field F is the alternating (finite) sum

$$
\Lambda(f ; F)=\sum_{k}(-1)^{k} \operatorname{tr}\left(H_{k}(X ; F) \xrightarrow{f_{*}} H_{k}(X ; F)\right)
$$

of the traces of the induced map in each degree. We showed in 1.56 that if a self map of a sphere has no fixed points then its Lefschetz number is 0 . This is in fact true in much greater generality.
3.2. Theorem (Lefschetz fixed point theorem). Let $f: X \rightarrow X$ be a self-map of a (retract of a) finite polyhedron. Then

$$
f \text { has no fixed points } \Longrightarrow \Lambda(f ; F)=0
$$

for any field F.
Proof. Assume that X is the realization of some finite simplicial complex L. Equip $|L|$ with a metric like in the proof of Theorem 2.13. Since $|L|$ is compact and f has no fixed points there is some $a>0$ such that $d(x, f(x)) \geq a$ for all $x \in|L|$. By subdividing, if necessary, we may assume that diam $|s| \leq a / 3$ for all simplices $s \in S_{L}[\mathbf{1 9}$, Lemma 12 p 124$]$. By the Simplicial Approximation Theorem 2.13 there exists a subdivision K of L and a simplicial map $g: K \rightarrow L$ such that $f(x)$ and $|g|(x)$ are in the same simplex of L for any point $x \in|K|$. Then $d(f(x),|g|(x)) \leq a / 3$, and $f \simeq|g|$. (To help the intuition, consider for instance a simplicial self-map sd $\Delta^{2} \rightarrow \Delta^{2}$.)

The main idea of the proof is that the simplices of K are so small that g moves each simplex $|s|$ of $|K|$ completely off itself, ie that

$$
\begin{equation*}
\forall s \in S_{K}: \underbrace{|s|}_{K} \cap \underbrace{|g s|}_{L}=\emptyset \tag{3.3}
\end{equation*}
$$

Indeed, if the simplex $|s|$ (of $|K|$) has some overlap with its image simplex $|g s|$ (of $|L|$) and x is any point in $|s|$, then $d(x, f(x)) \leq \operatorname{diam}|s|+\operatorname{diam}|g s| \leq a / 3+a / 3<a$, since $f(x)$ lies in the simplex $g(s)$, contradicting the choice of a.

Since $|g|$ is the realization of a simplicial map $K \rightarrow L$, it takes $|K|^{n}$ to $|L|^{n}$. And since K is a subdivision of L, the identity map, or rather the inverse of the iterated barycentric map (2.12), $|L| \rightarrow|K|$ is cellular as $|L|^{n} \subset|K|^{n}$. (Look at a drawing of the barycentric subdivision of Δ^{2}.) Thus $|K| \xrightarrow{|g|}|L| \rightarrow|K|$ is a cellular self-map of the CW-complex $|K|$ so it induces a self-map

$$
H_{n}\left(|K|^{n},|K|^{n-1}\right) \xrightarrow{|g|_{*}} H_{n}\left(|L|^{n},|L|^{n-1}\right) \xrightarrow{\mathrm{id}_{*}} H_{n}\left(|K|^{n},|K|^{n-1}\right)
$$

of the cellular chain complex for $|K|$ (with coefficients in the field F). The first map, $|g|_{*}$, is the map $g: S_{K} \rightarrow S_{L}$ (restricted to n-simplices), and the second map, induced by the identity map, takes a simplex of L to the sum of the simplices in its iterated subdivision. But still, since $|s|$ (in $|K|$) and $|g(s)|$ (in $|L|$) are
disjoint (3.3), the simplex $s \in H_{n}\left(|K|^{n},|K|^{n-1}\right)$ is not in the sum $\operatorname{id}_{*} g(s) \in H_{n}\left(|K|^{n},|K|^{n-1}\right)$ for the simplex $g(s) \in H_{n}\left(|L|^{n},|L|^{n-1}\right)$ and therefore the above map has zero trace as all diagonal entries in its matrix are zero.

By the Hopf trace formula (3.4), Lefschetz numbers are invariant under homology, so that the induced $\operatorname{map}|g|_{*}: H_{*}(|K|) \rightarrow H_{*}(|K|)$ on singular homology also has $\Lambda\left(|g|_{*}\right)=0$. But $f_{*}=|g|_{*}$ as $f \simeq|g|$ (1.13) so $\Lambda\left(f_{*}\right)=0$.

Suppose now that X is a retract of a finite polyhedron \bar{X}. Let $i: X \rightarrow \bar{X}$ be the inclusion and $r: \bar{X} \rightarrow X$ the retraction. We can extend the self-map f of X to a self-map \bar{f} of \bar{X} if we map \bar{X} into X and use f there, $\bar{f}=i f r$. Now observe that

- f and \bar{f} have the same fixed points
- f_{*} and \bar{f}_{*} have the same trace and the same Lefschetz number

Firstly, since \bar{f} takes \bar{X} into X and agrees with f on X, it has the same fixed points as f. Secondly, since $\bar{f}:(\bar{X}, X) \rightarrow(\bar{X}, X)$ factors through (X, X), the induced map $\bar{f}_{*}: H_{k}(\bar{X}, X) \rightarrow H_{k}(\bar{X}, X)$ is trivial. The commutative square

shows that $\operatorname{tr}\left(f_{*}\right)=\operatorname{tr}\left(\bar{f}_{*}\right)$ as traces are additive. Thus

$$
f \text { has no fixed points } \Longleftrightarrow \bar{f} \text { has no fixed points } \Longrightarrow \Lambda(\bar{f})=0 \Longleftrightarrow \Lambda(f)=0
$$

so the theorem also holds for self-maps of the retract X of the finite simplicial complex \bar{X}.
The converse of the Lefschetz fixed point theorem [4] says that any self-map $f: X \rightarrow X$ of a finite polyhedron (satisfying some extra conditions) with Lefschetz number $\Lambda(f)=0$ is homotopic to a map with no fixed points.

Consider a self-map ϕ of a finitely generated chain complex C over some field F,

This means that each C_{k} is a finite dimensional vector space over F and only finitely many are nonzero. Define the Lefschetz number of ϕ to be the alternating sum

$$
\Lambda(\phi)=\sum_{k=0}^{n}(-1)^{k} \operatorname{tr}\left(\phi_{k}\right)
$$

of the traces.
3.4. Theorem (Hopf trace formula). [19, 4.7.6] $\Lambda(\phi)=\Lambda\left(H_{*}(\phi)\right)$

The Lefschetz number of the identity map is the Euler characteristic so we get that $\chi(C)=\chi(H(C))$ as a special case. A special case of that is the dimension formula for a linear map between two vector spaces.

2. Jordan-Brouwer separation theorem and the Alexander horned sphere

Recall the Mayer-Vietoris exact sequence in reduced homology (1.39)

$$
\cdots \rightarrow \widetilde{H}_{j}(A \cap B) \rightarrow \widetilde{H}_{j}(A) \oplus \widetilde{H}_{j}(B) \rightarrow \widetilde{H}_{j}(A \cup B) \rightarrow \widetilde{H}_{j-1}(A \cap B) \rightarrow \cdots
$$

for two open subspaces, A and B, of a topological space.
3.5. Lemma. Let M^{n} be an n-manifold and m a point of M. If $n \geq 2$ then there is a bijection between the path-components of $M-m$ and the path-components of M.

Proof. Let $A=M-m$ and let $B=\operatorname{int} D^{n}$ be an open embedded n-disc containing m. Then $B \simeq \mathbf{R}^{n}$ is contractible, $A \cup B=M$ and $A \cap B=\mathbf{R}^{n}-0 \simeq S^{n-1}$. The long exact Mayer-Vietoris sequence ends with

$$
\widetilde{H}_{0}\left(S^{n-1}\right) \rightarrow \widetilde{H}_{0}(M-m) \rightarrow \widetilde{H}_{0}(M) \rightarrow \widetilde{H}_{-1}\left(S^{n-1}\right)
$$

where $\widetilde{H}_{0}\left(S^{n-1}\right)=0$ and $\widetilde{H}_{-1}\left(S^{n-1}\right)=0$ since $n-1 \geq 1$. Thus $\widetilde{H}_{0}(M-m) \cong \widetilde{H}_{0}(M)$. Then also $H_{0}(M-m) \cong H_{0}(M)$ by the natural short exact sequence relating reduced and unreduced homology (§ 1.7). Because H_{0} detects path-components (Proposition 1.4) this means that the path-components of $M-m$ and M are in bijection.

Let S^{n} be the n-sphere and $D^{r} \subset S^{n}$ a subspace homeomorphic to the r-disc. Then $S^{n}-D^{r} \neq \emptyset$.
3.6. Lemma. Any r-disc D^{r} in $S^{n}, n \geq 0$, has acyclic complement: $\widetilde{H}_{*}\left(S^{n}-D^{r}\right)=0$.

Proof. The theorem is proved by induction over r. It is obviously true for $r=0$.
Let now $r \geq 0$. Assume that there is a reduced k-cycle, $k \geq 0, z$ in $S^{n}-D^{r+1}$ that is not a boundary, $0 \neq[z] \in \widetilde{H}_{k}\left(\bar{S}^{n}-D^{r+1}\right)$. Cut the $(r+1)$-disc into two 'halves' and write $D^{r+1}=D_{-}^{r+1} \cup D_{+}^{r+1}$ as the union of two 'smaller' ($r+1$)-discs with intersection $D_{-}^{r+1} \cap D_{+}^{r+1}=D^{r}$. (Think of D^{r+1} as I^{r+1}.) Using the Mayer-Vietoris sequence in reduced homology and the induction hypothesis:

$$
\begin{array}{|l|l|l}
\hline & & D^{r+1}=D_{-}^{r+1} \cup D_{+}^{r+1}, \quad D^{r}=D_{-}^{r+1} \cap D_{+}^{r+1} \\
A=S^{n}-D_{-}^{r+1}, \quad B=S^{n}-D_{+}^{r+1} \\
& D_{+}^{r+1} & A \cap B=S^{n}-D^{r+1}, \quad A \cup B=S^{n}-D^{r} \\
& & \widetilde{H}_{k}\left(S^{n}-D^{r+1}\right) \cong \widetilde{H}_{k}\left(S^{n}-D_{-}^{r}\right) \oplus \widetilde{H}_{k}\left(S^{n}-D_{+}^{r}\right)
\end{array}
$$

Thus the homology class $[z]$ must also be nontrivial in the homology of at least one of the bigger spaces $S^{n}-D_{ \pm}^{r+1}$. Continuing this way we obtain an descending chain of $(r+1)$-discs

$$
D^{r+1}=D_{0}^{r+1} \supset D_{1}^{r+1} \supset \cdots \supset D_{t}^{r+1} \supset \cdots
$$

where $\bigcap_{t=0}^{\infty} D_{t}^{r+1}=D^{r}$ is an r-disc and such that the reduced cycle $z \in C_{k}\left(S^{n}-D^{r+1}\right)$ is not a boundary in any of the bigger spaces $S^{n}-D_{t}^{r+1}, t \geq 0$. However, $z=\partial w$ is the boundary of some $(k+1)$-chain w in $\bigcup\left(S^{n}-D_{t}^{r+1}\right)=S^{n}-\bigcap D_{t}^{r+1}=S^{n}-D^{r}$ by induction hypothesis. Now, the support $|w|$ of the is a compact space so that $|w| \subset S^{n}-D_{T}^{r+1}$ for some $T \gg 0$. This is a contradiction.

We now consider spheres embedded in spheres. We show that the homology of the complement of any r-sphere in an n-sphere does not depend of the embedding. For the standard embedding $S^{r} \subset S^{n}$, of the r-sphere into the n-sphere, $r \leq n$, the complement is

$$
\begin{aligned}
S^{n}-S^{r}=\left(\mathbf{R}^{n} \cup\{\infty\}\right)-\left(\mathbf{R}^{r} \cup\{\infty\}\right)=\mathbf{R}^{n}-\mathbf{R}^{r}= & \left(\mathbf{R}^{n-r} \times \mathbf{R}^{r}\right)-\left(\{0\} \times \mathbf{R}^{r}\right) \\
& =\left(\mathbf{R}^{n-r}-\{0\}\right) \times \mathbf{R}^{r} \simeq S^{n-1-r} \times \mathbf{R}^{r} \simeq S^{n-r-1}
\end{aligned}
$$

so that the reduced homology of the complement is

$$
\widetilde{H}_{j}\left(S^{n}-S^{r}\right)=\widetilde{H}_{j}\left(S^{n-r-1}\right)= \begin{cases}\mathbf{Z} & j=n-1-r \\ 0 & \text { otherwise }\end{cases}
$$

3.7. Corollary. Let now S^{r} be any subspace of S^{n} homeomorphic to the r-sphere. Then $n \geq r$ and the complement $S^{n}-S^{r}$ is a homology $(n-r-1)$-sphere.

Proof. Write the r-sphere $S^{r}=D_{-}^{r} \cup D_{+}^{r}$ as the union of two r-discs with intersection $D_{-}^{r} \cap D_{-}^{r}=S^{r-1}$. The complements of these discs are acyclic by Lemma 3.6 and as

$$
\left(S^{n}-D_{-}^{r}\right) \cup\left(S^{n}-D_{+}^{r}\right)=S^{n}-S^{r-1}, \quad\left(S^{n}-D_{-}^{r}\right) \cap\left(S^{n}-D_{+}^{r}\right)=S^{n}-S^{r}
$$

the Mayer-Vietoris sequence in reduced homology shows that $\widetilde{H}_{j+1}\left(S^{n}-S^{r-1}\right) \cong \widetilde{H}_{j}\left(S^{n}-S^{r}\right)$. Apply this result r times and conclude that $\widetilde{H}_{j}\left(S^{n}-S^{r}\right) \cong \widetilde{H}_{j+r}\left(S^{n}-S^{0}\right) \cong \widetilde{H}_{j+r}\left(S^{n-1}\right)$. Since $S^{n}-S^{r}$ has nonzero reduced homology in degree $j=n-r-1$, this number is ≥-1 so that $n \geq r$.

For instance, all knot complements $S^{3}-S^{1}$ have the homology of S^{1} (but not the same fundamental group).
3.8. Corollary. Let $f: S^{r} \rightarrow S^{n}$ be an injective continuous map. Then $n \geq r$ and

- if $r=n$, then f is a homeomorphism,
- if $r=n-1$, then the complement $S^{n}-f\left(S^{n-1}\right)$ has two acyclic open path-components,
- if $r<n-1$, then the complement $S^{n}-f\left(S^{r}\right)$ is path-connected.

Proof. We already know that $n \geq r$. And

- if $r=n$, the complement $S^{n}-S^{r}$ is empty because it has nonzero reduced homology in degree -1 ,
- if $r=n-1$, the complement $S^{n}-S^{r}$ has the homology of S^{0},
- if $r<n-1$, the complement $S^{n}-S^{r}$ has the homology of a sphere of positive dimension

When $r=n-1, \widetilde{H}_{0}\left(S^{n}-S^{n-1}\right)=\widetilde{H}_{0}\left(S^{0}\right)=\mathbf{Z}$ and the complement has two path-connected components (Proposition 1.4), U_{0} and U_{1}. The path-connected components are open in S^{n} because $S^{n}-S^{n-1}$ is locally path-connected, even locally euclidean. For $j>0$

$$
0=H_{j}\left(S^{n}-S^{n-1}\right)=H_{j}\left(U_{0}\right) \oplus H_{j}\left(U_{1}\right)
$$

by Proposition 1.3. Thus U_{0} and U_{1} are acyclic.
The complement $S^{n}-S^{n-1}$ of any $(n-1)$-sphere in an n-sphere has two acyclic path components. One might guess that these components are open discs as they are in case of the standard embedding of S^{n-1} into S^{n}. This is indeed true when $n=2$ (Schönflies Theorem) but not when $n=3$. The Alexander horn sphere (Example 3.10) is an embedding of S^{2} into \mathbf{R}^{3} such that the unbounded component of the complement has infinite fundamental group.

We shall now discuss the complement of an $(n-1)$-sphere in \mathbf{R}^{n}. This is not so difficult because the complement $\mathbf{R}^{n}-S^{n-1}$ is just $S^{n}-S^{n-1}$ with one point removed. We show that all embeddings of S^{n-1} into \mathbf{R}^{n} look like the standard embedding through the eyes of singular homology.

3.9. Corollary (Jordan- Brouwer Separation Theorem). (Cf 4.94) Let $f: S^{n-1} \rightarrow \mathbf{R}^{n}$ be an injective continuous map where $n \geq 1$. The complement $\mathbf{R}^{n}-S^{n-1}$ has two path components, B and U, where
(1) B is bounded and acyclic
(2) U is an unbounded homology $(n-1)$-sphere
(3) B and U are open in \mathbf{R}^{n} and $\partial B=S^{n-1}=\partial U$

Proof. We shall assume that $n \geq 2$ as the case $n=1$ is easy. We know from Corollary 3.8 that $\left(\mathbf{R}^{n} \cup\{\infty\}\right)-S^{n-1}=S^{n}-S^{n-1}$ has two acyclic path components, U_{0} and U_{1}. Then also $\mathbf{R}^{n}-S^{n-1}=$ $\left(S^{n}-S^{n-1}\right)-\{\infty\}$ has two path-components by Lemma 3.5. We may assume that the point ∞ belongs to U_{1}. Then

$$
\mathbf{R}^{n}-S^{n-1}=\left(U_{0} \cup U_{1}\right)-\{\infty\}=B \cup U, \quad \text { where } \quad B=U_{0}, \quad U=U_{1}-\{\infty\},
$$

are the two path components of $\mathbf{R}^{n}-S^{n-1}$. The bounded component B, homeomorphic to U_{0}, is acyclic, and the unbounded component, $U=U_{1}-\{\infty\}$, has homology

$$
\widetilde{H}_{j}(U)=\widetilde{H}_{j}\left(U_{1}-\{\infty\}\right) \cong \widetilde{H}_{j+1}\left(U_{1}, U_{1}-\{\infty\}\right) \cong \widetilde{H}_{j+1}\left(S^{n}, S^{n}-\{\infty\}\right) \cong \widetilde{H}_{j+1}\left(S^{n}\right) \cong \widetilde{H}_{j}\left(S^{n-1}\right)
$$

Here we use that U_{1} is acyclic, we excise the closed set $U_{0} \cup S^{n-1}=S^{n}-U_{1}$ from the pair ($S^{n}, S^{n}-\{\infty\}$), and we use that $S^{n}-\{\infty\}=\mathbf{R}^{n}$ is acyclic.

Both path components, B and U, are open in \mathbf{R}^{n} as $\mathbf{R}^{n}-S^{n-1}$ is locally path connected (it is a manifold). \mathbf{R}^{n} is the disjoint union of S^{n-1}, B, and U. The union $U \cup S^{n-1}=\mathbf{R}^{n}-B$ is a closed set containing U and hence containing the closure of U. Thus $\partial U=\operatorname{cl} U-U \subseteq\left(U \cup S^{n-1}\right)-U \subseteq S^{n-1}$. Similarly, $\partial B \subseteq S^{n-1}$. By methods from general topology, one may show that every point of S^{n-1} is a boundary point for U and for B.

It is a delicate problem, known as the The Schönflies problem, to decide if B is homemorphic to an n-disc.
3.10. Example (The Alexander horned sphere. Article from 1924. Illustration. Illustration). Let G be the nonabelian group that is the union

$$
F_{1} \hookrightarrow F_{2} \hookrightarrow \cdots \hookrightarrow F_{2^{n}} \hookrightarrow F_{2^{n+1}} \hookrightarrow \cdots
$$

of a sequence of free groups $F_{2^{n}}$ on 2^{n} generators where the inclusion of $F_{2^{n}}$ into $F_{2^{n+1}}$ takes the 2^{n} generators α_{i} of $F_{2^{n}}$ to the commutators $\left[\beta_{i}, \gamma_{i}\right]$ of the $2 \cdot 2^{n}$ generators of $F_{2^{n+1}} . G$ is an infinite group with trivial abelianization (a perfect group).

The Alexander horned disc is an embedding $D^{3} \hookrightarrow \mathbf{R}^{3}$ such that $\pi_{1}\left(\mathbf{R}^{3}-D^{3}\right)=G$ constructed in this way: Let X_{0} be a solid torus in \mathbf{R}^{3}. Cut out an open segment, $(0,1) \times D^{2}$, of the torus, what remains is $B_{0}=D^{3}$, and insert instead L

where the arcs are supposed to be solid tubes. Call the result X_{1}. Cut out an open segment of each of the two newly inserted tubes, what remains is $B_{1}=D^{3}$, and insert instead copies of L. Call the result X_{2}. Continue this way to get sequences of compact spaces

$$
X_{0} \supset X_{1} \supset \cdots \supset X_{n} \supset X_{n+1} \supset \cdots, \quad B_{0} \subset B_{1} \subset \cdots \subset B_{n} \subset B_{n+1} \subset \cdots
$$

where X_{n} is obtained from B_{n-1} by attaching 2^{n}-handles. Observe that $X=\bigcup B_{n}$ is homeomorphic to D^{3} and that $\bigcup B_{n}=\bigcap X_{n}$. The fundamental group of the complement $\mathbf{R}^{3}-X=\bigcup\left(\mathbf{R}^{3}-X_{n}\right)$ is, by compactness, the union of the groups $\pi_{1}\left(\mathbf{R}^{3}-X_{n}\right)=F_{2^{n}}$. The van Kampen theorem can be used to show that the inclusion $\mathbf{R}^{3}-X_{n} \subset \mathbf{R}^{3}-X_{n+1}$ induces the inclusion $F_{2^{n}} \hookrightarrow F_{2^{n+1}}$ used above. (Consider the first stage $\mathbf{R}^{3}-X_{0} \subset \mathbf{R}^{3}-X_{1}$. Put a loop α around X_{0} as indicated by the dotted circle to the left (or right) and put loops, β and γ, around the two handles added to B_{0} to form X_{1}. Then $\pi_{1}\left(\mathbf{R}^{3}-X_{0}\right)=\langle\alpha\rangle=F_{1}$, $\pi_{1}\left(\mathbf{R}^{3}-X_{1}\right)=\langle\beta, \gamma\rangle=F_{2}$, and the induced homomorphism $\pi_{1}\left(\mathbf{R}^{3}-X_{0}\right) \rightarrow \pi_{1}\left(\mathbf{R}^{3}-X_{1}\right)$ takes α to the commutator $[\beta, \gamma]$ because α is the boundary of a disc that has been removed from a torus; it is homotopic to the commutator of a meridinal and a longitudinal circle on the torus.)
3.11. Corollary. Let $f: D^{n} \rightarrow \mathbf{R}^{n}$ be an injective continuous map where $n \geq 2$. Then $f\left(\operatorname{int} D^{n}\right)$ is the bounded component of $\mathbf{R}^{n}-f\left(S^{n-1}\right)$. In particular, $f\left(\operatorname{int} D^{n}\right)$ is open in \mathbf{R}^{n}.

Proof. Let B and U be the path components of $\mathbf{R}^{n}-S^{n-1}$. We have

$$
B \cup U=\mathbf{R}^{n}-f\left(S^{n-1}\right)=\mathbf{R}^{n}-f\left(D^{n}-\operatorname{int} D^{n}\right)=\mathbf{R}^{n}-\left(f\left(D^{n}\right)-f\left(\operatorname{int} D^{n}\right)\right)=\left(\mathbf{R}^{n}-f\left(D^{n}\right)\right) \cup f\left(\operatorname{int} D^{n}\right)
$$

The space $\mathbf{R}^{n}-f\left(D^{n}\right)$ is open, path connected, and unbounded. That $\mathbf{R}^{n}-f\left(D^{n}\right)$ is path connected follows from Lemma 3.5 as $\mathbf{R}^{n}-f\left(D^{n}\right)=S^{n}-f\left(D^{n}\right)-\{\infty\}$ and $S^{n}-f\left(D^{n}\right)$ is path connected, even acyclic by Lemma 3.6.

Thus $\mathbf{R}^{n}-f\left(D^{n}\right)$ is contained in the unbounded path component, U, of $\mathbf{R}^{n}-f\left(S^{n-1}\right)$. The space $f\left(\operatorname{int} D^{n}\right)$ is a path connected subspace of $\mathbf{R}^{n}-f\left(S^{n-1}\right)$, so it is contained in either B of U. But since $\left(\mathbf{R}^{n}-f\left(D^{n}\right)\right) \cup f\left(\operatorname{int} D^{n}\right)=B \cup U$ and both U and B are nonempty, we must in fact have that $\mathbf{R}^{n}-f\left(D^{n}\right)$ equals U and $f\left(\operatorname{int} D^{n}\right)$ equals B.
3.12. Corollary. Let U be an open subspace of \mathbf{R}^{n}, where $n \geq 2$. Any injective continuous map $f: U \rightarrow \mathbf{R}^{n}$ is open.

Proof. Let V be any open subset of U. There are (scaled) closed discs D^{n} so that $V=\bigcup D^{n}=\bigcup$ int D^{n}. Then $f(V)=\bigcup f\left(\operatorname{int} D^{n}\right)$ is open as a union of open sets (3.11).

In particular, $f(U)$ is open and f is an embedding, a homeomorphism $f: U \rightarrow f(U)$.
3.13. Corollary. Let U and V be homeomorphic subspaces of $\mathbf{R}^{n}, n \geq 2$. Then

$$
U \text { is open in } \mathbf{R}^{n} \Longleftrightarrow V \text { is open in } \mathbf{R}^{n}
$$

Proof. Let $f: U \rightarrow V$ be a homeomorphism. The composition $U \xrightarrow{f} V \subset \mathbf{R}^{n}$, of f followed by the inclusion of V into \mathbf{R}^{n}, is an injective continuous map, so it is open. In particular is $f(U)=V$ open.

