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VorLume XXXIII, Part IIT NovemBER 1945

ON THE USE OF MATRICES IN CERTAIN
POPULATION MATHEMATICS

By P. H. LESLIE, Bureau of Animal Population, Oxford University
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1. INTRODUCTION

If we are given the age distribution of a population on a certain date, we may require to
know the age distribution of the survivors and descendants of the original population at
successive intervals of time, supposing that these individuals are subject to some given age-
specific rates of fertility and mortality. In order to simplify the problem as much as possible,
it will be assumed that the age-specific rates remain constant over a period of time, and the
female population alone will be considered. The initial age distribution may be entirely
arbitrary; thus, for instance, it might consist of a group of females confined to only one of
the age classes.

The method of computing the female population in one unit’s time, given any arbitrary
age distribution at time ¢, may be expressed in the form of m + 1 linear equations, where
m to m+ 1 is the last age group considered in the complete life table distribution, and when
the same unit of age is adopted as that of time. If

1, = the number of females alive in the age group x to 2+ 1 at time ¢,

P, = the probability that a female aged z to 2+ 1 at time ¢ will be alive in the age group
x+1tox+2at timet+1,

F, = the number of daughters born in the interval ¢ to ¢+ 1 per female alive aged x to x + 1
at time ¢, who will be alive in the age group 0-1 at time ¢ + 1,

then, working from an origin of time, thie age distribution at the end of one unit’s interval
will be given by

m

zz==:0'F 2Mz0 =Ny
Pyngo =7y
Pin,y =Ny
Pyngy = N3
F m—1"m-1,0 = "m1
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or, employing matrix notation, Mn, = n,, where n, and n, are column vectors giving the
age distribution at ¢ = 0 and 1 respectively, and the matrix

F, ﬁ.’l ¥k .. . F K., .. E,, F,
P, .
P .
M= e eeeenen 0<P,<1; F,20.
‘Pk—l .
B,
L Pm—l J

This matrix is square and consists of m + 1 rows and m + 1 columns. All the elements are
zero, except those in the first row and in the subdiagonal immediately below the principal
diagonal. The P, figures all lie between 0 and 1, while the F, figures are by definition neces-
sarily positive quantities. Some of the latter, however, may be zero, their number and
position depending on the reproductive biology of the species we happen to be considering
in any particular case, and on the relative span of the pre- and post-reproductive ages. If
F,, = 0, the matrix M is singular, since the determinant | M | = 0.

Since Mny = n,,and Mn, = M ﬁo = My, etc., the age distribution at time ¢ may be found by
pre-multiplying the column vector {7, %y ... ), i.e. the age distribution at ¢ = 0, by
the matrix M*. Moreover, it will be seen that with the help of the Jth column of M the age
distribution and number of the survivors and descendants of the n;_y 0 individuals, who were
alive at ¢ = 0, can readily be calculated. Thus, M;_1,0 times the sum of the elements in the jth
column of M! gives the number of living individuals contributed to the total population at
time ¢ by this particular age group.

2. DERIVATION OF THE MATRIX ELEMENTS

The basic data, from which the numerical elements of this matrix may be derived, are given
usually in the form of a life table and a table of age specific fertility rates. To take the P,
figures first; if at £ = 0 there are 4 females alive in the age group  to z + 1, the survivors of
these will form the 2+ 1 to  + 2 age group in one unit’s time, and thus Pynyy = nyy14. Then
it-is usually assumed (e.g. Charles, 1938, p. 79; Glass, 1940, p- 464) that

La:+1
L,’

P, =

z+1
where L,= f 1, dx,

x
or the number alive in the age group « to x + 1 in the stationary or life table age distribution.
This method of computing the survivors in one unit’s time would be exact if the distribution
of those alive within a particular age group was the same as in the life-table distribution.

The F, figures are more troublesome, and in the mumerical example which will be given

later they were obtained from the basic maternal frequency figures (m, = the number of
live daughters born per unit of time to a female aged = to z + 1) by an argument which ran
as follows. Consider the n,, females alive at ¢ = 0 in the age group z to  + 1, and let us sup-
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pose that they are concentrated at the midpoint of the group, z+ 4. During the interval of
time 0-1 some of these individuals are dying off, and at t = 1 the =, +1,1 Survivors can be
regarded as concentrated at the age x+ 1. Although these deaths are taking place con-
tinuously, we may assume them all to occur around ¢ = 4, so that at this latter time the
number of females alive in the age group we are considering changes abruptly from Mg tO
Nyy1,1 = FpNgy. Then during the time interval 0-} these 7, females will have been exposed
to the risk of bearing daughters, and the number of the latter they will have given birth to
per female alive will be given by the maternal frequency figure for the ages x+ % to x + 1.
This figure may be obtained by interpolating in the integral curve of the m, values, and thus
expressing the latter in } units of age throughout the reproductive span instead of in single
units. The daughters born during the interval of time 0-} will be aged 1-1 at ¢ = 1, the
number of them surviving at this time being determined approximately by multiplying the

1
appropriate m,,, figure by the factor 2| I,dx according to the given life table. Similarly,
z+3 18 y s (7 g y

each of the P,n,, females during the interval of time }-1 give birth to m, +1-z+13 daughters,
the survivors of which form part of the 0-} age group at ¢ = 1. The survivorship factor is

3
in this case taken to be 2f l de.
0

Combining these two steps together we obtain a series of F, figures, which may be defined
as the number of daughters alive in the age group 0-1at ¢ = 1 per female alive in the age group
ztox+1att=0. Putting

3 1
ky = 2f ldx, k,= f l,dx,
0 3
then Fyo= (kgmy g iy +ly Pymy g giy),s
and % Fyngy = ny,,
=0

the total number of daughters alive aged 0-1 at ¢ = 1.

3. NUMERICAL EXAMPLE

In order to see whether the P, and F, figures obtained in this way from the basic data give
a reasonably accurate estimate of the population in one unit’s time, a numerical example
was worked out for an imaginary rodent population, the species chosen being the brown rat,
Rattus norvegicus. Full details of the basic life table and fertility table which were used are
given in an appendix, together with a short account of the genesis of these tables and the
methods employed to estimate the rate of natural increase () and the stable age distribution.
Compared with man, the fertility of this imaginary rat population was relatively very great;
thus, the gross reproduction rate was 31-21 daughters and the net rate (Ry) 25-66, the life
table used being a reasonably good one. The inherent rate of natural increase was estimated
to be 0-44565 per head per month of 30 days, and the stable age distribution was so overladen
with young that the proportion of females in the post-reproductive age groups was negligible.
Some 74:45 9, of the females were younger than 3 months, at which age breeding was
assumed to commence.

By definition the Malthusian age distribution is stable; that is to say, once a population
subject to the given rates of fertility and mortality achieves this form of distribution, it
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continues to increase e’ times every unit of time and the proportions of the population alive
in each group remain constant. Thus, in the present example, given 100,000 females dis-
tributed as to age in the stable form at ¢ = 0, the number alive in each age group in 1 month’s
time can be immediately calculated by multiplying each element in the original distribution
by 1-561505. This ‘true’ age distribution at ¢ = 1 is compared in Table 1 with that obtained
by operating on the original distribution with the P, and F, figures, which are given in
Table 5 of the Appendix.

The agreement between the true and estimated age dlstnbutlons is remarkably close. It
might be expected that the principal errors would occur in the early age groups, since the

Table 1
) @) @) @)
(Units of Population Expected popula- | Population at ¢=1
30 days) at t=0 tion at =1 Estimated by

Age group Stable age Col. 2 x operating on col. 2
distribution 1-561505 with the matrix M

0- 37,440 58,463 58,374

1- . 22,595 35,282 35,455

2- 14,417 22,612 22,519

3- 9,227 14,408 14,406

4- 5,903 9,218 9,218

5- 3,775 5,895 5,896

6- 2,413 3,768 3,768

7- 1,642 2,408 2,407

8- 984 1,537 1,637

9- 627 979 980

10- 399 623 623

11- 254 397 396

12- 161 251 251

13- 101 158 159

14~ 64 100 99

15- 40 62 62

16- 25 39 39

17- 15 23 24

18- 9 14 14

19- 6 9 8

20- 3 5 5

Total 100,000 156,151 156,239

The span of the reproductive ages js from 3 to 21 months.

P, figures are based on the stationary age distribution which is clearly very different from the
stable form. However, as will be seen from Table 1, the biggest error from this cause is due
to the first P, which overestimates the number alive in the 1-2 age group at ¢ = 1 by some
0-5 %. The F, figures underestimate the number alive in the 0-1 group by 0-2 %, and the
total population is overestimated by 0-06 %. On the whole these results are satisfactory
and, judging from this example, it would seem that the matrix M operating on a given age
distribution should give a reasonable estimate of the population in one unit’s time, provided
that the unit of time and age chosen be not too coarse as compared with the life span of the
species. The degree of cumulative error which is introduced by continued operation with the
matrix will be considered later.
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4. PROPERTIES OF THE BASIC MATRIX
The matrix M is square and of order m + 1; it is not necessary, however, in what follows to
consider this matrix as a whole. For, if z = k is the last age group within which reproduction
occurs, F, is the last F, figure which is not equal to zero. Then, if the matrix be partitioned
symmetrically at this point, A4 .
u-[4 ;]

The submatrix 4 is square; B is of order (m —k) x (k+ 1); C again is square consisting of
m — k rows and columns, the only numerical elements being in the subdiagonal immediately
below the principal diagonal. The remaining submatrix is of order (k+ 1) x (m —k) and
consists only of zero elements. Then in forming the series of matrices M2, M3, M4, etc.,

w={ inoy o)

The submatrix C is, however, of such a type that Om—* = 0, so that M, t >m — k, will have
all its last m —k columns consisting of zero elements. This is merely an expression of the
obvious fact that individuals alive in the post-reproductive ages contribute nothing to the
population after they themselves are dead. It is the submatrix 4 which is principally of
interest,and in the mathematical discussion which follows, attention is focused almost entirely
on it and on age distributions confined to the prereproductive and reproductive age groups.

