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Matematik 3GT
Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your

answers in pencil. An unjustified answer counts as no answer.

Problem 1
Let f : X → Y be a map between two topological spaces. Show that the following three state-

ments are equivalent:
(1) f is continuous and open.
(2) f−1(Int(B)) = Int(f−1(B)) for all B ⊂ Y .
(3) f−1(B) = f−1(B) for all B ⊂ Y .

Problem 2
Let X be a topological space and A ⊂ X a subset. The exterior and the boundary of A are the

subsets
Ext(A) = X −A, Bd(A) = A ∩X −A

of X.
(1) Explain why the exterior of A is open and the boundary of A is closed.
(2) Show that X = Int(A) ∪ Bd(A) ∪ Ext(A) and that these three sets are pairwise disjoint.
(3) Let u : [0, 1] → X be a continuous path in X from a point u(0) ∈ Int(A) in the interior of

A to a point u(1) ∈ Ext(A) in the exterior of A. Show that there is a t ∈ [0, 1] such that
u(t) is in the boundary, Bd(A), of A.

Problem 3
Consider the spaces

{0} ∪ {1/n | n ∈ Z+} = A ⊂ I = [0, 1]
equipped with their standard topologies (as subspaces of R with the standard topology). Show
that there does not exist a continuous map R : I × I → I × {0} ∪A× I such that R(x× t) = x× t
for all x× t in I × {0} ∪A× I.

You may proceed as follows: Assume that the map R exists.

(1) Show that R(xn × 1) = 1
2

(
1

n+1 + 1
n

)
× 0 for some point xn ∈ [ 1

n+1 , 1
n ].

(2) Obtain a contradiction with the continuity of R.

Problem 4
Let X be a Hausdorff space equipped with an ascending sequence of closed subspaces X0 ⊂ X1 ⊂
· · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X. Assume that the topology on X is coherent with this filtration in
the sense that X =

⋃∞
n=0 Xn and

A is closed ⇐⇒ A ∩Xn is closed for each n

holds for all subsets A of X.
Let C be a compact subset of X. Choose a point tn ∈ C ∩ (Xn−Xn−1) for all n ∈ Z+ for which

this intersection is nonempty and let T be the set of all the points tn.
(1) Show that T is closed and that any subspace of T is closed. What can you say about the

subspace topology on T?
(2) Show that T is finite.
(3) Conclude that C is contained in XN for some N ∈ Z+.

(THE END)