In Corollary 3.12 we may replace U and \mathbf{R}^{n} by arbitrary manifolds.
3.14. Corollary (Invariance of domain). Let M and N be topological n-manifolds, $n \geq 2$.
(1) Any injective continuous map $f: M \rightarrow N$ is open.
(2) Any bijective continuous map $f: M \rightarrow N$ is a homeomorphism.

Proof. (1) Suppose first that N is \mathbf{R}^{n}. The manifold M is a union $M=\bigcup U_{i}$ of open subspaces U_{i} homeomorphic to \mathbf{R}^{n}. From Corollary 3.12 we know that $f\left(U_{i}\right)$ is open in \mathbf{R}^{n}. Thus $f(M)=\bigcup f\left(U_{i}\right)$ is also open in \mathbf{R}^{n}.

Now to the general case. Write $N=\bigcup V_{j}$ as as a union of open subspaces V_{j} homeomorphic to \mathbf{R}^{n}. Then $M=\bigcup f^{-1}\left(V_{j}\right)$ and, as $f f^{-1}\left(V_{j}\right)$ is open in $V_{j}=\mathbf{R}^{n}$ and in $N, f(M)=\bigcup f f^{-1}\left(V_{j}\right)$ is open. Of course, we may replace M by any open subset of M. Thus f is an open map.
(2) Since any bijective continuous map $M \rightarrow N$ is open by (1), it is a homeomorphism.
3.15. Corollary. Let $f: M \rightarrow N$ be an injective continuous map between n-manifolds. If M is compact and N is connected, then f is a homeomorphism.

Proof. Since M is compact and N is Hausdorff, the image $f(M)$ is closed. By Corollary 3.14, $f(M)$ is open. Since N is connected, $f(M)=N$. Thus f is a bijection and hence a homeomorphism by 3.14.(2).
3.16. Corollary. A compact n-manifold cannot embed in \mathbf{R}^{n}.

Proof. If the compact n-manifold M embeds in the connected manifold \mathbf{R}^{n} then $M=\mathbf{R}^{n}$ by Corollary 3.15. But this is absurd since M is compact and \mathbf{R}^{n} noncompact.

For example, S^{n} does not embed in \mathbf{R}^{n}. It follows that \mathbf{R}^{n} cannot contain a subspace homeomorphic to \mathbf{R}^{m} for $m>n$ for then it would also contain a copy of $S^{n} \subset \mathbf{R}^{n+1} \subset \mathbf{R}^{m}$.

3. Group homology and Eilenberg -MacLane Complexes $K(G, 1)$

Let G be a group.
3.17. Definition. A $K(G, 1)$ is a connected CW-complex with fundamental group isomorphic to G whose universal covering space is contractible.

The circle S^{1} is a $K(\mathbf{Z}, 1)$ because the universal covering space \mathbf{R} is contractible.
The infinite projective space $\mathbf{R} P^{\infty}$ is a $K\left(C_{2}, 1\right)$ and the infinite lense space $L^{\infty}(m)$ is a $K\left(C_{m}, 1\right)$ because the infinite sphere S^{∞} is contractible [10, Example 1B.3].

Knot complements are $K(G, 1)$ s [10, Example 1B6].
The orientable surfaces M_{g} of genus $g \geq 1$ and the nonorientable surfaces N_{g} of genus $g \geq 2$ are $K(G, 1)$ s where G is the fundamental group [3, §II.4] [10, Example 1B2]. It is clear that the torus $S^{1} \times S^{1}$ is a $K(\mathbf{Z} \times \mathbf{Z}, 1)$. One now proceeds by induction. There is a theorem that says that the push-out of a diagram $K\left(G_{1}, 1\right) \leftarrow K(H, 1) \rightarrow K\left(G_{2}, 1\right)$ of $K(G, 1)$ s and maps that are injective on π_{1} is again a $K(G, 1)$ [3, Thm II.7.3] [10, Thm 1B.11]. This theorem can be used here [10, Example 1B.14]. Alternatively, see [10, Exercise 4.2.16]. (The orientable surface S^{2} of genus 0 and the nonorientable surface $\mathbf{R} P^{2}$ of genus 1 are not $K(G, 1) \mathrm{s}$ for the universal covering space S^{2} is not contractible as $H_{2}\left(S^{2}\right)$ is nontrivial.) Also noncompact surfaces and surfaces with boundary are $K(G, 1)$ [3, §II.4, Examples].
$K(G, 1) \times K(H, 1)=K(G \times H, 1)$ and $K(G, 1) \vee K(H, 1)=K(G * H, 1)$ by the theorem [3, Thm II.7.3] [10, Thm 1B.11] mentioned above.

The double mapping cylinder $X_{m n}$ of the degree m and the degree n self-map of the circle is a $K(G, 1)$ [10, 1B.12].

For any group G there is a $K(G, 1)$, namely the simplicial complex $B G(2.47)$, and all $K(G, 1)$ s are homotopy equivalent [10, Thm 1B.8]; they represent the same homotopy type. We define the k th group homology of G to be $H_{k}\left(K(G, 1)\right.$), often denoted simply $H_{k}(G)$. Thus we have computed the group homology of all cyclic groups. In the language of homological algebra,

$$
H_{k}(G)=\operatorname{Tor}_{k}^{\mathbf{Z} G}(\mathbf{Z}, \mathbf{Z})
$$

since the simplicial chain complex for $B G$ is $\Delta_{*}(B G)=E G_{*} \otimes_{\mathbf{Z} G} \mathbf{Z}$ where $E G_{*}$ is a free resolution of \mathbf{Z} over $\mathbf{Z} G$.

See [3, Chp II] or [10, Chp 1.B] for more on group homology. For cohomology of finitely generated abelian groups see Cohomology of finitely generated abelian groups.

CHAPTER 4

Singular cohomology

1. Cohomology

The singular cochain complex of the space X with coefficients in the abelian group G is the dual

$$
0 \longrightarrow C^{0}(X ; G) \xrightarrow{\delta} C^{1}(X ; G) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^{k}(X ; G) \xrightarrow{\delta} C^{k+1}(X ; G) \xrightarrow{\delta} \cdots
$$

of the singular chain complex of Chapter 1. Here, $C^{k}(X ; G)=\operatorname{Hom}_{\mathbf{Z}}\left(C_{k}(X), G\right)=G\left\langle S_{k}(X)\right\rangle$ is the abelian group of all functions from the set $S_{k}(X)$ of singular k-simplices in X to G. The coboundary map, which is is the dual of the boundary map, takes the k-cochain $\varphi: C_{k}(X) \rightarrow G$ to the $(k+1)$-cochain $\delta \phi=\phi \varphi$ as in the diagram

of group homomorphisms.
4.1. Definition. The k th singular cohomology group of X is the quotient group

$$
H^{k}(X ; G)=Z^{k}(X ; G) / B^{k}(X ; G)
$$

of the k-cocyles $Z^{k}(X ; G)=\operatorname{ker} \delta=\left\{\varphi: C_{k}(X) \rightarrow G \mid \varphi\left(B_{k}(X)\right)=0\right\}$ by the k-coboundaries $B^{k}(X ; G)=$ $\operatorname{im} \delta=\left\{\psi \partial \mid \psi: C_{k-1}(X) \rightarrow G\right\}$.
4.2. Evaluation. Cochains act (most naturally from the right) on chains by the evaluation map

$$
C_{k}(X ; G) \times C^{k}(X ; G) \xrightarrow{\langle,\rangle} G, \quad\langle c, \phi\rangle=\phi(c)
$$

Since $\langle\partial c, \phi\rangle=\langle c, \delta \phi\rangle$ (for $c \in C_{k+1}(X ; G)$ and $\phi \in C^{k}(X ; G)$) we have that $\left\langle B_{k}, Z^{k}\right\rangle=0=\left\langle Z_{k}, B^{k}\right\rangle$ so there is an induced bilinear evaluation map

$$
H_{k}(X ; G) \times H^{k}(X ; G) \xrightarrow{\langle,\rangle} G, \quad\langle[z],[\phi]\rangle=\phi(z), \quad z \in Z_{k}(X), \phi \in Z^{k}(X ; G),
$$

on homology. We may view this bilinear map as a linear map

$$
H^{k}(X ; G) \xrightarrow{h} \operatorname{Hom}_{\mathbf{Z}}\left(H_{k}(X ; G), G\right), \quad h([\phi])([z])=\langle[z],[\phi]\rangle=\phi(z)
$$

from cohomology to the dual of homology. Is h an isomorphism?
4.3. Ext and the UCT for cohomology. We investigate the relation between dualizing and taking homology. we begin by making two observations. First we dualize short exact sequences and realize that the dual sequence may not be exact any more. The second observation is an example.
4.4. Lemma. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups and let G be an abelian group. Then

$$
0 \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G)
$$

is exact. If the short exact sequence is split exact (eg if C is free) then

$$
0 \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G) \rightarrow 0
$$

is also split exact.
4.5. Example. We look at the chain complex C like this

$$
0 \longleftarrow \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z} \leftarrow^{(x, 2 y) \leftarrow(x, y)} \mathbf{Z} \oplus \mathbf{Z} \longleftarrow 0
$$

where the nonzero groups are in degree 1 and 2 . We compute its homology and cohomology

	$i=1$	$i=2$
$H_{i}(C ; \mathbf{Z})$	$\mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$	0
$H^{i}(C ; \mathbf{Z})$	\mathbf{Z}	$\mathbf{Z} / 2 \mathbf{Z}$

On the basis of this one example, formulate a conjecture about the relation between the homology and the cohomology of a chain complex (of free abelian groups)! The conjecture is formalized in the Universal Coefficient Theorem (or UCT for short) which uses the functor Ext that we now define.

Let G and H be two abelian groups. Choose a short exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\partial_{0}} H \rightarrow 0 \tag{4.6}
\end{equation*}
$$

where F_{0} and F_{1} are free abelian groups. If we apply the functor $\operatorname{Hom}_{\mathbf{Z}}(-, G)$ to this short exact sequence we get an exact sequence (4.4)

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{\mathbf{Z}}(H, G) \xrightarrow{\partial_{0}^{*}} \operatorname{Hom}_{\mathbf{Z}}\left(F_{0}, G\right) \xrightarrow{\partial_{1}^{*}} \operatorname{Hom}_{\mathbf{Z}}\left(F_{1}, G\right) \rightarrow \operatorname{Ext}_{Z}(H, G) \rightarrow 0 \tag{4.7}
\end{equation*}
$$

where we write $\operatorname{Ext}_{Z}(H, G)$ for the abelian group

$$
\begin{equation*}
\operatorname{Ext}_{\mathbf{z}}(H, G)=\operatorname{coker} \partial_{1}^{*}=\operatorname{Hom}_{Z}\left(F_{1}, G\right) / \operatorname{im} \partial_{1}^{*} \tag{4.8}
\end{equation*}
$$

to the right. This notation is justified since the isomorphism type of this group does not depend on the choice of (4.6).
4.9. Lemma. (Lifting lemma) Let $0 \rightarrow F_{1}^{\prime} \xrightarrow{\partial_{1}^{\prime}} F_{0}^{\prime} \xrightarrow{\partial_{0}^{\prime}} G \rightarrow 0$ be another short exact sequence where F_{0}^{\prime} and F_{1}^{\prime} are abelian groups (not necessarily free). Any group homomorphism $\alpha_{-1}: H \rightarrow H$ lifts to a morphism

of short exact sequences and the lift is unique up to chain homotopy.
If we apply the lemma to the identity map of H we see that any two short exact sequences as in (4.6) are chain homotopy equivalent. The dual chain complexes (4.7) are then also chain homotopy equivalent and therefore the isomorphism class of the group (4.8) does not depend on the choice of (4.6).
4.10. Example. ($\left.\operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z})\right)$ Suppose that $H=\mathbf{Z} / m \mathbf{Z}$ is cyclic of order m and $G=\mathbf{Z} / n \mathbf{Z}$ is cyclic of order n. We may take (4.6) to be $0 \rightarrow \mathbf{Z} \xrightarrow{\cdot m} \mathbf{Z} \rightarrow \mathbf{Z} / m \mathbf{Z} \rightarrow 0$ and then (4.7) becomes

$$
0 \longrightarrow \operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z}) \longrightarrow \mathbf{Z} / n \mathbf{Z} \xrightarrow{\cdot m} \mathbf{Z} / n \mathbf{Z} \longrightarrow \operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z}) \longrightarrow 0
$$

The two groups, $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z})$ and $\operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z})$, at the ends of this exact sequence are cyclic groups of the same order since for a homomorphism between finite abelian groups the kernel and the cokernel always have equal orders. We see that

$$
\operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z})=\frac{\mathbf{Z} / n}{m \cdot \mathbf{Z} / n}=\frac{\mathbf{Z}}{m \mathbf{Z}+n \mathbf{Z}}=\mathbf{Z} /(m, n) \mathbf{Z}
$$

where (m, n) denotes the greatest common divisor of m and n.
4.11. Example. $\left(\operatorname{Ext}_{\mathbf{z}}(H, G)\right.$ for any finitely generated abelian group $\left.H\right)$ When $H=\mathbf{Z}$ is infinite cyclic or $H=\mathbf{Z} / m \mathbf{Z}$ is cyclic of finite order m, it is immediate from the definition that $\operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z}, G)=0$ and that $\operatorname{Ext}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, G)=G / m G$ for any abelian group G. Since also $\operatorname{Ext}_{\mathbf{Z}}(-, G)$ commutes with finite direct sums (why?), we have computed $\operatorname{Ext}_{\mathbf{z}}(H, G)$ for any finitely generated abelian group H and any abelian group G.

In particular, when $G=\mathbf{Z}, \operatorname{Ext}(H, \mathbf{Z})$ is isomorphic to the torsion subgroup of H and $\operatorname{Hom}(H, \mathbf{Z})$ to the free component of H.

Here is an indication of the connection between Ext and extensions. Let $0 \rightarrow G \rightarrow A \rightarrow H \rightarrow 0$ be an extension of H by G. The Lifting Lemma gives a map

and the map $\alpha_{1} \in \operatorname{Hom}\left(F_{1}, G\right)$ represents an element of $\operatorname{Ext}(H, G)$. In this way, any group extension represents an element of the Ext-group.

The Universal Coefficient Theorem (UCT) expresses to what extent the two functors homology and dualizing commute.
4.12. Theorem (UCT). Let $\left(C_{*}, \partial\right)$ be a chain complex of free abelian groups. Form the dual cochain complex $\left(\operatorname{Hom}\left(C_{*} ; G\right), \delta\right)$ of homomorphisms of the chain complex into some abelian group G. Then there is a natural short exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{\mathbf{Z}}\left(H_{k-1}\left(C_{*}\right), G\right) \longrightarrow H^{k}\left(\operatorname{Hom}\left(C_{*}, G\right)\right) \xrightarrow{h} \operatorname{Hom}_{\mathbf{Z}}\left(H_{k}\left(C_{*}\right), G\right) \longrightarrow 0
$$

The sequence always splits but not naturally.
Proof. First note that the short exact sequence $0 \rightarrow Z_{k} \xrightarrow{i_{k}} B_{k} \rightarrow H_{k} \rightarrow 0$ dualizes (4.7) to the exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(H_{k}, G\right) \rightarrow B_{k}^{*} \xrightarrow{i_{k}^{*}} Z_{k}^{*} \rightarrow \operatorname{Ext}\left(H_{k}, G\right) \rightarrow 0
$$

Next, observe that we have a short exact sequence of chain complexes

and because the groups are free abelian the dual diagram

is again a short exact sequence of chain complexes. The Fundamental Theorem of Homological Algebra produces a long exact sequence

$$
\cdots \rightarrow B_{k-1}^{*} \xrightarrow{i_{k-1}^{*}} Z_{k-1}^{*} \rightarrow H^{k}\left(C_{*}\right) \rightarrow Z_{k}^{*} \xrightarrow{i_{k}^{*}} B_{k}^{*} \rightarrow \cdots
$$

where the connecting homomorphism turns out to be the restriction map from B_{k}^{*} to Z_{k}^{*}. This long exact sequence determines short exact sequences

$$
0 \rightarrow \operatorname{Ext}\left(H_{k-1}, G\right)=\operatorname{coker} i_{k-1}^{*} \rightarrow H^{k}\left(C_{*}\right) \rightarrow \operatorname{ker} i_{k}^{*}=\operatorname{Hom}\left(H_{k}, G\right) \rightarrow 0
$$

of the UCT.
The UCT splits: Use the maps

where, in particular, σ is a splitting so that σ is the identity on the subgroup Z_{k} of C_{k}. Construct the splitting as in

Note that $\delta(\varphi \pi \sigma)=\varphi \pi \sigma \partial=0$ so that the cochain $\varphi \pi \sigma$ is actually a cocycle.
Note that the UCT applies to the singular chain complex of a space or a pair of spaces, the cellular chain complex of a CW-complex (1.68), and the simplicial chain complex of a Δ-complex (2.29). For a space with finitely generated integral homology groups, the UCT says that the integral cohomology group in degree k is isomorphic to the direct sum of the free component of the homology group in degree k and the torsion of the homomology group in degree $k-1$.
4.13. Corollary. If a chain map between chain complexes of free abelian groups induces an isomorphism on homology then it induces an isomorphism on cohomology with coefficients in any abelian group.

Proof. Use the UCT and the 5-lemma.
What makes the proof of the UCT work is the fact (which we have used several times) that any subgroup of a free abelian group is free.
4.14. Proposition. Any subgroup of a free abelian groups is free.

Proof. Let us first consider finitely generated free abelian groups. We use induction over the cardinality of a basis. To start the induction, let \mathbf{Z} be free of rank 1 . Any subgroup of the abelian group \mathbf{Z} is free for it is of the form $m \mathbf{Z}$ for some $m \in \mathbf{Z}$ and $m \mathbf{Z}$ is isomorphic to \mathbf{Z} or to 0 . Let now $\mathbf{Z}^{n+1}=\mathbf{Z}^{n} \oplus \mathbf{Z}$ be free of rank $n+1$. Let G be a subgroup. There is a similar splitting $G=G_{n} \oplus G_{1}$ of G. We know that G_{1} and G_{n} are free by induction. Thus G is free. Use transfinite induction for the general case.

Now this proof works equally well for any PID R since the submodules of the module R, the ideals in the ring R, are of the form $m R$ for some $m \in R$. So we have the more general
4.15. Proposition. Any submodule of a free module over a PID is free.

Thus there is a more general form of the UCT for chain complexes of free modules over a PID R. Just replace \mathbf{Z} by R in 4.12. In particular, we could let $R=k$ be a field. Over a field there is not even an Ext-term since all modules, vector spaces, are free themselves.
4.16. Corollary. Let k be a field and let $\left(C_{*}, \partial\right)$ be a chain complex of vector spaces over k. Then there is an isomorphism

$$
H^{i}\left(C_{*} ; V\right)=\operatorname{Hom}_{k}\left(H_{i}\left(C_{*} ; k\right), V\right)
$$

for any k-vector space V.
In particular, $H^{i}(X ; k) \cong \operatorname{Hom}_{k}\left(H_{i}(X ; k), k\right)$; over a field, cohomology is the dual of homology.
4.17. Exercise. Prove the Lifting Lemma 4.9.
4.18. Exercise. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups and let G be an abelian group. Show that there is a 6 -term exact

$$
0 \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G) \rightarrow \operatorname{Ext}(C, G) \rightarrow \operatorname{Ext}(B, G) \rightarrow \operatorname{Ext}(A, G) \rightarrow 0
$$

of abelian groups. What is $\operatorname{Ext}(\mathbf{Q}, \mathbf{Z})$?
4.19. Tor and the UCT for homology. We briefly discuss the universal coefficient theorem for homology. Let H and G be two abelian groups. Apply the functor $-\otimes_{\mathbf{z}} G$ to the short exact sequence (4.6) and get the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Tor}_{\mathbf{z}}(H, G) \rightarrow F_{0} \otimes G \rightarrow F_{1} \otimes G \rightarrow H \otimes G \rightarrow 0 \tag{4.20}
\end{equation*}
$$

where we define $\operatorname{Tor}_{\mathbf{Z}}(H, G)$ as the kernel.
4.21. Exercise. Show that the cyclic groups $\mathbf{Z} / m \mathbf{Z} \otimes \mathbf{Z} / n \mathbf{Z}$ and $\operatorname{Tor}_{\mathbf{Z}}(\mathbf{Z} / m \mathbf{Z}, \mathbf{Z} / n \mathbf{Z})$ have the same order, $\operatorname{GCD}(m, n)$.

Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of abelian groups and let G be an abelian group. Show that there is a 6 -term exact

$$
0 \rightarrow \operatorname{Tor}(A, G) \rightarrow \operatorname{Tor}(B, G) \rightarrow \operatorname{Tor}(C, G) \rightarrow A \otimes G \rightarrow B \otimes G \rightarrow C \otimes G \rightarrow 0
$$

of abelian groups.
4.22. Theorem (UCT for homology). Let $\left(C_{*}, \partial\right)$ be a chain complex of free abelian groups and G and abelian group. Then there is a natural short exact sequence

$$
0 \longrightarrow H_{k}\left(C_{*}\right) \otimes G \longrightarrow H_{k}\left(C_{*} \otimes G\right) \longrightarrow \operatorname{Tor}\left(H_{k-1}\left(C_{*}\right), G\right) \longrightarrow 0
$$

The sequence splits but not naturally.
Proof. Dual to the proof for the UCT in cohomology.
4.23. Reduced cohomology. By definition, the reduced cohomology groups of $X \neq \emptyset$ are the homology groups $\widetilde{H}^{n}(X ; G)$ of the dual of the augmented chain complex (1.7). There is no difference between reduced and unreduced cohomology in positive degrees. In degree 0 there is a split exact sequence

$$
0 \rightarrow G \xrightarrow{\varepsilon^{*}} H^{0}(X ; G) \rightarrow \widetilde{H}^{0}(X ; G) \rightarrow 0
$$

which is $0 \rightarrow \operatorname{Hom}(\mathbf{Z}, G) \xrightarrow{\varepsilon^{*}} \operatorname{ker} \partial_{1}^{*} \rightarrow \operatorname{ker} \partial_{1}^{*} / \operatorname{im} \varepsilon^{*} \rightarrow 0 . \quad H^{0}(X ; G)=Z^{0}(X ; G)=\operatorname{ker} d_{1}^{*}$ is abelian group $\operatorname{map}\left(\pi_{0}(X), G\right)$ of maps of the set of path-components of X to G. The map $H^{0}(X ; G) \ni \varphi \rightarrow \varphi\left(x_{0}\right)$ where x_{0} is some point of X is a left inverse of ε^{*}. Note that $\widetilde{H}^{*}\left(\left\{x_{0}\right\} ; G\right)=0$ for the space consisting of a single point. The long exact sequence in reduced cohomology (4.23) for the pair (X, x_{0}) gives that $\widetilde{H}^{n}(X ; G) \cong H^{n}\left(X, x_{0} ; G\right)$. The long exact sequence in (unreduced) cohomology (1.10) breaks into short split exact sequences because the point is a retract of the space and it begins with

$$
0 \longrightarrow H^{0}\left(X, x_{0} ; G\right) \longrightarrow H^{0}(X ; G) \longrightarrow H^{0}\left(x_{0} ; G\right) \longrightarrow 0
$$

so that $\widetilde{H}^{0}(X ; G) \cong H^{0}\left(X, x_{0} ; G\right) \cong \operatorname{ker}\left(H^{0}(X ; G) \rightarrow H^{0}\left(x_{0} ; G\right)\right)$.
4.23. The long exact cohomology sequence for a pair. Suppose that (X, A) is a pair of spaces. The cohomology long exact sequence

$$
\cdots \longrightarrow H^{k-1}(A ; G) \xrightarrow{\delta} H^{k}(X, A ; G) \xrightarrow{j^{*}} H^{k}(X ; G) \xrightarrow{i^{*}} H^{k}(A ; G) \longrightarrow H^{k}(X, A ; G) \longrightarrow
$$

is the long exact sequence of the short exact sequence

$$
0 \rightarrow C^{*}(X, A ; G) \xrightarrow{j^{*}} C^{*}(X ; G) \xrightarrow{i^{*}} C^{*}(A ; G) \rightarrow 0
$$

of chain complexes obtained by dualizing the the short exact sequence $0 \rightarrow C_{*}(A) \xrightarrow{i} C_{*}(X) \xrightarrow{j} C_{*}(X, A) \rightarrow 0$ of free abelian groups (4.4). The connecting homomorphism δ takes the cohomology class $[\varphi] \in H^{k-1}(A ; G)$ of the cocycle $\varphi: C_{k-1}(A) \rightarrow G$ to the cohomology class of the cocycle $\delta \varphi$ as in the diagram

of abelian groups.
The UCT applies also to relative cohomology. The homomorphisms of the cohomology long exact sequence correspond under the homomorphism h to the homomorphisms of the homology long exact sequence (1.10). This is clear for the restriction maps i^{*} and j^{*} by naturality and for δ we explicitly verify that this is so.
4.24. Lemma. The diagram

is commutative: $(\delta[\varphi])[z]=[\varphi](\partial[z])$ or $\left\langle\partial[z 9,[\varphi]\rangle=\langle[z], \delta[\varphi]\rangle\right.$ for $[\varphi] \in H^{k-1}(A ; G),[z] \in H_{k}(X, A)$.
The reduced cohomology long exact sequence

$$
\cdots \longrightarrow \widetilde{H}^{k-1}(A ; G) \xrightarrow{\delta} H^{k}(X, A ; G) \xrightarrow{j^{*}} \widetilde{H}^{k}(X ; G) \xrightarrow{i^{*}} \widetilde{H}^{k}(A ; G) \longrightarrow H^{k}(X, A ; G) \longrightarrow
$$

is obtained by dualizing the augmented chain complexes.
Similarly, the cohomology long exact sequence of a triple (X, A, B)

$$
\cdots \rightarrow H^{k-1}(A, B ; G) \xrightarrow{\delta} H^{k}(X, A ; G) \xrightarrow{j^{*}} H^{k}(X, B ; G) \xrightarrow{i^{*}} H^{k}(A, B ; G) \rightarrow H^{k}(A, B ; G) \rightarrow \cdots
$$

is obtained by dualizing the short exact sequence $0 \rightarrow C_{*}(A, B) \rightarrow C_{*}(X, B) \rightarrow C_{*}(X, A) \rightarrow 0$ of relative chain complexes.
4.25. Homotopy invariance and excision. If $f_{0} \simeq f_{1}: X \rightarrow Y$, then the induced chain maps $C_{*}\left(f_{0}\right) \simeq C_{*}\left(f_{1}\right): C_{*} X-$ The dual chain maps are then also chain homotopic and thus $H^{*}\left(f_{0}\right)=H^{*}\left(f_{1}\right): H^{*}(Y ; G) \rightarrow H^{*}(X ; G)$.

