Matematik 3GT

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil. An unjustified answer counts as no answer.

Problem 1

Let $f: X \rightarrow Y$ be a map between two topological spaces. Show that the following three statements are equivalent:
(1) f is continuous and open.
(2) $f^{-1}(\operatorname{Int}(B))=\operatorname{Int}\left(f^{-1}(B)\right)$ for all $B \subset Y$.
(3) $f^{-1}(\bar{B})=\overline{f^{-1}(B)}$ for all $B \subset Y$.

Problem 2

Let X be a topological space and $A \subset X$ a subset. The exterior and the boundary of A are the subsets

$$
\operatorname{Ext}(A)=X-\bar{A}, \quad \operatorname{Bd}(A)=\bar{A} \cap \overline{X-A}
$$

of X.
(1) Explain why the exterior of A is open and the boundary of A is closed.
(2) Show that $X=\operatorname{Int}(A) \cup \operatorname{Bd}(A) \cup \operatorname{Ext}(A)$ and that these three sets are pairwise disjoint.
(3) Let $u:[0,1] \rightarrow X$ be a continuous path in X from a point $u(0) \in \operatorname{Int}(A)$ in the interior of A to a point $u(1) \in \operatorname{Ext}(A)$ in the exterior of A. Show that there is a $t \in[0,1]$ such that $u(t)$ is in the boundary, $\operatorname{Bd}(A)$, of A.

Problem 3

Consider the spaces

$$
\{0\} \cup\left\{1 / n \mid n \in \mathbf{Z}_{+}\right\}=A \subset I=[0,1]
$$

equipped with their standard topologies (as subspaces of \mathbf{R} with the standard topology). Show that there does not exist a continuous map $R: I \times I \rightarrow I \times\{0\} \cup A \times I$ such that $R(x \times t)=x \times t$ for all $x \times t$ in $I \times\{0\} \cup A \times I$.

You may proceed as follows: Assume that the map R exists.
(1) Show that $R\left(x_{n} \times 1\right)=\frac{1}{2}\left(\frac{1}{n+1}+\frac{1}{n}\right) \times 0$ for some point $x_{n} \in\left[\frac{1}{n+1}, \frac{1}{n}\right]$.
(2) Obtain a contradiction with the continuity of R.

Problem 4

Let X be a Hausdorff space equipped with an ascending sequence of closed subspaces $X_{0} \subset X_{1} \subset$ $\cdots \subset X_{n-1} \subset X_{n} \subset \cdots \subset X$. Assume that the topology on X is coherent with this filtration in the sense that $X=\bigcup_{n=0}^{\infty} X_{n}$ and

$$
A \text { is closed } \Longleftrightarrow A \cap X_{n} \text { is closed for each } n
$$

holds for all subsets A of X.
Let C be a compact subset of X. Choose a point $t_{n} \in C \cap\left(X_{n}-X_{n-1}\right)$ for all $n \in \mathbf{Z}_{+}$for which this intersection is nonempty and let T be the set of all the points t_{n}.
(1) Show that T is closed and that any subspace of T is closed. What can you say about the subspace topology on T ?
(2) Show that T is finite.
(3) Conclude that C is contained in X_{N} for some $N \in \mathbf{Z}_{+}$.

