Matematik 3GT

Books, notes, calculators, and computers are allowed at this 3 hour written exam. You may write your answers in pencil.

Problem 1 (10 points)

Let X be a strictly simply ordered set. Assume that X is compact in the order topology. Show that X has a smallest and a largest element.

Problem 2 (40 points)

Let X be a compact metrizable space.

- (1) Show that X contains a dense countable subset A. (Hint: Cover X by finitely many 1/n-balls.)
- (2) Show that the topology on X is induced by a metric $d: X \times X \to [0, 1]$ with values in the interval [0, 1].
- (3) Let $A \subset X$ be as in (1) and the metric d as in (2). Show that the map

$$f: X \to [0,1]^A$$
 given by $f(x) = (d(x,a))_{a \in A}$

is an imbedding and that the image $f(X) \subset [0,1]^A$ is closed.

(4) Show that any closed subspace of $[0, 1]^{\omega}$ is compact and metrizable.

Problem 3 (20 points)

For a locally compact Hausdorff space X, let $X^{\bullet} = X \cup \{\infty\}$ denote its one-pointcompactification. For a continuous function $f: X \to Y$ between two such spaces, let $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ be the extension of f given by $f(\infty) = \infty$.

- (1) Show that $f^{\bullet} \colon X^{\bullet} \to Y^{\bullet}$ is continuous if and only if $f^{-1}(K)$ is compact for any compact subspace $K \subset Y$.
- (2) Is $g^{\bullet}: \mathbf{R}^{\bullet} \to (\mathbf{R}^2)^{\bullet}$ continuous when $g: \mathbf{R} \to \mathbf{R}^2$ is the continuous map $g(t) = (\cos t, \sin t)$?

Problem 4 (50 points)

Let $P^2 = S^2 / \sim$ be the quotient space of the unit 2-sphere

$$S^{2} = \{(x_{1}, x_{2}, x_{3}) \in \mathbf{R}^{3} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1\} \subset \mathbf{R}^{3}$$

by the equivalence relation $x \sim y \Leftrightarrow x = \pm y$. The quotient map, sending a point to its equivalence class, is denoted $p: S^2 \to P^2$.

- (1) Show that the map p is open and closed.
- (2) Show that P^2 has a countable basis.
- (3) Show that P^2 is Hausdorff.
- (4) Let $U = \{(x_1, x_2, x_3) \in S^2 \mid x_3 > 0\} \subset S^2$ be the upper open hemisphere. Show that $p|U: U \to P^2$ is an imbedding.
- (5) The complement $P^2 p(U)$ is a familiar topological space. Which one? (Just give the answer, no justification is necessary.)

(THE END)