Matematik 3GT

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil. An unjustified answer counts as no answer.

Problem 1

Let $f: X \to Y$ be a map between two topological spaces. Show that the following three statements are equivalent:

(1) f is continuous and open.

(2) $f^{-1}(\operatorname{Int}(B)) = \operatorname{Int}(f^{-1}(B))$ for all $B \subset Y$.

(3) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$ for all $B \subset Y$.

Problem 2

Let X be a topological space and $A \subset X$ a subset. The *exterior* and the *boundary* of A are the subsets

$$\operatorname{Ext}(A) = X - \overline{A}, \qquad \operatorname{Bd}(A) = \overline{A} \cap \overline{X - A}$$

of X.

- (1) Explain why the exterior of A is open and the boundary of A is closed.
- (2) Show that $X = Int(A) \cup Bd(A) \cup Ext(A)$ and that these three sets are pairwise disjoint.
- (3) Let $u: [0,1] \to X$ be a continuous path in X from a point $u(0) \in Int(A)$ in the interior of A to a point $u(1) \in \text{Ext}(A)$ in the exterior of A. Show that there is a $t \in [0,1]$ such that u(t) is in the boundary, Bd(A), of A.

Problem 3

Consider the spaces

$$\{0\} \cup \{1/n \mid n \in \mathbf{Z}_+\} = A \subset I = [0, 1]$$

equipped with their standard topologies (as subspaces of \mathbf{R} with the standard topology). Show that there does not exist a continuous map $R: I \times I \to I \times \{0\} \cup A \times I$ such that $R(x \times t) = x \times t$ for all $x \times t$ in $I \times \{0\} \cup A \times I$.

You may proceed as follows: Assume that the map R exists.

- (1) Show that $R(x_n \times 1) = \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n} \right) \times 0$ for some point $x_n \in [\frac{1}{n+1}, \frac{1}{n}]$. (2) Obtain a contradiction with the continuity of R.

Problem 4

Let X be a Hausdorff space equipped with an ascending sequence of closed subspaces $X_0 \subset X_1 \subset$ $\cdots \subset X_{n-1} \subset X_n \subset \cdots \subset X$. Assume that the topology on X is coherent with this filtration in the sense that $X = \bigcup_{n=0}^{\infty} X_n$ and

A is closed $\iff A \cap X_n$ is closed for each n

holds for all subsets A of X.

Let C be a compact subset of X. Choose a point $t_n \in C \cap (X_n - X_{n-1})$ for all $n \in \mathbb{Z}_+$ for which this intersection is nonempty and let T be the set of all the points t_n .

- (1) Show that T is closed and that any subspace of T is closed. What can you say about the subspace topology on T?
- (2) Show that T is finite.
- (3) Conclude that C is contained in X_N for some $N \in \mathbb{Z}_+$.

(THE END)