When $X \supset A \supset \operatorname{int}(A) \supset \operatorname{cl}(U) \supset U$ then $H^{k}(X, A ; G) \cong H^{k}(X-U, A-U ; G)$ because the inclusion induces an isomorphism on homology and also on cohomology by the UCT (4.13).
4.26. Example. Using that the suspension $S X$ of X is the union of two contractible cones we get that $\widetilde{H}^{k+1}(S X ; G)=\widetilde{H}^{k+1}\left(C_{+} X \cup C_{-} X, C_{-} X ; G\right) \cong \widetilde{H}^{k+1}\left(C_{+}, X ; G\right) \cong \widetilde{H}^{k}(X ; G)$.
4.27. Cup and cap products. In the following we use coefficients in some commutative ring R, typically $R=\mathbf{Z}, \mathbf{Z} / n \mathbf{Z}, \mathbf{Q}$. The product in R allows us to define products, the cup and the cap product, which are the bilinear maps

$$
C^{k}(X ; R) \times C^{\ell}(X ; R) \xrightarrow{\cup} C^{k+\ell}(X ; R), \quad C_{k+\ell}(X ; R) \times C^{k}(X ; R) \xrightarrow{\cap} C_{\ell}(X ; R)
$$

given by the formulas

$$
\left.\left.\langle\sigma, \phi \cup \psi\rangle=\langle\sigma|\left[e_{0} \cdots e_{k}\right]\right), \phi\right\rangle \cdot\left\langle\sigma \mid\left[e_{k} \cdots e_{k+\ell}\right], \psi\right\rangle, \quad \sigma \cap \phi=\left\langle\sigma \mid\left[e_{0} \cdots e_{k}\right], \phi\right\rangle \sigma \mid\left[e_{k} \cdots e_{k+\ell}\right]
$$

where $\sigma \in C_{k+\ell}(X ; R)$ is a singular $(k+\ell)$ simplex in X. These two pairings are related since

$$
\begin{array}{ll}
\langle c, \phi \cup \psi\rangle=\langle c \cap \phi, \psi\rangle, & c \in C_{k+\ell}(X ; R), \phi \in C^{k}(X ; R), \psi \in C^{\ell}(X ; R) \\
c \cap(\phi \cup \psi)=(c \cap \phi) \cap \psi, & c \in C_{m+k+\ell}(X ; R), \phi \in C^{k}(X ; R), \psi \in C^{\ell}(X ; R) \tag{4.29}
\end{array}
$$

These two pairings are natural in the sense that if $f: X \rightarrow Y$ is a map then

$$
\begin{array}{ll}
f^{*}(\phi \cup \psi)=f^{*} \phi \cup f^{*} \psi, & c \in C_{k+\ell}(X ; R), \phi \in C^{k}(Y ; R), \psi \in C^{\ell}(Y ; R) \\
f_{*}\left(c \cap f^{*} \phi\right)=f_{*} c \cap \phi, & c \in C_{k+\ell}(X ; R), \phi \in C^{k}(Y ; R)
\end{array}
$$

Cup and cap products behave nicely under the (co)boundary operator.
4.32. LEmma. $\delta(\phi \psi)=\delta \phi \cup \psi+(-1)^{k} \phi \cup \delta \psi$ and $(-1)^{k} \partial(c \cap \phi)=\partial c \cap \phi-c \cap \delta \phi$.

Proof. Verify that the first formula is true when $k=1, \ell=2$. Then figure out the general argument. The second formula follows from the first: $\left\langle(-1)^{k} \partial(c \cap \varphi), \psi\right\rangle=\left\langle c, \varphi \cup(-1)^{k} \delta \psi\right\rangle=\langle c, \delta(\varphi \cup \psi)-\delta \varphi \cup \psi\rangle=$ $\langle\partial c \cap \varphi-c \cap \delta \varphi, \psi\rangle$.

These boundary formulas imply that there are induced pairings on homology

$$
\begin{array}{cc}
H^{k}(X ; R) \times H^{\ell}(X ; R) \xrightarrow{\cup} H^{k+\ell}(X ; R), & H_{k+\ell}(X ; R) \times H^{k}(X ; R) \xrightarrow{\cap} H_{\ell}(X ; R) \\
{[\phi] \cup[\psi]=[\phi \cup \psi]} & {[z] \cap[\phi]=[z \cap \phi]}
\end{array}
$$

such that $\langle[z],[\phi] \cup[\psi]\rangle=\langle[z] \cap[\phi],[\psi]\rangle$.
If we let $C^{*}(X ; R)=\bigoplus C^{k}(X ; R)$ and $H^{*}(X ; R)=\bigoplus H^{k}(X ; R)$, then $\left(C^{*}(X ; R), \delta, \cup\right)$ is a differential graded R-algebra and $\left(H^{*}(X ; R), \cup\right)$ a graded R-algebra. The graded homology group $H_{*}(X ; R)=$ $\bigoplus H_{k}(X ; R)$ is a graded module over the graded R-algebra $H^{*}(X ; R)(4.29)$. If $f: X \rightarrow Y$ is any map then (4.31) $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is a ring homomorphism and $f_{*}: H_{*}(X ; R) \rightarrow H_{*}(Y ; R)$ is an $H^{*}(Y ; R)$ module homomorphism; this means that the diagram

commutes or that $f_{*}\left(\zeta \cap f^{*} c\right)=f_{*} \zeta \cap c$ for all $\zeta \in H_{k+\ell}(X ; R)$ and all $c \in H^{k}(Y ; R)$ as in (4.31).
If X is path-connected, we have identifications $H_{0}(X ; R) \xrightarrow[\cong]{\cong} R$ and $R \xrightarrow[\cong]{\stackrel{\varepsilon^{*}}{\cong}} H^{0}(X ; R)(1.7,4.23)$ under which the cup product $R \times H^{\ell}(X ; R) \xrightarrow{\cup} H^{\ell}(X ; R)$ and the cap product $H_{\ell}(X ; R) \times R \xrightarrow{\cap} H_{\ell}(X ; R)$ are simply scalar multiplication and the cap product $H_{k}(X ; R) \times H^{k}(X ; R) \rightarrow H_{0}(X ; R)=R$ is evaluation 〈, \rangle (4.2).
4.33. Relative cup and cap products. Suppose that $A \subset X$. The same formula that we used above for the cup product also defines bilinear maps

$$
C^{k}(X ; R) \times C^{\ell}(X, A ; R) \xrightarrow{\cup} C^{k+\ell}(X, A ; R), \quad C^{k}(X, A ; R) \times C^{\ell}(X, A ; R) \xrightarrow{\cup} C^{k+\ell}(X, A ; R)
$$

For if $\phi \in C^{k}(X ; R)$ is any cochain, and $\psi \in C^{\ell}(X ; R)=\operatorname{Hom}_{R}\left(C_{\ell}(X ; R), R\right)$ is a cochain that vanishes on $C_{\ell}(A, R)$, then the cochain $\phi \cup \psi \in \operatorname{Hom}_{R}\left(C_{k+\ell}(X ; R), R\right)$ vanishes on $C_{k+\ell}(A, R)$. Similarly, the same formula that we used above for the cap product defines bilinear maps

$$
C_{k+\ell}(X, A ; R) \times C^{k}(X ; R) \xrightarrow{\cap} C_{\ell}(X, A ; R), \quad C_{k+\ell}(X, A ; R) \times C^{k}(X, A ; R) \xrightarrow{\cap} C_{\ell}(X ; R)
$$

This is because, first, $C_{k+\ell}(A ; R) \cap \phi \subset C_{\ell}(A ; R)$ for all $\phi \in C^{k}(X ; R)$, and, second, $C_{k+\ell}(A ; R) \cap \phi=0$ if ϕ vanishes on $C_{k}(A ; R)$.

Since the boundary formulas (4.32) still hold there are induced bilinear maps

$$
\begin{array}{ll}
H^{k}(X ; R) \times H^{\ell}(X, A ; R) \xrightarrow{\cup} H^{k+\ell}(X, A ; R), & H^{k}(X, A ; R) \times H^{\ell}(X, A ; R) \xrightarrow{\cup} H^{k+\ell}(X, A ; R) \\
H_{k+\ell}(X, A ; R) \times H^{k}(X ; R) \xrightarrow{\cap} H_{\ell}(X, A ; R) & H_{k+\ell}(X, A ; R) \times H^{k}(X, A ; R) \xrightarrow{\cap} H_{\ell}(X ; R)
\end{array}
$$

There are also cap products

$$
H_{k+\ell}(X ; R) \times H^{k}(X ; R) \xrightarrow{\cap} H_{\ell}(X, A ; R), \quad H_{k+\ell}(X ; R) \times H^{k}(X, A ; R) \xrightarrow{\cap} H_{\ell}(X ; R)
$$

obtained by composing the above cap products with a map induced from an inclusion. Thus $H^{*}(X ; R)$ and $H^{*}(X, A ; R)$ are graded commutative R-algebras with $H_{*}(X ; R)$ and $H_{*}(X, A ; R)$ as graded modules. Let $f:(X, A) \rightarrow(Y, B)$ be any map. The induced maps $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ and $f^{*}: H^{*}(Y, B ; R) \rightarrow H^{*}(X, A ; R)$ on cohomology are algebra maps and the induced maps $f_{*}: H_{*}(X ; R) \rightarrow H_{*}(Y ; R)$ and $f_{*}: H_{*}(X, A ; R) \rightarrow H_{*}(Y, B ; R)$ on homology are homomorphisms of modules (4.31).

If X is path-connected, we have identifications $H_{0}(X ; R) \xrightarrow{\simeq} R$ and $R \xrightarrow{\simeq} H^{0}(X ; R)$ under which the cup product $R \times H^{\ell}(X, A ; R) \xrightarrow{\cup} H^{\ell}(X, A ; R)$ and the cap product $H_{\ell}(X, A ; R) \times R \xrightarrow{\cap} H_{\ell}(X ; R)$ are simply scalar multiplication and the cap product $H_{k}(X, A ; R) \times H^{k}(X, A ; R) \rightarrow R$ is evaluation \langle,$\rangle for relative$ (co)homology groups.
4.34. The cellular cochain complex of a CW-complex. Let X be a CW-complex with skeletal filtration $\emptyset=X^{-1} \subset X^{0} \subset \cdots \subset X^{n} \subset X^{n+1} \subset \cdots \subset X$ and let G be an abelian group. The cellular cochain complex of X with coefficients in G is the dual complex

$$
\cdots \longrightarrow H^{n-1}\left(X^{n-1}, X^{n-2} ; G\right) \xrightarrow{d^{n}} H^{n}\left(X^{n}, X^{n-1} ; G\right) \xrightarrow{d^{n+1}} H^{n+1}\left(X^{n+1}, X^{n} ; G\right) \longrightarrow \cdots
$$

of the cellular chain complex (1.68) and the cellular cohomology $H_{C W}^{n}(X ; G)$ of X is its cohomology. Lemma 4.24 and the definition of the cellular boundary map shows that cellular coboundary map d^{n+1} is the map

$$
H^{n}\left(X^{n}, X^{n-1} ; G\right) \rightarrow H^{n}\left(X^{n} ; G\right) \xrightarrow{\delta} H^{n+1}\left(X^{n+1}, X^{n} ; G\right)
$$

Just as in 1.65 we have
4.35. Theorem (Cf 1.69). There is an isomorphism $H_{C W}^{n}(X ; G) \cong H^{n}(X ; G)$ which is natural wrt cellular maps.
which follows from
4.36. Lemma (Cf 1.66). Let X be a CW-complex and $X^{n}=X^{n-1} \cup_{\phi} \amalg D_{\alpha}^{n}$ the n-skeleton. Then
(1) $H^{k}\left(X^{n}, X^{n-1}\right)=\operatorname{Hom}\left(H_{k}\left(X^{n}, X^{n-1}\right), G\right)= \begin{cases}\prod H_{n}\left(D_{\alpha}^{n}, S_{\alpha}^{n-1}\right) & k=n \\ 0 & k \neq n\end{cases}$
(2) $H^{k}\left(X^{n}\right)=0$ for $k>n \geq 0$
(3) $H^{k}\left(X^{n}\right) \cong H^{k}(X)$ for $0 \leq k<n$.
4.37. Exercise. Compute the cohomology groups of the compact surfaces $(1.75,1.76)$ and projective spaces (1.77, 1.79).

It is, however, not so easy to compute cup and cap products in this way.
4.38. The cochain complex of a Δ-set. Let $S=\bigcup S_{n}$ be a Δ-complex (2.27) and G an abelian group. Write $G\left\langle S_{n}\right\rangle=\left\{S_{n} \xrightarrow{\phi} G\right\}=\operatorname{Hom}\left(\mathbf{Z} S_{n}, G\right)$ for the abelian group consisting of all functions of the set S_{n} of n-simplices into the abelian group G. The simplicial cochain of S with coefficients in $G,(G\langle S\rangle, \delta)$ or $\left(\Delta^{*}(|S|, \delta)\right.$, is the dual

$$
0 \xrightarrow{\delta} G\left\langle S_{0}\right\rangle \xrightarrow{\delta} G\left\langle S_{1}\right\rangle \xrightarrow{\delta} \cdots \xrightarrow{\delta} G\left\langle S_{n-1}\right\rangle \xrightarrow{\delta} G\left\langle S_{n}\right\rangle \xrightarrow{\delta} \cdots
$$

of the simplicial chain complex (2.29). Thus $\delta(\phi)(\sigma)=\phi(\partial \sigma)=\sum(-1)^{i} \phi\left(d_{i} \sigma\right)$ for all $\phi: S_{n-1} \rightarrow G$ and all $\sigma \in S_{n}$. The simplicial cochain complex is a quotient of the singular cochain complex by the projection map

$$
\begin{equation*}
\left(G\left\langle S_{*}\right\rangle, \delta\right) \leftarrow\left(C^{*}(|S|), \delta\right) \tag{4.39}
\end{equation*}
$$

dual to the unit transformation of the simplicial chain complex to the singular chain complex of Section 2.3). The simplicial cohomology group $H_{\Delta}^{n}(S)$ is the nth cohomology group of the simplicial cochain complex.

If the coefficient group $G=R$ is a ring then there are simplicial cup and cap products

$$
R\left\langle S_{k}\right\rangle \times R\left\langle S_{\ell}\right\rangle \xrightarrow{\cup} R\left\langle S_{k+\ell}\right\rangle, \quad R\left[S_{k+\ell}\right] \times R\left\langle S_{k}\right\rangle \xrightarrow{\cap} R\left[S_{\ell}\right]
$$

given by the same formulas as before (in disguise)

$$
\langle\sigma, \phi \cup \psi\rangle=\langle\underbrace{d_{k+1} \cdots d_{k+1}}_{\ell} \sigma, \phi\rangle \cdot\langle\underbrace{d_{0} \cdots d_{0}}_{k} \sigma, \psi\rangle, \quad \sigma \cap \phi=\langle\underbrace{d_{k+1} \cdots d_{k+1}}_{\ell} \sigma, \phi\rangle \underbrace{d_{0} \cdots d_{0}}_{k} \sigma
$$

where $\sigma \in S_{n+\ell}$ is a simplex in S and $\phi \in R\left\langle S_{k}\right\rangle, \psi \in R\left\langle S_{\ell}\right\rangle$. (Since $d_{0} \sigma$ means that we delete vertex 0 from $\sigma, d_{0} \cdots d_{0} \sigma$ is the back of σ.)
4.40. ThEOREM (Δ-sets have \cup and \cap products). $(R[S], \partial)$ is a differential graded module over the differential graded ring $(R\langle S\rangle, \delta, \cup)$. The quotient morphism (4.39) of differential graded rings induces an isomorphism (natural wrt simplicial maps)

$$
H_{\Delta}^{*}(S ; R) \cong H^{*}(|S|, R)
$$

of graded R-algebras. The map (4.39) of differential graded modules induces an isomorphism

$$
H_{*}^{\Delta}(S ; R) \xrightarrow{\cong} H_{*}(|S| ; R)
$$

of graded R-modules over the graded R-algebra $H^{*}(|S| ; R)$.
Proof. The first two statements are immediate since the simplicial cup product and the singular cup product are in fact defined by the same formula. Since we already know that we have an isomorphism on homology (1.84) the (corollary to the) UCT (4.13) implies that we also have an isomorphism on cohomology.

This theorem shows that there is a computer program that computes the cohomology ring of any finite Δ-complex.
4.41. Example. (The cohomology ring $\left.H^{*}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)\right) \mathbf{R} P^{2}=|S|$ is the realization of the Δ-set $S=$ $\left(\left\{x_{0}, x_{1}\right\} \leftleftarrows\left\{a, b_{1}, b_{2}\right\} \leftleftarrows\left\{c_{1}, c_{2}\right\}\right)$ where $d_{0}\left(a, b_{1}, b_{2}\right)=\left(x_{1}, x_{1}, x_{1}\right), d_{1}\left(a, b_{1}, b_{2}\right)=\left(x_{1}, x_{0}, x_{0}\right), d_{0}\left(c_{1}, c_{2}\right)=$ $(a, a), d_{1}\left(c_{1}, c_{2}\right)=\left(b_{1}, b_{2}\right), d_{2}\left(c_{1}, c_{2}\right)=\left(b_{2}, b_{1}\right)$ as shown in Figure 1. The simplicial chain and cochain com-

Figure 1. $\mathbf{R} P^{2}$ as a Δ-complex
plexes, $\left(\mathbf{F}_{2}[S], \partial\right)$ and $\left(\mathbf{F}_{2}\langle S\rangle, \delta\right)$, are

$$
\begin{aligned}
& 0 \longleftarrow \mathbf{F}_{2}\left\{x_{0}, x_{1}\right\} \not{ }^{\partial_{1}} \mathbf{F}_{2}\left\{a, b_{1}, b_{2}\right\} \stackrel{\partial_{2}}{\longleftarrow} \mathbf{F}_{2}\left\{c_{1}, c_{2}\right\} \longleftarrow 0 \\
& 0 \longrightarrow \mathbf{F}_{2}\left\{x_{0}^{t}, x_{1}^{t}\right\} \stackrel{\partial_{1}^{t}}{\longrightarrow} \mathbf{F}_{2}\left\{a^{t}, b_{1}^{t}, b_{2}^{t}\right\} \stackrel{\partial_{2}^{t}}{\longrightarrow} \mathbf{F}_{2}\left\{c_{1}^{t}, c_{2}^{t}\right\} \longrightarrow 0
\end{aligned}
$$

where y^{t} is the homomorphism that is dual to y and

$$
\partial_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad \partial_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)
$$

and ∂_{1}^{t} and ∂_{2}^{t} are the transposed matrices. We read off the homology groups

$$
\begin{aligned}
& H_{1}^{\Delta}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)=Z_{1} / B_{1}=\mathbf{F}_{2}\left\{a, b_{1}+b_{2}\right\} / \mathbf{F}_{2}\left\{a+b_{1}+b_{2}\right\} \cong \mathbf{F}_{2}\{a\} \\
& H_{2}^{\Delta}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)=Z_{2}=\mathbf{F}_{2}\left\{c_{1}+c_{2}\right\}
\end{aligned}
$$

The nonzero homology class $\left[\mathbf{R} P^{2}\right] \in H_{2}^{\Delta}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)$ represented by 2 -cycle $\mathbf{R} P^{2}=c_{2}+c_{2}$ is called the orientation class. We also read off the cohomology groups

$$
\begin{aligned}
& H_{\Delta}^{1}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)=Z^{1} / B^{1}=\mathbf{F}_{2}\left\{a^{t}+b_{1}^{t}, a^{t}+b_{2}^{t}\right\} / \mathbf{F}_{2}\left\{b_{1}^{t}+b_{2}^{t}\right\} \cong \mathbf{F}_{2}\left\{\left[a^{t}+b_{1}^{t}\right]\right\} \\
& H_{\Delta}^{2}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)=Z^{2} / B^{2}=\mathbf{F}_{2}\left\{c_{1}^{t}, c_{2}^{t}\right\} / \mathbf{F}_{2}\left\{c_{1}^{t}+c_{2}^{t}\right\} \cong \mathbf{F}_{2}\left\{\left[c_{2}^{t}\right]\right\}
\end{aligned}
$$

There is just one interesting cup product namely the square of the cohomology class represented by the 1 -cocycle $\alpha=a^{t}+b_{1}^{t}$. The cup product $\alpha \cup \alpha$ is the 2 -cocycle with values

$$
\begin{aligned}
& \left\langle c_{1}, \alpha \cup \alpha\right\rangle=\left\langle d_{2} c_{1}, \alpha\right\rangle\left\langle d_{0} c_{1}, \alpha\right\rangle=\left\langle b_{2}, \alpha\right\rangle\langle a, \alpha\rangle=0 \cdot 1=0 \\
& \left\langle c_{2}, \alpha \cup \alpha\right\rangle=\left\langle d_{2} c_{2}, \alpha\right\rangle\left\langle d_{0} c_{2}, \alpha\right\rangle=\left\langle b_{1}, \alpha\right\rangle\langle a, \alpha\rangle=1 \cdot 1=1
\end{aligned}
$$

on the basis $\left\{c_{1}, c_{2}\right\}$ for the 2-chains $\mathbf{F}_{2}\left[S_{2}\right]$. This means that that $\alpha \cup \alpha=c_{2}^{t}$ in the differential graded algebra $\mathbf{F}_{2}\langle S\rangle$ and that $[\alpha] \cup[\alpha]=\left[c_{2}^{t}\right]$ in the graded \mathbf{F}_{2}-algebra $H_{\Delta}^{*}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right)$. Note that the cohomology class $[\alpha]$ and the homology class $[a]$ are the dual to each other under the UCT isomorphism $H^{1}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right) \cong$ $\operatorname{Hom}_{\mathbf{F}_{2}}\left(H_{1}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right), \mathbf{F}_{2}\right)(4.16)$. We conclude that $H_{\Delta}^{*}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}[\alpha] / \alpha^{3}$ is a truncated polynomial algebra on the nonzero class $\alpha=[a]^{t}$ in degree 1. We also note that cap product with the orientation class

$$
\left[\mathbf{R} P^{2}\right] \cap-: H^{k}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right) \rightarrow H_{2-k}\left(\mathbf{R} P^{2} ; \mathbf{F}_{2}\right), \quad 0 \leq k \leq 2
$$

is an isomorphism in that $\left[\mathbf{R} P^{2}\right] \cap[\alpha]=[a]$ because $\left\langle\left[\mathbf{R} P^{2}\right] \cap[\alpha],[\alpha]\right\rangle=\left\langle\left[\mathbf{R} P^{2}\right],[\alpha] \cup[\alpha]\right\rangle=\left\langle c_{1}+c_{2}, c_{2}^{t}\right\rangle=1$. Or, alternatively, because

$$
\begin{array}{lll}
c_{1} \cap a^{t}=\left\langle d_{2} c_{1}, a^{t}\right\rangle d_{0} c_{1}=0, & c_{1} \cap b_{1}^{t}=\left\langle d_{2} c_{1}, b_{1}^{t}\right\rangle d_{0} c_{1}=0, & c_{1} \cap b_{2}^{t}=\left\langle d_{2} c_{1}, b_{2}^{t}\right\rangle d_{0} c_{1}=0 \\
c_{2} \cap a^{t}=\left\langle d_{2} c_{2}, a^{t}\right\rangle d_{0} c_{2}=0, & c_{2} \cap b_{1}^{t}=\left\langle d_{2} c_{2}, b_{1}^{t}\right\rangle d_{0} c_{2}=a, & c_{2} \cap b_{2}^{t}=\left\langle d_{2} c_{2}, b_{2}^{t}\right\rangle d_{0} c_{2}=a
\end{array}
$$

so that $\mathbf{R} P^{2} \cap \alpha=\left(c_{1}+c_{2}\right) \cap\left(a^{t}+b_{1}^{t}\right)=a$ according to the formulas from 4.38.
4.42. Example. (The cohomology algebra $H^{*}\left(N_{2} ; \mathbf{F}_{2}\right)$) Using the Δ-complex structure on $N_{2}=\mathbf{R} P^{2} \# \mathbf{R} P^{2}$ (1.76) indicated by Figure 2 (or or see Example 2.41) we get a simplicial chain complex $\mathbf{F}_{2}[S]$ and a simplicial

