Matematik 3GT

Books, notes, calculators, and computers are allowed at this three hour written exam. You may write your answers in pencil.

Problem 1

Let **R** be the real line (with standard topology) and let I = [0, 1] be the unit interval (considered as a set).

For each natural number $k \in \mathbf{Z}_+$, let D_k be the set of all finite sequences

$$(I_1,\ldots,I_k,x_1,\ldots,x_k)$$

where $I_1, \ldots, I_k \subset I$ are disjoint closed subintervals of I with rational endpoints and $x_1, \ldots, x_k \in \mathbf{Q}$ are rational numbers.

(1) Show that the set $D = \bigcup_{k=1}^{\infty} D_k$ is countable.

For each element $(I_1, \ldots, I_k, x_1, \ldots, x_k) \in D_k$, let $x(I_1, \ldots, I_k, x_1, \ldots, x_k) \in \mathbf{R}^I$ be the element given by

$$\pi_t x(I_1, \dots, I_k, x_1, \dots, x_k) = \begin{cases} x_j & t \in I_j \text{ for some } j \in \{1, \dots, k\} \\ 0 & t \notin I_1 \cup \dots \cup I_k \end{cases}$$

where $\pi_t \colon \mathbf{R}^I \to \mathbf{R}, t \in I$, is the projection map.

- (2) Show that $x(D) = \bigcup_{k=1}^{\infty} x(D_k)$ is dense in \mathbf{R}^I (with the product topology).
- (3) Show that \mathbf{R}^J (with the product topology) does not contain any dense countable subsets when the cardinality of J is strictly bigger than that of the power set $\mathcal{P}(\mathbf{Z}_+)$.

Hint for (3): Let $D \subset \mathbf{R}^J$ be a dense subset. Show that the map

$$J \to \mathcal{P}(D) \colon j \mapsto D \cap \pi_i^{-1}((2003, 2004))$$

is injective. You may use without proof that $\overline{D \cap U} = \overline{U}$ for any open set $U \subset \mathbf{R}^J$.

Problem 2

Suppose that X is a locally compact Hausdorff space and A a nonempty closed subset of X. Let $\omega(X - A) = (X - A) \cup \{\omega\}$ denote the one-point (Alexandroff) compactification of X - A and X/A the quotient space of X obtained by identifying all points of A to one point and making no further identifications. Are these two spaces homeomorphic?

- (1) Explain why X A is locally compact Hausdorff.
- (2) Let $f: X \to \omega(X A)$ be the surjective map that is the identity on X A and sends A to ω . Show that f is continuous.
- (3) Show that f induces a continuous bijective map $\overline{f}: X/A \to \omega(X A)$.
- (4) Show that \overline{f} is a homeomorphism if and only if X/A is compact.

Let now $X = \mathbf{R}$ and $A = \bigcup_{n \in \mathbf{Z}} [2n, 2n+1].$

- (5) Is X/A compact? Is $\overline{f}: X/A \to \omega(X A)$ a homeomorphism?
- (6) Show that X/A is not first countable at the point corresponding to A.
- (7) Describe a subspace of \mathbf{R}^2 that is homeomorphic to $\omega(X A)$. (A proof is not required.) Can you find a subspace of \mathbf{R}^2 that is homeomorphic to X/A?

(THE END)