Matematik 3GT

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil.

Problem 1

Let $f: X \rightarrow Y$ be a map between two topological spaces. Show that the following two statements are equivalent:
(1) f is continuous and closed
(2) $\overline{f(A)}=f(\bar{A})$ for all $A \subset X$.

Problem 2

Let $f: K \rightarrow X$ be a continuous map of a compact space K into a locally pathconnected Hausdorff space X. Show that the path-components of $X-f(K)$ are open.

Problem 3

Let X be a normal space and βX its Stone-Čech compactification. We consider X as a subset of βX. Let y be a point in the remainder $\beta X-X$. Assume that y is the limit of a sequence of points from X. We will show that this assumption leads to a contradiction.
(1) Show that y is the limit of a sequence of points $x_{n} \in X, n \in \mathbf{Z}_{+}$, all of whose points are distinct, ie such that $x_{n} \neq x_{m}$ for $n \neq m$.
[Hint: If $\left(x_{n}\right)$ converges to y, where x_{n} is in X and y in $\beta X-X$, consider the subsequence $\left(x_{n_{k}}\right)$ where

$$
n_{k}= \begin{cases}1 & k=1 \\ \min \left\{n>n_{k-1} \mid x_{n} \notin\left\{x_{n_{1}}, \ldots, x_{n_{k-1}}\right\}\right\} & k>1\end{cases}
$$

is defined recursively.]
(2) Let $A=\left\{x_{1}, x_{3}, x_{5}, \ldots\right\}$ be the set of odd and $B=\left\{x_{2}, x_{4}, x_{6}, \ldots\right\}$ the set of even elements of the sequence. Show that $\bar{A}=A \cup\{y\}$ and $\bar{B}=B \cup\{y\}$. What is $\bar{A} \cap \bar{B}$? (Closures are taken in βX.)
(3) Show that A and B are are disjoint closed subsets of X and that there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=0$ and $f(B)=1$.
(4) Show that there exists a continuous function $\bar{f}: \beta X \rightarrow[0,1]$ such that $\bar{f}(A)=$ 0 and $\bar{f}(B)=1$. What does that tell you about $\bar{A} \cap \bar{B}$?
(5) Explain why we now have a contradiction and conclude that no point of $\beta X-X$ is the limit of a sequence of points from X.
Assume now that X is normal and noncompact.
(6) Explain why $\beta X-X$ is nonempty.
(7) Explain why βX does not satisfy the conclusion of the Sequence lemma. Conclude that βX is not first countable and not metrizable.
(THE END)