Figure 2. N_{2} as a Δ-complex
cochain complex $\mathbf{F}_{2}\langle S\rangle$ of the form

$$
\begin{aligned}
& 0 \longleftarrow \mathbf{F}_{2}\left\{x_{0}, x_{1}\right\} \stackrel{\partial_{1}}{\longleftrightarrow} \mathbf{F}_{2}\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, b_{4}\right\} \stackrel{\partial_{2}}{\longleftrightarrow} \mathbf{F}_{2}\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}<0 \\
& 0 \longrightarrow \mathbf{F}_{2}\left\{x_{0}^{t}, x_{1}^{t}\right\} \stackrel{\partial_{1}^{t}}{\longrightarrow} \mathbf{F}_{2}\left\{a_{1}^{t}, a_{2}^{t}, b_{1}^{t}, b_{2}^{t}, b_{3}^{t}, b_{4}^{t}\right\} \stackrel{\partial_{2}^{t}}{\longrightarrow} \mathbf{F}_{2}\left\{c_{1}^{t}, c_{2}^{t}, c_{3}^{t}, c_{4}^{t}\right\} \longrightarrow 0
\end{aligned}
$$

where

$$
\partial_{1}=\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \quad \text { and } \quad \partial_{2}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

and ∂_{1}^{t} and ∂_{2}^{t} are the transposed matrices of ∂_{1} and ∂_{2}. We read off the homology groups

$$
\begin{aligned}
& H_{1}^{\Delta}\left(N_{2} ; \mathbf{F}_{2}\right)=\frac{\mathbf{F}_{2}\left\{a_{1}, a_{2}, b_{1}+b_{2}, b_{2}+b_{3}, b_{3}+b_{4}\right\}}{\mathbf{F}_{2}\left\{a_{1}+b_{1}+b_{2}, a_{1}+b_{2}+b_{3}, a_{2}+b_{3}+b_{4}\right\}} \cong \mathbf{F}_{2}\left\{\left[a_{1}\right],\left[a_{2}\right]\right\} \\
& H_{2}^{\Delta}\left(N_{2} ; \mathbf{F}_{2}\right)=Z_{2}=\mathbf{F}_{2}\left\{\left[c_{1}+c_{2}+c_{3}+c_{4}\right]\right\}
\end{aligned}
$$

The homology class represented by the 2-cycle $N_{2}=c_{1}+c_{2}+c_{3}+c_{4}$ is the orientation class. We also read off the cohomology groups

$$
\begin{aligned}
& H_{\Delta}^{1}\left(N_{2} ; \mathbf{F}_{2}\right)=\frac{\mathbf{F}_{2}\left\{a_{1}^{t}+b_{2}^{t}, a_{2}^{t}+b_{4}^{t}, b_{1}^{t}+b_{2}^{t}+b_{3}^{t}+b_{4}^{t}\right\}}{\mathbf{F}_{2}\left\{b_{1}^{t}+b_{2}^{t}+b_{3}^{t}+b_{4}^{t}\right\}} \cong \mathbf{F}_{2}\left\{\left[a_{1}^{t}+b_{2}^{t}\right],\left[a_{2}^{t}+b_{4}^{t}\right]\right\} \\
& H_{\Delta}^{2}\left(N_{2} ; \mathbf{F}_{2}\right)=Z^{2} / B^{2}=\mathbf{F}_{2}\left\{c_{1}^{t}, c_{2}^{t}, c_{3}^{t}, c_{4}^{t}\right\} / \mathbf{F}_{2}\left\{c_{1}^{t}+c_{2}^{t}, c_{3}^{t}+c_{4}^{t}, c_{1}^{t}+c_{4}^{t}\right\} \cong \mathbf{F}_{2}\left\{\left[c_{1}^{t}\right]\right\}
\end{aligned}
$$

The 1-cocycles $\alpha_{1}=a_{1}^{t}+b_{2}^{t}$ and $\alpha_{2}=a_{2}^{t}+b_{4}^{t}$ are dual to the 1-cycles a_{1} and b_{1} in the sense that $a_{1} \cap \alpha_{1}=x_{1}$ and $b_{1} \cap \beta_{1}=x_{1}$. The 2-cocycle c_{1}^{t} is dual to the orientation class as $N_{2} \cap c_{1}^{t}=x_{1}$. The only interesting cup products are the products of the cohomology classes in degree 1. Using the table

σ	$d_{2} \sigma$	$d_{0} \sigma$
c_{1}	b_{1}	a_{1}
c_{2}	b_{2}	a_{1}
c_{3}	b_{3}	a_{2}
c_{4}	b_{4}	a_{2}

listing the front and back faces of the four 2 -simplices of T, we find that

$$
\left\langle c_{i}, \alpha_{1} \cup \alpha_{1}\right\rangle=\left\{\begin{array}{ll}
1 & i=2 \\
0 & i \neq 2
\end{array} \quad \text { and } \quad\left\langle c_{i}, \alpha_{2} \cup \alpha_{2}\right\rangle= \begin{cases}1 & i=4 \\
0 & i \neq 4\end{cases}\right.
$$

and therefore $\alpha_{1} \cup \alpha_{1}=c_{2}^{t} \sim c_{1}^{t}$ and $\alpha_{2} \cup \alpha_{2}=c_{4}^{t} \sim c_{1}^{t}$ in the \mathbf{F}_{2}-DGA $\mathbf{F}_{2}\langle S\rangle$. Similarly, $\alpha_{1} \cup \alpha_{2}=0=\alpha_{2} \cup \alpha_{1}$. We conclude that the cup product $H_{\Delta}^{1}\left(N_{2} ; \mathbf{F}_{2}\right) \times H_{\Delta}^{1}\left(N_{2} ; \mathbf{F}_{2}\right) \xrightarrow{u} H_{\Delta}^{2}\left(N_{2} ; \mathbf{F}_{2}\right)$ is a nondegenerate bilinear form with matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

with respect to the basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ for the 2-dimensional \mathbf{F}_{2}-vector space $H_{\Delta}^{1}\left(N_{2} ; \mathbf{F}_{2}\right)$. Alternatively, we see that cap product with the orientation class

$$
\left[N_{2}\right] \cap-: H^{k}\left(N_{2} ; \mathbf{F}_{2}\right) \rightarrow H_{2-k}\left(N_{2} ; \mathbf{F}_{2}\right), \quad 0 \leq k \leq 2
$$

is an isomorphism in that $N_{2} \cap \alpha_{1}=a_{1}$ and $N_{1} \cap \alpha_{2}=a_{2}$ because

$$
\left.\begin{array}{ll}
\left\langle N_{2} \cap \alpha_{1}, \alpha_{1}\right\rangle=\left\langle N_{2}, \alpha_{1} \cup \alpha_{1}\right\rangle=1 & \left\langle N_{2} \cap \alpha_{2}, \alpha_{1}\right\rangle=\left\langle N_{2}, \alpha_{2} \cup \alpha_{1}\right\rangle=0 \\
\left\langle N_{2} \cap \alpha_{1}, \alpha_{2}\right\rangle=\left\langle N_{2}, \alpha_{1} \cup \alpha_{2}\right\rangle=0 &
\end{array} N_{2} \cap \alpha_{2}, \alpha_{2}\right\rangle=\left\langle N_{2}, \alpha_{2} \cup \alpha_{2}\right\rangle=1
$$

We have now computed the \mathbf{F}_{2}-cohomology rings for the nonorientable surfaces N_{g} of genus $g=1,2$. Can you guess what is the cohomology ring for N_{g} in general?
4.43. Example. (The integer cohomology ring $H^{*}(T ; \mathbf{Z})$ of the torus)

Using the Δ-complex structure on The torus $T=M_{1}=|S|$ is the realization of the Δ-set S indicated in Figure 3 (or in Example 2.40). The maps in S are $d_{0}\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=\left(a_{1}, b_{1}, a_{1}, b_{1}\right), d_{1}\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=$

Figure 3. M_{1} as a Δ-complex
$\left(c_{1}, c_{3}, c_{3}, c_{1}\right)$, and $d_{2}\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=\left(c_{4}, c_{1}, c_{2}, c_{4}\right)$ etc. The chain complex $\mathbf{Z}[S]$ and the cochain complex $\mathbf{Z}\langle S\rangle$ are

$$
\begin{aligned}
& 0 \longleftarrow \mathbf{Z}\left\{x_{0}, x_{1}\right\} \stackrel{\partial_{1}}{\longleftrightarrow} \mathbf{Z}\left\{a_{1}, b_{1}, c_{1}, c_{2}, c_{3}, c_{4}\right\} \stackrel{\partial_{2}}{\longleftrightarrow} \mathbf{Z}\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\} \longleftarrow 0 \\
& 0 \longleftrightarrow \mathbf{Z}\left\{x_{0}^{t}, x_{1}^{t}\right\} \stackrel{\partial_{1}^{t}}{\longleftrightarrow} \mathbf{Z}\left\{a_{1}^{t}, b_{1}^{t}, c_{1}^{t}, c_{2}^{t}, c_{3}^{t}, c_{4}^{t}\right\} \xrightarrow{\partial_{2}^{t}} \mathbf{Z}\left\{D_{1}^{t}, D_{2}^{t}, D_{3}^{t}, D_{4}^{t}\right\} \longrightarrow 0
\end{aligned}
$$

where

$$
\partial_{1}=\left(\begin{array}{cccccc}
0 & 0 & -1 & -1 & -1 & -1 \\
0 & 0 & -1 & -1 & -1 & -1
\end{array}\right) \quad \text { and } \quad \partial_{2}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

and ∂_{1}^{t} and ∂_{2}^{t} are the transposed matrices. We read off the homology groups

$$
\begin{aligned}
& H_{1}^{\Delta}(T ; \mathbf{Z})=\frac{\mathbf{Z}\left\{a_{1}, b_{1}, c_{1}-c_{4}, c_{2}-c_{4}, c_{3}-c_{4}\right\}}{\mathbf{Z}\left\{a_{1}-c_{2}+c_{3}, b_{1}-c_{3}+c_{4}, c_{1}-c_{2}+c_{3}-c_{4}\right\}} \cong \mathbf{Z}\left\{\left[a_{1}\right],\left[b_{1}\right]\right\} \\
& H_{2}^{\Delta}(T ; \mathbf{Z})=Z^{2}=\mathbf{Z}\left\{\left[D_{1}+D_{2}-D_{3}-D_{4}\right]\right\}
\end{aligned}
$$

The homology class represented by the 2-cycle $T=D_{1}+D_{2}-D_{3}-D_{4}$ is called the orientation class of the manifold T. We also read off the cohomology groups

$$
\begin{aligned}
H_{\Delta}^{1}(T ; \mathbf{Z}) & =\frac{\mathbf{Z}\left\{a_{1}^{t}-c_{3}^{t}-c_{4}^{t}, b_{1}^{t}+c_{2}^{t}+c_{3}^{t}, c_{1}^{t}+c_{2}^{t}+c_{3}^{t}+c_{4}^{t}\right\}}{\mathbf{Z}\left\{c_{1}^{t}+c_{2}^{t}+c_{3}^{t}+c_{4}^{t}\right\}} \cong \mathbf{Z}\left\{\left[a_{1}^{t}-c_{3}^{t}-c_{4}^{t}\right],\left[b_{1}^{t}+c_{2}^{t}+c_{3}^{t}\right]\right\} \\
H_{\Delta}^{2}(T ; \mathbf{Z}) & =\frac{\mathbf{Z}\left\{D_{1}^{t}, D_{2}^{t}, D_{3}^{t}, D_{4}^{t}\right\}}{\mathbf{Z}\left\{D_{1}^{t}+D_{4}^{t}, D_{2}^{t}+D_{4}^{t}, D_{3}^{t}-D_{4}^{t}\right\}} \cong \mathbf{Z}\left\{\left[D_{1}^{t}\right]\right\}
\end{aligned}
$$

Since all homology groups are free abelian groups, evaluation $H_{k}(T ; \mathbf{Z}) \times H_{k}(T ; \mathbf{Z}) \rightarrow \mathbf{Z}$ is a nondegenerate pairing in this case. The 1-cocycles $\alpha_{1}=a_{1}^{t}-c_{3}^{t}-c_{4}^{t}$ and $\beta_{1}=b_{1}^{t}+c_{2}^{t}+c_{3}^{t}$ represent cohomology classes
dual to the homology classes $\left[a_{1}\right],\left[b_{1}\right] \in H_{1}(T ; \mathbf{Z})$ and the 2-cocycle D_{1}^{t} represents a cohomology class dual to the orientation class $[T]$.

The cap product $\mathbf{Z}\left[S_{2}\right] \times \mathbf{Z}\left\langle S_{1}\right\rangle \xrightarrow{\cap} \mathbf{Z}\left[S_{1}\right]$ satisfies

$$
D_{1} \cap c_{4}^{t}=a_{1}, \quad D_{2} \cap c_{1}^{t}=b_{1}, \quad D_{3} \cap c_{2}^{t}=a_{1}, \quad D_{4} \cap c_{4}^{t}=b_{1}
$$

while the products between all other combinations of generators are 0 . For instance, $D_{1} \cap c_{4}^{t}=\left\langle d_{2} D_{1}, c_{4}^{t}\right\rangle d_{0} D_{1}=$ $\left\langle c_{4}, c_{4}^{t}\right\rangle a_{1}=a_{1}$. Hence

$$
\begin{aligned}
& T \cap \alpha_{1}=\left(D_{1}+D_{2}-D_{3}-D_{4}\right) \cap\left(a_{1}^{t}-c_{3}^{t}-c_{4}^{t}\right)=b_{1} \\
& T \cap \beta_{1}=\left(D_{1}+D_{2}-D_{3}-D_{4}\right) \cap\left(b_{1}^{t}+c_{2}^{t}+c_{3}^{t}\right)=-a_{1}
\end{aligned}
$$

and we see that $[T] \cap-: H_{\Delta}^{1}(T ; \mathbf{Z}) \rightarrow H_{1}^{\Delta}(T ; \mathbf{Z})$ is an isomorphism. The cup products are

$$
\left[\alpha_{1}\right] \cup\left[\alpha_{1}\right]=0=\left[\beta_{1}\right] \cup\left[\beta_{1}\right], \quad\left[\alpha_{1}\right] \cup\left[\beta_{1}\right]=\left[D_{1}^{t}\right]=-\left[\beta_{1}\right] \cup\left[\alpha_{1}\right]
$$

because

We conclude that the cup product $H_{\Delta}^{1}(T ; \mathbf{Z}) \times H_{\Delta}^{1}(T ; \mathbf{Z}) \xrightarrow{u} H_{\Delta}^{2}(T ; \mathbf{Z})$ is a nondegenerate bilinear form with matrix

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

with respect to the basis $\left\{\alpha_{1}, \beta_{1}\right\}$ for the rank 2 free abelian group $H_{\Delta}^{1}(T ; \mathbf{Z})$.
4.44. Example. The torus T and the wedge sum $X=S^{1} \vee S^{1} \vee S^{2}$ have isomorphic homology and cohomology groups (for any choice of coefficients) but they do not have the same cup product structure (nor the same fundamental group).
4.45. Example. The Moore space $M(\mathbf{Z} / m, 1)=S^{1} \cup_{m} D^{2}$ has an obvious Δ-complex structure [10, Example 3.9]. The simplicial chain and cochain complexes with coefficients in \mathbf{Z} / m are

$$
0 \lessdot \mathbf{Z} / m\left\{v_{0}, v_{1}\right\} \lessdot \frac{\partial_{1}}{\leftarrow} \mathbf{Z} / m\left\{e, e_{0}, \ldots, e_{m-1}\right\} \leftarrow \frac{\partial_{2}}{} \mathbf{Z} / m\left\{T_{0}, \ldots, T_{m-1}\right\} \lessdot 0
$$

$$
0 \longrightarrow \mathbf{Z} / m\left\{v_{0}^{t}, v_{1}^{t}\right\} \xrightarrow{\partial_{1}^{t}} \mathbf{Z} / m\left\{e^{t}, e_{0}^{t}, \ldots, e_{m-1}^{t}\right\} \xrightarrow{\partial_{2}^{t}} \mathbf{Z} / m\left\{T_{0}^{t}, \ldots, T_{m-1}^{t}\right\} \longrightarrow 0
$$

where (for $m=4$)

$$
\partial_{1}=\left(\begin{array}{ccccc}
0 & -1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \quad \partial_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

We read off the homology

$$
\begin{aligned}
& H_{1}^{\Delta}(M ; \mathbf{Z} / m)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}} \cong \mathbf{Z} / m\{[e]\} \\
& H_{2}^{\Delta}(M ; \mathbf{Z} / m)=\operatorname{ker} \partial_{2}=\mathbf{Z} / m\left\{\left[T_{0}+T_{1}+T_{2}+T_{3}\right]\right\}
\end{aligned}
$$

and the cohomology groups

$$
\begin{aligned}
H_{\Delta}^{1}(M ; \mathbf{Z} / m) & =\frac{\operatorname{ker} \partial_{2}^{t}}{\operatorname{im} \partial_{1}^{t}}=\mathbf{Z} / m\left\{\left[e^{t}+e_{1}^{t}+2 e_{2}^{t}+3 e_{3}^{t}\right]\right\} \\
H_{\Delta}^{2}(M ; \mathbf{Z} / m) & =\frac{\mathbf{Z} / m\left\{T_{0}^{t}, T_{1}^{t}, T_{2}^{t}, T_{3}^{t}\right\}}{\mathbf{Z} / m\left\{T_{0}^{t}-T_{3}^{t}, T_{1}^{t}-T_{3}^{t}, T_{2}^{t}-T_{3}^{\}}\right.} \cong \mathbf{Z} / m\left\{\left[T_{0}^{t}\right]\right\}
\end{aligned}
$$

Let $\alpha=e^{t}+e_{1}^{t}+2 e_{2}^{t}+3 e_{3}^{t}$ be the generating cocycle in degree 1 and $\beta=T_{0}^{t}$ the generating cocycle in degree 2. From the table

$$
\begin{aligned}
& \left\langle T \cap \alpha_{1}, \alpha_{1}\right\rangle=\left\langle T, \alpha_{1} \cup \alpha_{1}\right\rangle=0 \quad\left\langle T \cap \beta_{1}, \alpha_{1}\right\rangle=\left\langle T, \beta_{1} \cup \alpha_{1}\right\rangle=-1 \\
& \left\langle T \cap \alpha_{1}, \beta_{1}\right\rangle=\left\langle T, \alpha_{1} \cup \beta_{1}\right\rangle=1 \quad\left\langle T \cap \beta_{1}, \beta_{1}\right\rangle=\left\langle T, \beta_{1} \cup \beta_{1}\right\rangle=0
\end{aligned}
$$

σ	$\sigma \mid\left[v_{0}, v_{1}\right]$	$\sigma \mid\left[v_{1}, v_{2}\right]$	$\alpha \cup \alpha(\sigma)$
T_{0}	e_{0}	e	0
T_{1}	e_{1}	e	1
T_{2}	e_{2}	e	2
T_{3}	e_{3}	e	3

we conclude that $\alpha \cup \alpha=T_{1}^{t}+2 T_{2}^{t}+3 T_{3}^{t} \sim(1+2+3) T_{0}^{t}=2 \beta$ when $m=4$. In general we get that the cup product is given by

$$
[\alpha] \cup[\alpha]=(1+2+\cdots+(m-1))= \begin{cases}0 & m \text { is odd } \\ \frac{m}{2}[\beta] & m \text { is even }\end{cases}
$$

because the terms $k+(m-k)=m=0$ cancel.
These examples indicate that the cohomology algebra is graded commutative and that there is a duality between homology and cohomology in complementary degrees for compact manifolds.
4.46. THEOREM (The cohomology ring is graded commutative). If R is a commutative ring then $H^{*}(X ; R)$ is graded commutative in the sense that

$$
\alpha \cup \beta=(-1)^{|\alpha||\beta|} \beta \cup \alpha
$$

for homogeneous elements α and β.
Proof. The proof is surprisingly complicated. Let ϵ_{n} denote the $\operatorname{sign}(-1)^{\frac{1}{2} n(n+1)}$ (the determinant of the linear map $\left.\mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1}:\left(x_{0}, \ldots, x_{n}\right) \rightarrow\left(x_{n}, \ldots, x_{0}\right)\right)$. Then $\epsilon_{k+\ell}=(-1)^{k \ell} \epsilon_{k} \epsilon_{\ell}$.

Define a linear map

$$
C_{n}(X) \xrightarrow{\rho} C_{n}(X), \quad \rho(\sigma)=\epsilon_{n} \bar{\sigma}
$$

where $\bar{\sigma}\left(v_{i}\right)=v_{n-i}$ is the simplex σ with vertices in the reverse order.
It turns out that ρ is a chain map chain homotopic to the identity. One considers the prism $\Delta^{n} \times I$, puts σ at the bottom Δ^{n} and $\rho(\sigma)$ at the top Δ^{n} and writes down a chain homotopy using the Δ-complex structure on $\Delta^{n} \times I$.

The dual cochain map $\rho^{*}: C^{n}(X) \rightarrow C^{n}(X)$ is also chain homotopic to the identity so that it induces the identity map on cohomology. Direct computation shows that

$$
\epsilon_{k} \epsilon_{\ell}\left(\rho^{*} \phi \cup \rho^{*} \psi\right)=\epsilon_{k+\ell} \rho^{*}(\psi \cup \phi)
$$

and this proves the theorem.

2. Orientation of manifolds

What does it mean that a manifold is orientable?
4.47. Local homology groups. Let R be a commutative domain with unit $\varepsilon: \mathbf{Z} \rightarrow R$. The most important examples will be $R=\mathbf{Z}$ and $R=\mathbf{F}_{2}$. Let also X be a space and $A \subset X$ a subspace. The local homology group is

$$
H_{k}(X \mid A ; R)=H_{k}(X, X-A ; R)
$$

and if $A_{1} \subset A_{2}$, the restriction homomorphism $r_{A_{1}}^{A_{2}}: H_{k}\left(X \mid A_{2} ; R\right) \rightarrow H_{k}\left(X \mid A_{1} ; R\right)$ is the homomorphism (in the opposite direction of the inclusion) induced from the inclusion $\left(X, X-A_{2}\right) \subset\left(X, X-A_{1}\right)$. In particular, there is a restriction homomorphism $r_{A}^{X}: H_{k}(X)=H_{k}(X \mid X ; R) \rightarrow H_{k}(X \mid A ; R)$ for all subspaces A of X. The most important coefficients rings will be $R=\mathbf{Z}$ and $R=\mathbf{F}_{2}$.

The groups are said to be local because they only depend on a neighborhood of A.
4.48. Lemma. Let $A \subset X$ be a pair of spaces and R a commutative ring.
(1) $H_{k}(U \mid A ; R) \cong H_{k}(X \mid A ; R)$ if $A \subset \operatorname{cl} A \subset \operatorname{int} U \subset U$.
(2) If $f: X \rightarrow Y$ is injective on some open neighborhood of cl A then there is an induced map $f_{*}: H_{k}(X \mid A ; R) \rightarrow H_{k}(Y \mid B$ where $f(A)=B$.

Proof. (1) Since $X-\operatorname{int} U=\operatorname{cl}(X-U) \subset \operatorname{int}(X-A)=X-\operatorname{cl} A$ we can excise $X-\operatorname{int} U$ from $(X, X-A)$.
(2) Suppose that U is some open neighborhood of $\operatorname{cl} A$ such that the restriction of f to U is injective. Then $f \mid U$ takes A into $B=f(A)$ and $X-U$ to $Y-B$. Define $f_{*}: H_{k}(X \mid A) \rightarrow H_{k}(Y \mid B)$ as $H_{k}(X \mid A) \lessdot \cong H_{k}(U \mid A) \xrightarrow{(f \mid U)_{*}} H_{k}(Y \mid B)$. This might depend on the choice of U. Let U_{1} and U_{2} be open neighborhoods of $\mathrm{cl} A$ such that the restrictions of f to U_{1} and U_{2} are injective. From the commutative diagram

we see that the definition is unambiguous.
Let now M be a topological n-manifold. Since M is locally euclidian, $H_{n}(M \mid x ; R) \cong H_{n}\left(\mathbf{R}^{n} \mid x ; R\right) \cong$ $\widetilde{H}_{n-1}\left(\mathbf{R}^{n}-x ; R\right) \cong \widetilde{H}_{n-1}\left(S^{n-1} ; R\right) \cong R$ for all points $x \in M$.
4.49. Lemma (Local continuation). Suppose that $x \in B \subset \mathbf{R}^{n} \subset M$ where $\mathbf{R}^{n}, n>0$, is coordinate neighborhood of x and B is an open disc (ball) in that coordinate neighborhood (so that cl $B \subset \mathbf{R}^{n}$). Then the restriction homomorphism

$$
r_{x}^{B}: H_{n}(M \mid B ; R) \rightarrow H_{n}(M \mid x ; R)
$$

is an isomorphism and both homology groups are free R-modules of rank one.
Proof. By locality we can assume that $M=\mathbf{R}^{n}$ for $H_{n}(M \mid B) \cong H_{n}\left(\mathbf{R}^{n} \mid B\right)$ and $H_{n}(M \mid x) \cong H_{n}\left(\mathbf{R}^{n} \mid x\right)$ (4.49). In that case, since \mathbf{R}^{n} is contractible,

$$
\begin{aligned}
& H_{n}\left(\mathbf{R}^{n} \mid B\right)=H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-B\right) \cong \widetilde{H}_{n-1}\left(\mathbf{R}^{n}-B\right) \\
& H_{n}\left(\mathbf{R}^{n} \mid x\right)=H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-x\right) \cong \widetilde{H}_{n-1}\left(\mathbf{R}^{n}-x\right)
\end{aligned}
$$

where $\mathbf{R}^{n}-x$ contains $\mathbf{R}^{n}-B$ contains S^{n-1} as a deformation retract.
4.50. The orientation covering. We construct a covering space of M by placing the local homology group above each point (similar to the construction of the tangent bundle of a smooth manifold). Define the set

$$
M_{R}=\coprod_{x \in M} H_{n}(M \mid x ; R)
$$

to be the disjoint union of the local homology groups and define $p: M_{R} \rightarrow M$ to be the map that sends $H_{n}(M \mid x ; R) \subset M_{R}$ to $x \in M$. The set M_{R} has a local product structure that we use to define a topology on M_{R}. For each open disc contained in a coordinate neighborhood $B \subset \mathbf{R}^{n} \subset M$ there is a bijection (4.49)

$$
\begin{equation*}
B \times H_{n}(M \mid B ; R) \xrightarrow{r} p^{-1}(B)=M_{R} \mid B=\coprod_{y \in B} H_{n}(M \mid y ; R), \quad r(y, \mu)=\left(y, r_{y}^{B} \mu\right) \tag{4.51}
\end{equation*}
$$

that we declare to be a homeomorphism (where $H_{n}(M \mid B ; R)$ has the discrete topology). This makes $p: M_{R} \rightarrow M$ a covering map by design. It is clear that M_{R} is again a manifold since any local homeomorphism $\mathbf{R}^{n} \hookrightarrow M$ lifts to a unique local homeomorphism

once the value $\widetilde{h}(x)$ is specified. (Any covering space of a manifold is a manifold.) Orientability is the question of whether M_{R} globally is a product.