- The matrix 4 is of order (k+ 1) x (k+ 1), where z = k is the last age group in which repro-
duction occurs, and written in full,

—Fo Fl Fz Fs Fk—l Fk_

....................................

This matrix is non-singular, since the determinant |A | = (—1)¥+2(FPP,... B,_, F,).
There exists, therefore, a reciprocal matrix of the form

" . Pyt . . . 7
Pt .
4-1=] - . . P32
. . . . P,

| Fii' —(BF) B, —(BE)H —(BRE)'F, ... — (B, F)"F_,|
Thus, given an initial age distribution n,, (x = 0,1,2,3,...,k) at ¢ = 0, in addition to the
forward series of operations 4n,, A'zno, A3n,, ..., etc., there is also a backward series A1,
A~%ny, A-3n,, ..., ete. There is, however, a fundamental difference between these; for,

whereas the forward series can be carried on for as long as we like, given any initial age dis-
tribution, the backward series can only be performed so long as n, remains =0, since a
negative number of individuals in an age group is meaningless. Apart from this limitation,
it is possible to foresee that the reciprocal matrix might be of some use in the solution of
certain types of problem.
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5. TRANSFORMATION OF THE CO-ORDINATE SYSTEM

Hitherto an age distribution n,, has been regarded as a matrix consisting of a single column
of elements. For simplicity in notation, this column vector will now be termed the vector
£ and different £’s will be distinguished by different subscripts (£,, £,, etc.). We may picture
an age distribution as a vector having a certain magnitude and related to a definite direction
in a vector space, the space of the £’s. The different age distributions which may arise in the
case of any particular population will be assumed to be £’s all radiating from a common origin.
The numerical elements of a £ vector are thus taken to be the co-ordinates of a point in
multi-dimensional space referred to a general Cartesian co-ordinate system, in which the
reference-axes may make any angles with one another. At this point in the argument another
type of vector will be introduced, which in matrix notation will be written as a row vector,
and which will be termed the vector 5. There is an intimate relationship between this new
type and the old, for, associated with each vector £,, there is a uniquely determined vector
74, and vice versa. The inner or scalar product, 7,£,, is the square of the length of the vector
£, Either we may picture each of these vectors as associated with a different kind of vector
space, the space of the £’s and the dual space of the 9’s, which are not entirely disconnected
but related in a special way; or, alternatively, we may regard them as two different kinds of
vector associated with the same vector space. The relationship between % and £ is precisely
the same as that between covariant and contravariant vectors in differential geometry.

If we pass from our original co-ordinate system to a new frame of reference, and the
variables # and § undergo the non-singular linear transformations,

n=¢H, £=H'Y, |H[+0,

it can be seen that since the variables are contragredient, #§ = ¢y, so that the square of the
length of a vector remains invariant. Moreover, since the result of operating on a vector £,
with the matrix 4 is, in general, another vector &,, where &, and £, are both referred to the
original co-ordinate system, it follows that in the new fraie of reference which is defined by
the linear transformations given above, the relationship

Aga =§
becomes HAHY, = i,
or B¢a = l‘/fb‘

Thus, in the new frame of reference the matrix B = HAH-! operating on the vector yr, is
equivalent to the matrix 4 operating on the vector £, in the original frame.

Itis convenient, for the purposes of studying the matrix 4 and of performing any numerical
computations with it, to transform the variables 7 and £ in the above way, choosing the
matrix H so as to make B = HAH™! as simple as possible. For B = (HAH-1) = HA'H1,
and since 4 is non-singular, by the reversal law, (HAH-1)"' = HA-1H-. Thus, if f(4) is
a rational integral function of A4, f(B) = f(HAH-') = Hf(A) H1; and the properties of
matrix functions f(4) can be studied by means of the simpler forms f(B). Moreover, the
matrices 4 and B have the same characteristic equation and, therefore, the same latent
roots. For B—Al = H(A—AI)H! and, forming the determinants of both sides,

| B=| = |H||A-AT||H|,
so that the characteristic equation is
|A—AI|=|B-AI|=0.
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If, in the present case, the transforming matrix is taken to be

[(BBE;... B y) : . T

(Be—2Bi—1)
B,

1

in which, it is to be noted, the only numerical elements lie in the principal diagonal and are
derived entirely from the life table, then

(f, B F RRF, RPBREF .. (RBP,..P_ )F,
1
. 1 .
B=HAH=| 1
1
_ 1 i

Comparing this matrix B with the original form 4, it can be seen that the latter has been
simplified to the extent that the original P, figures in the principal subdiagonal are now re-
placed by a series of units, and the matrix 4 has been reduced to the rational canonical form
B = HAH! (see Turnbull & Aitken, 1932, chap. v). In this way any computations with the
matrix 4 are made easier, and we may work henceforward in terms of ¢ and ¢ vectors
together with the matrix B, instead of with the original 7 and £ vectors, and the matrix 4.
Any results obtained in this new system of co-ordinates may be transformed back again
to the original system whenever necessary. It is evident that by suitably enlarging H the
original matrix M may be transformed in a similar way.

This linear transformation of the original co-ordinate system is equivalent biologically
to the transformation of the original population we were considering into a new and com-
pletely imaginary type which, although intimately connected with the old, has certain quite
different properties. Thus, it can be seen from the transformed matrix B that the individuals
in this new population, instead of dying off according to age as the original ones did, live
until the whole span of life is completed, when they all die simultaneously. This is indicated
by the P, figures being now all equal to unity; an individual alive in the age group z to z + 1
at t = 0 is certain of being alive at f = 1, excepting in the last age group of all where none of
the individuals will be alive in one unit’s time. Accompanying this somewhat radical change
in the life table, there is a compensatory adjustment made in the rates of fertility so that the
new population has the same inherent power of natural increase (r) as that of the old. This
follows from the fact that the latent roots of the matrices 4 and B are the same, and, as
will be shown later, the dominant latent root is closely related to the value of » obtained by
the usual methods of computation. Insomuch as the transformation is reversible and
A = H-'BH, it can be seen that by changing H we could transform the canonical form B,
if we wished, into another matrix in which the P, subdiagonal might be a specified set of
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figures derived from some other form of life table. But, for our present purposes, the canonical
form B, in which all the P, figures are units, offers advantages over any other matrix of a
similar type owing to the greater ease with which it can be handled.

6. RELATION BETWEEN THE CANONICAL FORM B AND THE L,m, COLUMN

The actual computation of the matrix B by way of the steps indicated in the theoretical
development is by no means difficult, although it is a somewhat tedious process, particularly
if the matrix is of a large order. The numerical elements in the first row of B for the brown
rat are given in Table 5 of the Appendix. These values were obtained from the F, and P,
figures which have already been used in the numerical example in § 3 and which will be found
in the same table. Further reflection suggested, however, that instead of first of all obtaining
4 and then transforming to B, a short cut could be taken which would save labour and
which also would tend to eliminate some of the small cumulative errors arising in the longer
method.

The series of values P, PP, F,PP, ..., (FP,B,... P,_,) by which the individual F,
figures are multiplied in order to obtain the first row of B, is essentially a stationary age
distribution. For, since by definition,

x

(P,P,P,... )_L“1
0

where L, = f l,dz. Hence the required series of multipliers is given by a stationary age

distribution in which only one individual is alive in the age group 0-1. Now, the F, figures,
as defined in § 2, already contain within them some allowance not only for the probability
of survival during the first unit of life, but also for the fact that some adult individuals in
each age group are dying off during the interval of time 0-1. The process of multiplying F,
by (FyP,F,... P, ;) is thus analogous to the formation of the L,m, column, by means of
which the net reproduction rate is estimated. The chief difference between the first row of B
and the L,m, distribution is that in the former the maternal frequency is expressed as
between the ages of x+} to 2+ 1}, instead of between x to x+ 1 as in the latter. If each
element (Fy P, F,... P, | F,) of the first row of B is regarded as centred at the age of z+1,
the sum, mean and seminvariants of this ‘distribution’ may be estimated and compared
with the values which are obtained from the L,m, column in the process of calculating r by
the usual methods. In the present numerical example the results of this comparison were
as follows:

After allowing for the small cumulative errors which might be expected to occur in the
calculation of the matrix elements, there is a substantial agreement between the respective

Parameter L,m, column First row of B
Sum (R,) 25-65786 25-6603
Mean 9-60604 9-5948
My 14-14397 14-1839
mg 22-15696 21-9358
my—3m3 —117-6480 —117-920
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estimates. This agreement strongly suggests that if we had wished to pass immediately to
the matrix B without going through the laborious process of calculating the F, and F,
figures, the elements of the first row could have been obtained by forming a new L,m,
column in which the age group limits were shifted a half unit later in life. This could readily
be done by interpolating in the integral curve of the L,m, values for the ages x+ }. This
method of forming the first row of B has been adopted in other instances, when the matrix 4
was not of any immediate interest. It proved to be relatively quick and certainly less
laborious than the method of first establishing 4 and then transforming to B which was the
one used in the present numerical example.

