Solutions to the June 2004 exam

Problem 1

$(1) \Longrightarrow(2)$: Since f is continuous, $f(A) \subset f(\bar{A}) \subset \overline{f(A)}$. Since f is closed, $f(\bar{A})$ is closed and therefore these two inclusions imply $\overline{f(A)}=f(\bar{A})$.
$(2) \Longrightarrow(1)$: Since $f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset X, f$ is continuous. If A is closed, then $A=\bar{A}$ so that $f(A)=f(\bar{A})=\overline{f(A)}$ is also closed. This means that f is closed.

Problem 2

Any continuous map of a compact space to a Hausdorff space is closed. Open subsets of locally path-connected spaces have open path-components.
Problem 3 [2, Ex 38.9]
(1) Suppose that $x_{n} \in X$ converges to $y \in \beta X-X$. We recursively define a subsequence by $x_{n_{k}}$ by

$$
n_{k}= \begin{cases}1 & k=1 \\ \min \left\{n>n_{k-1} \mid x_{n} \notin\left\{x_{n_{1}}, \ldots, x_{n_{k-1}}\right\}\right\} & k>1\end{cases}
$$

This definition makes sense since the set we are taking the minimal element of a nonempty set. Since x_{n} converges to y, the subsequence $x_{n_{k}}$ also converges to y. Clearly, no two points of the subsequence $x_{n_{k}}$ are identical. We call this subsequence x_{n} again.
(2) Note that y is in the closure of A as any neighborhood of y contains a point from A. Since therefore $A \subset A \cup\{y\} \subset \bar{A}$, it suffices to show that $A \cup\{y\}$ is closed, ie that the complement of $A \cup\{y\}$ is open: Let z be a point in the complement. Since z is not the limit of the sequence $\left(x_{2 n+1}\right)$ (there is just one limit point, namely y, in the Hausdorff space βX) there exists a neighborhood, U, of z containing only finitely many points from the sequence. Then $U-(U \cap(A \cup\{y\}))$ is an open neighborhood of z disjoint from $A \cup\{y\}$.

This shows that $\bar{A}=A \cup\{y\}$. Similarly, $\bar{B}=B \cup\{y\}$. Therefore the intersection $\bar{A} \cap \bar{B}=\{y\} \neq \emptyset$.
(3) A and B are disjoint since no two points of the sequence x_{n} are identical. The set A is closed in X since $\mathrm{Cl}_{X} A=X \cap \bar{A}=X \cap(A \cup\{y\})=A$. Similarly for B, of course. By Urysohn's characterization of normal spaces, there exists a continuous function $f: X \rightarrow[0,1]$ such that $A \subset f^{-1}(0)$ and $B \subset f^{-1}(1)$.
(4) The universal property of the Stone-Čech compactification [1, §27] says that there exists a unique continuous map \bar{f} into the compact Hausdorff space $[0,1]$ such that the diagram

commutes. Since $\bar{A} \subset \bar{f}^{-1}(0)$ and $\bar{B} \subset \bar{f}^{-1}(1), \bar{A}$ and \bar{B} are disjoint.
$\stackrel{(2)}{\neq} \bar{A} \cap \bar{B} \stackrel{(4)}{=} \emptyset$ 亿
(6) X is a proper subspace of βX since βX is compact which X is not.
(7) First countable spaces satisfy the sequence lemma. If $\beta X-X=\bar{X}-X$ is nonempty then βX does not satisfy the sequence lemma as we have just seen. Thus βX is not first countable, in particular not metrizable.

Here are two applications:

- $\beta \mathbf{Z}_{+}$is compact but not sequentially compact: The sequence \mathbf{Z}_{+}in $\beta \mathbf{Z}_{+}$ has no convergent subsequence (neither in \mathbf{Z}_{+}nor in $\beta \mathbf{Z}_{+}-\mathbf{Z}_{+}$).
- $\beta \mathbf{R}$ is connected but not path-connected: $\beta \mathbf{R}$ is connected because it has a dense connected subspace, \mathbf{R}. It is not path-connected since there can be no path between a point in \mathbf{R} and a point outside \mathbf{R} as any such path would also give a a sequence of points in \mathbf{R} converging to a point outside \mathbf{R} (the first point of the path that is not in \mathbf{R}). To see this note that as \mathbf{R} is locally compact, \mathbf{R} is open in the compact Hausdorff space $\beta \mathbf{R}[1,30.8]$. The remainder $\beta \mathbf{R}-\mathbf{R}$ is therefore closed. Let now $p:[0,1] \rightarrow \beta \mathbf{R}$ be a path from $p(0) \in \mathbf{R}$ to $p(1) \in \beta \mathbf{R}-\mathbf{R}$. Then $p^{-1}(\beta \mathbf{R}-\mathbf{R})$ is a compact subset of $[0,1]$ so it contains its greatest lower bound $t_{0}=\inf p^{-1}(\beta \mathbf{R}-\mathbf{R})$. This lower bound is positive for 0 belongs to $p^{-1}(\mathbf{R})$. Hence $t_{n}=t_{0}-\frac{1}{n}$ is a sequence in $p^{-1}(\mathbf{R})($ for $n \gg 0)$ that converges to $t_{0} \notin p^{-1}(\mathbf{R})$. The image sequence $p\left(t_{n}\right)$ is then a sequence in \mathbf{R} that converges to a point $p\left(t_{0}\right)$ outside \mathbf{R}. But that is impossible!

References

[1] Jesper M. Møller, General topology, http://www.math.ku.dk/ moller/e03/3gt/notes/gtnotes.dvi.
[2] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 \#4063