For each path homotopy class $\omega: x_{0} \rightarrow x_{1}$ let $\cdot \omega: H_{n}\left(M \mid x_{0} ; R\right) \rightarrow H_{n}\left(M \mid x_{1} ; R\right)$ be the map defined by unique path lifting. This means that $\mu_{0} \cdot \omega=\mu_{1}$ if there exist $\mu_{t} \in H_{n}(M \mid \omega(t) ; R)$ that are consistent in the sense that $\mu_{t}=r_{\omega(t)}^{B} \mu_{B}$ for some $\mu_{B} \in H_{n}(M \mid B ; R)$ for all t such that $\omega(t)$ lies in the ball B.
4.53. Lemma. $\cdot \omega: H_{n}\left(M \mid x_{0} ; R\right) \rightarrow H_{n}\left(M \mid x_{1} ; R\right)$ is an isomorphism of right R-modules.

Proof. We have $(\mu+\nu) \cdot \omega=\mu \cdot \omega+\nu \cdot \omega$ because fibrewise addition of two lifts of ω is a lift of ω, and we have $(\mu r) \cdot \omega=(\mu \cdot \omega) r$ since the scalar multiplication of a lift of ω is another lift of ω.

The unit $\varepsilon: \mathbf{Z} \rightarrow R$ induces a natural group homomorphism $\varepsilon: H_{n}(M \mid B ; \mathbf{Z}) \rightarrow H_{n}(M \mid B ; R)$ of local homology groups and hence a morphism

of covering spaces. The restriction to the fibre over $x, \varepsilon_{*}: H_{n}(M \mid x ; \mathbf{Z}) \rightarrow H_{n}(M \mid x ; R)$ is then a morphism of right $\pi_{1}(M, x)$-sets.

Figure 4. An orientation reversing loop on the Möbius band
Since $\operatorname{Aut}_{\mathbf{Z}}\left(H_{n}(M \mid x ; \mathbf{Z})\right)=\{ \pm 1\}$, the action of $\pi_{1}(M, x)$ on $H_{n}(M \mid x ; \mathbf{Z})$ is given by $\nu \cdot \omega=\nu(\pm 1)=\nu \theta(\omega)$ for some group homomorphism $\theta: \pi_{1}(M, x) \rightarrow\{ \pm 1\}=\mathbf{Z}^{\times}$. As the group homomorphism $\varepsilon_{*}: H_{n}(M \mid x ; \mathbf{Z}) \rightarrow H_{n}(M \mid x ; R)$ is a morphism of right $\pi_{1}(M, x)$-sets, we also have that $\nu \cdot \omega=\nu \theta(\omega)$ for all $\nu \in H_{n}(M \mid x ; R)$. (The action of ω on $H_{n}(M \mid x ; R)$ is multiplication by some unit of R so the action is known when it is known what it does to just one element, for instance an element coming form $H_{n}(M \mid x ; \mathbf{Z})$.) Recall from covering space theory that if M is connected the covering map $M_{R} \rightarrow M$ is completely determined by the right $\pi_{1}(M, x)$-module $H_{n}(M \mid x ; R)$.
4.54. Local and global orientations. An element μ of a right R-module H is a generator of H if the submodule μR is all of H. If H is free on the generator μ, then any element of H is of the form μr for a unique $r \in R$ and then $R \rightarrow \operatorname{End}_{R}(H): r \rightarrow(h \rightarrow h r)$ is a ring isomorphism. In particular, $R^{\times} \cong \operatorname{Aut}_{R}(H)$.
4.55. Definition. A local R-orientation at $x \in M$ is a generator μ_{x} for $H_{n}(M \mid x ; R)$. An R-orientation for M is a section $\mu: M \rightarrow M_{R}$ such that $\mu(x)$ is a local R-orientation at all points $x \in M$. A manifold is R-orientable if it has an R-orientation.

By the definition of the topology on M_{R} this means that an R-orientation for M is a function $x \rightarrow \mu_{x}$ that assigns a local R-orientation to each point $x \in M$ such that for all open discs $B \subset \mathbf{R}^{n} \subset M$ there is a generator $\mu_{B} \in H_{n}(M \mid B ; R)$ such that $r_{x}^{B}\left(\mu_{B}\right)=\mu_{x}$ for all points $x \in B$. (We say that the choice of local orientations is consistent.) When the ring is not specified it is understood that $R=\mathbf{Z}$: " M is orientable" means " M is \mathbf{Z}-orientable".

Can you compute the monodromy action for $M=\mathrm{MB}$, the (open) Möbius band (imagine a person walking head up along the core circle of the band), and $M=\mathbf{R} P^{2}$?
4.56. Proposition. Assume that the manifold M is connected. Then the following are equivalent:
(1) M is R-orientable
(2) The monodromy action $\pi_{1}(M, x) \xrightarrow{\theta}\{ \pm 1\} \rightarrow R^{\times}$is the trivial homomorphism
(3) The orientation covering M_{R} is isomorphic to the trivial covering $M \times R \rightarrow M$

If the fundamental group $\pi_{1}(M)$ contains no index 2 subgroups (eg if M is simply connected) then M is orientable. If M is orientable then it has exactly two orientations. If M is orientable then M is R-orientable for all R, and if M is nonorientable then M is R orientable iff $-1=1$ in R. All connected manifolds are \mathbf{F}_{2}-orientable. Any open submanifold of an oriented manifold is oriented.

Proof. If $\mu: M \rightarrow M_{R}$ is an orientation for M then the map $M \times R \rightarrow M_{R}$ given by $(x, r) \rightarrow \mu(x) r$ is a trivialization. This explains (1) $\Longleftrightarrow(3)$. Let $\Gamma\left(M_{R} \rightarrow M\right)$ denote the R-module of sections of the covering map $M_{R} \rightarrow M$. According to Classification of covering maps evaluation at x is a bijection (and an R-module homomorphism)

$$
\Gamma\left(M_{R} \rightarrow M\right) \stackrel{\cong}{\rightrightarrows} H_{n}(M \mid x ; R)^{\pi_{1}(M, x)}
$$

Using this we see that

$$
\begin{aligned}
M \text { is } R \text {-orientable } \Longleftrightarrow & M_{R}=M \times R \rightarrow M \Longleftrightarrow \\
& H_{n}(M \mid x ; R)^{\pi_{1}(M, x)}=\Gamma\left(M_{R} \rightarrow M\right)=H_{n}(M \mid x ; R) \Longleftrightarrow \\
& \pi_{1}(M, x) \text { acts trivially on } H_{n}(M \mid x ; R) \Longleftrightarrow \pi_{1}(M, x) \xrightarrow{\theta}\{ \pm 1\} \rightarrow R^{\times} \text {is trivial }
\end{aligned}
$$

If the fundamental group $\pi_{1}(M)$ contains no index 2 subgroups then θ is trivial since otherwise the kernel would be an index 2-subgroup. If $U \subset M$ is an open submanifold then $U_{R}=M_{R} \mid U$ is trivial if M_{R} is trivial.

For instance, any surface that contains a Möbius band is nonorientable.
4.57. Theorem (Orientations along compact subspaces). Let M be a an n-manifold and $A \subset M a$ compact subspace. Then
(1) $H_{>n}(M \mid A ; R)=0$
(2) For any section $\alpha: M \rightarrow M_{R}$ there exists

a unique class $\alpha_{A} \in H_{n}(M \mid A ; R)$ such that $(\alpha \mid A)(x)=r_{x}^{A} \alpha_{A}$ for all $x \in A$.
The proof of this important theorem is divided into several steps.
4.58. Lemma. If Theorem 4.57 is true for the compact subsets A, B and $A \cap B$ of M then it also true for $A \cup B$.

Proof. Use the relative Mayer-Vietoris sequence [10, p 237]

$$
\begin{aligned}
& \cdots \rightarrow H_{i+1}(M \mid A \cap B) \rightarrow \\
& \qquad H_{i}(M \mid A \cup B) \xrightarrow{\left(r_{A}^{A \cup B}, r_{B}^{A \cup B}\right)} H_{i}(M \mid A) \oplus H_{i}(M \mid B) \xrightarrow{r_{A \cap B}^{A}-r_{A \cap B}^{B}} H_{i}(M \mid A \cap B) \rightarrow \cdots
\end{aligned}
$$

for the pairs $(M, M-A)$ and $(M, M-B)$ where $(M,(M-A) \cap(M-B))=(M, M-(A \cup B))$ and $(M,(M-A) \cup(M-B))=(M, M-(A \cap B))$.
4.59. Lemma. Theorem 4.57 is true when $M=\mathbf{R}^{n}$.

Proof. To get the existence part (2) place A inside a (large) ball B. By continuity of the section α of the covering $\mathbf{R}_{R}^{n} \rightarrow \mathbf{R}^{n}$, there is a class $\alpha_{B} \in H_{n}\left(\mathbf{R}^{n} \mid B\right)$ such that $r_{x}^{B} \alpha_{B}=\alpha_{x}$ for all $x \in B$. Let $\alpha_{A}=r_{A}^{B} \alpha_{A}$ be the restriction of α_{B} to A.

To prove the rest of the theorem, assume first that $A \subset \mathbf{R}^{n}$ is compact and convex. Let x be any point of A. Since both $\mathbf{R}^{n}-A$ and $\mathbf{R}^{n}-x$ deformation retracts onto a (large) sphere centered at x, restriction $H_{i}\left(\mathbf{R}^{n} \mid A\right) \rightarrow H_{i}\left(\mathbf{R}^{n} \mid x\right)$ is an isomorphism just as in 4.49. This implies (1) and the uniqueness part of (2). By 4.58 and induction, the theorem is true for any finite union of compact convex subsets.

Finally, let $A \subset \mathbf{R}^{n}$ be an arbitrary compact subset. Consider a local homology class $\zeta_{A}=[z] \in$ $H_{i}\left(\mathbf{R}^{n} \mid A\right)=H_{i}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-A\right)$ represented by a relative cycle $z \in \mathbf{C}_{n}(X)$ with $\partial z \in C_{i-1}\left(\mathbf{R}^{n}-A\right)$. The support $|\partial z|$ of ∂z is a compact set disjoint from the compact set A. There is a compact set B such that
B is a finite union of closed balls centered at points in A, B contains A, and B is disjoint from $|\partial z|$. Let $\zeta_{B} \in H_{i}\left(\mathbf{R}^{n} \mid B\right)$ be the homology class represented by the relative cycle z. Since ζ_{B} restricts to ζ_{A} and the theorem is true for B it is also true for A : If $i>n, \zeta_{B}=0$ so also $\zeta_{A}=0$. Assume that $i=n$ and that ζ_{A} restricts to 0 at all $x \in A$. Let y be any point in B. Then y lies in a closed ball centered at a point $x \in A$. Let S be the boundary sphere of the closed ball containing x and y. The commutative diagram

shows that ζ_{B} restrict to 0 at y. Thus $\zeta_{B}=0$ and then also $\zeta_{A}=0$.
Proof of Theorem 4.57. By 4.59, the theorem is true for any compact set $A \subset M$ contained in a coordinate neighborhood. By 4.58 it is also true for any finite union of such sets. But any compact subset of M has this form.
4.60. Corollary. Let M be a connected compact n-manifold and x a point in M. Then
(1) $H_{>n}(M ; R)=0$
(2) Restriction is an isomorphism

$$
H_{n}(M ; R) \xrightarrow{r_{x}^{M}} H_{n}(M \mid x ; R)^{\pi_{1}(M, x)} \cong \begin{cases}R & M \text { is } R \text {-orientable } \\ { }_{2} R & M \text { is not } R \text {-orientable }\end{cases}
$$

Proof. (1) Take $K=M$ in 4.57 and remember that $H_{k}(M \mid M ; R)=H_{k}(M ; R)$.
(2) Recall that $\Gamma\left(M_{R} \rightarrow M\right)$ stands for the module of sections of the covering $M_{R} \rightarrow M$. Consider the homomorphisms

$$
H_{n}(M ; R) \rightarrow \Gamma\left(M_{R} \rightarrow M\right) \rightarrow H_{n}(M \mid x ; R)^{\pi_{1}(M, x)}
$$

where the first map takes $\alpha \in H_{n}(M ; R)$ to the section $y \rightarrow r_{y}^{M} \alpha$ and the second map is evaluation at $x \in M$. The composition of these two maps is r_{x}^{M}. According to Theorem 4.57 with $K=M$ the first map is bijective. We already noted that also the second map is bijective by covering space theory. If M is R-orientable, $\pi_{1}(M, x)$ acts trivially; if not, $H_{n}(M \mid x ; R)^{\pi_{1}(M, x)}=H_{n}(M \mid x ; R)^{\{ \pm 1\}}=R^{\{ \pm 1\}}=\{r \in R \mid 2 r=0\}$.

The corollary says that in a compact manifold a local orientation extends to a global orientation if and only if it is invariant under all loops. Any such invariant local orientation $\mu_{x} \in H_{n}(M \mid x ; R)$ extends uniquely to a global R-orientation class $[M]=\mu_{M} \in H_{n}(M ; R)$ with $r_{x}^{M}[M]=\mu_{x}$.

For a noncompact R-oriented manifold there is not a single R-orientation class but rather a system of R-orientation classes $\mu_{K} \in H_{n}(M \mid K ; R)$ along the compact subsets of M agreeing under restriction homomorphisms.
4.61. The oriented cover of a nonorientable manifold. All the nonorientable manifolds that we know have the form $M=\widetilde{M} /\{ \pm 1\}$ for some orientable manifold \widetilde{M}. This is no coincidence: All nonorientable manifolds have this form!

Let M be any manifold and let $\widetilde{M} \subset M_{\mathbf{Z}}$ be the double covering space of M consisting of the two generators in each fibre, $H_{n}(M \mid x ; \mathbf{Z})$, of $M_{\mathbf{Z}} \rightarrow M$.
4.62. Proposition. The manifold \widetilde{M} is orientable. If M is connected and orientable, $\widetilde{M} \rightarrow M$ is the trivial double covering space. If M is connected and nonorientable, $\widetilde{M} \rightarrow M$ is the unique double covering space with connected and orientable total space.

Proof. Let $\mu_{x} \in H_{n}(M \mid x ; \mathbf{Z})$ be a generator. Using the isomorphism $H_{n}\left(\widetilde{M} \mid \mu_{x}\right) \rightarrow H_{n}(M \mid x)$ (4.48) induced by the covering map $\widetilde{M} \rightarrow M$ we get a trivialization

$$
\widetilde{M} \times \mathbf{Z} \rightarrow \widetilde{M}_{\mathbf{Z}}:\left(\mu_{x}, z\right) \rightarrow \mu_{x} z \in H_{n}(M \mid x) \cong H_{n}\left(\widetilde{M} \mid \mu_{x}\right)
$$

and therefore the manifold \widetilde{M} is orientable (4.56).

If M connected and orientable, $M_{\mathbf{Z}}=M \times \mathbf{Z} \rightarrow M$ is the trivial covering space so $\widetilde{M}=M \times\{ \pm 1\} \subset M_{\mathbf{Z}}$ is also trivial. If M connected and nonorientable, \widetilde{M} is connected since the action of $\pi_{1}(M, x)$ on the generator set of $H_{n}(M \mid x ; \mathbf{Z})$ is transitive and we know from covering space theory that the set of components of \widetilde{M} is the set of orbits for the $\pi_{1}(M, x)$ action on the fibre. Suppose that $\widetilde{M} \rightarrow M$ is an orientable connected double cover. Then $\pi_{1}(\widetilde{M}) \subset \operatorname{ker} \theta \subset \pi_{1}(M)$ so that in fact $\pi_{1}(\widetilde{M})=\operatorname{ker} \theta$ since both subgroups have index two.
4.63. Example. The orientable surface M_{g} is orientable because $H_{2}\left(M_{g} ; \mathbf{Z}\right) \cong \mathbf{Z}$ and the nonorientable surface N_{g} is nonorientable because $H_{2}\left(M_{g} ; \mathbf{Z}\right)=0(1.74)$. The orientation cover of the nonorientable surface N_{g+1} is M_{g} (because $2 \chi\left(N_{g+1}\right)=2(2-(g+1))=2-2 g=\chi\left(M_{g}\right)$.

The orientation cover $M_{g} \rightarrow N_{g+1}$ arises just as $\mathbf{R} P^{2}$ comes from S^{2} : Embed M_{g} symmetrically around $(0,0,0)$ in \mathbf{R}^{3} such that there is an antipodal ± 1-action on $M_{g} \subset \mathbf{R}^{3}$. The quotient space is a surface; it contains a Möbius band so it is nonorientable, and it has Euler characteristic $\frac{1}{2} \chi\left(M_{g}\right)=\chi\left(N_{g+1}\right)$ so it must be $M_{g} /\{ \pm 1\}=N_{g+1}$.

The antipodal map of $S^{n}, x \rightarrow-x$, is orientation preserving iff n is odd so that

$$
\{ \pm 1\} \backslash S^{n}=\mathbf{R} P^{n} \text { is orientable } \Longleftrightarrow n \text { is odd }
$$

The homeomorphism $(x, t) \rightarrow(-x,-t)$ of $S^{n} \times \mathbf{R}$ is orientation preserving iff n is even so that

$$
\{ \pm 1\} \backslash\left(S^{n} \times \mathbf{R}\right) \text { is orientable } \Longleftrightarrow n \text { is even }
$$

For $n=1$ we obtain the nonorientable Möbius band and for odd $n>1$ we obtain a higher dimensional analogs (aka the tautological line bundle over $\mathbf{R} P^{n}$). For compact versions one could replace \mathbf{R} by S^{1} (or S^{m}) and obtain higher dimensional anlogs of the Klein bottle.

The covering maps $S^{2 n} \rightarrow S^{2 n} /\{ \pm 1\}=\mathbf{R} P^{2 n}$ and of $S^{2 n+1} \times \mathbf{R} \rightarrow\{ \pm 1\} \backslash\left(S^{2 n+1} \times \mathbf{R}\right)$ are the orientation coverings.
4.64. Exercise. Show that any local homeomorphism $f: M \rightarrow N$ between manifolds lifts to a map of covering spaces $f_{*}: M_{\mathbf{Z}} \rightarrow N_{\mathbf{Z}}$ so that $f^{*} M_{\mathbf{Z}}=N_{\mathbf{Z}}$. Apply this to the double covering map $\widetilde{M} \rightarrow M$ and show again that \widetilde{M} is orientable.

3. Poincaré duality for compact manifolds

We first state the Poincaré duality theorem for closed (compact with no boundary) manifolds. We later state and prove Poincaré duality for not necessarily compact manifolds.
4.65. Theorem. Let M be a compact, connected R-oriented n-dimensional manifold. Cap product with the orientation class $[M] \in H_{n}(M ; R)$

$$
\mathrm{PD}: H^{k}(M ; R) \rightarrow H_{n-k}(M ; R), \quad \operatorname{PD}(\alpha)=[M] \cap \alpha
$$

is an isomorphism.
4.66. TheOrem. The cohomology algebras for finite dimensional projective spaces are

$$
\begin{array}{ll}
H^{*}\left(\mathbf{R} P^{n} ; \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}[\alpha] /\left(\alpha^{n+1}\right), & |\alpha|=1 \\
H^{*}\left(\mathbf{C} P^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}[\alpha] /\left(\alpha^{n+1}\right), & |\alpha|=2 \\
H^{*}\left(\mathbf{H} P^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}[\alpha] /\left(\alpha^{n+1}\right), & |\alpha|=4
\end{array}
$$

The cohomology of the infinite projective spaces are the corresponding polynomial algebas.
Proof. The manifolds $\mathbf{C} P^{n}$ and $\mathbf{H} P^{n}(1.79)$ are orientable (they are simply connected) and the manifold $\mathbf{R} P^{n}(1.77)$ is \mathbf{F}_{2}-orientable. We shall here take the case of $\mathbf{C} P^{n}$ (the two other cases are similar). Let $\alpha \in H^{2}\left(\mathbf{C} P^{n} ; \mathbf{Z}\right) \cong \mathbf{Z}$ be a generator. The claim is that α^{i} generates $H^{2 i}\left(\mathbf{C} P^{n} ; \mathbf{Z}\right)$ when $1 \leq i \leq n$. It is enough to prove that α^{n} generates $H^{2 n}\left(\mathbf{C} P^{n} ; \mathbf{Z}\right)$ (for if α^{i} is divisible by some natural number $k>1$ then α^{n} is also divisible by k). This is certainly true when $n=1$. Assume, inductively, that the claim holds for $\mathbf{C} P^{n-1}$. We evaluate α^{n} on the orientation class $\left[\mathbf{C} P^{n}\right]$ and find that

$$
\left\langle\left[\mathbf{C} P^{n}\right], \alpha^{n}\right\rangle=\left\langle\left[\mathbf{C} P^{n}\right], \alpha \cup \alpha^{n-1}\right\rangle=\left\langle\left[\mathbf{C} P^{n}\right] \cap \alpha, \alpha^{n-1}\right\rangle= \pm 1
$$

for, by Poincaré duality (4.65), $\left[\mathbf{C} P^{n}\right] \cap \alpha$ generates $H_{2 n-2}\left(\mathbf{C} P^{n}\right)$ and by induction hypothesis α^{n-1} generates $H^{2 n-2}\left(\mathbf{C} P^{n-1}\right)=H^{2 n-2}\left(\mathbf{C} P^{n}\right)=\operatorname{Hom}\left(H_{2 n-2}\left(\mathbf{C} P^{n}\right), \mathbf{Z}\right)$. But then α^{n} must be a generator of $H^{2 n}\left(\mathbf{C} P^{n}\right)=$ $\operatorname{Hom}\left(H_{2 n}\left(\mathbf{C} P^{n}\right), \mathbf{Z}\right)$.
4.67. ThEOREM. The cohomology algebra for the lens space $L^{2 n+1}(m)(1.81)$ with coefficients in the ring \mathbf{Z} / m is

$$
H^{*}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)= \begin{cases}\mathbf{Z} / m[\alpha, \beta] /\left(\alpha^{2}, \beta^{n+1}\right) & m \text { is odd } \\ \mathbf{Z} / m[\alpha, \beta] /\left(\alpha^{2}-\frac{m}{2} \beta, \beta^{n+1}\right) & m \text { is even }\end{cases}
$$

where the generators have degrees $|\alpha|=1$ and $|\beta|=2$.
Proof. The cellular cochain complex with \mathbf{Z} / m-coefficients $(4.34,1.81)$ for the lense space tells us that $H^{i}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)=\mathbf{Z} / m$ for $0 \leq i \leq m$. Let $\alpha \in H^{1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$ be 1-dimensional and $\beta \in H^{2}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$ a 2-dimensional generator. From simplicial computations (4.45) in the 2-skeleton $M(\mathbf{Z} / m, 1)=S^{1} \cup_{m} D^{2}$ of $L^{2 n+1}(m)$ we know that we may choose β such that $\alpha^{2}=\frac{m}{2} \beta$ when m is even. When m is odd $\alpha^{2}=0$ by graded commutativity (4.46). If course, $\beta^{n+1}=0$ for dimensional reasons. We claim that $\beta^{i} \alpha^{j}$ generates $H^{2 i+j}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$ when $2 i+j \leq 2 n+1$ and $j=0,1$. It is enough to show that $\beta^{n} \alpha$ generates $H^{2 n+1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$. The lense space $L^{2 n+1}(m)$ is orientable (4.60), hence \mathbf{Z} / m-orientable (4.56), as $H_{2 n+1}\left(L^{2 n+1}(m)\right)=\mathbf{Z}(1.81)$. We evaluate this cohomology class on the orientation class and find that

$$
\left\langle[L], \beta^{n} \alpha\right\rangle=\left\langle[L] \cap \beta, \beta^{n-1} \alpha\right\rangle
$$

is a unit in \mathbf{Z} / m : By Poincaré duality (4.65), $[L] \cap \beta$ generates $H_{2 n-1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$, and by induction hypothesis $\alpha \beta^{n-1}$ generates $H^{2 n-1}\left(L^{2 n-1}(m) ; \mathbf{Z} / m\right) \cong H^{2 n-1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$ which is isomorphic to the dual group $\operatorname{Hom}\left(H_{2 n-1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right), \mathbf{Z} / m\right)$. But then $\beta^{n} \alpha$ must generate $H^{2 n+1}\left(L^{2 n+1}(m) ; \mathbf{Z} / m\right)$.