7. THE STABLE AGE DISTRIBUTION

The result of operating on an age distributon ,, with the matrix B is, in general, a different
distribution y,. But, in the special case when the relation between the two distributions is

such that B¢ — Aw ,

where A is an algebraic number, then ¥, may be said to be a stable age distribution appro-
priate to the matrix B. For the sake of brevity it will be referred to as a stable ¥. Similarly
for initial row vectors, if $. B = Ad,,
then ¢, is said to be a stable ¢.
The matrix equation defining a stable  may be written as k£ + 1 linear equations, of which

the sth is k+1

2 bijnj'—An,i = O,

i=1

where n; (¢ = 1,2, ...,k+ 1) are the co-ordinates of the stable i, and b,; the element in the
t1th row and jth column of B. Eliminating the n; from this system of equations, we obtain
the characteristic equation of B, namely,

| B=AI| = 0;
and, expanding this determinant in powers of A, we have in the present case,
N4t Fo X~ By Fy Nt = Py B Ao — .. = (By P .. Py_g) By s A= (ByP ... By_) Fy = .

The k+ 1 roots A, of this equation are the latent roots of B, and corresponding to each dis-
tinct A, there is a pair of stable vectors, ¢, and ¢, determined except for an arbitrary
scalar factor.

Once a latent root A, has been determined, it is a comparatively simple matter to find the
appropriate stable y, and ¢, vectors. Thus, it is easily shown that the stable ¥, is the column
vector {AXAE-1x%~2_ A 1}. A short method of estimating @, is the following. Suppose, to
take a simple case, that

a b c d

and let y, (x = 1, 2, 3, 4) be the elements of the stable ¢, appropriate to the root A,. Then
PuB =[ay,+y, by, +ys cyi+y, dy, ]
=[ ’\ayl Aa?lz Au?/a AayG]'
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c+Y,y

Aq
see how the required row vector can be built up. Having in this way obtained the stable
¥ and ¢ vectors for the matrix B, they may be transformed to the appropriate stable §
and 7 for the matrix A by means of the relations

n= ¢H’ £= H“Wﬂ

The characteristic equation of the matrix B, when expanded, is of degree k+ 1 in A, and
once B has been obtained this equation can immediately be written down, since the numerical
coefficients of A¥, k=1 A¥-2 etc., are merely the elements of the first row taken with a negative
sign. Since there is only one change of sign in this equation, only one of the latent roots
will be real and positive. Excluding the rather special case when the first row of B has only
a single non-zero element, and taking the more usual type of matrix which will be met with,
namely, that for a species breeding continuously over a large proportion of its total life span,
it will be found that the modulus of this root (A,) is greater than any of the others,

[ AL > A > As|> o> | Appa |,
the remaining roots being either negative or complex.

This dominant latent root A, which will be Z1 according as to whether the sum of the
elements in the first row of B is Z1, is the one which is principally of interest. Since it is
real and positive, it is the only root which will give rise to a stable ¥ or £ vector consisting
of real and positive elements. It is this stable £, associated with the dominant root A; which
is ordinarily referred to as the stable age distribution appropriate to the given age specific
rates of fertility and mortality. Since

By equating similar elements and putting y, = 1, y, = d/A,, y3 = , ete., it is easy to

Algy = Mg,
it can be seen that the latent root A, of the matrix A and the value of r obtained in the usual
way from @
f e, mydx = 1,
0

are related by log, A, = r.

From the mathematical point of view, however, the negative and complex roots of the
characteristic equation are of importance in the further theoretical development. Moreover,
as will be shown later, the stable vectors associated with them are not entirely without
interest. Two main cases then arise: when the remaining roots are all distinct, and when
there are repeated roots. For the present it will be assumed that the latent roots of the
matrix are all distinct.

8. PROPERTIES OF THE STABLE VECTORS _
Before proceeding further it is necessary to mention briefly the reasons why the methods
given above for the computation of the stable i and ¢ vectors were adopted, apart from their
simplicity in practice. If the k+ 1 distinct roots of the characteristic equation are known,
we may form a set of £+ 1 matrices f(A,) by inserting in turn the numerical value of each root
in the matrix [ B— A, I]. The adjoint of f(A,) is
FQ,) = TLIB=AJ] and f(A) F(A,) = 0.
It may be shown that the stable ¥, appropriate to the root A, can be taken proportional to

any column, and the stable ¢, proportional to any row of the matrix F(A,) (see e.g. Frazer,
Duncan & Collar, 1938, chap. 11). Moreover, F(A,) is a matrix product of the type y¢,
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where the ¢ vector is given by the first column and the ¢ vector by the last row of F(2,),
each divided by the square root of the element in the bottom left-hand corner; and the
trace of the matrix is equal to the scalar product ¢yr. Now [B— A, I] is a square matrix of
order k + 1 with only zero elements below and to the left of the principal subdiagonal, which
itself consists of units. The product of k& such matrices, which gives F(A,), will have therefore
a unit in the bottom left-hand corner. Since the stable ¢, and ¥, vectors obtained by the
methods suggested in § 7 have respectively their first and last elements = 1, it follows that

¢a¢a = F(Aa)y ¢a¢a = trace Iv((‘“a)‘
The stable vectors may now be normalized. If the scalar product, ¢,y, = 22, say, then

¢a ¢a

[z]z]
From now on it will be assumed that the stable vectors appropriate to each of the latent

roots have been normalized in this way.
These vectors have the following important properties:

(1) The k+ 1 stable i are linearly independent. There is thus no such relationship, with
non-zero coefficients c, as

et e¥ategPst ...+ 0 Ypy = 0.
(2) The scalar product of a stable ¥, i, with the associated vector of another stable
¥, Y is zero, i.e. Gota =0 (akb).
The normalized stable ¥ thus form a set of k+1 independent and mutually orthogonal

vectors of unit length.

(3) Any arbitrary ¢/—, say—can be expanded in terms of the stable y, thus

Vo= 1Y+t ca¥a+ . 4 1 Vigas

where the coefficients ¢ may be either real or complex. Similarly an arbitrary vector ¢, can
be expanded in terms of the stable ¢.

9. THE SPECTRAL SET OF OPERATORS

The matrix product ¥,¢, of the normalized stable vectors associated with the latent root
A, will be termed the matrix S,. From the relationships which have already been given, it
can be seen that S, is merely the adjoint matrix F(A,) of the previous section after each
element in the latter has been divided by the sum of the elements in the principal diagonal;
in other words it is the normalized F(},). In the case of all the latent roots being distinct,
there are thus k + 1 matrices S,, and these S, form a spectral set of operators with the following
properties: P

82=28, 8,8=0 (a+b), X8,=1.

a=1

Moreover, if f(B) is a polynomial of the matrix B, we have by Sylvester’s theorem (Turnbull
& Aitken, 1932, chap. v, §8)

k+1
f(B) = glf(/\a) Sa’
so that the matrix

B = A8+ 24,8+ o+ 4181, and Bl = A8+ A48, + ...+ Ay Spar.
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If the latent roots in the expansion of B are raised to a high power, the term associated with
the positive real root predominates over all the others, so that when ¢ is large, we have

approximately Bt = M8,

In any particularcase the power to which B will have to be raised in order that this equation
should be approximately true, will depend both on the order of the matrix and on the relative
magnitude of the dominant root as compared with that of the remaining roots.

At this point it is possible to attach some biological meaning to one of the ¢ or n row vectors,
which in the first place were introduced into the theory for reasons of symmetry, and which
were defined solely in terms of their mathematical properties. If at a given moment a trans-
formed population has an arbitrary age distribution ¢, and the sequence By, B2, ..., B,
is formed, it can be seen that when # is large and y, is expanded in terms of the stable i, we

have approximately BYr, = e, o).

Thus, a population with any arbitrary age distribution tends ultimately to approach the
stable form appropriate to the given rates of fertility and mortality, provided that these
age-specific rates remain constant. This theorem is, of course, well known; and it is clear
that the achievement of the stable form of age distribution associated with the dominant
latent root is very unlikely to occur in practice, except in the case when the initial distribu-
tion is already of that form or exhibits only small departures from it. Now, it has already
been shown that the sums of the columns of a matrix B!provide a measure of the contributions
made to the population at time ¢ per individual alive in the respective age groups at ¢ = 0.
When ¢ is large, the matrix B'is equivalent to the matrix 8, multiplied by a scalar factor.
From the way in which this latter matrix was constructed by the outer multiplication of
Y1 and ¢, it is evident that the sums of the columns of 8 are proportional to the vector ¢,.
Thus, transforming back again to the original co-ordinate system, the stable 7, associated
with the dominant latent root provides a measure of the relative contributions per head
made to the stable population by the individual age groups.