When p is a prime number

$$
H^{*}\left(L^{\infty}(p) ; \mathbf{F}_{p}\right)= \begin{cases}\mathbf{F}_{2}[\alpha] & p=2 \\ E(\alpha) \otimes \mathbf{F}_{p}[\beta] & p>2\end{cases}
$$

where $|\alpha|=1$ and $|\beta|=2$.
4.68. Connection with cup product. When M is a compact, connected, R-oriented n-manifold there is a commutative diagram

which says that Poincaré duality translates the cup product of two classes, $\alpha \in H^{i}(M ; R)$ and $\beta \in H^{n-i}(M ; R)$, in complementary dimensions, into the evaluation homomorphism

$$
H_{n-i}(M ; R) \times H^{n-i}(M ; R) \xrightarrow{\cap} H_{0}(X ; R) \xrightarrow[\cong]{\cong} R
$$

of the bottom line. So when this evaluation pairing is a duality pairing, eg if R is a field, also cup product is an evaluation pairing. The reason is simply that

$$
\operatorname{PD}(\alpha \cup \beta)=[M] \cap(\alpha \cup \beta)=([M] \cap \alpha) \cap \beta=\operatorname{PD}(\alpha) \cap \beta=\langle\operatorname{PD}(\alpha), \beta\rangle
$$

because $H_{*}(M ; R)$ is a right $H^{*}(M ; R)$-module (4.29).
The signature of a compact, connected, R-oriented manifold of dimension $4 k$ is the signature of the symmetric bilinear cup product form on $H^{2 k}(M ; \mathbf{R})$.

4. Colimits of modules

4.69. Definition. A (right) directed set is a partially ordered nonempty set J with the property that for any pair of elements $i, j \in J$ there is a third element $k \in J$ such that both $i \leq k$ and $j \leq k$. A directed system of R-modules over the directed set J is a functor M from J into the category of R-modules.

The colimit of a directed system M of R-modules is an R-module L with R-module homomorphisms $f_{i}: M_{i} \rightarrow L$ such that

commutes and such that for any other R-module A with homomorphisms $a_{i}: M_{i} \rightarrow A$ such that $a_{j} M_{i<j}=a_{i}$ there is a unique R-module homomorphism $L \rightarrow A$ such that

commutes.
The colimit of the directed system M is the universal example of a constant system with a map from M. In particular, the colimit of the constant functor is the value of the functor.
4.71. Theorem (Existence and uniqueness of colim). Any directed system M of R-modules has a colimit, unique up to isomorphism.

Proof. Let L be the quotient of $\bigoplus_{i \in I} M_{i}$ by the the submodule generated by all elements of the form $x_{i}-M_{i<j} x_{i}$ for $i \leq j$ and $x_{i} \in M_{i}$. One can verify that this works.

The colimit of the system M is denoted colim M. From the above explicit construction of the colimit we get:
4.72. Corollary (Recognition principle). The map colim $M \rightarrow A$ arising from the universal property (4.70) is an isomorphism if and only if
(1) Every $a \in A$ we can find $i \in I$ and $x_{i} \in M_{i}$ such that $a=f_{i} x_{i}$
(2) If $a_{i} x_{i}=0$ for some $i \in I$ and $x_{i} \in M_{i}$ then $M_{i<j} x_{i}=0$ for some $j>i$.
4.73. Theorem (colim is an exact functor from the category of J-directed R-modules to R-modules). [2] If A, B, and C are directed systems of R-modules and $A \rightarrow B \rightarrow C$ are morphisms of J-directed systems such that $0 \rightarrow A_{j} \rightarrow B_{j} \rightarrow C_{j} \rightarrow 0$ is exact for each $j \in J$ then the limit sequence $0 \rightarrow \operatorname{colim} A_{j} \rightarrow \operatorname{colim} B_{j} \rightarrow$ $\operatorname{colim} C_{j} \rightarrow 0$ is also exact.

Proof. Verify the theorem using the explicit defintion of the colimit.
4.74. Example (Colimits over \mathbf{N}). If the directed set is the natural numbers \mathbf{N}, a directed set is a sequence of R-modules $M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{n} \rightarrow M_{n+1} \rightarrow \cdots$. If the maps are inclusions, then colim $M_{n}=$ $\bigcup_{n \in \mathbf{N}} M_{n}$. If $M_{n}=\mathbf{Z} \xrightarrow{\cdot p} \mathbf{Z}=M_{n+1}$ for all n, then $\operatorname{colim}_{n \in \mathbf{N}} M_{n}=\mathbf{Z}[1 / p]$ with maps $f_{n}: \mathbf{Z} \rightarrow \mathbf{Z}[1 / p]$ given by $f_{n}(1)=p^{-n}$.

The commutative diagram

shows a short exact sequences of direct systems of \mathbf{N}. Let $\mathbf{Z} / p^{\infty}=\bigcup \mathbf{Z} / p^{n}$ denote the limit of the third system of inclusions. The short exact sequence

$$
0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Z}[1 / p] \rightarrow \mathbf{Z} / p^{\infty} \rightarrow 0
$$

shows that $\mathbf{Z} / p^{\infty}=\mathbf{Z}[1 / p] / \mathbf{Z}$.
If $e: M \rightarrow M$ is an idempotent, $e \circ e=e$, then the colimit over \mathbf{N} of the system $M \xrightarrow{e} M \xrightarrow{e} M \rightarrow \cdots$ is $e M$. This follows directly from the definition or from the short exact sequence

of directed systems since colim is exact.
If I is a sub-directed set of J then the universal property for the colimit gives a map $\operatorname{colim}_{I} M \mid I \rightarrow$ $\operatorname{colim}_{J} M$ from the colimit of the small set to the colimit over the large set. More generally, if $g: I \rightarrow J$ is a map of directed sets and M is a J-directed system of R-modules, $g^{*} M$, with $\left(g^{*} M\right)_{i}=M_{g(i)}$ is an I-directed system of R-modules and the universal property produces a map $\operatorname{colim}_{I} g^{*} M \rightarrow \operatorname{colim}_{J} M$.
4.75. Corollary. The map $\operatorname{colim}_{I} g^{*} M \rightarrow \operatorname{colim}_{J} M$ is an isomorphism of R-modules if the map g is cofinal in the sense that for every $j \in J$ there is an $i \in I$ such that $j \leq g(i)$.

In particular, if $I \subset J$ then $\operatorname{colim}_{I} M \mid I \xrightarrow{\cong} \operatorname{colim}_{J} M$ when I is cofinal in J. In the extreme case, if I has a largest element m (with $i \leq m$ for all $i \in I$), then $M_{m} \rightarrow \operatorname{colim}_{I} M$ is an isomorphism.
4.76. Lemma (Iterated colimits). Let $J=\bigcup_{I \in \mathcal{I}} I$ be a directed set that is the union of a collection $\mathcal{I}=\{I\}$, directed under inclusion, of sub-directed sets $I \subset J$. Then the map

$$
\operatorname{colim}_{\mathcal{I}} \operatorname{colim}_{I} M \mid I \rightarrow \operatorname{colim}_{J} M
$$

is an isomorphism for any J-directed system M of R-modules.
Proof. If I_{1} and I_{2} belong to the collection \mathcal{I} and $I_{1} \subset I_{1} \subset J$ by the universal property for colimits (4.70) there are maps

that induce the map of the lemma by the universal property again. This corresponds to the isomorphism $\bigoplus_{I \in \mathcal{I}} \bigoplus_{i \in I} M_{i}=\bigoplus_{j \in J} M_{j}$. The map is clearly surjective. Suppose that $x_{i} \in M_{i}$ where $i \in I \subset J$ and that $x_{i}=0$ in $\operatorname{colim}_{J} M$. Then we can find $j \geq i$ such that $j \in I_{2} \supset I_{1}$ and $M_{i<j} x_{i}=0$. This means that the image of x_{i} in colim $M \mid I_{2}$ is zero. This shows that the map is an isomorphism (4.72).
4.77. Colimits of chain complexes. A J-directed system of chain complexes is a functor from the directed set J to the category of chain complexes. If $C^{j}, j \in J$, is a directed system of chain complexes of R-modules, then colim C^{j} denotes the chain complex which in degree q is $\left(\operatorname{colim} C^{j}\right)_{q}=\operatorname{colim}\left(C_{q}^{j}\right)$.
4.78. Corollary (Homology commutes with direct limits of directed systems of chain complexes). If C^{j} is a directed system of chain complexes then the map colim $H_{q}\left(C^{j}\right) \xrightarrow{\cong} H_{q}\left(\operatorname{colim} C^{j}\right)$, induced from $C^{j} \rightarrow \operatorname{colim} C^{j}$, is an isomorphism.

Proof. Apply the exact functor colim to the commuative diagram of directed systems of R-modules

with exact row and columns and obtain the commutative diagram of R-modules

with exact row and columns. We read off that the kernel and the image of the boundary map colim ∂_{i} of the chain complex colim C^{j} are colim Z_{i} and colim B_{i} so that

$$
H_{q}\left(\operatorname{colim} C^{j}\right)=\frac{\operatorname{colim} Z_{q}^{j}}{\operatorname{colim} B_{q}^{j}}=\operatorname{colim} H_{q}\left(C^{j}\right)
$$

as claimed.
Here is an immediate application to topology:
4.79. Corollary. Let X be a topological space that is the union of a collection \mathcal{A} of subspaces of X. Assume that (\mathcal{A}, \subset) is a directed set and that any compact subset of X is contained in a member of the collection. Then the map $\operatorname{colim}_{A \in \mathcal{A}} H_{q}(A) \xrightarrow{\cong} H_{q}(X)$ is an isomorphism.

Proof. The assumption on compact subsets, applied to supports of singular chains in X, and the recognition principle (4.72), show that $\operatorname{colim}_{A \in \mathcal{A}} C_{q}(A) \rightarrow C_{q}(X)$ is an isomorphism. This isomorphism survives to homology by 4.78 .
4.80. Example (Homology of mapping telescopes). The mapping telescope of a sequence

$$
X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \cdots X_{i-1} \xrightarrow{f_{i}} X_{i} \rightarrow \cdots
$$

of maps between spaces is the union $T=\bigcup_{i=1}^{\infty} M_{f_{i}}$ of the mapping cylinders. The telescope is the union of its subspaces $T_{1} \subset T_{2} \subset \cdots T_{j} \subset T_{j+1} \subset \cdots$ where $T_{j}=\bigcup_{j=1}^{i} M_{f_{i}}$ is the union of the first j mapping
cylinders. T_{j} contains X_{j} as a deformation retract. The homotopy commutative diagram

illustrates that the inclusion $T_{j} \subset T_{j+1}$ turns the map $f_{j+1}: X_{j} \rightarrow X_{j+1}$ into an inclusion. According to 4.79 there is an isomorphism

$$
\operatorname{colim}_{i \in \mathbf{N}} H_{*}\left(X_{i}\right) \xrightarrow{\cong} \operatorname{colim}_{i \in \mathbf{N}} H_{*}\left(T_{i}\right) \xrightarrow{\cong} H_{*}(T)
$$

on homology.
For any self-map $f: X \rightarrow X$ we write $\operatorname{Tel}(f)$ for the mapping telescope of $X \xrightarrow{f} X \xrightarrow{f} X \rightarrow \cdots$. For instance $M(\mathbf{Z}[1 / p], n)=\operatorname{Tel}(p)$ is the telescope for the degree p-map $S^{n} \xrightarrow{p} S^{n}$ of the n-sphere (4.74). Try to visualize $M(\mathbf{Z}[1 / 2], 1)$.

If $e: X \rightarrow X$ induces an idempotent on homology, then $H_{*}(\operatorname{Tel}(e))=e_{*} H_{*}(X)$ (4.74).
4.81. Cohomology with compact support. Let M be a manifold and R a ring. As a notational convention we write $H^{q}(M \mid A ; R)$ for $H^{q}(M, M-A ; R)$, just as we did for homology (4.47). When $A_{1} \subset A_{2}$, there is an R-module extension homomorphism $e_{A_{2}}^{A_{1}}: H^{q}\left(M \mid A_{1}\right) \rightarrow H^{q}\left(M \mid A_{2}\right)$ (in the same direction as the inclusion) induced from the inclusion $\left(M, M-A_{2}\right) \subset\left(M, M-A_{1}\right)$.

Let \mathcal{K}_{M} be the directed set of compact subspaces of M ordered by inclusion. Cohomology with compact support of M is the colimit

$$
H_{c}^{q}(M ; R)=\operatorname{colim}_{K \in \mathcal{K}_{M}} H^{q}(M \mid K ; R)
$$

of the \mathcal{K}_{M}-directed R-module $\mathcal{K}_{M} \ni K \rightarrow H^{q}(M \mid K ; R)$. By the universal property for colimits (4.70) there is a unique map $H_{c}^{q}(M ; R) \rightarrow H^{q}(M ; R)$ such that the diagrams

commute for all compact subsets $K \subset L$ of M. The singular cohomology group of M is an example of an R-module that receives a map from the directed system $\mathcal{K}_{M} \ni K \rightarrow H^{q}(M \mid K ; R)$ but cohomology with compact support of M is the universal such example.
4.82. Remark. (1) If M is compact $H_{c}^{q}(M)=H^{q}(M)$ because M is the largest element in \mathcal{K}. More generally, $H_{c}^{q}(M)$ can be computed using any cofinal subdirected sets of compact subsets of M.
(2) Suppose that $f: M \rightarrow N$ is a proper map and let $f^{-1}: \mathcal{K}_{N} \rightarrow \mathcal{K}_{M}$ be the map af directed systems given by pre-images. There is an induced map

$$
H_{c}^{q}(N)=\operatorname{colim}_{L \in \mathcal{K}_{N}} H^{q}(N \mid L) \xrightarrow{f^{*}} \operatorname{colim}_{L \in \mathcal{K}_{N}} H^{q}\left(M \mid f^{-1}(L)\right) \rightarrow \operatorname{colim}_{K \in \mathcal{K}_{M}} H^{q}(M \mid K)=H_{c}^{q}(M)
$$

of cohomology groups with compact support. There is no such induced map for an arbitrary map between manifolds so cohomology with compact support is not functorial for arbitray continuous maps.
(3) The closed balls $D(0, r)$ of radius $r=1,2, \ldots$ centered at $0 \in \mathbf{R}^{n}$ are cofinal in the directed set of compact subsets of \mathbf{R}^{n}. The inclusion maps $\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right) \subset\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D(0, r)\right)$ induce an isomorphism $H^{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right) \rightarrow H^{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D(0, r)\right)$ of directed systems so

$$
\begin{aligned}
& H_{c}^{q}\left(\mathbf{R}^{n}\right)=\operatorname{colim}_{\mathbf{N}} H^{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D(0, r)\right) \cong \operatorname{colim}_{\mathbf{N}} H^{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right)=H^{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right) \\
& = \begin{cases}R & q=n \\
0 & q \neq n\end{cases}
\end{aligned}
$$

Note that $H_{c}^{q}\left(\mathbf{R}^{n}\right) \neq H_{c}^{q}(*)$ for $n>0$ so $H_{c}^{q}(-)$ is not a homotopy invariant.
(4) For any open submanifold U of M define $H_{c}^{q}(U) \rightarrow H_{c}^{q}(M)$ to be the map

$$
\begin{equation*}
H_{c}^{q}(U)=\operatorname{colim}_{K \in \mathcal{K}_{U}} H^{q}(U \mid K) \underset{\operatorname{exc}}{\cong} \operatorname{colim}_{K \in \mathcal{K}_{U}} H^{q}(M \mid K) \rightarrow \operatorname{colim}_{K \in \mathcal{K}_{M}} H^{q}(M \mid K)=H_{c}^{q}(M) \tag{4.83}
\end{equation*}
$$

where an excision isomorphism occurs (cf 4.48). (Note the direction of the arrow.)
4.84. Lemma. Let U and V be open submanifolds of the manifold M. Then there is an exact MayerVietoris sequence for the pairs $(M, M-(K \cup L)) \subset(M, M-K),(M, M-L) \subset(M, M-(K \cap L))$

$$
\cdots \rightarrow H_{c}^{q}(U \cap V) \rightarrow H_{c}^{q}(U) \oplus H_{c}^{q}(V) \rightarrow H_{c}^{q}(U \cup V) \rightarrow H_{c}^{q+1}(U \cap V) \rightarrow \cdots
$$

in cohomology with compact support.
Proof. We may assume that $M=U \cup V$. Suppose that $K \subset U$ and $L \subset V$ are compact subsets. Then there is relative Mayer-Vietoris sequence

where the vertical arrows are excision isomorphisms. Pass to the colimit over the directed set $\mathcal{K}_{U} \times \mathcal{K}_{V}$ with order relation $\left(K_{1}, L_{1}\right) \leq\left(K_{2}, L_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow} K_{1} \leq K_{2}, L_{1} \leq L_{2}$. The maps $\mathcal{K}_{U} \times \mathcal{K}_{V} \rightarrow \mathcal{K}_{U \cup V}:(K, L) \rightarrow K \cup L$ is cofinal because local compactness implies that any compact subset of $U \cup V$ is of the form $K \cup L$.

5. Poincaré duality for noncompact oriented manifolds

Let M be an R-oriented manifold and let $\mu_{x} \in H_{n}(M \mid x ; R)$ be the local R-orientation at $x \in M$. There is (4.57) a system of unique R-orientation classes $\mu_{K} \in H_{n}(M \mid K ; R)$ such that $r_{x}^{K} \mu_{K}=\mu_{x}$ for all $x \in M$ and $r_{K}^{L} \mu_{L}=\mu_{K}$ for compact subsets $K \subset L \subset M$. Using the relative cap product $H_{n}(M \mid K ; R) \times H^{q}(M \mid K ; R) \rightarrow$ $H_{n-q}(M ; R)(4.33)$ we obtain a system of R-module homomorphisms $\mu_{K} \cap-: H^{q}(M \mid K ; R) \rightarrow H_{n-q}(M ; R)$ for $K \in \mathcal{K}_{M}$. Naturality of the cap product (4.31) implies two observations:

- Since $\mu_{L} \cap e_{L}^{K} \phi=r_{K}^{L} \mu_{L} \cap \phi=\mu_{K} \cap \phi$ for all $\phi \in H^{q}(M \mid K)$, this is a $\mathcal{K}_{M^{\prime}}$-directed system of R-module homomorphisms (4.69). By the universal property (4.70) there is a unique R-module homomorphism PD : $H_{c}^{q}(M ; R) \rightarrow H_{n-q}(M ; R)$ such that the diagrams

commute for all compact subsets $K \subset L$ of M.
- The Poincaré duality map PD is natural for open submanifolds of M : Let $i: U \rightarrow M$ be the inclusion of an open submanifold (with the induced orientation) and let K be a compact subset of U. Since $i_{*}\left(\mu_{K} \cap i^{*} \phi\right)=\mu_{K} \cap \phi$ for all $\phi \in H^{q}(M \mid K) \cong H^{q}(U \mid K)$ the diagram

commutes.
4.86. Theorem (Poincaré duality). Let M be an R-oriented n-manifold. The R-module homomorphism

$$
\mathrm{PD}: H_{c}^{q}(M ; R) \rightarrow H_{n-q}(M ; R)
$$

is an isomorphism.

The proof is divided into several steps.
4.87. Lemma. If Theorem 4.86 is true for the open subsets U, V and $U \cap V$ of the oriented manifold M then it also true for $U \cup V$.

Proof. Consider the diagram

where the top row is the exact sequence from (4.84), the bottom row is the Mayer-Vietoris sequence (1.39) for $(U \cup V, U, V)$, and the vertical maps are Poincaré duality maps. It is clear from (4.85) that the squares not involving conecting homomorphisms are commutative. A longer and nontrivial argument shows that also the connecting homomorphisms commute with PD up to sign. Now use the 5 -lemma.
4.88. Lemma. Let $\mathcal{U}=\{U\}$ be a directed collection of open subsets of M ordered by inclusion. If Theorem 4.86 is true for all $U \in \mathcal{U}$ then it is also true for $\bigcup_{U \in \mathcal{U}} U$.

Proof. The colimit of the isomorphisms $H_{c}^{q}(U) \xrightarrow{\mathrm{PD}} H_{n-q}(U), U \in \mathcal{U}$, is an isomorphism

$$
H_{c}^{q}(\bigcup U) \stackrel{4.76}{\cong} \operatorname{colim}_{\mathcal{U}} \operatorname{colim}_{\mathcal{K}_{U}} H^{q}(U \mid K) \cong \operatorname{colim}_{\mathcal{U}} H_{c}^{q}(U) \stackrel{\cong}{\cong} \operatorname{colim}_{\mathcal{U}} H_{n-q}(U) \stackrel{4.79}{\cong} H_{n-q}(\bigcup U)
$$

where we use that $\bigcup_{U \in \mathcal{U}} \mathcal{K}_{U}=\mathcal{K}_{\bigcup_{U \in \mathcal{U}} U}$ is the directed set of compact subsets of $\bigcup_{U \in \mathcal{U}} U$. This is Poincaré duality for $\bigcup_{U \in \mathcal{U}} U$.
4.89. Lemma. Theorem 4.86 is true for \mathbf{R}^{n} and for any open subset of \mathbf{R}^{n}.

Proof. By definition of PD the composite map

$$
H^{n}\left(\mathbf{R}^{n} \mid 0\right) \xrightarrow{\cong} H_{c}^{n}\left(\mathbf{R}^{n}\right) \xrightarrow{\mathrm{PD}} H_{0}\left(\mathbf{R}^{n}\right)
$$

is cap product with the local orientation $\mu_{0} \in H_{n}\left(\mathbf{R}^{n} \mid 0\right)$. But the cap product

$$
R \times R \stackrel{\mathrm{UCT}}{=} H_{n}\left(\mathbf{R}^{n} \mid 0 ; \mathbf{Z}\right) \otimes R \times \operatorname{Hom}\left(H_{n}\left(\mathbf{R}^{n} \mid 0 ; Z\right), R\right)=H_{n}\left(\mathbf{R}^{n} \mid 0\right) \times H^{n}\left(\mathbf{R}^{n} \mid 0\right) \xrightarrow{\cap} H_{0}\left(\mathbf{R}^{n}\right) \stackrel{\varepsilon}{\cong} R
$$

equals evaluation (4.27) or the ring multiplication in R and multiplication with a unit is an isomorphism. It is then also true for any open convex subset of \mathbf{R}^{n} as any such is homeomorphic to \mathbf{R}^{n}. By Lemma 4.87 and induction it is true for any finite union of open convex subsets of \mathbf{R}^{n}. Let now U be an arbitry open subset of \mathbf{R}^{n}. U is the union of countably many open balls V_{i} and of the open sets $U_{i}=V_{1} \cup \cdots \cup V_{i}$ that are directed, even linearly ordered, by inclusion. Each of these satisfy Poincaré duality and so does their union (4.88).

Proof of Theorem 4.86. Consider the poset of all open subsets of M that enjoy Poincaré duality. By 4.89 this is a nonempty collection and by 4.88 any linearly ordered subset has an upper bound. Zorn's lemma now says that there are maximal elements. Such a maximal element must equal M for by 4.89 and 4.87 we can always enlarge any open proper open subset of M with Poincaré duality to a larger open subset with Poincaré duality.

6. Alexander duality

Let M be a manifold and A a closed subset of M. Let \mathcal{U}_{A} denote the poset of open neighborhoods of A ordered by inclusion and $\mathcal{U}_{A}^{\mathrm{op}}$ the opposite poset (where $U_{0} \leq U_{1}$ if $U_{0} \supset U_{1}$). The Alexander-Čech cohomology group of the embedding $A \subset M$ is the colimit

$$
\check{H}^{q}(A ; R)=\operatorname{colim}_{U \in \mathcal{U}_{A}^{\mathrm{op}}} H^{q}(U ; R)
$$

of the $\mathcal{U}_{A}^{\text {op }}$-directed system $\mathcal{U}_{A}^{\text {op }} \ni U \rightarrow H^{q}(U ; R)$. By the universal property for colimits (4.70) there is a unique map $\check{H}^{q}(A ; R) \rightarrow H^{q}(A ; R)$ such that the diagrams

commute for all $U_{0}, U_{1} \in \mathcal{U}_{A}$ with $U_{0} \supset U_{1}$. The singular cohomology group of A is an example of an R-module that receives a map from the directed system $\mathcal{U}_{A}^{\mathrm{op}} \ni U \rightarrow H^{q}(U ; R)$ but the Alexander-Čech cohomology group of A is the universal such example.
4.90. Proposition. Let M be a compact manifold and A a closed subset of M. Then there is a commutative diagram

with exact rows.
Proof. Note that $U \rightarrow M-U$ is an isomorphism of directed sets $\mathcal{U}_{A}^{\mathrm{op}} \rightarrow \mathcal{K}_{M-A}$ and that $H^{q}(M-$ $A \mid M-U)=H^{q}(M-A, U-A)$. Compare the long exact sequences for (M, A) and (M, U) and take the colimit over $\mathcal{U}_{A}^{\mathrm{op}} \cong \mathcal{K}_{M-A}$ to obtain the commutative diagram of the exact sequences

Since colim is an exact functor (4.73), the limit sequence in the middle is still exact.
In some cases the value of $\check{H}^{q}(A ; R)$ depends only on A and not on M nor the embedding of A into M.
4.91. Proposition. If A and M are compact manifolds (more generally, compact ANRs ${ }^{1}$ [11, pp 25-32] [8]) then $\check{H}^{q}(A ; R) \rightarrow H^{q}(A ; R)$ and $H_{c}^{q}(M-A) \rightarrow H^{q}(M, A)$ are isomorphisms.

Suppose that M is compact and R-oriented with orientation classes $\mu_{A} \in H_{n}(M \mid A ; R)$ for all closed (compact) subsets A of M (4.57).

For any open neighborhood U of A, there is cap product (4.33)

$$
H_{n}(U \mid A) \times H^{q}(U) \xrightarrow{\cap} H_{n-q}(U \mid A)
$$

Under the excision isomorphism $H_{*}(U \mid A) \cong H_{*}(M \mid A)$ this is a cap product

$$
H_{n}(M \mid A) \times H^{q}(U) \xrightarrow{\cap} H_{n-q}(M \mid A)
$$

[^3]Cap product with with the orientation class μ_{A} in $H_{n}(M \mid A)$ gives a system of homomorphisms $\mu_{A} \cap-: H^{q}(U) \rightarrow H_{n-q}(M \mid A)$ compatible with inclusions: When $U_{0} \supset U_{1} \supset A$, naturality of the cap product (4.31) says that $\mu_{A} \cap$ $i^{*} \phi=\mu_{A} \cap \phi$ for all $\phi \in H^{q}\left(U_{0}\right)$. The universal property for colimits (4.70) shows that there is a map $\mathrm{AD}: \check{H}^{q}(A ; R) \rightarrow H_{n-q}(M \mid A ; R)$ such that the diagrams

commute.
4.92. Theorem (Alexander duality). Let M be a compact R-oriented n-manifold and $A \subset M$ a closed subset. Then the R-module homomorphism

$$
\mathrm{AD}: \check{H}^{q}(A ; R) \rightarrow H_{n-q}(M \mid A ; R)
$$

is an isomorphism.
Proof. Let U be an open neighborhood of A. Cap products with the orientation classes produces a diagram

connecting the long exact sequences for the pairs (M, U) and $(M, M-A)$. This diagram commutes up to sign. The limit diagram

also commutes up to sign and the top row is still exact. The 5 -lemma implies that AD is an isomorphism.
4.93. Corollary. Let $A \subset \mathbf{R}^{n+1}$ be a compact n-manifold (or ANR) embedded in \mathbf{R}^{n+1}. Then

$$
H^{q}(A ; R) \cong \widetilde{H}_{n-q}\left(\mathbf{R}^{n+1}-A ; R\right)
$$

for all commutative rings R.
Proof. Since A is a compact manifold embedded in the orientable manifolds R^{n+1} or $S^{n+1}, \check{H}^{q}(A) \cong$ $H^{q}(A)$ (4.91), and Alexander duality (4.92) applies to the embedding $A \subset \mathbf{R}^{n+1} \subset S^{n+1}$ and gives

$$
\check{H}^{q}(A) \stackrel{\mathrm{AD}}{\cong} H_{n+1-q}\left(S^{n+1} \mid A\right) \stackrel{\operatorname{exc}}{\cong} H_{n+1-q}\left(\mathbf{R}^{n+1} \mid A\right) \cong \widetilde{H}_{n-q}\left(\mathbf{R}^{n+1}-A\right)
$$

where we use that \mathbf{R}^{n+1} is contractible for the last isomorphism.
We can now show a vast generalization of (part of) the Jordan curve theorem.
4.94. Theorem (General Separation Theorem). Let $A \subset \mathbf{R}^{n+1}$ be a compact n-manifold embedded in \mathbf{R}^{n+1}. If A has k components then the complement $\mathbf{R}^{n+1}-A$ has $k+1$ components.

Proof. Using both Poincaré (4.86) and Alexander Duality (4.92) with \mathbf{F}_{2}-coefficients we get

$$
H_{0}\left(A ; \mathbf{F}_{2}\right) \stackrel{\mathrm{PD}}{\cong} H^{n}\left(A ; \mathbf{F}_{2}\right) \stackrel{\mathrm{AD}}{\cong} \widetilde{H}_{0}\left(\mathbf{R}^{n+1}-A ; \mathbf{F}_{2}\right)
$$

We use that any manifold is \mathbf{F}_{2}-orientable.
4.95. Corollary. A compact nonorientable n-manifold cannot embed in \mathbf{R}^{n+1}.

Proof. Suppose that A embeds in \mathbf{R}^{n+1}. We compute $H^{n}(A ; \mathbf{Z})$ in two different ways. First, Alexander duality 4.93 says that

$$
H^{n}(A ; \mathbf{Z}) \stackrel{\mathrm{AD}}{\cong} \widetilde{H}_{0}\left(\mathbf{R}^{n+1}-A ; \mathbf{Z}\right)
$$

since A is compact and nonorientable then $H_{n}(A ; \mathbf{Z})=0$ by (4.60) so that UCT (4.12) says that

$$
\operatorname{Ext}_{\mathbf{Z}}\left(H_{n-1}(A ; \mathbf{Z}), \mathbf{Z}\right) \cong H^{n}(A ; \mathbf{Z})
$$

(where $H_{n-1}(A ; \mathbf{Z})$ is a finitely generated abelian group). The first equality says that $H^{n}(A ; \mathbf{Z})$ is a free nontrivial (for $A \neq \mathbf{R}^{n+1}$) abelian group, in particular infinite. The second equality says that $H^{n}(A ; \mathbf{Z})$ is finite.

In particular, the nonorientable compact surfaces cannot embed in \mathbf{R}^{3}. Do they embed in \mathbf{R}^{4} ?
4.96. Linking number. Suppose that A_{1} and A_{2} are disjoint compact submanifolds of \mathbf{R}^{n}. The linking number is the bilinear map

$$
\begin{aligned}
L: \widetilde{H}_{p}\left(A_{1} ; \mathbf{Z}\right) \times H_{n-p-1}\left(A_{2} ; \mathbf{Z}\right) \rightarrow \widetilde{H}_{p}\left(\mathbf{R}^{n}-A_{2} ; \mathbf{Z}\right) \times & H_{n-p-1}\left(A_{2} ; \mathbf{Z}\right) \\
& \stackrel{(4.93) \times \mathrm{id}}{\cong} H^{n-p-1}\left(A_{2} ; \mathbf{Z}\right) \times H_{n-p-1}\left(A_{2} ; \mathbf{Z}\right) \xrightarrow{\langle\cdot, \cdot\rangle} \mathbf{Z}
\end{aligned}
$$

For instance, A_{1} and A_{2} could be knots in \mathbf{R}^{3}.
4.97. Invariance of Domain. We can use Alexander duality to reprove 3.6 and 3.7 .
4.98. Lemma. Let d^{r} be a subspace of S^{n} that is homeomorphic to D^{r} for some $r \geq 0$. The homology groups of the complement are $\widetilde{H}_{*}\left(S^{n}-d^{r}\right)=0$.

Let s^{r} be a subspace of S^{n} that is homeomorphic to S^{r} for some $r \geq 0$. Then $r \leq n$. If $r=n$, then $s^{r}=S^{n}$. If $0 \leq r<n$ then $H_{*}\left(S^{n}-s^{r-1}\right)=H_{*}\left(S^{n}-S^{r}\right)=H_{*}\left(S^{n-r-1}\right)$.

Proof. We may assume that $r>0$ since $S^{n}-s^{0}=\mathbf{R}^{n}-0 \simeq S^{n-1}$ and the formula is true. Alexander duality says that

$$
H_{n-q}\left(S^{n}, S^{n}-s^{r}\right) \cong \check{H}^{q}\left(s^{r}\right) \cong H^{q}\left(S^{r}\right) \cong H_{n-q}\left(S^{n}, S^{n}-S^{r}\right)= \begin{cases}\mathbf{Z} & n-q=n, n-r \\ 0 & n-q \neq n, n-r\end{cases}
$$

Since the pair $\left(S^{n}, S^{n}-s^{r}\right)$ has nonzero homology in degree $n-r$, we have $n-r \geq 0$. If $r=n, H_{0}\left(S^{n}\right.$, $S^{n}-$ $\left.s^{n}\right)=\mathbf{Z}$ so $S^{n}-s^{n}=\emptyset$ or $s^{n}=S^{n}$. If $0<r<n, H_{0}\left(S^{n}, S^{n}-s^{n}\right)=0$ so $S^{n}-s^{r} \neq \emptyset$. The long exact sequence (in reduced homology) for the pair ($S^{n}, S^{n}-s^{r}$) contains the segments

$$
\begin{gathered}
\widetilde{H}_{n-r}\left(S^{n}\right)=0 \rightarrow H_{n-r}\left(S^{n}, S^{n}-s^{r}\right) \rightarrow \widetilde{H}_{n-r-1}\left(S^{n}-s^{r}\right) \rightarrow \widetilde{H}_{n-r-1}\left(S^{n}\right)=0 \\
0 \rightarrow H_{n}\left(S^{n}-s^{r}\right) \rightarrow H_{n}\left(S^{n}\right) \xlongequal{\Longrightarrow} H_{n}\left(S^{n}, S^{n}-s^{r}\right) \rightarrow H_{n-1}\left(S^{n}-s^{r}\right) \rightarrow 0=H_{n-1}\left(S^{n}\right)
\end{gathered}
$$

which say that $\widetilde{H}_{n-r-1}\left(S^{n}-s^{r}\right)=\mathbf{Z}$ and $H_{n}\left(S^{n}-s^{r}\right)=0=H_{n-1}\left(S^{n}-s^{r}\right)$, and for $i \neq n-r, n, n+1$ it contains the segment

$$
H_{i}\left(S^{n}, S^{n}-s^{r}\right)=0 \rightarrow \widetilde{H}_{i-1}\left(S^{n}-s^{r}\right) \rightarrow \widetilde{H}_{i-1}\left(S^{n}\right)=0
$$

which says that $\widetilde{H}_{i-1}\left(S^{n}-s^{r}\right)=0$. The map $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-s^{r}\right)$ is an isomorphism because $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-s^{r}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-x\right)=H_{n}\left(S^{n} \mid x\right), x \in s^{r}$, is an isomorphism as S^{n} is orientable.

CHAPTER 5

Cohomology operations

A cohomology operation of type $(m, K ; n, G)$ is a natural transformation from the functor $H^{m}(-; K)$ to the functor $H^{n}(-; G)$. We shall first look at an operation of type ($\left.n, \mathbf{Z} / p ; n+1, \mathbf{Z} / p\right)$.

1. The Bockstein homomorphism

Let C be a chain complex of free abelian groups and $0 \rightarrow G \rightarrow H \rightarrow K \rightarrow 0$ a short exact sequence of abelian groups. Map the chain complex into the short exact sequence and obtain a short exact sequence of chain complexes

The Bockstein homomorphism is the connecting homomorphism β in the associated long exact sequence

$$
\cdots \longrightarrow H^{n}(C ; H) \longrightarrow H^{n}(C ; K) \xrightarrow{\beta} H^{n+1}(C ; G) \longrightarrow H^{n+1}(C ; H) \longrightarrow \cdots
$$

of cohomology groups. (There is a similar Bockstein in homology.) The Bockststein homomorphism is natural in C and in morphisms of short exact sequences. We shall be interested mostly in the Bockstein

$$
H^{n}(C ; \mathbf{Z} / p) \xrightarrow{\beta} H^{n+1}(C ; \mathbf{Z} / p)
$$

for the short exact sequence $0 \rightarrow \mathbf{Z} / p \xrightarrow{\cdot p} \mathbf{Z} / p^{2} \rightarrow \mathbf{Z} / p \rightarrow 0$ where p is a prime number.
5.1. Example. The Bockstein homomorphism $H^{n}(C ; \mathbf{Z} / p) \xrightarrow{\beta} H^{n+1}(C ; \mathbf{Z} / p)$ for the elementary chain complexes

with \mathbf{Z} in degrees n or $n+1$ are

$$
\mathbf{Z} \longrightarrow 0 \quad \mathbf{Z} / p \xrightarrow{\cong} \mathbf{Z} / p \quad \mathbf{Z} / p \xrightarrow{0} \mathbf{Z} / p \quad 0 \longrightarrow 0
$$

where the exponent $r \geq 2$ in p^{r} and q is some prime $\neq p$.
The example in fact computes the Bockstein homomorphism in most cases of interest.
5.2. Proposition. Any chain complex C of free abelian groups with $H_{n}(C)$ finitely generated for all n is quasi-isomorphic to a direct sum of elementary chain complexes.

Proof. Write each homology group $H_{n}(C)$ as a direct sum of infinite cyclic groups, \mathbf{Z}, and finite cyclic groups, \mathbf{Z} / p^{r} or \mathbf{Z} / q^{r}, of prime power order $[5, \S 4.2, \S 16.10]$. There are chain maps from the corresponding elementary chain complexes to C.
5.3. Proposition. $H^{n-1}(C ; \mathbf{Z} / p) \frac{\stackrel{\beta}{\longrightarrow} H^{n}(C ; \mathbf{Z} / p) \xrightarrow{\beta} H^{n+1}}{\longrightarrow}(C ; \mathbf{Z} / p)$

Proof. The morphism of short exact sequences

induces a morphism

of long exact sequences which shows that $\beta=\rho \widetilde{\beta}$. Thus $\beta \beta=(\rho \widetilde{\beta})(\rho \widetilde{\beta})=\rho(\widetilde{\beta} \rho) \widetilde{\beta}=0$ by exactness of the upper sequence.
5.4. Proposition. Suppose that C is the chain complex of a Δ-set so that the cup product in $H^{*}(C ; \mathbf{Z} / p)$ is defined. Then β is a derivation in the sense that

$$
\beta(x \cup y)=\beta x \cup y+(-1)^{|x|} x \cup \beta y
$$

when x and y are homogeneous elements of $H^{*}(C ; \mathbf{Z} / p)$.
Proof. The Bockstein is defined by a zig-zag in the commutative diagram

induced from the short exact sequence $0 \rightarrow \mathbf{Z} / p \xrightarrow{i} \mathbf{Z} / p^{2} \xrightarrow{\rho} \mathbf{Z} / p \rightarrow 0$. Let (also) $x \in \operatorname{Hom}\left(C_{m}, \mathbf{Z} / p\right)$ and $y \in \operatorname{Hom}\left(C_{n}, \mathbf{Z} / p\right)$ be cocycles representing the cohomology classes x and y. Since ρ is surjective, $x=\rho \bar{x}$ and $y=\rho \bar{y}$ for some cochains $\bar{x} \in \operatorname{Hom}\left(C_{m}, \mathbf{Z} / p^{2}\right)$ and $\bar{y} \in \operatorname{Hom}\left(C_{n}, \mathbf{Z} / p^{2}\right)$. By definition, $i \beta x=\delta \bar{x}$ and $i \beta y=\delta \bar{y}$.

Since $\rho(a b)=\rho(a) \rho(b)$ for $\rho: \mathbf{Z} / p^{2} \rightarrow \mathbf{Z} / p$ we have $\rho(\bar{x} \cup \bar{y})=\rho \bar{x} \cup \rho \bar{y}=x \cup y$ and since $i(a \rho(b))=i(a) b$ for $i: \mathbf{Z} / p \rightarrow \mathbf{Z} / p^{2}$ we have $i(\beta x \cup y)=i(\beta x \cup \rho \bar{y})=i \beta x \cup \bar{y}=\delta \bar{x} \cup \bar{y}$. The equations

$$
i\left(\beta x \cup y+(-1)^{|x|} x \cup \beta y\right)=\delta \bar{x} \cup \bar{y}+(-1)^{|x|} \bar{x} \cup \delta \bar{y}=\delta(\bar{x} \cup \bar{y}), \quad \rho(\bar{x} \cup \bar{y})=x \cup y
$$

mean that $\beta(x \cup y)=\beta x \cup y+(-1)^{|x|} x \cup \beta y$.
5.5. The Bockstein spectral sequence. Let C be a chain complex of free abelian groups with $H_{n}(C)$ finitely generated for all n. When we map C into the short exact sequence $0 \rightarrow \mathbf{Z} \xrightarrow{\cdot p} \mathbf{Z} \rightarrow \mathbf{Z} / p \rightarrow 0$ we obtain a short exact sequence of chain complexes and the long exact Bockstein sequence

$$
\begin{align*}
H^{n-1}(C ; \mathbf{Z} / p) \xrightarrow{\beta} H^{n}(C) & \xrightarrow{\cdot p} H^{n}(C) \xrightarrow{\rho} \tag{5.6}\\
& H^{n}(C ; \mathbf{Z} / p) \xrightarrow{\beta} H^{n+1}(C) \xrightarrow{\cdot p} H^{n+1}(C) \xrightarrow{\rho} H^{n+1}(C ; \mathbf{Z} / p) \rightarrow H^{n+2}(C ; \mathbf{Z} / p)
\end{align*}
$$

in cohomology. This exact sequence is often more concisely depicted as the exact Bockstein triangle

or as

where we write $E_{1}^{*}(C)$ for $H^{*}(C ; \mathbf{Z} / p)$ and ρ_{1} for ρ, β_{1} for β. Now, $E_{1}^{*}(C)$ is (5.3) a chain complex with differential $d_{1}=\rho_{1} \beta_{1}=\beta$, the Bockstein homomorphism for the exact sequence $0 \rightarrow \mathbf{Z} / p \rightarrow \mathbf{Z} / p^{2} \rightarrow \mathbf{Z} / p \rightarrow$ 0 . The derived triangle (or sequence) is

where $E_{2}(C)$ is the homology of the chain complex $\left(E_{1}(C), d_{1}\right)$, the map β_{2} is induced by β, and $\rho_{2}(p x)=$ $\rho_{1}(x)$.
5.7. Example. If C is the elementary chain complex $0 \longleftarrow \mathbf{Z} \longleftarrow 0$ concentrated in degree n, the Bockstein long exact sequence (5.6) is

$$
0 \xrightarrow{\beta} \mathbf{Z} \xrightarrow{\cdot p} \mathbf{Z} \xrightarrow{\rho} \mathbf{Z} / p \xrightarrow{\beta} 0 \xrightarrow{\cdot p} 0 \xrightarrow{\rho} 0 \longrightarrow
$$

where the nonzero groups are in degree n. The chain complex $E_{1}^{*}(C)$ is $0 \longrightarrow \mathbf{Z} / p \longrightarrow 0$ concentrated in degree n, so $E_{1}^{*}(C)=E_{2}^{*}(C)$. The derived triangle is identical to the first triangle.

If C is the elementary chain complex $0 \longleftarrow \mathbf{Z} \stackrel{p}{\longleftarrow} \mathbf{Z} \longleftarrow 0$ concentrated in degrees n and $n+1$, the Bockstein long exact sequence (5.6) is

$$
0 \xrightarrow{\beta} 0 \xrightarrow{\cdot p} 0 \xrightarrow{\rho} \mathbf{Z} / p \xrightarrow{\beta} \mathbf{Z} / p \xrightarrow{\cdot p=0} \mathbf{Z} / p \xrightarrow{\rho} \mathbf{Z} / p \longrightarrow
$$

where the first nonzero group is $\mathbf{Z} / p=H^{n}(C ; \mathbf{Z} / p)$. The chain complex $E_{1}^{*}(C)$ is

$$
0 \longrightarrow \mathbf{Z} / p \xrightarrow{\cong} \mathbf{Z} / p \longrightarrow 0
$$

concentrated in degrees n and $n+1$, so $E_{2}^{*}(C)=0$. The derived triangle consists of 0 s .

If C is the elementary chain complex $0 \longleftarrow \mathbf{Z}<\leftarrow^{p^{r}} \mathbf{Z} \ll 0, r \geq 2$, concentrated in degrees n and $n+1$, the Bockstein long exact sequence (5.6) is

$$
0 \xrightarrow{\beta} 0 \xrightarrow{\cdot p} 0 \xrightarrow{\rho} \mathbf{Z} / p \xrightarrow{\beta} \mathbf{Z} / p^{r} \xrightarrow{\cdot p} \mathbf{Z} / p^{r} \xrightarrow{\rho} \mathbf{Z} / p \longrightarrow 0
$$

where the first nonzero group is $\mathbf{Z} / p=H^{n}(C ; \mathbf{Z} / p)$. The chain complex $E_{1}^{*}(C)$ is

$$
0 \longrightarrow \mathbf{Z} / p \xrightarrow{0} \mathbf{Z} / p \longrightarrow 0
$$

concentrated in degrees n and $n+1$, so $E_{2}^{*}(C)=E_{1}^{*}(C)$. The derived triangle

$$
0 \xrightarrow{\beta} 0 \xrightarrow{\cdot p} 0 \xrightarrow{\rho} \mathbf{Z} / p \xrightarrow{\beta} \mathbf{Z} / p^{r-1} \xrightarrow{\cdot p} \mathbf{Z} / p^{r-1} \xrightarrow{\rho} \mathbf{Z} / p \longrightarrow
$$

is the Bockstein long exact sequence for the elementary chain complex $0 \longleftarrow \mathbf{Z} \stackrel{p^{r-1}}{\longleftarrow} \mathbf{Z} \longleftarrow 0$.
5.8. Lemma. The derived triangle of an exact triangle is exact.

Proof. This follows from Example 5.7 because C is quasi-isomorphic to direct sum elementary chain complexes and these constructions preserve direct sum. Alternatively, this is proved by a diagram chase in the exact triangle.

We can therefore continue to derive the exact triangles and obtain a sequence of chain complexes

$$
\left(E_{1}^{*}(C), d_{1}\right),\left(E_{2}^{*}(C), d_{2}\right), \ldots,\left(E_{r}^{*}(C), d_{r}\right),\left(E_{r+1}^{*}(C), d_{r+1}\right), \ldots
$$

where $E_{r+1}(C)=H\left(E_{r}^{*}(C), d_{r}\right)$. Such a sequence of chain complexes is called a spectral sequence and this particular one is the mod p Bockstein spectral sequence.

Since each homology group $H_{n}(C)$ is finitely generated, Example 5.7 implies that for each n there is an r such that $E_{r+1}^{n}(C)=E_{r+2}^{n}(C)=\cdots$. Let $E_{\infty}(C)$, the limit of the Bockstein spectral sequence, be the graded abelian group which in degree n is $E_{\infty}^{n}(C)=E_{r}^{n}(C)$ for $r \gg 0$. Table 1 shows the Bockstein spectral sequences for the elementary chain complexes and we conclude that

- Each Z-summand in $H^{n}(C)$ contributes one \mathbf{Z} / p-summand to $E_{1}^{n}(C), E_{2}^{n}(C), \ldots, E_{\infty}^{n}(C)$.
- Each \mathbf{Z} / p-summand in $H^{n+1}(C)$ contributes one \mathbf{Z} / p-summand to $E_{1}^{n}(C)=H^{n}(C ; \mathbf{Z} / p)$ and one \mathbf{Z} / p-summand to $E_{1}^{n+1}(C)=H^{n+1}(C ; \mathbf{Z} / p)$ that are connected by a nonzero $d_{1}=\beta$-differential so that they disappear in $E_{2}^{*}(C)$ and $E_{\infty}^{*}(C)$.
- Each \mathbf{Z} / p^{r}-summand in $H^{n+1}(C)$ contributes one \mathbf{Z} / p-summand to $E_{1}^{n}(C), \ldots, E_{r}^{n}(C)$ and one \mathbf{Z} / p-summand to $E_{1}^{n+1}(C), \ldots, E_{r}^{n+1}(C)$ that are connected by a nonzero d_{r}-differential so that they disappear in $E_{r+1}^{*}(C)$ and $E_{\infty}^{*}(C)$.

C and $H^{*}(C)$	$E_{r}(C)$
$\begin{array}{llll} 0 \longleftarrow & \mathbf{Z} \leftarrow & 0< & 0 \\ 0 & \mathbf{Z} & 0 & 0 \end{array}$	$\left.\begin{array}{l} E_{1}^{*}(C)=(0 \longrightarrow \mathbf{Z} / p \longrightarrow 0 \longrightarrow 0 \end{array}\right) ~ 子 \begin{aligned} & (0 \longrightarrow \\ & E_{1}^{*}(C)=E_{2}^{*}(C)=\cdots \\ & E_{\infty}^{*}(C)=\left(\begin{array}{llrl} 0 & \mathbf{Z} / p & 0 & 0 \end{array}\right) \end{aligned}$
$\begin{array}{llll} 0< & \mathbf{Z}<{ }^{p} \\ 0 & \mathbf{Z}< & 0 \\ 0 & 0 & \mathbf{Z} / p & 0 \\ \hline \end{array}$	$\begin{aligned} & E_{1}^{*}(C)=(0 \longrightarrow \mathbf{Z} / p \xrightarrow{\longrightarrow} \mathbf{Z} / p \longrightarrow 0 \\ & 0=E_{2}^{*}(C)=E_{3}^{*}(C)=\cdots \\ & E_{\infty}^{*}(C)=\left(\begin{array}{lrrr} 0 & 0 & 0 & 0 \end{array}\right) \end{aligned}$
$\begin{array}{lll} 0 \lessdot & \mathbf{Z}<p^{r} \\ 0 & \mathbf{Z}< & 0 \\ 0 & 0 & \mathbf{Z} / p^{r} \end{array}$	$\begin{aligned} & E_{1}^{*}(C)=(0 \longrightarrow \mathbf{Z} / p \xrightarrow{0} \mathbf{Z} / p \longrightarrow 0)=E_{2}^{*}(C)=\cdots=E_{r-1}^{*}(C) \\ & E_{r}^{*}(C)=(0 \longrightarrow \mathbf{Z} / p \xrightarrow{\longrightarrow} \mathbf{Z} / p \longrightarrow 0) \\ & 0=E_{r+1}^{*}(C)=E_{r+2}^{*}(C)=\cdots \\ & E_{\infty}^{*}(C)=\left(\begin{array}{lccc} 0 & 0 & 0 & 0 \end{array}\right) \end{aligned}$
$\begin{array}{llll} 0< & \mathbf{Z}<q^{r} \\ 0 & \mathbf{Z} & \mathbf{Z}< & \mathbf{Z} / q^{r} \\ 0 & 0 \end{array}$	$\begin{aligned} & 0=E_{1}^{*}(C)=E_{2}^{*}(C)=\cdots=E_{\infty}^{*}(C) \\ & E_{\infty}^{*}(C)=\left(\begin{array}{llrr} 0 & 0 & 0 & 0 \end{array}\right) \end{aligned}$

TABLE 1. Bockstein spectral sequences for elementary chain complexes

- Z $/ q^{r}$-summands in $H^{n}(C)$ with $q \neq p$ do not contribute to the $(\bmod p)$ Bockstein spectral sequence.
5.9. Theorem (The mod p Bockstein spectral sequence). Let C be a chain complex of free abelian groups with finitely generated homology $H_{n}(C)$ in each degree. There is a spectral sequence of \mathbf{Z} / p-vector spaces

$$
H^{*}(C ; \mathbf{Z} / p)=E_{1}^{*}(C) \Longrightarrow E_{\infty}^{*}(C)=\mathbf{Z} / p \otimes\left(H^{*}(C) / \text { torsion }\right)
$$

If $E_{r+1}^{*}(C)=E_{\infty}^{*}(C)$ then the p-torsion summands in $H^{*}(C)$ are among $\mathbf{Z} / p, \ldots, \mathbf{Z} / p^{r}$. The differential d_{r} of the chain complex $E_{r}(C)$ points to the \mathbf{Z} / p^{r}-summands of $H^{*}(C)$ in that the number of \mathbf{Z} / p^{r}-summands of $H^{n+1}(C)$ equals the number of \mathbf{Z} / p summands of $d_{r}\left(E_{r}^{n}(C)\right) \subset E_{r}^{n+1}(C)$.