10. REDUCTION OF B TO CLASSICAL CANONICAL FORM

From the k+ 1 stable ¢ a matrix @ can be constructed, whose columns are the stable y
arranged, reading from left to right, in descending order of the moduli of the roots with which
they are associated. Corresponding to every pair of complex roots, u + iv, there will be in
this matrix a pair of columns consisting of complex elements, the one column being the
conjugate complex of the other. Some of the columns associated with the negative roots
may be purely imaginary owing to the normalization of the corresponding ¥ and ¢ vectors.
In a similar way a matrix U may be formed, whose rows, reading from above down, are the
stable ¢ arranged in the same order. Since the stable ¢ and ¥ are normalized, and DY =0
for a + b, UQ = I,

and, therefore, U and @ are reciprocal matrices. By premultiplying and postmultiplying
respectively with U and @, the matrix B may be reduced to the classical canonical form C,
in which the only elements lie in the principal diagonal and consist of the latent roots
arranged in the order prescribed above. This reduction of B to a purely diagonal form by
means of the collineatory transformation UBQ = C is, however, only possible in the type
of matrix we are considering, when the latent roots are all distinct.
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The expansion of an arbitrary ¥, in terms of the stable ¢,

Yo=C1¥1+Ca¥n+t ... + 1 Virrs
may be written in matrix notation as ¥ = @,

where ¢ is the column vector {¢,cy¢;... ¢, ,}. Similarly, the expansion of the vector ¢,
associated with i, may be written ¢ = dU

where d is the row vector [d,d,ds...d; ,]. This is again a transformation to another co-
ordinate system, but this time the reference axes are at right angles to one another. Since
the variables transform contragrediently, dc = ¢y = 5§. At this point it is necessary to
make some assumption as to the relationship between the elements of the vectors d and c.
Since these elements may be either real or complex, it will be assumed that

=7
d=7¢c,

where the row vector ¢’ is the transposed conjugate complex of the column vector ¢. Hence,
the square of the length of a vector referred to this orthogonal co-ordinate system is given
by ¢’c, a number which is essentially real and non-negative. (The assumption that d = ¢’
will be found, in the particular case studied here, to lead to values of ¢’c which, although
real, may be negative.)

11. THE RELATION BETWEEN ¢ AND i/ VECTORS

Since ¥, = Qc,, and the associated ¢, = ¢, U, it may be seen from the relations given in the
two previous sections that 3, = Uy, =Gy,

The matrix G = U'U is symmetrical and all its elements are real numbers, those in the
principal diagonal being necessarily positive in sign. It therefore remains unaltered after
transposition. Since the elements of the vector ., which is by definition an age distribution
transformed by the matrix H, are also necessarily real, we may write

¢ = Y24
The role of the matrix @ is therefore the same as that of the double covariant metric tensor
gmn i the tensor calculus. It transforms any i vector into its associated ¢ vector. This
process is reversible, the reciprocal matrix being given by G-! =.Q@".
The magnitude of a vector ¥, is defined by the equation

r= (wz’c G'/,z)*’
where the square root is taken with a positive sign. If we have two vectors ¢, and ¥, both
radiating from the common origin, the angle between them is given by

4
cosf = M’,
xy

from which it follows that when ¥, Gy, = @, ¥, = 0, the two vectors are at right angles to
one another, and when cos@ = 1 their directions are the same. If, in the last equation, we
take i, to be the stable vector ¥, associated with the dominant latent root A,, then knowing
the magnitude of a vector B4/, and the angle which it makes with the ¢, axis, we can obtain
a graphical representation of the way in which a particular age distribution approaches the
stable form. :
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The matrix G also defines the angles between the reference axes of the co-ordinate system.
If we introduce into the vector space of the y’s a system of reference axes defined by the
unit column vectors

ee. ={1 0 0 ... 0}
e ={0 1 0 ... 0
e ={0 0 1 ... 0
ek+1={0 O O cen 1}

then the distance from the origin of the unit point e; is

Oe; = gis»
and the angle between any two of the co-ordinate axes is given by

9ij
cosfy; = 4,
4 v (9::955)
where, in both cases, g;; is the element in the ith row and jth column of G.
By transforming back to the original co-ordinate system, the metric matrix associated
with the vector space of the £’s will be found to be

G, =HG,H.
Hitherto we have been chiefly concerned with an operator B which, acting in the vector
space of the §’s, has the power of transforming g vector ¥, into what is in general a new vector

¥y- We may now have reason to inquire how the associated vectors ¢, and ¢, are related in
the vector space of the ¢’s,.whenever

B’ﬁm = ¢‘y'
Since Yo=G¢, and y, =G,
we have GBG1¢, = ¢;,
and hence, by transposing,
$,GB'G =¢,.

Thus, the matrix which transforms ¢, into ¢, is not the same as that which transforms [/
into ¢,. In order to distinguish these two operators, they will be referred to as B, and B,
respectively. In the few numerical examples which have been worked out, the matrix By
differed greatly from the rational canonical form By, and consisted of (k+ 1) real elements,
some of which were negative. In addition to the relationship

B¢ = G“lB"k G,
it was also found that in the case of distinct latent roots
B¢_= XISI+X282+1383+ oo +Xk+lsk+l,

where the S, matrices are the spectral set of operators defined in §9 and A, is the conjugate
complex of the latent root A,. It may be seen from this expansion of By that the necessary
condition for B, = B, is that all the latent roots of B should be real, the one positive and the
remainder negative. (It is to be noted that we are dealing here with the case of distinct
latent roots; it would appear that even if all the A were real, B, + B, in the case of repeated
roots.) Unless, however, the matrix B is of a small order, it is unlikely that this condition
would be fulfilled, since in the more usual-sized matrix we shall be dealing with in the case
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of human or other mammalian populations, some of the roots will almost certainly be
complex.*

It seems unlikely that the equations given in this section will have very much practical
application at the moment; they have been included merely to fill in the picture of the
relationship between the two types of vector. For all ordinary purposes no one would choose
to work in terms of ¢ vectors and the operator By, instead of the more obvious ¥ vectors
and the more simple matrix form B,. Nevertheless, since it has been necessary to assume
that there are such vectors as 7 or ¢ associated with every £ or ¥, and since these vectors
play such an important part in the mathematical theory, the question naturally arises as to
what significance must be attached to them from the biological point of view. Have they in
fact any real meaning at all? Or must they be regarded purely as mathematical abstractions?
At the end of §9 it has been suggested that the row vector associated with the stable £,
appropriate to the dominant latent root is a measure of the contributions made to the stable
population per individual female alive in the respective age groups of the initial distribution;
but this is a special case and the interpretation offered here is not applicable, even in a wider
form, to 7 vectors in general. It may well be, of course, that the latter as a class have no
concrete meaning : and that in seeking to define them in terms of some property or character-
istic of an age distribution one is merely attempting the impossible. But the fact of one 7
vector having been defined in non-mathematical terms, even though on further consideration
some revision may be needed of the actual definition given here, suggests that impossible
may perhaps be too final a word to use in this connexion.

12. CASE OF REPEATED LATENT ROOTS

When any of the latent roots other than the real positive dominant root are repeated, a
number of the relations given in the previous sections no longer hold good and certain
equations must therefore be modified. Suppose a root A, has a multiplicity s, and consider
the matrix f(A,) such as, to take a simple example,

a—A, b c d

R 1 —-A, 0 0
f( a)_ 0 1 —Aa 0
0 R

Then, since the determinant | f(A,) | = 0 and at least one of the first minors of order 3 is not
equal to zero, the above matrix has rank 3 and, therefore, nullity 1. Hence it can be seen that
f(A,) of whatever order it may be has nullity 1. Since f(A,) is thus simply degenerate, there is
only one stable y appropriate to the s equal roots A, (see e.g. Frazer, Duncan & Collar, 1938,
chap. 11).

Certain consequences immediately follow. Since the matrices Q and U cannot be con-
structed in the way given in § 10, the reduction of B to a purely diagonal matrix by means
of the collineatory transformation UB@ can no longer be carried out. Neither is the expan-
sion of B in terms of the spectral set of S, matrices, nor the expansion of an arbitrary ¢,

- * The interesting theoretical case of the matrix 4 or B having a number of its latent roots real and positive,
with the remainder real and negative, is outside the scope of the present study. The necessary conditions for
this to be true would involve a number of the F, figures becoming negative, a case not considered here, but which

biologically might be held to correspond with the destruction of eggs, or the very young, by eertain age groups,
e.g. as observed by C}lapman (1933) in experimental populations of the flour beetle, 7'ribolium confusum.
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in terms of the stable i, possible in the actual forms given in §§9 and 8. We may, however,
proceed as follows.

The matrix @ is essentially an alternant which has been postmultiplied by a diagonal
matrix N, the elements in the latter being given by the reciprocals of the scalar factors |z |
by which the stable vectors were divided in the process of normalization (%‘i ;—ﬁz—‘il = l) ,

so that @ = XN, where

Aok L AR,
A1 k-1 kel

X=|: .
A A e A
1 1 1

When a root A, is repeated s times, s of the columns in X become the same, and therefore
the matrix becomes singular. In place of this alternant matrix we have the confluent
alternant form (see Turnbull & Aitken, 1932, chap. v1) in which the s columns (s = 0,1, 2, 3,
...,8—1) corresponding to the repeated root A, are written

(ke — 1) A
2!
k—1)(k—2
Mt p-nagr EZDEZ2) 0

A AR

: 32,
: 22, 1
A, 1
1 0 0

the column s being obtained from column 0 (the non-normalized stable ) by the operation

(d—i—)s s!. This confluent alternant form of X is non-singular and therefore a reciprocal
a

matrix can be determined (see Aitken, 1939, § 50). The general classical canonical form of B
obtained by the collineatory transformation, X-*BX = C, has corresponding to the repeated

root A, a diagonal submatrix:

..............................

The matrix product of a column of X with the appropriate row of the reciprocal X-1
gives as before S, and the £+ 1 S, form a spectral set with the same properties as those

defined in § 9, except that
k+1
B+ Y A,S,.

a=1
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In place of this expansion of B in terms of the S, matrices, we have in the case of repeated
roots the confluent form of Sylvester’s theorem, for details of which reference may be made
to Frazer, Duncan & Collar, 1938, chap. 1. Apart from this modification, however, we may
obtain by inspection of the S, the factors by which the respective columns of X must be
divided in order to express this matrix in a form comparable to that of  in § 10. Similarly,
when the respective rows of X~ are multiplied by the appropriate factors, the matrix U is
found and hence @ = U’'U can be constructed. (It is to be noted that (X—1)’ X~ is neither
equal to, nor directly proportional to U’U.) An arbitrary i, can be expanded in terms of
the column vectors of ¢, though in the case of only one column associated with the repeated
root A, does the relationship By, = A, hold.

13. THE APPROACH TO THE STABLE AGE DISTRIBUTION
A stable age distribution appropriate to the matrix B has been defined mathematically by
the equation By =y

and it has already been shown that since only one latent root of B is real and positive, only
one of the stable yr will consist of real and positive elements. But, in addition to this Mal-
thusian age distribution, it is also of some interest to inquire whether any significance can
be attached to the remaining stable i associated with the negative and complex roots of the
characteristic equation.

Any age distribution ¥, the elements of which are necessarily =0, may be expressed as
a vector of deviates from the stable , associated with the dominant latent root, and we may
therefore write the expansion of ¥, in terms of the stable ¥ as

(Yz—c1¥1) = Yot ¥+ .o + ¢ Vi = Ya»

where the coefficients ¢ are given by the vector ¢ = Uy,. Thus, the way in which a particular
type of age distribution will approach the stable form may be studied by means of the
vector 4.

Among the terms occurring in the right-hand side of this expression there will be, corre-
sponding to each negative root, a single term ¢, -, which will consist of real elements alter-
nately positive and negative in sign. (Even if the normalized ¢, is imaginary this term will
consist of real numbers, since in this case ¢, will also become imaginary.) Moreover, corre-
sponding to every pair of complex roots there will be a pair of terms (c,, ¢,, + ¢, ¥,) which
taken together will also give a single vector with real elements. This follows from the fact
that c,, is the conjugate complex of ¢, owing to the way in which the matrix U is constructed.
Then, apart from the scalar ¢, which must necessarily be >0, some of the remaining coeffi-

cients ¢,, C, ..., C,; in the expansion of ¢; may be zero. The first and most obvious case is
when they are all zero, and the age distribution i, is therefore already of the stable form.
But, if either _

l/’d = Cq lﬁa’

where ¥, corresponds to a negative latent root, or

’:ﬁd = leﬁm+cn¢.n:

where ¥, and ¥, are associated with a conjugate pair of complex roots, then it follows that
the age distribution ¢, will, as time goes on, approach the stable form in a particular way
defined by either

B’% = Cq Atwa or Btwld = cm’\tl/,m+cnxt¢n’

Biometrika 33 13
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in which A! for a pair of complex roots » + ¢v with modulus 7 may be written in the form ot
(cos 0t + 1sin 6¢). Thus, the negative and complex latent roots of B serve to determine a
number of age distributions which are of some interest owing to the fact that they will
approach the Malthusian form in what may be termed a stable fashion.

Since |A;|>|A5|>| 23] >...>| A4y ]|, the vector of deviates ¥, will tend towards zero
as t->00 whenever A, Z 1. Thus, in the case of a stationary population, any ¥, will converge
to the stable form of age distribution. But if A, > 1, there is a possibility of one or more of
the remaining roots having a modulus 21, e.g. |A,|=1. In the latter case there may be
certain age distributions with ¢, # 0 for which the amplitude of the deviations from the stable
form tend either to increase (| A; | > 1), or to remain constant (| A,| = 1). From the practical
point of view, however, we may still say that a population with such an age distribution
approaches or becomesapproximately equal to the stable population, since A} is much greater
than A} when ¢ is large.

14. SPECIAL CASE OF THE MATRIX WITH ONLY A SINGLE NON-ZERO F:c ELEMENT

The interesting case of the matrix 4 having only a single non-zero element in the first row has
been illustrated in a numerical example by Bernardelli (1941).* This author has also used
a matrix notation in the mathematical appendix to his paper, and the form of his basic
matrix is the same as that referréd to here as M or A. It is not clear, however, from the
definitions which he gives whether he regards the elements in the first row of his matrix as
being constituted by the maternal frequency figures (m,) themselves, or by a series of values
similar to those defined here as the F, figures. He refers to them merely as the specific
fertility rates for female births.

In discussing the causes of population waves, Bernardelli describes a hypothetical species,
such as a beetle, which lives for only three years and which propagates in the third year of
life. He assumes, for the sake of argument, that—to employ the terminology used here—
Py =} and P, = {, and that ‘each female in the age 2-3 produces, on the average, 6 new
living females’. Assuming for the moment that he is here defining a F, figure, we may, write
this system of mortality and fertility rates as

00 6 0 0 1
A=|3 0 o, B=HAH=|1 0 of.
0% 0 010

The characteristic equation expanded in terms of A is A3—1 = 0; and the latent roots are

3

therefore 1, —} + —2—13, all three being of equal modulus. The matrix 4 has the interesting
properties A2 =471, 43=1,

so that any initial age distribution repeats itself regularly every three years. Thus, as
Bernardelli shows, a population of 3000 females distributed equally among the three age

* At this point I should like to acknowledge the gift of a reprint of this paper, which was received by the
Bureau of Animal Population at a time when I was in the middle of this work, and when I was just beginning
to appreciate the interesting results which could be obtained from the use of matrices and vectors: also a personal
communication from Dr Bernardelli, received early in 1942, at a time when it was difficult to reply owing to the
developments of the war situation in Burma. Although the problems we were immediately interested in differed
somewhat, this paper did much to stimulate the theoretical development given here, and it is with great pleasure
that I acknowledge the debt which I owe to him.
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groups becomes a total population of 6833 at ¢ = 1; of 5166 at ¢t = 2; and again 3000 dis-
tributed equally among the age groups at ¢ = 3. Unless a population has already an initial
age distribution in the ratio of {6 : 3: 1}, no approach will be made to the stable form associ-
ated with the real latent root, and the vector of deviates &; will continue to oscillate with a
stable amplitude, which will in part depend on the form of the initial distribution. Although
this numerical example refers specifically to a stationary population, it is evident that a
similar type of argument may be developed in the case when | A|>1 and 43 = A3].

We have assumed here that his definition of the fertility rate refers to a F, figure. But, if
we were to interpret the words quoted above as referring to a maternal frequency figure,
namely that every female alive between the ages 2-3 produces on the average 6 daughters
per annum, then the results become entirely different. For, deriving the appropriate F,
figures by the method described in § 2, the matrix is now

01 3 0 1 1
A=|1 0 o|, B=HAH1=|1 0o of,
01 0 01 0

3

and the latent roots are 1, — 1 + 14. The modulus of the pair of complex roots is 1 /\/2_, which
is <1, so that every age distribution will now converge to the stable form associated with the
real root. Thus, to take the same example as before, 3000 females distributed equally among
the age groups will tend towards a total population of 4000 distributed in the ratio of
{6:3:1}, and it was found that this age distribution would be achieved at approximately
¢ = 23. During the approach to this stable form periodic waves are apparent both in the age
distribution and in the total number of individuals, but these oscillations are now damped,
in contrast with the results obtained with the first type of matrix.

This simple illustration serves to emphasize the importance which must be attached to
the way in which the basic data are defined and to the marked difference which exists between
what are termed here the m, and F, figures. Nevertheless, apart from the question of the
precise way in which the definition of the fertility rates is to be interpreted in this example,
the first type of matrix with only a single element in the first row does correspond to the
reproductive biology of certain species. Thus, in the case of many insect types the individuals
pass the major portion of their life span in various immature phases and end their lives in a
short and highly concentrated spell of breeding. The properties of this matrix suggest that
any stability of age structure will be exceptional in a population of this type, and that even
if the matrix remains constant we should expect quite violent oscillations to occur in the
total number of individuals.

15. NUMERICAL COMPARISON WITH THE USUAL METHODS OF COMPUTATION

From the practical point of view it will not always be necessary to estimate the actual values
of all the stable vectors and of the associated matrices which are based on them. Naturally,
much will depend on the type of information which is required in any particular case. In
order to compute, for instance, the matrices U, Q and 7, it is necessary first of all to deter-
mine all the latent roots of the basic matrix. The ease with which these may be found depends
very greatly upon the order of the matrix. Thus, in the numerical example for the brown
rat used previously in § 3, the unit of age and time is one month and the resulting square
matrix 4 is of order 21. To determine all the 21 roots of the characteristic equation would be
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a formidable undertaking. It might be sufficient in this case to estimate the positive real
root and the stable vector associated with it. On the other hand, it is possible to reduce the
size of the matrix by taking a larger unit of age, and in some types of problem, where extreme
accuracy is not essential, a unit say three times as great might be equally satisfactory, which
would reduce the matrix for the rat population to the order of 7 x 7. It is not too difficult to
find all the roots of a seventh degree equation by means of the root-squaring method (Whit-
taker & Robinson, 1932, p. 106). But the reduction of the matrix in this way will generally
lead to a value of the positive real root which is not the same as that obtained from the larger
matrix, and it is therefore necessary to see by how much these values may differ owing to
the adoption of a larger unit of time.