Proof. Since $\rho_{(1)}=\rho: H^{*}(C) \rightarrow E_{1}^{*}(C)$ factors through the subgroup ker $\beta_{1}=\operatorname{ker} \beta$ of $E_{1}^{*}(C)=$ $H^{*}(C ; \mathbf{Z} / p)$ there is an induced map

of $H^{*}(C)$ into $E_{2}^{*}(C)$. This homomorphism, $\rho_{(2)}: H^{*}(C) \rightarrow E_{2}^{*}(C)$ factors through the subgroup ker β_{2} of $E_{2}^{*}(C)$ because β_{2} is induced by from β. In this way we obtain maps $\rho_{(r)}: H^{*}(C) \rightarrow E_{r}^{*}(C)$ and $\rho_{(\infty)}: H^{*}(C) \rightarrow E_{\infty}^{*}(C)$. The map $\rho_{(r)}: H^{*}(C) \rightarrow E_{r}^{*}(C)$ vanishes on p-torsion summands $\mathbf{Z} / p, \ldots, \mathbf{Z} / p^{r-1}$ and is nonzero on $\mathbf{Z} / p^{r}, \mathbf{Z} / p^{r+1}, \ldots, \mathbf{Z}$. The surjective map $\rho_{(\infty)}: H^{*}(C) \rightarrow E_{\infty}^{*}(C)$ vanishes on all torsion and is nonzero on the free \mathbf{Z}-sumands.
5.10. Example. $H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)=\mathbf{Z} / 2[x]$ with $x \in H^{1}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)$ and $\beta x=x^{2}$. (That $\beta x=x^{2}$ follows from Table 1 because $H^{2}\left(\mathbf{R} P^{\infty} ; \mathbf{Z}\right)=\mathbf{Z} / 2$.) Therefore (5.3), $\beta x^{2 k+1}=x^{2 k+2}$ and $\beta x^{2 k}=0$. The chain complexes E_{1}^{*} and $E_{2}^{*}=E_{3}^{*}=\cdots$ are

$$
\begin{aligned}
& 1 \xrightarrow{0} x \xrightarrow{1} x^{2} \xrightarrow{0} x^{3} \xrightarrow{1} \cdots \longrightarrow x^{2 k-1} \xrightarrow{1} x^{2 k} \xrightarrow{0} x^{2 k+1} \longrightarrow \cdots \\
& 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \longrightarrow \longrightarrow 0 \longrightarrow
\end{aligned}
$$

This shows that $\widetilde{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z}\right)$ is $\mathbf{Z} / 2$ in every even degree and 0 in every odd degree so that reduction mod 2 takes $\widetilde{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z}\right)$ isomorphically to $d_{1} \widetilde{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)=\left\{x^{2}, x^{4}, \ldots\right\}$. We conclude that $H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z}\right)=$ $\mathbf{Z}[y] /(2 y)$ where $y \in H^{2}\left(\mathbf{R} P^{\infty} ; \mathbf{Z}\right)$ is the 2 -dimensional class with $\rho y=x$. (In fact, $H^{*}\left(L^{\infty}(p) ; \mathbf{Z}\right)=\mathbf{Z}[y] /(p y)$, $|y|=2$, for any prime p.)

The E_{1}-page of the Bockstein spectral sequence for $\mathbf{R} P^{\infty} \times \mathbf{R} P^{\infty}$ is $E_{1}^{*}\left(\mathbf{R} P^{\infty}\right) \otimes E_{1}^{*}\left(\mathbf{R} P^{\infty}\right)$ so that again the Bockstein spectral sequence collapses at E_{2}^{*}. The image of d_{1} is generated by $d_{1} E_{1}^{1}=\left\{x_{1}^{2}, x_{2}^{2}, x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right\}$.
5.11. Example. The mod 2 cohomology of the compact Lie group G_{2}, the automorphism group of the Cayley algebra, is $H^{*}\left(\mathrm{G}_{2} ; \mathbf{Z} / 2\right)=\mathbf{Z} / 2\left[x_{3}, x_{5}\right] /\left(x_{3}^{4}, x_{5}^{2}\right)=\mathbf{Z} / 2\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes E\left(x_{5}\right)$ with Bockstein $d_{1}=\beta$ given by $d_{1} x_{5}=x_{3}^{2}\left[13\right.$, Appendix A]. The Bockstein chain complex $E_{1}^{*}\left(\mathrm{G}_{2}\right)$ is

$$
1 \longrightarrow 0 \longrightarrow 0 \longrightarrow x_{3} \longrightarrow 0 \longrightarrow x_{5} \longrightarrow x_{3}^{2} \longrightarrow 0 \longrightarrow x_{3} x_{5} \longrightarrow x_{3}^{3} \longrightarrow 0 \longrightarrow x_{3}^{2} x_{5} \longrightarrow 0 \longrightarrow 0 \longrightarrow x_{3}^{3} x_{5}
$$

Since $E_{2}^{*}\left(\mathrm{G}_{2}\right)=\mathbf{Z} / 2\left\{x_{3}, x_{3}^{2} x_{5}, x_{3}^{3} x_{5}\right\}$ the differential $d_{2}=0$ for dimensional reasons so $E_{2}^{*}\left(\mathrm{G}_{2}\right)=E_{\infty}^{*}\left(\mathrm{G}_{2}\right)$. Thus $H^{*}\left(\mathrm{G}_{2} ; \mathbf{Z}\right)$ contains $\mathbf{Z} / 2$-torsion, in degrees 6 and 9 , but no $\mathbf{Z} / 4$-torsion. The rational cohomology algebra $H^{*}\left(\mathrm{G}_{2} ; \mathbf{Q}\right)$ is concentrated in degrees $0,3,11$ and 14 . Since G_{2} is a compact orientable manifold, its rational cohomology algebra must must satisfy Poincaré duality (4.68) and so we conclude that $H^{*}\left(\mathrm{G}_{2} ; \mathbf{Q}\right)=$ $E\left(y_{3}, y_{11}\right)$ is an exterior algebra generated by a class in degree 3 and a class in degree 11 . It is possible to determine the cohomology algebra $H^{*}\left(\mathrm{G}_{2} ; \mathbf{Z}_{(2)}\right)$ with coefficients in \mathbf{Z} localized at the prime ideal (2).
5.12. Proposition. If an element of $H^{*}(C ; \mathbf{Z} / p)$ is nontrivial in $E_{r}^{*}(C)$ then it lies in the image of $H^{*}\left(C ; \mathbf{Z} / p^{r}\right) \rightarrow H^{*}(C ; \mathbf{Z} / p)$. The differential d_{r} of $E_{r}^{*}(C)$ and the Bockstein of the short exact sequence

$$
0 \longrightarrow \mathbf{Z} / p \longrightarrow \mathbf{Z} / p^{r+1} \longrightarrow \mathbf{Z} / p^{r} \longrightarrow 0
$$

are related.

Proof. The maps of short exact sequences

induces a commutative diagram

of Bockstein homomorphisms. If $x \in H^{n}(C ; \mathbf{Z} / p)$ is nontrivial in $E_{r}^{n}(C)$ then x comes from $y \in H^{n}\left(C ; \mathbf{Z} / p^{r}\right)$ and $d_{r} x=\beta y \in H^{n+1}(C ; \mathbf{Z} / p)$.

Why is it called a spectral sequence?
Probably the best account of the Bockstein spectral sequence can be found here.
5.13. Example. When p is odd, the lense spaces $L^{2 n+1}(p)$ and $L^{2 n+1}\left(p^{2}\right)$ have isomorphic modulo p cohomology algebras but they have different Bockstein homomorphisms as $\beta \neq 0$ on $H^{1}\left(L^{2 n+1}(p) ; \mathbf{Z} / p\right)$ and $\beta=0$ on $H^{1}\left(L^{2 n+1}\left(p^{2}\right) ; \mathbf{Z} / p\right)$.
5.14. Reduction $\bmod p^{m}$. In fact, $H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right) \cong H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2^{m}\right)$ for all $m \geq 1$. This follows from Table 2 which shows that if $\widetilde{H}_{*}(C)$ or $\widetilde{H}^{*}(C)$ consist of p-torsion of type $\mathbf{Z} / p, \ldots, \mathbf{Z} / p^{m}$ only, then $H^{*}\left(C ; \mathbf{Z} / p^{m}\right) \cong H^{*}\left(C ; \mathbf{Z} / p^{m+1}\right)$. The results of the table are easily verified using the exact sequences

$$
0 \longrightarrow \mathbf{Z} / p^{\min \{m, r\}} \longrightarrow \mathbf{Z} / p^{m} \xrightarrow{\cdot p^{r}} \mathbf{Z} / p^{m} \longrightarrow \mathbf{Z} / p^{\min \{m, r\}} \longrightarrow 0
$$

of cyclic groups.

$H_{n}(C)$	$H^{n}\left(C ; \mathbf{Z} / p^{m}\right)$ and $H^{n+1}\left(C ; \mathbf{Z} / p^{m}\right), m<r$	$H^{n}\left(C ; \mathbf{Z} / p^{m}\right)$ and $H^{n+1}\left(C ; \mathbf{Z} / p^{m}\right), m \geq r$	
\mathbf{Z}	\mathbf{Z} / p^{m}	0	\mathbf{Z} / p^{m}
\mathbf{Z} / p^{r}	\mathbf{Z} / p^{m}	\mathbf{Z} / p^{m}	\mathbf{Z} / p^{r}
$\mathbf{Z} / q^{r}, q \neq p$	0	0	\mathbf{Z} / p^{r}

TABLE 2. Reduction modulo different powers of p

2. Steenrod operations

The Steenrod square Sq^{i} is a cohomology operation of type $(n, \mathbf{Z} / 2 ; n+i, \mathbf{Z} / 2)$ and the Steenrod power operation P^{i} is a cohomology operation of type $(n, \mathbf{Z} / p ; n+2 i(p-1), \mathbf{Z} / p)$ where p is an odd prime. We shall here consider a few applications of Steenrod operations. See [20] for more information.
5.15. Lemma. Let $u \in H^{1}(X ; \mathbf{Z} / 2)$ be an element of degree 1 . Then

$$
\mathrm{Sq}^{i} u^{n}=\binom{n}{i} u^{n+i}
$$

Let p be an odd prime and $v \in H^{2}(X ; \mathbf{Z} / p)$ an element of degree 2. Then

$$
\mathrm{P}^{i} v^{n}=\binom{n}{i} v^{n+i(p-1)}
$$

Proof. Use induction and the Cartan formula.
If we introduce the total operations $\mathrm{Sq}=\sum_{i=0}^{\infty} \mathrm{Sq}^{i}$ and $\mathrm{P}=\sum_{i=0}^{\infty} \mathrm{P}^{i}$, the above formulas read

$$
\mathrm{Sq}\left(u^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} u^{n+i}, \quad \mathrm{P}\left(v^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} v^{n+i(p-1)}
$$

when u has degree 1 and v degree 2 .
The binomial coefficients are to be evaluated modulo p. They are best computed by the formula

$$
\binom{\sum n_{k} p^{k}}{\sum i_{k} p^{k}} \equiv \prod\binom{n_{k}}{i_{k}} \bmod p
$$

using the p-adic expansions of n and i. By convention, $\binom{n}{0}=1$ for all $n \geq 0$ and $\binom{n}{i}=0$ if i is negative.
5.16. ExAMPLE (Steenrod operations in $H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)$ and $\left.H^{*}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)\right)$. For u in the first cohomology group $H^{1}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)$ we find that

$$
\begin{array}{lll}
\operatorname{Sq}(u)=u+u^{2}, & \operatorname{Sq}\left(u^{3}\right)=u^{3}+u^{4}+u^{5}+u^{6}, & \operatorname{Sq}\left(u^{7}\right)=u^{7}+u^{8}+\cdots+u^{14}, \\
\operatorname{Sq}(u)=u+u^{2}, & \operatorname{Sq}\left(u^{2}\right)=u^{2}+u^{4}, & \operatorname{Sq}\left(u^{4}\right)=u^{4}+u^{8},
\end{array}
$$

and, in general,

$$
\operatorname{Sq}\left(u^{2^{k}-1}\right)=u^{2^{k}-1}+u^{2^{k}}+\cdots+u^{2\left(2^{k}-1\right)}, \quad \operatorname{Sq}\left(u^{2^{k}}\right)=u^{2^{k}}+u^{2^{k+1}}
$$

This shows that all powers of u are connected by Steenrod squares, $H^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{Z} / 2\right)=\mathcal{A}_{2} u$.
The situation is different when p is odd. For $v=\beta u$ in the second cohomology group $H^{2}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)$ we find that

$$
\mathrm{P}\left(v^{p^{k}}\right)=v^{p^{k}}+v^{p^{k+1}}
$$

and that the even part of $H^{*}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)$ is the sum of the $p-1 \mathcal{A}_{p}$-modules generated by $v, v^{2}, \ldots, v^{p-1}$. Does there exist a space realizing these modules?
5.17. Stable homotopy groups of spheres. $\pi_{k}^{s}=\operatorname{colim}_{n} \pi_{n+k}\left(S^{n}\right)$. Steenrod operations imply that $\pi_{1}^{s}, \pi_{3}^{s}, \pi_{7}^{s} \neq 0$.
5.18. Splittings of modules and spaces. Let M be a module over some ring R. The existence of a direct summand M_{1} of M is equivalent to the existence of an R-endomorphism e_{1} of M such that $e_{1}^{2}=e_{1}$ and $e_{1} M=M_{1}$. The idempotent e_{1} is called the projection of M onto M_{1}. (The idempotent $1-e_{1}$ is the projection of M onto a complement to M_{1}.)
5.19. Lemma (Realizing direct summands of $\left.\widetilde{H}_{*}(X)\right)$. Let X be a space. Suppose that $\widetilde{H}_{*}(X)$ admits a direct summand, M_{1}, and that the projection of $\widetilde{H}_{*}(X)$ onto M_{1} is induced by a self-map e_{1} of X. Then there exists a space X_{1} such that $\widetilde{H}_{*}\left(X_{1}\right)=M_{1}$ and a map $X \rightarrow X_{1}$ inducing the projection $\widetilde{H}(X) \rightarrow M_{1}$.

Proof. $\left(e_{1}\right)_{*} H_{*}(X)=H_{*}\left(\operatorname{Tel}\left(e_{1}\right)\right)(4.80,4.74)$.
The existence of a direct sum decomposition

$$
M=M_{1} \oplus \cdots \oplus M_{t}
$$

is equivalent to $[5, \S 11 . \mathrm{B}]$ the existence of a set of R-endomorphisms, e_{1}, \ldots, e_{t}, such that

$$
\begin{equation*}
1=e_{1}+\cdots+e_{t}, \quad e_{i}^{2}=e_{i}, \quad 1 \leq i \leq t, \quad e_{i} e_{j}=0, \quad i \neq j \tag{5.20}
\end{equation*}
$$

and

$$
M_{i}=e_{i} M, \quad 1 \leq i \leq k
$$

The R-endomorphism $e_{i} \in \operatorname{End}_{R}(M)$ is called the projection of M onto M_{i}. Equation (5.20) says that that the identity $1 \in \operatorname{End}_{R}(M)$ is a sum of orthogonal idempotents.
5.21. Lemma (Realizing direct sum decompositions of $\widetilde{H}_{*}(\Sigma X)$). Let ΣX be the suspension of a based space X. Suppose that $\widetilde{H}_{*}(\Sigma X)$ admits a direct sum decomposition

$$
\widetilde{H}_{*}(\Sigma X)=M_{1} \oplus \cdots \oplus M_{t}
$$

and that the projection of $\widetilde{H}_{*}(\Sigma X)$ onto M_{i} is induced by some based self-map e_{i} of $\Sigma X, 1 \leq i \leq t$. Then there exist spaces X_{1}, \ldots, X_{t} such that $\widetilde{H}_{*}\left(X_{i}\right)=M_{i}$ and a homology isomorphism

$$
\Sigma X \rightarrow X_{1} \vee \ldots \vee X_{s}
$$

inducing the direct sum decomposition of $\widetilde{H}_{*}(\Sigma X)$.
Proof. Let X_{i} be the telescope of the self-map e_{i} of ΣX so that $\Sigma X \rightarrow X_{i}$ induces the projection $\widetilde{H}_{*}(X) \rightarrow \widetilde{H}_{*}\left(X_{i}\right)=M_{i}$ (5.19). The map

$$
\Sigma X \rightarrow \Sigma X \vee \ldots \vee \Sigma X \rightarrow X_{1} \vee \ldots \vee X_{s}
$$

is an isomorphism on reduced homology because $\widetilde{H}_{*}(\Sigma X)=\bigoplus M_{i}=\bigoplus \widetilde{H}_{*}\left(X_{i}\right)=\widetilde{H}_{*}\left(\bigvee X_{i}\right)$.
5.22. Corollary. Let p be a prime and $\Sigma L^{\infty}(p)$ the suspension of the infinite lense space. There exists an $H_{*} \mathbf{Z}$-equivalence

$$
\Sigma L^{\infty}(p) \rightarrow X_{1} \vee \ldots \vee X_{p-1}
$$

where $X_{j}, 1 \leq j \leq p-1$, is a connected space such that

$$
\widetilde{H}_{2 j}\left(X_{i} ; \mathbf{Z}\right)= \begin{cases}\mathbf{Z} / p & j \equiv i \bmod p-1 \\ 0 & \text { otherwise }\end{cases}
$$

It is not possible to split X_{j} further.
Proof. The reduced homology groups of $\Sigma L^{\infty}(p)$ are concentrated in even degrees and $\widetilde{H}_{2 i}\left(\Sigma L^{\infty}(p) ; \mathbf{Z}\right)=$ $\mathbf{Z} / p=\widetilde{H}_{2 i}\left(\Sigma L^{\infty}(p) ; \mathbf{Z} / p\right)$ for all $i=1,2, \ldots$.

Let A be a self-map of $L^{\infty}(p)$ and d an integer such that A_{*} is multiplication by d on $H_{1}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)=$ \mathbf{Z} / p. Such an A exists for any integer d. Then A^{*} is multiplication by d^{i} on $H^{2 i}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)=\operatorname{Ext}\left(H_{2 i-1}\left(L^{\infty}(p) ; \mathbf{Z}\right), \mathbf{Z} / p\right)$, A_{*} is multiplication by d^{i} on $H_{2 i-1}\left(L^{\infty}(p) ; \mathbf{Z}\right)$, and $(\Sigma A)_{*}$ is multiplication by d^{i} on $H_{2 i}\left(\Sigma L^{\infty}(p) ; \mathbf{Z}\right)$. In particular, $H_{2 i}(A ; \mathbf{Z}): H_{2 i}\left(\Sigma L^{\infty}(p) ; \mathbf{Z}\right) \rightarrow H_{2 i}\left(\Sigma L^{\infty}(p) ; \mathbf{Z}\right)$ only depends on the value of $i \bmod p-1$.

The group Aut (\mathbf{Z} / p) of automorphisms of \mathbf{Z} / p acts on $\left.\widetilde{H}_{*}\left(\Sigma L^{\infty}(p) ; \mathbf{Z} / p\right)\right)$: Let a be a generator of the cylic group $\operatorname{Aut}(\mathbf{Z} / p)=\langle a\rangle$ of order $p-1$. The action of a is $\widetilde{H}_{*}(\Sigma A)$ where A is a self-map of $L^{\infty}(p)$ such that $A_{*}=a$ on $H_{1}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)=\mathbf{Z} / p$. We can express this by saying that $\widetilde{H}_{*}(\Sigma L ; \mathbf{Z} / p)$ is an $\mathbf{Z} / p[\operatorname{Aut}(\mathbf{Z} / p)]$ module. We have just seen that the 1-dimensional \mathbf{Z} / p-representations of $\operatorname{Aut}(\mathbf{Z} / p)$ on $\widetilde{H}_{2 i}\left(L^{\infty}(p) ; \mathbf{Z}\right)$ only depend on the value of i modulo $p-1$ and that all $p-1$ irreducible \mathbf{Z} / p-representations of $\operatorname{Aut}(\mathbf{Z} / p)$ occur on $\widetilde{H}_{2 i}\left(L^{\infty}(p) ; \mathbf{Z}\right), 1 \leq i \leq p-1$. Let e_{i} be the idempotent element of the group ring associated to to the irreducible representation on $\widetilde{H}_{2 i}\left(L^{\infty}(p) ; \mathbf{Z}\right)$. (In this case, multiplication by a on the group ring is diagonalizable and e_{i} an eigenvector with eigenvalue a^{i}. Consult [5, $\left.\S 25-\S 27\right]$ for representation theory.) The e_{i} satisfy (5.20) and the action of e_{i} on $\widetilde{H}_{*}\left(\Sigma L^{\infty}(p) ; \mathbf{Z}\right)$ equals $\left(E_{i}\right)_{*}$ for a self-map E_{i} of $L^{\infty}(p)$ (if $e_{i}=\sum r_{i} a^{i}$, take $E_{i}=\sum r_{i} \Sigma A^{i}$). According to 5.21 , the suspension $\Sigma L^{\infty}(p)$ is $H_{*} \mathbf{Z}$-isomorphic to wedge sum of $p-1$ spaces X_{1}, \ldots, X_{p-1} such that $\widetilde{H}_{*}\left(X_{i}\right)$ is concentrated in even degrees $2 j$ for $j \equiv i \bmod p-1$ all carrying the same $\operatorname{Aut}(\mathbf{Z} / p)$-representation.

The space X_{i} does not split further because all elements of $H^{*}\left(X_{i} ; \mathbf{Z} / p\right)$, which is concentrated in degrees $2 j-1$ and $2 j$ for $j \equiv i \bmod p-1$, are connected by Steenrod operations. For instance, the Bockstein is an isomorphism from $H^{2 j-1}\left(X_{i} ; \mathbf{Z} / p\right)$ to $H^{2 j}\left(X_{i} ; \mathbf{Z} / p\right)$ because $H_{2 j}\left(X_{i} ; \mathbf{Z}\right)=\mathbf{Z} / p$ (Table 1).

The \mathcal{A}_{p}-module $H^{*}\left(L^{\infty}(p) ; \mathbf{Z} / p\right)$ is injective.

Bibliography

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 0139178 (25 \#2614)
[2] N. Bourbaki, Algèbre, Chp. 2, 3rd ed., Hermann, Paris, 1962.
[3] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1982. MR 83k:20002
[4] Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co., Glenview, Ill.-London, 1971. MR MR0283793 (44 \#1023)
[5] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1962 original. MR 2215618 (2006m:16001)
[6] Albrecht Dold, Lectures on algebraic topology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin, 1980. MR 82c:55001
[7] P. H. Doyle and D. A. Moran, A short proof that compact 2-manifolds can be triangulated, Invent. Math. 5 (1968), 160-162. MR 0226644 (37 \#2233)
[8] James Dugundji, Topology, Allyn and Bacon Inc., Boston, Mass., 1966. MR 33 \#1824
[9] William G. Dwyer and Hans-Werner Henn, Homotopy theoretic methods in group cohomology, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2001. MR MR1926776 (2003h:20093)
[10] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 2002k:55001
[11] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York, 1959. MR 21 \#5186
[12] D.M. Kan and W.P. Thurston, Every connected space has the homology of a $K(\pi, 1)$, Topology 15 (1976), $253-258$.
[13] Richard M. Kane, The homology of Hopf spaces, North-Holland Publishing Co., Amsterdam, 1988.
[14] Saunders MacLane, Homology, first ed., Springer-Verlag, Berlin, 1967, Die Grundlehren der mathematischen Wissenschaften, Band 114. MR MR0349792 (50 \#2285)
[15] Robert Messer and Philip Straffin, Topology now!, Classroom Resource Materials Series, Mathematical Association of America, Washington, DC, 2006. MR MR2204709 (2006i:57001)
[16] John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357-362. MR MR0084138 $(18,815 \mathrm{~d})$
[17] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 \#4063
[18] R. Y. Sharp, Steps in commutative algebra, second ed., London Mathematical Society Student Texts, vol. 51, Cambridge University Press, Cambridge, 2000. MR 2001i:13001
[19] Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York, 1966, Corrected reprint of the 1966 original. MR 1325242 (96a:55001)
[20] Norman E. Steenrod, Cohomology operations, and obstructions to extending continuous functions, Advances in Math. 8 (1972), 371-416. MR MR0298655 (45 \#7705)
[21] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 95f:18001

[^0]: ${ }^{1}$ These notes were modified April 20, 2016

[^1]: ${ }^{2}$ The long exact sequence of a pair adorns the facade of the university library in Warsaw.

[^2]: ${ }^{1}$ Some authors use the term "semi-simplicial set" instead since it is a "simplicial set" without degeneracies. See [21, Historical Remark 8.1.10]

[^3]: ${ }^{1}$ A space Y is an ANR if every continuous map into Y from a closed subspace of a normal space extends to an open neighborhood of the closed subspace.