Another important point which must be considered is the following. By expressing the
age specific fertility and mortality rates in the form of a matrix and regarding an age dis-
tribution as a vector, an element of discontinuity is introduced into what is ordinarily taken
to be a continuous system. Instead of the differential and integral calculus, matrix algebra

Table 2
Age group ‘True’ Matrix Age group ‘True’ Matrix
- (units of stable age stable age (units of stable age stable age
30 days) distribution distribution 30 days) distribution distribution
0- 37,440 37,362 12- 161 160
1- 22,595 22,644 13- 101 101
2- 14,417 14,444 14- 64 63
3- 9,227 9,238 15- 40 40
4 5,903 5,906 16— 25 24
5- 3,775 3,775 17- 15 15
6- 2,413 2,412 18- 9 9
7- 1,542 1,540 19- 6 5
8- 984 982 20~ 3 3
9- 627 626
10- 399 398
Riw 264 253 Total 100,000 100,000

is used, a step which leads to a great economy in the use of symbols and consequently to
equations which are more easily handled. Moreover, many quite complicated arithmetical
problems can be solved with great ease by manipulating the matrix which represents the
given system of age specific rates. But the question then arises whether these advantages
may not be offset by a greater degree of inaccuracy in the results as compared with those
obtained from the previous methods of computation. It is not easy, however, to settle this
point satisfactorily. In the way the usual equations of population mathematics are solved,
a similar element of discontinuity is introduced by the use of age grouping. Thus, in the case
of a human population, if we were estimating the inherent rate of increase in the ordinary
way, we should not expect to obtain the same value of r from the data grouped in five year
intervals of age as that from the data grouped in one year intervals. The estimates of the
seminvariants would not be precisely the same in both cases. Nevertheless, the estimate
from the data grouped in five year intervals is usually considered to be sufficiently accurate
for all ordinary purposes, and there is little doubt that if we merely require the inherent rate
of increase and the stable age distribution, these methods of computation are perfectly
satisfactory when applied to human data. But, in the case of rodents, and probably also
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other species with high gross and net reproduction rates, it will be found that even a 4th
degree equation in » with the coefficients based on the seminvariants of the L, m, distribution
is, in many examples, not sufficient to give an accurate estimate of the rate of increase, and
it is necessary to arrive at a better value of r in a somewhat roundabout way. Here, the
determination of the positive real root of the characteristic equation for the matrix, once the
latter has been established, may be even quicker than finding a solution from the L, m,
column by a method such as that described in the appendix.

In order to compare the values of r obtained from the characteristic equation of the matrix
with those obtained from the L m, column, both methods were used in the numerical
example for the brown rat, and a comparison was also made between the values when the
data were grouped in 1 month and in 3 month age intervals. In addition, the stable age
distribution appropriate to the positive real root of the matrix was also calculated in both
cases. The results were as follows.

(@) Onemonth unit of grouping ; matriz of order 21 x 21. Using the method of computation
indicated in the appendix, the value of r was estimated to be 0-44565 per month of 30 days.
The positive real root of the characteristic equation was A; = 1:56246, whence r = 0-44626,
a value which differs from the former only in the fourth decimal place. The appropriate age
distributions, expressed per 100,000, are given in Table 2, the ‘true’ stable being obtained
from 41

n, = 100,000bj e, dux.
x

The agreement between these distributions is very good, although the one derived from
the matrix shows certain small rhythmical departures from the ‘true’ distribution par-
ticularly in the earlier age groups. The maximum difference between them in this region,
however, is not greater than 2-2 per thousand. Since the matrix stable distribution is pro-
portional to the columns of the matrix H-18, H, which in turn is proportional to Af when ¢
is large, this agreement between the two distributions also indicates that the cumulative
errors which might be expected in forming the series 42, 43, 44, etc., owing to the P, figures
being based on the life table age distribution, are not very serious. Judging by this example
it seems that satisfactory estimates of the inherent rate of increase and of the stable age
distribution may be made from a large order matrix.

(b) Three months unit of grouping ; matriz of order 7 x 7. Clearly there are several ways in
which a large order matrix may be condensed into one of a smaller order. The method which
was used in the present instance was to construct the first row of the condensed canonical
form B by interpolating in the integral curve of the original L,m, column (1 month units
of grouping) for the ages 4-5, 7-5, 10-5, etc., and taking the first differences of the seven
values thus obtained. Since interpolation was not very satisfactory in the earlier part of
the integral curve—the differences converged rather slowly in this region—the elements
were expressed to only three places of decimals. (Some preliminary transformation of the
integral L,m, figures might have been better in this case.) The characteristic equation,
expanded in terms of A, was found to be

A7~ 1-756A8 — 6-899A° — 7-203A% — 5-344A3 — 3-244A2 — 1-110A — 0-102 = 0.
It will be seen that the sum of the coefficients, R, = 25-658, which is necessarily the same

as the original net reproduction rate owing to the way in which the coefficients were derived.
For interest, the seven roots of this equation were then determined by the root-squaring
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method, using 4-place tables of logarithms and Barlow’s tables of squares (Whittaker &
Robinson, 1932, p. 110). The approximate values of the roots, arranged in descending order
of their moduli, are
A= 4016,
Ay = —1-032,
AgA, = —0-0215 + 0-6762; (mod. = 0-6765),
AsAg = —0-5245 + 0-3486¢ (mod. = 0-6298),
A, = —0-135.
Thus, apart from the positive real root, there are two negative and two pairs of complex
roots. It is interesting to note in passing that in this example the modulus of the second
latent root is > 1 (vide § 13). From the value of the dominant root we find r = 0-4634 per

head per month of 30 days, an estimate of the rate of increase which is 1-71 % per month
higher than that from the large order matrix.

Table 3. Stable age distributions

Age group =3 _ From condensed Summation of
(in months) | 100,006/ = e, dz matrix ‘true’ distribution
0- 75,960 75,762 74,452
3- 18,055 18,267 18,905
6~ 4,514 4,519 4,939
9- 1,120 1,111 1,280
12- 273 267 326
16— 64 61 80
18- 14 13 18
Total 100,000 100,000 100,000

The net reproduction rate given by the new L, m, column which was obtained by working
in units of three months, was 25-6162, a figure somewhat lower than the original one of
25-6579. The rate of increase, estimated in a similar way to the former example for one month
age units, was r = 0-46034, again a higher figure, though one of much the same order as that
obtained from the condensed matrix.

The appropriate age distributions are given in Table 3, together with the ‘true’ distribu-
tion of Table 2 summed in three month age groups.

Compared with the last column, both of the stable distributions for the data grouped in
three month age intervals are tilted towards the younger age classes, so that the number of
immature females ( < 3 months of age) is overestimated, while the remaining age groups are
underestimated. The distributions derived from the integral and from the matrix are again
of much the same order, and the differences between them and the last column, although not
very great, are quite marked.

The four estimates of the inherent rate of increase which have obtained from these
numerical data may be compared in the following table.

In both cases the estimates from the L,m, column and from the matrix agree very well:
for a given unit of grouping both methods would seem to give comparable results. The
differences between the estimates made by the same method are much greater, and the effect
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of increasing the unit of grouping, and in this way shortening the labour, is to increase the
value of r quite appreciably. Whether, or not, we should regard these estimates for the three
months age grouping as satisfactory would depend on the degree of accuracy required in any
particular calculation. It must be remembered, however, that the basic numerical data are
of rather an extreme type in this example. It is doubtful whether any naturally living rat
population would have so good a life table and so high a degree of fertility as that assumed
for this imaginary population. In fact it was for these very reasons that these data were

L,m, column Matrix Difference
1 month age groups 0-44565 0-44626 0-00061
3 » 0-46034 0-4634 0-0031
Difference 0-01469 0-0171

chosen as the basis of the numerical calculations in this work. For, if it could be shown that
the two methods of computation gave comparable results in this case, it was felt that an
even better agreement should be obtained in less extreme examples and more particularly
with data relating to populations whose rate of increase is nearer to the stationary state.
Although in this example the larger unit of grouping leads to rather unsatisfactory estimates
of the rate of increase and the stable age distribution, it seems probable that, for the reasons
just given, the differences would be less for instance in the case of human data. Hence, the
question of the unit to be adopted is likely to become of less importance in the type of data
more commonly met with, though it would be necessary to work out an example for such a
population in order to check this point.

There is, however, one way to avoid this difficulty of the working unit for populations with
a high relative rate of increase. For example, returning to the numerical data used here,
supposing that it was necessary in some particular problem to have a fairly high degree of
accuracy in the results, but that the work involved in manipulating the large order matrix
of 21 x 21 was too excessive. It might be sufficient in the case we are imagining to know the
age distribution of the population in three month age groups at some particular time in the
future, which we will take to be a multiple of three. Then, once the real latent root (A;) of
the large matrix and its associated stable vector have been determined, it is possible to
construct a small order matrix of 7 x 7 which has A as its dominant root and therefore the
same real stable age distribution as the larger matrix, only expressed in three month instead
of in one month age units. It is convenient to carry out the calculation in terms of the
canonical form B and of ¥ vectors. Having determined the dominant latent root and the
stable vector for the larger matrix, the elements of the first three rows of B3 are then written
down and summed in columns. This can be done very quickly in the present example, where
reproduction does not start until the age of 3 months, for the third row of B? is the same as
the first row of B; the second row is merely the first row of B shifted one age group to the left;
and similarly again for the first row. The sums of the columns are then weighted with the
number alive in the appropriate age group in the stable population (i, vector), and
by summing the weighted column totals in groups of three and taking the weighted
mean, we obtain the elements of the first row of a 7 x 7 matrix which has A} as its domi-
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nant latent root. Thus, the characteristic equation of the original matrix condensed in this
way was

A7 —1-5056A°% — 6-4694A5 — 7-2047A% — 5-5371A3 — 3-4537A2 — 1-3451A — 0-1447 = 0,

and, out of idle curiosity, all the seven roots were extracted in order to compare them with
those of the previous example of a condensed matrix. The estimation in this case was carried
out to a higher degree of accuracy. The results were:

A= 381452
Ay = — 1-02526,
Ay = —0:5905 +0-3782 (mod. = 0-70125),
AsAg = 0-0280 +0-6879i (mod. = 0-68847),
A, = —0-15876.

The dominant root of the original matrix was 1-56246 and the cube root of A, is 1:56248.
The remaining roots may be compared with those given for the previous example. The two
negative roots are very similar and, in the second case, the two pairs of complex roots appear
to have changed places, the real part of one pair becoming positive instead of negative.
Although the cube root of A, is equal to the dominant root of the original matrix, it is un-
fortunately not true that a similar relationship holds for the remaining six values of A.
There is, for instance, no negative latent root > 1 for the larger form in this actual example.

This point, however, raises an extremely interesting question. For a given series of data
a finite matrix of a relatively small order may be constructed, as in the first example given
here of a condensed matrix. Supposing that the order of this matrix is increased step by step
and that in each case the latent roots are found. Then, in this approach to an infinite matrix,
how do the latent roots behave and what relation does the array of roots in each case bear to
those of the preceding steps? For the purposes of comparison it will be necessary to express
the roots in terms of some suitable unit of time, e.g. per month or per year. So far as the
real positive root is concerned, it seems likely that the series of individual roots will approach
nearer and nearer to a limiting value. For the root A, is the ratio N,,,/N,, or the number of
times the stable population has increased at the end of the interval of time 4. Then, expressing
A, in the chosen unit of time, we have 4, = (A,)'", and taking logarithms;

loge Al logc t+l;} logelvt

so that, when the interval of time becomes very small, corresponding to a matrix of a very
large order, and k& — 0, the right-hand side of this equation approaches the limit li’dg = p,
the true instantaneous relative rate of increase of the stable population. This argument is
put forward with a certain amount of diffidence; it is only too easy for the biologist to over-
look some flaw which will be immediately obvious to the trained mathematician. But, even
if it were a valid argument for the behaviour of the dominant root, it can hardly be extended
in this form to the case of the remaining roots; and thus the main question is left unanswered.
From the point of view of the biologist, it would be interesting to know whether with an
increase in the size of the matrix the array of secondary roots tends to coalesce round
certain values of AV,
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16. FURTHER PRACTICAL APPLICATIONS

If we wish merely to estimate the inherent rate of increase and the stable age distribution
appropriate to some system of age specific fertility and mortality rates, there is evidently
little to choose between the matrix and the ordinary methods of computation. The advan-
tages of expressing the basic rates in the form of a matrix are more clearly seen in con-
sidering the type of problem such as the following. Let us suppose that a species of mammal
at a certain season of the year invades a fresh environment where there is an ample food
supply, a freedom from predators, and plenty of space to accommodate any rapid increase
in numbers which might take place. Under these conditions it might be assumed for theo-
retical purposes that some age specific rates of fertility and mortality would remain approxi-
mately constant over a period of time. The age distribution of these immigrants then
becomes of some importance owing to the effect which it must necessarily have on the future
course of events. For this initial distribution must clearly be very different from that which
would ultimately be established in the case of a species, such as a rodent, with possibly a
very rapid rate of increase, since nestlings will not be represented in it and young individuals
may be present in only relatively small numbers. Supposing then that we have a number
of such populations subject to the same age schedules of fertility and mortality, but differing
in the age distribution of the original immigrants, we may have reason to enquire how far
the development of these populations is affected over a limited period of time by the varying
form of this initial distribution, assuming for simplicity that no further waves of immigration
occur.

If an estimate of the number and age distribution of the female population at successive
intervals of time is alone required, the answer for any form of initial distribution is readily
obtained once the series of matrices M, M2, M3, ..., M! have been constructed. But, in
addition, we may require to know the changes which might be expected to occur in the birth
rate and death rate, and also, for example, in some such rate as the percentage of adult
females pregnant, a figure which is one of the simplest measures we have of the degree of
fertility among wild populations. Again, in a species like the wild rat we never know the
exact age of individuals caught in the field, and thus the only measure of the form of the
female age distribution is the percentage of immature females, provided, of course, we are
sampling the complete population. Some method is therefore required for calculating such
rates at successive intervals of time.

Once the age distribution of the female population at time ¢ is known, an estimate of the
expected number of female births per unit of time may be obtained by operating on the age
distribution with the maternal frequency figures. Thus, in matrix notation we may write,
the number of female births equals m, M‘%,, where £, is the initial age distribution and the
m, figures are treated as a row vector. Similarly the estimated number of deaths per unit of
time may be obtained with the help of the age specific death rates (D,). The relative rate of
increase calculated in this way is not necessarily exact, but it may be sufficiently accurate
for our present purposes. As an example of the degree of error involved in this method, we
may compare the values of the stable birth rate and death rate, as given in the appendix,
with those derived from the matrix stable distribution in Table 2 by operating with the m,
and D, figures. The latter were in this case computed from the stationary age distribution
and the d, column of the life table (D, = d,/L,). The results were as follows:
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By operating with
‘True’ values m, and D, on
from appendix matrix stable
distribution
Birth-rate (b) 0-51265 0-51257
Death-rate (d) 0-06700 0-06154
b—d=r 0-44565 0-45103

The rate of increase is overestimated by about 5-4 per thousand per month, the principal
error being in the death rate. This discrepancy is due to the fact that the number of deaths
under 2 months of age is underestimated by applying age specific death rates, which are
based on the stationary age distribution, to the stable population grouped in one month
intervals at these ages. The difference between these distributions happens to be quite
marked in this example. The degree of error, however, is not very great; and in the type of
problem we are considering, when the age distribution of a population may take any form,
this seems to be the only practical method of estimating the rate of increase.*

Supposing, then that in the case of the rat population used here as a numerical illustration,
we wished to estimate the number of females, the birth rate and death rate, and the per-
centage of immature females at monthly intervals up to—say—7 months from the origin
of the time scale, when the initial immigration is assumed to take place. Since the jth column
of the matrix gives the age distribution of the survivors and the surviving descendants per
individual female alive in the age group j—1 to j at ¢ = 0, the sum of the elements in this
column gives the number of times the original population in this age group has increased,
or decreased, at time ¢. The percentage of immature females may be obtained once the sum
of the first three elements in the column is known (reproduction begins at the age of 3 months
in this example); and the number of births and deaths per unit of time may be found by
operating on the column with the m, and D, figures. Each of these totals, of course, will have
to be multiplied in the end by the number of females alive in this age group at ¢ = 0. Since
the initial age distribution may be of any form under the conditions of the problem, it will
be necessary first of all to calculate these four totals for every column of each of the seven
matrices M. Now, to add up the elements forming each column of a matrix is equivalent to
premultiplying the matrix by a row vector of units; the sum of the first three elements may
be obtained by premultiplying with a row vector of which the first three elements are units
and the remainder zeros; and similarly the numbers of births and deaths are found with the
help of the row vectors m,, and D,. Thus, the operations which it is necessary to perform on

* Another similar method, which avoids the actual calculation of the number of deaths by means of the age
specific death rates, is suggested by the following relationship. If the transformed age distribution i = HE,
where H is the matrix defined in § 5, is operated on with a row vector which consists of the L,m, figures (Ap-
pendix, Table 4), and the resulting scalar is divided by the sum of the elements of ¥, an estimate is obtained
of the relative rate of increase of a population with an age distribution £ in the original co-ordinate system.
This follows from the properties of the transformed population discussed at the end of § 5 and from the relation-
ship between the first row of the canonical form B = HAH-! and the L,m, column (§ 6). In the transformed
population the death rate =0, and the maternal frequency is given by L,m,. Thus, by transforming back again
to the original co-ordinate system

_[L.m,) HE
(11 HE °

where [1] defines a row vector of units. Taking & as the matrix stable distribution of Table 2, and calculating
the row vectors [L,m,] H and [1] H, the value of r was estimated by this method to be 0-44468.
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each of the columns of M!may be written as the matrix R, which will consist of m + 1 columns
and » rows, the number of the latter depending on the number of operations. Then the
required totals for the matrix M* will be given by

Z!= RM!= RMMM ... M,
and it is easy to see how the Z matrices may be built up in succession without calculating the
actual matrices M2, M3, M4, etc. Once the series of Z matrices have been constructed, we
can obtain from Z%, the necessary figures from which the required rates at time ¢ for a
population with an initial age distribution £, may be calculated. Moreover, if we wish, the
contributions made, for instance, to the total number of births or deaths by any particular
age group in the initial distribution can also be determined.

The computations in this illustration have been greatly simplified by the assumption that
the system of age specific fertility and mortality rates remains constant. In the case when
the basic matrix M is ehanging with time and the age distribution at time ¢ is given by
M,... My M, M, &, some of the rows of R will also be varying. Hence the series of Z matrices
could not be built up without first computing M, M, M, M, M,, etc. The latter, however,
may often be of interest in themselves. For, if each column of M‘—or M, ... My M, M, in the
case of a variable matrix—is multiplied by the number of females alive in the appropriate
age group at ¢ = 0, the complete age structure of the population at time ¢ is represented in
the form of a two-dimensional array. Since the sum of the elements in each row is the total
number alive in the age group « to + 1 at time ¢, the number contributed to this total by
each age group at ¢ = 0 is given by the individual entries.

APPENDIX
(1) The tables of mortality and fertility

The basic life table and fertility table which have been used in the numerical part of this
study are given in Table 4. The adult [, figures from the age of 2 months onwards are based
on the mortality observed among the females of a domesticated brown rat stock housed at
the Wistar Institute, Philadelphia. According to the data for 26 generations of this laboratory
stock published by King (1939) it appears that out of 1384 females alive at the age of 2 months
(60 days), 1337 were alive at 12 months, and 984 at 20 months. This information gave three
points on the [, curve, supposing that these survivors could be regarded as ordinates at these
exact ages. In order to interpolate for other ages, a logistic type of curve was fitted to the
data, the values of the constants being chosen so that the curve passed through these three
points. The I, values in Table 4 are given by

0-85156355

© = 14 0-00101065¢0-30016z° for xz2.

Although the original data did not extend beyond the age of 20 months, by which time the
vast majority of the females had ceased breeding (King, 1939), this [, curve was extrapolated
to later ages, whenever necessary, simply for the purposes of this theoretical study.

The degree of infant mortality assumed here, namely 15 %, between birth and the age of
2 months, is entirely arbitrary; it represents a moderate degree of loss at these early ages.
Some care, however, was taken to weld the infant mortality smoothl'y on to the remainder
of the [, curve, and it was assumed that the number of deaths according to age (d,) decreased
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geometrically between birth and the age of 2 months. The actual calculations for these age
groups were carried out in units of 1/8 of a month and the resulting [, curve was integrated
by means of Simpson’s rule. The same method of numerical integration was used also for
the adult part of the life table in order to obtain the L, figures.

The fertility table is partly artificial and was constructed in the following way. The gross
reproduction rate of these domesticated brown rats was estimated from the data published
by King (1939) to have been just under 10 litters for the later generations, when the stock
was thoroughly adapted to life in the laboratory. The frequency of litter production according
to the age of the mother has been found by the author (unpublished observations) to be
represented closely by a Pearsonian type I curve in the case of certain litter fertility tables,
for example in the cross-albino rat, the vole and some human populations with a high degree
of fertility; and, moreover, the values of £, and #, were very similar for all three species.
The actual equation for the curve used here may be written

y = y'zl5Ya — x)25-1,
and the range was assumed to be from 3 to 21 months, which for grouping purposes represents
the span of the reproductive ages observed by King in this Wistar strain of brown rats. The
ordinates of the integral curve of the above equation were taken from the-tables of the in-
complete Beta function and, in this way, a column was formed which gave a gross reproduc-
tion rate of 10 litters. The individual entries were then multiplied by the mean number of
daughters per litter according to the age of the mother, which was recorded by King, and thus
the m, figures in Table 4 were obtained. The gross reproduction rate is 31-21 daughters and
the net rate 25:66. These tables of fertility and mortality were originally constructed in
order to determine the relative rate of increase and the type of stable age distribution which
might be expected in a brown rat population living under more or less optimum conditions.

(2) Calculation of the rate of increase

Some difficulty was experienced in obtaining a satisfactory estimate of the rate of increase
(r) from the usual solution (Dublin & Lotka, 1925) of the equation:

-]
f el m,dx = 1.
0

The 4th degree equation in r with the numerical coefficients based on the seminvariants of
the L,m, distribution, the estimates of which are given in § 6, was

4-9019974 + 3-692837% — 7-0719872 4+ 9-60604r — 3-2448498 = 0,

and the real root was found to be 0-42447. This value of r was, however, clearly too low and
a better estimate had to be obtained in a rather roundabout way, since it was thought that
the use of ligher moments than the fourth would be unsatisfactory in the present example.

If the force of mortality represented by the original life table is increased by a constant
factor (r) which is independent of age, the new life table is

4
Iy =e"l,

and the net reproduction rate will be given by R, = XL, m,, where L, are the integrals of
the new I, curve. Clearly, the greater r is taken to be, the smaller R, becomes. Then, suppose
that the relation between R, and r is given by

log,R, = a+br+cr*+dri+...,
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Table 4
Age (x) Life table Fertility table
Units of o
30 days
lﬁ Lz mz Lzmz
0 1-00000 0-46544 — —
0-5 0-88706 0-43489 — —
1 0-85882 0-42725 — —
1-5 0-85176 0-42534 — —
2 0-85000 0-84973 — —
3 0-84945 0-84910 1-1342 0-96305
4 0-84871 0-84824 2:0797 1-76408
5 0-84772 0-84708 2-6596 2-25289
6 0-84638 0-84553 2-8690 2-42582
7 0-84458 0-84344 2-9692 2-50434
8 0-84217 0-84063 2-9535 2-48280
9 0-83893 0-83687 2-8143 2-35520
10 0-83459 0-83184 2-6114 2-17227
11 0-82881 0-82515 2-2455 1-85287
12 0-82113 0-81629 2:0533 1-67609
13 0-81098 0-80463 17971 1-44600
14 0-79768 0-78940 1-5561 1-22839
15 0-78039 0-76975 1-2175 0-93717
16 0-75821 0-74472 0-9548 0-71106
17 0-73018 0-71342 0-6610 0-47157
18 0-69548 0-67512 0-4043 0-27295
19 0-65354 0-62953 0-1846 0-11621
20 0-60434 0-57696 0-0435 0-02510
21 0-54859 —_ — —
Total . — — 31-2086 25-65786

where a = log, R,, and the constants b, ¢, d, etc. are to be determined. It was assumed in the
present instance that a 4th degree polynomial in » would be sufficient, and four new life
tables were constructed taking r to be in turn 0-1, 0-2, 0-4 and 0-5. The L, integrals were
obtained by Simpson’s rule for the reproductive ages and the four values of R, calculated.
The equations for finding the values of the constants were:

0-0001¢ + 0-001d + 0-01¢c + 016 = — 0-8934974,

0-:0016e + 0-008d + 0-04c + 0-2b = — 1:6708610,

0-0256¢ + 0-064d + 0-16¢ + 0-4b = — 2:9792984,

0-0625¢ + 0-125d + 0-25¢ + 0-5b = — 3-5490542,

whence b=-9617235,
¢ = 7371816,
d = — 5698291,
e= 2:062332.

Inserting these values of the constants in the equation for log, R,, the value of » for which
log, R, = 0 was found to be 0-44565,
The stable birth rate was estimated in the usual way from

1
b

= j e~ dx.
0
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The integrals were computed by means of Simpson’s rule, treating the age groups 0-2
separately from the remainder of the life table, the units adopted being 1/4 month for the
early ages compared with 1 month for the

later. It was found that Table 5
21
—0-44565x = ]-¢ R
f() € lpdx = 1-95064, Matrix 4 Matrix B
b = 0-51265, Age
group
and hence the death rate, x P 7 Elements of
® ® first row
d = 0-06700.
The value ?f r is so h.1gh in this case that 0- 094697 o 0
the error in the estimate of b due to 1- 0-99665 0 0
. 2- 0-99926 0-3964 0-3741
neglectm’g the ages from 21 onwards would 3 0-99899 1.4939 1.4089
only be in the last figure. The stable age 4- 0-99863 21777 2:0517
o . .. . 5- 0-99817 2-5250 2-3756
distribution is given in Tablgs 1 ar}d 2 of 6 0-99753 26282 24682
the text. Owing to the way in which the 7- 0-99667 2:6749 2:5059
value of  was determined, it will be found ¥ 0-99553 26018 24293
u ’ : 9- 0-99399 2-4419 2-2698
that the birth rate of the stable popula- i(l)— 8'3&1)32 2-;365 2:0202
. . . . - - 1-9044 1-7454
tion obtained by operating on this age 12- 0-98572 17259 1-5648
distribution with the maternal frequency 13- 0-98107 1-4918 1-3332
. . . 14—~ 0-97511 1-2415 1-0885
figures is precisely the same as that given 15— 0-96748 0-9522 0-8141
by the above integral. 16- 0-95797 0-7141 0-5907
17- 0-94631 0-4618 0-3659
. 3 18- 0-93247 0-2518 0-1888
(3) N umemca,'l values of the matrix elemf:nts 19- 0-91649 0-0901 0-0830
The numerical elements of the matrices 20~ 0-0035 0-0022

A and B to which reference has been made
in §§3 and 6 of the text are given in Table 5.
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in reading the manuscript, and also Dr H. Motz for many fruitful discussions. The study
arose out of some research work which is being carried out by the Bureau of Animal
Population with the aid of a grant from the Agricultural Research Council.
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